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Preface

Soon after the discovery of the basic principles of quantum mechanics theorists set out to explain

the properties of solids from a first-principles, atomistic perspective. However, it soon became

clear that theoretical methods based on the calculation of fermionic many-particle wave func-

tions are notoriously difficult to handle. A crucial step forward was density-functional theory

(DFT) and its local-density approximation (LDA). The success of DFT in explaining the phys-

ical and chemical properties of solids is remarkable. Nevertheless, LDA and its generalizations

fail for systems whose low-energy properties are dominated by electron-electron correlations,

such as Mott-insulating transition-metal oxides, Kondo and heavy-fermion materials, organic

crystals, and many others. The realistic description of these strongly correlated materials re-

mains, to date, one of the grand challenges of condensed matter-physics.

During the last few years conventional band-structure calculations in the local density ap-

proximation (LDA) have been merged with a modern many-body approach, the dynamical

mean-field theory (DMFT), into a novel computational method referred to as LDA+DMFT.

This framework has proved to be a breakthrough for the realistic modeling of the electronic,

magnetic, and structural properties of materials such as transition metals and their oxides. Nev-

ertheless the LDA+DMFT approach still needs to be considerably advanced to be able to treat

increasingly complex systems. This requires, for example, an improvement of the interface

between the band structure and many-body constituents of the approach, the refinement and

integration of efficient impurity solvers, the realistic computation of free energies and forces,

and the development of schemes to treat non-local correlations. For this purpose 25 researchers

from 16 different institutions in the German-speaking part of Europe joined forces and estab-

lished the Research Unit FOR 1346 on Dynamical Mean-Field Approach with Predictive Power

for Strongly Correlated Materials, which is funded by the Deutsche Forschungsgemeinschaft

since July 2010. It is the goal of this Research Unit to develop the LDA+DMFT framework into

a comprehensive ab initio approach which will be able to describe, and eventually even predict,

the properties of complex correlated materials.

By organizing the 2011 Autumn School Hands-on LDA+DMFT the researchers of the DFG

Research Unit FOR 1346 offer a practical introduction into the LDA+DMFT approach for grad-

uate students and young researchers in this novel branch of condensed matter physics.

The school covers the following topics

• Electronic correlations

• Basic DFT

• Model Hamiltonians

• Wannier functions

• DMFT

• LDA+DMFT

• Lanczos

• Hirsch-Fye quantum Monte Carlo

• Continuous-time quantum Monte Carlo

• Cluster DMFT and dual-Fermion approach

• KKR+DMFT

• GW+DMFT

• Challenges from experiments
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which the school would have not be complete
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• Nils Blümer, Mainz University

• Jan Kunes̆, Institute of Physics, Academy of Sciences, Praha

• Philipp Werner, ETH Zurich

We heartily thank all the colleagues and collaborators that helped us in proofreading the

manuscripts, even on short notice
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The nature of a School requires the lecture-notes to be available during the lectures. In

this way the participant have the chance to work through the lectures thoroughly while they

are given. We are very grateful that all lecturers provided their manuscripts in time for the

production of this book. We foresee that the lecture notes collected here will serve as a future

standard entry point into the LDA+DMFT approach to strongly correlated materials. We thank

Mrs. H. Lexis of the Forschungszentrum Jülich Verlag and Mr. D. Laufenberg of the Graphische
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1 Emergent behavior

Understanding the laws that govern the universe is dream as old as mankind. Its motivation is
the quest to reduce complexity to simplicity, succinctly expressed by Einstein [1]

The supreme test of the physicist is to arrive at those universal laws from which the
cosmos can be built up by deduction.

This reductionist program achieved remarkable successes, starting with Newton’s understand-
ing that the gravitational pull on an apple is the same that holds the moon on its orbit around
earth. Maxwell managed to describe the quite different phenomena of electricity and mag-
netism on the same footing, developing the theory of electromagnetism. The electromagnetic
force could later be unified with the weak interaction into the electro-weak force, one of the pil-
lars of the standard model. But there were also problems along the way. Theories became more
and more complex as a whole zoo of elementary particles was discovered. Then, with the in-
troduction of quarks, todays elementary particles became tomorrows compound objects, while
the new elementary particles ceased to have a meaning as independent objects. Interestingly,
the considerable changes in what was believed to be the fundamental Theory of Everything had
remarkably little influence on our understanding of the physics at lower energy scales: The
quark-dynamics has hardly any relevance for understanding chemical bonding. When vastly
different energy scales are involved, a clear-cut separation of the physical description into al-
most independent layers takes place.
The relevant elementary particles for describing matter at the energy scale of our everyday
experience are the atomic nuclei, usually considered as point-charges, and, of course, the elec-
trons, giving rise to electronic structure. The fundamental laws governing these are given by
the innocent looking eigenvalue problem

H|Ψ〉 = E|Ψ〉 (1)

where the Hamiltonian for a set of atomic nuclei {α} with atomic numbers {Zα} and nuclear
masses {Mα} and their accompanying {i} electrons is given, in atomic units, by

H = −1

2

∑
i

∇2
i −

∑
α

1

2Mα

∇2
α −

∑
α,i

Zα
|ri −Rα|

+
1

2

∑
ii′

1

|ri − ri′ |
+

1

2

∑
αα′

ZαZα′

|Rα −Rα′|
.

This equation, augmented by gravitational potentials and lowest-order relativistic corrections
(spin) as the microscopic basis of magnetism, account for the phenomena of our everyday ex-
perience, i.e., they are a Theory of almost Everything [3, 4]. Therefore, already shortly after the
formulation of the Schrödinger equation, Dirac [5] remarked that the theory behind atomic and
condensed-matter physics, as well as chemistry is completely known

The underlying laws necessary for the mathematical theory of a large part of
physics and the whole of chemistry are thus completely known, and the difficulty
is only that exact applications of these laws lead to equations which are too com-
plicated to be soluble. It therefore becomes desirable that approximate practical
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methods of applying quantum mechanics should be developed, which can lead to
an explanation of the main features of complex atomic systems without too much
computation.

From the reductionist point of view, this closes the case on chemistry and condensed-matter
physics. Solving (1) is an exercise in applied mathematics, merely a practical problem. How-
ever, because of the quantum many-body nature of the problem, finding the solution, though
possible in theory, is impossible in practice. To understand why, we consider a canonical exam-
ple, a single atom of iron. Having 26 electrons, its wavefunction Ψ(r1, r2, . . . , r26) is a function
of 78 coordinates. What does it take to store such a wave function? If we record Ψ at merely ten
values for each coordinate, we would have to record 1078 values. There is not enough matter in
the visible universe for storing even such a ridiculously crude representation of the wave func-
tion of a single iron-atom. This complexity of the wave function is the essence of the many-body
problem. Already Laplace [6] realized that indeed the grand goal of simulating the world, even
if it was possible in theory, in practice can never be reached

An intelligent being, who, at a given moment, knows all the forces that cause nature
to move and the positions of the objects that it is made from, if also it is powerful
enough to analyze his data, would have described in the same formula the move-
ments of the largest bodies of the universe and those of the lightest atoms. [. . . ]
Although scientific research steadily approaches the abilities of this intelligent be-
ing, complete prediction will always remain infinitely far away.

But would it really be desirable to know the full wave function of a solid, even if it was possible?
On the one hand, yes, because from the wave function we could readily calculate all expectation
values. Thus we would be able to make reliable predictions of the properties of any given
material. But predictive power does not just mean that calculations agree with experiment.
Predictive power also means that we know what problems are worth looking at, i.e., for what
materials interesting properties are to be expected. For this, knowing the full wave function
would be of little help; it would just lead to information-overload. The physics would be buried
in the masses of data, and the life of the universe would be too short to analyze it, let alone to
understand it. Remarkably, Wigner and Seitz recognized this very early on [7], when electronic-
structure calculations were still mainly done by hand, i.e., by human computers [8]

If one had a great calculating machine, one might apply it to the problem of solving
the Schrödinger equation for each metal and obtain thereby the interesting physical
quantities, such as the cohesive energy, the lattice constant, and similar parame-
ters. It is not clear, however, that a great deal would be gained by this. Presumably
the results would agree with the experimentally determined quantities and nothing
vastly new would be learned from the calculation. It would be preferable instead
to have a vivid picture of the behavior of the wave functions, a simple description
of the essence of the factors which determine the cohesion and an understanding of
the origin of variation in properties [. . . ]
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To understand Nature, we have to identify the mechanisms behind the phenomena. We want
to know why Nature behaves the way she does, not just, by theory, reproduce some experi-
ment. Why are metals shiny? Why do some materials superconduct while others do not? What
opens the gap in a Mott insulator? What drives the ordering of orbitals? What is the mecha-
nism behind colossal magneto-resistance? These properties do not descent in any obvious way
from the Theory of almost Everything (1). They are examples of emergent behavior. When
a system is made of many interacting components, no matter how simple the interactions are,
complex many-body phenomena arise. We meet examples of emergence everyday, maybe the
most astonishing being the human brain itself.

The limitations of the reductionist approach were probably most strongly voiced by P. W. An-
derson in his famous article More is different [9]

The ability to reduce everything to simple fundamental laws does not imply the
ability to start from those laws and reconstruct the universe. [. . . ]
The behavior of large and complex aggregates of elementary particles, it turns out,
is not to be understood in terms of a simple extrapolation of the properties of a few
particles.

Instead of a reduction to some specific Theory of Everything, science should rather be seen as
a hierarchy of structures

Thus, with increasing complication at each stage, we go up the hierarchy of the
sciences. We expect to encounter fascinating and, I believe, very fundamental
questions at each stage in fitting together less complicated pieces into the more
complicated system and understanding basically new types of behavior which can
result.

The stages in this hierarchy are best defined, when the energy scales differ significantly. High
energy physics deals with the interactions among elementary particles. On the next stage the
elementary particles condense into bound states, the subject of nuclear physics. Going up in
the hierarchy, at energy-scales of everyday-life, it is only the interaction between atoms and
molecules that matters. This is the realm of the chemical bond. Each stage is well separated
from the others. This means that new discoveries at a lower stage do not fundamentally change
the description at the higher stage. On the one hand, this effective decoupling is what makes
science possible without knowing the ultimate Theory of Everything. On the other hand, the
same decoupling implies that describing the complexity at a higher stage in terms of the theory
at the lower stage is a practical impossibility. At each level in the hierarchy fundamentally new
properties emerge, which are largely independent of the details on the previous level. Moving up
in the hierarchy we need to devise effective theories describing the physics at that level, which
are derived from physical understanding rather than from an exact mathematical treatment of
the underlying microscopic dynamics.
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2 Electronic Structure

As we have seen, the fundamental problem in condensed-matter physics is solving (1). The most
fascinating properties emerge from its many-body nature. This makes, except in the simplest
cases, an exact solution a practical impossibility. Dirac’s approximate practical methods for its
solution therefore have to focus on specific aspects of the problem.
The most immediate many-body effect is Fermi-Dirac statistics. It gives us the Aufbauprinzip,
letting us understand the structure of the periodic table and the basis of chemical bonding. This
is well described in the Hartree-Fock approach. An even more practical approach is density-
functional theory (DFT) [10]. It rephrases the many-body problem as the problem of minimiz-
ing a functional of the electron density – a tremendous simplification from a problem involving
N -body wave-functions with 3N -coordinates to densities n(~r ) with merely 3 variables. In
practice, however, only approximations to the universal density-functional are known. The
most successful route to constructing approximate density-functionals is via a mapping of the
interacting system onto a non-interacting reference system. In this Kohn-Sham framework al-
ready very simple approaches like the local-density approximation (LDA) result in functionals
that are surprisingly accurate for vast classes of materials. The basis for their success, again,
is that the Aufbauprinzip is firmly built into the functional via the filling of the single-electron
levels of the reference system.
Because of the single-electron nature of the Kohn-Sham reference system, practical density-
functional calculations work well for materials with an electronic structure that can be under-
stood in terms of the energy levels of individual electrons. In these cases density-functional
calculations not only provide accurate results, but also contribute to our understanding, e.g., of
bonding in materials in terms of molecular orbitals, or Bloch waves and Wannier functions in
solids. The approach has proven so successful that its main creator, Walter Kohn, was recog-
nized with the 1998 Nobel Prize in Chemistry.
The successes of the density-functional approach make it easy to forget that it was far from
clear whether working density-functional approximations could ever be found. The electron
density is a remarkably featureless quantity. As figure 1 exemplifies, it is almost impossible to
distinguish the charge densities of a solid from the superposition of its constituent atoms or even
to tell a metal from an insulator. This fact is the basis for the unexpected usefulness of the non
self-consistent Harris functional [11]. It also lets us appreciate that finding good approximate
density functionals is a highly nontrivial task. While the simple local-density approximation
works surprisingly well for many materials, it has problems describing magnetism. In this case,
expressing the functional in terms of spin-densities greatly simplifies the task of writing down a
good functional. While all necessary information is included, in principle, in the density alone,
only treating the spin-densities as separate variables gives a simple way, the local spin-density
approximation [12], of ensuring that states with large spin tend to have lower energy.
This situation is typical for the art of devising approximate practical methods. We need to
identify which details of the problem should be included. If we manage to identify the relevant
details, finding a good approximation is significantly simplified. If we fail to identify them,
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KCuF3 (LDA+U)

KCuF3 atomic KCuF3 (LSDA)

Fig. 1: Charge density for a cut through KCuF3. The charge density contours (on a logarithmic
scale) for the insulating solid calculated with LDA+U hardly differs from the charge density
of the metal obtained in LSDA. Both hardly differ from the superposition of atomic charge
densities. Large black circles: position of Cu atoms, small black circles: F atoms.

finding a good approximation is virtually impossible.
By the nature of the Kohn-Sham approach, density-functional calculations are largely confined
to materials, for which the picture of individual electrons is adequate, and Fermi-liquid the-
ory, which models weakly interacting quasi-particles, applies. There is, however, a remarkable
variety of strongly correlated materials for which this standard model of electronic structure
theory breaks down. The hallmark of these materials is that some of their electrons are neither
perfectly localized, nor fully itinerant. These electrons can no longer be considered individu-
ally. The resulting behavior presents some of the deepest intellectual challenges in physics. At
the same time interest in strongly correlated materials is fueled by the astounding possibilities
for technological applications. Prominent examples are the transition-metal oxides, e.g., the
high-temperature superconductors, and molecular crystals [13].
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3 The LDA+DMFT approach

When dealing with strongly-correlated electrons we have to confront the many-body problem.
For a long time the only available strategy was to come up with minimal models, tailored to
describe a specific phenomenon. Even these simple many-body problems (Kondo model, An-
derson model, Hubbard model, periodic Anderson model, . . . ), were still very hard to solve.
Including the complexity of specific materials was out of the question. Most effort went into de-
veloping methods to solve these model problems. For single-impurity models, like the Kondo-
or the Anderson model, exact solutions were found, but lattice problems (Hubbard model, pe-
riodic Anderson model) remained unsolved, with the exception of special limits, typically one-
dimensional systems. The formidable difficulty of finding approximate non-perturbative tech-
niques to solve the Hubbard model and similar Hamiltonians lead to a decoupling of many-body
physics from chemistry and electronic-structure. On the other hand, the hope of calculating
model parameters from first-principles lead to largely independent developments, such as the
LDA+U method, in which correlation effects are fitted into DFT calculations even if only at the
crude Hartree-Fock level.

In recent years, significant progress was driven by the development of dynamical mean-field
theory (DMFT). The key insight was that in the limit of infinite dimensions the self energy
becomes local [14, 15]. That suggested that, in finite but not too low dimension, the infinite
lattice could be mapped approximately onto an impurity problem, which has to be solved self-
consistently [15]. From the many-body point of view, the techniques developed for impurity
models could now be used for the Hubbard model. From the materials point of view, the
LDA+U experience suggested that it would be possible to solve many-body models with pa-
rameters calculated ab-initio. These two lines of research culminated in the development to the
LDA+DMFT method, today state-of-the-art approach for strongly-correlated systems.

While enormously reducing the cost of the simulation, non-perturbative calculations are still
limited to quite simple model Hamiltonians [16]. It is therefore crucial to construct models that
are as small as possible, while still capturing the essential chemistry of the real material. As
we already saw in the development of approximate density-functionals, the art of modeling is
to make the model as simple as possible, but not simpler. Ideally a model is simple enough that
a simulation is well feasible, but detailed enough to be material-specific.

The LDA+DMFT approach works in two steps. In the first step, ab-initio calculations, based on
density-functional theory, are used to obtain the one-electron part of the Hamiltonian. Next, the
high-energy states are integrated out, so that only the low-energy partially filled (d or f ) bands
are retained, and a basis of first-principles Wannier functions is constructed. These Wannier
functions, by construction, carry the information on the lattice and the chemistry; furthermore,
they are localized, so that the correlation part of the Coulomb repulsion is very short range in this
basis. In the second step, the material-specific few-bands many-body Hamiltonians, constructed
in terms of these Wannier functions, are solved in the dynamical mean-field approximation.
This two steps approach has been used very successfully, e.g., to understand the role of subtle
crystal-field splittings for the metal-insulator transition in 3dn transition-metal oxides [17].
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Fig. 2: Logo showing the essential ingredients of the LDA+DMFT approach: Electrons in
localized orbitals are strongly correlated as their Coulomb interaction cannot be described by
a simple static mean field. The background shows a section of a quantum Monte Carlo based
impurity solver which is used to calculate, e.g., spectral functions.

Still, even low-energy few-bands models can be solved only thanks to high performance com-
puters. The task of solving the full many-body problem in a realistic setting will remain the
main challenge in condensed matter for years to come. Bridging the high and low energy elec-
tronic degrees of freedom is not only one of the deepest problem in contemporary physics but
should also provide a wealth of exciting materials for novel technologies.

4 Overview of the school

The historical development and the current state-of-the-art of the LDA+DMFT approach is
reflected in the organization of the school and the present collection of lecture notes.
To set the stage, Dieter Vollhardt will introduce the problem of electronic correlations and
discuss the limit of infinite dimensions, which is the basis of the dynamical mean-field ap-
proach. The lecture of Peter Blöchl will then introduce the other pillar of LDA+DMFT, density-
functional theory.
The second group of lectures is devoted to the art of model-building. First, Frank Lechermann
will discuss some of the most important types of models. The construction of realistic mod-
els is based on Wannier functions from ab-initio calculations. The determination of Wannier
functions is discussed in the lecture of Jan Kuneš. By construction these functions give a good
representation of the kinetic part of the model Hamiltonian. In contrast, the calculation of
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screened Coulomb integrals is much less developed. This challenging problem will be covered
in the lecture of Ferdi Aryasetiawan. To reflect the central importance of model-building, two
tutorials will cover the practical aspects of constructing Wannier functions and of calculating
screened Coulomb parameters.
The dynamical mean-field approach is the central theme of the book. The foundations of this
many-body method and the applications to simple models will be explained in the lecture of
Marcus Kollar. To use it in a realistic contest, DMFT has to be combined with ab-initio tech-
niques. The LDA+DMFT approach will be presented by Eva Pavarini.
An essential step of DMFT is to solve the auxiliary quantum-impurity problem. Three lec-
tures are thus devoted to introducing some of the most important quantum-impurity solvers:
The Lanczos method (Erik Koch), the Hirsch-Fye quantum Monte Carlo (Nils Blümer), and the
continuous-time quantum Monte Carlo (Philipp Werner). Computational aspects of the quan-
tum Monte Carlo approaches will be covered in two tutorials.
Further lectures are devoted to advanced topics. Hubert Ebert will introduce the KKR+DMFT
approach, which tightly integrates DMFT in a band-structure method. Sasha Lichtenstein will
discuss important extensions of DMFT to include spatial fluctuations. Finally, Karsten Held
will discuss the GW+DMFT, which is based on Hedin’s GW approach rather than DFT.
Each lecture will illustrate examples of the successes of LDA+DMFT. However, the ultimate
word on a theory goes to experiments. Thus the book ends with the lecture of Hao Tjeng,
maybe the most important of all. It will present challenges for theory from experiments. Facing
the limits of a method is the essential step to improve a theory, and to make progress towards
predictive power.
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1.2 Dieter Vollhardt

1 Introduction

1.1 Electronic correlations

In physics the average or expectation value of a product of quantities usually differs from the

product of the averages of the individual quantities:

〈AB〉 6= 〈A〉〈B〉. (1)

This is attributed to correlations. For example, in an interacting system a particle at position r

will, in general, influence other particles at positions r′. Therefore the density-density correla-

tion function of this system does not factorize

〈n(r)n(r′)〉 6= 〈n(r)〉〈n(r′)〉 = n2, (2)

i.e., is not given by the square of the average density n. (For quantum particles the unequal

sign holds even in the non-interacting case, since the quantum statistics by itself already leads

to a spatial dependence). Correlations are thus defined as effects which go beyond factorization

approximations such as Hartree or Hartree-Fock theory.

Correlations in space and time are by no means abstract notions, but occur frequently in ev-

eryday life. Persons in an elevator or in a car are strongly correlated both in space and time,

and it would be quite inadequate to describe the situation of a person in such a case within a

factorization approximation where the influence of the other person(s) is described only by a

static mean-field, i.e., a structureless cloud.

As in the case of two persons riding together on an elevator, two electrons with different spin

direction occupying the same narrow d or f orbital in a real material are also correlated. Here

the degree of correlation can be estimated in a very simplified picture as follows. Assuming

the correlated electrons (or rather the quasiparticles, i.e., excitations) to have a well-defined

dispersion ǫk, their velocity is given by vk = 1
~
|∇kǫk|. The typical velocity is given by vk ∼ a

τ
,

where a is the lattice spacing and τ is the average time spent on an atom. The derivative can be

estimated as 1
~
|∇kǫk| ∼ 1

~
aW since |∇k| ∼ 1/k ∼ a and |ǫk| corresponds to the band overlap t

and hence to the band width W . Altogether this means that

τ ∼ ~

W
. (3)

The narrower a band, the longer an electron therefore resides on an atom and thereby feels the

presence of other electrons. Hence a narrow band width implies strong electronic correlations.

This is the case for many elements in the periodic table. Namely, in many materials with par-

tially filled d and f electron shells, such as the transition metals V, Fe, and Ni and their oxides,

or rare–earth metals such as Ce, electrons occupy narrow orbitals. This spatial confinement

enhances the effect of the Coulomb interaction between the electrons, making them “strongly

correlated”. Correlations give rise to profound quantitative and qualitative changes of the phys-

ical properties of electronic systems as compared to non-interacting particles. Indeed, already

in 1937, at the outset of modern solid state physics, de Boer and Verwey [1] drew attention
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Increasing interaction U

Increasing pressure P

(a)

SrVO3
CaVO3

(c)

(b)

Fig. 1: Typical correlation effects in solids: (a) Mott- Hubbard metal-insulator transition in the

paramagnetic phase of V2O3 doped with Cr (after [3]); (b) insulating energy gap at the Fermi

surface of NiO (after [4]); (c) lower Hubbard band in SrVO3 and CaVO3 due to transfer of

spectral weight from the Fermi energy to energies around -1.7 eV (after [5])

to the surprising properties of materials with incompletely filled 3d-bands, such as NiO. This

observation prompted Mott and Peierls [2] to consider the interaction between the electrons.

Correlations may, for example, lead to a transition from metallic to insulating behavior as in

V2O3 or NiO (see Fig. 1 (a),(b)). In particular, correlated materials often respond very strongly

to changes in external parameters. This is expressed by large renormalizations of the response

functions of the system, e.g., of the spin susceptibility and the charge compressibility, and by a

strong transfer of spectral weight (see Fig. 1 (c)). Electronic correlations also play an essential

role in high temperature superconductivity. In particular, the interplay between the spin, charge

and orbital degrees of freedom of the correlated d and f electrons and with the lattice degrees

of freedom leads to a wealth of unusual phenomena at low temperatures [6]. These properties

cannot be explained within conventional mean-field theories, e.g., Hartree-Fock theory, since

they describe the interaction only in an average way.
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Fig. 2: Schematic illustration of interacting electrons in a solid in terms of the Hubbard model.

The ions appear only as a rigid lattice (here represented as a square lattice). The electrons,

which have a mass, a negative charge, and a spin (↑ or ↓), move from one lattice site to the next

with a hopping amplitude t. The quantum dynamics thus leads to fluctuations in the occupation

of the lattice sites as indicated by the time sequence. When two electrons meet on a lattice site

(which is only possible if they have opposite spin because of the Pauli exclusion principle) they

encounter an interaction U . A lattice site can either be unoccupied, singly occupied (↑ or ↓), or

doubly occupied.

1.2 Hubbard model

The simplest model describing interacting electrons in a solid is the one-band, spin-1/2 Hubbard

model [7–9] where the interaction between the electrons is assumed to be so strongly screened

that it is taken as purely local. The Hamiltonian consists of two terms, the kinetic energy Ĥ0

and the interaction energy ĤI (here and in the following operators are denoted by a hat):

Ĥ = Ĥ0 + ĤI (4a)

Ĥ0 =
∑

Ri,Rj

∑

σ

tij ĉ
†
iσ ĉjσ =

∑

k,σ

ǫ
k
n̂
kσ (4b)

ĤI = U
∑

Ri

n̂i↑n̂i↓, (4c)

where ĉ†iσ(ĉiσ) are creation (annihilation) operators of electrons with spin σ at site Ri, and

n̂iσ = ĉ†iσ ĉiσ. The Fourier transform of the kinetic energy in (4b), where tij is the hopping

amplitude, involves the dispersion ǫk and the momentum distribution operator n̂
kσ .

A schematic picture of the Hubbard model is shown in Fig. 2. When we look only at a sin-

gle site of this lattice model, this site will sometimes be empty, singly occupied or doubly

occupied. In particular, for strong repulsion U double occupations are energetically very unfa-

vorable and are therefore strongly suppressed. In this situation 〈n̂i↑n̂i↓〉 must not be factorized
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since 〈n̂i↑n̂i↓〉 6= 〈n̂i↑〉〈n̂i↓〉. Otherwise, correlation phenomena such as the Mott-Hubbard

metal-insulator transition are eliminated from the very beginning. This explains why Hartree-

Fock-type mean-field theories are generally insufficient to explain the physics of electrons in

the paramagnetic phase for strong interactions.

The Hubbard model looks very simple. However, the competition between the kinetic energy

and the interaction leads to a complicated many-body problem.

2 Mean-field approaches for many-body systems

2.1 Construction of mean-field theories

It is well known that theoretical investigations of quantum-mechanical many-body systems are

faced with severe technical problems, particularly in those dimensions which are most interest-

ing to us, i. e., d = 2, 3. This is due to the complicated dynamics and, in the case of fermions,

the non-trivial algebra introduced by the Pauli exclusion principle. In the absence of exact

methods there is clearly a great need for reliable, controlled approximation schemes.

In the statistical theory of classical and quantum-mechanical systems a rough, overall descrip-

tion of the properties of a model is often provided by a mean-field theory. Although the term is

frequently used it is rather vague since there is no unique construction scheme.

There does exist a well-established route to mean-field theories which makes use of the sim-

plifications that occur when some parameter is taken to be large (in fact, infinite), e.g., the

length of the spins S, the spin degeneracy N , or the coordination number Z (the number of

nearest neighbors of a lattice site1). Investigations in this limit, supplemented, if at all possible,

by an expansion in the inverse of the large parameter, often provide valuable insight into the

fundamental properties of a system even when this parameter is not large.

One of the best-known theories of this kind is the Weiss molecular-field theory for the Ising

model [10]. It is a prototypical single-site mean-field theory which becomes exact for infinite-

range interaction, as well as in the limit of the coordination number Z → ∞ or2 the spatial

dimension d → ∞. In the latter case 1/Z or 1/d is a small parameter which can sometimes

be used to improve the mean-field theory systematically. This mean-field theory contains no

1In three dimensions (d = 3) one has Z = 6 for a simple cubic lattice (Z = 2d for a hypercubic lattice in

general dimensions d), Z = 8 for a bcc lattice and Z = 12 for an fcc-lattice. Since Z ∼ O(10) is already quite

large in d = 3, such that 1/Z is rather small, it is only natural and in the general spirit of theoretical physics to

consider the extreme limit Z → ∞ to simplify the problem. Later, if possible, one can try to improve the result

by expanding in the small parameter 1/Z . It turns out that several standard approximation schemes which are

commonly used to explain experimental results in dimension d = 3, are exact only in d = ∞ (for a more detailed

discussion see Ref. [11]).
2For regular lattices, e.g., Bravais-lattices, both a dimension d and a coordination number Z can be defined.

In this case either d or Z can be used alternatively as an expansion parameter. However, there exist other lattices

(or rather graphs) which cannot be associated with a physical dimension d although a coordination number Z is

well-defined. The best-known example is the Bethe lattice, an infinitely extended Cayley tree [10,12], which is not

a regular lattice because it does not have loops. The coordination number Z is therefore a very useful parameter

for theoretical investigations of lattice models, although the dimension d is the more general physical parameter.

In the following discussion we mostly use both d and Z in parallel.
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unphysical singularities and is applicable for all values of the input parameters, i.e., coupling

parameters, magnetic field, and temperature. It is also diagrammatically controlled [13]. Inso-

far it is a very respectable approximation which sets very high standards for other mean-field

theories.

2.2 Weiss mean-field theory for the Ising model

The Ising model with nearest-neighbor (NN) coupling is defined by

H = −1

2
J

∑

〈R
i
,R

j
〉

SiSj, (5)

where we assume ferromagnetic coupling (J > 0). Every spin Si interacts with a local field

hi, produced by its nearest neighbors at site Ri. In the Weiss mean-field approach the two-spin

interaction in (5) is decoupled, i. e., H is replaced by a mean-field Hamiltonian

HMF = −hMF

∑

Ri

Si + Eshift. (6a)

Now a spin Si interacts only with a global (“molecular”) field

hMF = J

(i)
∑

Rj

〈Sj〉 (6b)

≡ J Z 〈S〉. (6c)

Here 〈 〉 indicates the thermal average, Eshift =
1
2
LJZ〈S〉2 is a constant energy shift with L as

the number of lattice sites, and the superscript (i) implies summation over NN-sites of Ri. This

corresponds to the factorization

〈[Si − 〈S〉][Sj − 〈S〉]〉 ≡ 0, (7)

whereby correlated fluctuations of spins at sites Ri and Rj are neglected. In the limit Z → ∞
the coupling constant J has to be rescaled as

J → J∗

Z
, J∗ = const (8)

for hMF to remain finite. In this limit the factorization procedure (7), and hence the replacement

of (5), by the mean-field Hamiltonian (6a), becomes exact [14, 15].

Eq. (6a) implies that in the limit Z → ∞ fluctuations in the bath of surrounding neighbors

become unimportant, such that the surrounding of any site is completely described by a single

mean-field parameter hMF (see Fig. 3). Hence the Hamiltonian becomes purely local

HMF =
∑

Ri

Hi + Eshift (9)
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Fig. 3: Already in three dimensions (d = 3) the coordination number Z of a lattice can be quite

high, as in the face-centered cubic lattice where Z = 12. In the limit Z → ∞, or equivalently

d → ∞, the Ising model effectively reduces to a single-site problem where the local field hi is

replaced by a global mean (“molecular”) field hMF.

Hi = −hMFSi. (10)

Thereby the problem reduces to an effective single-site problem. The value of 〈S〉 is determined

by the self-consistent equation

〈S〉 = tanh(βJ∗〈S〉), (11)

where β = 1/T (here kB = 1).

3 Lattice fermions in high dimensions

It is natural to ask whether the limit d → ∞ may also be useful in the investigation of lattice

models with itinerant quantum-mechanical degrees of freedom and, in particular, in the case of

the Hubbard model. Following Ref. [16] we take a look at the kinetic energy term (4b), since

the interaction term is purely local and is thereby completely independent of the lattice structure

and the dimension. For nearest-neighbor hopping on a d-dimensional hypercubic lattice (where

Z = 2d) ǫk is given by3

ǫk = −2t
d

∑

i=1

cos ki. (12)

The density of states (DOS) corresponding to ǫk is

Nd(ω) =
∑

k

δ(~ω − ǫk). (13)

This is simply the probability density for findingω = ǫk for a random choice of k = (k1, . . . , kd).

If the ki are chosen randomly, ǫk in (12) is the sum of (independent) random numbers −2t cos ki.

3In the following we set Planck’s constant ~, Boltzmann’s constant kB , and the lattice spacing equal to unity.
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The central limit theorem then implies that in the limit d → ∞ the DOS is given by a Gaussian

Nd(ω)
d→∞−→ 1

2t
√
πd

exp

[

−
(

ω

2t
√
d

)2
]

. (14)

Unless t is scaled properly with d this DOS will become arbitrarily broad and featureless for

d → ∞. Clearly only the scaling of the hopping amplitude

t → t∗√
d
, t∗ = const., (15)

yields a non-trivial DOS [17, 16]:

N∞(ω) =
1√
2πt∗

exp

[

−1

2

(ω

t∗

)2
]

. (16)

By contrast, the interaction term in (4) is purely local and independent of the surrounding.

Hence it is independent of the spatial dimension of the system. Consequently, the on-site inter-

action U need not be scaled. So we see that the scaled Hubbard Hamiltonian

Ĥ = − t∗√
Z

∑

〈Ri,Rj〉

∑

σ

ĉ†iσ ĉjσ + U
∑

Ri

n̂i↑n̂i↓ (17)

has a nontrivial Z → ∞ limit, where both terms, the kinetic energy and the interaction, are of

the same order of magnitude and are thereby able to compete. It is this competition between the

two terms which leads to interesting many-body physics.4

The scaling (15) was determined within a k- space formulation. We will now derive the same

result within a position-space formulation.

3.1 Simplifications of perturbation theory

The most important consequence of the scaling (15) is the fact that it leads to significant simplifi-

cations in the investigation of Hubbard-type lattice models [16,18–22]; for details see Ref. [11].

To understand this point better we take a look at the perturbation theory in terms of U . At T = 0

and U = 0 the kinetic energy of the Hubbard model may be written as

E0
kin = −t

∑

〈Ri,Rj〉

∑

σ

g0ij,σ, (18)

4To obtain a physically meaningful mean-field theory for a model its internal or free energy has to remain finite

in the limit d or Z → ∞. While in the case of the Ising model the scaling J → J̃/Z , J̃= const., was rather obvious

this is not so for more complicated models. Namely, quantum many-particle systems are usually described by a

Hamiltonian consisting of several non-commuting terms, e.g., a kinetic energy and an interaction, each of which is

associated with a coupling parameter, usually a hopping amplitude and an interaction, respectively. In such a case

the question of how to scale these parameters has no unique answer since this depends on the physical effects one

wishes to explore. In any case, the scaling should be performed such that the model remains non-trivial and that its

internal or free energy stays finite in the Z → ∞ limit. By “non-trivial” we mean that not only 〈Ĥ0〉 and 〈Ĥint〉,
but also the competition between these terms, expressed by 〈[Ĥ0, Ĥint]〉, should remain finite. In the case of the

Hubbard model it would be possible to employ the scaling t → t∗/Z, t∗ = const., but then the kinetic energy

would be reduced to zero in the limit d → ∞, making the resulting model uninteresting (but not unphysical) for

most purposes.
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Fig. 4: Contribution to the irreducible self-energy for the Hubbard model in second-order per-

turbation theory in U , and its collapse in the limit d → ∞.

where g0ij,σ = 〈ĉ†iσ ĉjσ〉0 is the one-particle density matrix. This quantity can also be interpreted

as the amplitude for transitions between site Ri and Rj , whose square is proportional to the

probability for a particle to hop from Rj to Ri, i.e., | g0ij,σ |2∼ 1/Z ∼ 1/d since Rj has O(d)

nearest neighbors Ri. Thus the sum of | g0ij,σ |2 over all nearest neighbors must yield a constant.

In the limit d → ∞ we then have

g0ij,σ ∼ O
(

1√
d

)

, Ri NN of Rj. (19)

Since the sum over the NN-sites Ri in (18) is of O(d) the NN-hopping amplitude t must ob-

viously be scaled according to (15) for E0
kin to remain finite in the limit d, Z → ∞. Hence,

as expected, a real-space formulation yields the same results for the required scaling of the

hopping amplitude.

The one-particle Green function (“propagator”) G0
ij,σ(ω) of the non-interacting system obeys

the same scaling as g0ij,σ. This follows directly from its definition

G0
ij,σ(t) ≡ −

〈

T ĉiσ(t)ĉ
†
jσ(0)

〉

0
, (20)

where T is the time ordering operator, and the time evolution of the operators is provided by the

Heisenberg representation. The one-particle density matrix is obtained as g0ij,σ = limt→0− G0
ij,σ(t).

If g0ij,σ obeys (19) the one-particle Green function G0
ij,σ(t) must follow the same scaling at all

times since this property does not dependent on the time evolution and the quantum mechanical

representation. The Fourier transform G0
ij,σ(ω) also preserves this property.

Although the propagator G0
ij,σ ∼ 1/

√
d vanishes for d → ∞, the particles are not localized

in this limit. Namely, even in the limit d → ∞ the off-diagonal elements of G0
ij,σ contribute,

since a particle may hop to d nearest neighbors with amplitude t∗/
√
2d. For general i, j one

finds [23, 19]

G0
ij,σ ∼ O

(

1/d‖Ri−Rj‖/2
)

, (21)

where ‖ R ‖= ∑d
n=1 | Rn | is the length of R in the so-called “Manhattan metric”.

It is the property (21) which is the origin of all simplifications arising in the limit d → ∞. In

particular, it implies the collapse of all connected, irreducible perturbation theory diagrams in

position space [16, 18, 19]. This is illustrated in Fig. 4, where a contribution in second-order

perturbation theory to the irreducible self-energy, Σ
(2)
ij , is shown. As a consequence the full,
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irreducible self-energy becomes a purely local quantity [16, 18]:

Σij,σ(ω)
d→∞
= Σii,σ(ω)δij. (22a)

In the paramagnetic phase we may write Σii,σ(ω) ≡ Σ(ω). The Fourier transform of Σij,σ is

seen to become momentum-independent

Σσ(k, ω)
d→∞≡ Σσ(ω). (22b)

This leads to tremendous simplifications in all many-body calculations for the Hubbard model

and related models.

Due to the simplifications caused by (22), the most important obstacle for actual diagrammatic

calculations in finite dimensions d ≥ 1, namely the integration over intermediate momenta, is

removed in d = ∞. While in finite dimensions these integrations lead to untractable techni-

cal problems, they become simple in d = ∞. In spite of the simplifications in position (or

momentum) space the problem retains its full dynamics in d = ∞.

4 Dynamical mean-field theory for correlated lattice fermions

Itinerant quantum mechanical models such as the Hubbard model and its generalizations are

much more complicated than classical, Ising-type models. Generally there do not even exist

semiclassical approximations for such models that might serve as a starting point for further

investigations. Under such circumstances the construction of a mean-field theory with the com-

prehensive properties of the Weiss molecular field theory for the Ising model will necessarily

be much more complicated, too. As discussed above there do exist well-known mean-field

approximation schemes, e. g. Hartree-Fock, random-phase approximation, saddle-point evalua-

tions of path integrals, decoupling of operators. However, these approximations do not provide

mean-field theories in the spirit of statistical mechanics, since they are not able to give a global

description of a given model (e.g., the phase diagram, thermodynamics, etc.) in the entire range

of input parameters.

Here the limit of high spatial dimensions d or coordination number Z has again been extremely

useful [16]. It provides the basis for the construction of a comprehensive mean-field theory for

lattice fermions which is diagrammatically controlled and whose free energy has no unphysical

singularities. The construction is based on the scaled Hamiltonian (26) and the simplifications in

the many-body perturbation theory discussed in Sec. 3.2. There we saw that the local propagator

G(ω), i.e., the amplitude for an electron to return to a lattice site, and the local but dynamical

self-energy Σ(ω) are the two central quantities in such a theory. Since the self-energy is a

dynamical variable (in contrast to Hartree-Fock theory where it is merely a static potential) the

resulting mean-field theory will also be dynamical and can thus describe genuine correlation

effects.

The self-consistency equations of this dynamical mean-field theory (DMFT) [24–30] for cor-

related lattice fermions can be derived in different ways; for a discussion see Chapter 4 of
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Fig. 5: In the limit Z → ∞ the Hubbard model effectively reduces to a dynamical single-site

problem, which may be viewed as a lattice site embedded in a dynamical mean field. Electrons

may hop from the mean field onto this site and back, and interact on the site as in the original

Hubbard model (see Fig. 2). The local propagator G(ω) (i.e., the return amplitude) and the

dynamical self-energy Σ(ω) of the surrounding mean field play the main role in this limit. The

quantum dynamics of the interacting electrons is still described exactly.

Ref. [31]. However, all derivations make use of the fact that in the limit of high spatial dimen-

sions Hubbard-type models reduce to a dynamical single-site problem, where the d-dimensional

lattice model is effectively described by the dynamics of the correlated fermions on a single site

which is embedded in a bath provided by the other particles.

Today’s standard derivation is based on the mapping of the lattice problem onto a self-consistent

single-impurity Anderson model; for details see Ref. [29]. As such it makes contact with the

theory of Anderson impurities and the Kondo problem — a well-understood branch of many-

body physics, for whose solution efficient numerical codes have been developed already in the

1980’s, in particular by making use of the quantum Monte-Carlo (QMC) method [32]. The

self-consistent DMFT equations are given by

(i) the equation for the local propagator Gσ(iωn) which is expressed by a functional integral as

Gσ(iωn) = − 1

Z

∫

∏

σ

Dc∗σDcσ[cσ(iωn)c
∗
σ(iωn)] exp[−Sloc] (23)

with the partition function

Z =

∫

∏

σ

Dc∗σDcσ exp[−Sloc], (24)
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and the local action

Sloc = −
β

∫

0

dτ1

β
∫

0

dτ2
∑

σ

c∗σ(τ1)G−1
σ (τ1 − τ2)cσ(τ2) + U

β
∫

0

dτc∗↑(τ)c↑(τ)c
∗
↓(τ)c↓(τ), (25)

where Gσ is the effective local propagator (also called “bath Green function”, or “Weiss mean

field” 5) defined by a Dyson-type equation

Gσ(iωn) =
[

[Gσ(iωn)]
−1 +Σσ(iωn)

]−1
, (26)

(ii) and the expression for the lattice Green function Gk σ(iωn) given by

Gk σ(iωn) =
1

iωn − ǫk + µ−Σσ(iωn)
, (27)

from which, after performing the lattice Hilbert transform, one obtains the local Green function

Gσ(iωn) =
∑

k

Gk σ(iωn) (28)

=

∞
∫

−∞

dǫ
N(ω)

iωn − ǫ+ µ−Σσ(iωn)
, (29)

which is equal to the local propagator (23). The ionic lattice on which the electrons move and

its structure are seen to enter only through the DOS of the non-interacting electrons.

The self-consistent equations can be solved iteratively: Starting with an initial value for the

self-energy Σσ(iωn) one obtains the local propagator Gσ(iωn) from (29) and thereby the bath

Green function Gσ(iωn) from (26). This determines the local action (25) which is needed to

compute a new value for the local propagator Gσ(iωn) and, by employing the old self-energy, a

new bath Green function, and so on.

4.1 Solving the DMFT self-consistency equations

The dynamics of the full Hubbard model (4) remains complicated even in the limit d → ∞
because of the purely local nature of the interaction. Hence an exact, analytic evaluation of

the self-consistent set of equations for the local propagator Gσ or the effective propagator Gσ is

not possible. A valuable semi-analytic approximation is provided by the “iterated perturbation

theory” (IPT) [26,33,29]. Exact evaluations are only feasible when there is no coupling between

the frequencies. This is the case, for example, in the Falicov-Kimball model [22, 34].

Solutions of the general DMFT self-consistency equations require extensive numerical methods,

in particular quantum Monte Carlo techniques [27,35,36] (for reviews see Refs. [29,37,38], the

numerical renormalization group [39, 40], exact diagonalization [41–43] and other techniques,

which will be discussed later in this school.

5In principle, the local functions Gσ(iωn) and Σσ(iωn) can both be viewed as a “dynamical mean field” acting

on particles on a site, since they all appear in the bilinear term of the local action (25).
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It quickly turned out that the DMFT is a powerful tool for the investigation of electronic systems

with strong correlations. It provides a non-perturbative and thermodynamically consistent ap-

proximation scheme for finite-dimensional systems which is particularly valuable for the study

of intermediate-coupling problems where perturbative techniques fail [29, 30].

In the remaining part of these lecture notes I shall discuss several applications of the DMFT

to problems involving electronic correlations. In particular, I will address the Mott-Hubbard

metal-insulator transition, and explain the connection of the DMFT with band-structure meth-

ods — the LDA+DMFT scheme — which is the first comprehensive framework for the ab initio

investigation of correlated electron materials.

5 Mott-Hubbard metal-insulator transition

The correlation induced transition between a paramagnetic metal and a paramagnetic insulator,

referred to as “Mott-Hubbard metal-insulator transition” (MIT), is one of the most intriguing

phenomena in condensed matter physics [44–46]. This transition is a consequence of the com-

petition between the kinetic energy of the electrons and their local interaction U . Namely, the

kinetic energy prefers the electrons to move (a wave effect) which leads to doubly occupied

sites and thereby to interactions between the electrons (a particle effect). For large values of

U the doubly occupied sites become energetically very costly. The system may reduce its total

energy by localizing the electrons. Hence the Mott transition is a localization-delocalization

transition, demonstrating the particle-wave duality of electrons.

Mott-Hubbard MITs are, for example, found in transition metal oxides with partially filled

bands near the Fermi level [6]. For such systems band theory typically predicts metallic behav-

ior. The most famous example is V2O3 doped with Cr [3,47,48]. In particular, in (V0.96Cr0.04)2O3

the metal-insulator transition is of first order below T = 380K [3], with discontinuities in the

lattice parameters and in the conductivity. However, the two phases remain isostructural.

Making use of the half-filled, single-band Hubbard model (4) the Mott-Hubbard MIT was stud-

ied intensively in the past [44–46]. Important early results were obtained by Hubbard [8,

49] within a Green function decoupling scheme, and by Brinkman and Rice [50] using the

Gutzwiller variational method [7, 51], both at zero temperature.6 Hubbard’s approach yields

a continuous splitting of the band into a lower and upper Hubbard band, but cannot describe

quasiparticle features. By contrast, the Gutzwiller-Brinkman-Rice approach (for a review see

Ref. [53]) gives a good description of the low-energy, quasiparticle behavior, but cannot repro-

duce the upper and lower Hubbard bands. In the latter approach the MIT is signalled by the

disappearance of the quasiparticle peak.

To solve this problem the DMFT has been extremely valuable since it provided detailed insights

into the nature of the Mott-Hubbard MIT for all values of the interaction U and temperature

T [29, 54, 30].

6The Gutzwiller variational method [7,51] consists of the choice of a simple projected variational wave function

(“Gutzwiller wave function”) and a semi-classical evaluation of expectation values in terms of this wave function

(“Gutzwiller approximation”). The Gutzwiller approximation becomes exact in the limit d → ∞ [52].
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Fig. 6: Evolution of the spectral function (“density of states”) of the Hubbard model in the

paramagnetic phase at half filling. a) non-interacting case, b) for weak interactions there is only

little transfer of spectral weight away from the Fermi energy, c) for strong interactions a typical

three-peak structure consisting of coherent quasiparticle excitations close to the Fermi energy

and incoherent lower and upper Hubbard bands is clearly seen, d) above a critical interaction

the quasiparticle peak vanishes and the system is insulating, with two well-separated Hubbard

bands remaining; after Ref. [30].

5.1 The characteristic structure of the spectral function

The Mott-Hubbard MIT is monitored by the spectral function A(ω) = − 1
π
ImG(ω + i0+) of

the correlated electrons;7 here we follow the discussion of Refs. [55, 30]. The change of A(ω)

obtained within the DMFT for the one-band Hubbard model (4) at T = 0 and half filling

(n = 1) as a function of the Coulomb repulsion U (measured in units of the bandwidth W

of non-interacting electrons) is shown in Figs. 6 and 7. While Fig. 6 is a schematic picture of

the evolution of the spectrum when the interaction is increased, Fig. 7 shows actual numeri-

cal results obtained by the NRG [39, 56]. Here magnetic order is assumed to be suppressed

(“frustrated”).

While at smallU the system can be described by coherent quasiparticles whose DOS still resem-

bles that of the free electrons, the spectrum in the Mott insulator state consists of two separate

incoherent “Hubbard bands” whose centers are separated approximately by the energy U . The

latter originate from atomic-like excitations at the energies ±U/2 broadened by the hopping

of electrons away from the atom. At intermediate values of U the spectrum then has a char-

acteristic three-peak structure as in the single-impurity Anderson model, which includes both

the atomic features (i.e., Hubbard bands) and the narrow quasiparticle peak at low excitation

energies, near ω = 0. This corresponds to a strongly correlated metal. The structure of the

7In the following we only consider the paramagnetic phase.
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Fig. 7: Evolution of the T = 0 spectral function of the one-band Hubbard model with a semi-

elliptic (“Bethe”) DOS for interaction values U/W = 0, 0.2, 0.4, . . . , 1.6 (W : band width)

calculated with the numerical renormalization group. At the critical interaction Uc2/W ≃ 1.47
the metallic solution disappears and the Mott gap opens; from Ref. [56].

spectrum (lower Hubbard band, quasiparticle peak, upper Hubbard band) is quite insensitive to

the specific form of the DOS of the non-interacting electrons.

The width of the quasiparticle peak vanishes for U → Uc2(T ). The “Luttinger pinning” at

ω = 0 [20] is clearly observed. On decreasing U , the transition from the insulator to the metal

occurs at a lower critical value Uc1, where the gap vanishes.

It is important to note that the three-peak spectrum originates from a lattice model with only one

type of electrons. This is in contrast to the single–impurity Anderson model whose spectrum

shows very similar features, but is due to two types of electrons, namely the localized orbital at

the impurity site and the free conduction band. Therefore the screening of the magnetic moment

which gives rise to the Kondo effect in impurity systems has a different origin in lattice systems.

Namely, as explained by the DMFT, the same electrons provide both the local moments and the

electrons which screen these moments [29].

The evolution of the spectral function of the half-filled frustrated Hubbard model at finite tem-

peratures, T = 0.0276W , is shown in Fig. 8. This temperature is above the temperature of the

critical point so that there is no real transition but only a crossover from a metallic-like to an

insulating-like solution. The height of the quasiparticle peak at the Fermi energy is no longer

fixed at its zero temperature value. This is due to a finite value of the imaginary part of the

self–energy. The spectral weight of the quasiparticle peak is seen to be gradually redistributed

and shifted to the upper (lower) edge of the lower (upper) Hubbard band. The inset of Fig. 8

shows the U-dependence of the value of the spectral function at zero frequency A(ω=0). For

higher values of U the spectral density at the Fermi level is still finite and vanishes only in the

limit U → ∞ (or for T → 0, provided that U > Uc2(T = 0)).

For the insulating phase DMFT predicts the filling of the Mott-Hubbard gap with increasing

temperature. This is due to the fact that the insulator and the metal are not distinct phases in
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Fig. 8: Spectral function for the half-filled Hubbard model for various values of U at T =
0.0276 W in the crossover region. The crossover from the metal to the insulator occurs via a

gradual suppression of the quasiparticle peak at ω= 0. The inset shows the U dependence of

A(ω=0), in particular the rapid decrease for U ≈ 1.1 W ; from Ref. [55].

the crossover regime, implying that the insulator has a finite spectral weight at the Fermi level.

Altogether, the thermodynamic transition line Uc(T ) corresponding to the Mott-Hubbard MIT

is found to be of first order at finite temperatures, being associated with a hysteresis region in

the interaction range Uc1 < U < Uc2 where Uc1 and Uc2 are the values at which the insulating

and metallic solution, respectively, vanishes [29, 39, 57, 55, 58, 54]. The state-of-the-art MIT

phase diagram [54] is shown in Fig. 9. The hysteresis region terminates at a critical point. For

higher temperatures the transition changes into a smooth crossover from a bad metal to a bad

insulator.

It is interesting to note that the slope of the phase transition line is negative down to T =

0, which implies that for constant interaction U the metallic phase can be reached from the

insulator by decreasing the temperature T , i.e., by cooling. This anomalous behavior (which

corresponds to the Pomeranchuk effect [59] in 3He, if we associate solid 3He with the insulator

and liquid 3He with the metal) can be easily understood from the Clausius-Clapeyron equation

dU/dT = ∆S/∆D. Here ∆S is the difference between the entropy in the metal and in the

insulator, and ∆D is the difference between the number of doubly occupied sites in the two

phases. Within the single-site DMFT there is no exchange coupling J between the spins of

the electrons in the insulator, since the scaling (15) implies J ∝ −t2/U ∝ 1/d → 0 for

d → ∞. Hence the entropy of the macroscopically degenerate insulating state is Sins = kB ln 2

per electron down to T = 0. This is larger than the entropy Smet ∝ T per electron in the

Landau Fermi-liquid describing the metal, i.e., ∆S = Smet − Sins < 0. At the same time

the number of doubly occupied sites is lower in the insulator than in the metal, i.e., ∆D =

Dmet −Dins > 0. The Clausius-Clapeyron equation then implies that the phase-transition line

T vs. U has a negative slope down to T = 0. However, this is an artifact of the single-site

DMFT. Namely, there will always exist an exchange coupling between the electrons leading to

a vanishing entropy of the insulator at T = 0. Since the entropy of the insulator vanishes faster
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Fig. 9: Mott-Hubbard MIT phase diagram showing the metallic phase and the insulating phase,

respectively, at temperatures below the critical end point, as well as a coexistence region; from

Ref. [54].

than linearly with the temperature, the difference ∆S = Smet−Sins eventually becomes positive,

whereby the slope also becomes positive at lower temperatures;8 this is indeed observed in

cluster DMFT calculations [60]. Since ∆S = 0 at T = 0 the phase boundary must terminate at

T = 0 with infinite slope.

At half filling and for bipartite lattices in dimensions d > 2 (in d = 2 only at T = 0), the

paramagnetic phase is unstable against antiferromagnetic long-range order. The metal-insulator

transition is then completely hidden by the antiferromagnetic insulating phase, as shown in

Fig. 10.

6 Electronic correlations in materials

6.1 LDA+DMFT

Although the Hubbard model is able to explain basic features of the phase diagram of correlated

electrons it cannot explain the physics of real materials in any detail. Clearly, realistic theories

must take into account the explicit electronic and lattice structure of the systems.

Until recently the electronic properties of solids were investigated by two essentially separate

communities, one using model Hamiltonians in conjunction with many-body techniques, the

other employing density functional theory (DFT) [62, 63]. DFT and its local density approxi-

mation (LDA) have the advantage of being ab initio approaches which do not require empirical

8Here we assume for simplicity that the metal remains a Fermi liquid, and the insulator stays paramagnetic,

down to the lowest temperatures. In fact, a Cooper pair instability will eventually occur in the metal, and the insu-

lator will become long-range ordered, too. In this case the slope dU/dT can change sign several times depending

on the value of the entropy of the two phases across the phase transition.



1.18 Dieter Vollhardt

Fig. 10: On bipartite lattices and for half filling (n = 1) the paramagnetic phase is unstable

against antiferromagnetism. The metal-insulator transition is then completely hidden by the

antiferromagnetic insulating phase; from Ref. [61].

parameters as input. Indeed, they are highly successful techniques for the calculation of the

electronic structure of real materials [64]. However, in practice DFT/LDA is seriously restricted

in its ability to describe strongly correlated materials where the on-site Coulomb interaction is

comparable with the band width. Here, the model Hamiltonian approach is more general and

powerful since there exist systematic theoretical techniques to investigate the many-electron

problem with increasing accuracy. Nevertheless, the uncertainty in the choice of the model

parameters and the technical complexity of the correlation problem itself prevent the model

Hamiltonian approach from being a flexible or reliable enough tool for studying real materials.

The two approaches are therefore complementary. In view of the individual power of DFT/LDA

and the model Hamiltonian approach, respectively, it had always been clear that a combination

of these techniques would be highly desirable for ab initio investigations of real materials, in-

cluding, e.g., f -electron systems and Mott insulators. One of the first successful attempts in this

direction was the LDA+U method [65, 66], which combines LDA with a basically static, i.e.,

Hartree-Fock-like, mean-field approximation for a multi-band Anderson lattice model (with in-

teracting and non-interacting orbitals). This method proved to be a very useful tool in the study

of long-range ordered, insulating states of transition metals and rare-earth compounds. How-

ever, the paramagnetic metallic phase of correlated electron systems such as high-temperature

superconductors and heavy-fermion systems clearly requires a treatment that goes beyond a

static mean-field approximation and includes dynamical effects, e.g., the frequency dependence

of the self-energy.

Here the recently developed LDA+DMFT method — a new computational scheme which merges

electronic band structure calculations and the dynamical mean-field theory [67–76, 30] — has

proved to be a breakthrough. Starting from conventional band structure calculations in the local

density approximation (LDA) the correlations are taken into account by the Hubbard interaction
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and a Hund’s rule coupling term. The resulting DMFT equations are solved numerically with

a quantum Monte-Carlo (QMC) algorithm. By construction, LDA+DMFT includes the correct

quasiparticle physics and the corresponding energetics. It also reproduces the LDA results in

the limit of weak Coulomb interaction U . More importantly, LDA+DMFT correctly describes

the correlation induced dynamics near a Mott-Hubbard MIT and beyond. Thus, LDA+DMFT

and related approaches [77, 78] are able to account for the physics at all values of the Coulomb

interaction and doping level.

In the LDA+DMFT approach the LDA band structure is expressed by a one-particle Hamil-

tonian Ĥ0
LDA, and is then supplemented by the local Coulomb repulsion U and Hund’s rule

exchange J (here we follow the presentation of Held et al. [72]). This leads to a material

specific generalization of the one-band model Hamiltonian

Ĥ = Ĥ0
LDA + U

∑

m

∑

i

n̂im↑n̂im↓ +
∑

i,m6=m′,σ,σ′

(V − δσσ′J) n̂imσn̂im′σ′ . (30)

Here m and m′ enumerate the three interacting t2g orbitals of the transition metal ion or the

4f orbitals in the case of rare earth elements. The interaction parameters are related by V =

U−2J which holds exactly for degenerate orbitals and is a good approximation for the t2g. The

actual values for U and V can be obtained from an averaged Coulomb parameter Ū and Hund’s

exchange J , which can be calculated by constrained LDA.

In the one-particle part of the Hamiltonian

Ĥ0
LDA = ĤLDA −

∑

i

∑

mσ

∆ǫd n̂imσ. (31)

the energy term containing ∆ǫd is a shift of the one-particle potential of the interacting orbitals.

It cancels the Coulomb contribution to the LDA results (“double-counting correction”) and can

also be calculated by constrained LDA [72].

Within the LDA+DMFT scheme the self-consistency condition connecting the self-energy Σ

and the Green function G at frequency ω reads:

Gqm,q′m′(ω) =
1

VB

∫

d3k
(

[ ω1+ µ1−H0
LDA(k)−ΣΣΣ(ω)]

−1
)

qm,q′m′

. (32)

Here, 1 is the unit matrix, µ the chemical potential, H0
LDA(k) is the orbital matrix of the LDA

Hamiltonian derived, for example, in a linearized muffin-tin orbital (LMTO) basis, ΣΣΣ(ω) de-

notes the self-energy matrix which is nonzero only between the interacting orbitals, and [...]−1

implies the inversion of the matrix with elements n (=qm), n′(=q′m′), where q and m are the

indices of the atom in the primitive cell and of the orbital, respectively. The integration ex-

tends over the Brillouin zone with volume VB (we note that Ĥ0
LDA may include additional non-

interacting orbitals).

For cubic transition metal oxides Eq. (32) can be simplified to

G(ω) = G0(ω −Σ(ω)) =

∫

dǫ
N0(ǫ)

ω −Σ(ω)− ǫ
(33)
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if the degenerate t2g orbitals crossing the Fermi level are well separated from the other orbitals.

For non-cubic systems the degeneracy is lifted. In this case we employ Eq. (33) as an approxi-

mation, using different Σm(ω), N
0
m(ǫ) and Gm(ω) for the three non-degenerate t2g orbitals.

The Hamiltonian (30) is solved within the DMFT using standard quantum Monte-Carlo (QMC)

techniques [32] to solve the self-consistency equations. From the imaginary time QMC Green

function one can calculate the physical (real frequency) spectral function with the maximum

entropy method [79].

6.2 Single-particle spectrum of correlated electron materials

Transition metal oxides are an ideal laboratory for the study of electronic correlations in solids.

Among these materials, cubic perovskites have the simplest crystal structure and thus may be

viewed as a starting point for understanding the electronic properties of more complex systems.

Typically, the 3d states in those materials form comparatively narrow bands with width W∼
2−3 eV, which leads to strong Coulomb correlations between the electrons.

Photoemission spectra provide a direct experimental tool to study the electronic structure and

spectral properties of electronically correlated materials. In particular, spectroscopic studies

of strongly correlated 3d1 transition metal oxides [80, 6, 5, 81–83] find a pronounced lower

Hubbard band in the photoemission spectra which cannot be explained by conventional band

structure theory. These are typical correlation effects which will now be illustrated by results

obtained with the LDA+DMFT approach for the simple 3d1 transition metal compounds SrVO3

and CaVO3.

The main effect of the substitution of Sr ions in SrVO3 by the isovalent, but smaller, Ca ions

is to decrease the V-O-V angle from θ = 180◦ in SrVO3 to θ ≈ 162◦ in the orthorhombically

distorted structure of CaVO3. However, this rather strong bond bending results only in a 4%

decrease of the one-particle bandwidth W and thus in a correspondingly small increase of the

ratio U/W as one moves from SrVO3 to CaVO3.

LDA+DMFT(QMC) spectra of SrVO3 and CaVO3 were calculated [5] by starting from the

respective LDA DOS of the two materials; they are shown in Fig. 11. These spectra show

genuine correlation effects, i.e., the formation of lower Hubbard bands at about 1.5 eV and

upper Hubbard bands at about 2.5 eV, with well-pronounced quasiparticle peaks at the Fermi

energy. Therefore both SrVO3 and CaVO3 are strongly correlated metals [5, 84]. The DOS of

the two systems shown in Fig. 11 are quite similar. In fact, SrVO3 is slightly less correlated

than CaVO3, in accord with their different LDA bandwidths. The inset of Fig. 11 shows that

the effect of temperature on the spectrum is small for T . 700 K.

Since the three t2g orbitals of this simple 3d1 material are (almost) degenerate the spectral func-

tion has the same three–peak structure as that of the one-band Hubbard model shown in Fig. 8.

The temperature induced decrease of the quasiparticle peak height is also clearly seen. As noted

in Sec. 5 the actual form of the spectrum no longer resembles the input (LDA) DOS, i.e., it es-

sentially depends only on the first three energy moments of the LDA DOS (electron density,

average energy, band width).
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Fig. 11: LDA+DMFT(QMC) spectrum of SrVO3 (solid line) and CaVO3 (dashed line) calcu-

lated at T=300 K; inset: effect of temperature in the case of CaVO3; after Ref. [5].

In the left panel of Fig. 12 the LDA+DMFT(QMC) spectra at 300K are compared with exper-

imental high-resolution bulk PES; for details see ref. [85]. The quasiparticle peaks in theory

and experiment are seen to be in very good agreement. In particular, their height and width are

almost identical for both SrVO3 and CaVO3. The difference in the positions of the lower Hub-

bard bands may be partly due to (i) the subtraction of the (estimated) oxygen contribution which

might also remove some 3d spectral weight below −2 eV, and (ii) uncertainties in the ab initio

calculation of the local Coulomb interaction strength. In the right panel of Fig. 12 comparison

is made with XAS data [86]. Again, the overall agreement of the weights and positions of the

quasiparticle and upper t2g Hubbard band is good, including the tendencies when going from

SrVO3 to CaVO3 (Ca0.9Sr0.1VO3 in the experiment). For CaVO3 the weight of the quasiparticle

peak is somewhat lower than in the experiment. In contrast to one-band Hubbard model calcu-

lations, the material specific results reproduce the strong asymmetry around the Fermi energy

with respect to weights and bandwidths. The slight differences in the quasiparticle peaks (see

Fig. 11) lead to different effective masses, namely m∗/m=2.1 for SrVO3 and m∗/m=2.4 for

CaVO3. These theoretical values agree with m∗/m=2− 3 for SrVO3 and CaVO3 as obtained

from de Haas-van Alphen experiments and thermodynamics [87].

The experimentally determined spectra of SrVO3 and CaVO3 and the good agreement with

parameter-free LDA+DMFT calculations confirm the existence of a pronounced three-peak

structure in a correlated bulk material. Although the DMFT had predicted such a behavior

for the Hubbard model (see Sec. 5.1.) it was not clear whether the DMFT result would really

be able to describe real materials in three dimensions. Now it has been confirmed that the three-

peak structure not only occurs in single-impurity Anderson models but also in three-dimensional

correlated bulk matter.
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Fig. 12: Comparison of the calculated, parameter-free LDA+DMFT(QMC) spectra of SrVO3

(solid line) and CaVO3 (dashed line) with experiment. Left: Bulk-sensitive high-resolution PES

(SrVO3: circles; CaVO3: rectangles). Right: XAS for SrVO3 (diamonds) and Ca0.9Sr0.1VO3

(triangles) [86]. Horizontal line: experimental subtraction of the background intensity; after

Ref. [85].

7 Summary and outlook

Due to the intensive international research over the last two decades the DMFT has quickly

developed into a powerful method for the investigation of electronic systems with strong cor-

relations. It provides a comprehensive, non-perturbative and thermodynamically consistent ap-

proximation scheme for the investigation of finite-dimensional systems (in particular for dimen-

sion d = 3), and is particularly useful for the study of problems where perturbative approaches

are inapplicable. For this reason the DMFT has now become the standard mean-field theory

for fermionic correlation problems, including cold atoms in optical lattices [88–92]. The study

of models in non-equilibrium within a suitable generalization of the DMFT has become yet

another fascinating new research area [93–101].

Until a few years ago research into correlated electron systems concentrated on homogeneous

bulk systems. DMFT investigations of systems with internal or external inhomogeneities such

as thin films and multi-layered nanostructures are still very new [102–107]. They are par-

ticularly important in view of the novel types of functionalities of such systems, which may

have important applications in electronic devices. Here the DMFT and its generalizations will

certainly be very useful.

In particular, the development of the ab initio band-structure calculation technique referred to

as LDA+DMFT has proved to be a breakthrough in the investigation of electronically correlated
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materials. It has already provided important insights into the spectral and magnetic properties

of correlated electron materials, e.g., transition metals and their oxides. Clearly, this approach

has a great potential for further developments. It is the goal of the DFG Research Unit on Dy-

namical Mean-Field Approach with Predictive Power for Strongly Correlated Materials which

organizes this Autumn School “Hands-on LDA+DMFT” to develop the LDA+DMFT frame-

work into a comprehensive ab initio approach which will be able to describe, and even predict,

the properties of complex correlated materials.
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1 Introduction

On the nanoscale, materials around us have surprisingly simple structures: The standard model
of solid state physics and chemistry only knows of two types of particles, namely the nuclei
making up the periodic table and the electrons. Only one kind of interaction between them needs
to be considered, namely the electrostatic interaction. Even magnetic forces are important only
in rare occasions. All other fundamental particles and interactions are irrelevant for chemistry.
The behavior of these particles can be described by the Schrödinger equation (or better the
relativistic Dirac equation), which is easily written down. However, the attempt to solve this
equation for any system of interest fails miserably due to what Walter Kohn termed the expo-
nential wall [1].
To obtain an impression of the powers of the exponential wall, imagine the wave function of a N2

molecule, having two nuclei and fourteen electrons. For N particles, the Schrödinger equation
is a partial differential equation in 3N dimensions. Let us express the wave function on a grid
with about 100 points along each spatial direction and let us consider two spin states for each
electron. Such a wave function is represented by 214 1003×16 ≈ 10100 complex numbers. A data
server for this amount of data, made of current terabyte hard disks, would occupy a volume with
a diameter of 1010 light years!
Treating the nuclei as classical particles turned out to be a good approximation, but the quantum
nature of the electrons cannot be ignored. A great simplification is to describe electrons as non-
interacting quasi particles. Instead of one wave function in 3N dimensions, one only needs to
describe N wave functions in three dimensions each, a dramatic simplification from 10100 to
107 numbers.
While the independent-particle model is very intuitive, and while it forms the basis of most
text books on solid-state physics, materials physics, and chemistry, the Coulomb interaction
between electrons is clearly not negligible.
Here, density-functional theory [2,3] comes to our rescue: it provides a rigorous mapping from
interacting electrons onto a system of non-interacting electrons. Unfortunately, the exact map-
ping is utterly complicated, and this is where all the complexity goes. Luckily, there are simple
approximations that are both intuitive and surprisingly accurate. Furthermore, with the help of
clever algorithms, density-functional calculations can be performed on current computers for
large systems with several hundred atoms in a unit cell or a molecule. The microscopic insight
gained from density functional calculations is a major source of progress in solid state physics,
chemistry, material science, and biology.
In the first part of this article, I will try to familiarize the novice reader with the basics of density-
functional theory, provide some guidance into common approximations and give an idea of the
type of problems that can be studied with density functional theory.
Beyond this article, I recommend the insightful review articles on density functional theory
by Jones and Gunnarsson [4], Baerends [5], von Barth [6], Perdew [7], Yang [8], and their
collaborators.
Solving the one-particle Schrödinger equation, which results from density-functional theory,
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for real materials is a considerable challenge. Several avenues have been developed to their
solution. This is the field of electronic structure methods, which will be discussed in the second
part of this article. This part is taken from earlier versions by Clemens Först, Johannes Kästner
and myself [9, 10].

2 Basics of density-functional theory

The dynamics of the electron wave function is governed by the Schrödinger equation i~∂t|Ψ〉 =

Ĥ|Ψ〉 with the N -particle Hamiltonian Ĥ .

Ĥ =
N∑
j=1

(
−~2

2me

~∇2
j + vext(~rj)

)
+

1

2

N∑
i6=j

e2

4πε0|~ri − ~rj|
. (1)

With me we denote the electron mass, with ε0 the vacuum permittivity, e is the elementary
charge and ~ is the Planck quantum divided by 2π. The Coulomb potentials of the nuclei have
been combined into an external potential vext(~r).
All N -electron wave functions Ψ(~x1, . . . , ~xN) obey the Pauli principle, that is they change their
sign, when two of its particle coordinates are exchanged.
We use a notation that combines the position vector ~r ∈ R3 of an electron with its discrete
spin coordinate σ ∈ {↑, ↓} into a single vector ~x := (~r, σ). Similarly, we use the notation of
a four-dimensional integral

∫
d4x :=

∑
σ

∫
d3r for the sum over spin indices and the integral

over the position. With the generalized symbol δ(~x− ~x′) := δσ,σ′δ(~r−~r′) we denote the product
of Kronecker delta of the spin coordinates and Dirac’s delta function for the positions. While,
at first sight, it seems awkward to combine continuous and discrete numbers, this notation is
less error prone than the notation that treats the spin coordinates as indices, where they can be
confused with quantum numbers. During the first reading, the novice can ignore the complexity
of the spin coordinates, treating ~x like a coordinate. During careful study, he will nevertheless
have the complete and concise expressions.

One-particle reduced density matrix and two-particle density

In order to obtain the ground state energy E = 〈Ψ |Ĥ|Ψ〉 we need to perform 2N integrations in
3N dimensions each, i.e.

E =

∫
d4x1 · · ·

∫
d4xN Ψ ∗(~x1, . . . , ~xN)ĤΨ(~x1, . . . , ~xN) . (2)

However, only two different types of integrals occur in the expression for the energy, so that
most of these integrations can be performed beforehand leading to two quantities of physical
significance.

• One of these quantities is the one-particle reduced density matrix ρ(1)(~x, ~x′), which allows
one to evaluate all expectation values of one-particle operators such as the kinetic energy
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and the external potential,

ρ(1)(~x, ~x′) := N

∫
d4x2 . . .

∫
d4xN Ψ(~x, ~x2, . . . , ~xN)Ψ ∗(~x′, ~x2, . . . , ~xN) . (3)

• The other one is the two-particle density n(2)(~r, ~r′), which allows to determine the inter-
action between the electrons,

n(2)(~r, ~r′) := N(N − 1)
∑
σ,σ′

∫
d4x3 . . .

∫
d4xN |Ψ(~x, ~x′, ~x3, . . . , ~xN)|2 . (4)

If it is confusing that there are two different quantities depending on two particle coordinates,
note that the one-particle reduced density matrix ρ(1) depends on two ~x-arguments of the same
particle, while the two-particle density n(2) depends on the positions of two different particles.
With these quantities the total energy is

E =

∫
d4x′

∫
d4x δ(~x′ − ~x)

(
−~2

2me

~∇2 + vext(~r)

)
ρ(1)(~x, ~x′)

+
1

2

∫
d3r

∫
d3r′

e2n(2)(~r, ~r′)

4πε0|~r − ~r′|
, (5)

where the gradient of the kinetic energy operates on the first argument ~r of the density matrix.

One-particle reduced density matrix and natural orbitals

In order to make oneself familiar with the one-particle reduced density matrix, it is convenient
to diagonalize it. The eigenstates ϕn(~r) are called natural orbitals [11] and the eigenvalues f̄n
are their occupations. The index n labeling the natural orbitals may stand for a set of quantum
numbers.
The density matrix can be written in the form

ρ(1)(~x, ~x′) =
∑
n

f̄nϕn(~x)ϕ∗n(~x′) . (6)

The natural orbitals are orthonormal one-particle orbitals, i.e.∫
d4x ϕ∗m(~x)ϕn(~x) = δm,n . (7)

Due to the Pauli principle, occupations are non-negative and never larger than one [12]. The
natural orbitals already point the way to the world of effectively non-interacting electrons.
The one-particle density matrix provides us with the electron density

n(1)(~r) =
∑
σ

ρ(1)(~x, ~x) =
∑
σ

∑
n

f̄nϕ
∗
n(~x)ϕn(~x) . (8)

With the natural orbitals, the total energy Eq. 5 obtains the form

E =
∑
n

f̄n

∫
d4x ϕ∗n(~x)

−~2

2m
~∇2ϕn(~x) +

∫
d3r vext(~r)n

(1)(~r)

+
1

2

∫
d3r

∫
d3r′

e2n(2)(~r, ~r′)

4πε0|~r − ~r′|
. (9)
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Two-particle density and exchange-correlation hole

The physical meaning of the two-particle density n(2)(~r, ~r′) is the following: For particles
that are completely uncorrelated, meaning that they do not even experience the Pauli princi-
ple, the two particle density would be1 the product of one-particle densities, i.e. n(2)(~r, ~r′) =

n(1)(~r)n(1)(~r′). If one particle is at position ~r0, the density of the remaining N − 1 particles is
the conditional density

n(2)(~r0, ~r)

n(1)(~r0)
.

The conditional density is the electron density seen by one of the electrons at ~r0. This observer
electron obviously only sees the remaining N − 1 electrons.
It is convenient to express the two-particle density by the hole function h(~r, ~r′), i.e.

n(2)(~r, ~r′) = n(1)(~r)

[
n(1)(~r′) + h(~r, ~r′)

]
. (10)

One electron at position ~r does not “see” the total electron density n(1) with N electrons, but
only the density of the N − 1 other electrons, because it does not see itself. The hole function
h(~r0, ~r) is simply the difference of the total electron density and the electron density seen by
the observer electron at ~r0.
The division of the two-particle density in Eq. 10 suggests that we split the electron-electron
interaction into the so-called Hartree energy

EH
def
=

1

2

∫
d3r

∫
d3r′

e2n(1)(~r)n(1)(~r′)

4πε0|~r − ~r′|
(11)

and the potential energy of exchange and correlation

Uxc
def
=

∫
d3r n(1)(~r)

1

2

∫
d3r′

e2 h(~r, ~r′)

4πε0|~r − ~r′|
. (12)

Keep in mind that Uxc is not the exchange correlation energy. The difference is a kinetic energy
correction that will be discussed later in Eq. 19.
The hole function has a physical meaning: An electron sees the total density minus the electrons
accounted for by the hole. Thus each electron not only experiences the electrostatic potential of
the total electron density n(1)(~r), but also the attractive potential of its own exchange correlation
hole h(~r0, ~r).
A few facts for this hole density are apparent:

1. Because each electron of a N-electron system seesN−1 other electrons, the hole function
integrates to exactly minus one electron∫

d3r h(~r0, ~r) = −1 (13)

irrespective of the position ~r0 of the observing electron.
1This is correct only up to a term that vanishes in the limit of infinite particle number.
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Fig. 1: Exchange hole in silicon. The cross indicates the position of the observer electron.
The black spheres and the lines indicate the atomic positions and bonds in the (110) plane.
Reprinted figure with permission from Mark S. Hybertsen and Steven G. Louie, Physical Review
B 34, 5390 (1986). Copyright 1986 by the American Physical Society.

2. The density of the remaining N − 1 electrons can not be larger than the total electron
density. This implies

h(~r0, ~r) ≥ −n(1)(~r) . (14)

3. Due to the Pauli principle, no other electron with the same spin as the observer electron
can be at the position ~r0. Thus the on-top hole h(~r0, ~r0) obeys the limits [13]

−1

2
n(1)(~r0) ≥ h(~r0, ~r0) ≥ −n(1)(~r0) . (15)

4. Assuming locality, the hole function vanishes at large distances from the observer electron
at ~r0, i.e.

h(~r0, ~r)→ 0 for |~r − ~r0| → ∞ . (16)

With locality I mean that the density does not depend on the position or the presence of
an observer electron, if the latter is very far away.

A selfmade functional

It is fairly simple to make our own density functional2: For a given density, we choose a simple
shape for the hole function, such as a spherical box. Then we scale the value and the radius such
that the hole function integrates to −1, and that its value is opposite equal to the spin density at
its center. The electrostatic potential of this hole density at its center is the exchange-correlation
energy for the observer electron. Our model has an exchange correlation energy3 of

Uxc[n
(1)] ≈ −1

2

∫
d3r n(1)(~r)

(
3

4

e2

4πε0

3

√
2π

3

(
n(1)(~r)

) 1
3
)
∼
∫
d3r

(
n(1)(~r)

) 4
3

. (17)

2A functional F [y] maps a function y(x) to a number F . It is a generalization of the function F (~y) of a vector
~y, where the vector index of ~y is turned into a continuous argument x.

3For this model we do not distinguish between the energy of exchange and correlation and its potential energy
contribution
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Fig. 2: Left: Scheme to demonstrate the construction of the exchange correlation energy from
a simple model. Right: exchange correlation energy per electron εxc as function of electron
density from our model, Hartree-Fock approximation and the exact result. The symbol “Na”
indicates the density of Sodium.

The derivation is an elementary exercise and is given in the appendix. The resulting energy
per electron εxc is given on the right-hand side of Fig. 2 indicated as “model” and compared
with the exact result indicated as “LSD” and the Hartree-Fock result indicated as “HF” for a
homogeneous electron gas.
The agreement with the correct result, which is surprisingly good for such a crude model, pro-
vides an idea of how robust the density-functional theory is with respect to approximations.
While this model has been stripped to the bones, it demonstrates the way physical insight enters
the construction of density functionals. Modern density functionals are far more sophisticated
and exploit much more information [14], but the basic method of construction is similar.

Kinetic energy

While the expression for the kinetic energy in Eq. 9 seems familiar, there is a catch to it. In
order to know the natural orbitals and the occupations we need access to the many-particle
wave function or at least to its reduced density matrix.
A good approximation for the kinetic energy of the interacting electrons is the kinetic energy
functional Ts[n(1)] of the ground state of non-interacting electrons with the same density as the
true system. It is defined by

Ts[n
(1)] = min

{fn∈[0,1],|ψn〉}

{∑
n

fn

∫
d4x ψ∗n(~x)

−~2 ~∇2

2m
ψn(~x)

+

∫
d3r veff (~r)

([∑
n

fn
∑
σ

ψ∗n(~x)ψn(~x)

]
− n(1)(~r)

)
−
∑
n,m

Λm,n

(
〈ψn|ψm〉 − δn,m

)}
. (18)

Note that fn 6= f̄n and that the so-called Kohn-Sham orbitals ψn(~x) differ4 from the natural

4To be precise, Kohn-Sham orbitals are the natural orbitals for non-interacting electrons of a given density.
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orbitals ϕn(~x). Natural orbitals and Kohn-Sham wave functions are fairly similar, while the
occupations fn of Kohn-Sham orbitals differ considerably from those f̄m of the natural orbitals.
The effective potential veff (~r) is the Lagrange multiplier for the density constraint. Λm,n is the
Lagrange multiplier for the orthonormality. Diagonalization of Λ yields a diagonal matrix with
the one-particle energies on the diagonal.

This kinetic energy Ts[n(1)] is a unique functional of the density, which is the first sign that we
are approaching a density-functional theory. Also it is the introduction of this kinetic energy,
where we made for the first time a reference to a ground state. Density functional theory as
described here is inherently a ground-state theory.

Why does the true kinetic energy of the interacting system differ from that of the non-interacting
energy? Consider the hole function of a non-interacting electron gas. When inserted into Eq. 12
for Uxc the potential energy of exchange and correlation, we obtain a contribution to the total
energy that is called exchange energy. The interaction leads to a second energy contribution
that is called correlation energy. Namely, when the interaction is switched on, the wave func-
tion is deformed in such a way that the Coulomb repulsion between the electrons is reduced.
This makes the hole function more compact. However, there is a price to pay when the wave
functions adjust to reduce the Coulomb repulsion between the electrons, namely an increase of
the kinetic energy: Pushing electrons away from the neighborhood of the reference electrons
requires that work be performed against the kinetic pressure of the electron gas, which raises the
kinetic energy. Thus, the system has to find a compromise between minimizing the electrostatic
repulsion of the electrons and increasing its kinetic energy. As a result, the correlation energy
has a potential-energy contribution and a kinetic-energy contribution.

This tradeoff can be observed in Fig. 2. The correct exchange correlation energy is close to our
model at low densities, while it becomes closer to the Hartree-Fock result at high densities. This
is consistent with the fact that the electron gas can easily be deformed at low densities, while
the deformation becomes increasingly costly at high densities due to the larger pressure of the
electron gas.

The difference between Ts and the true kinetic energy is combined with the potential energy of
exchange and correlation Uxc from Eq. 12 into the exchange correlation energy Exc, i.e.

Exc = Uxc +
∑
n

f̄n

∫
d4x ϕ∗n(~x)

−~2

2m
~∇2ϕn(~x)− Ts[n(1)] . (19)

Note, that the φn(~x) and the f̄n are natural orbitals and occupations of the interacting electron
gas, and that they differ from the Kohn-Sham orbitals ψn(~x) and occupations fn.

They are however different from the natural orbitals of interacting electrons at the same density.
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Total energy

The total energy obtains the form

E = min
|Φ〉,{|ψn〉,fn∈[0,1]}

{∑
n

fn

∫
d4x ψ∗n(~x)

−~2

2m
~∇2ψn(~x)

+

∫
d3r veff (~r)

([∑
n

fn
∑
σ

ψ∗n(~x)ψn(~x)

]
− n(~r)

)
+

∫
d3r vext(~r)n

(1)(~r)

+
1

2

∫
d3r

∫
d3r′

e2n(1)(~r)n(1)(~r′)

4πε0|~r − ~r′|
+ Exc −

∑
n,m

Λm,n

(
〈ψn|ψm〉 − δn,m

)}
. (20)

In order to evaluate the total energy with Eq. 20, we still have to start from the many-particle
wave function |Φ〉. Only the many-particle wave function allows us to evaluate the one-particle
density n(1)(~r) and the exchange correlation energy Exc. Kohn-Sham orbitals |ψn〉 and occupa-
tions fn are obtained by an independent minimization for each density.
If, however, we were able to express the exchange-correlation energy Exc as a functional of the
density alone, there would be no need for the many-particle wave function at all and the terrors
of the exponential wall would be banned. We could minimize Eq. 20 with respect to the density,
Kohn-Sham orbitals and their occupations.
Let us, for the time being, simply assume that Exc[n(1)] is a functional of the electron density
and explore the consequences of this assumption. Later, I will show that this assumption is
actually valid.
The minimization in Eq. 20 with respect to the one-particle wave functions yields the Kohn-
Sham equations[

−~2

2me

~∇2 + veff (~r)− εn
]
ψn(~x) = 0 with

∫
d4x ψm(~x)ψn(~x) = δm,n . (21)

The Kohn-Sham energies εn are the diagonal elements of the Lagrange multiplier Λ, when the
latter is forced to be diagonal.
The requirement that the derivative of the total energy Eq. 20 with respect to the density van-
ishes, yields an expression for the effective potential

veff (~r) = vext(~r) +

∫
d3r′

e2n(1)(~r′)

4πε0|~r − ~r′|
+
δExc[n

(1)]

δn(1)(~r)
. (22)

Both equations, together with the density constraint

n(1)(~r) =
∑
n

fn
∑
σ

ψ∗n(~x)ψn(~x) , (23)

form a set of coupled equations, that determine the electron density and the total energy. This
set of coupled equations, Eqs. 21, 22, and 23, is what is solved in the so-called self-consistency
loop. Once the set of self-consistent equations has been solved, we obtain the electron density
and we can evaluate the total energy.
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Fig. 3: Self-consistency cycle.

In practice, one often makes the assumption that the non-interacting electrons in the effective
potential closely resemble the true interacting electrons, and extracts a wealth of other physical
properties from the Kohn-Sham wave functions |ψn〉 and the Kohn-Sham energies εn. However,
there is little theoretical backing for this approach and, if it fails, one should not blame density
functional theory!

Is there a density functional?

The argument leading to the self-consistent equations, Eqs. 21, 22, and 23, relied entirely on
the hope that exchange correlation functional can be expressed as a functional of the electron
density. In fact, this can easily be shown, if we restrict us to ground state densities. The proof
goes back to the seminal paper by Levy [15, 16].

Imagine that one could construct all fermionic many-particle wave functions. For each of these
wave functions, we can determine in a unique way the electron density

n(1)(~r) = N
∑
σ

∫
d3x2 . . .

∫
d3xN |Ψ(~x, ~x2, . . . ~xN)|2 . (24)

Having the electron densities, we sort the wave functions according to their density. For each
density, I get a mug M [n(1)] that holds all wave functions with that density, which is written on
the label of the mug.

Now we turn to each mug M [n(1)] in sequence and determine for each the wave function with
the lowest energy. Because the external potential energy is the same for all wave functions with
the same density, we need to consider only the kinetic energy operator T̂ and the operator Ŵ of
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Fig. 4: Illustration for Levy’s proof that there exists a density functional.

the electron-electron interaction, and we do not need to consider the external potential.

F Ŵ [n(1)] = min
|Ψ〉∈M [n(1)]

〈Ψ |T̂ + Ŵ |Ψ〉 (25)

F Ŵ [n(1)] is the universal density functional. It is universal in the sense that it is an intrinsic
property of the electron gas and absolutely independent of the external potential.
Next, we repeat the same construction as that for a universal density functional, but now we
leave out the interaction Ŵ and consider only the kinetic energy T̂ .

F 0[n(1)] = min
|Ψ〉∈M [n(1)]

〈Ψ |T̂ |Ψ〉 (26)

The resulting functional F 0[n(1)] is nothing but the kinetic energy of non-interacting electrons
Ts[n

(1)].
Now we can write down the total energy as functional of the density

E[n(1)] = F Ŵ [n(1)] +

∫
d3r vext(~r)n

(1)(~r) (27)

When we compare Eq. 27 with Eq. 20, we obtain an expression for the exchange correlation
energy.

Exc[n
(1)] = F Ŵ [n(1)(~r)]− F 0[n(1)(~r)]− 1

2

∫
d3r

∫
d3r′

e2n(1)(~r)n(1)(~r′)

4πε0|~r − ~r′|
(28)

This completes the proof that the exchange correlation energy is a functional of the electron
density. The latter was the assumption for the derivation of the set of self-consistent equations,
Eqs. 21, 22, and 23 for the Kohn-Sham wave functions ψn(~x).
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With this, I finish the description of the theoretical basis of density-functional theory. We have
seen that the total energy can rigorously be expressed as a functional of the density or, in prac-
tice, as a functional of a set of one-particle wave functions, the Kohn-Sham wave functions and
their occupations. Density functional theory per se is not an approximation and, in contrast to
common belief, it is not a mean-field approximation. Nevertheless, we need to introduce ap-
proximations to make density functional theory work. This is because the exchange correlation
energy Exc[n(1)] is not completely known. These approximations will be discussed in the next
section.

3 Jacob’s ladder of density functionals

The development of density functionals is driven by mathematical analysis of the exact ex-
change correlation hole [14, 7], physical insight and numerical benchmark calculations on real
systems. The functionals evolved in steps from one functional form to another, with several
parameterizations at each level. Perdew pictured this development by Jacob’s ladder leading up
to heaven [17, 7]. In his analogy the different rungs of the ladder represent the different levels
of density functionals leading to the unreachable, ultimately correct functional.

LDA, the big surprise

The first density functionals used in practice were based on the local-density approximation
(LDA). The hole function for an electron at position ~r has been approximated by the one of a
homogeneous electron gas with the same density as n(1)(~r). The exchange correlation energy
for the homogeneous electron gas has been obtained by quantum Monte Carlo calculations [18]
and analytic calculations [19]. The local density approximation has been generalized early to
local spin-density approximation (LSD) [20].
Truly surprising was how well the theory worked for real systems. Atomic distances could
be determined within a few percent of the bond length and energy differences in solids were
surprisingly good.
This was unexpected, because the density in real materials is far from homogeneous. Gunnars-
son and Lundquist [21] explained this finding with sumrules that are obeyed by the local density
approximation: Firstly, the exchange correlation energy depends only on the spherical average
of the exchange correlation hole. Of the radial hole density only the first moment contributes,
while the second moment is fixed by the sum-rule that the electron density of the hole integrates
to −1. Thus we can use∫

d3r
e2h(~r0, ~r)

4πε0|~r − ~r0|
= − e2

4πε0

∫∞
0
dr r

〈
h(~r0, ~r′)

〉
|~r′−~r0|=r∫∞

0
dr r2

〈
h(~r0, ~r′)

〉
|~r′−~r0|=r

(29)

where the angular brackets imply the angular average of ~r′ − ~r0. This dependence on the
hole density is rather insensitive to small changes of the hole density. Even for an atom, the
spherically averaged exchange hole closely resembles that of the homogeneous electron gas [4].
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The main deficiency of the LDA was the strong overbinding with bond energies in error by
about one electron volt. On the one hand, this rendered LDA useless for most applications in
chemistry. On the other hand, the problem was hardly visible in solid state physics where bonds
are rarely broken, but rearranged so that errors cancelled.

GGA, entering chemistry

Being concerned about the large density variations in real materials, one tried to include the
first terms of a Taylor expansion in the density gradients. These attempts failed miserably. The
culprit has been a violation of the basic sum rules as pointed out by Perdew [22]. The cure was
a cutoff for the gradient contributions at high gradients, which lead to the class of generalized
gradient approximations (GGA) [23].
Becke [24] provides an intuitive description for the workings of GGA’s, which I will sketch here
in a simplified manner: Becke uses an ansatz Exc =

∫
d3r A(n(~r))F (x(~r)) for the exchange-

correlation energy where n(~r) is the local density and x = |~∇n|/n 4
3 is a dimensionless reduced

gradient. Do not confuse this symbol with the combined position-and-spin coordinate ~x. The
function A is simply the LDA expression and F (x) is the so-called enhancement factor. The
large-gradient limit of F (x) is obtained from a simple physical argument:
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Fig. 5: Left figure: reduced density gradient x = |~∇n|/n 4
3 of a silicon atom as function of

distance from the nucleus demonstrating that the largest reduced gradients occur in the expo-
nential tails. Right figure: additional contribution from the gradient correction (PBE versus
PW91 LDA) of the exchange correlation energy per electron. The figure demonstrates that the
gradient correction stabilizes the tails of the wave function. The covalent radius of silicon is at
1.11 Å.

Somewhat surprisingly, the reduced gradient is largest not near the nucleus but in the exponen-
tially decaying charge-density tails as shown in Fig. 5. For an electron that is far from an atom,
the hole is on the atom, because a hole can only be dug where electrons are. Thus the Coulomb
interaction energy of the electron with its hole is− e2

4πε0r
, where r is the distance of the reference
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electron from the atom. As shown in appendix B, the enhancement factor can now be obtained
by enforcing this behavior for exponentially decaying densities.
As a result, the exchange and correlation energy per electron in the tail region of the electron
density falls of with the inverse distance in GGA, while it has a much faster, exponential decay
in the LDA. Thus, the the tail region is stabilized by GGA. This contribution acts like a negative
“surface energy”.
When a bond between two atoms is broken, the surface is increased. In GGA this bond-breaking
process is more favorable than in LDA, and, hence, the bond is weakened. Thus the GGA cures
the overbinding error of the LDA.
These gradient corrections greatly improved the bond energies and made density functional
theory useful also for chemists. The most widely distributed GGA functional is the Perdew-
Burke-Ernzerhof (PBE) functional [25].

Meta GGA’s

The next level of density functionals are the so-called meta GGA’s [26–28] that include not
only the gradient of the density, but also the second derivatives of the density. These functionals
can be reformulated so that the additional parameter is the kinetic energy density instead of the
second density derivatives. Perdew recommends his TPSS functional [29].

Hybrid functionals

Another generation of functionals are hybrid functionals [30, 31], which replace some of the
exchange energy by the exact exchange

EHF
X = −1

2

∑
m,n

f̄mf̄n

∫
d4x

∫
d4x′

e2ψ∗m(~x)ψn(~x)ψ∗n(~x′)ψm(~x′)

4πε0|~r − ~r′|
(30)

where f̄n and the ψn(~x) are the Kohn-Sham occupations and wave functions, respectively.
The motivation for this approach goes back to the adiabatic connection formula [32, 33, 21]

Exc[n(~r)] =

∫ 1

0

dλ UλŴ
xc [n(~r)] =

∫
d3r n(~r)

∫ 1

0

dλ
1

2

∫
d3r′

hλ(~r, ~r′)

4πε|~r − ~r′|
(31)

which expresses the exchange correlation energy as an integral of the potential energy of ex-
change and correlation over the interaction strength. Here the interaction in the Hamiltonian is
scaled by a factor λ, leading to a λ-dependent universal functional F λŴ [n(1)]. The interaction
energy can be expressed by

F Ŵ [n] = F 0[n] +

∫ 1

0

dλ
d

dλ
F λŴ [n]

= Ts[n] +
1

2

∫
d3r

∫
d3r′

e2n(~r)n(~r′)

4πε0|~r − ~r′|
+

∫ 1

0

dλ UλŴ
xc [n] (32)
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which leads via Eq. 28 to Eq. 31. Using perturbation theory, the derivative of F λŴ [n] simplifies
to the expectation value of the interaction 〈Ψ(λ)|Ŵ |Ψ(λ)〉, which is the potential energy of
exchange and correlation evaluated for a many-particle wave function obtained for the specified
given interaction strength.
The underlying idea of the hybrid functionals is to interpolate the integrand between the end
points. In the non-interacting limit, i.e. for λ = 0 the integrand UλŴ

xc is exactly given by the
exact exchange energy of Eq. 30. For the full interaction, on the other hand, the LDA or GGA
functionals are considered correctly. Thus a linear interpolation would yield

Exc =
1

2

(
U0
xc + U Ŵ

xc

)
=

1

2

(
EHF
X + U Ŵ

xc

)
= EGGA

xc +
1

2

(
EHF
X − EGGA

X

)
. (33)

Depending on whether the λ-dependence is a straight line or whether it is convex, the weight
factor may be equal or smaller than 1

2
. Perdew [34] has given arguments that a factor 1

4
would

actually be better than a factor 1
2
.

Hybrid functionals perform substantially better than GGA functionals regarding binding ener-
gies, band gaps and reaction energies. However, they are flawed for the description of solids.
The reason is that the exact exchange hole in a solid is very extended. These long-range tails
are screened away quickly when the interaction is turned on, because they are cancelled by the
correlation. Effectively, we should use a smaller mixing factor for the long range part of the
exchange hole. This can be taken into account, by cutting off the long-range part of the interac-
tion for the calculation of the Hartree-Fock exchange [35]. This approach improves the results
for band gaps while reducing the computational effort [36].
The effective cancellation of the long-ranged contribution of exchange with a similar contri-
bution from correlation, which is also considered properly already in the LDA, is one of the
explanation for the superiority of the LDA over the Hartree-Fock approximation.
The most widely used hybrid functional is the B3LYP functional [37], which is, however, ob-
tained from a parameter fit to a database of simple molecules. The functional PBE0 [38, 39] is
born out of the famous PBE GGA functional and is a widely distributed parameter-free func-
tional.

LDA+U and local hybrid functionals

Starting from a completely different context, Anisimov et. al. [40] introduced the so-called
LDA+U method, which, as described below, has some similarities to the hybrid functionals
above.
The main goal was to arrive at a proper description of transition metal oxides, which tend to
be Mott insulators, while GGA calculations predict them often to be metals. The remedy was
to add a correlation term5 [41] borrowed from the Hubbard model and to correct the resulting

5The expression given here looks unusually simple. This is due to the notation of spin orbitals, which takes
care of the spin indices.
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double counting of the interactions by Edc.

E = EGGA +
1

2

∑
R

∑
α,β,γ,δ∈CR

Uα,β,γ,δ

(
ργ,αρδ,β − ρδ,αργ,β

)
− Edc (34)

Uα,β,γ,δ =

∫
d4x

∫
d4x′

e2χ∗α(~x)χ∗β(~x′)χγ(~x)χδ(~x′)

4πε0|~r − ~r′|
(35)

ρα,β = 〈πα|ψn〉fn〈ψn|πβ〉 , (36)

where |χα〉 are atomic tight-binding orbitals and |πα〉 are their projector functions.6 The addi-
tional energy is a Hartree-Fock exchange energy, that only considers the exchange for specified
sets of local orbitals. The exchange term does only consider a subset of orbitals CR for each
atom R and it ignores the contribution involving orbitals centered on different atoms.
Novak et al. [42] made the connection to the hybrid functionals explicit and restricted the exact
exchange contribution of a hybrid functional to only a shell of orbitals. While in the LDA+U
method the bare Coulomb matrix elements are reduced by a screening factor, in the hybrid
functionals it is the mixing factor that effectively plays the same role. Both LDA+U and the
local hybrid method have in common that they radically remove the contribution of off-site
matrix elements of the interaction. Tran et al. [43] applied this method to transition metal oxides
and found results that are similar to those of the full implementation of hybrid functionals.

Van der Waals interactions

One of the major difficulties for density functionals is the description of van der Waals forces,
because it is due to the quantum mechanical synchronization of charge fluctuations on distinct
molecules. I refer the reader to the work made in the group of Lundqvist [44–46].

4 Benchmarks, successes and failures

The development of density functionals has profited enormously from careful benchmark stud-
ies. The precondition is a data set of test cases for which reliable and accurate experimental
data exist. The most famous data sets are the G1 and G2 databases [47–50] that have been set
up to benchmark quantum-chemistry codes. Becke [51,52,31,53,54] set a trend by using these
large sets of test cases for systematic studies of density functionals. In order to separate out
the accuracy of the density functionals, it is vital to perform these calculations on extremely
accurate numerical methods. Becke used basis set free calculations that were limited to small
molecules, while being extremely accurate. Paier et. al. [55–57, 36] have later performed care-
ful comparisons of two methods, Gaussian and the projector augmented-wave method, to single
out the error of the electronic structure method.

6Projector functions obey the biorthogonality condition 〈χα|πβ〉 = δα,β . Within the sub-Hilbert space of the
tight-binding orbitals, i.e. for wave functions of the form |ψ〉 =

∑
α |χα〉cα, the projector functions decompose

the wave function into tight binding orbitals, i.e. |ψ〉 =
∑
α |χα〉〈πα|ψ〉. A similar projection is used extensively

in the projector augmented-wave method described later.
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Overall, the available density functionals predict molecular structures very well. Bond distances
agree with the experiment often within one percent. Bond angles come out within a few degrees.
The quality of total energies depends strongly on the level of functionals used. On the LDA
level bonds are overestimated in the 1 eV range, on the GGA level these errors are reduced to
a about 0.3 eV, and hybrid functionals reduce the error by another factor of 2. The ultimate
goal is to reach chemical accuracy, which is about 0.05 eV. Such an accuracy allows to predict
reaction rates at room temperature within a factor of 10.
Band gaps are predicted to be too small with LDA and GGA. The so-called band gap prob-
lem has been one of the major issues during the development of density functionals. Hybrid
functionals clearly improve the situation. A problem is the description of materials with strong
electron correlations. For LDA and GGA many insulating transition metal oxides are described
as metals. This changes again for the hybrid functionals, which turns them into antiferromag-
netic insulators, which is a dramatic improvement.

5 Electronic structure methods

In this second part of my lecture notes, I will address the problem of how to solve the Kohn-
Sham equations and how to obtain the total energy and other observables. It is convenient to use
a slightly different notation: Instead of treating the nuclei via an external potential, we combine
all electrostatic interactions into a single double integral.
This brings the total energy into the form

E
[
{ψn(~r)}, {~RR}

]
=

∑
n

fn〈ψn|
~̂p 2

2me

|ψn〉

+
1

2

∫
d3r

∫
d3r′

e2
(
n(~r) + Z(~r)

)(
n(~r′) + Z(~r′)

)
4πε0|~r − ~r′|

+ Exc[n] , (37)

where Z(~r) = −
∑

RZRδ(~r− ~RR) is the nuclear charge density expressed in electron charges.
ZR is the atomic number of a nucleus at position ~RR.
The electronic ground state is determined by minimizing the total energy functional E[Ψn] of
Eq. 37 at a fixed ionic geometry. The one-particle wave functions have to be orthogonal. This
constraint is implemented with the method of Lagrange multipliers. We obtain the ground-state
wave functions from the extremum condition for

Y
[
{|ψn〉},Λ

]
= E

[
{|ψn〉}

]
−
∑
n,m

[
〈ψn|ψm〉 − δn,m

]
Λm,n (38)

with respect to the wavefunctions and the Lagrange multipliers Λm,n. The extremum condition
for the wavefunctions has the form

Ĥ|ψn〉fn =
∑
m

|ψm〉Λm,n , (39)
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where Ĥ = 1
2me

~̂p 2 + v̂eff is the effective one-particle Hamilton operator.
The corresponding effective potential depends itself on the electron density via

veff (~r) =

∫
d3r′

e2
(
n(~r′) + Z(~r′)

)
4πε0|~r − ~r′|

+ µxc(~r) , (40)

where µxc(~r) = δExc[n(~r)]
δn(~r)

is the functional derivative of the exchange and correlation functional.
After a unitary transformation that diagonalizes the matrix of Lagrange multipliers Λ, we obtain
the Kohn-Sham equations

Ĥ|ψn〉 = |ψn〉εn . (41)

The one-particle energies εn are the eigenvalues of the matrix with the elements Λn,m(fn +

fm)/(2fnfm) [58].
The one-electron Schrödinger equations, namely the Kohn-Sham equations given in Eq. 21,
still pose substantial numerical difficulties: (1) in the atomic region near the nucleus, the kinetic
energy of the electrons is large, resulting in rapid oscillations of the wavefunction that require
fine grids for an accurate numerical representation. On the other hand, the large kinetic energy
makes the Schrödinger equation stiff, so that a change of the chemical environment has little
effect on the shape of the wavefunction. Therefore, the wavefunction in the atomic region can
be represented well already by a small basis set. (2) In the bonding region between the atoms
the situation is opposite. The kinetic energy is small and the wavefunction is smooth. However,
the wavefunction is flexible and responds strongly to the environment. This requires large and
nearly complete basis sets.
Combining these different requirements is non-trivial and various strategies have been devel-
oped.

• The atomic point of view has been most appealing to quantum chemists. Basis functions
are chosen that resemble atomic orbitals. This choice exploits that the wavefunction in
the atomic region can be described by a few basis functions, while the chemical bond is
described by the overlapping tails of these atomic orbitals. Most techniques in this class
are a compromise of, on the one hand, a well adapted basis set, where the basis functions
are difficult to handle, and, on the other hand, numerically convenient basis functions
such as Gaussians, where the inadequacies are compensated by larger basis sets.

• Pseudopotentials regard an atom as a perturbation of the free electron gas. The most nat-
ural basis functions for the free electron gas are plane waves. Plane-wave basis sets are in
principle complete and suitable for sufficiently smooth wavefunctions. The disadvantage
of the comparably large basis sets required is offset by their extreme numerical simplicity.
Finite plane-wave expansions are, however, absolutely inadequate to describe the strong
oscillations of the wavefunctions near the nucleus. In the pseudopotential approach the
Pauli repulsion by the core electrons is therefore described by an effective potential that
expels the valence electrons from the core region. The resulting wavefunctions are smooth
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and can be represented well by plane waves. The price to pay is that all information on
the charge density and wavefunctions near the nucleus is lost.

• Augmented-wave methods compose their basis functions from atom-like wavefunctions
in the atomic regions and a set of functions, called envelope functions, appropriate for the
bonding in between. Space is divided accordingly into atom-centered spheres, defining
the atomic regions, and an interstitial region in between. The partial solutions of the
different regions are matched with value and derivative at the interface between atomic
and interstitial regions.

The projector augmented-wave method is an extension of augmented wave methods and the
pseudopotential approach, which combines their traditions into a unified electronic structure
method.
After describing the underlying ideas of the various approaches, let us briefly review the history
of augmented wave methods and the pseudopotential approach. We do not discuss the atomic-
orbital based methods, because our focus is the PAW method and its ancestors.

6 Augmented wave methods

The augmented wave methods have been introduced in 1937 by Slater [59]. His method was
called augmented plane-wave (APW) method. Later Korringa [60], Kohn and Rostoker [61]
modified the idea, which lead to the so-called KKR method. The basic idea behind the aug-
mented wave methods has been to consider the electronic structure as a scattered-electron prob-
lem: Consider an electron beam, represented by a plane wave, traveling through a solid. It
undergoes multiple scattering at the atoms. If, for some energy, the outgoing scattered waves
interfere destructively, so that the electrons can not escape, a bound state has been determined.
This approach can be translated into a basis-set method with energy- and potential-dependent
basis functions. In order to make the scattered wave problem tractable, a model potential had to
be chosen: The so-called muffin-tin potential approximates the true potential by a potential that
is spherically symmetric in the atomic regions and constant in between.
Augmented-wave methods reached adulthood in the 1970s: O. K. Andersen [62] showed that
the energy dependent basis set of Slater’s APW method can be mapped onto one with energy in-
dependent basis functions by linearizing the partial waves for the atomic regions with respect to
their energy. In the original APW approach, one had to determine the zeros of the determinant
of an energy dependent matrix, a nearly intractable numerical problem for complex systems.
With the new energy independent basis functions, however, the problem is reduced to the much
simpler generalized eigenvalue problem, which can be solved using efficient numerical tech-
niques. Furthermore, the introduction of well defined basis sets paved the way for full-potential
calculations [63]. In that case, the muffin-tin approximation is used solely to define the basis
set |χi〉, while the matrix elements 〈χi|H|χj〉 of the Hamiltonian are evaluated with the full
potential.
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In the augmented wave methods one constructs the basis set for the atomic region by solving
the radial Schrödinger equation for the spherically averaged effective potential[

−~2

2me

~∇2 + veff (~r)− ε
]
φ`,m(ε, ~r) = 0

as function of the energy. Note that a partial wave φ`,m(ε, ~r) is an angular-momentum eigenstate
and can be expressed as a product of a radial function and a spherical harmonic. The energy-
dependent partial wave is expanded in a Taylor expansion about some reference energy εν,`

φ`,m(ε, ~r) = φν,`,m(~r) + (ε− εν,`)φ̇ν,`,m(~r) +O((ε− εν,`)2) ,

where φν,`,m(~r) = φ`,m(εν,`, ~r). The energy derivative of the partial wave φ̇ν(~r) = ∂φ(ε,~r)
∂ε

∣∣∣
εν,`

is

obtained from the energy derivative of the Schrödinger equation[
−~2

2me

~∇2 + veff (~r)− εν,`
]
φ̇ν,`,m(~r) = φν,`,m(~r) .

Next, one starts from a regular basis set, such as plane waves, Gaussians or Hankel functions.
These basis functions are called envelope functions |χ̃i〉. Within the atomic region they are
replaced by the partial waves and their energy derivatives, such that the resulting wavefunction
χi(~r) is continuous and differentiable. The augmented envelope function has the form

χi(~r) = χ̃i(~r)−
∑
R

θR(~r)χ̃i(~r) +
∑
R,`,m

θR(~r)
[
φν,R,`,m(~r)aR,`,m,i + φ̇ν,R,`,m(~r)bR,`,m,i

]
. (42)

θR(~r) is a step function that is unity within the augmentation sphere centered at ~RR and zero
elsewhere. The augmentation sphere is atom-centered and has a radius about equal to the cova-
lent radius. This radius is called the muffin-tin radius, if the spheres of neighboring atoms touch.
These basis functions describe only the valence states; the core states are localized within the
augmentation sphere and are obtained directly by a radial integration of the Schrödinger equa-
tion within the augmentation sphere.
The coefficients aR,`,m,i and bR,`,m,i are obtained for each |χ̃i〉 as follows: The envelope function
is decomposed around each atomic site into spherical harmonics multiplied by radial functions

χ̃i(~r) =
∑
`,m

uR,`,m,i(|~r − ~RR|)Y`,m(~r − ~RR) . (43)

Analytical expansions for plane waves, Hankel functions or Gaussians exist. The radial parts
of the partial waves φν,R,`,m and φ̇ν,R,`,m are matched with value and derivative to uR,`,m,i(|~r|),
which yields the expansion coefficients aR,`,m,i and bR,`,m,i.
If the envelope functions are plane waves, the resulting method is called the linear augmented
plane-wave (LAPW) method. If the envelope functions are Hankel functions, the method is
called linear muffin-tin orbital (LMTO) method.
A good review of the LAPW method [62] has been given by Singh [64]. Let us now briefly men-
tion the major developments of the LAPW method: Soler [65] introduced the idea of additive
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augmentation: While augmented plane waves are discontinuous at the surface of the augmen-
tation sphere if the expansion in spherical harmonics in Eq. 42 is truncated, Soler replaced the
second term in Eq. 42 by an expansion of the plane wave with the same angular momentum
truncation as in the third term. This dramatically improved the convergence of the angular
momentum expansion. Singh [66] introduced so-called local orbitals, which are non-zero only
within a muffin-tin sphere, where they are superpositions of φ and φ̇ functions from different ex-
pansion energies. Local orbitals substantially increase the energy transferability. Sjöstedt [67]
relaxed the condition that the basis functions are differentiable at the sphere radius. In addi-
tion she introduced local orbitals, which are confined inside the sphere, and that also have a
kink at the sphere boundary. Due to the large energy cost of kinks, they will cancel, once the
total energy is minimized. The increased variational degree of freedom in the basis leads to a
dramatically improved plane-wave convergence [68].
The second variant of the linear methods is the LMTO method [62]. A good introduction into
the LMTO method is the book by Skriver [69]. The LMTO method uses Hankel functions as
envelope functions. The atomic spheres approximation (ASA) provides a particularly simple
and efficient approach to the electronic structure of very large systems. In the ASA the aug-
mentation spheres are blown up so that the sum of their volumes is equal to the total volume.
Then, the first two terms in Eq. 42 are ignored. The main deficiency of the LMTO-ASA method
is the limitation to structures that can be converted into a closed packed arrangement of atomic
and empty spheres. Furthermore, energy differences due to structural distortions are often qual-
itatively incorrect. Full potential versions of the LMTO method, that avoid these deficiencies
of the ASA have been developed. The construction of tight binding orbitals as superposition of
muffin-tin orbitals [70] showed the underlying principles of the empirical tight-binding method
and prepared the ground for electronic structure methods that scale linearly instead of with the
third power of the number of atoms. The third generation LMTO [71] allows to construct true
minimal basis sets, which require only one orbital per electron pair for insulators. In addition,
they can be made arbitrarily accurate in the valence band region, so that a matrix diagonaliza-
tion becomes unnecessary. The first steps towards a full-potential implementation, that promises
good accuracy, while maintaining the simplicity of the LMTO-ASA method, are currently under
way. Through the minimal basis-set construction the LMTO method offers unrivaled tools for
the analysis of the electronic structure and has been extensively used in hybrid methods com-
bining density functional theory with model Hamiltonians for materials with strong electron
correlations [72].

7 Pseudopotentials

Pseudopotentials have been introduced to (1) avoid describing the core electrons explicitly and
(2) to avoid the rapid oscillations of the wavefunction near the nucleus, which normally require
either complicated or large basis sets.
The pseudopotential approach can be traced back to 1940 when C. Herring invented the or-
thogonalized plane-wave method [73]. Later, Phillips [74] and Antončı́k [75] replaced the or-
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thogonality condition by an effective potential, which mimics the Pauli repulsion by the core
electrons and thus compensates the electrostatic attraction by the nucleus. In practice, the po-
tential was modified, for example, by cutting off the singular potential of the nucleus at a certain
value. This was done with a few parameters that have been adjusted to reproduce the measured
electronic band structure of the corresponding solid.
Hamann, Schlüter and Chiang [76] showed in 1979 how pseudopotentials can be constructed
in such a way that their scattering properties are identical to that of an atom to first order in
energy. These first-principles pseudopotentials relieved the calculations from the restrictions of
empirical parameters. Highly accurate calculations have become possible especially for semi-
conductors and simple metals. An alternative approach towards first-principles pseudopotentials
by Zunger and Cohen [77] even preceded the one mentioned above.

The idea behind the pseudopotential construction

In order to construct a first-principles pseudopotential, one starts out with an all-electron density-
functional calculation for a spherical atom. Such calculations can be performed efficiently on
radial grids. They yield the atomic potential and wavefunctions φ`,m(~r). Due to the spherical
symmetry, the radial parts of the wavefunctions for different magnetic quantum numbers m are
identical.
For the valence wavefunctions one constructs pseudo wavefunctions |φ̃`,m〉. There are numer-
ous ways [78–81] to construct those pseudo wavefunctions: Pseudo wave functions are iden-
tical to the true wave functions outside the augmentation region, which is called core region
in the context of the pseudopotential approach. Inside the augmentation region the pseudo
wavefunction should be nodeless and have the same norm as the true wavefunctions, that is
〈φ̃`,m|φ̃`,m〉 = 〈φ`,m|φ`,m〉 (compare Figure 6).
From the pseudo wavefunction, a potential u`(~r) can be reconstructed by inverting the respective
Schrödinger equation, i.e.[

− ~2

2me

~∇2 + u`(~r)− ε`,m
]
φ̃`,m(~r) = 0 ⇒ u`(~r) = ε+

1

φ̃`,m(~r)
· ~2

2me

~∇2φ̃`,m(~r) .

This potential u`(~r) (compare Figure 6), which is also spherically symmetric, differs from one
main angular momentum ` to the other. Note, that this inversion of the Schrödinger equation
works only if the wave functions are nodeless.
Next we define an effective pseudo Hamiltonian

ˆ̃H` = − ~2

2me

~∇2 + vps` (~r) +

∫
d3r′

e2
(
ñ(~r′) + Z̃(~r′)

)
4πε0|~r − ~r′|

+ µxc([n(~r)], ~r) , (44)

where µxc(~r) = δExc[n]/δn(~r) is the functional derivative of the exchange and correlation
energy with respect to the electron density. Then, we determine the pseudopotentials vps` such
that the pseudo Hamiltonian produces the pseudo wavefunctions, that is

vps` (~r) = u`(~r)−
∫
d3r′

e2
(
ñ(~r′) + Z̃(~r′)

)
4πε0|~r − ~r′|

− µxc([ñ(~r)], ~r) . (45)
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Fig. 6: Illustration of the pseudopotential concept for the example of the 3s wavefunction of Si.
The solid line shows the radial part of the pseudo wavefunction φ̃`,m. The dashed line corre-
sponds to the all-electron wavefunction φ`,m, which exhibits strong oscillations at small radii.
The angular momentum dependent pseudopotential u` (dash-dotted line) deviates from the all-
electron potential veff (dotted line) inside the augmentation region. The data are generated by
the fhi98PP code [82].

This process is called “unscreening”.
Z̃(~r) mimics the charge density of the nucleus and the core electrons. It is usually an atom-
centered, spherical Gaussian that is normalized to the charge of nucleus and core of that atom.
In the pseudopotential approach, Z̃R(~r) does not change with the potential. The pseudo density
ñ(~r) =

∑
n fnψ̃

∗
n(~r)ψ̃n(~r) is constructed from the pseudo wavefunctions.

In this way, we obtain a different potential for each angular momentum channel. In order to
apply these potentials to a given wavefunction, the wavefunction must first be decomposed
into angular momenta. Then each component is applied to the pseudopotential vps` for the
corresponding angular momentum.
The pseudopotential defined in this way can be expressed in a semi-local form

vps(~r, ~r′) = v̄(~r)δ(~r − ~r′) +
∑
`,m

[
Y`,m(~r) [vps` (~r)− v̄(~r)]

δ(|~r| − |~r′|)
|~r|2

Y ∗`,m(~r′)

]
. (46)

The local potential v̄(~r) only acts on those angular momentum components that are not al-
ready considered explicitly in the non-local, angular-momentum dependend pseudopotentials
vps` . Typically it is chosen to cancel the most expensive nonlocal terms, the one corresponding
to the highest physically relevant angular momentum.
The pseudopotential vps(~r, ~r′) is non-local as its depends on two position arguments, ~r and ~r′.
The expectation values are evaluated as a double integral

〈ψ̃|v̂ps|ψ̃〉 =

∫
d3r

∫
d3r′ ψ̃∗(~r)vps(~r, ~r′)ψ̃(~r′) (47)



2.24 Peter E. Blöchl

The semi-local form of the pseudopotential given in Eq. 46 is computationally expensive.
Therefore, in practice one uses a separable form of the pseudopotential [83–85]

v̂ps ≈
∑
i,j

v̂ps|φ̃i〉
[
〈φ̃j|v̂ps|φ̃i〉

]−1

i,j
〈φ̃j|v̂ps . (48)

Thus, the projection onto spherical harmonics used in the semi-local form of Eq. 46 is replaced
by a projection onto angular momentum dependent functions v̂ps|φ̃i〉.
The indices i and j are composite indices containing the atomic-site index R, the angular mo-
mentum quantum numbers `,m and an additional index α. The index α distinguishes partial
waves with otherwise identical indices R, `,m when more than one partial wave per site and
angular momentum is allowed. The partial waves may be constructed as eigenstates of the
pseudopotential v̂ps` for a set of energies.
One can show that the identity of Eq. 48 holds by applying a wavefunction |ψ̃〉 =

∑
i |φ̃i〉ci to

both sides. If the set of pseudo partial waves |φ̃i〉 in Eq. 48 is complete, the identity is exact.
The advantage of the separable form is that 〈φ̃|v̂ps is treated as one function, so that expectation
values are reduced to combinations of simple scalar products 〈φ̃i|v̂ps|ψ̃〉.
The total energy of the pseudopotential method can be written in the form

E =
∑
n

fn〈ψ̃n|
~̂p 2

2me

|ψ̃n〉+ Eself +
∑
n

fn〈ψ̃n|v̂ps|ψ̃n〉

+
1

2

∫
d3r

∫
d3r′

e2
(
ñ(~r) + Z̃(~r)

)(
ñ(~r′) + Z̃(~r′)

)
4πε0|~r − ~r′|

+ Exc[ñ(~r)] . (49)

The constant Eself is adjusted such that the total energy of the atom is the same for an all-
electron calculation and the pseudopotential calculation.
For the atom, from which it has been constructed, this construction guarantees that the pseu-
dopotential method produces the correct one-particle energies for the valence states and that the
wave functions have the desired shape.
While pseudopotentials have proven to be accurate for a large variety of systems, there is no
strict guarantee that they produce the same results as an all-electron calculation, if they are used
in a molecule or solid. The error sources can be divided into two classes:

• Energy transferability problems: Even for the potential of the reference atom, the scatter-
ing properties are accurate only in given energy window.

• Charge transferability problems: In a molecule or crystal, the potential differs from that
of the isolated atom. The pseudopotential, however, is strictly valid only for the isolated
atom.

The plane-wave basis set for the pseudo wavefunctions is defined by the shortest wave length
λ = 2π/|~G|, where ~G is the wave vector, via the so-called plane-wave cutoff EPW = ~2G2

max

2me

with Gmax = max{|~G|}. It is often specified in Rydberg (1 Ry=1
2

H≈13.6 eV). The plane-
wave cutoff is the highest kinetic energy of all basis functions. The basis-set convergence can
systematically be controlled by increasing the plane-wave cutoff.
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The charge transferability is substantially improved by including a nonlinear core correction
[86] into the exchange-correlation term of Eq. 49. Hamann [87] showed how to construct pseu-
dopotentials also from unbound wavefunctions. Vanderbilt [88, 89] generalized the pseudopo-
tential method to non-normconserving pseudopotentials, so-called ultra-soft pseudopotentials,
which dramatically improve the basis-set convergence. The formulation of ultra-soft pseudopo-
tentials has already many similarities with the projector augmented-wave method. Truncated
separable pseudopotentials suffer sometimes from so-called ghost states. These are unphysical
core-like states, which render the pseudopotential useless. These problems have been discussed
by Gonze [90]. Quantities such as hyperfine parameters that depend on the full wavefunc-
tions near the nucleus, can be extracted approximately [91]. Good reviews of pseudopotential
methodology have been written by Payne et al. [92] and Singh [64].

In 1985 R. Car and M. Parrinello published the ab-initio molecular dynamics method [93].
Simulations of the atomic motion have become possible on the basis of state-of-the-art elec-
tronic structure methods. Besides making dynamical phenomena and finite temperature effects
accessible to electronic structure calculations, the ab-initio molecular dynamics method also in-
troduced a radically new way of thinking into electronic structure methods. Diagonalization of a
Hamilton matrix has been replaced by classical equations of motion for the wavefunction coeffi-
cients. If one applies friction, the system is quenched to the ground state. Without friction truly
dynamical simulations of the atomic structure are performed. By using thermostats [94–97],
simulations at constant temperature can be performed. The Car-Parrinello method treats elec-
tronic wavefunctions and atomic positions on an equal footing.

8 Projector augmented-wave method

The Car-Parrinello method had been implemented first for the pseudopotential approach. There
seemed to be insurmountable barriers against combining the new technique with augmented
wave methods. The main problem was related to the potential dependent basis set used in
augmented wave methods: the Car-Parrinello method requires a well defined and unique to-
tal energy functional of atomic positions and basis set coefficients. Furthermore the analytic
evaluation of the first partial derivatives of the total energy with respect to wave functions,
∂E
∂〈ψn| = Ĥ|ψn〉fn, and atomic positions, the forces ~Fj = −~∇jE, must be possible. Therefore,
it was one of the main goals of the PAW method to introduce energy and potential independent
basis sets, which were as accurate as the previously used augmented basis sets. Other require-
ments have been: (1) The method should at least match the efficiency of the pseudopotential
approach for Car-Parrinello simulations. (2) It should become an exact theory when converged
and (3) its convergence should be easily controlled. We believe that these criteria have been
met, which explains why the use of the PAW method has become widespread today.
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Transformation theory

At the root of the PAW method lies a transformation that maps the true wavefunctions with their
complete nodal structure onto auxiliary wavefunctions that are numerically convenient. We aim
for smooth auxiliary wavefunctions, which have a rapidly convergent plane-wave expansion.
With such a transformation we can expand the auxiliary wave functions into a convenient basis
set such as plane waves, and evaluate all physical properties after reconstructing the related
physical (true) wavefunctions.
Let us denote the physical one-particle wavefunctions as |ψn〉 and the auxiliary wavefunctions
as |ψ̃n〉. Note that the tilde refers to the representation of smooth auxiliary wavefunctions and
n is the label for a one-particle state and contains a band index, a k-point and a spin index. The
transformation from the auxiliary to the physical wave functions is denoted by T̂ , i.e.

|ψn〉 = T̂ |ψ̃n〉 . (50)

Now we express the constrained density functional F of Eq. 38 in terms of our auxiliary wave-
functions

F
[
{T̂ |ψ̃n〉}, {Λm,n}

]
= E

[
{T̂ |ψ̃n〉}

]
−
∑
n,m

[
〈ψ̃n|T̂ †T̂ |ψ̃m〉 − δn,m

]
Λm,n . (51)

The variational principle with respect to the auxiliary wavefunctions yields

T̂ †ĤT̂ |ψ̃n〉 = T̂ †T̂ |ψ̃n〉εn . (52)

Again, we obtain a Schrödinger-like equation (see derivation of Eq. 41), but now the Hamilton
operator has a different form, ˆ̃H = T̂ †ĤT̂ , an overlap operator ˆ̃O = T̂ †T̂ occurs, and the
resulting auxiliary wavefunctions are smooth.
When we evaluate physical quantities, we need to evaluate expectation values of an operator Â,
which can be expressed in terms of either the true or the auxiliary wavefunctions, i.e.

〈Â〉 =
∑
n

fn〈ψn|Â|ψn〉 =
∑
n

fn〈ψ̃n|T̂ †ÂT̂ |ψ̃n〉 . (53)

In the representation of auxiliary wavefunctions we need to use transformed operators ˆ̃A =

T̂ †ÂT̂ . As it is, this equation only holds for the valence electrons. The core electrons are
treated differently, as will be shown below.
The transformation takes us conceptionally from the world of pseudopotentials to that of aug-
mented wave methods, which deal with the full wavefunctions. We will see that our auxiliary
wavefunctions, which are simply the plane-wave parts of the full wavefunctions, translate into
the wavefunctions of the pseudopotential approach. In the PAW method the auxiliary wavefunc-
tions are used to construct the true wavefunctions and the total energy functional is evaluated
from the latter. Thus it provides the missing link between augmented wave methods and the
pseudopotential method, which can be derived as a well-defined approximation of the PAW
method.
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In the original paper [58], the auxiliary wavefunctions were termed pseudo wavefunctions and
the true wavefunctions were termed all-electron wavefunctions, in order to make the connection
more evident. We avoid this notation here, because it resulted in confusion in cases where the
correspondence is not clear-cut.

Transformation operator

So far we have described how we can determine the auxiliary wave functions of the ground
state and how to obtain physical information from them. What is missing is a definition of the
transformation operator T̂ .
The operator T̂ has to modify the smooth auxiliary wave function in each atomic region, so that
the resulting wavefunction has the correct nodal structure. Therefore, it makes sense to write
the transformation as identity plus a sum of atomic contributions ŜR

T̂ = 1̂ +
∑
R

ŜR. (54)

For every atom, ŜR adds the difference between the true and the auxiliary wavefunction.
The local terms ŜR are defined in terms of solutions |φi〉 of the Schrödinger equation for the
isolated atoms. This set of partial waves |φi〉 will serve as a basis set so that, near the nucleus,
all relevant valence wavefunctions can be expressed as superposition of the partial waves with
yet unknown coefficients as

ψ(~r) =
∑
i∈R

φi(~r)ci for |~r − ~RR| < rc,R . (55)

With i ∈ R we indicate those partial waves that belong to site R.
Since the core wavefunctions do not spread out into the neighboring atoms, we will treat them
differently. Currently we use the frozen-core approximation, which imports the density and
the energy of the core electrons from the corresponding isolated atoms. The transformation T̂
shall produce only wavefunctions orthogonal to the core electrons, while the core electrons are
treated separately. Therefore, the set of atomic partial waves |φi〉 includes only valence states
that are orthogonal to the core wavefunctions of the atom.
For each of the partial waves we choose an auxiliary partial wave |φ̃i〉. The identity

|φi〉 = (1̂ + ŜR)|φ̃i〉 for i ∈ R
ŜR|φ̃i〉 = |φi〉 − |φ̃i〉 (56)

defines the local contribution ŜR to the transformation operator. Since 1̂+ ŜR should change the
wavefunction only locally, we require that the partial waves |φi〉 and their auxiliary counterparts
|φ̃i〉 are pairwise identical beyond a certain radius rc,R.

φi(~r) = φ̃i(~r) for i ∈ R and |~r − ~RR| > rc,R (57)

Note that the partial waves are not necessarily bound states and are therefore not normalizable
unless we truncate them beyond a certain radius rc,R. The PAW method is formulated such that
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the final results do not depend on the location where the partial waves are truncated, as long
as this is not done too close to the nucleus and identical for auxiliary and all-electron partial
waves.
In order to be able to apply the transformation operator to an arbitrary auxiliary wavefunction,
we need to be able to expand the auxiliary wavefunction locally into the auxiliary partial waves

ψ̃(~r) =
∑
i∈R

φ̃i(~r)ci =
∑
i∈R

φ̃i(~r)〈p̃i|ψ̃〉 for |~r − ~RR| < rc,R , (58)

which defines the projector functions |p̃i〉. The projector functions probe the local character of
the auxiliary wave function in the atomic region, and examples are shown in Figure 7. From
Eq. 58 we can derive

∑
i∈R |φ̃i〉〈p̃i| = 1, which is valid within rc,R. It can be shown by insertion,

that the identity Eq. 58 holds for any auxiliary wavefunction |ψ̃〉 that can be expanded locally
into auxiliary partial waves |φ̃i〉, if

〈p̃i|φ̃j〉 = δi,j for i, j ∈ R . (59)

Note that neither the projector functions nor the partial waves need to be mutually orthogonal.
The projector functions are fully determined with the above conditions and a closure relation
that is related to the unscreening of the pseudopotentials (see Eq. 90 in [58]).

Fig. 7: Projector functions of the chlorine atom. Top: two s-type projector functions, middle:
p-type, bottom: d-type.

By combining Eq. 56 and Eq. 58, we can apply ŜR to any auxiliary wavefunction.

ŜR|ψ̃〉 =
∑
i∈R

ŜR|φ̃i〉〈p̃i|ψ̃〉 =
∑
i∈R

(
|φi〉 − |φ̃i〉

)
〈p̃i|ψ̃〉 . (60)

Hence, the transformation operator is

T̂ = 1̂ +
∑
i

(
|φi〉 − |φ̃i〉

)
〈p̃i| , (61)
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where the sum runs over all partial waves of all atoms. The true wave function can be expressed
as

|ψ〉 = |ψ̃〉+
∑
i

(
|φi〉 − |φ̃i〉

)
〈p̃i|ψ̃〉 = |ψ̃〉+

∑
R

(
|ψ1
R〉 − |ψ̃1

R〉
)

(62)

with

|ψ1
R〉 =

∑
i∈R

|φi〉〈p̃i|ψ̃〉 (63)

|ψ̃1
R〉 =

∑
i∈R

|φ̃i〉〈p̃i|ψ̃〉 . (64)

In Fig. 8 the decomposition of Eq. 62 is shown for the example of the bonding p-σ state of the
Cl2 molecule.

Fig. 8: Bonding p-σ orbital of the Cl2 molecule and its decomposition into auxiliary wavefunc-
tion and the two one-center expansions. Top-left: True and auxiliary wave function; top-right:
auxiliary wavefunction and its partial wave expansion; bottom-left: the two partial wave ex-
pansions; bottom-right: true wavefunction and its partial wave expansion.

To understand the expression Eq. 62 for the true wave function, let us concentrate on different
regions in space. (1) Far from the atoms, the partial waves are, according to Eq. 57, pairwise
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identical so that the auxiliary wavefunction is identical to the true wavefunction, that is ψ(~r) =

ψ̃(~r). (2) Close to an atom R, however, the auxiliary wavefunction is, according to Eq. 58,
identical to its one-center expansion, that is ψ̃(~r) = ψ̃1

R(~r). Hence the true wavefunction ψ(~r)

is identical to ψ1
R(~r), which is built up from partial waves that contain the proper nodal structure.

In practice, the partial wave expansions are truncated. Therefore, the identity of Eq. 58 does
not hold strictly. As a result, the plane waves also contribute to the true wavefunction inside
the atomic region. This has the advantage that the missing terms in a truncated partial wave
expansion are partly accounted for by plane waves. This explains the rapid convergence of the
partial wave expansions. This idea is related to the additive augmentation of the LAPW method
of Soler [65].
Frequently, the question comes up, whether the transformation Eq. 61 of the auxiliary wavefunc-
tions indeed provides the true wavefunction. The transformation should be considered merely
as a change of representation analogous to a coordinate transform. If the total energy functional
is transformed consistently, its minimum will yield auxiliary wavefunctions that produce the
correct wave functions |ψ〉.

Expectation values

Expectation values can be obtained either from the reconstructed true wavefunctions or directly
from the auxiliary wave functions

〈Â〉 =
∑
n

fn〈ψn|Â|ψn〉+
Nc∑
n=1

〈φcn|Â|φcn〉

=
∑
n

fn〈ψ̃n|T̂ †ÂT̂ |ψ̃n〉+
Nc∑
n=1

〈φcn|Â|φcn〉 , (65)

where fn are the occupations of the valence states and Nc is the number of core states. The first
sum runs over the valence states, and second over the core states |φcn〉.
Now we can decompose the matrix element for a wavefunction ψ into its individual contribu-
tions according to Eq. 62.

〈ψ|Â|ψ〉 = 〈ψ̃ +
∑
R

(ψ1
R − ψ̃1

R)|Â|ψ̃ +
∑
R′

(ψ1
R′ − ψ̃1

R′)〉

= 〈ψ̃|Â|ψ̃〉+
∑
R

(
〈ψ1

R|Â|ψ1
R〉 − 〈ψ̃1

R|Â|ψ̃1
R〉
)

︸ ︷︷ ︸
part 1

+
∑
R

(
〈ψ1

R − ψ̃1
R|Â|ψ̃ − ψ̃1

R〉+ 〈ψ̃ − ψ̃1
R|Â|ψ1

R − ψ̃1
R〉
)

︸ ︷︷ ︸
part 2

+
∑
R 6=R′

〈ψ1
R − ψ̃1

R|Â|ψ1
R′ − ψ̃1

R′〉︸ ︷︷ ︸
part 3

(66)
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Only the first part of Eq. 66 is evaluated explicitly, while the second and third parts of Eq. 66
are neglected, because they vanish for sufficiently local operators as long as the partial wave
expansion is converged: The function ψ1

R − ψ̃1
R vanishes per construction beyond its augmen-

tation region, because the partial waves are pairwise identical beyond that region. The function
ψ̃− ψ̃1

R vanishes inside its augmentation region if the partial wave expansion is sufficiently con-
verged. In no region of space are both functions ψ1

R − ψ̃1
R and ψ̃− ψ̃1

R simultaneously nonzero.
Similarly the functions ψ1

R − ψ̃1
R from different sites are never non-zero in the same region in

space. Hence, the second and third parts of Eq. 66 vanish for operators such as the kinetic en-
ergy −~

2

2me
~∇2 and the real space projection operator |r〉〈r|, which produces the electron density.

For truly nonlocal operators the parts 2 and 3 of Eq. 66 would have to be considered explicitly.
The expression, Eq. 65, for the expectation value can therefore be written with the help of Eq. 66
as

〈Â〉 =
∑
n

fn

(
〈ψ̃n|Â|ψ̃n〉+ 〈ψ1

n|Â|ψ1
n〉 − 〈ψ̃1

n|Â|ψ̃1
n〉
)

+
Nc∑
n=1

〈φcn|Â|φcn〉

=
∑
n

fn〈ψ̃n|Â|ψ̃n〉+
Nc∑
n=1

〈φ̃cn|Â|φ̃cn〉

+
∑
R

(∑
i,j∈R

Di,j〈φj|Â|φi〉+

Nc,R∑
n∈R

〈φcn|Â|φcn〉
)

−
∑
R

(∑
i,j∈R

Di,j〈φ̃j|Â|φ̃i〉+

Nc,R∑
n∈R

〈φ̃cn|Â|φ̃cn〉
)
, (67)

where D is the one-center density matrix defined as

Di,j =
∑
n

fn〈ψ̃n|p̃j〉〈p̃i|ψ̃n〉 =
∑
n

〈p̃i|ψ̃n〉fn〈ψ̃n|p̃j〉 . (68)

The auxiliary core states, |φ̃cn〉 allow us to incorporate the tails of the core wavefunction into
the plane-wave part, and therefore assure that the integrations of partial wave contributions
cancel exactly beyond rc. They are identical to the true core states in the tails, but are a smooth
continuation inside the atomic sphere. It is not required that the auxiliary wave functions are
normalized.
Following this scheme, the electron density is given by

n(~r) = ñ(~r) +
∑
R

(
n1
R(~r)− ñ1

R(~r)
)

(69)

ñ(~r) =
∑
n

fnψ̃
∗
n(~r)ψ̃n(~r) + ñc(~r)

n1
R(~r) =

∑
i,j∈R

Di,jφ
∗
j(~r)φi(~r) + nc,R(~r)

ñ1
R(~r) =

∑
i,j∈R

Di,jφ̃
∗
j(~r)φ̃i(~r) + ñc,R(~r) , (70)
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where nc,R is the core density of the corresponding atom and ñc,R is the auxiliary core density,
which is identical to nc,R outside the atomic region, but smooth inside.

Before we continue, let us discuss a special point: The matrix elements of a general operator
with the auxiliary wavefunctions may be slowly converging with the plane-wave expansion,
because the operator Âmay not be well behaved. An example of such an operator is the singular
electrostatic potential of a nucleus. This problem can be alleviated by adding an “intelligent
zero”: If an operator B̂ is purely localized within an atomic region, we can use the identity
between the auxiliary wavefunction and its own partial wave expansion

0 = 〈ψ̃n|B̂|ψ̃n〉 − 〈ψ̃1
n|B̂|ψ̃1

n〉 . (71)

Now we choose an operator B̂ so that it cancels the problematic behavior of the operator Â,
but is localized in a single atomic region. By adding B̂ to the plane-wave part and the matrix
elements with its one-center expansions, the plane-wave convergence can be improved without
affecting the converged result. A term of this type, namely ˆ̄v will be introduced in the next
section to cancel the Coulomb singularity of the potential at the nucleus.

Total energy

As with wavefunctions and expectation values, the total energy can be divided into three parts.

E
[
{|ψ̃n〉}, {RR}

]
= Ẽ +

∑
R

(
E1
R − Ẽ1

R

)
(72)

The plane-wave part Ẽ involves only smooth functions and is evaluated on equi-spaced grids
in real and reciprocal space. This part is computationally most demanding, and is similar to the
expressions in the pseudopotential approach.

Ẽ =
∑
n

〈ψ̃n|
~̂p 2

2me

|ψ̃n〉+
1

2

∫
d3r

∫
d3r′

e2
(
ñ(~r) + Z̃(~r)

)(
ñ(~r′) + Z̃(~r′)

)
4πε0|~r − ~r′|

+

∫
d3r v̄(~r)ñ(~r) + Exc[ñ] (73)

Z̃(r) is an angular-momentum dependent core-like density that will be described in detail below.
The remaining parts can be evaluated on radial grids in a spherical-harmonics expansion. The
nodal structure of the wavefunctions can be properly described on a logarithmic radial grid that
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becomes very fine near the nucleus,

E1
R =

∑
i,j∈R

Di,j〈φj|
~̂p 2

2me

|φi〉+

Nc,R∑
n∈R

〈φcn|
~̂p 2

2me

|φcn〉

+
1

2

∫
d3r

∫
d3r′

e2
(
n1(~r) + Z(~r)

)(
n1(~r′) + Z(~r′)

)
|~r − ~r′|

+ Exc[n
1] (74)

Ẽ1
R =

∑
i,j∈R

Di,j〈φ̃j|
~̂p 2

2me

|φ̃i〉+
1

2

∫
d3r

∫
d3r′

e2
(
ñ1(~r) + Z̃(~r)

)(
ñ1(~r′) + Z̃(~r′)

)
4πε0|~r − ~r′|

+

∫
d3r v̄(~r)ñ1(~r) + Exc[ñ

1] . (75)

The compensation charge density Z̃(~r) =
∑

R Z̃R(~r) is given as a sum of angular momentum
dependent Gauss functions, which have an analytical plane-wave expansion. A similar term
occurs also in the pseudopotential approach. In contrast to the norm-conserving pseudopotential
approach, however, the compensation charge of an atom Z̃R is non-spherical and constantly
adapts instantaneously to the environment. It is constructed such that

n1
R(~r) + ZR(~r)− ñ1

R(~r)− Z̃R(~r) (76)

has vanishing electrostatic multipole moments for each atomic site. With this choice, the elec-
trostatic potentials of the augmentation densities vanish outside their spheres. This is the reason
why there is no electrostatic interaction of the one-center parts between different sites.
The compensation charge density as given here is still localized within the atomic regions. A
technique similar to an Ewald summation, however, allows it to be replaced by a very extended
charge density. Thus we can achieve that the plane-wave convergence of the total energy is not
affected by the auxiliary density.
The potential v̄ =

∑
R v̄R, which occurs in Eqs. 73 and 75 enters the total energy in the form of

“intelligent zeros” described in Eq. 71

0 =
∑
n

fn

(
〈ψ̃n|v̄R|ψ̃n〉 − 〈ψ̃1

n|v̄R|ψ̃1
n〉
)

=
∑
n

fn〈ψ̃n|v̄R|ψ̃n〉 −
∑
i,j∈R

Di,j〈φ̃i|v̄R|φ̃j〉 . (77)

The main reason for introducing this potential is to cancel the Coulomb singularity of the poten-
tial in the plane-wave part. The potential v̄ allows us to influence the plane-wave convergence
beneficially, without changing the converged result. v̄ must be localized within the augmenta-
tion region, where Eq. 58 holds.

Approximations

Once the total energy functional provided in the previous section has been defined, everything
else follows: Forces are partial derivatives with respect to atomic positions. The potential is the
derivative of the non-kinetic energy contributions to the total energy with respect to the density,
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and the auxiliary Hamiltonian follows from derivatives H̃|ψ̃n〉 with respect to auxiliary wave
functions. The fictitious Lagrangian approach of Car and Parrinello [98] does not allow any
freedom in the way these derivatives are obtained. Anything else than analytic derivatives will
violate energy conservation in a dynamical simulation. Since the expressions are straightfor-
ward, even though rather involved, we will not discuss them here.
All approximations are incorporated already in the total energy functional of the PAW method.
What are those approximations?

• Firstly we use the frozen-core approximation. In principle this approximation can be
overcome.

• The plane-wave expansion for the auxiliary wavefunctions must be complete. The plane-
wave expansion is controlled easily by increasing the plane-wave cutoff defined asEPW =
1
2
~2G2

max. Typically we use a plane-wave cutoff of 30 Ry.

• The partial wave expansions must be converged. Typically we use one or two partial
waves per angular momentum (`,m) and site. It should be noted that the partial wave
expansion is not variational, because it changes the total energy functional and not the
basis set for the auxiliary wavefunctions.

We do not discuss here numerical approximations such as the choice of the radial grid, since
those are easily controlled.

Relation to pseudopotentials

We mentioned earlier that the pseudopotential approach can be derived as a well defined approx-
imation from the PAW method: The augmentation part of the total energy ∆E = E1 − Ẽ1 for
one atom is a functional of the one-center density matrix D defined in Eq. 68. The pseudopo-
tential approach can be recovered if we truncate a Taylor expansion of ∆E about the atomic
density matrix after the linear term. The term linear in D is the energy related to the nonlocal
pseudopotential.

∆E(D) = ∆E(Dat) +
∑
i,j

∂∆E

∂Di,j

∣∣∣∣
Dat

(Di,j −Dat
i,j) +O(D−Dat)2

= Eself +
∑
n

fn〈ψ̃n|v̂ps|ψ̃n〉 −
∫
d3r v̄(~r)ñ(~r) +O(D−D)2 , (78)

which can directly be compared with the total energy expression Eq. 49 of the pseudopotential
method. The local potential v̄(~r) of the pseudopotential approach is identical to the correspond-
ing potential of the projector augmented-wave method. The remaining contributions in the PAW
total energy, namely Ẽ, differ from the corresponding terms in Eq. 49 only in two features: our
auxiliary density also contains an auxiliary core density, reflecting the nonlinear core correc-
tion of the pseudopotential approach, and the compensation density Z̃(~r) is non-spherical and
depends on the wave function. Thus we can look at the PAW method also as a pseudopotential
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method with a pseudopotential that adapts instantaneously to the electronic environment. In the
PAW method, the explicit nonlinear dependence of the total energy on the one-center density
matrix is properly taken into account.
What are the main advantages of the PAW method compared with the pseudopotential ap-
proach? Firstly all errors can be systematically controlled, so that there are no transferability
errors. As shown by Watson [99] and Kresse [100], most pseudopotentials fail for high spin
atoms such as Cr. While it is probably true that pseudopotentials can be constructed that cope
even with this situation, a failure can not be known beforehand, so that some empiricism re-
mains in practice: A pseudopotential constructed from an isolated atom is not guaranteed to be
accurate for a molecule. In contrast, the converged results of the PAW method do not depend on
a reference system such as an isolated atom, because PAW uses the full density and potential.
Like other all-electron methods, the PAW method provides access to the full charge and spin
density, which is relevant, for example, for hyperfine parameters. Hyperfine parameters are
sensitive probes of the electron density near the nucleus. In many situations they are the only
information available that allows us to deduce atomic structure and chemical environment of an
atom from experiment.
The plane-wave convergence is more rapid than in norm-conserving pseudopotentials and should
in principle be equivalent to that of ultra-soft pseudopotentials [88]. Compared to the ultra-soft
pseudopotentials, however, the PAW method has the advantage that the total energy expression
is less complex and can therefore be expected to be more efficient.
The construction of pseudopotentials requires us to determine a number of parameters. As they
influence the results, their choice is critical. Also the PAW methods provides some flexibility
in the choice of auxiliary partial waves. However, this choice does not influence the converged
results.

Recent developments

Since the first implementation of the PAW method in the CP-PAW code [58], a number of
groups have adopted the PAW method. The second implementation was done by the group of
Holzwarth [101], and the resulting PWPAW code is freely available [102]. This code is also
used as a basis for the PAW implementation in the ABINIT project [104]. An independent
PAW code has been developed by Valiev and Weare [103]. This implementation has entereed
the NWChem code [107]. An independent implementation of the PAW method is that of the
VASP code [100]. The PAW method has also been implemented by W. Kromen [106] into the
EStCoMPP code of Blügel and Schroeder. Another implementation is in the Quantum Espresso
code [105]. A real-space-grid based version of the PAW method is the code GPAW developed
by Mortensen et al. [108].
Another branch of methods uses the reconstruction of the PAW method, without taking into
account the full wavefunctions in the energy minimization. Following chemists’ notation, this
approach could be termed “post-pseudopotential PAW”. This development began with the eval-
uation for hyperfine parameters from a pseudopotential calculation using the PAW reconstruc-
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tion operator [109] and is now used in the pseudopotential approach to calculate properties that
require the correct wavefunctions such as hyperfine parameters.

The implementation of the PAW method by Kresse and Joubert [100] has been particularly use-
ful as they had an implementation of PAW in the same code as the ultra-soft pseudopotentials,
so that they could critically compare the two approaches. Their conclusion is that both methods
compare well in most cases, but they found that magnetic energies are seriously – by a factor
two – in error in the pseudopotential approach, while the results of the PAW method were in
line with other all-electron calculations using the linear augmented plane-wave method. As an
aside, Kresse and Joubert claim incorrectly that their implementation is superior as it includes
a term that is analogous to the non-linear core correction of pseudopotentials [110]: this term,
however, is already included in the original version in the form of the pseudized core density.

Several extensions of the PAW have been done in the recent years: For applications in chemistry
truly isolated systems are often of great interest. As any plane-wave based method introduces
periodic images, the electrostatic interaction between these images can cause serious errors.
The problem has been solved by mapping the charge density onto a point charge model, so that
the electrostatic interaction could be subtracted out in a self-consistent manner [111]. In order
to include the influence of the environment, the latter was simulated by simpler force fields
using the quantum-mechanics–molecular-mechanics (QM-MM) approach [112].

In order to overcome the limitations of the density functional theory several extensions have
been performed. Bengone [113] implemented the LDA+U approach into our CP-PAW code.
Soon after this, Arnaud [114] accomplished the implementation of the GW approximation into
our CP-PAW code. The VASP-version of PAW [115] and our CP-PAW code have now been
extended to include a non-collinear description of the magnetic moments. In a non-collinear
description, the Schrödinger equation is replaced by the Pauli equation with two-component
spinor wavefunctions.

The PAW method has proven useful to evaluate electric field gradients [116] and magnetic hy-
perfine parameters with high accuracy [117]. Invaluable will be the prediction of NMR chemi-
cal shifts using the GIPAW method of Pickard and Mauri [118], which is based on their earlier
work [119]. While the GIPAW is implemented in a post-pseudopotential manner, the exten-
sion to a self-consistent PAW calculation should be straightforward. An post-pseudopotential
approach has also been used to evaluate core level spectra [120] and momentum matrix ele-
ments [121].
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Appendices

A Model exchange-correlation energy

We consider a model with a constant density and a hole function that describes a situation where
all electrons of the same spin are repelled completely from a sphere centered at the reference
electron
The hole function has the form

h(~r, ~r0) =

−1
2
n(~r0) for |~r − ~r0| < rh

0 otherwise

where n(~r) is the electron density and the hole radius rh = 3

√
2

4πn
is the radius of the sphere,

which is determined such that the exchange correlation hole integrates to −1, i.e. 4π
3
r3
h

(
1
2
n
)

=

1.
The potential of a homogeneously charged sphere with radius rh and one positive charge is

v(r) =
e2

4πε0

− 3
2rh

+ 1
2rh

(
r
rh

)2

for r ≤ rh

−1
r

for r > rh

where r = |~r − ~r0|.
With Eq. 12 we obtain for the potential contribution of the exchange correlation energy

Uxc = −
∫
d3r n(~r)v(r = 0) = −

∫
d3r

e2

4πε0

3

4
3

√
2π

3
· n

4
3

B Large-gradient limit of the enhancement factor

An exponentially decaying density

n(r) = exp(−λr) (79)

has a reduced gradient

x :=
|~∇n|
n

4
3

= λ exp(+
1

3
λr) (80)

We make the following ansatz for the exchange correlation energy per electron

εxc(n, x) = −Cn
1
3F (x) (81)

where only the local exchange has been used and C is a constant.
Enforcing the long-distance limit of the exchange correlation energy per electron for exponen-
tially decaying densities

εxc((n(r), x(r)) = −1

2

e2

4πε0r
(82)
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yields

F (x) =
e2

4πε0r(x)2Cn
1
3 (r(x))

(83)

Using Eqs. 79 and 80, we express the radius and the density by the reduced gradient, i.e.

r(x) = −3

λ

(
ln[λ]− ln[x]

)
(84)

n(x) = n(r(x)) = λ3x−3 , (85)

and obtain

F (x) =
e2

4πε0

[
− 3
λ

(
ln[λ]− ln[x]

)][
2Cλx−1

] =
( e2

4πε0 · 6C
) x2

x ln(λ)− x ln(x)

x→∞→ −
(

e2

4πε0 · 6C

)
x2

x ln(x)
(86)

Now we need to ensure that F (0) = 1, so that the gradient correction vanishes for the homo-
geneous electron gas, and that F (x) = F (−x) to enforce spin reversal symmetry. There are
several possible interpolations for these requirements, but the simplest is

F (x) = 1− βx2

1 + 4πε0
e2
· 6Cβx · asinh(x)

(87)

This is the enhancement factor for exchange used by Becke in his B88 functional [24].
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[96] P.E. Blöchl, M. Parrinello, Phys. Rev. B 45, 9413 (1992)
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3.2 Frank Lechermann

1 Motivation

The problem of interacting electrons in realistic systems is a difficult one. Although conven-

tional Bloch band theory with its roots dating back to the 1920s (see Ref. [1] for a historical

review) is very successful in describing many so-called weakly correlated materials, the in-

tricate phenomenology of electronic systems that display signatures of strong correlations are

basically outside that scope. First-principles or ab-initio approaches to tackle such systems

on a smiliar level of sophistication as their weakly correlated neighbors is highly non-trivial

and the central topic of this school. In this context, model Hamiltonians play an essential role

by, loosely speaking, bridging the gap between the possible to the (nearly) impossible. Their

justification can in principle be categorized more concretely by

(i) the tremendous complexity of materials systems on a microscopic level because of the

large numbers of various degrees of freedom in often low-symmetry environments that

asks for simplifications to discuss the dominant physics of interest.

(ii) the condensation of different robust physical mechanisms in simplified mathematical

terms in order to look for new physical processes via their facinating mutual interplay.

Both theoretical perspectives allow for a predictive character in the use of models, yet the first

one is somewhat more directly associated with given materials problems. Therefore we want

to concentrate thereon, namely on model Hamiltonians geared to simulate the key physics of

notoriously complicated complete Hamiltonians of large-scale interacting systems. Note that a

model approach not always has to cover only low-energy scales, but that often also high-energy

excitations are of vital interest. In addition, here we are aiming at the full quantum nature of the

problem and leave possible classical approximations (e.g., Ising model in zero field [2], etc.),

though often also interesting, aside.

Lets indeed start from the complete Hamiltonian H of a condensed matter system with Ne

electrons and NK nuclei on a lattice with position vectors Rα. In first quantization the problem

reads

H = −
NK
∑

α

~
2∆α

2Mα

+
1

2

∑

αα′

α6=α′

ZαZα′e2

|Rα −Rα′ |
︸ ︷︷ ︸

=:TK+VKK=:HK

−
∑

αµ

Zαe
2

|Rα − rµ|
︸ ︷︷ ︸

=:VKe

−
Ne
∑

µ

~
2∆µ

2m
+

1

2

∑

µµ′

µ6=µ′

e2

|rµ − rµ′ |

︸ ︷︷ ︸

=:Te+Vee=:He

,

(1)

composed of a pure part HK for the nuclei, a pure electronic part He as well as the coupling VKe

thereof. The Born-Oppenheimer approximation (BOA) [3] allows a decoupling of the problem

for the nuclei from the electrons, ending up with an electronic Hamiltonian of the form

He = He({R}) := He + VKe , (2)

where the set {R} of lattice points is a mere fixed parameter set for the given electronic problem.

The periodic lattice potential VKe is then often denoted as external potential vext, to highlight
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the electronic-system character. The remaining lattice part of H eventually leads to phonon

excitations and their interactions, which we will not cover in this overview. Only in section 3.3

a brief discussion of modelized electron-phonon coupling, i.e., physics beyond the BOA, will

mildy touch this matter.

The sobering news is that after the decoupling from the lattice degrees of freedom the solid-state

problem of interacting electrons within an external potential is still much too complicated. In

band theory it is assumed that He may be written as a sum of effective single-particle terms, i.e.,

the electron-electron interaction Vee as a two-particle operator is transformed into a one-particle

form. Although for ground-state properties such an exact transformation in principle exists (see

the chapter on density functional theory), so far, however, any practical approximation leads to

severe failures for correlated solid-state systems. Not only is the exact analytical treatment of the

true He impossible, also tough numerical methods surrender to the explosion of the associated

Hilbert space in this technically very demanding potential landscape of a realistic solid. Unlike

in quantum chemistry, where these numerical techniques for atoms and smaller molecules are

often still feasible (however nowadays also with a huge amount of labor, see e.g. [4] for an

introduction), condensed matter theory is in need of model approaches.

Thus in the following sections we will deal with ways of simplifying He in order to squeeze

some interesting physics out of it. While sections 2 and 3 cope with the definition of the Hub-

bard model and its friends, sections 4 and 5 deal with first simple and not so simple tools for the

actual solutions. In fact, albeit we just emphasized the complexity of realistic systems, solving,

once derived, model Hamiltonians is very far from being easy and a whole community in the-

oretical condensed matter physics is devoted to this. In the end it is mainly about changing an

almost utopian problem into a less utopian one.

2 Introduction to the single-band Hubbard model

Since there is a whole zoo of model Hamiltonians available, we have to limit the discussion to

a certain subset. As our main interest in this school is in problems where the interplay between

kinetic energy gain and cost of Coulomb interaction is central, it is meaningful to circle the

discussion around the Hubbard model. Excellent accounts of pure spin models can be found

elsewhere (see e.g. the books [5–7]).

2.1 Competition between itinerancy and localization

Before presenting a heuristic derivation of the basic Hubbard model its useful to provide an

intuitive view on the main driving forces that govern interacting electron systems in a solid.

When placing atoms in regular periodic arrays, the first obvious deviation to atomic physics

is due to symmetry, namely the splitting of states because of the emerging crystal field . The

latter competes usually with the exchange splittings responsible for Hund’s rules as well as with

the spin-orbit interaction. In the following we assume the general understanding that for spd

systems intermediate crystal-field strengths apply. Thus Hund’s first and second rule are vital
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and the still smaller crystal field dominates over the spin-orbit interaction.

Because of the Heisenberg uncertainty principle the electrons are in favor of minimizing their

kinetic energy through dislocation, i.e., hopping processes between different atoms are prefer-

able, leading eventually to crystal bonding. However as in atomic physics, whenever electrons

come close the Coulomb energy raises due to the mutual interaction. Hence the overall move-

ments within the electronic system are quite intricate and usually highly correlated. But there

are two limits when everything becomes much simpler. If the effective Coulomb interaction

in the system is very well screened, in a simple picture one may assume that the electrons are

rather free to optimize their kinetic energy irrespective of the restrictions imposed by interac-

tion. Note that one truly has to invoke the quasiparticle concept of Landau Fermi-liquid theory

(see e.g. [8]) to fully justify such a view, since the screening is itself mediated by the electronic

system. An even simpler limit is provided by the absence of sufficient screening processes in a

commensurable filling scenario. The latter means an integer ratio between the number of elec-

trons Ne and the number of lattice sites Nl. Then the electrons’ tendency to leave their lattice

site and hop around the lattice is approaching zero and an insulating state of matter results. This

electron localization in real space, termed Mott insulator, is quite different from the commonly

known band-insulating state. In a band insulator the absence of electrical conductivity is based

on the complete filling of a band of effective single-particle Bloch states and the existence of

an HOMO-LUMO gap. A Mott insulator is a quite different beast with a charge gap that is not

governed by (renormalized) hybridization effects but which originates from the (renormalized)

Coulomb interaction between the electrons.

In summary, we expect the competition between the itinerant and the localized character of

the electrons as the vital ingredients to get a hold on the key physics of many correlated elec-

tron systems. In the following the concentration will be therefore on the simplified coherent

modeling of this rivalry in mathematical terms, leaving other more specific mechanisms aside.

The very basic model Hamiltonian that is tailored to serve this goal is the so-called single-band

Hubbard Hamiltonian.

2.2 Heuristic derivation

Instead of approximating He of eq. (2) as a sum of single-particle terms, another viewpoint

is taken now. The aim is to keep the explicit many-particle structure of the full Hamiltonian,

but to chop off those terms that are not vital for the basic modeling we outlined in the last

subsection. Since best suited for many-body systems, we therefore start by writingHe in second

quantization1 as

He = −
∑

αβabσ

tLaLb

RαRβ
c†RαLaσ

cRβLbσ
+

1

2

∑

αβγδ

abcdσσ′

Vee({R, L}) c†RαLaσ
c†RβLbσ′cRδLdσ′cRγLcσ . (3)

Here the electron creation and annihilation operator c(†) is represented in a localized Wannier

basis ϕ(r) in real space, marked by lattice site R, orbital character L and spin projection σ.

1In the following hermiticity of the hopping term is assumed to be enforced.



Model Hamiltonians and Basic Techniques 3.5

While the first sum over single-particle terms carries the kinetic energy as well as the interaction

with the periodic lattice potential, the second sum describes the electron-electron Coulomb

interaction. Note that we do not allow for spin-dependent hopping processes, as here magnetic

effects should emerge from the interacting part. The respective matrix elements read

tLaLb

RαRβ
=

∫

drϕ∗
RαLa

(r)

{

~
2∆

2m
− vext(r)

}

ϕRβLb
(r) , (4)

Vee({R, L}) =

∫

drdr′ϕ∗
RαLaσ(r)ϕ

∗
RβLbσ′(r′)

e2

|r− r′| ϕRγLcσ′(r′)ϕRδLdσ
(r) . (5)

Everybody with a basic training in quantum mechanics immediately realizes that its impossi-

ble to work out the solution for such a problem with so many degrees of freedom. Whereas

the single-particle term is feasible, resulting in a simple form of band theory, the two-particle

part is the tough one. From a formal theoretical point of view, one proper method for sim-

plification would be to integrate out high energy degrees of freedom within the spirit of the

renormalization-group theory. However for general materials systems this proves unmanage-

able. Moreover, since we want to study metallic and gapped systems on an equal footing such

a recipe is inadequate at the present level. The natural way of dealing with it is by applying two

key observations:

(1) In order to get a very first understanding of competing itinerancy and localization, a full

multi-orbital structure is not necessary. Furthermore, one can limit the discussion to only

nearest-neighbor (NN) hopping of the electrons.

(2) The Coulomb interaction between two electrons is usually strongest if both come close in

the same localized Wannier orbital. With distance the interaction rapidly decays for many

systems also due to efficient screening processes of other interfering electrons.

We therefore take a rather radical approach and assume a model system with NN hoppings

between only one Wannier orbital per identical sites, e.g. a model lattice of hydrogen atoms,

and keeping solely the on-site Coulomb matrix element Vee(R,R,R,R)=:U . In what fol-

lows, to keep notations simple it is customary to label lattice sites with (i,j,. . .) and introduce

the particle-number operator n=c†c. With the given dramatic simplifications the complicated

Hamiltonian (3) may then be cast into

Hhub = −t
∑

〈ij〉σ

c†iσcjσ + ε0
∑

iσ

niσ + U
∑

i

ni↑ni↓ . (6)

This is the famous single-band Hubbard model, named after J. Hubbard due to its seminal

work2 [9]. It has only two explicit relevant parameters, namely the hopping amplitude t and the

on-site Coulomb interaction, the so-called Hubbard U . Note that the second term scaling by the

local single-particle level energy ε0 (stemming from tRαRα in eq. (3)) is not strictly mandatory.

2Note however that many authors independently came up with very similar Hamiltonians at around the same

time, including P. W. Anderson, M. C. Gutzwiller and J. Kanamori.
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Because it only amounts to a shift in energy, one could easily choose ε0=0 without changing the

model properties. The braces in the first sum denote it only runs over NN sites.

Its innocent appearance compared to the full form (3) should not mask the fact that solving the

Hubbard model is a very tough job. There is only an exact analytical solution in one dimen-

sion (1D) and a numerical exact approach for the infinite-dimensional case which is just the

dynamical mean-field theory (DMFT) this school is to a large part devoted to. Sadly enough,

the two- and three-dimensional cases, closest to many strong correlation problems in nature, are

the really hard nuts to crack. The difficulty arises from the difference of the summation parts.

While the first and second sum may easily be diagonalized in reciprocal space, the same easy

diagonalization can be performed for the third sum, however, on every lattice site in real space.

In other words, the first sums pose a standard band-theory problem, whereas the third sum may

be interpreted as a standard quantum-chemical one. Diagonalizing both parts simultaneously in

2D and 3D appears to be impossible.

Besides t and U there are other implicit “parameters” for the model, such as the lattice type

(e.g., square, triangular, fcc, etc.) and the filling n=Ne/Nl (not to be confused with the particle-

number operator). A very important setup in this respect is the so-called half-filled case, where

n=1, i.e., there is one electron per lattice site (and hence per orbital). In that integer filling

regime the system is in principle susceptible to a Mott-insulating state, whereas the rather trivial

integer fillings n=0,2 denote band insulators. Its important to realize that at any other filling no

insulating state is reachable for finite t in this model. Since then there will be always double

occupations of lattice sites coexisting with single occupations and thus the possibility to lower

the total energy via hopping processes.

There is a huge literature on the Hubbard model which in this small review we do not dare to

approach. Very detailed overviews can e.g. be found in the books of Fazekas [6] and Geb-

hard [10].

2.3 Some model limits and basic excitations

When trying to understand a given model it is always a good idea to first examine the limiting

regimes. Restricting the discussion to the interesting half-filled n=1 case, it is obvious that the

ratioU /t serves as a perfect marker. For a certain lattice type one would rather use the bandwidth

W∼t in the denominator, yet we try to keep things simple and do not choose a specific lattice.

In order to render the discussion a bit more quantitative, let us focus on computing the zero-

temperature spectral function Aσ(k, ω) given by the following expression3,4

Aσ(k, ω) =











A+
σ (k, ω) =

∑

m

|〈Ψ (Ne+1)
m |c†kσ|Ψ0〉|2 δ(ω − ωm0) for ω ≥ 0

A−
σ (k, ω) =

∑

m

|〈Ψ (Ne−1)
m |ckσ|Ψ0〉|2 δ(ω − ω0m) for ω < 0

, (7)

3This form is exact in the thermodynamic limit, where the energy differences upon particle addition and removal

are identical (see e.g. [11]).
4The convention ~=1 is used.
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|ψe〉 , 0

|ψσ〉 , ε0

|ψd〉 , 2ε0 + U

Fig. 1: Level diagram for a single

lattice site with one orbital.

with c
(†)
kσ now creating/annihilating electrons with wave vector k and spin projection σ. This

function provides information about the system’s energy distribution via summation over pro-

cesses after adding and removing an electron to the ground-state wave function |Ψ0〉. Thereby

the |Ψm〉 denote excited (Ne ± 1)-particle eigenstates with eigenenergies ωm0, ω0m with respect

to the ground state. Of course, these states are unbelievably complicated for generic U /t, how-

ever everything becomes rather simple for two limiting cases:

Fermi-gas limit U=0. The problem reduces to the simplest band-theoretical form since the

Hubbard model looses its interaction term. Hence k is a good quantum number and creat-

ing/annihilating electrons according to (7) already produces eigenstates of the system, the well-

known Bloch states. Since 〈Ψ(m0)|c(†)kσ|Ψ(m0)〉 equals one for the associated eigenstate and zero

otherwise, the k-integrated spectral function ρσ(ω) reduces to5

ρσ(ω) =
∑

k

Aσ(k, ω) =
∑

k

δ(ω − εk) , (8)

which is the familiar electronic density of states (DOS) from single-particle theory for the band

dispersion εk. So one recovers the good old band-theoretical result for a metallic state based

on a simple NN hopping. Because interactions among the electrons are completely absent, one

usually refers to this solution also as the Fermi gas. This means that in real space the local site

occupations, i.e., empty, single and double, are according to the statistics of a non-interacting

lattice gas.

Atomic limit t=0. This is just the opposite case, no hopping allowed and therefore insulating

by default. But now we are facing a truly interacting problem. Albeit a purely local one since

obviously the whole job is easily separable into a sum ofNl isolated atomic problems. There are

four states per site, which are summarized with their energetics in Fig. 1. For the computation

of ρσ(ω) one first needs to apply the Fourier-transformation rule
√
Nl c

†
kσ=

∑

R eik·Rc†Rσ (and

c.c. for ckσ) to eq. (7) and the problem can be examined for the two brances ω≶0 as

ρσ(ω) =















∑

R

〈nRσ̄〉|〈ψd|c†Rσ|ψσ̄〉|2 δ(ω − ωdσ̄) =
∑

R

〈nRσ̄〉 δ(ω − (ε0 + U))

∑

R

〈nRσ〉|〈ψe|cRσ|ψσ〉|2 δ(ω − ωeσ) =
∑

R

〈nRσ〉 δ(ω − ε0)
, (9)

since for n=1 the degenerate |ψσ,σ′〉 forms the local ground state. Thus there are only δ-Peak

excitations at ε0 and ε0+U as expected for an atomic problem. Contrary to the Fermi-gas limit

5Throughout the text the proper normalization of k- and R-sums to the number of k/R-points is assumed.
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Fig. 2: Schematic local spectral

function for the Fermi-gas limit

U=0 (left) and the atomic limit t=0

(right) of the Hubbard model at half

filling.

now only single occupied sites appear in the real space (n=1)-ground state, because double

occupations cost energy.

The local spectral function ρσ(ω) for the two limits is depicted in Fig. 2. Note again the very

different nature of excitations: whereas for U=0 there are ordinary Bloch excitations in k-space

forming a rather broad band, for t=0 the system shows local multiplet excitations in r-space.

Now what happens away from these limits ? A simplistic first guess would be to more or less

overlay the limiting spectra to mediate between them, whereby one has to take into account

that any finite t will broaden spectral peaks in energy. The pictures that emerge presumably

look like the ones shown in Fig. 3. Turning on U when starting in the Fermi gas has two main

effects. First it leads to band narrowing (or the Brinkman-Rice effect [12]), because hopping

processes are now somewhat supressed due to the cost of energy when there are necessarily

double occupations formed which are penalized by U . Secondly, multiplet excitations gradually

emerge at higher energies already in the metal, since spectral weight that is now missing in the

band-like excitations is transfered into the former. This spectral-weight transfer is a hallmark

signature of strongly correlated electron systems.

One refers to the renormalized band part at low energy, i.e., close to the Fermi level εF, as

quasiparticle excitations and to the smeared multiplet excitations at higher energies to Hubbard

excitations or Hubbard bands. At very large U /t the system finally undergoes a Mott-insulating

transition (MIT). The quasiparticles that remain close to εF until the Mott insulator sets in still

may be marked with wave vector k, but now have finite lifetime due to the fact that c
(†)
kσ do

not anymore create/annihilate eigenstates of the solid. In other words, Bloch’s theorem does

not hold on the interacting lattice. The broader Hubbard bands are doomed with even shorter

lifetime, since the incoherent multiplets do not propagate well on the lattice.

The limit U /t≫1 deserves indeed further discussion. It is important to realize that this case is

of course very different from the atomic limit of decoupled lattice sites. Therefore the Mott-

insulating state at half filling is still an unique state of condensed matter. In order to approach

this very strongly correlated limit for arbitrary filling theoretically, a systematic perturbative

U≪tρ

ω

U.tρ

ω

U&tρ

ω

U≫t
ρ

ω

Fig. 3: Local spectral function for the Hubbard model on a Bethe lattice with increasing U at

half filling n=1. The graphs were obtained within DMFT.
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expansion of the Hubbard model in t/U may be performed (for details see [5, 6, 10]). For

convenience setting ε0=0, this leads to the t-J model

Htj = P



−t
∑

〈ij〉σ

c†iσcjσ −
t2

U

∑

〈ijk〉

(

c†i↑c
†
j↓ − c†i↓c

†
j↑

)

(

cj↓ck↑ − cj↑ck↓
)



P . (10)

The projection operator P restricts the whole configuration space to only those configurations

with empty and single occupied sites. Some theorists believe that this model is a good starting

point to enter the physics of cupper-oxide high-temperature superconductors [13]. In the Mott

insulator at half filling only spin excitations appear at low-energy and this model further reduces

to the antiferromagnetic quantum Heisenberg model6

Hheis =
2t2

U

∑

〈ij〉

Si · Sj , (11)

with the spin operators defined as Sµ
i =1/2

∑

σσ′ c
†
iστ

µ
σσ′ciσ′ , where τµσσ′ are the elements of the

(µ=x, y, z) Pauli matrices. The coupling constant is also most often written via the superex-

change parameter J=4t2/U>0. So in the end the well-known Heisenberg model is contained in

the minimal Hubbard model. For a deeper discussion of the t-J and the Heisenberg model we

again refer to [4–6, 10]) and references therein.

3 Relatives and extensions of the Hubbard model

In the following sections we briefly want to discuss further Hamiltonians related to the Hubbard

model and also extensions of the latter. This is important because many materials problems

obviously just do not easily boil down to a simple Hubbard-model form. For instance already the

assumption of only NN hopping is rather restrictive and many system display more sophisticated

hopping paths. However it is easy to lift this restriction by taking more distant hoppings (e.g.,

obtained from a Slater-Koster parametrization [14]) into account and writing

Hhub = −
∑

ij,σ

tij c
†
iσcjσ + ε0

∑

iσ

niσ + U
∑

i

ni↑ni↓ . (12)

The allowance of more than one orbital per site needs some more thinking and will be discussed

in section 3.2. But before we want to have a look on a natural companion of the Hubbard

Hamiltonian that has also relevance for the DMFT construction.

3.1 Anderson Hamiltonian

Instead of considering an ensemble of fully correlated lattice sites, it is also very instructive to

investigate so-called impurity models. There only a few down to one correlated lattice site(s)

exist within a given host lattice that supports otherwise rather weakly correlated sites. Since we

6Constant energy shifts are neglected.
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are here mainly interested in the competition between localization and itinerancy, it is assumed

that the electrons stemming from the weakly correlated sites form a simple metallic state. Mo-

tivated by experiments on the local-moment behavior of correlated impurity atoms in metals

(such as e.g. Fe atoms in copper) and after preliminary theoretical work, P. W. Anderson set up

an interacting model Hamiltonian for the single-impurity problem [15], which reads

Hand =
∑

kσ

εk c
†
kσckσ + εd

∑

σ

ndσ + Und↑nd↓ +
∑

kσ

(

Vkd c
†
kσdσ + V ∗

kd d
†
σckσ

)

. (13)

This Anderson Hamiltonian has in principle similar components as the Hubbard Hamiltonian,

but note that there is now only one correlated impurity site with atomic level εd and Hubbard

interaction U , embedded in a Fermi sea of band electrons with dispersion εk. The important

ingredient is now of course the coupling or hybridization between these two parts, marked by the

matrix element Vkd. This model is usually suited to describe isolated rather well-localized d- or

f -levels within a metallic host. A more stringent introduction is e.g. provided in reference [16],

here we only try to sketch the main features of the Hamiltonian.

The atomic states of the isolated impurity are the same as the ones depicted in Fig. 1. Let us as-

sume again a local filling n=1 of the impurity ion. Upon hybridization with the conduction sea,

the impurity level broadens by ∆. When turning on U one again faces a competing situation:

for large U /∆ the single broadened level will split into two with energy separation U , giving

rise to a mean-field local moment m=nd↑−nd↓. The critical value Uc for this to happen can be

calculated in mean field as Uc=π∆. Hence the appearance of local moments for impurity atoms

in a host metal depends on the strength of the screened on-site impurity Coulomb interaction

as well as on the impurity-host hybridization. The latter may often be drawn already from the

DOS of the host system.

Beyond mean field, the Anderson Hamiltonian paves the road towards even deeper physics.

Namely, the splitting of the impurity level is such that a resoncance at the Fermi level remains

due to adiabaticity, in resemblance to what we have seen in the Hubbard model on the lattice in

Fig. 3. What we identified there as the quasiparticle excitation on the lattice is now called the

Kondo resonance and is a bit harder to grasp. The intuitive idea behind it is that when the local

moment forms at large U , at some point local charge fluctuations become only virtual and the

excitations that remain due to the impurity-host coupling are solely of spin nature. In that sense

the Kondo resonance is based on a highly correlated quantum-fluctuating many-body state. In

fact it can be shown that there is a well-defined theoretical formalism, the so-called Schrieffer-

Wolff transformation (see e.g. [16] for details), that allows to reduce the Anderson Hamiltonian

at very large U /∆ to the following spin-interacting form7

Hkondo =
∑

kσ

εk c
†
kσckσ + J shost · Sd , (14)

where shost denotes the spin density due to the conduction electrons at the impurity site. This

is the Kondo Hamiltonian named after J. Kondo due to its famous analysis of the relation be-

7The formal k dependence of J is here neglected.
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tween local-moment scattering and the resistivity minimum in such metallic impurity-host sys-

tems [17]. Note that the spin interaction is antiferromagnetic, i.e., J>0. Unfortunately there

is no space in the present scope to discuss the fascinating physics of the Kondo effect in more

detail and so we just refer to Coleman’s discussion [16] or even more extended surveys like e.g.

the book by Hewson [18].

3.2 Multi-band Hubbard Hamiltonians

Let us now come back to the problem of correlated sites building up a periodic lattice (in fact,

there are also Kondo lattices, but thats a bit a different story (see, e.g., [6])). There are only

a few cases of materials-specific problems where focussing the theoretical discussion on sole

single-band properties is then truly sufficient. For instance, many correlated materials studies

deal with the 3d-shell of transition-metal ions in a certain crystal-field evironment. There,

as already noted, one expects the splitting of the levels according to symmetry (see Fig. 4).

Though it is often legitimate then not to invoke the full five-orbital shell as correlated subspace,

but to focus on the three-orbital t2g or the two-orbital eg manifold. But reducing it to only one

effective orbital/band is often too much asked. Although the single band Hubbard model is

very important in condensed matter physics, in most cases the hybridizations among orbitals in

realistic solids are too strong to single out only one dominating band.

That being said, the extension of the single-band Hubbard model to the multi-band case is in or-

der. As discussed in the last section, the hopping part is not hard to generalize. One only needs

to enlargen the hopping matrix by further intra- and inter-orbital entries in the form of eq. (4).

On the other hand, the interacting part is not quite that trivial to modify, since it amounts to gen-

eralize the quantum-chemical problem to a multi-orbital one in a given crystal field. The first

thing to realize is that even when restricting to sole on-site interactions, according to eqs. (3,5)

more Coulomb integrals and associated interactions now come into play. Immediately the ques-

tion arises how to choose/compute the additional Coulomb parameters/functions in a certain

crystal field. Since a deeper discussion of this (especially when accounting for the various sym-

metry issues) is rather involved and because many issues are still current line of research, we

choose to discuss only briefly the model cases of eg, t2g and full p-, d- or f -shell within a cu-

3d

eg

t2g

eg

a1g a1g

eg′ eg1′

eg2′

eg1

eg2

atomic cubic hexagonal orthorhombic

Fig. 4: Splitting of the d-

states in different crystal

fields.
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Fig. 5: Local Coulomb interaction between two orbitals with enforcing Hund’s first rule.

bic crystal field. Some concrete results for the individual models will thereby be postponed to

section 5 where we discuss the slave-boson approach to the numerical solution.

Lets assume first a cubic crystal-field splitting such that the t2g states are significantly lower in

energy than the eg states (cf. Fig. 4). Moreover, a low-spin scenario shall hold, i.e., the lower-

lying t2g states first become filled according to Hund’s first rule and only after that the eg levels

start to accumulate electrons. Then the filling of eight electrons (e.g. Ni2+), because of the full

t2g subshell, poses in a good approximation the problem of two interacting electrons in the two

eg states. In a different case where the filling amounts to only four electrons (e.g. Ru4+), one

deals with a three-orbital problem composed of the t2g manifold. The appropriate interacting

lattice problem may be formulated in both cases as a generalized rotationally invariant multi-

band Hubbard Hamiltonian through [20–22]

Hcub =
∑

ij,mm′,σ

tmm′

ij c†imσcjm′σ + U
∑

im

nim↑nim↓ +
1

2

∑

i,m6=m′,σ

[U ′ nimσnim′σ̄ + U ′′ nimσnim′σ]

+
1

2

∑

m6=m′,σ

[

J c†imσc
†
im′σ̄cimσ̄cim′σ + JC c

†
imσc

†
imσ̄cim′σ̄cim′σ

]

. (15)

It is seen that the complexity has quite increased compared to the single-band form (6), mainly

due to the necessity of including the on-site exchange integral J . At this point its instructive to

compare the exact expression for U and J derived from the general form (5).

Umm′ =

∫

drdr′ϕ∗
Rmσ(r)ϕ

∗
Rm′σ′(r′)

e2

|r− r′| ϕRm′σ′(r′)ϕRmσ(r) , (16)

Jmm′ =

∫

drdr′ϕ∗
Rmσ(r)ϕ

∗
Rm′σ′(r′)

e2

|r− r′| ϕRmσ′(r′)ϕRm′σ(r) . (17)

Thus in principle these two Coulomb integrals are matrices that depend on the orbital indices

m,m′. In a model spirit it proves however sufficient for the present symmetry to perform an

orbital-independent parametrization, yet differentiating between intra- and inter-orbital terms.

The intra-orbital Coulomb interaction shall be given by U and the inter-orbital Coulomb inter-

actions by U ′=U−2J for different spin and U ′′=U−3J for identical spin. Obviously, therewith

Hund’s first rule is correctly incorporated (see Fig. 5). In eq. (15) the terms in U , U ′ and U ′′ are

density-density interactions, i.e., they can be written as products of particle-number operators.

The remaining two terms in the second line of eq. (15) may not be written in this form, but

are important to establish the full orbital rotational invariance of the Hamiltonian. These inter-

actions are related to spin-flip and pair-hopping processes as can be verified by inspection. In
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principle, the pair-hopping Coulomb integral JC may be different than the one for the spin-flip

term. However usually both interaction integrals are chosen to be equally identified with the

exchange integral J . Remember again that the form of the model Coulomb integrals in eq. (15)

is usually tailored to cubic symmetry. However in practice this structure for the multi-band

Hamiltonian is also successfully applied in lower-symmetry cases (e.g. [23]).

Note that the given multi-band Hamiltonian may for the three-orbital t2g problem also be written

in a different way (but mathematical equivalent form) as

Ht2g =
∑

ij,mm′,σ

tmm′

ij c†imσcjm′σ +
(U − 3J)

2
N(N − 1) +

5

2
JN − 2JS2 − 1

2
JL2 , (18)

with the total operators for particle number N , spin S and angular momentum L. This form is

furthermore most often used in the context of a correlated p shell.

In the case of a full d- or f -shell there are even more complicated terms appearing in the deriva-

tion of the atomic Hamiltonian. In order to again establish complete rotational invariance, one

best relies on the general form for local interactions

Hd =
∑

ij,mm′,σ

tmm′

ij c†imσcjm′σ +
1

2

∑

i,mm′m′′m′′′,σσ′

Umm′m′′m′′′ c†imσc
†
im′σ′cim′′′σ′cim′′σ . (19)

The interaction matrix element can then be evaluated through a multipole expansion into effec-

tive Slater integrals Fk via

Umm′m′′m′′′ = 〈mm′|V loc
ee |m′′′m′′〉 =

∑

k=0

ak(m,m
′, m′′, m′′′)Fk . (20)

In a spherical approximation, only a finite number of Slater-integral terms form the sum and

those are related to U and J . Then U=F0 always holds and the further relations for the different

(l>0)-shells are usually chosen as follows

l = 1 : J =
1

5
F2 ,

l = 2 : J =
1

14
(F2 + F4) , F4 = 0.625F2 , (21)

l = 3 : J =
1

6435
(286F2 + 195F4 + 250F6) , F4 = 0.668F2 , F6 = 0.494F2 .

Note that in current research there is nowadays the option to directly compute the necessary

screened Coulomb integrals for a certain material system from approximated first-principles

schemes, but this is beyond the scope of the present chapter.

Without going into the details of the multi-orbital models properties, lets just note that in the

fully degenerate case the simple Mott scenario still applies, i.e., at integer filling the multi-band

system can undergo a Mott transition. This means that e.g. for a three-band problem one may

have an MIT for n=1,2.
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3.3 More interactions

So far we only dealt with local Coulomb interactions in our model Hamiltonians, which may be

indeed sufficient in the context of this school and as a good starting point. However of course,

there are also limits to this kind of interaction, even when working in a multi-orbital scenario.

Since nature does not care so much about the taste and wellness of theoretical physicists, even-

tually there are materials problems that ask for more.

For instance, one may easily think of problems where inter-site Coulomb interactions are not

negligible anymore. In low-dimensional systems, especially quasi-1D compounds, the NN

Coulomb integral V is often relevant at specific fillings to drive e.g. charge-density-wave

(CDW) or spin-density-wave (SDW) instabilities [24]. The extended Hubbard Hamiltonians

that are used for such modelings look like

Hhubex = −t
∑

〈ij〉σ

c†iσcjσ + ε0
∑

iσ

niσ + U
∑

i

ni↑ni↓ +
∑

ijσσ′

Vijniσnjσ′ . (22)

Most often the density-density interaction associated with Vij is restricted to NN, but in principle

the treatment of long-range Coulomb terms is possible.

Another action, retrieved from the collection of all possible pair interactions (see e.g. [6]) that

may be relevant in some materials cases [25] is the so-called correlated hopping process with

the interaction integral X . The associated Hamiltonian term has the following basic structure

Hch =
∑

ijσ

Xij

(

c†iσcjσ + c†jσciσ

)

(niσ̄ + njσ̄) . (23)

Since the term within the first braces has the form of a bond-charge operator when summed

over σ, the Hamiltonian Hch may be interpreted as a bond-charge-site-charge repulsion [6].

Finally, the reserach area of model Hamiltonians also opens a route to go beyond the initial

Born-Oppenheimer approximation. Remember that the BOA was introduced to decouple elec-

tronic and lattice degrees of freedom. However in many materials (e.g. manganites [26]) the

electron-phonon coupling is significant and the BOA breaks down. Then there is the possi-

bility to formulate a simplified Fröhlich Hamiltonian in real space using further only Einstein

phonons, the so-called Holstein Hamiltonian [27]

Hhol = −t
∑

〈ij〉σ

c†iσcjσ − g
∑

iσ

niσ

(

b†i + bi

)

+ ω
∑

i

b†ibi , (24)

where b(†) are bosonic creation/annihilation operators for the phonons, ω the Einstein-mode

frequency and g the electron-phonon coupling strength.

There are many more model Hamiltonian approaches to specific microscopic processes. Note

that for instance spin-orbit coupling was always excluded in our considerations, though the

interplay of this phenomenon with Coulomb correlations is becoming a very active line of the-

oretical research (e.g. [19]). However this would here go beyond the scope of an elementary

introduction to the field. We therefore now end the first part of this chapter of introducing basic

model hamiltonians and turn to an, again brief, account of simpler theoretical methodolgies to

actually put us in position to compute some of the discussed models properties.
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4 Basic approaches to the single-band Hubbard model

In this first section of techniques to approach Hubbard-like models we deal with two traditional

methodologies. We first discuss the standard mean-field framework of Hartree-Fock in the

present model context. The second subsection introduces the simplest Green’s-function based

ansatz to the problem of locally interacting electrons, namely the so-called Hubbard-I approach.

There are numerous excellent reviews of these basic approaches, e.g. [4,6,10], and its somehow

a thankless task to add something to that in this short overview. Thus we will not challenge to

confuse the reader by trying something terribly fancy but instead provide the necessary infor-

mation in a nutshell along the lines of the already existing literature.

4.1 Hartree-Fock

When facing an interacting problem it is usually a very good idea to start with a mean-field

approach, since it is simple but, importantly, non-trivial. Albeit nowadays many rather so-

phisticated techniques are available, one should never forget about the power and successes of

mean-field (MF) theory.

Remember your quantum-mechanics class on many-particle wave functions in first quantiza-

tion. Back then the simplest idea was to assume the full wave function may be decoupled and

represented as a product of single-particle wave functions. After inserting in the Schrödinger

equation, in the end every individual particle is moving in the mean-field build up by the other

ones. Let us try to translate and apply this idea to the single-band Hubbard model in the form

H = −t
∑

〈ij〉σ

c†iσcjσ + U
∑

i

ni↑ni↓ . (25)

Instead of applying a decoupling on the states, it is in the present context more efficient to

decouple already on the operator level. Therefore we write the particle-number operator as

niσ = 〈niσ〉+ δniσ , (26)

which means that there is a bulk part of niσ, its expectation value and hence a c-number, that

accounts for the major observable physics. And a smaller part δniσ that carries the still essential

quantum-fluctuating nature around that. Neglecting the latter would be a bad idea, because this

would lead to rather trivial results. Better write the interaction kernel therewith now as

ni↑ni↓ = 〈ni↑〉〈ni↓〉+ 〈ni↓〉δni↑ + 〈ni↑〉δni↓ + δni↑δni↓ =: A(ni↑ni↓) + δni↑δni↓ . (27)

A similar analytical structure is obtained, i.e., the kernel separates into a, supposingly, bulky

part and a smaller product of the fluctuations. Now we peform the approximation and neglect

the correlation of fluctuations δni↑δni↓, which is at the heart of MF theory on the microscopic

level. By eliminating δniσ the Hubbard term hence reads

U
∑

i

ni↑ni↓ ≈ U
∑

i

A(ni↑ni↓) = U
∑

i

(ni↑〈ni↓〉+ ni↓〈ni↑〉 − 〈ni↑〉〈ni↓〉 ) . (28)
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So within this approximation the tough interaction part looks rather harmless, merely equal to

the particle-number operator with a site- and spin-dependent mean field. However before even

examining details of this MF approach, one easily sees that something dramatic has happened

to symmetry. The original spin rotational invariance of the Hubbard model is gone, since the

MF interacting part can be rewritten using only the z component of the spin operator, i.e.,

Sz
i =1/2(ni↑−ni↓). It is in fact a very important issue to understand that even if one uses the

(↑, ↓) spin-projection basis in Fock space for the operator representation, the Hubbard term is

still spin-rotational invariant. In some sense, our present MF approach shows the Hartree term

but lacks its Fock companion.

The problem is that in eq. (27) we have unconsciously made a particular choice for decoupling

the Hubbard term into a sum of simpler terms by singling out the particle-number operators.

But the Hubbard model is more clever than that. In fact based on Wick’s theorem a certain

composition of operators can always be decoupled by forming all possible creation-annihiliation

pairs. Thus here

ni↑ni↓ = c†i↑ci↑c
†
i↓ci↓ = − c†i↑c

†
i↓ci↑ci↓ → −〈c†i↑ci↓〉c

†
i↓ci↑ − 〈c†i↓ci↑〉c

†
i↑ci↓

+ 〈c†i↑ci↑〉c
†
i↓ci↓ + 〈c†i↓ci↓〉c

†
i↑ci↑ (29)

+ 〈c†i↑ci↓〉〈c
†
i↓ci↑〉 − 〈c†i↑ci↑〉〈c

†
i↓ci↓〉 .

We easily identify the bulky A part of eq. (27) in there, but there is obviously a similar part

stemming from the combinations c†i↓ci↑=:S+
i and c†i↓ci↑=:S−

i . However this is just what we

were looking for, as the spin-ladder operators should be capable to restore the spin-rotational

invariance. Indeed bringing the former Hartree and this new Fock part together, the Hartree-

Fock (HF) approximation to the Hubbard model can be cast into [6]

HHF
hub = −t

∑

〈ij〉σ

c†iσcjσ +
U

2

∑

i

{

ni〈ni〉 − 4Si〈Si〉 −
1

2
〈ni〉2 − 2〈Si〉2

}

, (30)

with ni=
∑

σ niσ. At a first glance the interaction part looks more complicated, but note that it

is only a single-particle term with a somewhat more sophisticated mean field. The approximate

dispersion εHF
kσ with interaction is readily computed from (30) by e.g. choosing êz as the quan-

tization axis, transforming to k-space and using the identity
∑

i niσ=
∑

k nkσ, which eventually

leads to

εHF
kσ :=

∂EHF
hub

∂〈nkσ〉
=
∂〈HHF

hub〉
∂〈nkσ〉

=











εk + U
(n

2
−m

)

for σ =↑

εk + U
(n

2
+m

)

for σ =↓
, (31)

with m=1/2(〈ni↑〉−〈ni↓〉). Thus Hartree-Fock reveals the expected exchange splitting between

spin-polarized bands in the ferromagnetic phase. Though HF is a weak-coupling approach

to the Coulomb-interacting problem8, due to the lack of screening it is ill-defined for metals

(see e.g. [11]). In fact in some sense it is suited for long-range ordered Mott insulators, when

8HF only accounts for the first-order terms in the proper many-body diagrammatic perturbation theory for the

interacting electron system (see e.g. [33]).
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Fig. 6: Normalized U-n Hartree-Fock

phase diagram of the 3D Hubbard model

on a simple cubic lattice taking param-

agnetic, ferromagnetic and antiferromag-

netic phases into account. Solid/Dashed

lines indicate continuous/first order

phase transitions. From [29].

the charge gap can be described in the HF appoximation via an U-driven exchange gap (cf.

eq. (31)). The so-called LDA+U method [28] makes explicit use of that in the context of first-

principles calculations.

Equipped with this approximation one can nonetheless then start to study the competition be-

tween different phases like CDW, SDW, etc. But it is important to realize that the HF approx-

imation may not account for explicit many-body effects such as e.g. band narrowing, finite

lifetimes, or even a clear notion of Hubbard bands in the spectral function.

A magnetic phase diagram with taking NN collinear orderings into accout is shown in Fig. 6.

Non-surprisingly increasing U seems to trigger magnetic order. As expected close to half filling

and larger U an antiferromagnetic phase is stabilized due to superexchange. However a closer

inspection shows that for U→∞ there will be competition also with the ferromagnetic phase.

This is condensed in the Nagaoka theorem [30], stating that on many lattices at U→∞ the state

with a single hole is indeed ferromagnetic. The whole issue of stabilizing ferromagnetic order

in the Hubbard model is in fact far from being trivial (see e.g. [31,6] for a discussion). Note that

since especially close to phase transitions the MF approximation of neglecting the correlation

of fluctuations can be dangerous, one should keep in mind that there may be various changes to

the HF phase diagram when using a more elaborate technique (as e.g. in [32]). Furthermore,

incommensurate magnetic phases not displayed in Fig. 6 also have to be considered.

At this point some readers may still show some scepticism about the uniqueness of the decou-

pling exhibited in eq. (29). For instance one knows from the solid-state physics lecture that

a metal may be unstable against pairing, i.e., forming a superconducting state. Obviously the

shown decoupling is not capable of supporting such a phase, yet there is no a priori reason why

the full Hubbard model should display the same insufficiency. And indeed, there are still more

ways of decoupling the inconspicuous Hubbard term, e.g. allowing also for a superconducting

amplitude (see [6]). Just think of the possibility of transforming the electron operators into
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other bases and then redoing the decoupling. It is in the end once more some kind of “magic”

of quantum mechanics that the simple-looking Hubbard model bears so much physics in it.

4.2 Hubbard I

At the introduction of the Hartree-Fock method we made reference to the derivation in the

wave-function picture. Besides directly manipulating the operator terms as in the last section,

one can also make direct use of other kind of representations in many-body physics, namely

many-particle Green’s functions9. The formal definition of the one-particle Green’s function is

given by

Gσ(Rα, t;Rα′, t′) = −i〈Ψ0|cRασ(t)c
†
Rα′σ(t

′)|Ψ0〉 , (32)

where the Heisenberg representation of the fermionic operators is important. The physical

picture behind it is in principle simple. This function takes notes of the life of a created electron

at spacetime (Rα′, t′) on top of the many-particle ground state |Ψ0〉 until its death at spacetime

(Rα, t), asking for the probability to end up in the very same |Ψ0〉. In a periodic solid its

of course useful to Fourier transform this function to (k, ω)-space by invoking translational

invariance and the explicit time independence of our Hamiltonian. The recorded information

can then be read out in spectral form via the Lehmann representation [34]

Gσ(k, ω) =
∑

m

|〈Ψ (Ne+1)
m |c†kσ|Ψ0〉|2

ω + µ− ωm0 + iη
+
∑

m

|〈Ψ (Ne−1)
m |ckσ|Ψ0〉|2

ω + µ− ω0m − iη
, (33)

where µ denotes the chemical potential. We can benefit from having introduced already the

spectral function Aσ(k, ω) in eq. (7) and write this in a more condensed form as an integral10

Gσ(k, ω) =

∫ ∞

−∞

dω′ Aσ(k, ω)

ω + µ− ω′ + sgn(ω′)i0+
. (34)

For instance, taking the Fermi-gas limit from section 2.3, one immediately obtains

GFG
σ (k, ω) =

∫ ∞

−∞

dω′ δ(ω′ − εk)

ω + µ− ω′ + sgn(ω′)i0+
=

1

ω + µ− εk + iηk
. (35)

with ηk=sgn(|k|−kF). The power of the one-particle Green’s function is build on the fact

that it has complete record of the one-particle correlations of the system and allows, e.g., also

to compute the expectation value of any single-particle operator, such as the total energy. In

general it can be compactly rewritten as

Gσ(k, ω) =
1

ω + µ− εk −Σσ(k, ω)
, (36)

where the self-energy Σσ(k, ω) carries all deviations from the Fermi-gas limit due to Coulomb

interactions11. Note that the self-energy is a true complex function and accounts therefore also

for lifetime effects (e.g. such as we pointed out in section 2.3).

9An excellent intoduction to this framework of theoretical many-body physics is e.g. given in [33].
10Note that going to an integral representation is only allowed in the large-Ne limit since it bears deeper physics

about the excitations (see appendix H of [33]).
11The Pauli principle is usually enforced by hand in the Fermi gas, but Σ includes also the Fock term.
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Lets try to compute also the Green’s function in the atomic limit of the Hubbard model. Since

the problem is separable we can limit the concentration on the local part of the Green’s function,

i.e., Giσ(ω)=
∑

kGσ(k, ω) and insert in (34) the result (9) to reveal

Giσ(ω) =

∫ 0

−∞

dω′ (1− 〈niσ̄〉) δ(ω′ − ε0)

ω + µ− ω′ − i0+
+

∫ ∞

0

dω′ 〈niσ̄〉 δ(ω′ − (ε0 + U))

ω + µ− ω′ + i0+

=
1− 〈niσ̄〉

ω + µ− ε0 − i0+
+

〈niσ̄〉
ω + µ− ε0 − U + i0+

. (37)

Thus the former δ-Peak excitations are easily identified as the poles of the atomic Green’s

function. In order to extract the corresponding self-energy we have to bring it in the form of

eq. (36). For simplicity we assume once again ε0=0 and aim at the analytic structure

Giσ(ω) =
1

ω + µ−Σatom
iσ (ω)

, (38)

since no k-dependence should emerge. One readily realizes that the following form for the

self-energy does the job:

Σatom
iσ (ω) = Uniσ̄ + U2 niσ̄(1− niσ̄)

ω + µ− U(1 − niσ̄)
. (39)

Albeit somewhat artificial, this representation opens the door to a first true many-body approx-

imation compared to the effective single-particle HF treatment in mean field discussed in the

last section. Because we can now make the radical assumption that the true self-energy of the

solid shall have the analytical form of the atomic self-energy (39). This defines the so-called

Hubbard-I (HI) approximation to the lattice Green’s function, introduced in Hubbard’s original

paper [9], written as

GHI
σ (k, ω) =

1

ω + µ− εk −Σatom
iσ (ω)

. (40)

As usual the poles of GHI
σ (k, ω) define the excitations. Inserting (39) in (40) and computing the

roots of the denominator yields

εHI
kσ =

1

2

{

εk + U ∨ ±
√

(εk + U)2 + 4U〈niσ̄〉
}

. (41)

There are two solutions for each spin projection since there is, as already discussed in sec-

tion 2.3, an upper and a lower Hubbard band. Hence whereas HF somehow approximates (with

severe deficiencies) around the Fermi-gas limit, Hubbard I approximates around the atomic

limit. Note that in HI the explicit Hubbard-band dispersion has k-dependent spectral weight

Aσ(k, ω), meaning that 〈Ψ(m0)|c(†)kσ|Ψ(m0)〉 now differs from one. This can be seen by bring-

ing GHI
σ (k, ω) in Lehmann form. But still, because the self-energy is a pure real object, no

finite-lifetime effects are addressed in HI.

There are several further pros and cons of the HI approximation, for details see e.g. [10]. It is

exact in the atomic limit as well as in the Fermi-gas limit (easily seen from eq. (41)), however it

does not match the HF solution for small U . Furthermore perhaps the most important drawback
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comes from the violation of particle-hole symmetry, which can be traced back to the use of one

self-energy structure for the two Hubbard bands. In the end it is perhaps more the spirit of the

approximation that renders the HI form rather relevant. On could think of a better approximate

form of the local Σiσ(ω) in order to improve the method. This thought was indeed succesful

and lead finally to the development of DMFT.

5 Slave-boson approach

In the last section of this brief introduction we aim to improve on the HF approximation by

studying the true quasiparticle excitations in the strongly correlated metallic regime. This shall

be done within a still simple but rather efficient technique with the politically incorrect naming

slave-boson method. That approach shares its roots with the so-called Gutzwiller approach and

both formalisms may in many cases be transformed into each other. However in the present

text we will restrict the discussion to the slave bosons and provide references to some common

and related initial work in this field [35–38]. More details on the nature of the performed

approximation to the correlated problem may be also found in the review by Vollhardt [39] and

references therein. Once again, the following presentation will be short and far from complete.

It should mainly give the reader a first taste of the method.

5.1 Infinite-U limit

The general idea behind the Gutzwiller and the slave-boson method is given by the fact that

electronic correlations impose certain constraints on the Hilbert space of available states of

the problem. For instance its quite clear that in the context of the Hubbard model, double

occupations on the lattice sites are severely surpressed at large U . Use of this was already made

when writing down the t-J Hamiltonian for the limit U /t≫1 in section 2.3, where we explicitly

projected onto (empty, single) occupied sites. However instead of “hard-coding” this effect in a

new Hamiltonian form for a certain limit, one can also implement this physics in a more flexible

way, giving rise to a new methodology for solving the actual Hubbard Hamiltonian.

In order to understand the basic principles of the approach it is instructive to first have look at

the dispersive part of the single-band Hubbard model at U→∞, which we can write as

H = −t
∑

〈ij〉σ

P c†iσcjσ P , (42)

whereby the projection P excludes the double occupied states |↑↓〉, leaving only the states

{|0〉, |σ〉} locally available (cf. Fig. 1). The question of course arises how to actually enforce

this projection over the whole lattice in the calculation. In principle one has to demand that
∑

σ niσ<2 on each site i. Recalling the standard lecture on Lagrange multipliers we however

know that a constraint is usually best imposed via an equality relation. This can be formally

achieved by introducing new auxiliary quantum degrees of freedom φ
(†)
i such that we can de-



Model Hamiltonians and Basic Techniques 3.21

compose the original operators via

c†iσ = f †
iσφi ∧ ciσ = fiσφ

†
i . (43)

Since the f
(†)
iσ operators are still carrying the fermionic character, quantum mechanics teaches

us that the φ
(†)
i have to be of bosonic kind. The new operators are defined by their action and

the corresponding particle-number-site statistics, i.e.,

φ†
i |vac〉 = |0i〉 ,

f †
iσ|vac〉 = |σi〉

|0i〉 : nb = 1 ∧ nfσ = 0 ,

|↑i〉 : nb = 0 ∧ nf↑ = 1 , (44)

|↓i〉 : nb = 0 ∧ nf↓ = 1 ,

where nf,b denote the respective site occupation numbers and |vac〉 marks the vaccum state.

Hence we now can truly formulate the necessary constraint on each lattice site i in the limit

U→∞ as
∑

σ

f †
iσfiσ + φ†

iφi = 1 =: Q (45)

and using the relations (43) we can directly choose to express the Hamiltonian form (42) in that

limit via

H = −t
∑

〈ij〉σ

φiφ
†
jf

†
iσfjσ . (46)

In a simple picturing the decomposition of the physical electron operator c
(†)
iσ amounts here

to a fragmentation into low-energy quasiparticle and high-energy Hubbard excitations on the

operator level. The original operator takes care of both, the itinerant and the localized character

of the electron, while f
(†)
iσ carries the sole quasiparticle part and the slave boson φ

(†)
i only the

high-energy remainings. Loosely speaking, the slave boson “releases” the electron from its

high-energy excitations, which gives the political incorrectness a mild spin. However in detail

things are truly a bit more complicated. As we have learned already in the HF subsection,

such decouplings in quantum mechanics are seldom unique. In fact there is a gauge symmetry

group associated with the redundancy of representing c
(†)
iσ via slave-boson techniques. The

former manifests itself in the conservation of the pseudo charge Q defined in the constraint

(45), thereby generating invariance under the group of local U(1) gauge transformations (see

e.g. [40, 13] and references therein for further details). This issue is interesting but drives us at

presence a bit away from our simple goal of getting first concrete results for the Hubbard model,

so lets get back to this.

Enforcing the constraint (45) on each lattice site individually is too tough, but in order to proceed

it is a good idea to perform a MF approximation by condensing the bosons and averaging the

constraint over all sites. We can then write

r := 〈φi〉 ,
∑

σ

〈nfσ〉+ |r|2 = 1 , Heff = −|r|2 t
∑

〈ij〉σ

f †
iσfjσ , (47)

with Heff as the effective Hamiltonian in this slave-boson mean-field (SBMF) theory. In a

functional-integral representation of the problem this approximation amounts to a saddle-point
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approximation and therefore resembles the MF concept. Note that since |r|2=1−〈nf 〉 it also

equals the doping δ away from half filling. Therewith one can define an effective hopping

teff=δt which provides readily the important Brinkman-Rice effect, namely that the quasiparti-

cles become heavy (i.e., show small hopping amplitude) at small doping δ.

The ground state for finite chemical potential can then be found from minimizing the grand

potential per lattice site

Ω = 〈Heff〉+ λ

(

∑

σ

〈nfσ〉+ |r|2 − 1

)

− µ
∑

σ

〈nfσ〉 (48)

with respect to the lagrange multiplier λ. In some sense the nature of the slave-boson technique

is first to enlarge the Hilbert space by introducing additional bosonic degrees of freedom, which

translates secondly in an enhancement of the variational freedom to select the actual physical

states.

The quasiparticle dispersion is finally obtained from (48) via

εSBMF
kσ :=

∂ESBMF

∂〈nf
kσ〉

= |r|2εkσ + λ (49)

and the Green’s function of the non-interacting fermionic quasiparticles hence reads

Gf(k, ω) =
1

ω + µ− εSBMF
kσ

=
1

ω + µ− |r|2εk − λ
. (50)

However the one-particle Green’s function of the true physical electrons results from inserting

(43) in the definition (32) and using the MF approximation (47), i.e.,

GSBMF(k, ω) = |r|2Gf(k, ω) =
|r|2

ω + µ− |r|2εk − λ
=:

1

ω + µ− εk −ΣSBMF(ω)
. (51)

The so defined local SBMF self-energy is then given by

ΣSBMF(ω) = ω

(

1− 1

|r|2
)

+ µ− µ− λ

|r|2 , (52)

consisting of term linear in frequency ω and a static part. The latter accounts for a shift of the

low-energy excitations and the former for the proper band renormalization. In fact |r|2 if often

named the quasiparticle weight Z, as for Z=1 one retrieves the Fermi-gas limit and Z=0 marks

the vanishing of quasiparticle excitations. A value 0<Z<1 therefore characterizes the so-called

Fermi-liquid regime. As in HF, note that the Hubbard excitations do not appear in the associated

spectral function, because we condensed the slave bosons. In principle Hubbard bands can be

gained from treating fluctuations around the saddle-point, but this is a rather tricky issue (see

e.g. [41]).

Although the slave-boson technique is approximate, we see that with already modest effort it

can account for explicit many-body effects like the band-narrowing close to the Fermi level. But

so far the method is not very useful for too many practical concerns, because we only dealt with

the rather specific U→∞ case, mainly appropriate in the Kondo regime. However we would

not have introduced the method here if there wasn’t the possibility to extent it to the finite-U

case, to be discussed next.
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5.2 Kotliar-Ruckenstein representation

There are various options to extend the slave-boson method to finite U . Two prominent realiza-

tion are the Kotliar-Ruckenstein (KR) representation [42] and the slave-rotor formalism [43].

In the following we briefly sketch the former methodology.

Somehow it is quite clear what is needed, since at finite U double occupations are of course

still accessible one has to the extent the number of bosonic degrees of freedom in order to

variationally cope with the enlarged number of lattice states. To study this without getting

immediately lost in too many details, let us concentrate first on the slave-boson treatment of the

simple atomic problem of a single correlated orbital [44]. The Hamiltonian for this Hubbard

atom reads

Hloc = ε0
∑

σ

c†σcσ + U c†↑c↑c
†
↓c↓ . (53)

There are the already familiar four atomic states Γ= {|0〉, |↑〉, |↓〉, |↑↓〉} available for occupa-

tion. In the KR formalism one simply associates with each state a specific pair of slave-boson

operators φ(†), i.e.,

{|0〉, |↑〉, |↓〉, |↑↓〉} → {φ(†)
0 , φ

(†)
↑ , φ

(†)
↓ , φ

(†)
↑↓ } . (54)

Since we are at finite U there is now no unique constraint on the actual occupation. However

there are two new types of constraints which ensure that by enlarging the Hilbert space we truly

recover in the calculation the physical electronic states based on the original c
(†)
σ operators. As

there is no Pauli principle for bosons, we first have to demand that we only care about states

with only a single slave boson, namely

∑

Γ

φ†
ΓφΓ = 1 . (55)

Secondly, the fermionic and bosonic content have to match in order to possibly recombine both

parts to the actual physical electron, thus

∑

Γ

nΓ
σ φ

†
ΓφΓ = f †

σfσ , (56)

whereby nΓ
σ marks the number of σ-electrons in the state Γ . We then choose to write the

effective slave-boson Hamiltonian with the constraints already included as

HSB
loc = ε0

∑

σ

f †
σfσ + U φ†

↑↓φ↑↓ + λ0

(

∑

Γ

φ†
ΓφΓ − 1

)

+
∑

σ

λσ

(

∑

Γ

nΓ
σ φ

†
ΓφΓ − f †

σfσ

)

.

(57)

With the important choice of representing the single-particle part with the fermionic f
(†)
σ op-

erators and the interacting term with the slave bosons φ
(†)
↑↓ we rendered the problem quadratic

in the operators and therefore easily solvable. In order to do so, we do not even have to con-

dense the bosons in our simple problem. It is possible to directly connect the finite-temperature
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Fig. 7: Hubbard atom within KR slave-boson theory. Left: Comparison with the exact result for

the filling with level energy ε0. Right: Individual level fillings from the slave-boson amplitudes.

expectation values to the respective fermionic/bosonic distribution, namely

〈f †
σfσ〉 = nF(ε0 − λσ) , 〈φ†

0φ0〉 = nB(λ0)

〈φ†
σφσ〉 = nB(λ0 + λσ) , 〈φ†

↑↓φ↑↓〉 = nB(U + λ0 + λ↑ + λ↓) , (58)

with nB,F as the Bose-Einstein/Fermi-Dirac distribution functions. Therewith the constraints

(55,56) read on average

nB(λ0) +
∑

σ

nB(λ0 + λσ) + nB(U + λ0 + λ↑ + λ↓)− 1 = 0 , (59)

nB(U + λ0 + λ↑ + λ↓) + nB(λ0 + λσ)− nF(ε0 − λσ) = 0 . (60)

Aiming for a spin-unpolarized solution with λσ=λ, the above system of two nonlinear equations

can be easily solved for (λ0, λ). Note that the solution will be approximate, because the exact

solution for the expectation value ns for s=0,1,2 electrons on the model atom is of course given

by

〈ns〉 =
∑

Γ n
Γ
s e−βEΓ

∑

Γ e−βEΓ
, (61)

with EΓ as the energy in state Γ according to the true Hamiltonian (53) and β the inverse

temperature. Figure 7 shows the slave-boson solution along with the exact Coulomb staircase

for different inverse temperatures.

The general application of the KR scheme is surely not concentrated on atomic problems, but

of course on single- and multi-orbital Hubbard-like models on the lattice. In general its useful

to increase formality and write the representation of the physical electron operator for a certain

(site, orbital, spin projection) as (see e.g. [45] for details)

c
†(SB)
imσ := c†imσ = r∗im({φ})f †

imσ =
∑

pq

〈pi|f †
imσ|qi〉 φ†

piφqi f
†
imσ . (62)

Here |p〉, |q〉 mark the quasiparticle Fock states f
(†)
imσ is acting on. Its convenient to express the

original physical states in the enlarged product Hilbert space of the quasiparticles and bosons
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Fig. 8: Quasiparticle weight Z versus U for the two-band Hubbard model on a 3D simple-cubic

lattice, NN hopping and no inter-band hopping. Influence of J=JC on the Mott transition in

calculations with and without spin-flip and pair-hopping terms at half filling (n=2) for equal

bandwidths (from [45]). Right to left: J /U=0,0.01,0.02,0.05,0.10,0.20,0.45.

therefore as

|p
i
〉 := φ†

pi|vaci〉 ⊗ |pi〉f . (63)

Note that we again only have one slave boson for the physical state, something that has again

to be enforced via the constraint (55). The effective Hamiltonian for the single-band Hubbard

model will then be given by

Hhub = −t
∑

〈ij〉σ

rir
∗
j f

†
iσfjσ + U

∑

i

φ†
↑↓i φ↑↓i . (64)

Throughout this equations for the quasiparticle and slave-boson operators the site index i is

surely lost in the MF approximation most often applied in the actual calculations on the lattice.

In that sense the conventional KR-SBMF theory is a local approach to correlations, i.e., no

inter-site self-energy terms are revealed.

A serious drawback of the standard KR scheme is given by the fact that it can only be applied to

density-density interactions. Therefore general multi-orbital Hamiltonians like (15) with spin-

flip and pair-hopping terms can not be adequately treated. One can overcome this problem by

further extending the framework to a rotationally invariant scheme [46,47,45,48,49]. However

the details of that topic are beyond our brief introduction and we therefore close this section

with just showing the rotationally invariant slave-boson result for the general two-band case of

the Hamiltonian (15) at half filling in Fig. 8.

6 Final remarks

The goal of this chapter was to give readers that are new to the field a basic introduction to

the theoretical research on model Hamiltonians in condensed matter physics. Those who have

already or who will have a look at some of the literature referenced here will readily see that we
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only scarcely scratched the tip of the iceberg associated with this topic. Nonetheless, the local

viewpoint on electronic correlations, taken here for most of the Hamiltonians, and the basic

techniques appear to be an appropriate starting point for many phenomena.

Concerning the techniques, the reader should clearly see that there is much room for improve-

ment. Especially treating quasiparticles and Hubbard excitations on an equal footing appears,

from what we have seen so far, to be tough. In the chapters to come we will realize how dy-

namical mean-field theory exactly cures this problem within an again local representation of

the electronic self-energy. That is, however, still not the end of the story, there are and will

be challenges where one eventually has to go beyond this, just think of long-range fluctuations

close to (quantum) critical points.

When discussing the justification for model Hamiltonians compared to pure first-principles ap-

proaches in the introductory section of this chapter we already mentioned the reasons. But let

us remember in the end once more that such models are excellent tools to single out the essen-

tial physical mechanisms in given problems without getting lost in too many, often irrelevant,

details. In order to finally deal with emergent phenomena in physics one has to remember this

thinking and one should therefore be strongly motivated not to forget it when working with

modern first-principles(-like) approaches, as for instance provided by LDA+DMFT.
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1 Introduction

Although introduced already in 1937, Wannier functions might be enjoying their ’golden age’

right now, thanks to the rapid growth of methods linking first-principles band structure calcu-

lations with model theories based on the second quantization formalism, such as LDA+DMFT.

While using Wannier functions as a computational tool is the likely goal of the reader, there

is another fascinating aspect of Wannier functions, namely the connection between the spatial

localization of Wannier functions and the topological properties of the corresponding Bloch

states. It is this topology that gave the name to the topological insulators.

In the first part of these notes we establish the connection between the smoothness and pe-

riodicity of Bloch functions as functions of the electron quasi-momenta and the exponential

localization of the corresponding Wannier functions. As this is a rather mathematical topic we

do not attempt a comprehensive presentation. Our goal is to point out the general ideas and

concepts and to direct the reader to the original literature. In the second part of the notes we

present the commonly used computational methods for construction of the Wannier functions

and examples of their application.

1.1 Electron in periodic potential

The introduction of density functional theory [1] started the era of ab initio calculations of

electronic structure for real materials. The Kohn-Sham equation has the form of Schrödinger

equation for non-interacting electrons

−∇2ψ(r) + V (r)ψ(r) = ǫψ(r), (1)

where we chose atomic units with ~ = 1, me = 1/2. With periodic boundary conditions (at

infinity) and the requirement that ψ(r) is normalizable, the equation represents an eigenvalue

problem for a Hermitian HamiltonianH = −∇2+V (r). If the crystal potential V (r) possesses

translational symmetry

V (r+R) = V (r), (2)

where R is a vector of the crystal lattice, the Bloch theorem [2] allows a partial diagonalization.

The eigenfunctions of H can be written in the form

ψn,k(r) = e−ik·run,k(r), (3)

where un,k(r) is an r-periodic function, n is a discrete band index, and k is a continuous index,

a vector from the first Brillouin zone. The corresponding eigenvalues ǫn,k are continuous and

periodic functions of k – they are said to form energy bands. The cell periodic functions un,k(r)

obey the equation

(−i∇− k)2un,k(r) + V (r)un,k(r) = ǫn,kun,k(r), (4)
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with periodic boundary conditions in the unit cell. Besides mathematical elegance, the Bloch

theorem is crucial for numerical applications since it replaces the Hamiltonian H with contin-

uous spectrum, by a (continuous) set of Hamiltonians Hk = (−i∇− k)2 + V (r) with discrete

spectra, i.e., a problem which is numerically tractable with standard methods of linear algebra.

One of the key characteristics of any material is the presence or absence of an energy gap

separating the ground state from the excitations, which translates into presence or absence of

a direct gap between the occupied valence bands and empty conduction bands in the case of

non-interacting electrons in a periodic solid. On the other hand, for the existence and other

properties of the Wannier functions the band filling is irrelevant. Also the distinction between

direct and indirect gaps does not matter for the properties of Wannier functions. We say that the

nth band is isolated if ǫn−1,k<ǫn,k<ǫn+1,k for each k, i.e., the nth band is separated by a finite,

possibly indirect, gap from the bands below and above. Similarly a composite band is isolated

if ǫnmin−1,k < ǫnmin,k ≤ ǫnmax,k < ǫnmax+1,k. Bands that are not isolated will be called entangled.

1.2 Why localized basis?

The reasons why the description of materials in terms of localized orbitals is attractive are both

conceptual and technical. By conceptual we mean those features that do not simplify compu-

tations, but provide better insights into the physics. For example, the chemist’s language of

chemical bonds is ’difficult’ to understand for a physicist speaking the ’Bloch wave’ language.

The path from a set of isolated atoms with the localized atomic orbitals to a periodic solid with

extended Bloch states may be difficult to grasp, as it involves qualitative differences such as

localized versus extended or discrete versus continuous. The Wannier functions provide a nat-

ural extension of the concept of atomic orbitals into solids and thus bridge this gap. Another

example is provided by the theory of dielectric polarization [3]. While in terms of Bloch states

the polarization is expressed through a rather abstract concept of Berry phase, the formulation

in terms of Wannier functions uses a simple notion of the center of mass of the corresponding

charge distribution.

Many important physical properties and phenomena involve spatially localized objects such as

impurities or defects in the crystal structure, screened electron-electron interaction, composite

excitations such as excitons or polarons. The technical advantages of localized orbitals in the

context of local electronic correlations are evident. As we typically consider only the short-

range part of the electron-electron interaction explicitly, expressing the interaction in terms

of localized orbitals reduces the number of non-zero terms considerably (for a more detailed

discussion of the Hubbard model see section 5.5).

While atomic orbitals appear to provide a natural framework there is a problem. As put by

Wannier [4] in the context of semiconductor physics: “It would no doubt be more satisfactory

for insulating crystals, to discuss the Hamiltonian using atomic functions rather than Bloch

functions. But this line of attack has been hampered by the fact that atomic functions are not

orthogonal”. Obviously, the orthogonality of a basis set is a great advantage, in particular when

the formalism of second quantization is to be used.
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2 Preliminaries

2.1 Orthogonal atomic orbitals

There are various ways to introduce the Wannier functions (WFs). Let us follow Wannier [4] for

a moment and consider the following warm-up problem. Assume that we have a solid formed

by atoms sitting on lattice sites R with a single valence orbital described by an atomic wave

function v(x), i.e., the energies of the other atomic orbitals are far away so that their effect can

be neglected. The basis {v(x − R)}R is in general non-orthogonal. How to orthogonalize it

while preserving the explicit translational symmetry of the basis set? A straightforward Gram-

Schmidt procedure does break the translational symmetry of the basis. Instead, the following

construction may be used.

First, we form the Bloch sum (discrete Fourier transform) of the atomic orbitals

φ(k,x) =
A(k)

N1/2

∑

R

eik·R v(x−R), (5)

where the summation runs over the lattice vectors R. The normalization constant A(k) is given

by
1

A(k)2
=
∑

R

eik·R
∫

dx v∗(x)v(x−R). (6)

It is easy to verify that the basis {φ(k,x)}k, indexed by the reciprocal vectors k, is orthonormal.

Next, we perform the inverse Fourier transform

w(R,x) =
1

N1/2

∑

k

e−ik·Rφ(k,x) =
∑

R′

c(R−R
′)v(x−R

′). (7)

The new functionsw(R,x) are combinations of the original atomic functions v(x−R
′) centered

at different lattice sites with coefficients c(R) given by

c(R) =
1

N

∑

k

A(k)e−ik·R. (8)

Let us make a few observations about w(R,x). First, since the coefficients c(R − R
′) in (7)

depend only on the difference R − R
′ we can write w(R,x) ≡ w(x − R), i.e. w(R,x) on

different lattice sites are shifted images of the same functional form w(x). Second, since (7)

is a unitary transformation of an orthonormal basis {φ(k,x)}k the basis {w(x −R)}R is also

orthonormal as can be verified by explicit calculation. In fact, we have performed forward and

inverse Fourier transformation, but we did not get the original atomic functions. The ’magic’

is in the normalization factor A(k), which was introduced between the Fourier transforms.

Let us look at the behavior of A(k) in more detail. If the atomic functions v(x − R) do not

overlap at all, expression (6) returns A(k) = 1 and the inverse Fourier transform (7) recovers

the original atomic functions. Once the overlap between v(x − R) on different sites is finite,

the k-dependence of A(k) leads to admixture of atomic functions from neighboring sites in

w(x − R). Generally, the larger the overlap of v(x − R)’s the stronger the k-dependence of
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A(k) and the less the w(R − x) resembles the starting atomic functions. For exponentially

localized atomic functions the orthonormal w(R− x) are also exponentially localized [4].

Since the orbitals {v(x−R)}R give rise to a single band we can say that we have constructed

a localized, translationally invariant orthonormal basis {w(x−R)}R, which spans the Hilbert

space of this band.

Typically, in numerical computations we do not not have an atomic basis for a given band to

start with. Thus a question arises whether a similar construction is possible for an arbitrary

band and how it can be realized if we know the Bloch eigenstates in some basis, as is usually

the case.

2.2 Asymptotic behavior of Fourier coefficients

Localization, that is how fast a function decays away from its center of mass, is one of the central

issues concerning Wannier orbitals. Since the Wannier functions are, vaguely speaking, Fourier

transforms of the Bloch functions let us review some properties of the Fourier series [5]. We do

not aspire to provide a full mathematical background of the complicated issue of localization.

Our intention is to point out the intimate connection between smoothness of a function and the

convergence (localization) of its Fourier series.

The Fourier coefficients of a function f(x) of a real variable x integrable (L1 integrable) on the

interval [0, 2π) are defined by

an =
1

2π

∫ 2π

0

dxe−inxf(x) (9)

and the corresponding Fourier series reads

F (x) =

∞
∑

n=−∞

ane
inx. (10)

Let us assume that f(x) is periodic, f(x) = f(x+ 2π), and piecewise smooth up to the second

derivative, i.e., there is a finite number of points αi where the first derivative f (1)(x) is discon-

tinuous and f (1)(x) and f (2)(x) are continuous and finite on every interval [αi, αi+1]. This is

sufficient for the series (10) to converge uniformly towards f(x) and for the Fourier coefficients

to converge as |an| < K/n2, where K is a finite constant. Differentiating (10) with respect to x

and applying the above statement to higher derivatives of f(x) it is easy to see that the smoother

the function, the faster its Fourier coefficients decay. In general, if a discontinuity appears first

in the kth-derivative, the Fourier coefficients decay as K/nk+1. Therefore a necessary condi-

tion for an exponential decay an ∝ exp(−Kn) is that f(x) is smooth, i.e., has derivatives to

an arbitrary order. However, this is not sufficient as is shown by an example at the end of this

section.

To derive a sufficient condition for the exponential decay of an, let us assume that f(x) can be

analytically continued into the complex plane. Introducing a new variable z = eix, we map the

real interval [0, 2π) onto a unit circle and define a function f̃(z) by f̃(eix) = f(x). Now, let
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Fig. 1: The graph of x →
(

1 − x
π

)4(
1 + x

π

)4
(left) and its Fourier coefficients an in a log-log

plot (right).

us assume that f̃(z) is analytic on a ring r < 1 < R which implies that there exists a Laurent

series

f̃(z) =

∞
∑

n=−∞

bnz
n, (11)

where the coefficients bn are given by an integral over a contour γ, which encircles zero and lies

inside the ring r < z < R,

bn =
1

2πi

∮

γ

f̃(z)dz

zn+1
. (12)

Taking the unit circle for γ and comparing to (9) one sees that an = bn. Let us define ρ =

min(R, 1/r). The analyticity of f̃(z) implies that the series (11) is absolutely convergent for

any real x from the interval 1/ρ < x < ρ, but diverges for either x > ρ, x < 1/ρ, or both. This

means that b|n|x
|n| → 0 for x < ρ, but b|n|x

|n| → ∞ for x > ρ. This is the precise meaning of

b|n| ∼ exp
(

−|n|h
)

, where h = ln ρ.

We close this section with a few examples of the convergence of Fourier series for functions

defined on [−π, π) and periodically repeated over the real axis. In Fig. 1 we start with
(

1 −
x/π

)4(
1 + x/π

)4
, which has a discontinuous 5th derivative at x = ±π. Its Fourier coefficients

exhibit a power law decay, which appears linear in the log-log plot, Fig. 1.

Function
(

1 + cos(x)
)
√

1.1 + cos(x) provides an example of an analytic function with an infi-

nite Fourier series. The Fourier coefficients decay exponentially as shown in Fig. 2

Finally we study the Fourier series of a ’bump’ function exp
(

−1/[1 − (x/π)2]
)

, which is

smooth, but not analytic. Its Fourier coefficients exhibit |an| ∼ |πn|−3/4exp(−
√

|πn|) asymp-

totic behavior as can be shown by the saddle point method [6]. The decay of an is obviously

faster than a power law, but slower than exponential. The actual Fourier coefficients obtained

by numerical integration are shown in Fig. 3.
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3 Wannier functions

3.1 Basic definitions

The Wannier function (WF) of an isolated band is defined as

wn(r−R) =
V

(2π)d

∫

BZ

dk e−ik·Rψn,k(r), (13)

where V is the unit cell volume, d is the dimension, ψn,k(r) are the Bloch functions (3) cor-

responding to the nth band. The integration runs over the first Brillouin zone. The inverse

transformation reads

ψn,k(r) =
∑

R

eik·Rwn(r−R). (14)

The transformation properties of the Bloch functions under lattice translation (3) ensure the

mutual orthogonality of WFs centered in different unit cells. The definition (13) is not unique

since the overall phase associated with the Bloch function is arbitrary. For reasons that become

clear later we will consider only situations where ψn,k(r) is a smooth function of k. A particular

choice of the phases will be called a gauge and the transformation

ψn,k(r) → eiφ(k)ψn,k(r), (15)
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between different gauges, where φ(k) is an analytic real-valued function, will be called a gauge

transformation.

The generalization to the case of isolated composite bands is straightforward.

w(r−R) =
V

(2π)d

∫

BZ

dkU(k)ψk(r), (16)

where w(r) and ψk(r) are vectors

w =







wnmin

...

wnmax






, ψk =







ψnmin,k

...

ψnmax,k






(17)

in the band index spanning the composite band, and U(k) is a unitary matrix acting on the band

index. We define a quasi-inverse transformation

ψ̃k(r) =
∑

R

eik·Rw(r−R), (18)

where the quasi Bloch states ψ̃k(r) have the transformation property (3), but are not the eigen-

states of the Hamiltonian. The gauge transformation (15) generalizes to a set of unitary trans-

formations U(k) analytic and periodic in k.

The construction of Wannier functions poses several non-trivial problems.

Existence. Given an isolated band, is it possible to span the corresponding Hilbert space with a

basis of exponentially localized Wannier functions? As discussed below an equivalent question

reads: Is it possible to find a gauge such that the resulting Bloch states are periodic and analytic

functions of k? The requirement of periodicity has topological implications and it turns out

that the existence or non-existence of exponentially localized Wannier function is a topological

characteristic of a given band.

Multiple bands. How do the arguments about existence of the exponentially localized WFs

generalize to the case of isolated composite bands? Mathematically the difference between

single and multiple bands lies in the Abelian (commutative multiplication of numbers) or non-

Abelian (non-commutative multiplication of matrices) character of the respective gauge trans-

formations. As a results, the technique used originally for a single band cannot be simply

generalized to a composite band. For example, the results for composite bands depend on the

dimension of the lattice.

Entanglement. Often it is not possible to find an isolated (composite) band spanning the desired

part of the Hilbert space. Nevertheless, we would like to have a localized WFs basis representing

the bands of interest, if only approximately. What is the optimal procedure to obtain WFs with

such property?

Uniqueness. Assuming we can construct exponentially localized WFs, what is the meaning of

the remaining gauge freedom? Under which additional conditions are the WFs defined uniquely

and what are their physical consequences?

Implementation. How to compute the Wannier functions numerically? The theory of Wannier

functions operates with the concepts of analytic continuation or topology with respect to k,
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which are inherently connected to the notion of continuity. How to perform practical calcula-

tions in the computer, which deal inevitably with discrete quantities?

In the following we will discuss these issues in some detail.

3.2 Existence of exponentially localized Wannier functions – single band

In the following we will sketch the conditions and prove of the existence of exponentially lo-

calized WFs for a single isolated band.

Let us assume that a given isolated band has eigenvalues {ǫk} and the corresponding Bloch

states {|ψk〉}. The key ingredients for exponential localization are analyticity and periodicity

as a function of k (see 2.2). The existence of exponentially localized WFs is equivalent to the

possibility of finding a set of Bloch states such that 〈r|ψk〉 is a periodic and analytic function

of k throughout the Brillouin zone. To appreciate the question of localization one has to real-

ize that the eigenvalue problem does not specify 〈r|ψk〉 uniquely, but only up to an arbitrary

multiplicative phase factor, which may differ from k-point to k-point. While the exponentially

localized WFs exist under rather general conditions (see below), it is not true that they exist for

every Hermitian periodic Hamiltonian.

The first partial answer to the question of existence of exponentially localized WFs in 1D was

given by Kohn [7] for non-relativistic electrons in a periodic potential with inversion symmetry.

He proved the existence of exponentially localized WFs as well as their uniqueness upon the

requirement of reality and definite parity. Kohn studied the solutions of the initial-value problem

for the Schrödinger equation

− d2

dx2
φ1,2(E, x) + V (x)φ1,2(E, x) = Eφ1,2(E, x) (19)

as a function of the energy E (the indices 1 and 2 stand for the two linearly independent so-

lutions corresponding to different initial conditions). The solutions obtained this way are ana-

lytic functions of E. Kohn showed that Bloch functions, defined by the periodicity condition

ψ(E, x + a) = λψ(E, x), can be build as ψ(E, x) = α(E)φ1(E, x) + β(E)φ2(E, x) in such a

way that analyticity as a function of E and in turn as a function of k is preserved. It turns out

that while analyticity of 〈x|ψk〉 can be satisfied relatively easily, the requirement of periodicity

on top of it, is a rather stringent condition.

A straightforward generalization of Kohn’s global analysis, based on the initial value problem

to the Schrödinger equation, to higher dimensions is not possible. To analyze the dimensions

two and higher des Cloizeaux [8] introduced the band projection operator P (k)

P (k) = |ψk〉〈ψk| (20)

and proved the analyticity in k of its r-elements 〈r|P (k)|r′〉 as a function of k for an isolated

as well as composite band. While k-analyticity of Bloch states 〈r|ψk〉 implies the analyticity

of 〈r|P (k)|r′〉, the opposite is not true. To illustrate the problem we follow Ref. [9] and try to
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Fig. 4: Cartoon depiction of the projection method. The Bloch functions of different k with

random overall phases (left) and the same functions with the aligned phase on the first site

(right).

construct the k-analytic Bloch state |ψk〉 as

〈r|ψk〉 = G−1/2(k)〈r|P (k)|M0〉, (21)

G(k) = 〈M0|P (k)|M0〉, (22)

where |M0〉 is an arbitrary trial orbital. The idea is to let the Bloch functions on the lattice

site specified by the trial orbital |M0〉 add up with the same sign (constructive interference) and

to interfere destructively on the other lattice sites as depicted in Fig. 4. The Bloch function

|ψk〉 defined by (21) is analytic as long as the non-negative G(k) is different from 0. Thus

points G(k0) = 0 need special attention. As G(k) is analytic, G(k − k0) ∝ (k − k0)
2p must

be a quadratic (or even higher) form. Here again the 1D is distinct, as only in 1D a square

root G1/2(k) analytic at k0 is guaranteed to exist, but can possibly change sign. Assuming

time-reversal symmetry implies that zeros of G(k) appear in pairs k0 and −k0 due to Kramers

degeneracy (the cases G(0) = 0 and G(π) = 0 may be excluded by the choice of |M0〉).
Thus in a 1D time-reversal symmetric system a periodic and analytic G1/2(k) exists. It can

be shown that in this case the zeros of G1/2(k) are canceled out by the corresponding zeros in

〈r|P (k0)|M0〉 and 〈r|ψk〉 (21) is periodic and analytic.

Similar argument cannot be used in higher dimensions since singularities of G1/2(k) at zeros

of G(k) cannot be removed. The present technique allows to prove that exponentially localized

Wannier functions exist in time-reversal invariant systems with inversion symmetry or systems

that can be adiabatically connected (i.e., keeping the band isolated along the adiabatic path) to

a system with localized WFs [9]. On the other hand, in 2D quantum Hall systems (i.e., no time-

reversal symmetry) one can prove that a zero ofG(k) exists for any choice of |M0〉 [10] and that

exponentially localized WFs do not exist for bands carrying the Hall current. Using a different

approach based on the band projection operator Nenciu proved the existence of exponentially
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localized Wannier functions for an isolated band in systems with time reversal symmetry in

arbitrary dimension [11].

3.3 Existence of exponentially localized Wannier functions – composite

bands

The arguments from the previous section cannot be simply generalized to the case of composite

bands. It is nevertheless possible to prove that time-reversal invariance of the Hamiltonian is

sufficient for exponentially localized WFs to exist for spinless fermions in 2D and 3D [12].

The proof relies on the concepts of connection, curvature, and Chern numbers from differential

geometry. The basic idea is that Brillouin zone provides a base manifold and the inner product

in the Hilbert space of the cell-periodic functions un,k supplies a sense of parallelism between

nearby k-points, so called (Berry) connection

Aα
mn(k) =

(

un,k

∣

∣

∣

∂

∂kα
um,k

)

, (23)

where the scalar product (·|·) denotes an r-integration over the unit cell. Although the connec-

tion is not gauge-invariant it allows for the calculation of gauge invariant quantities by standard

techniques of differential geometry. Following [12, 13], we define the trace of the curvature

corresponding to Aα
mn(k) by

Bαβ(k) = tr

(

∂Aβ

∂kα
− ∂Aα

∂kβ
− [Aα,Aβ]

)

(24)

= 2 Im

nmax
∑

n=nmin

(

∂

∂kα
un,k

∣

∣

∣

∂

∂kβ
un,k

)

(25)

= Tr

(

P (k)

[

∂

∂kα
P (k),

∂

∂kα
P (k)

])

. (26)

Here the first line is the definition of Bαβ(k) in terms of the connection Aα
mn(k), with the trace

and the commutator acting on the band indices. The second line is Bαβ(k) for the connection

(23). The third line shows explicitly the gauge invariance and analyticity by expressingBαβ(k)

in terms of the generalized band projection operator P (k), with the trace and commutator un-

derstood in the operator sense. The generalized band projection operator (20)

P (k) =
nmax
∑

n=nmin

|ψn,k〉〈ψn,k| (27)

is an analytic function of k [8]. Panati [14] showed that the analytic and periodic quasi Bloch

states exist only when all Chern numbers associated with the curvature Bαβ(k) are zero.

Modern examples of systems with non-trivial band topology, which prohibits construction of

exponentially localized WFs, are topological insulators [15]. We close this section by pointing

out that the topological characteristics are the property of a given band or composite bands. The

topological characteristics change when other bands are included in the composite bands and

thus the construction of localized Wannier functions may become possible.
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3.4 Uniqueness

Analytic functions are very rigid objects in the sense that, once the function is known on an

arbitrarily small open interval ∆kd (where k is viewed as a complex variable!), it is uniquely

defined everywhere. Nevertheless it is clear that having an exponentially localized WF any

gauge transformation (15) also produces exponentially localized WF.

Uniqueness of the WF center. Let us define the center of WF as 〈w|r|w〉 (the center of mass).

We will show that for an isolated band the WF center does not depend on the gauge.

〈w|r|w〉 =
∫

dr

(

V

(2π)d

)2 ∫

BZ

dkdk′ ψ∗
k
(r) rψk′(r)

= −i V

(2π)d

∫

BZ

dk 〈uk|∇kuk〉,
(28)

where we have used rψk(r) = i∇kψk(r)− ie−ik·r∇kuk(r) and the fact the ψk(r) is a periodic

function of k. Now, performing the gauge transformation (15) ψ̃ = eiφψ we get

〈w̃|r|w̃〉 = 〈w|r|w〉+ V

(2π)d

∫

BZ

dk∇kφ(k)

= 〈w|r|w〉+R,

(29)

where R is a lattice vector. We have used the fact that φ(k) is smooth and periodic modulo 2π.

Therefore, we can conclude that the position of the WF center is unique modulo a lattice vector

R. This uncertainty is not surprising if we keep in mind that it is the grid of WFs periodically

repeated over the whole lattice which represents the energy band and that none of the lattice

points has a special meaning. In case of composite bands it is the center of mass of all Wannier

functions associated with a given lattice point R which is unique up to a lattice translation.

Reality of Wannier function. It was found empirically that in systems with real Hamiltonian,

e.g., without spin-orbit coupling and external magnetic field, the exponentially localized WFs

obtained with the maximum-localization method [13] (discussed in section 4.1) are real, up to

a trivial overall phase. It was conjectured [13] that real localized Wannier functions can be

constructed in such systems. A simple criterion for existence of real localized WFs is presented

in Ref. [12].

Symmetry constraints. In some cases Wannier functions may be uniquely defined by symmetry

requirements. We present a simple example here. Let us assume that we have an isolated band

and a real Wannier function w(r) of definite parity (e.g., even). We show that such a WF is

unique.

w(r) =
V

(2π)d

∫

BZ

ψk(r) (30)

w∗(r) = w(r), w(−r) = w(r). (31)
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Let us consider another WF obtained by a gauge transformation

w̃(r) =
V

(2π)d

∫

BZ

eiφ(k)ψk(r),

=
V

(2π)d

∑

R

(
∫

BZ

eiφ(k)eik·R
)

w(r−R).
(32)

Requiring reality and evenness of w̃(r) leads to a constraint on the gauge transformation eiφ(k) =

e−iφ(k) and thus φ(k) = Nπ (with integer N), which means that w(r) is unique up to a trivial

change of sign.

While it is possible that reality and symmetry properties define exponentially localized WFs

uniquely also for composite bands for cases with simple symmetry, we are not aware of rigorous

proofs of such theorems. In general, the exponential localization only fixes the long-range be-

havior of the WFs, while the short range form depends on the particular computational method.

For a discussion of point group aspects of construction of localized orbitals see Ref. [16].

4 Numerical methods for construction of Wannier functions

In the following we will describe two methods that are commonly used in connection with

present band structure codes. We will also describe an approach for construction of Wannier

functions in case of entangled bands, i.e., a situation where composite bands cannot be iso-

lated from the rest of the spectrum. The first method is the Marzari and Vanderbilt maximally-

localized WF construction [13], which consists in finding a gauge in which the second moment

of the density distribution is minimized. The second method, proposed by Ku [17], is a real-

ization of the projection construction (21). A common feature of these methods is that they

start from a known set of the Bloch eigenstates of the Hamiltonian and search for the unitary

transformation (16) according to some criteria. These two approaches are commonly used for

construction of first principles tight-binding models that are used in the context of many-electron

calculations, in particular LDA+DMFT.

4.1 Maximally localized Wannier functions

The maximal-localization (MALOC) method aims to minimize the spread functional

Ω =
∑

n

〈r2〉n − 〈r〉2n, (33)

where n is the WF index and 〈r〉n is the position of the center of nth WF given by the r-matrix

element (28), while 〈r2〉n is the corresponding r2 matrix element. The reader is invited to check

that Ω depends neither on the choice of the particular lattice site R associated with WF nor on

the choice of the coordinate origin. Marzari and Vanderbilt proceed by splitting Ω into gauge
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independent ΩI and gauge dependent Ω̃ parts

Ω = ΩI + Ω̃ (34)

ΩI =
∑

n

〈r2〉n −
∑

R,n,m

|〈R, m|r|0, n〉|2 (35)

Ω̃ =
∑

n

∑

R,m6=0,m

|〈R, m|r|0, n〉|2. (36)

Expressed in terms of the Berry connection (23), Ω̃ can be written as a sum of two terms

Ω̃ =
∑

n

V

(2π)d

∫

BZ

dk |Ann(k)− 〈r〉n|2 −
∑

n 6=m

V

(2π)d

∫

BZ

dk |Amn(k)|2, (37)

where Amn(k) is a d-dimensional vector (d=1,2,3) and | · |2 is the corresponding norm. The task

of constructing MALOC WFs can be formulated as follows: given some initial gauge we are

looking for a gauge transformation which minimizes Ω̃. Definition (23) of the Berry connection

is not useful for numerical calculations and has to be replaced with a discrete approximation,

which reduces to (23) and (37) in the continuum limit. Among the different possibilities Marzari

and Vanderbilt choose

M (k,b)
mn = (um,k|un,k+b) (38)

and

Ω̃ =
1

N

∑

k,b

wb

∑

n

(

− Im lnM (k,b)
nn − b · 〈r〉n

)2
+

1

N

∑

k,b

wb

∑

n 6=m

∣

∣M (k,b)
mn

∣

∣

2
. (39)

Here we assume to have a uniform k-mesh throughout the Brillouin zone. For each k-point a

set of vectors b defines connections to its neighbors. Moreover, we assume periodicity, which

means that a connection is defined between points of the opposite sides of the Brillouin zone.

The quadrature of (37) associates a weight wb with each b-vector [13]. The same discretization

for 〈r〉n leads to the expression

〈r〉n = − 1

N

∑

k,b

wbb Im lnM (k,b)
nn . (40)

Using the logarithm in the discrete approximation preserves the gauge invariance of 〈r〉n. It

also ensures the proper shift of the WF centers by a lattice vector upon the gauge transformation

eik·R. However, the discretization is not without problems. In particular, for M
(k,b)
nn to provide

an approximation of the continuum limit, we shall require that 1 − M
(k,b)
nn → 0 as b → 0.

This is typically not the case in numerical calculations, where phases of the eigenvectors are

more or less random, no matter how small b. In other words, the gauge transformation between

the computer output and a smooth k-dependence of |un,k〉, which yields localized WFs, corre-

sponds to an erratic function of k. It is nearly impossible to find such a transformation by local

minimization methods. Another way to see the problem is to realize that M
(k,b)
nn is complex

and thus its logarithm is a multivalued function. A consistent choice of the branch leading to

localized WFs becomes numerically impossible. Using more k-points makes the problem even

worse as it does not remove the random phase, but only makes the phase fluctuations sharper.
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The way out consists in preprocessing the Bloch states so that the phase differences between

nearby k-points are small. This can be achieved by defining a set of trial orbitals |Mn〉, similar

to (21). Projecting these onto the Bloch states

|Φn(k)〉 =
∑

m

|ψm,k〉〈ψm,k|Mn〉 (41)

Smn(k) = 〈Φm(k)|Φn(k)〉 (42)

and performing symmetric orthogonalization

|ψ̃n,k〉 =
∑

m

[

S−1/2(k)
]

mn
|ψm,k〉 (43)

we get the desired result. Now, when constructing M
(k,b)
mn from |ψ̃n,k〉 the phase of M

(k,b)
mn is

small and we can choose | Im lnM
(k,b)
nn | < π. The functional Ω̃ can then be minimized by a

sequence of unitary transformations using the method of steepest-descent. For details we refer

the reader to Ref. [13].

4.2 Projection method

It is possible to use only the initialization step described in the previous section to construct

Wannier functions. This approach was adopted by Ku et al. [17] and used subsequently by

others [18, 19]. It was successfully applied to investigation of oxides and similar materials for

construction of atom-centered WFs. The advantage of this approach is that WFs retain the

symmetry of the trial orbitals. The second advantage is that the construction is simple and guar-

anteed to converge as long as the overlaps with the trial functions are non-zero and localized

WFs exist. This makes the method attractive for iterative procedures, where accidental freezing

in a wrong local minima might spoil the calculation. This is typically the case when construct-

ing tight-binding models, where we have a good idea of the shape and symmetry of the desired

Wannier orbitals and want to get the quantitative information such as hopping parameters. On

the other hand, when it comes to molecular orbitals or low-symmetry situations, where con-

structing good trial orbitals might be complicated, the MALOC method is preferable. This also

applies to situations where the positions of Wannier centers are not fixed by symmetry and need

to be calculated accurately, e.g., in ferroelectric materials.

4.3 Entangled bands

In some situations the number of constructed WFs is smaller than the number of Bloch bands.

Typically this happens when no isolated band or composite bands can be found. In such a case it

may also happen that the number of Bloch states per k-point Nk varies although it must always

be at least equal to N , the number of desired WFs. The technique to construct WFs in such

situations is known as disentanglement and was introduced by Souza et al. [20]. The idea is to

find anN-dimensional subspace S(k) of theNk-dimensional space spanned by the Bloch states

and k such that the overlap between S(k) and S(k + b) at neighboring k-points is maximized
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Fig. 5: LDA band structure of SrVO3 (circles) with dominant contributions marked by color:

O-p (blue), V-d-t2g (red), and V-d-eg (black). Tight-binding bands obtained from WFs for (i)

[left panel] all V-d and O-p bands (ii) [right panel] only the t2g band, with spatial cut-offs as

described in the text (the Fermi level is at 8.16 eV).

in some sense. Souza et al. showed that this is equivalent to minimizing the ΩI functional. The

WF construction then proceeds in two steps. First, iterative minimization of ΩI with respect

to unitary transformations at each k-point. Second, the above MALOC procedure preformed

using S(k)’s from the first step. The details and examples of application can be found in [20].

The disentanglement procedure can also be realized with the projection technique [17]. In this

case the subspace S(k) is chosen at each k-point such that its overlap with a set of trial orbitals

is maximal.

We have presented the two currently most popular methods for construction of Wannier func-

tions in periodic solids. Examples of other methods can be found in Refs. [21, 22].

5 Examples of applications

In the following we present several examples that demonstrate applications of Wannier func-

tions. This is a rather small sample of possible applications and focuses on problems connected

with the construction of tight-binding models. For other important applications of WFs such

as investigation of dielectric polarization the reader is referred to literature [3]. The examples

presented below use the MALOC procedure implemented in the wannier90 package [23] start-

ing from the electronic structures obtained with the wien2k code [24] and preprocessed with

wien2wannier [25].
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Fig. 6: The xy Wannier orbital plotted as an isosurface of the charge density |w(r)|2 and

colored by the sign of w(r). The left panel corresponds to the large energy window (i), the right

panel to the small energy window (ii) for the same isovalue.

5.1 Wide versus narrow energy window: SrVO3

One of the basic parameters defining the WFs is the choice of the Hilbert space they should

span. In practice this means the choice of bands or an energy window to be covered. In general,

the larger the energy window the more localized WFs can be constructed. Taken to extreme,

using the full spectrum of the Hamiltonian (up to infinite energy) we can build a basis out of

Dirac delta functions. We will demonstrate the effect of the energy window on the localization

of WFs for the example of a transition metal oxide by comparing two possible choices of the

energy window (i) 3d+O-2p bands, (ii) 3d bands only.

SrVO3 has a rather simple band structure (see Fig. 5) consisting of isolated groups of bands

derived from O-p, V-d-t2g and V-d-eg orbitals. For choice (i) we use all V-d and O-p bands,

while for (ii) we select only the V-d bands of t2g symmetry. The corresponding xy WF are

shown in Fig. 6. The choice of the smaller energy window leads to the xy orbital having

substantial weight on its oxygen neighbors. This is easy to understand. In terms of atomic-like

V and O orbitals, the V-t2g band is anti-bonding, while the O-2p band is bonding. When we

choose to build WFs from the anti-bonding band only, we cannot recover the atomic orbitals.

The O-2p atomic character contained in the anti-bonding band cannot disappear. It is preserved

in the more extended shape of WFs. Note, that the anti-bonding character is apparent in the WF

having a node (changes sign) between the O and V sites. Using a larger energy window (i) we

include both bonding and anti-bonding bands. This allows us to construct WFs which closely

resemble atomic V and O functions. There is still some V-xy weight on the O sites to ensure

orthogonality of the WFs, but it is substantially less than in case (ii) where the O tails of the xy

functions are enforced by hybridization.

The spatial extent of the Wannier orbitals is also reflected in the hopping integrals. With the

small energy window (ii) the t2g bands are well described when at least nn- and nnn-hoppings
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Fig. 7: A simple zig-zag chain with two types of atoms (black and blue). The lines indicate

possible hoppings. (including longer-range hoppings does not break the A-B symmetry).

A

B

Fig. 8: The zig-zag chain in perpendicular electric field, which breaks the A-B symmetry as

indicated by a uniform shift of blue atoms.

are considered (see Fig. 5), which in the {xy, yz, zx} basis read

t100[meV] =







−268 0 0

0 −30 0

0 0 −268






, t101[meV] =







7 10 0

10 7 0

0 0 −93






. (44)

The longest nnn t2g-t2g hopping corresponds to a length of of 5.4 Å. Using the more localized

orbitals (i) we can achieve similar accuracy (see Figure 5) by considering only V-V nn-hopping

and V-O nnn-hopping, which translate into a direct spatial cut-off of only 4.3 Å. The obvious

price to be paid are larger matrices (14× 14 for (i) versus 3× 3 in case (ii)).

5.2 Unfolding band structures: LaOFeAs

Wannier functions provide a tool for an unbiased and quantitatively accurate construction of

tight binding models. In some situations it is possible that the tight-binding Hamiltonian has

a symmetry higher than the original band structure. The recently much studied LaOFeAs is a

good example. However, before we discuss this material let us consider the simpler case of a

zig-zag chain shown in Fig. 7. Geometrically, the sites A and B are not related by a translation.

However, when we consider the symmetry of the graph representing the hoppings (full and

dashed lines are shown as an example) only the black and the blue sites are distinct. Another

way to see the equivalence between A and B sites is to realize that they are connected by a

’gauge’ transformation which changes the sense of ’up’ and ’down’. Only when we add a field

which breaks the up-down symmetry (e.g. uniform electric field perpendicular to chain) the
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Fig. 9: The Fe x2-y2 Wannier orbital for the d − p model of LaOFeAs. The deviation from the

atomic x2-y2 orbital reflecting the geometry of Fe-As plane is clearly visible.

A-B equivalence is broken (see Fig. 8). The Fe-As plane in LaOFeAs with As atom alternating

above and below the Fe plane resembles the zig-zag chain.

As bandstructure codes use the geometrical symmetry of the crystal structure, the electronic

structure calculation is performed in a unit cell with two Fe atoms and the corresponding Bril-

louin zone. Unfolding the bandstructure amounts to doubling the Brillouin zone and halving

the number of bands. A straightforward way to unfold the bandstructure is to construct the WFs

and the corresponding tight-binding Hamiltonian. After a simple geometrical transformation

the intra-cell hoppings can be converted into inter-cell ones, to obtain a tight-binding Hamil-

tonian for the smaller unit cell with a single Fe atom. The construction of the corresponding

unfolded bandstructure is straightforward. The fact that the corresponding crystal structure has

a lower symmetry of course cannot disappear. It is reflected in the shape of the WFs (see Fig.

9) and the fact that WFs centered at the two Fe sites in the original unit cell are not connected

by a translation, but a translation combined with a 90 deg rotation along the z-axis.
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Fig. 10: LDA band structure of LaOFeAs (red) compared with tight-binding bands obtained

from WFs (green) for the d− p model. Note the difference above 2 eV.

5.3 Entangled bands

Staying with LaOFeAs, we will demonstrate a typical application of the band disentanglement

technique. As before, we are interested in constructing an effective Hamiltonian of LaOFeAs

in terms of Fe-d and As-p WFs. However, we see from Fig. 10 that the Fe-d bands overlap

with the higher lying bands (above ∼2 eV). The hybridization between the overlapping bands

leads to admixing of Fe-d character to these higher lying bands and to band anti-crossing, which

modifies the band topology, e.g., around the Γ point. In order to reproduce the bands around

2 eV at Γ precisely, we would have to either enlarge our model to include other orbitals or

work with more extended Fe-d WFs. However, the details of band topology at 2 eV above

the Fermi level are of little physical significance. It is preferable to work with an approximate

bandstructure, which can be obtained with localized Fe-d WFs in a d− p model. What we want

to achieve can be viewed roughly as follows. Imagine we build a WF representation for a much

larger energy window than we are interested in. Subsequently we switch off all the hoppings

between our target Fe-d and As-p WFs and anything else. The resulting band structure would

closely resemble the original one around the chemical potential where the bands are dominated

by Fe-d and As-p character. Deviations will appear at energies and k-space regions where the

neglected hoppings play a role, e.g. 2 eV at Γ -point. The disentanglement procedure performs

essentially the same task, however, without the need to construct the large tight-binding model



Wannier functions 4.21

first. In fact, it does even better. Using the above picture, the disentanglement procedure does

not put all the hoppings between Fe-d and As-p strictly to zero, but minimizes them in such a

way that the band dispersion in a specified energy window is reproduced precisely, which in

practice means it produces Fe-d and As-p WFs that are a bit more extended than they would

have been in the large tight-binding model.

From the discussion it is clear that the disentanglement procedure may find its use even in some

cases with isolated (composite) bands when one decides to trade the accuracy away from the

region of interest (Fermi level) for having more localized WFs.

5.4 Spin-orbit coupling: Sr2IrO4

The electronic states in condensed matter physics are commonly described in the quasi-relativistic

approximation, i.e., using two component spinors. In many applications, in particular using

lattice models, the spin projection is conserved. Therefore we can work in a basis in which

the Bloch eigenstates have only one non-zero spinor component and forget about the spinor

structure. The most common situation where non-trivial spinor structure survives are systems

with spin-orbit coupling (another less common example are broken-symmetry systems with a

non-collinear magnetic order). However, since the construction of WFs amounts to a unitary

transformation from the space indexed by (n,k), the band indices and k-vectors, to the space,

indexed by (m,R), the orbital indices and the lattice vectors, the spinor character of the elec-

tronic functions does not change the discussion in the previous sections. It merely changes the

definition of the dot product in (23) and (38) from

〈ψ|ψ′〉 =
∫

drψ∗(r)ψ′(r) (45)

to

〈ψ|ψ′〉 =
∑

σ

∫

drψ∗
σ(r)ψ

′
σ(r), (46)

where σ indexes the spinor components

|ψ〉 =
(

ψ↑

ψ↓

)

. (47)

The transformations (13) or (16) now connect the Bloch spinor functions to Wannier spinor

functions. The spinors must be viewed as the basic objects. For example a MALOC procedure

applied to the spinor components separately will not lead to a sensible result.

In the following we use Sr2IrO4 as an example of a material where spin-orbit coupling substan-

tially modifies the band structure and leads to Wannier orbitals in which both spin projections

are mixed. For the sake of simplicity, we have performed the calculations using an idealized

double-perovskite crystal structure. The electronic structure (see Fig. 11) can be understood

by considering crystal-field splitting, spin-orbit coupling and inter-site hopping between Ir-d

orbitals. The crystal-field splitting, being the largest of the three, opens a gap between the t2g
and eg bands, rendering the latter empty, while the former accommodate one hole per Ir atom.
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Fig. 11: Ir J = 1/2 Wannier orbitalw+,[0,0,0](r) visualized as a |w|2 isosurface. The almost real

↓-spin component is blue, the ↑-spin component is colored with cosine of its phase (red=real

positive, green=real negative, yellow=0).

The t2g orbitals may be labeled with a pseudo-spin I = 1. The spin-orbit coupling splits the t2g
manifold into a quadruplet and doublet with pseudo-spins J = 3/2 and J = 1/2, respectively.

Since the spin-orbit splitting is rather large, the inter-site hopping leads only to moderate mixing

of the states with different J . Therefore we may expect the isolated band doublet at the top of

the t2g manifold to be predominantly of J = 1/2 character. We construct the MALOC WFs for

this two-fold degenerate band. Expressed in the local coordinate system pointing towards the

O atoms, the J = 1/2 spinor functions adopt the form

|φ+〉 ∼
(

−2Y21
Y2−2 − Y22

)

, |φ−〉 ∼
(

Y2−2 − Y22
2Y2−1

)

. (48)

The MALOC WFs are indeed very close to this form as shown in Fig. 11. In particular, the

WF, to a very good approximation, consists of a real xy orbital in one spin channel and a

complex (x± iy)z orbital in the other (±) spin channel. Note that the relative phase of the two

components is not arbitrary and that the corresponding charge density has approximately cubic

symmetry as expected for a J = 1/2 orbital. Also, similar to WFs in SrVO3 the anti-bonding

character with respect to oxygen is reflected in the sign-change (red-green) between the lobes

on Ir and its O neighbors.

5.5 Wannier functions in dynamical mean-field theory

WFs and the techniques described in these notes are often used to construct Hubbard type

Hamiltonians for real materials

H =
∑

k

(

[hdd(k)]αβd
†
kαdkβ + [hpp(k)]γδp

†
kγpkδ + [hdp(k)]αγd

†
kαpkγ + [hpd(k)]γαp

†
kγdkα

)

+
∑

i

Uαβγδd
†
iαd

†
iβdiγdiδ −Hdc , (49)

where we have denoted electrons subject to local interactions as d-type and non-interacting

electrons as p-type. The k-indexed operators are Bloch sums of the corresponding direct space
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operators and summation over the Greek indices is assumed. The double-counting term Hdc

is a one-particle operator discussed below. Obviously, the results of any theory should depend

only on physical parameters and not on the coordinate system or basis used to formulate the

problem. How can this requirement be reconciled with the non-uniqueness in the definition of

the Wannier orbitals?

First, let us emphasize that the first term in (49) does not depend on the choice of the WFs. Its

form is the same in any WF basis. While the numerical values of the matrices hdd(k), hpp(k),

hpd(k) and hpp(k) are basis dependent, the spectrum of the operator is not. The same is not

true for the second term. Here a change of the basis leads to terms, which are not present in

(49) such as inter-site interactions. Therefore the model (49) is always basis dependent and

we can only require that the dependence is weak and that the choice of a particular basis is

physically motivated. We can heuristically reason as follows. The electron-electron scattering

exists between any four states (subject to conservation laws). However, to describe the physics

on the eV scale, the majority of the interaction terms can be treated at mean-field level. These

terms are implicitly included in the one-particle part of (49). Only those terms leading to size-

able dynamical correlation effects have to be treated explicitly as two-particle operators. The

choice of the WF basis thus amounts to deciding which part of the electron-electron interaction

can be approximated by a mean-field decoupling and which part should be kept explicitly. The

double-counting term Hdc is used to avoid counting the same interaction twice, once on a mean-

field level in the first term and once explicitly. Following this reasoning, it appears physically

well justified to work with as localized WF orbitals as possible since this amounts to the best

possible separation of intra- and inter-atomic electron-electron interaction. We emphasize that

we have just presented a physical picture rather than a mathematical framework. In practice

the starting band structures are not obtained from Hartree-Fock theory (i.e., a self-consistent

mean-field solution of the electron Hamiltonian), but from density functional theory, which has

a similar mathematical structure, but uses essentially an empirical one-particle potential, which

is known to yield better results than Hartree-Fock theory. Using the empirical potential makes

it impossible to rigorously define what the double-counting term Hdc should be. Therefore, we

are left with heuristic arguments to define Hdc and various forms are being used with varied

success for different groups of materials.

In Fig. 12 a flow chart of a typical LDA+DMFT [26] calculation is shown. It consists of two

more or less independent steps. First, density-functional theory (usually in LDA or similar ap-

proximation) is used to obtain the band structure of a given material. This involves iteration

of the charge distribution. Once the LDA calculation is converged, results are postprocessed

to obtain the model Hamiltonian (49). This involves the physically motivated selection of the

relevant part of the Hilbert space (specified through the energy window or band indices) and the

construction of the corresponding Wannier functions. The one-particle part of (49) is obtained

by a straightforward unitary transformation between the Bloch and Wannier functions. Deter-

mination of the interaction parameters is less straightforward since it has to account for various

screening processes, in particular those arising from electronic states excluded from the model.

Several approaches are possible: (i) Uαβγδ is treated as a free parameter or adjusted to some ex-
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Fig. 12: A flow chart of typical LDA+DMFT calculation. Two separate self-consistency loops

over the charge density ρ(r) and self-energy Σ(ω) are involved.

perimental input, or it is calculated using (ii) constrained LDA method [27] or (iii) constrained

RPA [28]. The computational approaches (ii) and (iii) are based on the response of the effective

LDA band structure to external perturbations. The second step in the LDA+DMFT approach

consists in DMFT treatment of model (49), which involves iteration over the one-particle self-

energy. Since the dynamical effects in DMFT often lead to some charge redistribution, it may

be desirable to have the charge and self-energy self-consistency in the same loop [19].

6 Summary

Wannier functions provide an extremely useful set of orthogonal functions, which can represent

isolated single or composite bands exactly or entangled bands with adjustable accuracy or res-

olution. They are, in a sense, an optimal compromise between localization in direct space and

in the energy domain. The long-range behavior of WFs reflects the smoothness of the Bloch

functions as functions of quasi-momentum k. Existence of exponentially localized WFs is a

topological property of a given (composite) band. While in commonly studied cases, e.g., time

reversal symmetry and no spin-orbit coupling, exponentially localized WFs can be constructed,

the bands for which this is not possible are of great interest as they exhibit anomalies such as

topologically protected surface currents.
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5.2 Marcus Kollar

1 Introduction

The previous lectures have already discussed several aspects of the physics of correlated elec-

trons in solids, i.e., electrons for which the Coulomb interaction is important and whose be-

havior cannot be assumed to be independent of one another. Several ingredients are necessary

to successfully describe such correlated materials: the Hamiltonian describing the electronic

physics must be obtained, both the interaction part and the kinetic part (i.e., the band structure

as determined with density functional theory, which also provides a suitable basis). Then the

interaction must be treated reliably, and for this dynamical mean-field theory (DMFT) and re-

lated theories provide a controlled approach. The spirit and some technical aspects of DMFT

were already mentioned in the Lecture of D. Vollhardt. The purpose of the present chapter is to

provide a derivation of DMFT (one of many possible derivations, see, e.g., Ref. [1–3]), which

becomes exact in the limit of infinite spatial dimensions.

We assume that the band structure and interaction are known, leading to a one- and two-body

Hamiltonian of the type

H =
∑

ijαβσ

tαβij c+iασcjβσ +
1

2

∑

ijkl
αβγδσσ′

V αβγδ
ijkl c+iασc

+
jβσ′clδσ′ckγσ . (1)

For the present purpose we assume that this Hamiltonian can be reduced further: we keep only

a single band and only the on-site Hubbard interaction U = Viiii, leading to the single-band

Hubbard model:

H = H0 +H1 , H1 = U
∑

i

ni↑ni↓ , (2a)

H0 =
∑

ijσ

tij c
+
iσcjσ =

∑

kσ

ǫk c+
kσckσ , (2b)

where tij is the hopping amplitude from site i to j, whose Fourier transform is the dispersion

relation ǫk.

We begin by reviewing some definitions and basic concepts of many-body physics that are

useful for the formulation and application of DMFT. In Sec. 2 we consider the limit of infinite

dimensions and analyze what happens to the kinetic Hamiltonian H0 in this limit; in particular

the hopping matrix elements must be scaled correctly with the diverging lattice dimension. In

Sec. 3 we discuss what happens to the many-body perturbation series as a consequence of this

scaling, i.e., that the self-energy becomes local. Finally, it is shown how this local self-energy

can actually be calculated in DMFT (Sec. 4).

Green functions

An important dynamical quantity which measures the equilibrium properties of a correlated

electron system is the electronic Green function [4, 5]. In general a Green function GAB is de-

fined as an expectation value of operators A and B taken at different (real or imaginary) times



Introduction to DMFT 5.3

in a thermal state, i.e., with density matrix ∝ exp(−β(H − µN)) corresponding to the temper-

ature T = 1/β, or possibly the ground state. Hence it measures the probability amplitude for a

propagation of a particle or hole excitation in an equilibrium state if A and B are annihilation

and creation operators.

In finite-temperature problems one often uses the imaginary-time-ordered (fermionic) single

particle Green function Gαβ(τ) (we put A = cα , B = c+β ):1

Gαβ(τ) = −〈Tτ cα (τ)c
+
β (0)〉 = −







〈cα (τ)c+β (0)〉 τ > 0

−〈c+β (0)cα (τ)〉 τ ≤ 0
(3)

= −Gαβ(τ + β) for − β < τ < 0, (4)

with imaginary-time Heisenberg operators A(τ) = eHτAe−Hτ ; note that A+(τ) 6= A(τ)+. Its

dependence on time difference only and the anti-periodicity (4) follow from the cyclic properties

of the trace. A Fourier transform yields the Matsubara Green function Gαβ(iωn):

Gαβ(iωn) =

∫ β

0

dτ Gαβ(τ) e
iωnτ , Gαβ(τ) = T

+∞
∑

n=−∞

Gαβ(iωn) e
−iωnτ , (5)

with fermionic Matsubara frequencies iωn = 2πT (n + 1
2
). It is useful to note the spectral

representation

Gαβ(iωn) =

∫ ∞

−∞

dω
Aαβ(ω)

iωn − ω
, (6)

with the spectral function given by its Lehmann representation as (Z: partition function, En:

eigenvalues of H − µN)

Aαβ(ω) =
1

Z

∑

n,m

〈n|c+β |m〉〈m|cα |n〉 (e−βEm − e−βEn) δ(ω − (En − Em)) . (7)

In particular Aαα(ω) ≥ 0. Note that in practice the spectral or Green function can be evaluated

via the Lehmann representation only for sufficiently small systems, i.e., when the many-body

energy eigenvalues and eigenstates can be obtained directly.

From the spectral function other single-particle Green functions can also be obtained, such as

the retarded Green function

Gret
αβ(ω) =

∫ ∞

−∞

dω′ Aαβ(ω
′)

ω + i0+ − ω′
, (8)

which corresponds to a Green function in the time domain that involves real-time Heisenberg

operators. We note that

Aαβ(ω) = −1

π
ImGret

αβ(ω) , (9)

1Note that the prefactor −1 is omitted from the definition in Ref. [5].
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and that the retarded Green function can be obtained from the Matsubara Green function by

the analytic continuation from iωn to ω + i0+. In view of the spectral representations (6)

and (8) we will often write Gαβ(ω) for both the Matsubara or retarded Green function, with

the understanding that the argument is either iωn for the former and ω + i0+ for the latter (and

hence is never purely real).

The indices α, β, . . . can represent lattice site or momentum k, as well as spin index σ (and pos-

sibly orbital or band index). The real-space and momentum-space Green functions are related

by a Fourier transform. We will work in particular with the local Green function (L: number of

lattice sites)

Giiσ(ω) = Gσ(ω) =
1

L

∑

k

Gkσ(ω) , Aiiσ(ω) = Aσ(ω) = −1

π
Im Gσ(ω + i0+) , (10)

assuming translational invariance.

Free particles, with Hamiltonian H −µN =
∑

kσ(ǫk −µ) c+
kσckσ, are characterized by the free

Green function G
(0)
kσ(ω) and the free density of states ρ(ǫ),2

G
(0)
kσ(ω) =

1

ω + µ− ǫk
, ρ(ω) = A(0)

σ (ω) =
1

L

∑

k

δ(ω − ǫk) . (11)

For interacting systems the self-energy Σk(ω) is defined so that it measures the difference be-

tween interacting and free Green functions:

Gkσ(ω)
−1 = G

(0)
kσ(ω)

−1 −Σkσ(ω) , Gkσ(ω) =
1

ω + µ− ǫk −Σkσ(ω)
. (12)

For a translationally invariant system the Green function and self-energy are diagonal in mo-

mentum space. It can also be useful instead to use a matrix notation in site indices, Gijσ(iωn) =

(G)ij,σ,n etc., for which

G
−1 = G

(0)−1 − ΣΣΣΣΣΣΣΣΣ , G = G
(0) +G

(0)ΣΣΣΣΣΣΣΣΣG . (13)

Eq. (12) or (13) are referred to as the (lattice) Dyson equation. The Dyson equation (in any

basis) can be expressed with Feynman diagrams as

= + Σ . (14)

We will discuss Feynman diagrams for the self-energy in Sec. 3.

Path-integral formulation

Another useful technique to work with Green functions is the path integral representation [5].

The partition function and the imaginary-time-ordered Green function for the fermionic Hamil-

2In the thermodynamic limit (L → ∞), the sum over the first Brillouin zone in (11) can be replaced by an

integral, see e.g. (28) below.
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tonian H({c+α}, {cα}) can be written in terms of functional integrals over Grassmann variables,

Z = Tre−β(H−µN) =

∫

φα(β)=−φα(0)

D(φ∗
α(τ), φα(τ)) exp(A), (15)

Gαβ(τ) =
1

Z

∫

φα(β)=−φα(0)

D(φ∗φ) φα(τ)φ
∗
β(0) exp(A), (16)

with the action

A = −
∫ β

0

dτ

[

∑

α

φ∗
α (∂τ − µ)φα +H({φ∗

α}, {φα})
]

. (17)

Note that the Grassmann fields φ∗
α(τ) and φα(τ) are independent (i.e., they are not complex

or hermitian conjugates of each other, even though they represent creation and annihilation

operators) and antiperiodic boundary conditions are imposed on the latter. Strictly speaking,

path-integral expressions such as (16) and (17) are merely shorthand for limits of expressions

that are discretized in imaginary time τ . We refer to Ref. [5] for details.

Quasiparticles

Without interactions single-particle excitations can be created and propagated freely. In a large

many-body system with interactions, on the other hand, particle or hole excitations will usually

be damped and have a finite lifetime. This is encoded in the complex (retarded) self-energy

Σk(ω), in terms of which the spectral function becomes

Ak(ω) =
1

π

ImΣk(ω)

(ω + µ− ǫk − ReΣk(ω))2 + (ImΣk(ω))2
. (18)

This reduces to a δ function only if ImΣk(ω)→ 0−. On the other hand, if ImΣk(ω) is finite and

not too large, the maxima of Ak(ω) are located approximately at the zeros ω = Ek of

ω + µ− ǫk − ReΣk(ω) = 0 . (19)

In the vicinity of Ek the Green function can then be approximated to lowest order as

Gk(ω) =
Zk(Ek)

ω −Ek + iτk(Ek)−1
, (20a)

Zk(ω) = [1− ReΣk(ω)]
−1 , (20b)

τk(ω) = [−Zk(ω)ImΣk(ω)]
−1 , (20c)

where Zk and τk play the role of a quasiparticle weight and lifetime. In analogy to the non-

interacting case the maxima Ek of Ak(ω) yield the electronic dispersion, i.e., the relation be-

tween crystal momentum and excitation energy, although this maximum may be quite broad.
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A reliable quasiparticle picture is guaranteed in a Landau Fermi liquid close to the Fermi sur-

face, i.e., near ω = 0, because then ReΣk(ω) is linear and ImΣk(ω) quadratic in ω for small

frequencies. Near ω = 0 this leads to

Ek = Zk(0)(ǫk − µ+ ReΣk(0)) , (21)

i.e., a linear relation between bare and interacting dispersion. However angle-resolved photoe-

mission (ARPES) nowadays provides a means to measure Ak(ω) (times the Fermi function)

even deep below the Fermi energy with high accuracy (see, e.g., Ref. [6]). Therefore it is de-

sirable to understand the origin of resonances given by (19), even if these excitations are not as

coherent as low-energy excitations in a Landau Fermi liquid.

Hubbard bands and the Mott transition

Let us consider the atomic limit of the Hubbard model, i.e., no hopping, tij = 0. The Green

function then becomes momentum-independent and reads

Gat
kσ(ω) =

n−σ

ω + µ− U
+

1− n−σ

ω + µ
, (22)

which corresponds to a spectral function with two δ peaks separated by an energy U , and for

half-filling the system is insulating. What happens now if we turn on the hopping tij? The δ

peaks in the spectral function will broaden so that two subbands develop, the Hubbard bands.

Note that these subbands are not one-electron bands as in non-interacting systems. For example,

the upper Hubbard band describes the spectrum of charge excitations on top of the filled lower

Hubbard band. If the hopping is increased further, or the Hubbard interaction U decreased,

these Hubbard bands will eventually overlap and the system will become metallic at a critical

value Uc on the order of the bandwidth. This correlation-induced metal-insulator transition

does not break translational invariance and is called the Mott transition, as it was originally put

forward by Mott [7].

Starting from the atomic limit, the simplest and rather crude method to capture the Mott phe-

nomenon is the so-called Hubbard-I approximation: one obtains the atomic self-energy from (22)

and uses it in the Dyson equation. However, this ad-hoc approximation leads to several unde-

sirable pathologies (see Ref. [8] for a discussion). Starting from the weak-coupling side, a

reasonable picture of the Mott transition can be provided by, e.g., the Gutzwiller wave function

(see [9] for a review); however, there are also some shortcomings in this and other variational

approaches. In fact, one of the successes of DMFT is its description of the Mott transition; in

Sec. 4 we will mention some of these results.

2 Fermions in infinite dimensions

Historically, DMFT began with the discovery of simplifications that occur in the limit of infinite

spatial dimensions [10], which we will now discuss. First of all, it is of course straightforward
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to generalize the three-dimensional simple cubic lattice to the d-dimensional hypercubic lattice.

The hypercubic lattice has the unit cell basis vectors

e1 = (1, 0, 0, . . . , 0) , (23)

e2 = (0, 1, 0, . . . , 0) , (24)

. . . (25)

ed = (0, 0, 0, . . . , 1) . (26)

A nearest-neighbor hopping amplitude tij and corresponding dispersion then have the form

tij = t(Ri −Rj) =







−t if Ri −Rj = ±en

0 otherwise
, ǫk = −2t

d
∑

i=1

cos ki . (27)

We now consider the limit d → ∞ and obtain the limit of the density of states (11), in two

ways. The first and rather elegant way proceeds by appealing to the central limit theorem

of probability theory [10]. For this, consider the random variables Xi =
√
2 cos ki, with the

independent random variables ki each distributed uniformly in [−π : π]. Xi has zero mean and

unit variance,
∫ π

−π
dki
2π

X2
i = 1. By the central limit theorem, for d → ∞ the random variable

Xd =
1√
d

∑d
i=1 Xi converges in law to a normal distributed random variable X with zero mean

and unit variance. This means that the distribution function of Xd converges to the normal

distribution f(x) = exp(−x2/2)/
√
2π. Next the density of states ρ(ǫ) can be regarded as the

distribution function of the random variable
√
2d tXd. We conclude that a finite density of

states is obtained for d→ ∞ if the hopping amplitude is scaled proportional to d−1/2,

ρ(ǫ) =

∫

ddk

(2π)d
δ(ǫ− ǫk) (28a)

=
1

2π|t∗|
exp

[

− ǫ2

2t2∗

]

for t =
t∗√
2d

, (28b)

with t∗ independent of d. Hence nearest-neighbor hopping on the hypercubic lattice, if scaled

appropriately, leads to a Gaussian density of states. In Fig. 1, which shows the density of states

for hopping on hypercubic lattice for several d, the trend towards the Gaussian density of states

for large d can be recognized.

The second way to obtain this density of states uses the Fourier transform of ρ(ǫ) [12], which

factorizes:

Φ(s) =

∞
∫

−∞

dǫ eisǫ ρ(ǫ) =

∫

ddk

(2π)d
eisǫk (29)

=





π
∫

−π

dk

2π
exp

(

−2ist∗√
2d

cos k

)





d

= J0

(

2t∗√
2d

)d

(30)

=

[

1− t2∗s
2

2d
+O

(

1

d2

)]d

= exp

[

−t2∗s
2

2
+O

(

1

d

)]

, (31)
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ρ(ω)

Fig. 1: Density of states for hopping on hypercubic lattice for several d, compared to the Gaus-

sian that is obtained in d→ ∞. From Ref. [2].

where J0(z) is a Bessel function. The inverse transform is then

ρ(ǫ) =

∞
∫

−∞

dǫ

2π
e−isǫ Φ(s) =

1

2π|t∗|
exp

[

− ǫ2

2t2∗
+O

(

1

d

)]

. (32)

In fact, this calculation is similar to the proof ideas behind the central limit theorem, for which

Fourier transforms of probability function are also used.

The important conclusion from these considerations is that the nearest-neighbor hopping am-

plitude must be scaled with 1/
√
d to obtain a meaningful finite limit. This statement can be

generalized as follows: each hopping amplitude tn must be scaled proportional to 1/
√
Zn,

where Zn is the number of sites that are connected by tn, e.g., Z1 = 2d for nearest-neighbor

hopping and Z2 = (2d−1)2d= (Z−1)Z for next-nearest-neighbor hopping on the hypercubic

lattice, and so on.

Note that the density of states extends up to infinite positive and negative energies ǫ, even after

the scaling (28). An infinite bandwidth results also for other generalized lattices, such as the

face-centered-hypercubic lattice [11] (which is asymmetric and has one finite band edge) or

the hyperdiamond lattice [13] (for which the symmetric density of states vanishes at ǫ = 0).

One of the few lattices with finite bandwidth is the Bethe lattice, i.e., an infinite Cayley tree

of which each node has Z nearest neighbors. This recursively defined lattice (which is not a

crystal lattice) has a semi-elliptic density of states with a finite bandwidth in the limit Z → ∞
for scaled nearest-neighbor hopping t = t∗/

√
Z,

ρBethe(ǫ) =











√

4t2∗ − ǫ2

2πt2∗
for |ǫ| ≤ 2|t∗|

0 otherwise

. (33)
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This result is best obtained with recursive methods and can be generalized to next-nearest-

neighbor and longer-range hopping (see Refs. [14, 15] and references therein).

The infinite band edges for nearest-neighbor hopping on regular lattice may seem problematic

at first glance. After all we are interested in using the infinite-dimensional limit as an approx-

imation to finite-dimensional lattices, for which finite hopping amplitude always imply finite

band edges. The practical solution is to use the simplifications that result from the infinite-

dimensional limit (see the following sections) and to plug in the non-interacting density of

states of the system of interest everywhere. Some justification for this scheme comes from two

observations: (i) In infinite dimensions the dispersion ǫk typically enters only via the density of

states (at least into single-particle quantities), so that the detailed lattice structure does not enter.

(ii) For any single-band density of states one can always construct a corresponding set of hop-

ping amplitudes (both for the infinite-dimensional hypercubic [16] and Bethe lattice [14]); in

particular, densities of states with finite bandwidth are perfectly possible, although they usually

require long-range hopping.

3 Simplifications for many-body theory

We now turn to the consequences that the limit d → ∞ has for many-body theory [12, 17],

in particular for the self-energy (defined in 13). This is best discussed in terms of Feynman

diagrams for Green functions [4, 5], of which we first review some basics.

A guide to Feynman diagrams

Feynman diagrams for single-particle Green functions (for arbitrary quadratic H0 and two-

particle interaction H1) are built from the following elements:

= non-interacting Green function line G(0), (34)

= interaction vertex, (35)

= full (interacting) Green function line G . (36)

The perturbation expansion in H1 then yields the following series of diagrams (unlabeled, and

arrows omitted) for the Green function:

= + + + + + + . . . . (37)

Clearly some parts of the diagram occur repeatedly. Therefore one defines proper self-energy

diagrams, which are “one-particle irreducible” (i.e., cannot be cut in two pieces by cutting a
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single solid line) and have their external vertices amputated. Here are some examples:

. (38)

proper proper not proper proper (39)

From these diagrams one builds the self-energy,

Σ = + + + + . . . , (40)

which, when combined with (14), indeed yields (36). So far we have considered an expansion

of the formΣΣΣΣΣΣΣΣΣ[G(0)],3 i.e., in terms of the free Green function G
(0). These diagrams still contain

self-energy insertions in their internal lines. The next step is therefore to construct the skeleton

expansion which instead uses full (interacting) Green function lines:

Σ = + + + . . . . (41)

Clearly one must be careful not to include diagrams more than once, especially in higher orders.

The skeleton expansionΣΣΣΣΣΣΣΣΣ[G] is a useful representation to analyze the self-energy in the limit d

→ ∞.

Power counting in 1/d

We now study first the d dependence of Gijσ(ω) in the limit d → ∞, for scaled hopping ampli-

tudes,

tij = t∗ij d
− 1

2
||Ri−Rj || . (42)

Here ||Ri−Rj|| is the shortest number of lattice steps from Ri to Rj on the hypercubic lattice,

and hence proportional to the number of sites connected by the hopping amplitude tij , so that

(42) has the correct scaling. By our construction the kinetic energy is finite in the limit d→∞,

which can be expressed in terms of the Green function,

Ekin,σ =
∑

ij

tij〈c+iσcjσ〉 =
∑

ij

tij

∞
∫

−∞

dω

2πi
Gijσ(ω) e

iω0+ = O(d0) . (43)

Here the double sum yields a contribution of order Ld||Ri−Rj ||. Hence we can conclude

Gijσ(ω) = O(d−
1

2
||Ri−Rj ||) , Giiσ(ω) = O(d0) , (44)

i.e., the Green function decays rapidly with distance, which leads to simplifications for the

Feynman diagrams.

3This is of course a functional dependence of ΣΣΣΣΣΣΣΣΣ on G
(0), because the whole matrix G

(0)(iωn) and also the

frequency dependence enter into the value of the Feynman diagrams due to summations over internal lines.
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Local self-energy

We know analyze the consequences for the self-energy. For this discussion, however, we work

with Hugenholtz diagrams instead, which combine direct and exchange diagrams into a box

vertex [5]. However, for the Hubbard interaction here are no exchange diagrams anyway. We

thus make the replacement

i, σ i,−σ = Uni↑ni↓ = . (45)

In terms of these diagrams, the skeleton expansion takes the form

Σ = + + + . . . , (46)

and has the property that by construction any two vertices are joined through Green function

lines via at least three independent paths. Namely, suppose there is only one such path; then the

diagram is one-particle irreducible, a contradiction. If there are only two paths, then they must

run through a diagram part which is a self-energy insertion, which is also a contradiction.

Now consider an arbitrary diagram (in position space, so that the interaction vertices are labeled

by lattice site vectors), in which two internal vertices labeled by i and j appear,

i

j

. (47)

Let us hold i fixed for the moment. We now compare the case j 6= i with the case j = i.

Suppose j 6= i. As discussed above, there are three independent paths from the vertex i to the

vertex j. The Green function lines on these paths can thus contribute at most O(d−
3

2
||Ri−Rj ||)

(for example, less if there is another intermediate site Rk on a path). The summation over j

will then yield an order O(d||Ri−Rj ||). As a consequence, any skeleton diagram is suppressed at

least by a factor O(d−
1

2
||Ri−Rj ||), for example this one:

j

i . (48)

By contrast, for j = i the Green functions are of order O(d0), and there is no summation. We

thus conclude that only the case i = j contributes in the limit d → ∞, i.e., all diagrams in

the skeleton expansion ΣΣΣΣΣΣΣΣΣ[G] have the same lattice site label at all their internal and external

vertices. Hence the self-energy is site-diagonal (“local”),

Σijσ(ω) = δij Σiiσ(ω) = δij Σσ(ω) , (49)
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or, equivalently, momentum-independent in k space,

Σkσ(ω) = Σσ(ω) . (50)

Furthermore, the self-energy Σσ(ω) is a functional only of the local Green function Gσ(ω),

because all internal vertices in the skeleton expansion have the same site label.

The simple form of the self-energy has some immediate consequences also for the Green func-

tion (13), namely

Gkσ(ω) =
1

ω + µ− ǫk −Σσ(ω)
= G

(0)
kσ(ω −Σσ(ω)) , (51)

and in particular the local Green function becomes

Gσ(ω) =

∫

ddk

(2π)d
1

ω + µ− ǫk −Σσ(ω)
(52)

=

∞
∫

−∞

dω
ρ(ǫ)

ω + µ−Σσ(ω)− ǫ
. (53)

The last equation thus provides a relation between the local self-energy and the local Green

function, and depends only on the dispersion via the free density of states. We will come back

to this relation in the next section.

4 Dynamical mean-field theory

In the last section we have seen that the self-energy becomes site-diagonal and momentum-

independent in the limit d → ∞. The last step is now to actually construct the functional

Σσ[Gσ] [1–3, 18, 19], which will complete the derivation of the DMFT equations.

Mapping onto effective impurity models

Consider a single-site action, A = A1 +A2, consisting of a quadratic part and an interaction,

A1 =

β
∫

0

dτ

β
∫

0

dτ ′
∑

σ

c∗σ(τ)G−1
σ (τ, τ ′) cσ(τ

′) =
∑

n,σ

c∗σ(iωn)Gσ(iωn)
−1 cσ(iωn), (54a)

A2 = −U

β
∫

0

dτ c∗↑(τ)c↑(τ)c
∗
↓(τ)c↓(τ), (54b)

with some as yet unfixed “free” Green function (GGG−1)τ,τ ′ = G−1
σ (τ, τ ′), which also depends

only on imaginary-time differences. The goal is now to match this action to that of Hubbard

model in infinite dimensions.
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Suppose that we calculate the imaginary-time-ordered Green function of the single degree of

freedom c from the action (54), and Fourier transform to Matsubara frequencies. This is abbre-

viated as

Gσ(iωn) = 〈cσ(iωn)c
∗
σ(iωn)〉A[GGG] . (55)

Then define the impurity impurity self-energy ˜ΣΣΣΣΣΣΣΣΣ via the impurity Dyson equation,

G =
[

GGG−1 − ˜ΣΣΣΣΣΣΣΣΣ
]−1

. (56)

Now consider the diagrams in the skeleton expansion of ˜ΣΣΣΣΣΣΣΣΣ[G] ,

˜ΣΣΣΣΣΣΣΣΣ[G] = + + + . . . , (57)

in which of course only the single site of (54) occurs. However, since the local Hubbard inter-

action is the same both for the lattice Hubbard model and the single-site action, this skeleton

expansion is exactly the same as that for the Hubbard model (41), i.e.,

˜ΣΣΣΣΣΣΣΣΣ[G] =ΣΣΣΣΣΣΣΣΣ[G] . (58)

This shows that the desired functional Σσ[Gσ] can be obtained by solving the single-site prob-

lem (54).

Dynamical mean-field equations

We summarize again the three DMFT equations, which determine three unknowns: the local

Green function Gσ(iωn), the dynamical mean field (or Weiss field) Gσ(iωn), and the local self-

energy Σσ(iωn):

Gσ(iωn)= 〈cσ(iωn)c
∗
σ(iωn)〉A[G], (DMFT-1)

Gσ(iωn)=
[

Gσ(iωn)
−1 −Σσ(iωn)

]−1
, (DMFT-2)

Gσ(iωn) =

∫

dǫ
ρ(ǫ)

iωn + µ−Σσ(iωn)− ǫ
. (DMFT-3)

Note that the self-consistency equation (53) provides precisely the needed relation (DMFT-3)

to fix the Weiss field Gσ. After all, it must be ensured that one solves the correct single-site

problem, i.e., the one which indeed corresponds to the Hubbard model on a lattice with density

of states ρ(ǫ).

A typical iterative solution then proceeds a follows. Start with some Weiss field Gσ, obtain

Gσ from (DMFT-1), determine Σσ from the impurity Dyson equation (DMFT-2), calculate Gσ

from self-consistency equation (DMFT-3), obtain Gσ by using (DMFT-2) again, and repeat until

convergence is reached.
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Of course the DMFT equations should produce the correct noninteracting and atomic limits.

(i) In the noninteracting case we haveU = 0 and thusΣσ(iωn) = 0. Furthermore it follows from

(DMFT-3) that then Gσ(iωn) = G
(0)
σ (iωn). Finally (DMFT-2) gives Gσ(iωn) = Gσ(iωn), and

this agrees with (DMFT-1) for U = 0. (ii) On the other hand, in the atomic limit we have tij = 0

and ǫk = 0, i.e., ρ(ǫ) = δ(ǫ). From (DMFT-3) we obtain Gσ(iωn) = [iωn+µ−Σσ(iωn)]
−1, and

(DMFT-2) yields Gσ(iωn)
−1 = iωn + µ, i.e., G−1

σ (τ) = −∂τ + µ, which agrees with (DMFT-1)

for tij = 0.

For general interaction U , the local action (54) clearly represents the most difficult of the DMFT

equations. To obtain the impurity Green function from it, a dynamical single-site problem

must be solved, usually with numerical methods. For finite temperatures quantum and thermal

averages can be stochastically sample with quantum Monte Carlo (QMC) methods, such as

the Hirsch-Fye QMC algorithm [19–21, 1] and continuous-time (CT) QMC [22–24]. Methods

that also work for zero temperature include exact diagonalization (ED) [25–27], the numerical

renormalization group (NRG) [28, 29] and the density-matrix renormalization group (DMRG)

[30]. A number of perturbative or semianalytic methods is also available.

To use these “impurity solvers”, the single-site action (54) is not used directly, but rather an

impurity problem defined by a Hamiltonian is considered, usually by constructing a single-

impurity Anderson model (SIAM):

HSIAM =
∑

ℓσ

ǫℓ a
+
ℓσaℓσ +

∑

ℓσ

Vℓ (a
+
ℓσcσ + c+σ aℓσ) + Uc+↑ c↑ c

+
↓ c↓ . (59)

Here the fermions aℓσ represent a non-interacting bath which hosts the interacting fermion cσ.

This bath can be at once integrated out from the action which represents HSIAM, because this

involves only Gaussian integrals. The resulting action is then precisely of the form (54), with

G−1
σ (iωn) = iωn + µ− 1

π

∞
∫

−∞

dω
∆(ω)

iωn − ω
, ∆(ω) = π

∑

ℓ

V 2
ℓ δ(ω − ǫℓ) , (60)

where ∆(ω) is called the hybridization function. In the DMFT cycle one must now find the

parameters Vℓ and ǫℓ that allow a self-consistent DMFT solution. Then one has found the

appropriate SIAM that represents the Hubbard model in DMFT.

For reference we note that the self-consistency equation (DMFT-3) yields a simple relation for

next-neighbor hopping t∗ on the Bethe lattice with density of states (33),

Gσ(iωn) = iωn + µ− t2∗G(iωn) . (61)

This relation and generalizations for other types of hopping are discussed in Refs. [1,16,14,15].

Results for the Hubbard model

Some aspects of the spectrum and DMFT phase diagram of the Hubbard model were discussed

already in the Lecture of D. Vollhardt. Fig. 2 shows the zero-temperature spectral function for
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Fig. 2: Zero-temperature spectral function for the homogeneous phase of the Hubbard model

on the Bethe lattice with nearest-neighbor hopping and bandwidth W = 4|t∗| at half-filling,

evaluated with NRG. From Ref. [28].

the homogeneous phase of the Hubbard model on the Bethe lattice with nearest-neighbor hop-

ping and bandwidthW = 4|t∗| at half-filling, evaluated with NRG. Three values ofU are shown,

one in the metallic phase (three peaks in the spectral function), one close to the critical value

Uc, and one for the insulating phase (with gap in the spectral function). At the Fermi energy

the spectral function has the same value for all U in the metallic phase; this is a consequence of

Luttinger’s theorem [12]. In the metallic phase the weight of the central peak is proportional to

the Fermi liquid quasiparticle renormalization factor Z (see (21)), whereas the outer two peaks

are the developing Hubbard bands.

Fig. 3 shows the renormalization factor Z obtained with various methods. It starts from Z =

1 for the non-interacting case and decreases as U is increased, corresponding to the decreasing

width of the central peak in the spectral function and an increasingly flatter dispersion. At Uc,

the half-filled system becomes localized and Z vanishes accordingly.

The Falicov-Kimball model, a solvable example

The Falicov-Kimball model is a simplified version of the Hubbard model, in which only one

of the two spin species is mobile (relabeled as di), while the other (relabeled as fi) is not. For

this model the Green function can be obtained explicitly from the DMFT action [31]. The

Hamiltonian reads

H =
∑

ij

tij d
+
i dj + Ef

∑

i

f+
i fi + U

∑

i

d+i di f
+
i fi , (62)

i.e. the d electrons are moving in front of a background of static f electrons, whose configu-

ration is chosen such that it optimizes the free energy. In principle this makes the model quite

complicated, as one needs the spectrum of H for all the possible f configurations. In dimen-

sions d ≥ 2 it is known that at half-filling on a bipartite lattice checkerboard order of the f
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Fig. 3: Quasiparticle weight Z for the half-filled Hubbard model on the Bethe lattice (with t∗ =
1) in DMFT. Crosses +: NRG; squares: ED; crosses × and circles: QMC extrapolations; lower

dashed line: 2nd order perturbation theory in U , upper dashed line: 4th order perturbation

theory in U . From Ref. [16].

electrons appears in the ground state and persists up to a finite critical temperature [32]. Here

we consider only the homogeneous phase in DMFT for simplicity.

Since there is no hopping amplitude for the f electrons, the DMFT self-consistency yields at

once G−1
f = −∂τ + µ + Ef , as explained above for the atomic limit. The DMFT action is thus

given by

A =

β
∫

0

dτ

β
∫

0

dτ ′d∗(τ)G−1
d (τ, τ ′) d(τ ′)

+

β
∫

0

dτf ∗(τ)(∂τ − µ+ Ef) f(τ)− U

β
∫

0

dτ d∗(τ)d(τ)f ∗(τ)f(τ). (63)

Now the f electrons can be integrated out at each lattice site, i.e., they are in the atomic limit

(cf. Sec. 1). This leads to

Gd(iωn) = 〈d(iωn)d
∗(iωn)〉A =

nf

Gd(iωn)−1 − U
+

1− nf

Gd(iωn)−1
, (64)

which must be solved together with the other two DMFT equations

Gd(iωn) =

∞
∫

−∞

dǫ ρd(ǫ)

iωn + µ−Σd(iωn)− ǫ
, (65)

Gd(iωn)
−1 = Gd(iωn)

−1 −Σd(iωn) . (66)

This set of equations determines the d-electron Green function Gd(iωn) for any density of states

ρd(ǫ). Analytically continuation to real frequencies shows at once that the spectra in the homo-

geneous phase are independent of temperature (but this no longer holds in the checkerboard
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Fig. 4: Spectral function of itinerant d electrons for the Falicov-Kimball model in DMFT

for nearest-neighbor hopping on the Bethe lattice, homogeneous phase, nd = nf = 1
2
,

U = 0.5, 1.0, . . . 3.0. From Ref. [31].

phase). Fig. 4 shows the spectral function Ad(ω) for several U for the Bethe lattice (with

nearest-neighbor hopping t∗ = 1). In particular there is a Mott metal-insulator transition taking

place at Uc = 2; for larger U , a band gap develops. Nevertheless, the transition is qualitatively

different from that in the Hubbard model. For example, for the Falicov-Kimball model it can be

shown that from the low-energy form of the self-energy that for 0 < U < Uc the metallic state

is not a Landau Fermi liquid; as a consequence, the spectral function is not pinned at the Fermi

surface.

It is also possible to solve for d self-energy as a functional of the d Green function, i.e., for the

skeleton functional4 Σd[Gd] [8]

Σd(iωn) =
U

2
− 1

2Gd(iωn)
±

√

(

U

2
− 1

2Gd(iωn)

)2

+
Unf

Gd(iωn)
. (67)

Just like any skeleton expansion, this relation holds for any density of state ρ(ǫ).

5 Summary and outlook

The goal of this lecture was to demonstrate the origin of DMFT, i.e., to show how the infinite-

dimensional Hubbard model can be mapped onto a dynamical single-site problem in an effective

bath, which has to be determined self-consistently. In the other lectures several further aspects of

DMFT will be discussed. For one, some of the numerical approaches that were only mentioned

in this lecture will be explained in detail. Second, DMFT will be combined with ab-initio band

structure methods to make quantitative predictions about correlated materials. Finally, several

extensions of DMFT to correlated clusters (instead of a single correlated site) will be developed,

which improve the description for finite-dimensional systems.

4Note that in the DMFT solution for the Falicov-Kimball model this functional is in fact a function: Σd(iωn)
depends only on Gd(iωn) at the same frequency. This is certainly not the case for the Hubbard model.
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[31] J. K. Freericks and V. Zlatić, Rev. Mod. Phys. 75, 1333 (2003)

[32] T. Kennedy and E. H. Lieb, Physica A 138 320 (1986)



6 The LDA+DMFT Approach

Eva Pavarini

Institute for Advanced Simulation

Forschungszentrum Jülich GmbH
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It would indeed be remarkable if Nature fortified herself against further advances in knowledge

behind the analytical difficulties of the many-body problem. (Max Born, 1960)

1 The many-body problem

Most of chemistry and solid-state physics is described by the Hamiltonian

Ĥ = −1

2

∑

i

∇2
i +

1

2

∑

i6=i′

1

|ri − ri′ |
−

∑

i,α

Zα

|ri −Rα|
−
∑

α

1

2Mα
∇2

α +
1

2

∑

α6=α′

ZαZα′

|Rα −Rα′ | ,

where {ri} are the coordinates of the Ne electrons, {Rα} those of the Nn nuclei, Zα the atomic

numbers, andMα the nuclear masses. The Born-Oppenheimer product AnsatzΨ ({ri}, {Rα}) =
ψ({ri}; {Rα})Φ({Rα}) simplifies the problem. The Schrödinger equation for the electrons,

Heψ = εψ, with

Ĥe = −1

2

∑

i

∇2
i +

1

2

∑

i6=i′

1

|ri − ri′ |
−
∑

iα

Zα

|ri −Rα|
+

1

2

∑

α6=α′

ZαZα′

|Rα −Rα′ |

= T̂e + V̂ee + V̂en + V̂nn, (1)

has however a simple solution only in the non-interacting limit (V̂ee = 0). In this case, He is

separable as Ĥe =
∑

i ĥ
0
e(ri) + V̂nn, with

ĥ0e(r) = −1

2
∇2 −

∑

α

Zα

|r−Rα|
= −1

2
∇2 + vext(r).

In a crystal the external potential vext(r) is periodic, the eigenvectors of ĥ0e(r) are Bloch func-

tions, ψnkσ(r). The eigenvalues are the corresponding band energies, εnk. Many-electron (Ne >

1) states may be obtained by filling energy levels εnk with electrons and anti-symmetrizing the

wave-function according to the Pauli principle (Slater determinant). For a half-filled band de-

scribed by the dispersion relation εk, such a Slater determinant has the form

ψ({ri}; {Rα}) =
1√
Ne!

ψk1↑(r1) ψk1↑(r2) . . . ψk1↑(rNe)

ψk1↓(r1) ψk1↓(r2) . . . ψk1↓(rNe)
...

...
...

...

ψkNe
2

↑(r1) ψkNe
2

↑(r2) . . . ψkNe
2

↑(rNe)

ψkNe
2

↓(r1) ψkNe
2

↓(r2) . . . ψkNe
2

↓(rNe)

. (2)

Unfortunately, the electron-electron repulsion is strong, and the non-interacting electrons ap-

proximation is insufficient to understand real materials. Because V̂ee is not separable, with

increasing Ne, finding the solution of the Schrödinger equation Heψ = εψ becomes quickly an

unfeasible task, even for a single atom.

A big step forward was the development of density-functional theory (DFT) [1, 2], described

in detail in the Lecture of Peter Blöchl. DFT is based on the Hohenberg-Kohn theorem, which
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establishes the one-to-one correspondence between the ground-state electron density n(r) of an

interacting system and the external potential vext(r) acting on it. For any material described by

the Hamiltonian (1), the ground-state total energy is a functional of the electron density, E[n],

which is minimized by the ground-state density. E[n] can be written as

E[n] = F [n] +

∫

dr vext(r)n(r) + Enn = F [n] + V [n] + Enn.

F [n] = Te[n] + Eee[n], the sum of the kinetic and electron-electron interaction energy, is a

(unknown) universal functional (the same for all systems). V [n] is the system-specific potential

energy. The shiftEnn is the nucleus-nucleus interaction energy. The obstacle is that finding n(r)

still requires, in principle, the solution of the many-body problem (1). Kohn and Sham have

shown, however, that n(r) can be obtained by solving the Schrödinger equation of a fictitious

non-interacting system, whose external potential vR(r) is chosen such that the ground-state

density n0(r) equals n(r)

n(r) = n0(r) =
occ
∑

n

|ψn(r)|2.

To obtain the Hamiltonian ĥ0e(r) of such an auxiliary problem we rewrite F [n] as

F [n] = T0[n] + EH [n] + Exc[n] = T0[n] +
1

2

∫

dr

∫

dr′
n(r)n(r′)

|r− r′| + Exc[n],

where T0[n] is the kinetic energy of the auxiliary system, EH [n] the classical electrostatic (or

Hartree) energy, and Exc[n] is the small exchange-correlation correction,

Exc[n] = Eee[n]− EH [n] + Te[n]− T0[n].

By minimizing the total energy with respect to {ψn}, with the constraint 〈ψn|ψn′〉 = δn,n′ , we

find the Kohn-Sham equation

ĥ0e(r) ψn(r) = [−1

2
∇2 + vR(r)]ψn(r) = εnψn(r). (3)

The eigenvalues εn are the Lagrange multipliers which enter the minimization through the con-

straint. The external (or reference) potential is given by

vR(r) = −
∑

α

Zα

|r−Rα|
+

∫

dr′
n(r′)

|r− r′| +
δExc[n]

δn
.

The exchange-correlation functional is unknown, and includes a Coulomb (Eee[n] − EH [n])

and a kinetic energy (Te[n]− T0[n]) term. The latter can be transformed into a correction of the

Coulomb term by means of a coupling-constant integration: The interaction Vee is rescaled by

a parameter λ (with 0 ≤ λ ≤ 1), while keeping n(r) fixed; this constraint is fulfilled through

a reference potential vλR(r). Using the Hellmann-Feynman theorem to calculate ∂Eλ

∂λ
, where

Eλ = 〈Ψλ|Hλ|Ψλ〉 is the ground-state energy at coupling constant λ, and then integrating over

λ to obtain E1 − E0, one may show that

Exc[n] =

∫

dr

∫

dr′
n(r)n(r′)(g(r, r′)− 1)

|r− r′| ,
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where

g(r, r′) =

∫ 1

0

dλ gλ(r, r
′).

The quantity n(r, r′) =
∑

σ,σ′ n(rσ, r′σ′) = n(r′)n(r)gλ(r, r
′) is the joint probability of finding

electrons at r and r′. The function gλ(r, r
′) is the pair-correlation function. It can be shown that

gλ(r, r
′)− 1 vanishes in the large |r− r′| limit.

In the Hartree-Fock approximation, in which the wavefunction is a Slater determinant, e.g. (2)

n(rσ, r′σ′) = n(rσ)n(r′σ′)− δσ,σ′

∣

∣

∣

∣

∣

∣

Ne/2
∑

i

ψkiσ(r)ψkiσ(r
′)

∣

∣

∣

∣

∣

∣

2

, (4)

where the last term accounts for the Pauli exclusion principle (exchange) and cancels the un-

physical interaction of each electron with itself (self-interaction) present in the Hartree energy.

The following sum rule holds for the pair-correlation function

∫

dr′ n(r′)(gλ(r, r
′)− 1) = −1. (5)

This −1 is, in atomic units (Appendix A), a positive charge −e. The exchange-correlation en-

ergy Exc[n] may thus be interpreted as the energy gain due to the interaction of each electron

with an exchange-correlation hole with charge density n(r′)(gλ(r, r
′)−1) surrounding it. Since

the exchange hole described by Eq. (4) already satisfy the sum rule (5), the remaining correla-

tion hole redistributes the charge density of the hole. In the one-electron case (Ne = 1), Exc[n]

merely cancels the Hartree self-interaction energy.

The main difficulty of DFT is to find good approximations to Exc[n]. The most common is

the local-density approximation (LDA), in which Exc[n] is replaced by its expression for a

homogeneous interacting electron gas with density equal to the local density n(r)

Exc[n] =

∫

drǫLDA
xc (n(r))n(r). (6)

The LDA is particularly justified in systems with slowly varying spatial density n(r). For such

materials, we could split space into regions in which the density is basically constant and the

system can indeed be described by a homogeneous electron gas; if we add up the contributions

of all these regions of space we obtain the integral (6). The spin-polarized extension of the

local-density approximation is the local spin-density approximation (LSDA).

The ground-state electron-density n(r) can be obtained by solving (3) self-consistently. Vari-

ous successful methods have been developed to find the eigenvalues and eigenvectors of (3),

for solids and molecules. They are based on atomic-like orbitals (LMTO, NMTO), plane-

waves (pseudopotentials), combinations of both (LAPW, PAW), gaussians, or Green functions

(KKR) [3]. Through the years, DFT and the LDA have provided insight not only in solid-state

physics, but also in chemistry and even in systems of biological interest. For this reason DFT

became the standard model for electronic-structure calculations [1–3]. Strictly speaking, the

Kohn-Sham energies εn have no physical meaning except the highest occupied state, which
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Fig. 1: LDA solution of the Schrödinger equation for a single atom: 4πr2|Rnl(r)|2/aB as a

function of the distance from the nucleus, r/aB (atomic units, Appendix A). Blue: Cu 3d. Black:

Cu 4s. The 2p orbital of a F atom in r = 4aB is also shown (green). Cu has the electronic

configuration [Ar] 3d104s1 and F the configuration [He] 2s22p5.

yields the ionization energy, and their identification with one-particle energies is not justified.

The Kohn-Sham orbitals ψn(r) are just a tool to generate the ground-state density n(r). Never-

theless, in practice Kohn-Sham orbitals turned out to be very useful to explain the properties of

solids. Fermi surfaces, chemistry and many features of the electronic structure are qualitatively

and often quantitatively well described by DFT in the LDA approximation or its extensions.

The energy gap of semiconductors is underestimated, but can be corrected within many-body

perturbation theory (GW approximation, discussed in the Lecture of Karsten Held).

LDA fails to capture, however, the essential physics of strongly-correlated systems, even at a

qualitative level. At the center of this discrepancy are many-body effects between electrons in

open d or f shells. Since these electrons are very localized, the Coulomb repulsion between

them is significant. When Coulomb repulsion is strong, electrons lose their individuality: The

dynamics of a single electron depends on the position of all others, the Coulomb repulsion of

which it has to avoid (electrons are strongly correlated), and cannot be described by a refer-

ence mean-field potential. This happens for example in the case of Mott insulators. Because

the Kohn-Sham Hamiltonian (3) with the LDA exchange-correlation potential describes inde-

pendent electrons, many-electron states can be built from the Kohn-Sham orbitals as a single

Slater determinant. Thus, a non-magnetic crystal with an odd number of electrons per unit cell

has partially filled bands because of spin degeneracy, and therefore is metallic. However, due

to Coulomb repulsion, several transition-metal compounds with partially filled d shells are in-

sulating, paramagnetic above the Neel temperature TN , and sometimes exhibit a large gap. In

Fig. 1 the extensions of the atomic radial functions for the outer orbitals, 3d and 4s, of Cu can

be compared. While for 3d electrons the radial function decays very rapidly with distance, for
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Fig. 2: Crystal structure, distortions and orbital order in KCuF3. Cu is at the center of F

octahedra enclosed in a K cage. The conventional cell is tetragonal with axes a, b, c. The

pseudocubic axes x, y, z pointing towards neighboring Cu are shown in the corner. Short (s)
and long (l) CuF bonds alternate between x and y along all pseudocubic axes (co-operative

Jahn-Teller distortion). The distortions are measured by δ = (l− s)/(l+ s)/2 and γ = c/a
√
2.

R is the experimental structure (γ = 0.95, δ = 4.4%), Rδ (γ = 0.95) and Iδ (γ = 1) two

ideal structures with reduced distortions. In the I0 structure the cubic crystal-field at the Cu

site splits the 3d manifold into a t2g triplet and a eg doublet. In the R structure, site symmetry is

lowered further by the tetragonal compression (γ < 1) and the Jahn-Teller distortion (δ 6= 0).

The figure shows the highest energy d orbital. From Ref. [4].

4s electrons it is still sizable ∼ 2 Å away from the nucleus, a typical interatomic distance in a

lattice. Thus in a crystal 4s electrons are likely to form delocalized states, while 3d electrons

tend to retain part of their atomic characteristics.

As example we take KCuF3. This system has a perovskite structure, shown in Fig. 2, with

each Cu surrounded by a F octahedron. The nominal valence for K, Cu and F is K+ (4s0), F−

(2p6), Cu2+ (3d94s0). The cubic crystal field at the Cu site splits the partially filled 3d levels

into the lower energy t2g (|xy〉, |xz〉, |yz〉), and the higher energy eg (|x2 − y2〉, |3z2 − r2〉)
manifold; the electronic configuration is t62ge

3
g. The co-operative Jahn-Teller distortion and the

tetragonal compression further reduce the site symmetry of Cu, and the eg doublet splits into

|3l2 − 1〉 and |s2 − z2〉. Because long (l) and short (s) CuF bond alternate between x and y

along all cubic axes, the highest energy d orbitals, |s2 − z2〉, form the pattern shown in Fig. 2.

The LDA band structure of KCuF3 is shown in Fig. 3. We can identify the bands from their

main character as F p-like (filled), Cu t2g-like (filled), Cu eg-like (occupied by 3 electrons),

Cu s- and K s-like (empty). The Fermi level is located in the middle of the eg-like bands.
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Fig. 3: LDA band structure of KCuF3. Blue: Cu eg-like bands. Red: Cu t2g-like bands. Black:

filled F p-like bands and empty bands.

Thus LDA predicts that KCuF3 is a metal, although it actually is an insulator (paramagnetic

down to TN = 40 K). A similar problem occurs in many other transition-metal compounds with

partially filled d shells: manganites, vanadates, titanates. This discrepancy cannot be solved

by simple improvements of the LDA functional. Coulomb repulsion effects beyond mean field

are essential to understand the origin of the insulating state in these materials. Other systems

for which similar considerations apply are heavy fermions and Kondo systems (f electrons) or

organics (molecular crystals).

2 Low-energy models

Lacking a working ab-initio theory, strongly-correlated systems have been studied for a long

time through low-energy model Hamiltonians. Within this approach only the states and inter-

actions believed to be most important to describe a given phenomenon are considered. Models

can be justified on the ground that at low energy, high-energy degrees of freedom can be, in

principle, projected out (downfolded), in the spirit of Wilson renormalization group. Their main

effect is assumed to be included implicitly in the low-energy model through a renormalization

of parameters. In LDA strongly-correlated transition-metal compounds usually have narrow d

bands close to the Fermi level (see Fig. 3) and thus the d bands, or a subgroup of those (eg-bands

for KCuF3) are believed to be the essential degrees of freedom. The minimal model to describe

a system with a narrow band at the Fermi level is the Hubbard model

Ĥ = −t
∑

σ〈ii′〉

c†iσci′σ + U
∑

i

n̂i↑n̂i↓ = Ĥ0 + Û , (7)
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where c†iσ (ciσ) creates (destroys) an electron with spin σ at site i, n̂iσ = c†iσciσ gives the i-

site occupancy per spin, t is the hopping integral between first neighbors, and U the on-site

Coulomb repulsion.

In the non-interacting limit (U = 0), the Hamiltonian (7) can be written in diagonal form

Ĥ0 =
∑

kσ

εkc
†
kσckσ =

∑

kσ

εkn̂kσ.

The band energy is given by εk = −t 1
N

∑

〈ii′〉 e
ik·(Ri −Ri′), where Ri are lattice vectors, andN is

the number of sites; the operator c†
kσ is the Fourier transform of c†iσ, i.e., c†

kσ = 1√
N

∑

i e
ik·Ric†iσ,

and n̂kσ = c†
kσckσ. At half-filling (Ne=N), the ground state is paramagnetic and metallic.

In the atomic limit (t = 0), the model (7) describes instead an insulating collection of indepen-

dent atoms with disordered magnetic moments.

Thus the Hubbard model captures the essence of the paramagnetic metal to paramagnetic insu-

lator (Mott) transition, and can qualitatively explain why systems like KCuF3 are paramagnetic

insulators in a large temperature range. Furthermore, it explains the fact that KCuF3 and most

strongly-correlated transition-metal compounds have an antiferromagnetic ground state. For

small t/U , by downfolding doubly occupied states, the Hubbard model (7) can be mapped onto

a spin 1/2-antiferromagnetic Heisenberg model

Ĥ → JAFM
1

2

∑

〈ii′〉

[

Si · Si′ −
1

4
n̂in̂i′

]

,

with coupling JAFM = 4t2/U . Thus at low temperature, when charge fluctuations play a minor

role, a transition to an antiferromagnetic state can take place. In strongly-correlated transition-

metal compounds, where the hopping t between correlated d states is mediated by the p orbitals

of the atom between two transition metals (e.g., F p states in KCuF3, Fig. 2), this many-body

exchange mechanism is called super-exchange. Because the Hubbard model can be solved

exactly only in special cases (e.g., in one dimension), it was for a long time impossible to

understand the nature of the Mott transition within this model. Understanding real materials

appeared even less likely. Progress came with the development of the dynamical mean-field

theory (DMFT) [5]. In DMFT, the Hubbard model, which describes a lattice of correlated sites,

is mapped onto an effective Anderson model, which describes a correlated impurity

Ĥeff =
∑

kσ

εkn̂kσ + εd
∑

σ

n̂dσ + Un̂d↑n̂d↓ +
∑

kσ

(Vkd c
†
kσdσ + V kd d

†
σckσ).

Here d†σ (dσ) creates (destroys) an electron at the impurity site, and n̂dσ = d†σdσ counts the

number of electrons on the impurity; c†
kσ (c

kσ) creates (destroys) a bath electron with energy

εk, and Vkd is the hybridization between bath and impurity. This auxiliary quantum-impurity

model is solved self-consistently. The solution is found when the interacting Green function

G(ω) of the auxiliary model equals the local Green function Gii(ω) of the Hubbard model (7)

G(ω) = Gii(ω) =
1

Nk

∑

k∈BZ

1

ω + µ− εk −Σ(ω)
=

∫

dε
ρ(ε)

ω + µ− ε−Σ(ω)
. (8)
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Here µ is the chemical potential, the sum is over Nk k-points of the Brillouin Zone (BZ), Σ(ω)

is the self-energy of the quantum impurity model and ρ(ε) is the density of states. The self-

energy Σ(ω) can be obtained from the Dyson equation of the impurity problem

G−1(ω) = G−1(ω) +Σ(ω), (9)

where G(ω) is the non-interacting Green function of the Anderson model (bath Green function).

The main approximation in DMFT consists in neglecting spatial fluctuations in the lattice self-

energy; this approximation becomes exact in the limit of infinite coordination number [5]. The

Anderson model is a full many-body Hamiltonian, known since long in the framework of the

Kondo effect [6], but, in contrast to the original Hubbard model, it describes only a single cor-

related site. It can be solved numerically with different approaches (quantum-impurity solvers):

the numerical renormalization group [6], various flavors of quantum Monte Carlo (QMC) [7,8],

Lanczos [9], or other methods [6, 10]. Some of the most important solvers are presented in the

Lectures of Erik Koch, Nils Blümer, and Philipp Werner. If we use QMC, we have to work

in imaginary time/frequencies, and replace the frequency ω in (8, 9) with iωn, where ωn are

Fermionic Matsubara frequencies, ωn = (2n+ 1)πkBT , and T is the temperature.

The DMFT approach is discussed in detail in the Lecture of Marcus Kollar. We recall here

some important conclusions obtained by studying the half-filled Bethe lattice, described for

U = 0 by a semi-elliptical density of states [10]. In the Fermi-liquid regime (metallic phase,

low temperature, ω ∼ µ = 0), the self-energy can be expanded as

Σ(ω + i0+) ∼ U

2
+ (1− 1/Z)ω − i∆ω2 + . . . .

The effective mass of quasi-particles is m∗ = m/Z and their life-time ∝ 1/∆; Z is the quasi-

particle weight. In the Mott insulating regime, the self-energy has instead the following low-

frequency behavior

Σ(ω + i0+) ∼ U

2
+ Γ/ω − iπΓδ(ω) + . . . ,

where Γ can be viewed as an order parameter. Thus the real part of the self-energy diverges

at ω ∼ 0; the strong ω dependence of Σ(ω) is essential to obtain the Mott metal-insulator

transition in the one-band Hubbard model.

The model Hamiltonian approach has proven effective in gaining insight into the behavior of

strongly-correlated systems. However, the actual derivation of low-energy models by down-

folding the full many-body problem, although formally possible, is in practice unfeasible and

would in general lead to complex interactions beyond the Hubbard model [11]. The insight

is thus gained at the price of neglecting all interactions that are thought not to have a direct

influence on the specific phenomenon, and then relating the few free parameters (here t and U)

to experimental data. It is clear that simple models such as the Hubbard model (7), although

grasping an essential aspect of Mott physics, are hardly sufficient to describe the complexity of

real materials such as KCuF3. Thus they have been extended to include many orbitals (e.g., the

full d shell), crystal-field splittings (which divides the d shell, e.g., into 3-fold degenerate t2g
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and 2-fold degenerate eg states), multiplets (whose description requires taking into account the

full Coulomb interaction tensor and the spin-orbit interaction), lattice distortions (which, in the

case of KCuF3, split the eg and the t2g manifold and change the hopping integrals), filled (e.g.,

F p in KCuF3) or excited (Cu s, K s, . . . ) states, and Coulomb repulsion between neighbors.

As we will see later in some examples, these details do matter when we want to understand

real materials; neglecting them easily leads to wrong conclusions. Some of the parameters of

such extended Hubbard models can indeed be obtained by fitting to experiments, but with the

increasing number of free parameters it becomes impossible to put any theory to a real test.

3 Many-body models from DFT

3.1 Towards ab-initio Hamiltonians

The dream of calculating the parameters of model Hamiltonians ab-initio exists since long.

We know from the successes of LDA that the Kohn-Sham orbitals obtained within the local-

density approximation carry the essential information about the structure and chemistry of a

given material. It appears therefore natural to build material-specific many-body models starting

from the LDA. This can be achieved by constructing ab-initio a basis of localized LDA Wannier

functions

ψinσ(r) =
1√
N

∑

k

e−iRi·k ψnkσ(r),

and the corresponding many-body Hamiltonian, which is the sum of an LDA term ĤLDA, a

Coulomb term Û , and a double-counting correction ĤDC

Ĥe = ĤLDA + Û − ĤDC. (10)

The LDA part of the Hamiltonian is given by

ĤLDA = −
∑

σ

∑

in,i′n′

ti,i
′

n,n′c
†
inσci′n′σ, (11)

where c†inσ (cinσ) creates (destroys) an electron with spin σ in orbital n at site i, and

ti,i
′

n,n′ = −
∫

drψinσ(r)[−
1

2
∇2 + vR(r)]ψi′n′σ(r). (12)

The on-site (i = i′) terms yield the crystal-field matrix while the i 6= i′ contributions are the

hopping integrals. The Coulomb interaction Û is given by

Û =
1

2

∑

ii′jj′

∑

σσ′

∑

nn′pp′

U iji′j′

np n′p′c
†
inσc

†
jpσ′cj′p′σ′ci′n′σ,

with

U iji′j′

np n′p′ = 〈inσ jpσ′|Û |i′n′σ j′p′σ′〉 (13)

=

∫

dr1

∫

dr2 ψinσ(r1)ψjpσ′(r2)
1

|r1 − r2|
ψj′p′σ′(r2)ψi′n′σ(r1).
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To avoid double counting, the correction ĤDC should cancel the electron-electron interaction

contained in ĤLDA, which in (10) is explicitly described by Û . However, it is more meaningful

to take advantage of the LDA, and subtract from Û the long-range Hartree and the mean-field

exchange-correlation interaction, described by the LDA; from the successes of the LDA we

expect that they are well accounted for. Thus the difference Û − ĤDC is a short-range many-

body correction to the LDA.

The Hamiltonian (10) still describes the complete many-body problem, finding the solution of

which remains an impossible task. To make progress, we separate the electrons in two types,

the correlated or heavy electrons and the uncorrelated or light electrons. For the correlated

electrons LDA fails qualitatively and Û − ĤDC has to be taken into account explicitly; we

can assume that Û − ĤDC is local (on-site) or almost local (between near neighbors). For the

uncorrelated electrons the LDA is overall a good approximation, and we do not consider any

correction Û − ĤDC. By truncating Û − ĤDC to the correlated sector we implicitly assume

that the effect of light electrons is a mere renormalization or screening of Coulomb parameters

in the correlated sector. This implies that the Coulomb couplings cannot be calculated directly

from (13). The calculation of screened Coulomb integrals remains to date a major challenge,

and effects beyond Coulomb parameter renormalization are usually neglected. Since correlated

electrons partially retain their atomic character, in the rest of this Lecture we will label them

with the quantum numbers lmσ, as in the atomic limit. To first approximation we can assume

that Û − ĤDC is local and that correlated electrons belong to a single shell (e.g., d electrons,

l = 2). Thus we can write the Hamiltonian as the generalized Hubbard model

Ĥe = ĤLDA + Û l − Ĥ l
DC, (14)

where the screened Coulomb interaction is

Û l =
1

2

∑

i

∑

σσ′

∑

mαm′

α

∑

mβm
′

β

Umαmβm′

αm
′

β
c†imασc

†
imβσ′cim′

β
σ′cim′

ασ
, (15)

and Ĥ l
DC is, in principle, the mean-field value of Û l. More generally, we can include in the

Hamiltonian (14) the Coulomb interaction between first neighbors, different shells, etc. Al-

though (14) is simpler than the original model (10), it still describes a full many-body problem;

however, as we will see later, such a problem can be solved numerically within the dynamical

mean-field approximation.

At the heart of (14) is the assumption that the Û l − Ĥ l
DC is local, or almost local; thus it

is essential to use a localized basis in the correlated sector, a basis in which the separation of

heavy and light electrons makes actually sense. Localized Wannier functions can be constructed

in different ways. Successful methods are the ab-initio downfolding procedure based on the

NMTO approach [12] and the maximally-localized Wannier functions algorithm of Marzari

and Vanderbilt [13]; a lighter alternative to localized Wannier functions are projected local

orbitals [14]. The latter two methods are presented in the Lecture of Jan Kuneš.
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3.2 Coulomb interaction tensor

The screened Coulomb interaction, central to building the Hamiltonian (14), has the same form

as the bare Coulomb interaction tensor. To identify the different terms in Û l, it is useful to

derive the bare Coulomb integrals for atomic orbitals ψnlm(r) = Rnl(r)Y
l
m(θ, φ) (see Appendix

B). The generalization to Wannier orbitals is straightforward. First, we write the electronic

positions in spherical coordinates, ri = ri(sin θi cosφi, sin θi sin φi, cos θi), and express the

Coulomb interaction as

1

|r1 − r2|
=

∞
∑

k=0

rk<
rk+1
>

4π

2k + 1

k
∑

q=−k

Y k
q (θ2, φ2)Y

k

q (θ1, φ1), (16)

where r< ( r>) is the smaller (larger) of r1 and r2. By inserting (16) into (13) we obtain

Umαmβm′

αm
′

β
=

2l
∑

k=0

ak(mαm
′
α, mβm

′
β)Fk,

where ak are angular integrals

ak(mαm
′
α, mβm

′
β) =

4π

2k + 1

k
∑

q=−k

〈lmα|Y k
q |lm′

α〉〈lmβ|Y
k

q |lm′
β〉,

and Fk radial Slater integrals

Fk =

∫

dr1 r
2
1

∫

dr2 r
2
2 R

2
nl(r1)

rk<
rk+1
>

R2
nl(r2).

The most important Coulomb integrals are the two-index terms: the direct (Umm′mm′) and ex-

change (Umm′m′m, with m 6= m′) integrals, which can be expressed as

Umm′mm′ = Um,m′ =

2l
∑

k=0

ak(mm,m
′m′)Fk,

Umm′m′m = Jm,m′ =
2l
∑

k=0

ak(mm
′, m′m)Fk.

It can be shown that Um,m′ and Jm,m′ are positive, and that Um,m′ ≥ Jm,m′ . If we neglect

all terms but the direct and the exchange Coulomb interaction, only density-density terms (∝
n̂imσn̂im′σ′ , with n̂imσ = c†imσcimσ) remain, and the Coulomb interaction takes a simpler form

Û l ∼ 1

2

∑

iσ

∑

mm′

Um,m′ n̂imσn̂im′-σ +
1

2

∑

iσ

∑

m6=m′

(Um,m′ − Jm,m′)n̂imσn̂im′σ. (17)

The contributions neglected in (17), spin-flip exchange terms (∝ Jm,m′) and off-diagonal con-

tributions (terms with more than two different orbital indices), are important to get the correct

multiplet structure. They are often neglected in DMFT calculations based on QMC solvers

because they can generate a strong sign problem.
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In electronic-structure calculations real harmonics (Appendix B) rather than spherical harmon-

ics are normally used; therefore here we will give the Coulomb integrals for d electrons in the

basis of real harmonics. It is useful to introduce first average Coulomb parameters

Uavg =
1

(2l + 1)2

∑

m,m′

Um,m′ = F0,

Uavg − Javg =
1

2l(2l + 1)

∑

m,m′

(Um,m′ − Jm,m′).

For d-electrons, only F0, F2 and F4 contribute to the Coulomb integrals, and we can show that

Javg = (F2 + F4)/14. For hydrogen-like 3d orbitals, F4/F2 = 15/23, while for realistic 3d

orbitals this ratio is slightly smaller. A typical value is F4/F2 ∼ 0.625 = 5/8.

The parameters U l
m,m′ may be written as

U l
m,m′ |xy〉 |yz〉 |3z2 − r2〉 |xz〉 |x2 − y2〉

|xy〉 U0 U0 − 2J1 U0 − 2J2 U0 − 2J1 U0 − 2J3
|yz〉 U0 − 2J1 U0 U0 − 2J4 U0 − 2J1 U0 − 2J1
|3z2 − r2〉 U0 − 2J2 U0 − 2J4 U0 U0 − 2J4 U0 − 2J2
|xz〉 U0 − 2J1 U0 − 2J1 U0 − 2J4 U0 U0 − 2J1
|x2 − y2〉 U0 − 2J3 U0 − 2J1 U0 − 2J2 U0 − 2J1 U0

where

U0 = Uavg +
8

7
Javg = Uavg +

8

5
Javg

J1 =
3

49
F2 +

20

9

1

49
F4

J2 = −2Javg + 3J1

J3 = 6Javg − 5J1

J4 = 4Javg − 3J1.

The parameter Javg is the actual average of the exchange terms in the basis of real harmonics

Javg =
1

2l(2l + 1)

∑

m6=m′

Jm,m′ =
5

7
Javg.

For atomic d states, Uavg is very large (15 − 20 eV), but screening effects reduce it drastically.

The calculation of screening effects is very difficult because it is basically equivalent to finding

the solution of the full many-body problem. Approximate schemes are the constrained LDA

(cLDA) approach [16] and the constrained RPA (cRPA) method [17]. In cLDA, the screened U

is obtained from the second derivative of the total energy as a function of the density; to avoid

electron transfer between correlated and uncorrelated sectors, the hopping integrals between

heavy and light electrons are cut. In cRPA the polarization (and thus the screened Coulomb

interaction) is obtained in the random-phase approximation by downfolding the uncorrelated

sector, assuming that the latter is well described by mean field. These approaches are discussed

in the Lecture of Ferdi Aryasetiawan.
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Fig. 4: LDA eg (blue) and t2g(red) band structure of KCuF3 for the experimental structure (R)

and ideal structures with progressively reduced distortions (see Fig. 2). I0: simple cubic. The

unit cell contains 2 formula units. From Ref. [4].

3.3 Minimal material-specific models

To understand a given system it is convenient to make the correlated electron sector as small

as possible, while still retaining the crucial degrees of freedom. To this end we have to con-

struct minimal model Hamiltonians, which are still material specific but have as few degrees

of freedom and parameters as possible. Here we will see how this can be achieved through

massive downfolding of the LDA Hamiltonian. As example we consider the case of KCuF3 in

tight-binding theory. For simplicity, we neglect the tetragonal and Jahn-Teller distortions. In

the cubic structure, the primitive cell contains one formula unit (a single K cube in Fig. 2). The

cubic axes are x, y, z, and the lattice constant a. A Cu atom at site Ri is surrounded by two

apical F atoms, F1 at Ri+
1
2
z and F2 at Ri− 1

2
z, and four planar F atoms, F3 and F4 at Ri ± 1

2
x

and F5 and F6 at Ri ± 1
2
y. In Fig. 4 one can see the effects of the cubic approximation on the

eg bands: the crystal-field splitting of eg states is zero, the band width slightly reduced, gaps

disappear, and the dispersion relations is sizably modified (e.g., along ΓZ). We take as Wannier

basis the atomic 3d eg orbitals for Cu and the 2p orbitals for F; we neglect the overlap integrals

and all other states. The main contribution to the hopping integrals (12) are the Slater-Koster

two-center matrix elements (Appendix B). In the case described, the only relevant Slater-Koster

parameter is Vpdσ. The |3z2 − r2〉i and |x2 − y2〉i states of the Cu at Ri are coupled via Vpdσ to

|z〉i, the pz orbitals of F1 and F2, to |x〉i, the px orbitals of F3 and F4 and to |y〉i, the py orbitals

of F5 and F6. From the basis |α〉i (where α = x, y, z, 3z2− r2, x2− y2), we construct the Bloch

states |kα〉 = 1√
N

∑

i e
ik·Ri|α〉i, and obtain the tight-binding Hamiltonian
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HTB |k z〉 |k x〉 |k y〉 |k 3z2 − r2〉 |k x2 − y2〉
|k z〉 εp 0 0 −2Vpdσsz 0

|k x〉 0 εp 0 Vpdσsx −
√
3Vpdσsx

|k y〉 0 0 εp Vpdσsy
√
3Vpdσsy

|k 3z2 − r2〉 −2Vpdσsz Vpdσsx Vpdσsy εd 0

|k x2 − y2〉 0 −
√
3Vpdσsx

√
3Vpdσsy 0 εd

(18)

where sα = ie−ikαa/2 sin kαa/2, α = x, y, z, εp < εd = εp +∆pd, and Vpdσ < 0. If |Vpdσ|/∆pd

is small, the occupied bands are F p-like, while the partially filled bands Cu eg-like. We now

calculate the bands along high-symmetry lines.1 Along ΓZ, the eigenvalues εi (εi ≤ εi+1) of

HTB are
ε2 = εp
ε3 = εp
ε4 = εd

ε1,5 = εp +
1
2
∆pd ± 1

2

√

∆2
pd + 16V 2

pdσ|sz|2

where ε1 is bonding and F z-like, while ε5 anti-bonding and 3z2 − r2-like. Along ΓX, we have

instead the dispersion relations

ε2 = εp
ε3 = εp
ε4 = εd

ε1,5 = εp +
1
2
∆pd ± 1

2

√

∆2
pd + 16V 2

pdσ|sx|2

where ε1 is bonding and F x-like, while ε5 anti-bonding and x2 − y2-like.

To obtain the eg-like bands, instead of diagonalizing HTB as we have done above, we can also

use the downfolding procedure, which, for independent electrons, can be done exactly. We

divide the orbitals in passive (F p) and active (Cu d), and write the eigenvalues equation as
[

Hpp Hpd

Hdp Hdd

][

|k p〉
|k d〉

]

= ε

[

Ipp 0

0 Idd

][

|k p〉
|k d〉

]

,

where Hpp (Ipp) is the Hamiltonian (identity matrix) in the p-electron space (3 × 3), and Hdd

(Idd) the Hamiltonian (identity matrix) in the d-electron space (2× 2). By downfolding to the d

sector we obtain the energy-dependent operator Hε
dd, which acts in the d space

Hε
dd = Hdd −Hdp(Hpp − εIpp)

−1Hpd,

and a correspondingly transformed and energy-dependent basis set for the active space, |k d〉ε.
The operator Hε

dd has the same eigenvalues and eigenvectors as the original Hamiltonian. In the

case of KCuF3

Hε
dd |k 3z2−r2〉ε |k x2−y2〉ε

|k 3z2−r2〉ε ε′d−2tε[
1
4
(cos kxa+cos kya)−cos kza] 2tε[

√
3
4
(cos kxa−cos kya)]

|k x2−y2〉ε 2tε[
√
3
4
(cos kxa−cos kya)] ε′d−2tε[

3
4
(cos kxa+cos kya)]

(19)

1Special points: Γ = (0, 0, 0), Z= (0, 0, π/a), X= (π/a, 0, 0), M= (π/a, π/a, 0), R= (π/a, π/a, π/a).
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Fig. 5: Crystal-field t2g Wannier orbitals and corresponding crystal-field energies in the 3d1

perovskites LaTiO3 and YTiO3. La/Y: orange. Ti: red. O: violet. From Ref. [12].

where tε = V 2
pdσ/(ε − εp), ε

′
d = εd + 3tε, and |k 3z2 − r2〉ε, |k x2 − y2〉ε is the new basis

set, which retains however the original (3z2 − r2 or x2 − y2) symmetry. The downfolding

procedure has renormalized the parameters εd of the original model (18), but also introduced

a new interaction: inter-orbital matrix elements. Furthermore, Hε
dd and the Bloch basis are

now energy dependent. Along ΓZ, the eigenvalues of (19) are given implicitly by the equations

ε = εd+2tε−2tε cos kza and ε = εd; in second-order perturbation theory tε ∼ tεd = V 2
pdσ/∆pd,

ε ∼ εd + 2tεd − 2tεd cos kza, ε = εd. From Hamiltonian (19) it is easy to see that the eg bands

are 2-fold degenerate along ΓR, to find the dispersion along ΓM and RM, and obtain the eg-like

bands in Fig. 4. From the Bloch states |k 3z2 − r2〉ε and |k x2 − y2〉ε, we may build new

Wannier functions. They have 3z2 − r2 or x2 − y2 symmetry as the original ones but also span,

to arbitrary accuracy, the eg bands. These new Wannier functions are longer range than the

original atomic orbitals, since they have p tails on the downfolded neighboring F sites.

The same downfolding procedure can be performed ab-initio, e.g., using DFT approaches based

on atomic-like orbitals, such as the NMTO method. It leads to ab-initio Wannier functions,

which carry the information on the lattice structure and the chemistry [12]. The higher energy

crystal-field orbital of KCuF3 (experimental structure), calculated in this way, is shown in Fig. 2.

Another example of Wannier functions is shown in Fig. 5. LaTiO3 and YTiO3 have a perovskite

structure as KCuF3, but the O octahedra are tilted and rotated and the La/Y cages are strongly

distorted. To obtain the t2g crystal-field Wannier orbitals in Fig. 5 we downfold all other states

but the t2g. Although the Ti atoms form an almost cubic lattice, the t2g Wannier functions reflect
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the actual distorted structure, as do the corresponding hopping integrals; thus the t2g orbitals are

not degenerate, as they would be in a cubic lattice.

Once we have obtained the basis and the hopping integrals, we constructH = ĤLDA+Û l−Ĥ l
DC.

For the eg doublet we can express Û l in a simpler form, because only two-index Coulomb terms

are present; furthermore, Um,m′ = U − 2J(1 − δm,m′) and, for m 6= m′, Jm,m′ = J , where

U = U0 and J = J2. Thus the eg Hubbard model has the form

H= −
∑

m,m′,i,i′,σ

ti,i
′

mm′c
†
imσcim′σ + U

∑

i m

n̂im↑n̂im↓

+
1

2

∑

iσσ′

m6=m′

(U − 2J − Jδσ,σ′)n̂imσn̂im′σ′

− J
∑

i m6=m′

[

c†im↑c
†
im↓cim′↑cim′↓ + c†im↑cim↓c

†
im′↓cim′↑

]

− Ĥ
eg
DC, (20)

where m,m′ = 3z2− r2, x2 − y2. The last two terms describe the pair-hopping (Ummm′m′ =

Jm,m′ for real harmonics, while for spherical harmonics Ummm′m′ = 0) and spin-flip processes.

The Hamiltonian has the same form (however with J = J1) for systems with partially filled t2g
bands, e.g., LaTiO3 and YTiO3.

Massive downfolding to few-band models (for KCuF3 the eg bands) necessarily leads to longer

range Wannier functions. On the other hand, working with the full Hamiltonian has the draw-

back that the large number of parameters makes it difficult to gain insight in the problem, losing

the advantage of model physics. Another advantage of massive downfolding to a given set of

correlated states is that the double-counting correction becomes an energy shift. We can in-

corporate it into the chemical potential, which is obtained self-consistently from the number of

correlated electrons, getting rid of an essentially unknown term.

4 Methods of solution

4.1 LDA+U

The first systematic attempt to construct and solve ab-initio many-body Hamiltonians was the

LDA+U method [15]. In this approach the Coulomb interaction is treated in static mean-field

theory (in the spirit of Hartree-Fock), and therefore true many-body effects are lost. However,

the problems that we have to face in constructing the Hamiltonian (14) are the same, indepen-

dently of how the Coulomb interaction is then treated. To we explain how LDA+U works, we

assume that Hamiltonian (14) has the simplified form

ĤLDA + Û l − Ĥ l
DC = ĤLDA +

1

2
U
∑

i

∑

mσ 6=m′σ′

n̂imσn̂im′σ′ − 1

2
U
∑

i

∑

mσ 6=m′σ′

〈n̂imσ〉〈n̂im′σ′〉.

We treat the Coulomb interaction in static mean-field at the Hartree level,

n̂imσn̂im′σ′ → 〈n̂imσ〉n̂im′σ′ + n̂imσ〈n̂im′σ′〉 − 〈n̂imσ〉〈n̂im′σ′〉,
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and approximate the mean-field energy 1
2
U
∑

mσ 6=m′σ′〈n̂imσ〉〈n̂im′σ′〉 by the Hartree energy
1
2
UN lN l, where N l =

∑

mσ〈n̂imσ〉 is the number of heavy electrons per site. The mean-field

Hamiltonian is

H = ĤLDA +
∑

imσ

tσmn̂imσ, with tσm = U(
1

2
− 〈n̂imσ〉).

The levels of the correlated electrons are shifted by −U/2 if occupied and by U/2 if empty, like

in the atomic limit of the half-filled Hubbard model. A total energy functional which shifts the

orbital energies in this way is

ELDA+U[n] = ELDA[n] +
∑

i

[

1

2
U

∑

mσ 6=m′σ′

〈n̂imσ〉〈n̂im′σ′〉 −EDC

]

,

where EDC = 1
2
UN l(N l −1) and ELDA[n] is the total energy obtained using the spin-polarized

version of the local-density approximation (LSDA) for the exchange-correlation functional.

Indeed

εLDA+U
imσ =

∂ELDA+U

∂〈n̂imσ〉
= εLDA

imσ + U(
1

2
− 〈n̂imσ〉).

More generally, if Û l has the form (15), the LDA+U functional is given by

ELDA+U[n] = ELDA[n] +
1

2

∑

iσ

∑

mm′m′′m′′′

Umm′′m′m′′′〈n̂σ
imm′〉〈n̂-σ

im′′m′′′〉

+
1

2

∑

iσ

∑

mm′m′′m′′′

[Umm′′m′m′′′ − Umm′′m′′′m′ ] 〈n̂σ
imm′〉〈n̂σ

im′′m′′′〉 − EDC,

where 〈n̂σ
imm′〉 = 〈c†imσcim′σ〉 is the density matrix, and 〈n̂imσ〉 = 〈n̂σ

imm〉. One of the most

common recipe for the double-counting correction is

EDC =
1

2
UavgN

l(N l − 1)− 1

2
Javg

∑

σ

N l
σ(N

l
σ − 1). (21)

The corresponding one-electron LDA+U Hamiltonian is

Ĥ = ĤLDA +
∑

imm′σ

tσmm′c
†
imσcim′σ, (22)

where2

tσmm′ =
∑

iσ

∑

m′′m′′′

Umm′′m′m′′′〈n̂-σ
im′′m′′′〉+ [Umm′′m′m′′′ − Umm′′m′′′m′ ] 〈n̂σ

im′′m′′′〉

−
[

Uavg(N
l − 1

2
)− Javg(N

l
σ −

1

2
)

]

δm,m′ .

In LDA+U, differently than in static mean-field for a given Hamiltonian, ĤLDA is obtained self-

consistently. The LDA+U correction in (22) modifies the occupations of the correlated sector

2The LDA+U correction to the parameters of the LDA Hamiltonian may be obtained from the derivative of

ELSDA+U[n] with respect to the density matrix.
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with respect to LDA. If we assume that LDA describes uncorrelated electrons sufficiently well,

the readjustments in the uncorrelated sector can be calculated by making the total charge density

and the reference potential consistent within the LDA (charge self-consistency), however with

the constraint given by (22). LDA+U calculations are usually not performed in a Wannier

basis. They are typically based on the identification of an atomic sphere, a region of space in

which correlated electrons are well described by atomic-like orbitals; the LDA+U correction is

determined through projections onto such atomic orbitals. Thus LDA+U results are essentially

dependent on the choice of the set of correlated electrons and this atomic sphere. However,

if the correlated electrons are well localized, they retain indeed to a good extent their atomic

character in a solid. Thus the arbitrariness of the choice is less crucial than could be expected.

Calculations based on different electronic structure methods confirm this.

LDA+U describes successfully the magnetic ground-state of Mott insulators. This could ap-

pear surprising, because the LDA+U Hamiltonian (22) describes a non-interacting system, and

therefore should in principle have the same defects of the LDA Hamiltonian. However, LDA+U

opens a gap by making long-range order (magnetic, magnetic and orbital, . . . ). Indeed, in some

cases we obtain a gap already in LSDA, although often such a gap is much smaller than the

experimental one. As in LDA, the LDA+U eigenvalues are real, and quasi-particles have an

infinite lifetime. In the Green function language, LDA+U yields a self-energy which is orbital,

spin, and site dependent within the unit cell, but has no ω dependence and no imaginary part.

We present as an example the case of KCuF3. Instead of the full LDA+U calculation, for

simplicity we discuss the results for the eg-band Hubbard model (20) and do not perform any

charge self-consistency. We study the ideal cubic structure; the independent-electron part of

the Hamiltonian is given to a good approximation by Eq. (19). We consider a unit cell with

axes a = (−x + y), b = (x + y), c = 2z. This cell contains four octahedra. The four

Cu atoms are located at (0, 0, 0), (a/2, a/2, 0), (0, 0, a/2), (a/2, a/2, a/2); we label them as

1u, 2u, 1d, 2d. The difference between sites of type 1 and 2 in the experimental structure with

the co-operative Jahn-Teller distortion is illustrated in Fig. 2; in the cubic structure they are

identical. The metallic paramagnetic LDA band structure for this supercell is shown in Fig. 6.

The insulating static mean-field bands are shown on the left. In the basis |ασ〉i, |βσ〉i, with

α = 3z2 − r2, and β = x2 − y2, the LDA+U self-energy for a site i has the following form

Σiσ =

[

Σiσ
α,α Σiσ

α,β

Σiσ
β,α Σiσ

β,β

]

.

Setting for simplicity J = 0 we find

Σiσ = U

[

1
2
− 〈n̂σ

iαα〉 −〈n̂σ
iβα〉

−〈n̂σ
iαβ〉 1

2
− 〈n̂σ

iββ〉

]

,

where the density matrix has to be determined self-consistently. The static mean-field bands in

the left panel of Fig. 6 correspond approximatively to a state with one hole in |z2 − y2 ↑〉 =
√
3
2
|α ↑〉+ 1

2
|β ↑〉 at site 1u, in |z2 − y2 ↓〉 at site 1d, in |z2 − x2 ↑〉 at site 2u, and in |z2 − x2 ↓〉

at site 2d. Correspondingly, the self-energy matrix may be written as
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Fig. 6: Right: LDA eg band structure of cubic KCuF3 calculated using the experimental mag-

netic unit cell with four formula units. Left: Static mean-field band structure, calculated for the

experimental orbital and spin order. Parameters: U = 7 eV and J = 0.9 eV.

Σ/U |ασ〉1u |βσ〉1u |ασ〉2u |βσ〉2u |ασ〉1d |βσ〉1d |ασ〉2d |βσ〉2d
|ασ〉1u

−2δσ,↓−δσ,↑
4

√
3δσ,↑
4

0 0 0 0 0 0

|βσ〉1u
√
3δσ,↑
4

−2δσ,↓+δσ,↑
4

0 0 0 0 0 0

|ασ〉2u 0 0
−2δσ,↓−δσ,↑

4

−
√
3δσ,↑
4

0 0 0 0

|βσ〉2u 0 0
−
√
3δσ,↑
4

−2δσ,↓+δσ,↑
4

0 0 0 0

|ασ〉1d 0 0 0 0
−2δσ,↑−δσ,↓

4

√
3δσ,↓
4

0 0

|βσ〉1d 0 0 0 0
√
3δσ,↓
4

−2δσ,↑+δσ,↓
4

0 0

|ασ〉2d 0 0 0 0 0 0
−2δσ,↑−δσ,↓

4

−
√
3δσ,↓
4

|βσ〉2d 0 0 0 0 0 0
−
√
3δσ,↓
4

−2δσ,↑+δσ,↓
4

The spatial structure of the self-energy, which yields long-range spin and orbital order, is what

opens the gap, by resolving spin and orbital degeneracy; the insulating state in LDA+U has

therefore a very different nature than in DMFT.

To understand the nature of the difference, we consider the half-filled one-band Hubbard model

(7) for a linear chain (εk = −2 cos kxa) with lattice constant a. We double the unit cell (lattice

constant b = 2a) and solve the model with Hartree-Fock, looking for long-range magnetic order.

The mean-field Hamiltonian is

HHF = −t
∑

〈ii′〉σ

c†iσci′σ + U
∑

iσ

〈n̂iσ〉n̂i−σ − U
∑

i

〈n̂i↑〉〈n̂i↓〉,

where 〈n̂i↑〉 = 1/2 +m(−1)i, 〈n̂i↓〉 = 1/2−m(−1)i, and m is the magnetic moment per site.

We set the Fermi level to zero and assume m = 1/2; the self-energy is Σiσ = U〈n̂i−σ〉 and the
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Fig. 7: LDA+DMFT spectral matrix per spin (∼ 230 K) in the orbitally-ordered paramagnetic

phase of KCuF3, cubic structure. Coulomb parameters: U = 7 eV, J = 0.9 eV. The off-diagonal

terms, here large, are zero in the high temperature para-orbital phase.

doubly degenerate eigenvectors are ε± = ±
√

ε2k + U2/4. At half-filling, only ε− is occupied,

and the gap opens at k = π/2a, the borders of the reduced BZ, [−π/2a, π/2a). To compare

with the DMFT solution of the one band Hubbard model, we unfold the bands back to the BZ

of the small unit cell, [−π/a, π/a). The Hartree-Fock bands can then be written as εk +∆(k),

where ∆(k) = −εk + [Θ( π
2a

− k)−Θ(k − π
2a
)]
√

ε2k + U2/4, and Θ is the step function. Thus,

to obtain the Hartree-Fock bands we would have to correct the band energy εk with a function

∆(k) which has a jump at k = π/2a, i.e. a strong k-dependence. This should be compared

with the divergence ∝ 1/ω found in the real part of the k−independent DMFT self-energy for

the paramagnetic half-filled Bethe lattice. Thus, the origin of the gap is completely different in

statical and dynamical mean-field theory.

LDA+U has been successfully used to describe the magnetic ground state of many transition-

metal compounds; however, since it is based on the static mean-field (Hartree-Fock-like) ap-

proximation, it often gives too large band gaps. A related problem is that the tendency to

long-range order is overestimated, because fluctuation are neglected.

4.2 LDA+DMFT

The natural extension of LDA+U to include true correlation effects is LDA+DMFT [18–21]. In

this approach we solve the Hubbard model ĤLDA + Û l − Ĥ l
DC by means of dynamical mean-

field theory. To do this, first we map ĤLDA + Û l − Ĥ l
DC onto a multi-orbital Anderson model

with the same Coulomb interaction at the impurity site; G(ω) is the bath Green-function matrix

of such Anderson model. Next, we label with ic the correlated sites within the unit cell and with

lmσ the correlated orbitals at sites ic; the local lattice Green-function matrix is
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Fig. 8: Left: LDA+DMFT correlated band structure (∼ 230 K) in the orbitally-ordered phase

of KCuF3, cubic structure; the dots are the poles of the Green function. Right: Self-energy

matrix in the basis of the natural orbitals. Full lines: real part. Dotted lines: imaginary part.

Coulomb parameters: U = 7 eV, J = 0.9 eV.

G
icmσ,i′cm

′σ
(ω) =

1

Nk

∑

k

(

[

ω + µI − ĤLDA
k

−Σl(ω) + ĤDC
l
]−1

)

icmσ,i′cm
′σ

.

The DMFT self-energy matrix Σl(ω) is non-zero in the correlated sector only; furthermore,

it is diagonal in the site indices, Σl
icmσ,i′cm

′σ
= δic,i′cΣ

icσ
m,m′ . For two equivalent sites ic and

i′c, space group symmetries transform Σ
icσ
m,m′ into Σ

i′cσ
m,m′ . In the paramagnetic case, in which

Gicmσ,i′cm
′σ = Gicm-σ,i′cm

′-σ, the additional relation Σ
i′cσ
m,m′ = Σ

i′c-σ
m,m′ = Σ

i′c
m,m′ holds.

Let us consider the example of paramagnetic KCuF3. The primitive cell (Fig. 2) contains two

formula units (and thus two equivalent Cu sites, labeled as 1 and 2 in Fig. 2). The LDA Hamil-

tonian which describes the eg bands is a 4 × 4 matrix; the transformation between site 1 and 2

is x, y, z → y, x,−z, and therefore Σ1
αβ = −Σ2

αβ , Σ1
αα = Σ2

αα, Σ1
ββ = Σ2

ββ. In matrix form

Σl |ασ〉1 |βσ〉1 |ασ〉2 |βσ〉2
|ασ〉1 Σ1

αα Σ1
αβ 0 0

|βσ〉1 Σ1
βα Σ1

ββ 0 0

|ασ〉2 0 0 Σ1
αα −Σ1

αβ

|βσ〉2 0 0 −Σ1
βα Σ1

ββ

.

The DMFT self-consistency condition requires thatGic,ic
(ω) equals the impurity Green-function

matrix of the Anderson model, G(ω). Thus, in the paramagnetic case

Gm,m′(ω) = Gicmσ,icm′σ(ω), G−1
m,m′(ω) = G−1

m,m′(ω) +Σ ic
m,m′(ω).
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The site ic is one of the equivalent sites {ic}; in the KCuF3 example, it could be, e.g., a site 1.

The solution of the multi-orbital quantum-impurity model requires a method which can deal

with realistic Coulomb interactions and Green-function matrices; depending on the problem we

want to address, we can choose from quantum Monte Carlo [7, 8], Lanczos [9], the numerical

renormalization group, and many more.

The Hirsch-Fye QMC [7] approach, presented in the Lecture of Nils Blümer, is very general; a

limitation is that spin-flip and pair-hopping processes yield a strong sign problem, and have to

be neglected; in many cases this is, however, a good approximation. In Fig. 7 we show the para-

magnetic eg spectral-function matrix of KCuF3 at ∼ 230 K, calculated with a Hirsch-Fye QMC

solver. The figure shows that with DMFT we can obtain an insulating orbitally ordered solution

even in the absence of long-range magnetic order; this is not the case in static mean-field theory.

The off-diagonal elements of the spectral matrix (and correspondingly those of the self-energy

matrix) are large and cannot be neglected. In Fig. 8 we show the LDA+DMFT eg band structure

of KCuF3, corresponding to the spectral matrix in Fig. 7. We can compare these bands with

the static mean-field antiferromagnetic band structure in Fig. 6. The LDA+DMFT band gap is

significantly smaller. The imaginary part of the self-energy, which is zero in static mean-field

theory, makes the Hubbard bands partly incoherent. The real part of the self-energy of the half-

filled orbital (Fig. 8), which in static mean-field theory does not depend on ω, diverges at low

frequencies, as in the case of the half-filled Bethe lattice.

The continuous-time QMC technique [8], discussed in the Lecture of Philipp Werner, allows us

to include in our model spin-flip and pair-hopping terms. As an example we present LDA+DMFT

results for Ca2RuO4 (Fig. 9), a layered 4d4 perovskite which at low energy can be described by

a t2g Hubbard model of the form (14); to solve it we use the weak-coupling continuous-time

QMC scheme. Fig. 9 shows that neglecting spin-flip and pair-hopping terms changes the de-

generacy of multiplets, and leads to an overestimation of the mass renormalization m∗/m [22].

The LDA+DMFT self-consistent procedure works as follows (for QMC solvers ω → iωn)

• construct ĤLDA + Û l − Ĥ l
DC

• calculate the local Green-function matrix for a starting self-energy matrix

Gicσ,icσ(ω) =
1

Nk

∑

k

(

[ω − ĤLDA
k

−Σl(ω) + µI + Ĥ l
DC]

−1
)

icσ,icσ
.

For equivalent sites, the LDA Hamiltonian and the self-energy matrix should transform

according to space-group symmetries.

• calculate the bath Green-function matrix

G−1(ω) = G−1(ω) +Σ(ω), G(ω) = Gicσ,icσ(ω)

• obtain the impurity Green-function matrix G(ω) by solving the quantum-impurity prob-

lem defined by G(ω) and the Coulomb interaction Û l at sites {ic}
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Fig. 9: Ca2RuO4: t2g spectral functions in the high-temperature L-Pbca phase and in the low

temperature S-Pbca phase. Left: without spin-flip and pair-hopping terms. Right: with spin-flip

and pair-hopping terms. Red: xy. Green and blue: xz and yz. From Ref. [22].

• calculate the self-energy matrix

Σ(ω) = G−1(ω)−G−1(ω)

• check if self-consistency is reached; if not, recalculate Gicσ,icσ(ω) and start over again.

In LDA+DMFT the double-counting correction is the same as in LDA+U; in the case of massive

downfolding to the correlated-electron sector, as previously discussed, it is incorporated in the

chemical potential and does not need to be calculated explicitly.

The extension of LDA+DMFT to the spin-polarized case (spin-dependent self-energy matrix

and Green-function matrices) is straightforward. Long-range anti-ferromagnetic order can also

be treated, provided that we use the appropriate unit cell. Let us consider the case of KCuF3.

Below TN this system is antiferromagnetic along z and ferromagnetic in the xy plane. To

account for this magnetic order, we have to use a unit cell with 4 formula units, the same that

we used for the LDA+U example; the self-energy matrix has therefore the same spatial structure

as in LDA+U

Σlσ |ασ〉1u |βσ〉1u |ασ〉2u |βσ〉2u |ασ〉1d |βσ〉1d |ασ〉2d |βσ〉2d
|ασ〉1u Σ1σ

αα Σ1σ
αβ 0 0 0 0 0 0

|βσ〉1u Σ1σ
βα Σ1σ

ββ 0 0 0 0 0 0

|ασ〉2u 0 0 Σ1σ
αα −Σ1σ

αβ 0 0 0 0

|βσ〉2u 0 0 −Σ1σ
βα Σ1σ

ββ 0 0 0 0

|ασ〉1d 0 0 0 0 Σ1-σ
αα Σ1-σ

αβ 0 0

|βσ〉1d 0 0 0 0 Σ1-σ
βα Σ1-σ

ββ 0 0

|ασ〉2d 0 0 0 0 0 0 Σ1-σ
αα −Σ1-σ

αβ

|βσ〉2d 0 0 0 0 0 0 −Σ1-σ
βα Σ1-σ

ββ .
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Fig. 10: Evolution of crystal structure and LDA band structure in the series of 3d1 perovskites

with the GdFeO3-type distortion. From Ref. [12].

The LDA+DMFT scheme can be easily extended to treat clusters, by using a supercell and

treating the supercell as impurity; alternative extensions to account for the k dependence of the

self-energy are the dynamical-cluster approximation (DCA) [23], the dual-fermion approach,

or GW+DMFT. Some of these methods will be discussed in the Lectures of Sasha Lichtenstein

and Karsten Held. Finally, LDA+DMFT, as LDA+U, can be also made charge self-consistent.

This requires to work, as in LDA+U, with the full Hamiltonian and to account explicitly for the

double-counting correction.

The calculation of the screened Coulomb parameters is a major open problem, in LDA+DMFT

as in LDA+U. In the absence of a definitive method, a useful approach is to analyze trends in

similar materials, to single out the effects of chemistry and structural distortions from those

of the Coulomb interaction. We adopt this approach in Ref. [24] to study the Mott transition

in the series of 3d1 (t12ge
0
g) perovskites. These materials all have the GdFeO3-type structure,

with distortions (tilting, rotation, deformation of the cation cage) that increase along the series

(Fig. 10). By means of massive downfolding based on the NMTO method [12], we obtain

the material-specific t2g Wannier basis (crystal-field orbitals) shown in Fig. 5. With increasing

distortions, the t2g band-width decreases and the crystal-field splitting increases, reaching ∼
300 meV in YTiO3, still a small fraction of the t2g band width. We find that, despite of its small

value, the crystal-field splitting plays a crucial role in helping the metal-insulator transition, by

reducing the orbital degeneracy [25] of the many-body states and favoring the formation of an

orbitally-ordered state.
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Fig. 11: Orbital-order (empty orbital) in the 3d2 perovskites LaVO3 and YVO3. From Ref. [26].

5 The origin of orbital order

In this Section we will show an example of how LDA+DMFT can be used as a tool to understand

physical phenomena. Orbital order is believed to play a crucial role in determining the electronic

and magnetic properties of many transition-metal compounds. Still, the origin of orbital order

in real materials is a subject of hot debate.

The hallmark of orbital order is the co-operative Jahn-Teller distortion. A paradigmatic example

is KCuF3. The co-operative Jahn-Teller distortion is shown in Fig. 2. This static distortion

gives rise to a crystal field, which splits the otherwise degenerate eg doublet. LDA+DMFT

calculations have proven that, due to Coulomb repulsion, even a crystal-field splitting much

smaller than the band width can lead to orbital order. The importance of such effect for real

materials has been realized first for LaTiO3 and YTiO3 [24, 12]. The same effect is at work

in a number of other systems with different electronic structure. We discuss few cases. In

3d2 vanadates [26] the t2g crystal-field splitting is even smaller than in 3d1 perovskites. Still,

orbital fluctuations are already strongly suppressed at room temperature, yielding the orbital-

order shown in Fig. 11. In Ca2RuO4, due to the layered perovskite structure, the 2/3-filled t2g
bands split into a wide xy and two narrow xz and yz bands. In the low-temperature phase (S-

Pbca) the system is an insulator with a small gap and exhibits xy-orbital order: at each site the

xy orbital is filled with two electrons. Above 350 K, in the L-Pbca phase, Ca2RuO4 is metallic

and no orbital order has been reported. We find (Fig. 9) that the metal-insulator transition is

driven by the structural L-Pbca → S-Pbca phase transition; furthermore, in the insulating phase

the ∼ 300 meV crystal-field splitting overcomes the band missmatch and we find xy orbital

order [22]. The case of 3d9 KCuF3 and 3d4 LaMnO3 is even more extreme: the eg crystal-field

splitting is ∼ 0.5−1 eV at 300 K; with such a large splitting, orbital fluctuations are suppressed

up to melting temperature.
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Fig. 12: Orbital order transition in KCuF3. Orbital polarization p as a function of temperature

calculated in LDA+DMFT. R: U = 7 eV, experimental structure. Circles: U = 7 eV, idealized

structures Rδ and Iδ with decreasing crystal-field. Triangles: U = 9 eV, I0 only. Squares:

two-sites CDMFT. From Ref. [4].

Orbital order can already arise, however, in the absence of static distortions. In a seminal

work, Kugel and Khomskii [27] showed that in strongly-correlated systems with orbital degrees

of freedom (degenerate eg or t2g levels), many-body effects can give rise to orbital order via a

purely electronic mechanism (spin and orbital super-exchange). In this picture, the co-operative

Jahn-Teller distortion (and thus the crystal-field splitting) is a consequence of orbital order. In

the opposite scenario, the co-operative Jahn-Teller distortion is due to the electron-phonon cou-

pling, which removes orbital degeneracy, and orbital order is driven by the static distortion,

as discussed above. We analyze these two scenarios for KCuF3 and LaMnO3, the text-book

examples [28] of orbitally-ordered systems. LDA+U total energy calculations show [15, 29]

that in these systems the co-operative Jahn-Teller distortion is stabilized by U , a result recently

confirmed in LDA+DMFT [30]. This could indicate that super-exchange is the driving mecha-

nism. However, if this is the case it is hard to explain why the magnetic transition temperature,

determined by super-exchange, is much lower than the orbital-order transition temperature:

TN ∼ 40 K for KCuF3 and TN ∼ 140 K for LaMnO3, while the co-operative Jahn-Teller

distortion persists up to 1000 K or more.

LaMnO3 and KCuF3 can both be described by a two-band eg Hubbard model. In the case

of LaMnO3 we have additionally to take into account the Hund’s rule coupling between eg
electrons and t2g spins, St2g . Thus the minimal model to understand orbital order in these two
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x y

z

Fig. 13: Orbital order (LDA+DMFT calculations) in the rare-earth perovskite TbMnO3 with

the GdFeO3-type structure. From Ref. [32]. This system has the same structure of LaMnO3.

systems is the Hamiltonian [31]

H = −
∑

imσ,i′m′σ′

ti,i
′

m,m′u
i,i′

σ,σ′c
†
imσci′m′σ′ − h

∑

im

(n̂im↑ − n̂im↓)

+ U
∑

im

n̂im↑n̂im↓ +
1

2

∑

im( 6=m′)σσ′

(U − 2J − Jδσ,σ′)n̂imσn̂im′σ′ .

Here m,m′ = 3z2 − r2, x2 − y2. The local magnetic field h = JSt2g describes the Hund’s rule

coupling to t2g electrons, and uiσ,i′σ′ = 2/3(1 − δi,i′) accounts for the disorder in orientation

of the t2g spins. In the case of KCuF3 uiσ,i′σ′ = δσ,σ′ and h = 0. For the Coulomb parameters

we use the theoretical estimates J = 0.9 eV (KCuF3) and J = 0.75 eV (LaMnO3) and vary

U around 5 eV (LaMnO3) and 7 eV (KCuF3). In the high-spin regime, our results are not very

sensitive to h; we show results for h ∼ 1.3 eV. We use the massive downfolding technique

based on the NMTO method to calculate hopping integrals and crystal-field splittings.

To single out the effects of many-body super-exchange (Kugel-Khomksii mechanism) from the

effect of the crystal-field splitting, we perform LDA+DMFT and LDA+CDMFT calculations for

a series of hypothetical structures, in which the distortions (and thus the crystal-field splitting)

are progressively reduced. In the case of KCuF3, these hypothetical structures are shown in

Fig. 2, and the corresponding eg bands are shown in Fig. 8. For each structure we calculate

the order parameter, the orbital polarization p, defined as the difference in the occupations of

natural orbitals. In Fig. 12 we show p as a function of temperature. For the experimental

structure, p(T ) ∼ 1 till melting temperature; this means that, if the structure stays the same,

the system remains orbitally ordered till the crystal melts. The empty orbitals on different sites

make the pattern shown in Fig. 2. For the ideal cubic structure I0, we find that p(T ) = 0 at

high temperature, but a transition occurs at TKK ∼ 350 K. This TKK is the critical temperature
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Fig. 14: Orbital order transition in LaMnO3. Orbital polarization p (left) and (right) occupied

state |θ〉 = cos θ
2
|3z2 − r2〉 + sin θ

2
|x2 − y2〉 as a function of temperature. Solid line: 300 K

experimental structure (R11) and 800 K experimental structure. Dots: orthorhombic structures

with half (R6) or no (R0) Jahn-Teller distortion. Pentagons: 2 (full) and 4 (empty) sites CDMFT.

Dashes: ideal cubic structure (I0). Circles: U = 5 eV. Diamonds: U = 5.5 eV. Triangles:

U = 6 eV. Squares: U = 7 eV. Crystal field splittings (meV): 840 (R11), 495 (R6), 168 (R800 K
2.4 ),

and 0 (I0). From Ref. [33].

in the absence of Jahn-Teller effect. Our result shows that around 350 K super-exchange could

drive alone the co-operative Jahn-Teller distortion. However, experimentally, the co-operative

Jahn-Teller distortion persists up to 800 K or even higher temperature. TKK, although large, is

not large enough to explain the presence of a co-operative Jahn-Teller distortion above 350 K;

electron-phonon interaction plays a key role. Fig. 12 shows that a ∼ 200 meV crystal-field (as

in the ideal R0.4, which has a Jahn-Teller distortion ∼ 10% of the experimental structure) yields

already an almost complete suppression of orbital fluctuations up to at least 1500 K.

In the case of LaMnO3 we find (see Fig. 14) TKK ∼ 700 K. However, besides the co-operative

Jahn-Teller distortion and tetragonal compression, LaMnO3 exhibits a GdFeO3-type distortion

(Fig. 13), which tends to reduce the eg band-width [12]. Thus we study in addition an ideal

structure R0 with all distortions except the Jahn-Teller. For such system we cannot obtain TKK

from p(T ), because, due to the crystal-field splitting ∼ 200 meV, Coulomb repulsion strongly

suppress orbital fluctuations even at 1500 K. Instead, we study the evolution of the occupied

orbital |θ〉 = cos θ
2
|3z2 − r2〉+ sin θ

2
|x2 − y2〉 with temperature. For the experimental structure

(R11) we find θ ∼ 108o, in agreement with experiments, and for the I0 structure we obtain

θ = 90o. For the R0 structure we find two regimes. At high temperature the occupied orbital

is the lower energy crystal-field orbital (θ = 180o). At TKK ∼ 550 K super-exchange rotates

this θ towards 90o, reaching 1300 in the zero temperature limit. Such TKK is still very large,

but again not sufficient to explain that the Jahn-Teller distortion persist in nanoclusters up to
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melting temperature [34]. Thus, as for KCuF3, electron-lattice coupling is essential to explain

the co-operative Jahn-Teller distortion at high temperature.

Although the co-operative Jahn-Teller distortion persists in domains up to melting temperature,

a order-to-disorder (or orbital melting) transition has been reported at TOO ∼ 750 K [35]. Since

TKK ∼ TOO, super-exchange could play a crucial role in such transition. To resolve this is-

sue, we analyze a series of materials for which TOO has been measured: rare-earth manganites

with structures similar to LaMnO3. For this series, it has been reported that TOO strongly in-

creases with decreasing the rare-earth radius, reaching about 1500 K in TbMnO3. Instead, with

LDA+DMFT and actually find the opposite trend: TKK is maximum in LaMnO3 and slightly

decreases along the series. Taking the tetragonal crystal-field into account reduces TKK, further

increasing the discrepancies with experiment. This proves that, surprisingly, super-exchange

effects, although very efficient, in the light of the experimentally reported trends, play a minor

role for the orbital order melting observed in rare earth manganites [32].

6 Conclusions

The many-body problem is central to theoretical solid-state physics. Density functional the-

ory is the standard approach for describing the electronic properties of materials. It is a very

successful method, which allows us to understand and predict the properties of many systems.

However, DFT practice fails completely for strongly-correlated materials, in which the move-

ment of one electron depends on the actual, not only the mean position of all other electrons,

since it has to avoid their Coulomb repulsion. In this Lecture we have seen a successful scheme

to deal with strongly-correlated systems: LDA+DMFT. It is based on the separation of electrons

into correlated and uncorrelated. While for uncorrelated electrons we use standard methods

based on density-functional theory, for correlated electrons we build material-specific many-

body models and solve them with DMFT. Building models requires the construction of local-

ized and material-specific basis sets. To this end, various successful approaches have been

devised, such as the ab-initio downfolding technique, maximally-localized Wannier functions

and projectors. Material-specific many-body models are however complex. Solving them

with DMFT requires flexible and efficient quantum-impurity solvers. Examples are Hirsch-

Fye QMC, continuous-time QMC, and Lanczos. Short and/or long range spatial correlations

can be in principle accounted for within different methods: CDMFT, DCA, dual fermions,

GW+DMFT. Thanks to the improvements of impurity solvers and to modern supercomputers,

we have been able to include in LDA+DMFT calculations more degrees of freedom, to reach

experimental temperatures, to calculate properties beyond the spectral function, and to move

towards predictive power. From the many successful applications of LDA+DMFT we have

learned that details do matter; for example a crystal-field splitting of merely hundred meV, typi-

cally neglected in studies based on simple model Hamiltonians, plays a crucial role in stabilizing

the orbitally-ordered Mott insulating state [24], and super-exchange, although very efficient, is

not the driving mechanism of orbital order in the text-book examples of actual orbitally-ordered

materials, LaMnO3 and KCuF3.
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Much work lies ahead. A general and effective quantum-impurity solver is not yet available;

effective k-dependent extensions of LDA+DMFT are under development. Central to the success

of LDA+DMFT and its extensions is the separation of electrons into light and heavy. This

separation, however, is also the main source of trouble. The double-counting correction is

essentially unknown. To account for screening effects in a realistic setting is very difficult.

Furthermore, by truncating the Coulomb interaction outside the correlated sector, we assume

implicitly that the effect of many-body downfolding to the correlated sector is only screening;

effects which go beyond the mere Coulomb renormalization are usually neglected. Ultimately,

these approximations have to be put to a test.

Finally, we have to remember that many-body phenomena are emergent behaviors [36]. Each of

such phenomena, although in principle described by the same many-body Hamiltonian (1), the

theory of almost everything [37], may have a very different nature. To predict new phenomena

before they are observed is therefore extremely challenging. After they are discovered, they are

often elusive and might remain mysterious for decades, like it is happening for high-temperature

superconductivity. In developing ab-initio theories for strongly-correlated systems, we have

thus always to keep in mind that the crucial aspect to explain a given phenomenon might be

hidden in some detail which in more ordinary circumstances would play no role. The challenge

is thus to identify which details do matter.
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Appendices

A Constants and units

In this Lecture, formulas are written in atomic units. The unit of mass m0 is the electron mass

(m0 = me), the unit of charge e0 is the electron charge (e0 = e), the unit of length a0 is the

Bohr radius (a0 = aB ∼ 0.52918 = Å), and the unit of time is t0 = 4πε0~a0/e
2. In these units,

me, aB , e and 1/4πε0 have the numerical value 1; the speed of light is c = 1/α ∼ 137 in atomic

units. The unit of energy is 1Ha = e2/4πε0a0 ∼ 27.211 eV. These are the natural units for

theory. When comparing to experiments, for convenience, we give the energies in eV or meV.

B Atomic orbitals

B.1 Radial functions

The nlm hydrogen-like atomic orbital is given by

ψnlm(ρ, θ, φ) = Rnl(ρ)Y
m
l (θ, φ),

whereRnl(ρ) is the radial function and Y l
m(θ, φ) a spherical harmonic, ρ = Zr and Z the atomic

number. In atomic units, the radial functions are

Rnl(ρ) =

√

(

2Z

n

)3
(n− l − 1)!

2n[(n + l)!]3
e−ρ/n

(

2ρ

n

)l

L2l+1
n−l−1

(

2ρ

n

)

,

where L2l+1
n−l−1 are generalized Laguerre polynomials of degree n− l − 1.

The radial function for n = 1, 2, 3 are

R1s(ρ) = 2 Z3/2 e−ρ

R2s(ρ) =
1

2
√
2
Z3/2 (2− ρ) e−ρ/2

R2p(ρ) =
1

2
√
6
Z3/2 ρ e−ρ/2

R3s(ρ) =
2

3
√
3
Z3/2 (1− 2ρ/3 + 2ρ2/27) e−ρ/3

R3p(ρ) =
4
√
2

9
√
3
Z3/2 ρ(1− ρ/6) e−ρ/3

R3d(ρ) =
2
√
2

81
√
15
Z3/2 ρ2 e−ρ/3

where we used the standard notation s for l = 0, p for l = 1 and d for l = 2.

B.2 Real harmonics

To study solids, it is usually convenient to work in the basis of real harmonics. The latter are

defined in terms of the spherical harmonics as follows:

yl0 = Y l
0 , ylm =

1√
2
(Y l

−m + (−1)mY l
m), yl−m =

i√
2
(Y l

−m − (−1)mY l
m), m > 0.
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y

x

z

Fig. 15: The s (first row), py, pz, px (second row), and dxy, dyz, d3z2−r2 , dxz, dx2−y2 (last row)

real harmonics.

Using the definitions x = r sin θ cosφ, y = r sin θ sin φ, z = r cos θ, we can express the

l = 0, 1, 2 real harmonics (Fig. 15) as

s = y00 = Y 0
0 =

√

1
4π

py = y1−1 =
i√
2
(Y 1

1 + Y 1
−1) =

√

3
4π

y/r

pz = y10 = Y 0
2 =

√

3
4π

z/r

px = y11 = 1√
2
(Y 1

1 − Y 1
−1) =

√

3
4π

x/r

dxy = y2−2 =
i√
2
(Y 2

2 − Y 2
−2) =

√

15
4π

xy/r2

dyz = y2−1 =
i√
2
(Y 2

1 + Y 2
−1) =

√

15
4π

yz/r2

d3z2−r2 = y20 = Y 0
2 =

√

15
4π

1
2
√
3
(3z2 − r2)/r2

dxz = y21 = 1√
2
(Y 2

1 − Y 2
−1) =

√

15
4π

xz/r2

dx2−y2 = y22 = 1√
2
(Y 2

2 + Y 2
−2) =

√

15
4π

1
2

(x2 − y2)/r2
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B.3 Slater-Koster integrals

The interatomic Slater-Koster two-center integrals are defined as

Elm,l′m′ =

∫

drψlm(r− d)V (r− d)ψl′m′(r).

They can be expressed as a function of radial integrals Vll′α, which scale with the distance d

roughly as d−(l+l′+1) [38], and direction cosines, defined as

l = d · x̂/d, m = d · ŷ/d, n = d · ẑ/d.

The Slater-Koster integrals for s, p, and d orbitals [38] are listed below.

Es,s = Vssσ

Es,x = lVspσ

Ex,x = l2Vppσ +(1− l2)Vppπ

Ex,y = lmVppσ −lmVppπ

Ex,z = lnVppσ −lnVppπ

Es,xy =
√
3lmVsdσ

Es,x2−y2 = 1
2

√
3(l2 −m2)Vsdσ

Es,3z2−r2 = [n2 − 1
2(l

2 +m2)]Vsdσ

Ex,xy =
√
3l2mVpdσ +m(1− 2l2)Vpdπ

Ex,yz =
√
3lmnVpdσ −2lmnVpdπ

Ex,zx =
√
3l2nVpdσ +n(1− 2l2)Vpdπ

Ex,x2−y2 =
√
3
2 l[(l2 −m2)]Vpdσ +l(1− l2 +m2)Vpdπ

Ey,x2−y2 =
√
3
2 m[(l2 −m2)]Vpdσ −m(1 + l2 −m2)Vpdπ

Ez,x2−y2 =
√
3
2 n[(l2 −m2)]Vpdσ −n(l2 −m2)Vpdπ

Ex,3z2−r2 = l[n2 − 1
2(l

2 +m2)]Vpdσ −
√
3ln2Vpdπ

Ey,3z2−r2 = m[n2 − 1
2(l

2 +m2)]Vpdσ −
√
3mn2Vpdπ

Ez,3z2−r2 = n[n2 − 1
2(l

2 +m2)]Vpdσ +
√
3n(l2 +m2)Vpdπ

Exy,xy = 3l2m2Vddσ +(l2 +m2 − 4l2m2)Vddπ +(n2 + l2m2)Vddδ

Exy,yz = 3lm2nVddσ +ln(1− 4m2)Vddπ +ln(m2 − 1)Vddδ

Exy,zx = 3l2mnVddσ +mn(1− 4l2)Vddπ +mn(l2 − 1)Vddδ

Exy,x2−y2 = 3
2 lm(l2 −m2)Vddσ 2lm(m2 − l2)Vddπ

1
2 lm(l2 −m2)Vddδ

Eyz,x2−y2 = 3
2mn(l2 −m2)Vddσ −mn[1 + 2(l2 −m2)]Vddπ +mn[1 + 1

2(l
2 −m2)]Vddδ

Ezx,x2−y2 = 3
2nl(l

2 −m2)Vddσ +nl[1− 2(l2 −m2)]Vddπ −nl[1− 1
2(l

2 −m2)]Vddδ

Exy,3z2−r2 =
√
3lm[n2 − 1

2 (l
2 +m2)]Vddσ −2

√
3lmn2Vddπ

√
3
2 lm(1 + n2)Vddδ

Eyz,3z2−r2 =
√
3mn[n2 − 1

2 (l
2 +m2)]Vddσ +

√
3mn(l2 +m2 − n2)Vddπ −

√
3
2 mn(l2 +m2)Vddδ

Ezx,3z2−r2 =
√
3ln[n2 − 1

2 (l
2 +m2)]Vddσ +

√
3ln(l2 +m2 − n2)Vddπ −

√
3
2 ln(l2 +m2)Vddδ

Ex2−y2,x2−y2 = 3
4(l

2 −m2)2Vddσ +[l2 +m2 − (l2 −m2)2]Vddπ +[n2 + 1
4(l

2 −m2)2]Vddδ

Ex2−y2,3z2−r2 =
√
3
2 (l2 −m2)[n2 − 1

2 (l
2 +m2)]Vddσ +

√
3n2(m2 − l2)Vddπ +1

4

√
3(1 + n2)(l2 −m2)Vddδ

E3z2−r2,3z2−r2= [n2 − 1
2(l

2 +m2)]2Vddσ +3n2(l2 +m2)Vddπ
3
4 (l

2 +m2)2Vddδ
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B.4 Gaunt coefficients and Coulomb integrals

For the d shell, in the basis of spherical harmonics, the coefficients Gk(m,m
′) = 〈lm|Y k

q |lm′〉
with k = 2, 4 are:

G2 =
1

7
√
4π















-
√
20

√
30 -

√
20 0 0

-
√
30

√
5

√
5 -

√
30 0

-
√
20 -

√
5

√
20 -

√
5 -

√
20

0 -
√
30

√
5

√
5 -

√
30

0 0 -
√
20

√
30 -

√
20















G4 =
1

7
√
4π















1 -
√
5

√
15 -

√
35

√
70√

5 -4
√
30 -

√
40

√
35√

15 -
√
30 6 -

√
30

√
15√

35 -
√
40

√
30 -4

√
5√

70 -
√
35

√
15 -

√
5 1















.

The two-index Coulomb integrals can be written as

Um,m′ =
2l
∑

k=0

ak(mm,m
′m′)Fk =

2l
∑

k=0

bk(m,m
′)Fk,

Jm,m′ =

2l
∑

k=0

ak(mm
′, m′m)Fk =

2l
∑

k=0

ck(m,m
′)Fk,

where

ak(mαm
′
α, mβm

′
β) =

4π

2k + 1

k
∑

q=−k

〈lmα|Y k
q |lm′

α〉〈lmβ|Y
k

q |lm′
β〉.

For l = 2, in the basis of spherical harmonics

b0=















1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1















b2=
1

49















4 -2 -4 -2 4

-2 1 2 1 -2

-4 2 4 2 -4

-2 1 2 1 -2

4 -2 -4 -2 4















b4=
1

49

1

9















1 -4 6 -4 1

-4 16 -24 16 -4

6 -24 36 -24 6

-4 16 -24 16 -4

1 -4 6 -4 1















c0=















1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1















c2=
1

49















4 6 4 0 0

6 1 1 6 0

4 1 4 1 4

0 6 1 1 6

0 0 4 6 4















c4=
1

49

1

9















1 5 15 35 70

5 16 30 40 35

15 30 36 30 15

35 40 30 16 5

70 35 15 5 1
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In the basis of real harmonics, we find instead

b0=















1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1















b2=
1

49















4 -2 -4 -2 4

-2 4 2 -2 -2

-4 2 4 2 -4

-2 -2 2 4 -2

4 -2 -4 -2 4















b4=
1

49

1

9















36 -4 6 -4 -34

-4 36 -24 -4 -4

6 -24 36 -24 6

-4 -4 -24 36 -4

-34 -4 6 -4 36















c0=















1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1















c2=
1

49















4 3 4 3 0

3 4 1 3 3

4 1 4 1 4

3 3 1 4 3

0 3 4 3 4















c4=
1

49

1

9















36 20 15 20 35

20 36 30 20 20

15 30 36 30 15

20 20 30 36 20

35 20 15 20 36















For l = 2 the transformation matrix M from spherical to real harmonics is

M =
1√
2















-i 0 0 0 i

0 i 0 i 0

0 0
√
2 0 0

0 -1 0 1 0

1 0 0 0 1















.

Sometimes the Coulomb integrals are given as linear combination of Racah parameters instead

than of Slater integrals Fk. For the d shell, the Racah parameters are A = F0 − 49
441
F4, B =

1
49
F2 − 5

441
F4, and C = 35

441
F4.
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1 Introduction

Solving the many-electron problem is one of the main goals of condensed matter physics.Were it

not for the presence of the Coulomb interaction among the electrons, the many-electron Hamil-

tonian could be easily solved since it amounts to solving a one-electron problem. The Hamilto-

nian without the Coulomb interaction is given by

H0 =
N
∑

n=1

h0(rn) =
N
∑

n=1

[

−1

2
∇2

n + Vext(rn)

]

, (1)

where we have worked in atomic units (~ = m = e = 1 → 1 a.u.= 27.2 eV), rn = (rn, σn) is a

combined variable for position and spin, and Vext is an external potential, such as the potential

from the nuclear charges. The problem becomes enormously complicated when the Coulomb

interaction among the electrons is added to the above Hamiltonian:

H = H0 + V , (2)

where

V =
1

2

∑

i6=j

v(ri − rj), v(ri − rj) =
1

|ri − rj|
. (3)

Except for small systems, such as atoms and small molecules containing a few tens of electrons,

there is little hope of solving the many-electron problem exactly, in particular for excited states,

which are our main interest here. Various simplifications and techniques are needed in order to

make progress.

In terms of field operators and in the occupation number representation the Hamiltonian takes

the form [1]

Ĥ =

∫

drψ̂+(r)

[

h0(r) +
1

2
V̂ H(r)

]

ψ̂(r) , (4)

where

V̂ H(r) =

∫

dr′v(r − r′)ψ̂+(r′)ψ̂(r′) =

∫

dr′v(r − r′)ρ̂(r′). (5)

We use the convention
∫

dr =
∑

σ

∫

d3r. Since

ψ̂(r) =
∑

n

ϕn(r)cn , (6)

we obtain

Ĥ =
∑

ij

c+i

(

h0ij +
1

2
V̂ H
ij

)

cj , (7)

where

V̂ H
ij =

∑

kl

vij,klc
+
k cl, (8)

and

h0ij =

∫

drϕ∗
i (r)h

0(r)ϕj(r), (9)
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vij,kl =

∫

drdr′ϕ∗
i (r)ϕj(r)v(r − r′)ϕ∗

k(r
′)ϕl(r

′). (10)

The one-particle orbitals {ϕn} are arbitrary but often chosen to be the Kohn-Sham orbitals.

Note that the index n is a combined index of orbital and spin functions:

ϕn(r) = ϕk(r)ξ(σ), n = (k, ξ) (11)

and that the definition of the Coulomb matrix is different from the usual convention. The defi-

nition in (10) is chosen to conform to the definition of the Hubbard U defined later.

A great simplification to the full many-electron Hamiltonian was introduced by Hubbard when

studying the physics of transition metals in the late fifties. He noticed that most of the physics

could well be attributed to electrons occupying the partially filled narrow 3d bands, which

crossed the Fermi level. He then heuristically introduced the following Hamiltonian, now fa-

mously known as the Hubbard model [2]:

Ĥ =
∑

ij⊂3d

c+i h
0
ijcj +

1

2

∑

ijkl⊂3d

Uij,klc
+
i c

+
k clcj. (12)

It is the same form as the Hamiltonian in (7) but the orbitals defining the annihilation and

creation operators are now confined to the 3d orbitals and the Coulomb interaction has been re-

placed by some effective interaction U . The index i labels the atomic position and the localised

3d orbital. He reasoned that the rest of the electrons, that are more extended compared to the

localised 3d electrons had the role of screening the Coulomb interaction between the 3d elec-

trons and therefore the bare Coulomb interaction was reduced to an effective interaction U , the

famous Hubbard U , which was assumed to have onsite components only, i.e., the labels i, j, k, l

in Uij,kl refer to the same atomic site. Since then this seemingly simple looking model has had

an enormous impact in the field of condensed matter physics as witnessed by a huge number

of articles on works where the model has been used to study a wide range of problems from

magnetism to superconductivity. The Hubbard model is suitable for studying materials with

partially filled narrow bands. A large class of materials with this characteristic, often referred

to as strongly correlated materials, are hosts to many intriguing physical properties [3] such

as the metal-insulator transition and giant magnetoresistance. Small variations in the physical

parameters, e.g., pressure or doping, can induce large changes in the physical properties.

Despite its simplicity the Hubbard model has proven to be highly non-trivial to solve, except

for a few special cases such as the one-dimensional case. Even in its simplest form with only

one orbital per site or one-band model,

Ĥ = t
∑

<i,j>

c+i cj + U
∑

i

ni↑ni↓, (13)

no exact solution is known. The notation < ij > indicates that the hopping is restricted to

the nearest neighbours only. In most cases the Hubbard model is then solved numerically by

various methods. Among these we have the Lanczos method (exact diagonalisation), Quantum
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Monte Carlo (QMC) method [4], and in recent years the dynamical mean-field theory (DMFT)

method [5].

Central to the Hubbard model are the hopping parameters tij = h0ij and the effective Coulomb

interaction (Hubbard U) Uij,kl. For the above simplest model there is actually only one effective

parameter, namely, U/t. While it is relatively straightforward to extract the hopping parameters

from realistic band structure calculations, it is much more elusive to determine the Hubbard U

so that in many cases it is often treated as an adjustable parameter. To understand a generic

physical phenomenon, it is quite appropriate to vary U in order to see the effects on the physical

properties of interest. However, for a given material under a given condition, there does not

seem to be any good reason to vary U since its value ought to be fixed. Different values of

U simply correspond to different materials or different conditions. Reliable determination of

U is therefore of utmost importance in order to be able to make quantitative predictions and

to calculate materials properties from first principles. The present article is focused on the

determination of the Hubbard U parameter from realistic first-principles calculations.

The problem of determining the Hubbard U from first principles has been addressed by a num-

ber of authors. One of the earliest works is the constrained local density approximation (cLDA)

approach [6–8] where the Hubbard U is calculated from the total energy variation with respect

to the occupation number of the localised orbital. A further improvement of this scheme was

recently proposed [9]. Later, a different approach based on the random-phase approximation

(RPA) was introduced [10, 11].

2 Screening and the random-phase approximation

In condensed matter physics, the concept of screening is crucial for understanding many of

the physical properties of materials, especially metals. Take for example the famous anomaly

associated with the disappearance of the density of states at the Fermi level in metals within the

Hartree-Fock approximation, which neglects dynamic screening [12].

When a system of electrons is perturbed by a static external potential, the electrons will rear-

range themselves in such a way as to minimize the total energy. If we introduce a positive test

charge into the electronic system, the electrons will be attracted to surround the positive charge

and in so doing reduce the total energy. The negative potential energy compensates for the in-

crease in the kinetic energy due to the localisation of the electrons around the test charge. As a

result of the electron accumulation around the test charge, the effective interaction between the

test charge and an electron sufficiently outside the range where the electrons are accumulated

becomes much weaker than the bare Coulomb interaction. In other words, the Coulomb interac-

tion is screened. If the test charge is an electron, other electrons will be repelled and a screening

hole is created which similarly screens the bare Coulomb interaction. In general, the perturbing

field may be time dependent so that screening is a time-dependent or energy-dependent phe-

nomenon. As a consequence, the screened interaction is retarded so that at finite frequencies it

may become negative.

Consider applying a time-dependent perturbation δϕ to a system of electrons. The change in the
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electron density induced by this perturbation generates in turn a change in the Hartree potential

δVH so that the total potential is given by

δV = δϕ+ δVH. (14)

The induced Hartree potential δVH screens the applied perturbation δϕ and the ratio between

the screened and the applied field is defined to be the inverse dielectric function. To simplify

the writing, we use the notation 1 = (r1, t1) keeping in mind that r1 = (r1, σ1) as previously

defined in the Introduction:

ǫ−1(1, 2) =
δV (1)

δϕ(2)

= δ(1− 2) +
δVH(1)

δϕ(2)

= δ(1− 2) +

∫

d3v(1− 3)
δρ(3)

δϕ(2)

= δ(1− 2) +

∫

d3v(1− 3)R(3, 2), (15)

or in matrix notation

ǫ−1 = 1 + vR. (16)

The Coulomb potential v(1− 2) is given by

v(1− 2) = v(|r1 − r2|)δ(t1 − t2).

The δ-function indicates that the Coulomb interaction is instantaneous since we are dealing with

non-relativistic cases. We have defined the linear density response function R according to

R(1, 2) =
δρ(1)

δϕ(2)
or δρ(1) =

∫

d2R(1, 2)δϕ(2), (17)

which describes a change in the electron density δρ induced by an arbitrary time-dependent

perturbation δϕ to first order.

The Coulomb interaction v(1−2) may be thought of as the Coulomb potential at point r1 arising

from a unit point charge at position r2. If we regard this potential as a perturbation, according

to (17), the change in the density due to this perturbation is given by,

δρ(3, 2) =

∫

d4R(3, 4)v(4− 2). (18)

This induced charge generates in turn the Hartree potential

δVH(1, 2) =

∫

d3v(1− 3)δρ(3, 2), (19)
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which screens the Coulomb potential at point r1. The screened Coulomb potential at point r1

due to a unit point charge at point r2 is therefore given by

W (1, 2) = v(1− 2) + δVH(1, 2)

= v(1− 2) +

∫

d3 v(1− 3)δρ(3, 2)

= v(1− 2) +

∫

d3d4 v(1− 3)R(3, 4)v(4− 2)

=

∫

d4 ǫ−1(1, 4)v(4− 2). (20)

The last line is obtained from (15).

To describe formally the screening phenomenon, it is useful to work with the Green function in

the interaction representation and employ the Schwinger functional derivative technique [13] as

done by Hedin [14]. The Green function in the interaction or Dirac representation is defined as

follows:

iG(1, 2) =

〈

Ψ0

∣

∣

∣
T [Ŝψ̂D(1)ψ̂

+
D(2)]

∣

∣

∣
Ψ0

〉

〈

Ψ0

∣

∣

∣
Ŝ
∣

∣

∣
Ψ0

〉 (21)

where

Ŝ = T exp[−i
∫

d4 ρ̂(4)ϕ(4)]. (22)

T is the time-ordering operator that puts the operators chronologically from right to left. The

field operators are in the Dirac or interaction representation:

ψ̂D(r, t) = eiĤtψ̂(r)e−iĤt.

Ĥ is the Hamiltonian of the interacting electron system defined in (4) without the perturbing

field ϕ. The state |Ψ0〉 is the ground state of Ĥ, i.e., it is the same as the Heisenberg ground

state in the usual definition of the Green function [1]. As can be easily seen, the above definition

of the Green function reduces to the usual definition in terms of the Heisenberg field operators

when ϕ = 0. One of the merits of the interaction picture is that the field operators do not

depend on the perturbing field ϕ. This property, as will be seen later, is very useful when taking

the functional derivative of the Green function with respect to the perturbing field in order to

calculate the linear density response function.

The Green function in (21) satisfies the equation of motion

(

i
∂

∂t1
− h(1)

)

G(1, 2)−
∫

d3 Σ(1, 3)G(3, 2) = δ(1− 2), (23)

where Σ is the self-energy without the Hartree potential and

h = −1

2
∇2 + Vext + VH + ϕ.

Here, Vext and VH are respectively the external field, such as the field from the nuclei, and the

Hartree field. By multiplying both sides of (23) from the right by the inverse of the Green

function we obtain
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G−1(1, 2) =

(

i
∂

∂t1
− h(1)

)

δ(1− 2)− Σ(1, 2). (24)

Since GG−1 = 1 we also have in matrix notation the identity

δG

δϕ
G−1 +G

δG−1

δϕ
= 0 → δG

δϕ
= −GδG

−1

δϕ
G. (25)

We are now in the position to derive the equation for the linear response function or the screened

Coulomb interaction. Since ρ(1) = −iG(1, 1+), we find from (17)

R(1, 2) =
δρ(1)

δϕ(2)

= −iδG(1, 1
+)

δϕ(2)

= i

∫

d3d4 G(1, 3)
δG−1(3, 4)

δϕ(2)
G(4, 1+), (26)

where we have used the identity in (25). We now use the expression for the inverse of the Green

function in (24) to calculate δG−1/δϕ:

δG−1(3, 4)

δϕ(2)
= −

[

δ(3− 2) +
δVH(3)

δϕ(2)

]

δ(3− 4)− δΣ(3, 4)

δϕ(2)
. (27)

The first term on the right-hand side arises from δϕ(3)/δϕ(2) = δ(3− 2). At this stage we will

only keep the change in the Hartree potential and drop the term δΣ/δϕ. This corresponds to

the RPA, which may be regarded as the time-dependent Hartree approximation, since we only

consider the change in the Hartree potential upon application of a time-dependent perturbation:

δVH(3)

δϕ(2)
=

δ

δϕ(2)

∫

d5 v(3− 5)ρ(5) =

∫

d5 v(3− 5)R(5, 2), (28)

Within the RPA we then have

δG−1(3, 4)

δϕ(2)
= −

[

δ(3− 2) +

∫

d5 v(3− 5)R(5, 2)

]

δ(3− 4). (29)

Using this in (26) we arrive at

R(1, 2) = −i
∫

d3 G(1, 3)

[

δ(3− 2) +

∫

d5 v(3− 5)R(5, 2)

]

G(3, 1+)

= P (1, 2) +

∫

d3d5 P (1, 3)v(3− 5)R(5, 2), (30)

where we have defined the polarisation function

P (1, 2) = −iG(1, 2)G(2, 1+). (31)

In matrix form

R = P + PvR → R = [1− Pv]−1 P, (32)
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which is the well-known RPA equation. We note that, while in the RPA the polarisation function

P is approximated by (31), the exact response function R satisfies the same equation with

the exact polarization function P . It is straightforward to verify using (16) and (32) that the

dielectric function is given by

ǫ = 1− vP : (33)

ǫǫ−1 = (1− vP )(1 + vR)

= 1 + vR− v(P + PvR)

= 1. (34)

Using the convolution theorem, the Fourier transform of P in (31) is given by

P (r, r′;ω) = −i
∫

dω

2π
G(r, r′;ω + ω′)G(r′, r;ω′) , (35)

where the Fourier transform is defined according to

G(ω) =

∫

dt eiωtG(t), G(t) =

∫

dω

2π
e−iωtG(ω) .

Using a non-interacting Green function

G0(r, r′;ω) =
occ
∑

n

ϕn(r)ϕ
∗
n(r

′)

ω − εn − iδ
+

unocc
∑

m

ϕm(r)ϕ
∗
m(r

′)

ω − εm + iδ
, (36)

where {ϕn, εn} are usually taken to be the Kohn-Sham orbitals and eigenvalues, the frequency

integral can be performed analytically using Cauchy’s theorem. Terms involving products of

two occupied states or two unoccupied states vanish because the two poles lie on the same plane.

Only terms involving the products of occupied and unoccupied states survive. For example,

considering only the frequency-dependent parts,

−i
∫

dω

2π

(

1

ω + ω′ − εn − iδ

)

occ

×
(

1

ω′ − εm + iδ

)

unocc

can be integrated analytically using the Cauchy theorem by closing the contour along an in-

finitely large semicircle either in the upper or lower half plane. This yields

−i
2π

(2πi× residue) = − 1

ω + εm − εn − iδ
.

Consequently,

P (r, r′;ω) = −
occ
∑

n

unocc
∑

m

ϕn(r)ϕ
∗
n(r

′)ϕm(r
′)ϕ∗

m(r)

ω + εm − εn − iδ

+

occ
∑

n

unocc
∑

m

ϕn(r
′)ϕ∗

n(r)ϕm(r)ϕ
∗
m(r

′)

ω − εm + εn + iδ
, (37)

which can be rewritten more compactly as a sum over occupied and unoccupied pairs of orbitals

P (r, r′;ω) =
∑

α

(

bα(r)b
∗
α(r

′)

ω −∆α + iδ
− b∗α(r)bα(r

′)

ω +∆α − iδ

)

, (38)

where

bα = ϕ∗
nϕm, ∆α = εm − εn > 0. (39)
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Fig. 1: The band structure of SrVO3. The red bands correspond to the vanadium 3d orbitals

of t2g character. Although the density of states corresponding to the red bands overlap with

the rest of the density of states, as can be seen in Fig. 2, the red bands originating from the

vanadium 3d t2g orbitals are isolated from the rest of the bands.

3 Constrained RPA

3.1 Theory

Let us consider a system with a narrow band, well separated from other bands, crossing the

Fermi level. As a concrete example, consider the case of the perovskite SrVO3, whose band

structure and density of states are shown in Figs. 1 and 2. We first divide the one-particle

Hilbert space into two parts, which we call the d and r subspaces. The d subspace is identified

with the narrow band, which in the example of SrVO3 are marked in red.

We may separate the total polarisation of the system into the polarisation within the d subspace,

which we shall call Pd, and the rest of the polarisation, which we shall call Pr:

P = Pd + Pr. (40)

The meaning of Pd and Pr is illustrated in Fig. 3. In the example of SrVO3, the red bands in

Fig. 1 form our d subspace, which corresponds to the subspace of our model and we wish to

determine the Hubbard U or the effective interaction among electrons residing in the red bands.

From (20) the fully screened Coulomb interaction is given by

W = ǫ−1v, (41)

where from (16) and (33)

ǫ−1 = 1 + vR and ǫ = 1− vP. (42)

The fully screened interaction can be rewritten as

W = [1−WrPd]
−1Wr, (43)
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Fig. 2: Density of states of SrVO3. The dotted curve is the total density of states. The red and

blue curves show the vanadium 3d t2g and eg components, respectively. The density of states

between −8 to −2 eV originates from the oxygen 2p states.

where

Wr = [1− vPr]
−1v = ǫ−1

r v. (44)

We verify the above identity. From (41) and (42)

W = [1− vP ]−1v

= [1− vPr − vPd]
−1v

=
{

ǫr[1− ǫ−1
r vPd]

}−1
v

= [1− ǫ−1
r vPd]

−1ǫ−1
r v

= [1−WrPd]
−1Wr. (45)

We observe that the identity in Eq. (43) allows us to interpret Wr as the effective interaction

among electrons residing in the d subspace or the Hubbard U [15] because when this effective

interaction is screened further in the model by Pd we obtain the fully screened interaction:

U(r, r′;ω) =Wr(r, r
′;ω). (46)

A formal derivation of the Hubbard U from the many-electron Hamiltonian may be found in

[16]. The Hubbard U is frequency dependent as a consequence of retarded screening effects.

Eq. (44) is exact, but in practice we approximate Pr = P − Pd within the RPA, which takes the

form
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Fig. 3: A schematic picture explaining the meaning of Pd and Pr. While Pd is confined to the

transitions within the d subspace, Pr may contain transitions between the d and r subspaces.

P (r, r′;ω) =
occ
∑

kn

unocc
∑

k′n′

{

ψ∗
kn(r)ψk′n′(r)ψ∗

k′n′(r′)ψkn(r
′)

ω − εk′n′ + εkn + iδ

− ψkn(r)ψ
∗
k′n′(r)ψk′n′(r′)ψ∗

kn(r
′)

ω + εk′n′ − εkn − iδ

}

, (47)

where {ψkn, εkn} are usually chosen to be the Kohn-Sham eigenfunctions and eigenvalues and

k = (k, σ) is a combined index for the k-vector and the spin σ. For systems without spin-

flipping processes, k and k′ evidently have the same spin. Pd has exactly the same form as in

Eq. (47) but with the bands n and n′ restricted to the d subspace. We note that Pr contains

not only transitions inside the r subspace but also transitions between the d and r subspaces as

illustrated in Fig. 3.

Since Pr does not contain low-energy polarisations that are responsible for metallic screening,

U becomes long range. The asymptotic decay of U as a function of distance is expected to

behave according to 1/(αr) where α > 1 rather than exponential, as often assumed. This

behaviour is illustrated, e.g., in the case of the BEDT-TTF organic conductors [17].

It may be argued that for narrow-band materials with strong correlations it would not be suffi-

cient to calculate U within the RPA. We would like to point out that from a physical point of

view much of the error in the RPA resides in Pd rather than Pr because the former corresponds

to the polarisation of the narrow bands, where we expect vertex corrections to the RPA to be

large, whereas the latter corresponds to polarisation involving more extended states, for which

the RPA is supposed to perform well. Since it is Pr that enters into the calculation of U , we

expect that the error in the RPA has much less influence on U than one would anticipate.

In practice, Eq. (44) is solved by introducing a set of basis functions, and the choice of basis

functions depends on the band-structure method. For band-structure methods based on pseu-

dopotentials, a plane-wave basis set is a natural choice. For band-structure methods based on
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Fig. 4: Contour plot of the maximally localized Wannier function (MLWF) of SrVO3. If we

take the x axis to be the horizontal direction and the z axis to be the vertical direction, the

Wannier function corresponds to xz. The red (blue) represents the positive (negative) contour.

The Wannier function is centered at the vanadium site, which is located at the center of the

cube. The green spheres at the corners are strontium atoms, and white spheres at the centers

of the faces are oxygen atoms. The MLWF is optimized in the t2g model which consists of three

t2g-like states. We note that the Wannier function has tails on the oxygen sites.

localised basis functions, such as the linear muffin-tin orbital (LMTO) method, the linearised

augmented plane-wave method (LAPW) [18], or the Korringa-Kohn-Rostocker (KKR) method,

a product basis set [19, 20] is usually used. This is described in the Appendix.

3.2 Wannier orbitals

After obtaining U(r, r′;ω) the next step is to calculate its matrix elements in some localised

orbitals. The Hubbard model in Eq. (12) is defined with respect to a chosen one-particle basis

set defining the creation and annihilation operators of the field operators. We must therefore

calculate the matrix elements of U in this chosen one-particle basis set. It is of course up to

us what basis we choose but an appealing choice is the maximally localised Wannier orbitals

which are constructed as follows [21].

The Wannier function with band index n at cell R is defined by

|ϕnR〉 =
V

(2π)3

∫

d3k e−ik·R|ψ(w)
kn 〉, (48)

where |ψ(w)
kn 〉 is the associated Bloch function, which can be expanded as a linear combination

of the eigenfunctions of a mean-field Hamiltonian as

|ψ(w)
kn 〉 =

∑

m

|ψkm〉Umn(k). (49)

In practical implementations, the Kohn-Sham wavefunctions are usually used for |ψkm〉. In

the maximally localised Wannier function scheme, the coefficients Umn(k) are determined such
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Fig. 5: As in Fig. 4 but the Wannier function is constructed according to the dp model which

consists of the vanadium 3d bands (t2g+eg) and oxygen 2p bands. Compared to the one in Fig. 4

the Wannier function has become much more localised on the vanadium site.

that the quadratic extent of the wavefunctions

Ω =
∑

n

(〈ϕn0|r2|ϕn0〉 − |〈ϕn0|r|ϕn0〉|2) (50)

is minimised. When the bands are isolated, the Wannier orbitals are well defined and span the

same Hilbert space as that of the isolated bands. However, when the bands are not isolated the

Wannier orbitals are not unique. For this case, we introduce an energy window and optimise

Umn(k) with m limited to the states inside the window. The Wannier function is the more

localised the larger the energy window, since optimisation is then done in a wider Hilbert space.

This is illustrated in Figs. 4 and 5.

3.3 cRPA with the maximally localised Wannier function

Once Umn(k) is determined on a k mesh, maximally localised Wannier functions are obtained

by Fourier transform as in (48), from which the Hamiltonian corresponding to the d subspace

is constructed: Hmn(R) = 〈ϕm0|H|ϕnR〉. By Fourier transforming Hmn(R) back to k space

and diagonalising it, we reproduce the original narrow bands. If the narrow bands forming the

d subspace are not completely separated from the rest of the bands, the resulting bands will no

longer in general be the same as the original bands. For the case of SrVO3 we first construct

from the red bands in Fig. 1 three Wannier orbitals having strong 3d character of t2g symmetry.

The next step is to compute the screened Coulomb interactionWr(r, r
′;ω) in the cRPA and take

the matrix elements in the maximally localised Wannier basis [22]:

Wr(n1, n2, n3, n4;R;ω) ≡
∫ ∫

d3rd3r′ϕ∗
n10

(r)ϕn20
(r)Wr(r, r

′;ω)ϕ∗
n3R

(r′)ϕn4R
(r′). (51)
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Fig. 6: The real part of the Hubbard U for various d subspaces indicated by the legends in the

figure. W is the fully screened interaction. The meaning of the legends is summarised in the

table below. For example, the d subspace of the t2g + p model is comprised of the vanadium t2g
and oxygen p bands.

model: t2g d t2g + p dp
d subspace: V t2g V (t2g + eg) V t2g + O p V (t2g + eg) + O p

The above expression is the most general, but in practice we often restrict ourselves to the on-

site values and only consider the direct (charge-charge) and exchange components. The on-site

Hubbard U matrix is defined to be

Unm(ω) ≡
∫ ∫

d3rd3r′|ϕn0(r)|2Wr(r, r
′;ω)|ϕm0(r

′)|2 (52)

and the onsite exchange matrix J .

Jnm(ω) ≡
∫ ∫

d3rd3r′ϕ∗
n0(r)ϕm0(r)Wr(r, r

′;ω)ϕn0(r
′)ϕ∗

m0
(r′). (53)

Note that the definitions of U and J may vary according to convention but in any case the

various definitions can be related to (52) and (53). At this point it is worth pointing out that

the effective screened interaction Wr(r, r
′;ω) calculated using the cRPA method is completely

independent of the choice of basis functions. The matrix elements are of course dependent on

the choice of the orbitals {ϕn0}.

3.4 Example: SrVO3

To illustrate the usefulness of the cRPA method in studying the screening properties of ma-

terials, we consider for SrVO3 the calculations of U for various models. Although we have

illustrated the cRPA scheme for a narrow band, the choice of the d subspace is entirely arbitrary

and it may not necessarily correspond to a narrow band.
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Fig. 7: The imaginary part of the Hubbard U for the models indicated by the legends in the

picture. W is the fully screened interaction. For the definitions of the models, see the caption of

Fig. 6.

We consider first the fully screened interaction W . Two notable features are clearly discernible

in Fig. 7: there is the usual high-energy electron-gas-like plasmon excitation at around 16 eV

and more remarkably there is a strong excitation between 2∼ 3 eV, which arises mainly from

the collective excitation within the partially filled t2g bands. That this is indeed the case can be

understood by comparison with U(ω) for the t2g model in Figs. 7 and 6, where the d subspace

is formed by the t2g bands. The structure at 2∼3 eV is almost absent, due to the elimination of

the polarisation within the t2g bands when calculating U(ω).

Comparison between the t2g- and the d model, where both the t2g and the eg bands form the d

subspace, clearly shows that the corresponding Hubbard U’s are almost the same implying that

the t2g → eg screening channel is essentially ineffective as can be seen in Fig. 6.

When the t2g model is enlarged to the t2g + p model, where the d subspace is formed by the

vanadium t2g and the oxygen 2p bands, the corresponding static Hubbard U is almost doubled

from 3.5 eV to 6.5 eV as shown in Fig. 6, demonstrating the important role of the oxygen

p electrons in screening the Coulomb interaction. When calculating U in the t2g + p model,

the Op → t2g screening channel is left out, and it is the elimination of this screening channel

that is responsible for the large increase in the low-energy U . Furthermore, since the amount of

screening channels is reduced compared with that of the t2g only model, the onset of the plasmon

excitation at around 16 eV is lowered by about 2 eV. In other words, the effective number of

electron participating in the formation of plasmon excitations is reduced. It is noteworthy that

the onset of the plasmon excitation in the t2g and d models is unchanged, indicating that the

plasmon excitation is not coupled to the polarisation within the d bands.

In the most expanded dp model, where the d subspace consists of the vanadium t2g and eg and

the oxygen 2p bands, the value of the static U is approximately doubled further to 11 eV as can
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be seen in Fig. 6, due to the elimination of the Op → eg screening, giving further evidence for

the importance of the oxygen p electrons in the screening process. It can also be seen that the

plasmon onset almost disappears, showing that the plasmon excitation mainly couples to the

oxygen p electrons.

3.5 cRPA for entangled bands

Although the cRPA method is rather general, a serious technical problem arises when the narrow

band is entangled with other bands, i.e., the narrow band is not completely isolated from the rest

of the bands, a situation which occurs in many materials. For example, in 3d transition metals,

the 3d bands mix with the 4s and 4p bands as illustrated in Fig. 8 and similarly the 4f bands

of the 4f metals hybridise with the more extended 6s band. For such cases, it is not obvious

anymore how to determine Pr in order to calculate U using the cRPA method.

A number of procedures have been proposed to handle the problem of determining U for en-

tangled bands. One proposal is to choose a set of band indices and define the corresponding

bands as the one-particle bands in the Hubbard model. Another proposal is to introduce an

energy window and define the one-particle bands to be those that have energies within the

energy window. Yet another proposal is to have a combination of energy window and band

indices. These procedures, however, suffer from a number of difficulties. When choosing band

indices it is likely that some of the states will have a character very different from that of the

intended model. For example, in the case of the 3d transition metals, choosing five ”3d” bands

will include at some k-points states which contains a considerable 4s component but little 3d

character. Moreover, the chosen bands will not in general form smoothly connected bands. A

similar problem is encountered when choosing an energy window. A hybrid construction using

band indices and energy window [23] removes part of the problem but it is somewhat arbitrary.

Another procedure is, as we will discuss in detail later, to project the polarisation to the orbitals

of interest, e.g., 3d orbitals, but this procedure has been found to yield an unphysical result of

negative static U.

To overcome the problem with entangled bands we propose the following procedure. We first

construct a set of localised Wannier orbitals from a given set of bands defined within a certain

energy window by following the post-processing procedure of Souza, Marzari and Vanderbilt

[21] or other methods, such as the preprocessing scheme proposed by Andersen et al. within the

Nth-order muffin-tin orbital (NMTO) method [24]. We then choose this set of Wannier orbitals

as the d subspace and use them as a basis for diagonalising the one-particle Hamiltonian, which

is usually the Kohn-Sham Hamiltonian in the local density approximation (LDA) or generalised

gradient approximation (GGA). The so obtained set of bands, which equivalently define the d

subspace, may be slightly different from the original bands defined within the chosen energy

window. It is therefore important to confirm that the dispersions near the Fermi level well

reproduces the original Kohn-Sham bands. From these bands we calculate the polarisation P̃d,
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Fig. 8: The band structure of paramagnetic nickel taken from [25]. The 3d band is approxi-

mately between −4 eV and slightly above the Fermi level (zero energy).

P̃d(r, r
′;ω) =

occ
∑

i

unocc
∑

j

[

ψ̃∗
i (r)ψ̃j(r)ψ̃

∗
j (r

′)ψ̃i(r
′)

ω − ε̃j + ε̃i + iδ
−
ψ̃i(r)ψ̃

∗
j (r)ψ̃j(r

′)ψ̃∗
i (r

′)

ω + ε̃j − ε̃i − iδ

]

, (54)

where {ψ̃i}, {ε̃i} (i = 1, . . . Nd) are the wavefunctions and eigenvalues obtained from diago-

nalising the one-particle Hamiltonian in the Wannier basis.

It would seem sensible to define the rest of the polarisation as Pr = P − P̃d, where P is the full

polarisation calculated using the original (Kohn-Sham) wavefunctions and eigenvalues {ψi},

{εi} (i = 1, . . . N), and calculate Wr according to Eq. (44). We have found, however, that this

procedure is numerically very unstable, resulting in some cases in unphysical negative static U

and large oscillations at low energy. The reason is that P̃d does not completely encompass the

low-energy excitations so that low energy screening channels associated with the d-d transitions

are not completely excluded from Pr. Due to the singular nature of the expression in Eq. (44)

these remaining low-energy excitations can cause large fluctuations in Wr.

Another way of calculating Pr is to project the wavefunctions to the d space,

|ψ̄i〉 = P̂|ψi〉 , (55)

where the projection operator P̂ is defined as

P̂ =

Nd
∑

j=1

|ψ̃j〉〈ψ̃j | . (56)

The effective d polarisation may be expressed as

P̄d(r, r
′;ω) =

occ
∑

i

unocc
∑

j

[

ψ̄∗
i (r)ψ̄j(r)ψ̄

∗
j (r

′)ψ̄i(r
′)

ω − εj + εi + iδ
−
ψ̄i(r)ψ̄

∗
j (r)ψ̄j(r

′)ψ̄∗
i (r

′)

ω + εj − εi − iδ

]

, (57)
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Fig. 9: The disentangled band structure of paramagnetic nickel obtained by diagonalising the

Hamiltonian in (59) taken from [25]. The red bands correspond to maximally localised Wan-

nier orbitals of 3d character which form the d subspace. The blue curves correspond to the r
subspace.

and Pr = P − P̄d can be used to calculate Wr. We found that this procedure does not work

either and is again unstable for a similar reason as the one described above. Moreover, ψ̄i’s are

not orthogonal with each other, and transitions between the states do not correspond to single

particle-hole excitations.

Based on these observations we propose the following procedure [25]. We define the r subspace

by

|φi〉 = (1− P̂)|ψi〉 (58)

which is orthogonal to the d subspace constructed from the Wannier orbitals. In practice it

is convenient to orthonormalise {φi} and prepare N − Nd basis functions. By diagonalising

the Hamiltonian in this subspace a new set of wavefunctions {φ̃i} and eigenvalues {ẽi} (i =

1, . . . , N − Nd) is obtained. Since the subspaces formed by {φi} and {ψ̃j} are orthogonal, the

set of (N − Nd) bands {ẽi} are completely disentangled from those of the d space {ε̃j}, and

they are slightly different from the original band structure {εi}. Numerical tests show that the

disentangled band structure is close to the original one as may be seen in the example of nickel

in Figs. 8 and 9. The form of the Hamiltonian is illustrated below

H =

[

Hdd 0

0 Hrr

]

, (59)

where Hdd is the Hamiltonian matrix taken in the d subspace {ψ̃j} and Hrr is taken in the

subspace of {φi}. In other words, the coupling between the d and r subspaces is set to zero.

The Hubbard U is then calculated according to Eq. (44) with Pr = P̃ − P̃d, where P̃ is the full

polarisation calculated for the disentangled band structure. We note that the screening processes

between the d and r subspaces are not neglected but included in Pr, although the d-r coupling is
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Fig. 10: Comparison between the fully screened interactions W of nickel for the normal case

with the original band structure (triangle, blue) and for the case where the band structure is

disentangled (circle, red).

cut off in the construction of the wavefunctions and eigenvalues. In the Appendix, the flowchart

for the calculation of the Hubbard U is shown.

3.6 Examples: Ni and Ce

3.6.1 Nickel

As applications of the cRPA method for entangled bands, we have calculated the Hubbard U for

the 3d transition metal series. In Fig. 10 we compare for the case of nickel the fully screened

interaction W calculated using the disentangled 3d bands with W calculated using the original

band structure. The agreement between the two are quite satisfactory for our purpose. Most

of the error arising from the disentanglement originates from regions in k-space where the 3d

bands and the 4s-4p bands hybridise and repel each other. After the disentanglement, these

bands cross rather than repel each other, as can be seen by comparing Figs. 8 and 9.

The resulting frequency-dependent Hubbard U and the exchange J for nickel are shown in Figs.

11 and 12, respectively. The complete removal of low-energy excitations within the d subspace

when calculating Pr ensures that U has little structure at low energy within the band width of

the d subspace. The only remaining low-energy transitions come mainly from the 4s band. The

increase in U at around 20 eV is due to the coupling to plasmon excitations, which in the case

of transition metals form a rather broad excitation.

J has a relatively weak dependence on energy, and its static value is approximately given by

the unscreened value although some screening effects reducing the unscreened value from 0.8

eV to 0.7 eV at zero frequency can be observed. This is in agreement with the usual practice of

taking the atomic J value, which corresponds approximately to the unscreened value, implicitly

assuming that screening effects are small for the Coulomb potential arising from the exchange
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Fig. 11: The Hubbard U of paramagnetic nickel as defined in (52) obtained using the cRPA

method for disentangled bands as explained in the article. The value is averaged over the

diagonal elements of the 3d orbitals.
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Fig. 12: The exchange integral J as defined in (53) averaged over the 3d orbitals.

charge distribution with no l = 0 component. In Fig. 13 the static U values for the 3d transition

metals series are shown (red circles).

3.6.2 Cerium

As a further application, we have calculated the Hubbard U of the isostructural α and γ fcc

ceriums, where the former has a smaller unit volume than the latter. As in the case of transition

metals, the narrow 4f bands for which U is to be calculated, are entangled with the 5d and

6s bands. The Hubbard U as a function of frequency is surprisingly rich in structure with no

less than five prominent peaks with smaller additional features in Im(U) inducing the Kramers-
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Fig. 13: The static values of the Hubbard U for the 3d transition metal series taken from [25].

The results using the disentanglement method are compared with previous results, where the

d subspace was defined according to a combination of band indices and energy window [23].

The significant difference between the two sets of results indicates that the Hubbard U can be

sensitive to the choice of the d subspace when the bands are entangled.
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Fig. 14: The real and imaginary parts of the Hubbard U of cerium. The d subspace is taken

to be the 4f bands extracted using the maximally localised Wannier function method. The

calculation is done using the cRPA method for entangled bands as described in the text.

Kronig structures in Re(U). Unlike the usual case where there is only one prominent plasmon

excitation, there appears to be several high-energy sub-plasmon excitations. The structure at

low energy around 4 eV indicates that there is a large screening contribution arising from the

polarisation between the d and r subspaces at low energy. It suggests that model calculations

with a static U may not be sufficient for describing the electronic spectra of cerium even at

low energies. Fortunately, very recently a new method to solve the impurity problem within
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Fig. 15: The same as Fig. 14 but for the γ phase.

the dynamical mean-field theory (DMFT) with a frequency-dependent U has been developed

[26, 27].

The subtle difference between the α and γ phases is revealed in U . The peak in Im(U) at low

energy is larger for the α than the γ phase. This is consistent with the fact that the γ phase has

a larger unit cell volume so that the 4f bands are narrower than in the α phase. This means that

Pr = P −Pd for the γ phase contains less low energy transitions between the d and r subspaces

because there is less hybridisation between the 4f states and other states, compared with the α

phase.

3.7 Further examples

The cRPA method has by now been applied to a wide range of materials from simple ones

like 3d transition metals to complex ones such as the BEDT-TTF organic conductors [17],

alkali cluster-loaded soladites [28] and the parent compounds of the recently discovered su-

perconducting iron-based pnictides [29, 30]. In the latter reference, the U and J for a series

of pnictides have been systematically calculated. It appears from this study that FeSe is more

correlated compared to the other pnictides.

Other applications include calculations of the HubbardU of MnO as a function of pressure [31].

Recently, the frequency-dependent Hubbard U of the parent cuprate superconductor La2CuO4

was calculated [32]. With the development of a new method it is now possible to solve the

impurity problem within the DMFT method with a frequency-dependent Hubbard U [26, 27].

This method was very recently applied to study the electronic structure of BaFe2As2, one of the

parent compounds of the iron-based superconducting pnictides [33].
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Appendices

A Basis functions

The Bloch wavefunctions ψkn(r) are expanded in terms of the LAPW basis, i.e., in the intersti-

tial region

ψkn(r) =
1√
Ω

∑

G

ckn,Ge
i(k+G)·r (60)

with the unit-cell volume Ω and inside the muffin-tin sphere of atom a

ψkn(r) =
∑

lm

[Aalm,n(k)ual(r) + Balm,n(k)u̇al(r)]Ylm(r̂), (61)

where r is measured from the sphere centre. The coefficients ckn,G, Aalm,n(k), and Balm,n(k)

are determined such that the wave functions and their radial derivatives are continuous at the

muffin-tin sphere boundaries. The radial functions ual(r) and u̇al(r) are the solution of the radial

Schrödinger equation or the scalar-relativistic Dirac equation [34] and its energy derivative,

respectively. Evidently for spin-polarised or relativistic systems all the above quantities depend

on the spin variable.

The basis functions needed to calculate the response functions and the screened interaction or

the Hubbard U are constructed as follows [19, 20]. From (38) it is clear that the space spanned

by the polarisation function P is formed by products of orbitals. In terms of the LAPW basis

within the muffin-tin spheres these products are

{ualual′} , {ualu̇al′} , {u̇alu̇al′} ⊗ YlmYl′m′ , (62)

which form a complete basis for P and R inside the muffin-tin spheres. That the basis is also

complete for R may be seen by expanding R in (32) in terms of P :

R = P + PvP + PvPvP + ... (63)

Since the left and right of R are both projected onto P , the space spanned by P and R are

the same. It turns out that the products in (62) can be linearly dependent since they are not

orthogonal. To remove this linear dependency and to construct the optimal basis set we follow

the procedure in [19, 20]. Calling the orbital products {bα} as in (39) we calculate the overlap

matrix

Oαβ = 〈bα|bβ〉 , (64)

and diagonalise it. Linear dependency is indicated by zero or very small eigenvalues. The

eigenvectors of O form an orthogonal basis and by discarding those eigenvectors with eigen-

values lower than a certain tolerance, set according to desired accuracy, we obtain an optimal

basis for the muffin-tin region. The basis for the interstitial part is naturally given by the plane

waves, which already form a product basis since any product of two plane waves yields another

plane wave.
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B Flow chart

Perform a self-consistent DFT calculation

Calculate wavefunctions and energies

used in the constrained cRPA calculation

Calculate the Wannier functions of the d-subspace

and the r-space wavefunctions

For each k-point, calculate the subspace Hamiltonians 

and diagonalise them separately to get

the disentangled wavefunctions and energies

Calculate the polarization functions

from the disentangled band structure

Calculate the partially screened Coulomb interaction

Calculate the Hubbard U parameters
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The Lanczos iteration [1] was conceived as a method for tridiagonalizing Hermitian matrices.
Like the related Arnoldi method [2] for non-Hermitian matrices, it initially received widespread
attention. Iterative approaches were, however, soon eclipsed by direct methods (Householder
transformations and QR factorization), that are better suited for solving the eigenvalue problem
for general matrices. Actually, the Lanczos method is particularly suited for the determination
of extreme eigenvalues and -vectors. Therefore, it was rediscovered in the 1970s [3], when
computers had become sufficiently powerful to treat matrices large enough for the Lanczos
algorithm to outperform general methods, nicely illustrating the Fundamental Law of Computer
Science: the faster the computer, the greater the importance of the speed of algorithms [4]. By
now iterative methods are an integral part of the numerical linear algebra curriculum [4, 5, 6].
For finding eigenvalues of a matrix H of dimension N , the Lanczos method requires the eval-
uation of matrix-vector products H · v as the only problem-specific step. This matrix-vector
product can be calculated particularly efficiently when the matrix H is sparse, i.e., when the
number of non-zero matrix elements per row does not scale with the matrix dimension. Storing
such a matrix takes only O(N) memory and H · v can be evaluated in O(N) time. Calculating
the extremal eigenvalues requires O(1) iterations, i.e., overall O(N) time. For comparison, a
direct diagonalization takes O(N2) for storing the matrix and O(N3) time to diagonalize. Be-
sides their favorable scaling for sparse matrix problems, iterative methods have the advantage
that they systematically approach the desired result. Typically the iteration converges geometri-
cally and can be stopped as soon as the desired accuracy is reached. In contrast, direct methods
appear to make no progress towards the solution until all O(N3) operations are completed and
the full result is obtained.
Since the Lanczos method is particularly suited for dealing with large sparse Hamiltonians, it is
the method of choice for systems with short-range interactions. For band-structure calculations
in a linear combination of atomic orbitals (LCAO) or tight-binding (TB) basis, it is known as
the recursion method [7]. The basic idea here is to switch from the Bloch picture of a perfectly
periodic solid to a local picture, replacing the solution of the Schrödinger equation in terms
of Bloch waves by the calculation of the local density of states. The crucial technical point is
to calculate the density of states not via a spectral representation (in terms of Bloch waves),
but by repeated application of the Hamiltonian H to a localized single-electron state. With
each application of H the electron explores more and more sites. Thus, if the hopping matrix
elements beyond a certain distance are zero, such calculations can be performed without having
to restrict the system to finite size.
For many-body models like quantum-spin- or Hubbard-models [8] this is unfortunately not pos-
sible. They have to be defined on a finite cluster, giving rise to a finite-dimensional Hamiltonian
matrix. Since the size of the Hilbert space grows exponentially with system-size, actual cal-
culations are restricted by the available computer memory. In a typical simulation, first the
ground-state is calculated by a Lanczos iteration. Building on this, spectral functions are calcu-
lated in a similar way as in the recursion method. The great advantage of this approach is that
it gives the dynamical properties of the ground state (T= 0) directly on the real axis. The price
is the restriction to (small) finite-size systems.
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1 Lanczos Method

We can find the ground-state |Ψ0〉 and its energy E0 for a Hamiltonian H from the variational
principle. The wavefunction-functional

E[Ψ] =
〈Ψ|H|Ψ〉
〈Ψ|Ψ〉

(1)

is minimized for Ψ = Ψ0, with E[Ψ0] = E0. The functional gradient

δE[Ψ]

δ〈Ψ|
=
H|Ψ〉 − E[Ψ]|Ψ〉

〈Ψ|Ψ〉
= |Ψa〉 (2)

gives the direction of steepest-ascent of the functional from the point |Ψ〉. Moving in the
opposite direction will thus result in a wavefunction with lower energy expectation value:
E[Ψ− αΨa] < E[Ψ] for small, positive α.
To find the optimum value of α, we minimizeE[Ψ−αΨa]. For this, it is convenient to introduce
an orthogonal basis in the space spanned by the two vectors |Ψ〉 and |Ψa〉. From (2) we see that
span (|Ψ〉, |Ψa〉) = span (|Ψ〉, H|Ψ〉). As first basis vector, we normalize |Ψ〉

|v0〉 = |Ψ〉/
√
〈Ψ|Ψ〉 ,

for the second vector we orthogonalize H|v0〉 to |v0〉

|ṽ1〉 = H|v0〉 − |v0〉〈v0|H|v0〉 (3)

and normalize to obtain |v1〉. With an = 〈vn|H|vn〉 and b2
1 = 〈ṽ1|ṽ1〉 we thus have

H|v0〉 = b1|v1〉+ a0|v0〉 (4)

from which we see that 〈v1|H|v0〉 = b1.
We can then write any normalized wavefunction in span (|Ψ〉, H|Ψ〉) = span (|v0〉, |v1〉) as

|v〉 = cos(θ)|v0〉+ sin(θ)|v1〉 . (5)

Minimizing the expectation value

〈v|H|v〉 = a0 cos2(θ) + 2b1 sin(θ) cos(θ) + a1 sin2(θ) , (6)

with respect to θ, we obtain, dividing by cos2(θ), the quadratic equation

b1 tan2(θ) + (a0 − a1) tan(θ)− b1 = 0 . (7)

Solving for θ we find the lowest-energy state on the subspace spanned by |v0〉 and H|v0〉. Alter-
natively, we can diagonalize the Hamiltonian matrix on the two-dimensional subspace, which
in the basis |v0〉, |v1〉 is given by

Hspan(|Ψ〉,H|Ψ〉) =

(
a0 b1

b1 a1

)
. (8)
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Fig. 1: Convergence of the residual (filled circles) and the lowest eigenvalue (open circles) for
a steepest-descent minimization of a Hubbard-chain of 10 sites at half-filling, starting from a
random initial vector.

Naturally, we can use the variational state of lowest energy

|Ψ(2)〉 = cos(θmin)|v0〉+ sin(θmin)|v1〉 (9)

as the starting point for another steepest-descent minimization. Doing this repeatedly, we ob-
tain a series of vectors with decreasing energy expectation value, which rapidly converge to a
minimum. For a generic functional, this would usually be a local, not the global minimum,
which makes the optimization of high-dimensional functions a hard problem. The energy func-
tional (1), however, has only minima for the ground-states, all other stationary points are saddle
points. We can thus expect rapid convergence to the ground state, examples given in figure 1,
except in the case where the the gradient (2) vanishes, i.e., if |Ψ〉 happens to be an eigenfunction
of H .

For checking convergence of this steepest-descent method, introduced by Kantorovich [9] and,
idependently, by Hestenes and Karush [10], we can monitor the change in the energy expecta-
tion value or determine when the residual

r[Ψ] = ‖ (H − E[Ψ])|Ψ〉 ‖2 = 〈Ψ|H2|Ψ〉 − E[Ψ]2 , (10)

which measures the quality of the eigenstate, becomes sufficiently small.
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1.1 Krylov space

If we apply the method of steepest-descent L times, starting from a vector |v0〉, the resulting
vector will lie in KL(|v0〉) = span

(
|v0〉, H|v0〉, H2|v0〉, . . . , HN |v0〉

)
, the L + 1-dimensional

Krylov space [11] ofH over |v0〉. Instead of repeatedly minimizing the energy in two-dimensional
subspaces, we could directly find the state of lowest energy in KL(|v0〉). Having more degrees
of freedom for the minimization will lead to even faster convergence.
To implement this idea, we construct an orthonormal basis |vn〉 of the Krylov space. We start
with the normalized vector |v0〉. The second basis vector |v1〉 is constructed as in the steepest-
descent method (3):

b1|v1〉 = |ṽ1〉 = H|v0〉 − a0|v0〉 . (11)

The next basis vector is likewise constructed as H|vn〉 orthogonalized to all previous vectors,
and normalized

b2|v2〉 = |ṽ2〉 = H|v1〉 −
1∑

i=0

|vi〉〈vi|H|v1〉 = H|v1〉 − a1|v1〉 − b1|v0〉 . (12)

where an = 〈vn|H|vn〉 and b2
n = 〈ṽn|ṽn〉. The fourth basis vector is

b3|v3〉 = |ṽ3〉 = H|v2〉 −
2∑

i=0

|vi〉〈vi|H|v2〉 = H|v2〉 − a2|v2〉 − b2|v1〉 . (13)

Here the last term in the orthogonalization vanishes, because (11) together with the orthogno-
latity of the basis vectors for n = 0 . . . 2 implies 〈v2|H|v0〉 = 0.
The construction of the further basis vectors follows the same scheme

bn+1|vn+1〉 = |ṽn+1〉 = H|vn〉 −
n∑

i=0

|vi〉〈vi|H|vn〉 = H|vn〉 − an|vn〉 − bn|vn−1〉

with an = 〈vn|H|vn〉 and b2
n = 〈ṽn|ṽn〉. Rearranging shows that H is tridiagonalized

H|vn〉 = bn|vn−1〉+ an|vn〉+ bn+1|vn+1〉

which in turn implies that H|vi〉 is orthogonal to all basis states, except |vi〉 and |vi±1〉. This
tridiagonalization of H is the essence of the Lanczos method [1].
After L steps the Hamiltonian on the L+ 1-dimensional Krylov space is given by

HKL(|v0〉) =




a0 b1 0 0 0 0

b1 a1 b2 0 · · · 0 0

0 b2 a2 b3 0 0

0 0 b3 a3 0 0
... . . . ...

0 0 0 0 aL−1 bL
0 0 0 0 · · · bL aL




(14)
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v=init
b0=norm2(v) not part of tridiagonal matrix
scal(1/b0,v) v= |v0〉
w=0
w=w+H*v w= H|v0〉
a[0]=dot(v,w)
axpy(-a[0],v,w) w= |ṽ1〉 = H|v0〉 − a0|v0〉
b[1]=norm2(w)
for n=1,2,...

if abs(b[n])<eps then exit invariant subspace
scal(1/b[n],w) w= |vn〉
scal( -b[n],v) v= −bn|vn−1〉
swap(v,w)
w=w+H*v w= H|vn〉 − bn|vn−1〉
a[n]=dot(v,w) a[n]= 〈vn|H|vn〉 − bn〈vn|vn−1〉
axpy(-a[n],v,w) w= |ṽn+1〉
b[n+1]=norm2(w)
diag(a[0]..a[n], b[1]..b[n]) getting an+1 needs another H|v〉
if converged then exit

end

Table 1: The implementation of the Lanczos iteration requires only two N -dimensional vec-
tors for tridiagonalizing H and thus for calculating the ground-state energy. Constructing the
Lanczos-approximation of the ground-state vector requires a second iteration and one addi-
tional N -dimensional vector. The by far most expensive operation is the matrix-vector product.

If we do not normalize the basis vectors, we obtain an iteration of the form

|Φn+1 〉 = H |Φn 〉 −
〈Φn|H|Φn〉
〈Φn|Φn〉

|Φn 〉 −
〈Φn|Φn〉
〈Φn−1|Φn−1〉

|Φn−1 〉 (15)

where |Φn 〉 =
∏n

i=1 bi |vn 〉 in terms of which we have

an =
〈Φn|H|Φn〉
〈Φn|Φn〉

, b2
n =

〈Φn|Φn〉
〈Φn−1|Φn−1〉

. (16)

In this unnormalized basis the Hamiltonian appears non-Hermitian

H |Φn 〉 = b2
n |Φn−1 〉+ an |Φn 〉+ |Φn+1 〉 , (17)

but it actually is

〈Φn+1|H|Φn〉 = 〈Φn+1|Φn+1〉 = b2
n+1 〈Φn|Φn〉 = 〈Φn|H|Φn+1〉 . (18)

The numerical implementation only requires keeping two N -dimensional vectors in memory. It
is shown in table 1.
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Fig. 2: Covergence of the lowest eigenvalue for a Lanczos iteration (full circles) compared to
steepest-descent minimization (open circles) of a 10-site Hubbard-chain at half-filling, starting
from a random initial vector. Due to the additional variational degrees of freedom, Lanczos
converges significantly faster. Overall, convergence for the half-filled system gets harder for
larger U , as the distance to the lowest excited states is reduced (∼ t2/U ) and the spectrum
widens (∼ U ). In all cases, convergence is reached after less than L ≈ 100 Lanczos iterations,
to be compared to the dimension N=63 504 of the Hilbert space.

Diagonalizing (14), after a few tens to hundred iterations, the lowest eigenvalue of the tridiag-
onal representation of H on the Krylov space gives an excellent approximation to the ground-
state energy of H in the full Hilbert space (Fig. 2). A formal estimate of the convergence was
given by Kaniel and Paige [5]. For anN+1-dimensional, symmetric matrixH with eigenvalues
En, the lowest eigenvalue Ě0 of the tridiagonal representation of H on the (L+ 1)-dimensional
Krylov space over |v0〉 fulfills

Ě0 − E0

EN − E0

≤


tan(arccos(〈Ψ̌0|Ψ0〉))

TL

(
1 + 2 E1−E0

EN−E1

)




2

(19)

where TL(x) is the Chebyshev polynomial of order L and 〈Ψ̌0|Ψ0〉 the overlap of the Lanczos
approximation to the ground-state Ψ̌0 with the ground-state of H . Thus, if the initial state |v0〉
is not orthogonal to the non-degenerate ground-state, convergence is exponential with a rate
roughly increasing with the square root of the gap to the first excited measured in units of the
width of the spectrum.
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The approximate ground-state vector is given by the linear combination

|Ψ̌0〉 =
L∑

n=0

ψ̌0,n|vn〉 , (20)

where ψ̌0 is the ground-state vector of the L + 1-dimensional tridiagonal matrix (14). Instead
of storing all L + 1 basis vectors |vn〉, we can restart the Lanczos iteration from the same |v0〉,
accumulating the sum (20) iteration by iteration. This only requires keeping one additional
N -dimensional vector in memory.
So far we have tacitly assumed that the Krylov vectors Hn|v0〉 are linearly independent. If
not, there will be a vector H|ṽm〉 that vanishes when orthogonalized to the previous states,
i.e., bn = 0. This means that the Krylov space span (|v0〉, |v1〉, . . . , |vm〉) is invariant under
H , i.e., we have found an exact eigenspace of H . For a large matrix H it is quite unlikely
to be that lucky. Still, as the Lanczos iteration approaches the ground-state, we encounter a
similar situation: Close to an eigenstate, the functional (1) becomes almost stationary, i.e.,
the coefficients bn almost vanish. Normalization of the very short vector |ṽn〉 then amplifies
numerical noise in the small vector. This makes the numerical |vn〉, which in theory should
automatically be orthogonal to all |vm〉 with m < n − 2, actually have finite overlaps with
these vectors. This loss of orthogonality manifests itself in the appearance of multiple copies
of eigenvectors (ghost states) which are unrelated to the actual multiplicities of the eigenvalues.
This is the problem, which makes the Lanczos method unpractical for tridiagonalizing dense
matrices. For the ground-state the variational principle prevents severe problem from the loss
of orthogonality. An example of the appearance of ghost states is shown in figure 3.
If we want to reliably obtain excited states, we need to explicitly orthogonalize to the previous
basis states. This leads to the Lanczos method with complete reorthogonalization [5]. A sim-
ilar orthogonalization is performed in the Arnoldi method [2], which, however, is devised for
unsymmetric matrices.

1.2 Spectral functions

Given the orthogonality problems of the Lanczos method, it appears hopeless to use it to obtain
matrix elements of the resolvent, as they contain information about the full spectrum H|Ψn〉 =

En|Ψn〉. Still we are tempted to approximate the Lehmann representation

Gc(z) =

〈
Ψc

∣∣∣∣
1

z −H

∣∣∣∣Ψc

〉
=

N∑

n=0

〈Ψc|Ψn〉 〈Ψn|Ψc〉
z − En

(21)

in terms of the eigenstates on the Krylov space KL(|Ψc〉)

Ǧc(z) =

〈
Ψc

∣∣∣∣
1

z − Ȟc

∣∣∣∣Ψc

〉
=

L∑

n=0

〈Ψc|Ψ̌n〉 〈Ψ̌n|Ψc〉
z − Ěn

. (22)

This is straightforward to calculate: We run L Lanczos iterations, starting from the (normalized)
vector |Ψc〉, to create the tridiagonal Ȟc. The matrix element of the resolvent is the top left
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Fig. 3: Appearance of ghost states in an overconverged Lanczos iteration. The ground-state
energy for a half-filled 8-site Hubbard-chain with U = 10t is converged to numerical accuracy
(10−16) after about 85 iterations. Forcing the Lanczos iteration to continue, we see that at first
also the higher excited states converge to the exact eigenvalues (dashed lines). But, as shown
in the inset, they eventually start collapsing to the ground state. The appearance of these ghost
states is due to the orthogonality problem introduced by small normalization parameters bn,
when the iteration is very close to a stationary point.

matrix element of the inverse of

z − Ȟc =




z − a0 − b1 0 0 · · · 0 0

−b1 z − a1 − b2 0 · · · 0 0

0 − b2 z − a2 − b3 · · · 0 0

0 0 − b3 z − a3 · · · 0 0
...

...
...

... . . . ...
...

0 0 0 0 · · · z − aL−1 − bL
0 0 0 0 · · · − bL z − aL




. (23)

This is easily determined, partitioning the matrix as indicated

z − Ȟc =

(
z − a0 B(1)T

B(1) z − Ȟ(1)
c

)
(24)

and inverting the block-matrix, giving
[
(z − Ȟc)

−1
]

00
=
(
z − a0 −B(1)T (z − Ȟ(1)

c )−1B(1)
)−1

=
(
z − a0 − b2

1

[
(z − Ȟ(1)

c )−1
]

00

)−1
.
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Fig. 4: Convergence of the spectral function with increasing number of Lanczos steps, L=5,
10, 15, 25, 50, 75, and 100, for a 14-site Hubbard chain with U = 5t at half filling. With
increasing L, more and more moments of the photoemission and inverse photoemission part of
the spectrum are reproduced correctly.

Repeating inversion by partitioning for the submatrices Ȟ(n) we obtain the continued fraction

Ǧc(z) =
[
(z − Ȟc)

−1
]

00
=

1

z − a0 −
b2

1

z − a1 −
b2

2

z − a2 − · · ·

, (25)

which terminates with −b2
L/(z − aL). The spectral representation (22) is obtained by diagonal-

izing the Lanczos matrix Ȟc giving us the L+ 1 eigenvalues Ěn and eigenvectors ψ̌n. Since

|Ψ̌n〉 =
L∑

l=0

ψ̌n,l|vl〉 (26)

the matrix elements are given by 〈Ψ̌n|Ψc〉 = ψ̌n,0. Thus

Ǧc(z) =
L∑

n=0

|ψ̌n,0|2

z − Ěn
(27)

The spectral function

Ǎ(ω ± iη) = ∓ 1

π
= Ǧ(ω ± iη) (28)

obtained this way converges very quickly. An example is shown in figure 4.
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To understand how the L + 1 eigenstates of Ȟ can represent the full spectrum so well, we
consider the moments of the spectral function

∫ ∞

−∞
dω ωmǍ(ω) =

L∑

n=0

|ψ̌n,0|2Ěm
n =

L∑

n=0

〈Ψc|Ψ̌n〉〈Ψ̌n|Ψc〉 Ěm
n = 〈Ψc|Ȟm|Ψc〉 (29)

Since Ȟ is the projection ofH onto the Krylov spaceKL(|Ψc〉), we have Ȟm|Ψc〉 = Hm|Ψc〉 for
m ≤ L. Thus the Lanczos representation Ǎ(z) correctly reproduces the first 2L+1 moments of
the spectral function A(z). A further Lanczos step adds one new level to the continued fraction
(25), leaving all previous terms unchanged. b2

m = 0 then implies that the continued fraction
terminates, and all moments are given correctly. A near vanishing b2

m ≈ 0, which gives rise
to the loss of orthogonality of the Lanczos vectors, for the spectral function merely means that
further terms in the continued fraction hardly contribute any more.
So far we have only considered diagonal elements of the resolvent. Off-diagonal matrix ele-
ments

Gc1,c2(z) =

〈
Ψc2

∣∣∣∣
1

z −H

∣∣∣∣Ψc1

〉
(30)

are easily obtained by considering the diagonal elements for the linear combinations

〈
Ψc1 ±Ψc2

∣∣∣∣
1

z −H

∣∣∣∣Ψc1 ±Ψc2

〉
= Gc1,c1(z)±Gc1,c2(z)±Gc2,c1(z) +Gc2,c2(z) . (31)

2 Application to the Hubbard model

The Hubbard model

H = −t
∑

〈i,j〉σ

c†iσcjσ + U
∑

ni↑ni↓ (32)

describes the fundamental dichotomy between itinerancy and locality for correlated electrons
on a lattice: the hopping tends to delocalize electrons and is diagonal in k-space. This makes
it possible to solve the band-structure problem for the infinite solid. In k-space the single
electron Hamiltonian is block-diagonal. For the one-band Hubbard model each block is just the
band energy εk. In general, each block definines the band structure problem for one k-point.
Including electron-electron repulsion destroys this symmetry. The two-body Coulomb term is
diagonal in real space, while in k-space it is dense

H =
∑

kσ

εkc
†
kσckσ +

U

M

∑

k,k′,q

c†k↑ck−q,↑c
†
k′↓ck′+q,↓ . (33)

This has two important consequences:

1. Since we know no general approach to transform the full Hamiltonian into finite-dimen-
sional blocks, we have to restrict ourselves to finite-dimensional systems. For a cluster
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M N↑ N↓ dim of Hilbert space memory
2 1 1 4
4 2 2 36
6 3 3 400
8 4 4 4 900

10 5 5 63 504
12 6 6 853 776 6 MB
14 7 7 11 778 624 89 MB
16 8 8 165 636 900 1263 MB
18 9 9 2 363 904 400 17 GB
20 10 10 34 134 779 536 254 GB
22 11 11 497 634 306 624 3708 GB
24 12 12 7 312 459 672 336 53 TB

20 1 1 400
20 2 2 36 100
20 3 3 1 299 600 9 MB
20 4 4 23 474 025 179 MB
20 5 5 240 374 016 1833 MB
20 6 6 1 502 337 600 11 GB
20 7 7 6 009 350 400 44 GB
20 8 8 15 868 440 900 118 GB
20 9 9 28 210 561 600 210 GB
20 10 10 34 134 779 536 254 GB

Table 2: Dimension of Hilbert space dim(H) und computer memory required for storing a
single many-body wave-function for Hubbard models with M orbitals and N↑ + N↓ electrons.
The first group of numbers gives the dimensions for half-filling, where the Hilbert space is
largest. The second group shows how the dimension grows with the filling (dimensions are
symmetric about half-filling). Note that the fourth column resembles a semi-logarithmic plot of
dim(H) as a function of system size or filling.

of M sites with N↑ electrons with spin up and N↓ with spin down, the dimension of the
Hilbert space is

dim(H) = dim(H↑)× dim(H↓) =

(
M

N↑

)
×

(
M

N↓

)
. (34)

Examples for the single-band Hubbard model, illustrating the enormous growth of the
Hilbert space are given in table 2. Actual calculations are therefore limited to quite small
systems.

2. For a tight-binding system where hopping matrix-elements are restricted to close neigh-
bors the many-body Hamiltonian is a sparse matrix when expressed in a real-space basis
of localized orbitals (32). The basis states are then configurations |{niσ}〉 =

∏(
c†iσ

)niσ
|0〉,

characterized by their occupation numbers {niσ}.
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Fig. 5: Basis configurations for a three site system with two up and one down spin electron.
The left label denotes the index of the configuration. Equivalently, a state is also unambiguously
pointed to by a tuple of up- and down-configuration index.

2.1 Representation of basis and Hamiltonian

Since the many-body basis states

|{niσ}〉 =
∏

iσ

(
c†iσ

)niσ
|0〉 (35)

can be represented by Fermionic occupation numbers, it is natural to encode them in a string of
bits. For a Hamiltonian like (32) that conserves spin, we can write

|{niσ}〉 =
L−1∏

i=0

(
c†i↓

)ni↓ (
c†i↑

)ni↑
|0〉 (36)

with
∑
niσ = Nσ, and encode each spin-component as the integer mσ =

∑
niσ 2i. Enumerating

all basis states with Nσ electrons on L sites is then as simple as looping over all integers from
0 to 2L − 1 and storing each integer mσ with Nσ bits set. For N↑ = 2 and N↓ = 1 electrons on
L = 3 sites we obtain

m↑ bits state i↑

0 000

1 001

2 010

3 011 c†0↑c
†
1↑|0〉 0

4 100

5 101 c†0↑c
†
2↑|0〉 1

6 110 c†1↑c
†
2↑|0〉 2

7 111

m↓ bits state i↓

0 000

1 001 c†0↓|0〉 0

2 010 c†1↓|0〉 1

3 011

4 100 c†2↓|0〉 2

5 101

6 110

7 111
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Fig. 6: Matrix-vector product for the Lanczos iteration showing (in blue) the non-zero elements
of the Hamiltonian matrix for a six-site Hubbard model at half-filling. Vector Ψi is only read,
Ψi+1 can be written sequentially: Ψi+1,n =

∑
mHn,mΨi,m. Access to elements of Ψi is highly

non-local.

We number the basis states in the order they are found iσ = 0 . . . dim(H↑). A full basis state
(36) is then indexed by the i = i↓ + dim(H↓) · i↑. This corresponds to writing the basis as the
tensor product of the up- and down-states. Alternatively we could use i = i↑ + dim(H↑) · i↓.
The corresponding configuration is given by the integers m↑[i↑] and m↓[i↓]

For calculating the matrix elements it is convenient to store the two lookup tables for converting
between the integer encoding the basis state mσ and its index iσ in the basis. Since dim(Hσ) is
normally (i.e, close to half-filling) much smaller than dim(H), this does not use much memory.

The hopping term connects basis state that differ only in two occupation numbers of the same
spin, e.g., niσ and njσ. The matrix element is ∓tij , where the sign depends on the number Ni,j

of electrons of spin σ between site i and site j: −(−1)Ni,j ti,j . As an example we give the matrix
of the hopping between the basis states for N↑ = 2 electrons on a linear cluster with L = 3

sites, nearest neighbor hopping t and with periodic boundary conditions:

T↑ =




0 −t +t

−t 0 −t
+t −t 0


 . (37)

The full hopping matrix is then given by the tensor product of T↑ and T↓. The matrix above
looks fairly dense, for larger system the T quickly becomes very sparse, as shown in figure 6.
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2.2 Green functions

In a basis of spin-orbitals α and β, the elements of the Green matrix are given by

Gαβ(ω) =

〈
Ψ0

∣∣∣∣c†α
1

ω + (H − E0 − iη)
cβ

∣∣∣∣Ψ0

〉
+

〈
Ψ0

∣∣∣∣cα
1

ω − (H − E0 − iη)
c†β

∣∣∣∣Ψ0

〉

=
∑

n

〈
Ψ0

∣∣∣c†α
∣∣∣Ψ(N−1)

n

〉〈
Ψ

(N−1)
n

∣∣∣cβ
∣∣∣Ψ0

〉

ω +
(
E

(N−1)
n − E(N)

0

)
− iη

+
∑

n

〈
Ψ0

∣∣∣cα
∣∣∣Ψ(N+1)

n

〉〈
Ψ

(N+1)
n

∣∣∣c†β
∣∣∣Ψ0

〉

ω −
(
E

(N+1)
n − E(N)

0

)
+ iη

,

(38)

where the sums are over the eigenstates of the Hilbert space with one electron less (first term)
and one additional electron (second term). Diagonal elements are calculated in Lanczos as de-
scribed in section 1.2: To find Gαα(ω), we need the ground state vector |Ψ0〉 and two additional
Lanczos runs, giving the two terms in (38). For the first term, we start the Lanczos iteration
from the normalized vector |Ψ<

c 〉 = cα|Ψ0〉/
√
nα, where nα = 〈Ψ0|c†αcα|Ψ0〉. Likewise, for

the second term, we start from |Ψ>
c 〉 = c†α|Ψ0〉/

√
1− nα. The Green function is then given, in

terms of the Lanczos coefficients, by

Ǧαα(ω) =
nα

ω − E0 − iη + a<0 −
b<1

2

ω−E0−iη+a<1 −···

+
1− nα

ω + E0 + iη − a>0 −
b>1

2

ω+E0+iη−a>1 −···

. (39)

If the ground state is degenerate, e.g., for N↑ 6= N↓, where E0(N↑, N↓) = E0(N↓, N↑), we
average the Green functions calculated from the different ground-states. This is the T → 0

limit of the finite-temperature Green function

Gαα(ω) =
1

Z

∑

m

e−βE
(N)
m G(m)

αα (ω) , (40)

where Z =
∑

n e
−βE(N)

n is the partition function and G(m)
αα (ω) has the same form as (38), only

with Ψ0 replaced by Ψm. For finite, but sufficiently low temperatures, the Boltzmann factor
is negligibly small, except for the lowest few states. If we calculate those, taking care of the
orthogonality problem (ghost states), we can easily obtain the finite-temperature Green function.
A more elaborate method is given in [12].
Off-diagonal elements of the Green matrix are calculated from diagonal elements of linear
combinations of spin-orbitals, e.g., (c†α ± c

†
β)|Ψ0〉, as described in section 1.2.

2.3 Parallelization strategies

Because of the enormous size of the many-body Hilbert space, see table 2, Lanczos calculations
are limited by the available memory. On shared-memory systems the most time consuming
operation of the Lanczos iteration, the multiplication of the Hamiltonian-matrix with a many-
body vector, can be parallelized very easily, when it is written such that the elements of the
resulting vector are calculated independently: As illustrated in figure 6, different threads can
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Fig. 7: Transpose operation that makes memory access thread-local when calculating the
operation of the Hamiltonian on the state-vector. The communication (red arrows) is realized
by a call to MPI Alltoall, which is very efficiently implemented on Blue Gene/L. The small
grey arrows indicate the local operations needed to complete the matrix-transpose.

work on different chunks of |Ψi+1〉. The off-diagonal elements of the kinetic energy part of (32)
lead to non-local memory access, but the elements of |Ψi〉 as well as the matrix elements are
only read, so that there is no need for locking. An OpenMP parallelization thus needs only a
single pragma. Parallelizing also the scalar products in a similar way, we obtain almost ideal
speedup on an IBM p690 frame of JUMP in Jülich. The implementation is however limited to
a single node, i.e., about 120 GBytes. To use significantly more memory we need to find an
efficient distributed-memory implementation.

A naive approach on distributed memory systems uses MPI2 one-sided communication to em-
ulate the shared-memory approach by direct remote memory access. This leads, however, to a
severe speed-down, i.e., the more processors we use, the longer we have to wait for the result.

An efficient distributed-memory implementation [14] is instead based on the fact that hopping
does not change spin. Hopping of the up-electron mixes only different up-hopping configura-
tions, while the down-electron configuration remains unchanged. If we group all up configu-
rations for a fixed down configuration together in a single thread, this hopping can be carried
out locally. Figure 5 illustrates this: for a fixed index i↓, all i↑ configurations are stored in
adjacent memory locations and can be stored in a thread. We see, that this basis can be natu-
rally indexed by a tuple (i↓, i↑) (right labels in figure 5) instead of the global index (left labels).
We can therefore equivalently regard the vectors as matrices v(i↓, i↑) with indices i↓ and i↑.
Now it is easy to see that a matrix transpose reshuffles the data elements such that the down
configurations are sequentially in memory and local to the thread.
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Fig. 8: Timings of the parallel implementation of the Lanczos algorithm for the Hubbard model
on the Jülich IBM BlueGene/P. Sizes of the state vectors of the half-filled systems are given in
table 2. For the 24 site system with 10+10 electrons, dim(H) = 3 846 525 097 536, the state
vector takes about 28 TBytes. The simulation of such a system requires the entire machine,
using only one processor per node (SMP mode), to make most efficient use of the available
memory. For smaller systems we can use all four processors per node (VN mode). Despite
massive communication in each iteration, the code shows excellent speed up. Only when the
message size per process become too small, performance degrades because of network latency.
This is shown in the lower plot. Properly scaling the execution times we obtain a universal
scaling (ParLaw) for system sizes ranging over more than five and process counts ranging over
three orders of magnitude.

We implement an efficient matrix transpose using MPI Alltoall. This routine expects that
the data packages which will be sent to a given process to be stored contiguously in memory.
This does not apply to our case, since we would like to store the spin-down electron configu-
rations sequentially in memory. Thus, the matrix is stored column wise. For MPI Alltoall

to work properly, we would have to bring the data elements into row-major order. This could
be done by performing a local matrix transpose. The involved matrices are, however, in general
rectangular, leading to expensive local-copy and reordering operations. We can avoid this by
calling MPI Alltoall for each column separately (red arrows in figure 7). After this, only
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a local strided transposition has to be performed (small white arrows) to obtain the fully trans-
posed matrix or Lanczos vector. The implementation described so far uses MPI Alltoall

which assumes that the matrix to be transposed is a square matrix and that the dimension
dim↑ = dim↓ is divisible by the number of MPI processes. To overcome these restrictions
we have generalized the algorithm to MPI Alltoallv. This is the implementation that is
used in practice. The speed-up shown at the top of figure 8 shows that our parallelization based
on collective communication is indeed very efficient. Even for a system of 24 sites with 10

electrons of either spin, where a single many-body vector takes about 28 TB of memory, our
implementation works very efficiently despite the fact that in each Lanczos iteration 28 TB of
data have to be moved across the entire machine twice.
The lower plot in figure 8 shows that the execution times for runs of systems varying by more
than five orders of magnitude in size (of the Hilbert space) for processor counts varying over
three orders of magnitude fall on a universal curve, which is only determined by the bandwidth
and the latency of the network. This suggests that the implementation should scale to even
larger systems than the present Jülich BlueGene/P with almost 300 000 CPUs and an aggregate
memory of 144 terabytes.

3 Application to DMFT

Using the Lanczos method as a solver for DMFT gives results at zero temperature and directly
on the real axis. An important limitation is, however, the need to approximate the bath Green’s
function

G−1(ω) = ω + µ−
∫ ∞

−∞
dω′

∆(ω′)

ω − ω′
(41)

by a discretized version, e.g., of the form

G−1
And(ω) = ω + µ−

Nb∑

l=1

V 2
l

ω − εl
, (42)

corresponding to an Anderson impurity model with a finite number of sites

HAnd = ε0

∑

σ

nσ + Un↑n↓ +
∑

σ

Nb∑

l=1

(
εlnlσ + Vl

(
a†lσcσ + c†σalσ

))
, (43)

where c†σ and a†lσ create an electron of spin σ on the impurity or bath-site l, respectively, nσ =

c†σcσ and nlσ = a†lσalσ. Writing the non-interacting part of HAnd as a matrix

H0
And =




0 V1 V2 V3 · · ·
V1 ε1 0 0

V2 0 ε2 0

V3 0 0 ε3

... . . .




(44)
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we see that (42) is be easily recovered from inversion by partitioning.
Since practical calculations are limited by the rapidly increasing size of the Hilbert space to
small numbers of bath-sites Nb, it is crucial for the reliability of the calculations to find a good
representation G−1

And for the bath Green’s function. The most common approach is to use a least
squares fit [15]: Because of the spectral poles on the real axis, such a fit in practice is done on
the imaginary axis, where the Green’s functions are smooth and the optimization of the distance
function is not easily trapped in local minima. One then minimizes a function of the form

χ2({Vl, εl}) =
nmax∑

n=0

∣∣G−1(iωn)− G−1
And(iωn)

∣∣2 (45)

on a set of Matsubara frequencies, corresponding to some fictitious temperature. The choice
of this temperature and of nmax essentially determines the relative weighing of high versus
low frequency features in the fit. If low iωn are weighted too little, the fit easily becomes
underdetermined, since for large imaginary frequencies the hybridization function contains only
little information about the system (which is the reason why the analytic continuation back to
the real axis is so difficult). To emphasize different frequency ranges, it is possible to introduce
frequency-dependent weight functions in (45).
Instead of fitting, we could use a moment expansion of the Weiss function W (ω) =

∫
dω′∆(ω′)

ω−ω′

similar to that discussed in section 1.2. Such an approach [16] has been used for the Bethe
lattice with infinite coordination, where the self-consistency condition simplifies to W (ω) =

t2Gimp(ω): As Lanczos gives a continued-fraction representation for the photoemission and
inverse-photoemission part separately, the hybridization function is written as

W<(ω) +W>(ω) = t2G<(ω) + t2G>(ω) =
t2b<0

2

ω + a<0 −
b<1

2

ω+a<1 −···

+
t2b>0

2

ω − a>0 −
b>1

2

ω−a>1 −···

(46)

Truncating the continued fractions at N<
b and N>

b , this corresponds to the impurity model with

H0
And =




0 t2b<0 · · · t2b>0
t2b<0 −a<0 b<1

b<1 −a<1 b<2

b<2 −a<2
. . .

... . . . . . .
t2b>0 a>0 b>1

b>1 a>1 b>2

b>2 a>2
. . .

. . .




, (47)

where the bath forms two chains, coupled to the impurity. Diagonalizing the bath, it is easily
brought to the form (43). This bath-parametrization works very well for systems with large gap.
An example is shown in figure 9. Since the approach uses moment expansions for the two parts
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Fig. 9: Spectral function of the lower Hubbard band of a Hubbard model on the infinite Bethe
lattice with half-bandwidth D and U = 8D in antiferromagnetic DMFT. The bath was obtained
from the continued-fraction expansion of the impurity Green’s functions, Nb = 24 [18].

W< and W> of the Weiss function separately, it does not converge as quickly as a moment
expansion for the full hybridization function would. This makes itself particularly felt, when
the gap is small or the system is even metallic. To improve the description of the hybridization
function close to the Fermi level, it has been proposed to introduce an additional bath site with
fixed energy close to µ [17].

3.1 Cluster methods

For cluster versions of DMFT we can use exact sum-rules and symmetries to find the structure
of the bath. Our discussion will closely follow [19]. To fix the notation we briefly sketch the
self-consistency loop for cellular DMFT (CDMFT) and the dynamical cluster approximation
(DCA) using Lanczos as impurity solver. Let Nc be the number of cluster-sites, Nb the number
of bath-sites. For simplicity we suppress spin-indices.
Given an Nc ×Nc bath Green matrix G−1,

1. fit parameters of an Anderson model with Nb bath-sites

G−1
And(ω) = ω + µ−Hc − Γ [ω − E]−1Γ† (48)

to G−1, where Γ is the Nc × Nb-dimensional hybridization matrix, and E the Nb × Nb-
dimensional bath-matrix. Hc is specified below,

2. solve the (Nc + Nb)-site Anderson model HAnd (specified below) to obtain the Nc × Nc

cluster Green matrix Gc,
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G(ω) =

∫
d k̃
(
ω + µ−H(k̃)−Σc(ω)

)−1

G−1b (ω) = Σc(ω) + G
−1(ω)

G−1b (ω) ≈ ω + µ−Hc − Γ [ω − E]−1Γ†

HAnd = Hloc +
∑

lm,σ

Elm,σ a
†
lσamσ +

∑

l i ,σ

Γl i

(
a†lσciσ +H.c.

)

Σc(ω) = G−1b (ω)− G−1c (ω)

Fig. 10: Self-consitency loop for (cluster) DMFT.

3. get the cluster self-energy matrix

Σc(ω) = G−1(ω)−G−1
c (ω) , (49)

4. calculate the local Green matrix for the cluster by integrating over the reduced Brillouin-
zone of the cluster

G(ω) =

∫
dk̃
(
ω + µ−H(k̃)−Σc(ω)

)−1

, (50)

where H(k̃) is the single-electron part of the of the Hubbard Hamiltonian (32) in the
reduced Brillouin-zone of the cluster,

5. determine the new bath Green matrix (self-consistency condition)

G−1(ω) = Σc(ω) + G−1(ω) . (51)

These steps are iterated to self-consistency.
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3.2 Anderson impurity model

The Anderson model to be solved in step 2 is given by

HAnd = Hclu +
∑

lm,σ

Elm,σ a
†
lσamσ +

∑

li,σ

Γil

(
a†lσciσ + H.c.

)
(52)

where the operator a†lσ creates an electron of spin σ on bath-site l. The cluster Hamiltonian Hclu

is obtained from the lattice Hamiltonian by transforming to the reciprocal space of the super-
lattice of the clusters, and projecting to the cluster. Writing the single-electron part of H(k̃) as
the matrix H(k̃), the single-electron part of Hclu is given by

Hc =

∫
dk̃ H(k̃) . (53)

The (local) interaction terms are simply those of the lattice model, restricted to the cluster.
The Hamiltonian H(k̃) in the reciprocal space of the super-lattice {r̃} of clusters can be ob-
tained by changing to the basis of operators

c̃CDMFT
Riσ

(k̃) =
∑

r̃

e−ik̃r̃ cr̃+Ri,σ . (54)

The resulting quantum cluster approximation is CDMFT. Alternatively, we can start from the
operators in the reciprocal space of the lattice to obtain

c̃DCA
Riσ

(k̃) =
∑

r̃

e−ik̃(r̃+Ri) cr̃+Ri,σ . (55)

Now we obtain the DCA. The choice of the operators in the two approaches differs just by
local phase factors. In CDMFT this Kohn-gauge [20] is chosen such that phases appear only
in matrix elements involving different clusters. Thus all matrix elements on the cluster are the
same as in the original Hamiltonian. The price for retaining the original matrix elements on
the cluster is a breaking of the translation-symmetry of the original lattice. DCA opts instead
to retain this symmetry by distributing the phase-change uniformly over the cluster-sites. The
price for retaining translation-invariance is that the matrix elements in the cluster Hamiltonian
differ from those in the original Hamiltonian (coarse graining). In both cases, CDMFT and
DCA, the eigenvalues of H(k̃) are identical to the eigenvalues of the non-interacting part of
H . Obviously, we can construct other cluster extensions to DMFT by different choices of the
Kohn-gauge ϕ(k̃; Ri)) on the cluster

c̃ϕRiσ
(k̃) =

∑

r̃

e−i(k̃r̃+ϕ(k̃;Ri)) cr̃+Ri,σ . (56)

3.3 Hybridization sum-rules

While the most general parametrization for the bath is given by expression (48), we can always
diagonalize the hopping matrix E among the bath-sites to obtain

G−1
And({εl,Vl};ω) = ω + µ−Hc −

∑

l

Vl V
†
l

ω − εl
. (57)
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Fig. 11: Phase choice on the cluster that leads to CDMFT or DCA.

The hybridization matrix is then given by the tensor product of the vectors Vl, where

Vl,i =
∑

m

Γi,m φl,m (58)

and φl are the eigenvectors of E with eigenvalues εl.
To obtain sum-rules for the hybridizations, we write the inverse of the bath Green matrix as

G−1(ω) = Σc(ω) +

(∫
dk̃
(
ω + µ−H(k̃)−Σc(ω)

)−1
)−1

.

Considering the limit ω → ∞, expanding to order 1/ω2, using (53), and comparing to (57) we
find ∑

l

Vl V
†
l =

∫
dk̃ H2(k̃)−

(∫
dk̃ H(k̃)

)2

. (59)

To illustrate this hybridization sum-rule we consider a representative set of examples.

Single site

We consider a d-dimensional lattice with hoppings tn to the zn nth-nearest neighbors. For
Nc = 1 we have H(k) = εk. Thus we find for the hybridizations

∑

l

V 2
l =

1

(2π)d

∫ π

−π
ddk ε2

k =
∑

n

zn t
2
n , (60)

where the integral is just the second moment of the density of states, so that the last equation
follows as in the recursion method [7]. For a Bethe lattice of connectivity z with hopping matrix
element t/

√
z the sum-rule reduces to

∑
l V

2
l = t2.

CDMFT

We start by considering a linear chain with nearest neighbor hopping t and a three-site cluster
Nc = 3. In the CDMFT gauge we have

H(k̃) = −t




0 1 e−3ik̃

1 0 1

e3ik̃ 1 0


 (61)
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a)

b)

c)

tt''

Fig. 12: CDMFT sum-rules for a one-dimensional 3-site cluster with nearest and next-nearest
neighbor hoppings t and t′′, respectively: a)

∑
l |Vl,1|2 = t2 + t′′2, b)

∑
l V̄l,1Vl,2 = t t′′, and c)∑

l |Vl,2|2 = 2t′′2. The hybridizations are given by the two-step hopping processes that are lost
when the cluster is cut out of the original lattice.

so that Hc is the original single-electron Hamiltonian restricted to the cluster:

Hc =
3

2π

∫ π/3

−π/3
dk̃H(k̃) = −t




0 1 0

1 0 1

0 1 0


 . (62)

The sum-rule (59) then is

(∑

l

Vl,iV̄l,j

)
=




t2 0 0

0 0 0

0 0 t2


 , (63)

i.e., only the sites on the surface of the cluster couple to the bath. If we allow also second
nearest neighbor hopping with matrix element t′′, we find

(∑

l

V̄l,µVl,ν

)
=




t2 + t′′2 tt′′ 0

tt′′ 2t′′2 tt′′

0 tt′′ t2 + t′′2


 . (64)

The general CDMFT hybridization sum-rule (59) can be easily visualized: The integral over
the Brillouin-zone of the cluster projects the single-electron part of the full Hamiltonian to the
cluster (see eqn. (53)). The matrix elements of H2

c are thus the two-step hoppings that are
possible on the cluster. Likewise the integral over the Hamiltonian squared gives the second
moments, only that here the intermediate site is not restricted to the cluster. Thus the sum-rule
matrix is given by the second-order paths between cluster-sites that proceed via a site outside
the cluster. This is illustrated in figure 12. As a special case, for a single site we recover the
second equality in (60).
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The vanishing of a matrix element in the sum-rule merely implies that the corresponding matrix
element of the bath Green matrix decays faster than 1/ω for large ω. For a diagonal element,
however, all terms in

∑
l Vl,iV̄l,i are positive. Thus a vanishing sum means that all terms must

be zero. Hence the sum-rule implies that cluster-sites that are so far in the interior that they
cannot be reached by hopping from outside the cluster do not couple to bath and that all matrix
elements of the bath Green function involving such a site i are given by G−1

ij (ω) = ω+µ−(Hc)ij
for all ω. In that sense the bath hybridizes only to the surface of the cluster and we see that the
hybridization-strength to these sites does not decrease for increasing cluster size Nc.

DCA

We start again by considering the 3-site cluster. In the DCA gauge we write

H(k̃) = −t




0 eik̃ e−ik̃

e−ik̃ 0 eik̃

eik̃ e−ik̃ 0


 . (65)

Now Hc has translation symmetry, but the hopping is rescaled by sin(π/Nc)/(π/Nc)

Hc =
3

2π

∫ π/3

−π/3
dk̃H(k̃) = −3

√
3

2π
t




0 1 1

1 0 1

1 1 0


 . (66)

Since all matrices in (59) are periodic, it is convenient to transform to k-space. With Vl,K =∑
i Vl,ie

iKri/
√
Nc and the coarse-graining factor τ = 3

√
3/2π we find

∑

l

|Vl,K=0|2 = (2 + τ − 4τ 2) t2

∑

l

|Vl,K=±2π/3|2 = (2− τ/2− τ 2) t2 .

The hybridization sum-rule (59) is then, likewise, diagonal in the cluster-momenta K

∑

l

|Vl,K|2 =

∫
dk̃ ε2

K+k̃
−
(∫

dk̃ εK+k̃

)2

, (67)

while all terms Vl,KV̄l,K′ mixing different cluster momenta vanish. As a special case, for a
single site the above sum-rule is just the first equality in (60). Expanding εK+k around K, we
find that for a d-dimensional system

∑
l |Vl,K|2 decreases with cluster size as 1/N

2/d
c , while all

cluster-sites couple with the same strength to the bath.

Discussion

Besides providing exact relations for the bath-parametrization, in particular which sites need not
be coupled to a bath, the sum-rules contain important information about the scaling of cluster
methods with cluster size: In CDMFT individual hybridizations are independent of cluster size,
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while for DCA they decrease with cluster size as N−2/d
c . Interestingly this means that for a

d-dimensional system in CDMFT the overall coupling to the bath scales as N (d−1)/d
c , while in

DCA it scales as N (d−2)/d
c . For non-local properties a DCA calculation is therefore expected

to converge faster with cluster size. For a calculation where we represent the bath by discrete
degrees of freedom this decrease in hybridization strength does, however, not help very much
as we still need bath-sites to fit the hybridizations, even if they are small. With increasing DCA
cluster size we thus have to parametrize Nc baths, one for each K. In CDMFT the situation is
more fortunate, as the sum-rules imply that many hybridizations vanish and we only need to
parametrize the coupling of surface-sites to the bath.
The lack of translational invariance in CDMFT has, however, two important practical implica-
tions. First, the full Green matrix has to be calculated, instead of just its diagonal. Second, when
calculating local quantities, like the density per site, in CDMFT we have a choice of inequiv-
alent sites, or we could consider the average over all sites. In a gapped system the best choice
is the innermost site. In such a situation it might, however, be better to do a straight Lanczos
calculation with Nc +Nb cluster sites, instead of using Nb bath sites.

3.4 Symmetries

In the absence of spontaneous symmetry breaking the symmetries of the cluster (point-symmetries
in CDMFT and additionally translation symmetry in DCA) are reflected in the Green matrix.
In a symmetry-broken state with long-range order, like an antiferromagnet or a charge-density
wave, the symmetry of the Green matrix is accordingly lowered. To exploit the symmetry we
introduce vectors on the cluster that transform according to its irreducible representations. We
write these vectors as wI,ν where I is the irreducible representation and ν = 1 . . . NI counts
linearly independent vectors transforming according to I . On an Nc-site cluster we can choose
Nc such vectors that are orthonormal. Defining the matrix W = (wI,ν) of these vectors, we can
block-diagonalize the bath Green matrix: W†G−1W has blocks of dimension NI correspond-
ing to the different irreducible representations I . Since W†G−1W is block diagonal for all ω,
it follows from equation (57), that W must also block-diagonalize the individual hybridization
matrices VlV

†
l . Therefore the hybridization vectors must transform according to an irreducible

representation: They can be written as Vl =
∑

ν Vl;I,ν wI,ν for some irreducible representation
I . If the Vl also had components wJ,ν of a different irreducible representation J 6= I this would
produce a hybridization matrix that could not be block-diagonalized. This can only happen
for bath-sites with identical energy εl (accidental degeneracy): Assume Vl and Vl′ are the hy-
bridizations for two bath-sites with εl = εl′ . Then we can form arbitrary linear combinations of
the hybridization matrices and hence of the hybridization vectors. For all these linear combina-
tions the sum of the hybridization matrices must be block diagonal, and hence we can choose
the hybridization vectors such that they transform according to irreducible representations.
We thus find that the bath-sites can be arranged into sets corresponding to the different irre-
ducible representations. For fitting a block of the symmetrized bath Green matrix we need
then only consider bath-sites of the respective irreducible representation. If the block is one-
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A
VA1
VA,2
VA,1

B
VB
0
-VB

Fig. 13: Hybridization of bath-sites of symmetry A and B to a 3-site cluster. As defined in
table 3, A is the unit representation, so a bath-site of type A has the same hybridization V to
all cluster-sites that are equivalent by symmetry. B is the antisymmetric representation, so the
hybridization of a bath-site of type B to cluster-sites that are related by mirror symmetry have
the opposite sign. Consequently the hybridization to the central site of a linear cluster with an
odd number of sites vanishes in the B representation.

dimensional we can choose the corresponding hybridizations real.

Sectors corresponding to different irreducible representations are only coupled through the Hub-
bard interaction U when solving the Anderson impurity model. Note that the coupling to bath-
sites corresponding to an irreducible representation other than the unit representation lowers the
symmetry of the impurity Hamiltonian with respect to that of the Green matrix.

CDMFT

As an example we consider a linear cluster of 3 sites as shown in figure 13. The symmetry is
C2 (see table 3). Transforming to the basis vectors wA,1 = (|1〉 + |3〉)/

√
2 and wA,2 = |2〉 of

symmetry A (see table 3) and wB = (|1〉−|3〉)/
√

2, we find the transformed bath Green matrix

W†G−1W =



G−1

11 + G−1
13

√
2G−1

12 0√
2G−1

21 G−1
22 0

0 0 G−1
11 − G−1

13


 .

A bath-site of irreducible representation A contributes to the first block and has the same hy-
bridization VA,1 to the outer cluster-sites plus an independent hybridization parameter VA,2 to
the central site. A bath-site of irreducible representation B contributes to the second block.
For such a bath-site the hybridization to cluster-sites that are related by mirror symmetry have
opposite signs. Consequently, the hybridization to the central site vanishes.

The situation is slightly more complicated when the symmetry group has irreducible repre-
sentations of dimension higher than one. The simplest example is the 2 × 2 cluster with C4v

symmetry. With wA1 = (|1〉+ |2〉+ |3〉+ |4〉)/2, wB2 = (|1〉 − |2〉+ |3〉 − |4〉)/2, and the pair
wE,1 = (|1〉 − |2〉 − |3〉 + |4〉)/2, wE,2 = (|1〉 + |2〉 − |3〉 − |4〉)/2 we find that W†G−1W is
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C2 E σv
A 1 1
B 1 −1

C2v E C2 σv σ′v
A1 1 1 1 1
A2 1 1 −1 −1
B1 1 −1 1 −1
B2 1 −1 −1 1

C3v E 2C3 3σv
A1 1 1 1
A2 1 1 −1
E 2 −1 0

C4v E 2C4 C2
4 2σv 2σd

A1 1 1 1 1 1
A2 1 1 1 −1 −1
B1 1 −1 1 1 −1
B2 1 −1 1 −1 1
E 2 0 −2 0 0

Table 3: Character tables of the point groups C1v, C2v, C3v, and C4v.

diagonal with diagonal elements

(W†G−1W)11 = G−1
11 + 2G−1

12 + G−1
13

(W†G−1W)22 = G−1
11 − 2G−1

12 + G−1
13

(W†G−1W)33 = G−1
11 − G−1

13

(W†G−1W)44 = G−1
11 − G−1

13

A bath-site of symmetry A1 has the same hybridization to all cluster-sites while for a bath-site
of symmetry B2 the hybridizations have alternating signs: V†l = V̄l (1,−1, 1,−1). To realize
the two-dimensional representation E we need two bath-sites l1 and l2 with degenerate energies
εl1 = εl2 = εl and hybridizations: V†l1 = V̄l (1,−1,−1, 1) and V†l2 = V̄l (1, 1,−1,−1). This is
illustrated in figure 14.

DCA

As an example for DCA we consider a 3-site cluster with periodic boundary conditions. The
symmetry group is C3v (translations and inversion). Hence we introduce the basis vector wA1 =

(|1〉 + |2〉 + |3〉)/
√

3, corresponding to k = 0, while the vectors formed by sin(2π/3) and
cos(2π/3) give theE representation: wE,1 = (|1〉−|2〉)/

√
2 and wE,2 = (|1〉+ |2〉−2|3〉)/

√
6.

W†G−1W =



G−1

11 + 2G−1
12 0 0

0 G−1
11 − G−1

12 0

0 0 G−1
11 − G−1

12


 .

In general bath-sites corresponding to the gamma point have the same hybridization to all
cluster-sites, while those corresponding to k = π have alternating hybridizations. For all
other k-points we need two degenerate bath-sites, with hybridizations Vl1,µ = Vl sin(kµ) and
Vl2,µ = Vl cos(kµ) to cluster-site µ.
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A1 B2 E

+  +
+  +

–  +
+  –

+  –
+  –

–  –
+  +

Fig. 14: Hybridization of bath-sites of symmetry A1, B2, and E to a 2 × 2 cluster. For a
given irreducible representation the absolute value of the hybridization to all cluster-sites is the
same, while the signs are indicated in the figure. Non-trivial hybridizations corresponding to
irreducible representations A2 or B1 only appear for larger clusters.

4 Conclusions

We have seen that the Lanczos method is unbelievably efficient for calculating ground-state and
dynamical response functions of many-body Hamiltonians. The determination of the ground-
state takes only about O(dim(H)) in time and memory. The iteration already converges after
about a hundred steps, even for Hilbert spaces with dimensions in the trillions. This astounding
convergence is based on the idea of steepest-descent to the ground state, which the Lanczos
method even improves upon. In addition, we can very efficiently calculate Green functions.
Here the rapid convergence is due to the fact that the Lanczos iteration reproduces more and
more moments of the spectral function.
The great advantages of the Lanczos approach to strongly correlated systems is that it provides
us with expressions for the Green function on the entire complex plane, i.e., in particular for
real frequencies. Calculations are directly for the ground-state, i.e., T = 0, but can easily be
extended to finite, but low, temperatures.
The greatest disadvantage is the need to store full many-body vectors. Calculations are therefore
restricted by the available memory to relatively small systems. To minimize the effects of finite
system size it is therefore crucial to (i) efficiently use the vast distributed memories of current
massively parallel machines and to (ii) find bath-parametrizations that minimize the effect of
truncating it to finite size.
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1 Introduction

A conventional starting point for the study of strongly correlated electron systems is the Hub-
bard model, which in its single-band version reads

Ĥ = −t
∑

〈ij〉,σ

(
ĉ†iσ ĉjσ + h.c.

)
+ U

∑

i

n̂i↑n̂i↓ (1)

where ĉiσ is the fermion annihilation operator at site i with spin σ ∈ {↑, ↓}, n̂iσ = ĉ†iσ ĉiσ is
the density of fermions with spin σ, t parameterizes the hopping amplitude, and U is the on-
site interaction. Unfortunately, numerical methods for its direct solution are either restricted to
one-dimensional cases or suffer in general from severe finite-size errors and/or sign problems.
Insight into the physics of higher-dimensional systems, thus, requires the use of additional
approximations. The dynamical mean-field theory (DMFT) neglects inter-site correlations by
assuming a momentum-independent self-energy; it becomes exact in the limit of infinite coor-
dination number. The DMFT maps the lattice problem onto a single-impurity Anderson model
(SIAM), supplemented by a self-consistency condition [1]. Its enormous success within the last
20 years would not have been possible without the availability of controlled numerical solvers
for (multi-orbital) SIAMs, in particular of the auxiliary-field Hirsch-Fye quantum Monte Carlo
(HF-QMC) algorithm [2].
These lecture notes are aimed at a pedagogical introduction to the HF-QMC based method of
solving the DMFT self-consistency problem, i.e, of computing electronic properties of Hubbard-
type models (possibly derived ab initio for a specific material from density functional theory
or using the GW method, see subsequent lecture by K. Held) at the DMFT level. As will be-
come clear in the following, the usage of the HF-QMC impurity solver within the DMFT self-
consistency cycle has several important implications that would not arise in HF-QMC solutions
of some fixed SIAM. For example, statistical Monte Carlo errors might prevent the detection of
metastable DMFT fixed points and can, in general, lead to systematic biases in observables (in
all stochastic methods including continuous-time QMC); the formulation in imaginary time (in
all QMC methods and some IPT variants) implies that (i) analytic continuation is necessary for
obtaining spectral information and (ii) that Fourier transforms have to be used within the DMFT
cycle which are especially problematic in the case of a uniform time grid (as in HF-QMC); fi-
nally, the discretization error of estimated observables in (conventional) HF-QMC is impacted
in a quite irregular way due to the self-consistency (cf. Fig. 17) and makes the location of phase
boundaries difficult. Thus, a large part of these lectures will go beyond the HF-QMC algorithm
itself; we will try to discuss all issues that a researcher should understand (or at least be aware
of) when evaluating or producing DMFT data on the basis of HF-QMC. On the other hand, we
wish to avoid unnecessary complexity in the presentation, in particular in the formalism. There-
fore, we will mainly restrict the treatment to the single-band case (1) which is representative
also of multi-band models with (spin) density-density type interactions for which HF-QMC is
most competitive and mainly used, but will also point out generalizations where appropriate.
In the remainder of this introduction, we will briefly recapitulate the DMFT and establish the
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notation for the following. We will then discuss the HF-QMC algorithm for computing (an es-
timate of) the Green function of a given impurity problem (defined by the bath Green function
G), as established by Hirsch and Fye, in Sec. 2. In Sec. 3 we will outline all the steps neces-
sary for achieving a self-consistent DMFT solution on the basis of HF-QMC; thus sections 2
and 3 together contain the essential steps for obtaining Green functions and self-energies for
Hubbard-type models at the DMFT level (but with a systematic Trotter error). The computation
of observables (such as the energy) and of spectra will follow in Sec. 4; here, we will also fully
quantify errors and introduce extrapolation techniques for eliminating the Trotter error. Finally,
we conclude and give an outlook in Sec. 5.

1.1 Dynamical mean-field theory

As discussed in the preceding lectures by Vollhardt and Kollar, the absence of momentum de-
pendence in the self-energy greatly simplifies the treatment of the Hubbard model [3, 4]. It
allows, in fact, to single out one of the lattice sites and replace the influence of its neigh-
bors by the interaction with a single, frequency-dependent bath, i.e., map the Hubbard model
onto a single impurity Anderson model (SIAM) in the limit of large coordination number. In
order to restore the periodicity of the original lattice, this medium has to be determined self-
consistently [1, 5–7]. Written in terms of fermionic Matsubara frequencies1 ωn = (2n+ 1)πT ,
self-energy Σσn ≡ Σσ(iωn), and Green function Gσn ≡ Gσ(iωn) as well as its Fourier trans-
form Gσ(τ) (cf. subsection 3.1) the resulting coupled equations read

Gσn =

∫ ∞

−∞
dε

ρ(ε)

iωn + µ−Σσn − ε
(2)

Gσ(τ) = −〈Tτ ψσ(τ)ψ∗σ(0)〉A, (3)

in the homogeneous phase. Here, Tτ is the time ordering operator; properties of the lattice only
enter via the density of states (DOS) (for dispersion εk and volume VB of the Brillouin zone)

ρ(ε) =
1

VB

∫
dk δ(ε− εk) (4)

of the noninteracting electrons. The thermal average 〈Ĉ〉A of some observable Ĉ is defined as
a functional integral over Grassmann variables2 ψ, ψ∗ (with differentials denoted by D)

〈Ĉ〉A =
1

Z

∫
D[ψ]D[ψ∗]C[ψ, ψ∗] eA[ψ,ψ∗,G], (5)

using the partition function

Z =

∫
D[ψ]D[ψ∗] eA[ψ,ψ∗,G], (6)

1Here, we choose an imaginary-time formulation in anticipation of its use in the context of the imaginary-time
quantum Monte Carlo algorithm to be discussed in Sec. 2.

2Grassmann variables are anticommuting numbers for which integration and differentiation rules are defined
[8, 9]. Strictly speaking, ψ and ψ∗ are (independent) Grassmann fields, i.e., infinite-dimensional vectors with the
discrete index σ and the continuous index/argument τ (or t in a real-time formulation). Thus, ψ↑(τi), ψ↓(τi),
ψ∗↑(τi), and ψ↑(τj) are all linearly independent Grassmann variables for τi 6= τj .
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−int. Dyson eq.k

Σ

G

G

impurity problem

G

Σ0

(2) ←− DOS / tij / ενk

(8)

(3) ←− local interactions

initialization −→

Fig. 1: DMFT self-consistency cycle in conventional form: starting, e.g., with an initial guess
for self-energy Σ, the k integrated Dyson equation (2) yields the lattice Green function G. Both
Σ and G are used to compute the bath Green function G via (8) which defines the impurity
problem (3). Its solution using QMC (or IPT, NCA, ED, NRG, etc.) provides a new estimate for
G. The cycle is then closed by application of (8) to the new G and the old Σ.

and the single-site action

A[ψ, ψ∗,G] =

∫ β

0

∫ β

0

dτdτ ′
∑

σ

ψ∗σ(τ)G−1
σ (τ, τ ′)ψσ(τ ′) − U

β∫

0

dτ ψ∗↑(τ)ψ↑(τ)ψ∗↓(τ)ψ↓(τ).

(7)
Here, β = 1/kBT is the inverse temperature (in the following, we set kB ≡ 1) and

G−1
σn = G−1

σn +Σσn (8)

is the effective local propagator.3 Functions related by a Fourier transformation (here from
imaginary time τ to fermionic Matsubara frequencies ωn or vice versa) are denoted by the same
symbol, but can be distinguished by their indices.
The solution of the DMFT problem by iteration is illustrated in Fig. 1. Here, the solution of
the k–integrated Dyson equation (2) is straightforward; it can be performed analytically for the
semi-elliptic Bethe DOS commonly used for model studies in the literature. In contrast, the so-
lution of the impurity problem (3) is highly nontrivial.4 Most numerical methods developed for
the treatment of SIAMs with fixed bath could be adapted to the DMFT problem, e.g., solutions
based on exact diagonalization (ED) [1, 10], the non-crossing approximation (NCA) [11–14],
the fluctuation-exchange approximation (FLEX) [15–17], the numerical renormalization group
(NRG) [18–21], density-matrix renormalization group (DMRG) [22] and quantum Monte Carlo
(QMC) algorithms. We will focus on the Hirsch-Fye QMC method in this lecture; recently de-
veloped diagrammatic continuous-time QMC algorithms will be covered by Philipp Werner.

3Gσn may be regarded as a Weiss field in a (frequency-dependent) generalization of the usual static mean field.
In contrast with spin models, for which the Weiss field replaces all (NN) interactions, the bath propagator replaces
the hybridization of one site with the rest of the lattice.

4An exception is the application of (2) and (3) to a Lorentzian DOS ρ(ε) = t/(π(ε2 + t2)) which can be
realized on lattices with long range hopping [6]. For this DOS (which is clearly pathological due to its infinite
variance), the Weiss function is independent of U ; furthermore (3) is solvable by Bethe ansatz in this case so that
many properties can be obtained analytically.
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2 Hirsch-Fye QMC solution of the single-impurity Anderson
model

In this section, we will discuss the (original)5 auxiliary-field quantum Monte Carlo (QMC) al-
gorithm for solving the quantum impurity problem (3). It was originally formulated by Hirsch
and Fye for treating a small number of magnetic impurities in metals [2] and later applied to
arbitrary hybridization functions, i.e., in the form required for the solution of the DMFT prob-
lem [5,24–26]. Here, we will concentrate on the solution of the impurity problem and postpone
aspects specific to the DMFT context to Sec. 3. For simplicity, we also specialize on the single-
band homogeneous case (1); generalizations for the multi-band case (and implications for the
minus-sign problem) will be pointed out where appropriate, see also App. A. A very general
formulation of the HF-QMC method in the multi-band case, including the cases of interorbital
hybridization and complex interactions, can be found in [27].
The functional integral equation for the Green function has the structure

Gσ(τ1 − τ2) = − 1

Z

∫
D[ψ]D[ψ∗] ψσ(τ1)ψ∗σ(τ2) exp

[
A0 − U

∫ β

0

dτ ψ∗↑ψ↑ψ
∗
↓ψ↓

]
, (9)

where A0 denotes the hybridization part, i.e., the first term in (7). For U = 0, only quadratic
terms in operators or Grassmann variables occur; then, this expression can be solved using
Wick’s theorem. The idea of the Hirsch-Fye QMC method is to transform the interaction term
(quartic in operators or Grassmann variables) to a quadratic term and to solve the resulting prob-
lem, again, by Wicks theorem. Such a Hubbard Stratonovich transformation requires, however,
a decoupling of interacting and noninteracting terms which only commute in the limit of infinite
temperatures. Therefore, HF-QMC has to include some kind of numerical high-temperature ex-
pansion by Trotter decomposition. A high-level overview of the full scheme is shown in Fig. 2,
which illustrates (in step iii) that the interaction between electrons with different spin (and/or
different orbitals in the multi-band case) is replaced by the interaction of each electron with a
binary auxiliary field. For each of the configurations the path integral in (9) evaluates to a term
of the structure M−1 det{M} where the Matrix M depends onto the field configuration {s}.
This analytic part will be discussed in the following subsection 2.1. We will then introduce the
concept of Monte Carlo importance sampling in a general way in subsection 2.2 before applying
it in the HF-QMC context in subsection 2.3.

2.1 Wick’s theorem for the discretized impurity problem

The difficulty in solving the functional integral equation (3) arises from the noncommutativity
of the kinetic term and the interaction term in the single-site action (7). These terms can be

5Here and in the following, we discuss the original QMC version using a discretization of the imaginary time
and based on Trotter decomposition and Hubbard-Stratonovich transformation. It should not be confused with
the recent auxiliary-field formulation of the weak-coupling continuous-time QMC method often referred to as
CT-AUX [23].
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(i) Imaginary-time discretization (β = Λ∆τ )

(ii) Trotter decoupling (; systematic error O(∆τ 2))

(iii) Hubbard-Stratonovich transformation (exact)

Wick theorem:

G =

∑
{s}M

−1 det{M}
∑
{s} det{M}

(iv) MC importance sampling over auxiliary Ising field {s} (; statistical error)

Fig. 2: High-level overview of the HF-QMC approach.

separated by use of the Trotter-Suzuki formula [28, 29] for operators Â and B̂:

e−β(Â+B̂) =
(
e−∆τÂ e−∆τB̂

)Λ
+O(∆τ) , (10)

where ∆τ = β/Λ and Λ is the number of (imaginary) time slices. 6 Rewriting the action (7) in
discretized form

AΛ[ψ, ψ∗,G, U ] = (∆τ)2
∑

σ

Λ−1∑

l,l′=0

ψ∗σl(G−1
σ )ll′ ψσl′

−∆τU
Λ−1∑

l=0

ψ∗↑l ψ↑l ψ
∗
↓l ψ↓l, (11)

where the matrix Gσ consists of elements Gσll′ ≡ Gσ(l∆τ − l′∆τ) and ψσl ≡ ψσ(l∆τ), we
apply (10) and obtain to lowest order

exp (AΛ[ψ, ψ∗,G, U ]) =
Λ−1∏

l=0

[
exp

(
(∆τ)2

∑

σ

Λ−1∑

l′=0

ψ∗σl(G−1
σ )ll′ ψσl′

)

× exp
(
−∆τ U ψ∗↑l ψ↑l ψ∗↓l ψ↓l

) ]
. (12)

Shifting the chemical potential by U/2, the four-fermion term can be rewritten as a square
of the magnetization (in terms of operators: (n̂↑ − n̂↓)2 = n̂2

↑ + n̂2
↓ − 2n̂↑n̂↓ = n̂↑ + n̂↓ −

2n̂↑n̂↓) which makes it suitable for the following discrete Hubbard-Stratonovich transformation
[30] (the correctness of which is checked easily by inserting the four possible combinations
[(0, 0), (0, 1), (1, 0), (1, 1)] of eigen values of the associated density operators):

exp

(
∆τU

2
(ψ∗↑l ψ↑l − ψ∗↓l ψ↓l)2

)
=

1

2

∑

sl =±1

exp
(
λsl(ψ

∗
↑l ψ↑l − ψ∗↓l ψ↓l)

)
, (13)

6Since β = 1/kBT is the inverse temperature, small ∆τ on each “time slice” corresponds to a higher tem-
perature, for which the operators effectively decouple. Thus, we may view the Trotter approach as a numerical
extension of a high-temperature expansion to lower temperatures.
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with coshλ = exp(∆τU/2). Here, the interaction between electrons is replaced by the interac-
tion with an auxiliary binary field {s} with components sl = ±1 for 0 ≤ l ≤ Λ. Acting like a
local, but time-dependent magnetic field, {s} can be regarded as an ensemble of Ising spins (as
depicted in Fig. 2).
Applying the Trotter formula again, these transformations yield an expression for the functional
integral

Gσl1l2 =
1

Z
∑

{s}

∫
D[ψ]D[ψ∗] ψ∗σl1ψσl2 exp

(∑

σ,l,l′

ψ∗σlM
sl
σll′ψσl′

)
, (14)

with7

M sl
σll′ = (∆τ)2(G−1

σ )ll′ − λσδll′sl, (15)

where in (14) the sum is taken over all configurations of the Ising spin field, and each term of
the sum involves independent fermions only. Now Wick’s theorem [32] (or, equivalently, the
rules for Gaussian Grassmann integrals) can be applied to get the solution8

Gσll′ =
1

Z
∑

{s}

(
M {s}

σ

)−1

ll′
detM

{s}
↑ detM

{s}
↓ , (16)

whereM {s}
σ is the matrix with elements M sl

σll′ , and the partition function has the value

Z =
∑

{s}
detM

{s}
↑ detM

{s}
↓ . (17)

Equations (16) and (17) already constitute the solution of the impurity problem, as the phys-
ical problem has been reduced to algebra which can, in principle, be evaluated exactly for an
arbitrary number Λ of time slices. In fact, such so-called full summation can be useful in some
contexts (even though the number of terms is exponential). However, the independent compu-
tation of the matrix inverses and determinants for each auxiliary field (operations scaling with
O(Λ3) and worse than O(Λ4), respectively) would be highly inefficient.

Fast update scheme

At least for the case of full summation (i.e., when all the terms are explicitly calculated) one
may arrange the sum over the auxiliary spins in (16) so that only one auxiliary spin sm is flipped
between subsequent configuration (Gray code). For the matrices M

{s}
σ (with components l1, l2)

this means [33]:

Mσ
sm→−sm−→ Mσ

′ = Mσ + ∆σm

=
(
1 + ∆σm(Mσ)−1

)
Mσ (18)

with ∆σm
ll′ = δll′δlm 2∆τ λ σsl. (19)

7A more precise form including subleading corrections is Msl
σll′ = (∆τ)2 (G−1σ )ll′ e

λσsl′ + δll′
(
1 − eλσsl

)

[1, 31, 27].
8The form shown in Fig. 2 is obtained whenG↑ andG↓ and, correspondingly,M↑ andM↓ are each arranged

as the block-diagonal super-matricesG andM , respectively.
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The ratio of the determinants of new and old matrix can be easily determined using the inverse
of the old matrix:9

Rσm :=
det(Mσ

′)

det(Mσ)
= det

(
1 + ∆σm(Mσ)−1

)

= 1 + 2∆τ λσsm (Mσ)−1
mm. (20)

The inversion of M is also elementary, one obtains:

(Mσ
′)−1 = (Mσ)−1 +

1

Rσm
(Mσ)−1∆σm(Mσ)−1. (21)

This reduces the effort for the recalculation of a term of (16) after a spin flip to O(Λ2).
Only for Λ . 30 can all terms be summed up exactly. Computations at larger Λ are made
possible by Monte Carlo importance sampling which reduces the number of terms that have to
be calculated explicitly from 2Λ to order O(Λ).

2.2 Monte Carlo importance sampling

Monte Carlo (MC) procedures in general are stochastic methods for estimating large sums (or
high-dimensional integrals) by picking out a comparatively small number of terms (or eval-
uating the integrand only for a relatively small number of points). Let us assume we want to
compute the averageX := 1

M

∑M
l=1 xl, where l is an index (e.g., an Ising configuration l ≡ {s})

and x some observable with the (true) variance vx = 1
M

∑M
l=1(xl − X)2. In a simple MC ap-

proach, one may select a subset of N � M indices independently with a uniform random
distribution P (lj) = const. (for 1 ≤ j ≤ N ),

XMC =
1

N

N∑

j=1

xlj , (22)

∆XMC := 〈(XMC −X)2〉 =
vx
N
≈ 1

N(N − 1)

N∑

j=1

(xlj −XMC)2 . (23)

Here, the averages are taken over all realizations of the random experiment (each consisting of
a selection of N indices). In the limit of N → ∞, the distribution of XMC becomes Gaussian
according to the central limit theorem. Only in this limit is the estimate of vx from the QMC
data reliable. An application for a continuous set is illustrated in Fig. 3.
Smaller errors and faster convergence to a Gaussian distribution for the estimate may be ob-
tained by importance sampling. Here, the function xl is split up,

xl = pl ol; pl ≥ 0;
M∑

l=1

pl = c , (24)

9Since ∆σm has only one non-zero element, it is clear that only the row m of ∆σm(Mσ)
−1 will contain

non-zero elements. The determinant of 1 + ∆σm(Mσ)
−1 is then equal to the product of its diagonal elements.
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Fig. 3: Illustration of simple MC: (a) instead of using deterministic quadrature schemes such
as the trapezoid rule, integrals over some function f(x) can be evaluated by averaging over
function values f(xi) of stochastically generated support points xi (and multiplying by the
integration volume). (b) The resulting statistical error decreases as 1/

√
N with the number of

function evaluations (crosses and error bars). The deterministic trapezoid discretization scheme
(circles) converges with an error proportional to N−2/d, i.e., is superior in dimensions d < 4;
furthermore, an extrapolation of the systematic error is straightforward (inset).

where we may regard pl as a (unnormalized) probability distribution for the indices and ol as
a remaining observable. If both the normalization c is known (i.e., the sum over the weights
pl can be performed exactly) and the corresponding probability distribution can be realized (by
drawing indices l with probability P (l) = pl/c), we obtain

XMC
imp =

c

N

N∑

j=1

olj and ∆XMC
imp = c

√
vo
N
. (25)

Thus, the error can be reduced (vo < c2vx), when the problem is partially solvable, i.e., the
sum over pl with pl ≈ xl can be computed.10 Since this is not possible in general, one usually
has to treat the normalization c as an unknown and realize the probability distribution P (lj) =

plj/c in a stochastic Markov process: Starting with some initial configuration l1, a chain of
configurations is built up where in each step only a small subset of configurations l′ is accessible
in a “transition” from configuration l. Provided that the transition rules satisfy the detailed
balance principle,

pl P(l→ l′) = pl′ P(l′ → l) , (26)

and the process is ergodic (i.e., all configurations can be reached from some starting configu-
ration), the distribution of configurations of the chain approaches the target distribution in the
limit of infinite chain length, as illustrated in Fig. 4. Since the normalization remains unknown,
importance sampling by a Markov process can only yield ratios of different observables eval-
uated on the same chain of configurations. Another consequence of using a Markov process
is that initial configurations have to be excluded from averages since the true associated prob-
abilities might be vanishingly small. They would otherwise be overrepresented in any run of

10The possible reduction of the variance is limited when xl is of varying sign. This “minus-sign problem”
seriously restricts the applicability of Monte Carlo methods for finite-dimensional fermion problems.
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Fig. 4: Illustration of importance sampling Monte Carlo, here for 8 states: (a) the simulation
is initialized by randomly choosing a starting configuration, here state 4. (b) Transitions to the
neighborhood of the old state are proposed, here for states snew = sold ± 1. (c) A move (here
+1) is accepted. (d) The history of the simulation (here with 5 attempted updates) consists
both of accepted and declined updates. The normalized histogram of the visited configurations
(red lines) approaches the target probability distribution (only) in the limit of infinite simulation
length. For finite runs, states in the vicinity of the starting configuration may be overrepre-
sented; this “warm-up” part should be discarded.

finite length. Consequently, we will later distinguish “warm-up sweeps” from “measurement
sweeps”.
For the computation of errors, one has to take into account the finite autocorrelation induced by
the Markov process, i.e., correlation between subsequent measurements. This correlation may
be characterized by the autocorrelation time11 κo ≥ 1 which effectively reduces the number of
independent samples, so that ∆X = c

√
voκo/N . The numerical effort necessary to reach some

target statistical accuracy ∆X nevertheless increases only as (1/∆X)2.

2.3 Single-spin flip implementation of the HF-QMC method

Returning to the evaluation of the Green function using (16) and (17), the obvious choice is to
sample configurations {s} according to the (unnormalized) probability

P ({s}) =
∣∣∣ detM

{s}
↑ detM

{s}
↓

∣∣∣ . (27)

The Green function can then be calculated as an average 〈. . . 〉s over these configurations:

Gσll′ =
1

Z̃
〈(
M {s}

σ

)−1

ll′
sign

(
detM

{s}
↑ detM

{s}
↓

)〉
s
, (28)

Z̃ =
〈

sign
(

detM
{s}
↑ detM

{s}
↓

)〉
s
. (29)

Here, Z̃ deviates from the full partition function by an unknown prefactor which cancels in
(28). The same is true for other expectation values of the form (5). The inability to compute

11For a set {o1, o2, . . . , oN} of measurements, the autocorrelation function (for the observable o) is col = 〈(ok−
〈o〉)(ok+l − 〈o〉)〉k. An associated autocorrelation time may then be defined as κo = co0 + 2

∑N0

l=1 c
o
l , where the

cutoff N0 is determined by col > 0 for l ≤ N0 and cN0+1 < 0.
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the partition function itself (and, consequently, the free energy and entropy) is a consequence of
the importance sampling and is thus a general characteristic of QMC methods which has severe
consequences for the study of phase transitions.
If the sign in (28) does not depend on {s}, i.e. if the so-called sign problem is absent (as in
HF-QMC for density-type interactions), the expressions can be simplified:

Gσll′ =
1

Z̃
〈(
M {s}

σ

)−1

ll′

〉
s
, Z̃ = 〈1〉s . (30)

A practical HF-QMC calculation proceeds as follows: (i) A starting configuration {s} is chosen,
e.g., taken from a uniform random distribution or from a previous run with similar parameters.
(ii) The initial Green function matrix M−1 is computed for this configuration from scratch.
Note that the associated determinant is not needed. (iii) A number Nwarm of warm-up sweeps
(see below) is performed in order to generate a Markov chain; intermediate Green functions
M−1 are discarded. (iv) A (larger) number Nmeas of measurement sweeps is performed, accu-
mulating the sum of all occurring matrices M−1 (and possibly of other observables). (v) The
estimate of the Green function and of observables is computed by dividing each of the sums by
the number of terms, i.e., by the number of attempted configuration updates.
Each of the sweeps mentioned above consists of a loop in which Λ spins are selected for a
possible update (either in sequence or randomly). Within the loop, the ratio of determinants for
each candidate spin flip is evaluated using (20) and accepted or rejected according to a detailed
balance principle. Often, the acceptance probability is chosen according to the Metropolis
transition rule [34]

P({s} → {s′}) = min{1, P ({s′})/P ({s})}; (31)

an alternative is the symmetric heat-bath algorithm.
Roughly, the number of sweeps has to be held constant (rather than the number of attempted
single-spin flips) for constant statistical error when the number of spins Λ is varied. Since the
systematic error depends on ∆τ , the necessary number of time slices is proportional to the
inverse temperature, Λ ∝ β, so that the total numerical cost for given accuracy is proportional
to β3.

Memory issues and parallelization

The numerically costly part of HF-QMC consists of the update of the Green function matrix
(and the associated determinant), specifically of the addition of a dyadic (outer) product of
two vectors (dimension Λ) onto a Λ × Λ matrix (for each spin and orbital). This BLAS-1
operation (DGER) breaks down to elementary multiply-add pairs where, in general, all operands
of subsequent operations are different and have to be loaded from memory. Thus, an efficient
execution depends on high memory bandwidth; in practice, this requires that the matrices can be
held in the processor cache (typically L2). Fortunately, usual cache sizes (of a few megabytes)
suffice for many applications; our code can use fine-grained OpenMP parallelization in order
to extend these limits (by spreading the matrices across multiple processor cores and caches).
Another strategy for optimizing memory issues is the use of delayed updates [35, 36].
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Fig. 5: Impact of proper warm-up: Green functions estimated from short HF-QMC runs with
varying number Nw of warm-up sweeps (see text).

We also use MPI for the parallel solution of identical impurity problems, with near-perfect
scaling up to some 20–30 MPI tasks (and reasonable scaling beyond 100 tasks). These limits
could easily be extended by at least a factor of 10 by amortizing the warm-up of the auxiliary
field over several (typically 20) DMFT iterations. It should be noted that the averaging over
multiple independent solutions also stabilizes the procedure.

2.4 Choice of simulation parameters: discretization and number of sweeps

The important practical question how the simulation parameters should be choses is most eas-
ily answered for the number of measurement sweeps, at least on the SIAM level (not taking
the DMFT self-consistency into account): since the error scales as Nmeas for each observable
(including the Green function), it can be determined from the desired precision.
A much harder question is the appropriate value of Nwarm. A too small value should be avoided
at all costs since it will lead to a systematic bias which is near-impossible to detect in the result
data of a single run.12 On the other hand, a too large value wastes resources. We typically use
Nwarm ≥ 1000; in high-precision runs, we devote 10% of the sweeps of each serial runs to equi-
libration (possibly an overkill which, however, costs only 5% in statistical precision). In order
to quantify the impact of the warm-up at least for one test case, we have performed a large num-
ber of independent simulations at fixed ∆τ and for fixed hybridization function G with Nwarm

ranging from 1 to 1000. In order to see the effect, these runs have to be short; we have chosen
Nmeas = 100. This, on the other hand, gives rise to very large fluctuations in the measured
Green functions as shown in the main panel in Fig. 5. At this level, a possible effect of Nwarm is
hidden in the noise. Averaging over a large number (here 1000) of realizations, however, allows

12However, one might keep track of the relative probabilities of the visited configurations (or rather of their
logarithm) and derive a cutoff from the number of sweeps needed for reaching a typical probability level for the
first time.
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Fig. 6: Impact of the Trotter discretization on HF-QMC estimates of the Green function at
n = 1 and T = 0.05 for U = 4.0 (a) and U = 4.8 (b), respectively. Only results for τ ≤ β/2
are shown; the rest follows from particle-hole symmetry G(τ) = G(β− τ). For each case, ∆τ -
independent hybridization functions (corresponding to exact DMFT solutions obtained from
multigrid HF-QMC) have been used.

to characterize the probability distributions associated with the selected 100 sweeps (offset by
0, 10, 100, or 1000 warm-up sweeps from the random initialization of the Markov chain). The
surprising result, show in the inset for the Green function at two representative grid points, is
that 10 warm-up sweeps suffice for removing any detectable equilibration bias. One may sus-
pect that the equilibration times are much longer for insulating or ordered phases; otherwise,
significant savings in computer time would appear possible. Fig. 5 also illustrates that imprecise
HF-QMC estimates of Green functions can violate causality, i.e., be non-monotonous.

For a sufficiently large number of sweeps, the error of the resulting Green functions is typically
dominated by the systematic Trotter error. Such systematic shifts, consistent with a quadratic
dependence on ∆τ , are seen in Fig. 6 for hybridization functions corresponding to metallic and
insulating DMFT solutions, respectively. At the same time, the grids vary for each discretization
which (at least at first sight) seems to limit the low-τ resolution for large values of ∆τ . The
inset in Fig. 6b shows that the relative Trotter error increases for τ → β/2 in the insulating
case. Still, the qualitative shape of the Green functions remains unchanged even for extremely
large values of ∆τ in both cases and it is hard to derive an intrinsic limit for reasonable values
of ∆τ on this level.

3 Achieving DMFT self-consistency

In the main part of this section, we will discuss two aspects of the quantum Monte Carlo (QMC)
algorithm for the DMFT self-consistency problem: the discrete Fourier transformations be-
tween imaginary time and Matsubara frequencies and the search strategy for solutions of the
DMFT equations. Both aspects are particularly relevant, e.g., for the detection of the Mott
transition and the associated coexistence region.
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G(τ) = −〈ΨΨ∗〉G[τ ]

G−1(iωn)=G−1(iωn)+Σ(iωn)

G(iωn) =
∫
dε

ρ0(ε)

iωn−ε−Σ(iωn)

G

ΣΣ0 G

G
← FourierFourier →

Fig. 7: Schematic DMFT self-consistency scheme showing the two Fourier transformations
needed per iteration.

3.1 Fourier transformation and splining strategies

A QMC simulation within the DMFT framework consists of a simultaneous solution of two
principal equations: the lattice Dyson equation (2) and the defining expression for the impurity
Green function (3). The IPT (iterative perturbation theory [6, 37]) and QMC solutions of the
impurity problem are formulated in imaginary time, i.e., the bath Green function G is needed as
function of τ and the result is expressed as G(τ). In contrast, the Dyson equation is formulated
(and is local) in the frequency domain, here for Matsubara frequencies iωn = i(2n + 1)πT .
Therefore, two Fourier transformations (from frequency to imaginary time and vice versa) per
self-consistency cycle are necessary (as shown in Fig. 7), which for G read

G(iωn) =

∫ β

0

dτ eiωnτ G(τ) (32)

G(τ) =
1

β

∞∑

n=−∞
e−iωnτ G(iωn) . (33)

Note that (33) implies antiperiodicity of G(τ) for translations β (since eiωnβ = −1) and allows
for a discontinuity of G(τ) (at τ = 0) since the number of terms is infinite. The spectral
representation of G

G(ω) =

∫ ∞

−∞
dω′

A(ω′)

ω − ω′ ; A(ω) = − 1

π
ImG(ω + i0+)

implies a decay of G(iωn) as 1/iωn for |n| → ∞. Furthermore, G(iωn) is purely imaginary
when G(τ) = G(β − τ) as in the case of half band filling on a bipartite lattice (with symmetric
DOS).

Discretization problem, naive Fourier transformation

Numerically, however, the integral in (32) needs to be discretized and the Matsubara sum in (33)
has to be truncated. Since the numerical effort in QMC scales with the number Λ = β/∆τ of
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circles) shows oscillatory behavior with poles or zeros at multiples of the Nyquist frequency.
Advanced spline-based methods (filled circles and solid line), in contrast, recover the correct
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discretized time slices at least13 as Λ3, this method is presently restricted to Λ . 400. Typically,
200 time slices and less are used. A naive discrete version of the Fourier transform,

G̃(iωn) = ∆τ
(G(0)−G(β)

2
+

Λ−1∑

l=1

eiωnτl G(τl)
)

; τl := l∆τ (34)

G̃(τl) =
1

β

Λ/2−1∑

n=−Λ/2
e−iωnτl G(iωn) , (35)

fails for such a coarse grid. The problems are that the Green function G̃(τ) estimated from a
finite Matsubara sum cannot be discontinuous at τ = 0 (as required analytically for G(τ) and
also for G(τ)) while the discrete estimate G̃(iωn) oscillates with periodicity 2πiΛ/β instead of
decaying for large frequencies. This implies a large error of G(iωn) when |ωn| approaches or
exceeds the Nyquist frequency πΛ/β as illustrated in Fig. 8. Both (related) effects would make
the evaluation of the corresponding self-consistency equations pointless. In particular, in the
naive scheme, the self-energy diverges near the Nyquist frequency. Finally, the sum in (35) is
numerically somewhat unstable since G̃(τ) also oscillates between the grid points τl.

Splining method

Fortunately, there is physical information left that has not been used in the naive scheme: G(τ)

is known to be a smooth function in the interval [0, β). In fact, it follows from (52) and (53) that
G(τ) and all even-order derivatives are positive definite and, consequently, reach their maxima
at the edges τ = 0 and τ = β. This knowledge of “smoothness” can be exploited in an
interpolation of the QMC result {G(τl)}Λl=0 by a cubic spline.14 The resulting functions may

13In practice, the scaling is even worse on systems with a hierarchy of memory systems (i.e. caches and main
memory) of increasing capacity and decreasing speed.

14A spline of degree n is a function piecewise defined by polynomials of degree n with a globally continuous
(n − 1)th derivative. For a natural cubic spline, the curvature vanishes at the end points. The coefficients of the
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Fig. 9: Difference between exact noninteracting Green function (for semi-elliptic DOS and
β = 100) and cubic spline approximations to the discretized function for Λ = 40. The strong
oscillations observed for the natural spline and for the Akima spline are due to their unphys-
ically vanishing second derivatives (at τ = 0). An optimal choice of the boundary condition
reduces the discrepancies by an order of magnitude and doubles the oscillation frequency.

then either be used for oversampling, i.e., for generating G(τ) on a finite grid or for piecewise
direct analytic Fourier transforms. In both cases, G(iωn) can be calculated for a much larger
frequency range than before.
The simplest practical approach in this context consists of a direct interpolation of the dis-
crete QMC data by a cubic spline (with a continuous second derivative) as implemented by
Krauth [1]. While this step suffices for closing the self-consistency equations without any fur-
ther adjustments (like Ulmke’s smoothing trick, see below), it leads to nonanalytic behavior
of the self-energy near and beyond the Nyquist frequency [38]. This problem can be traced
back to the fact that the natural spline chosen by Krauth is inadequate for this problem: By
definition, the second derivative of a natural spline vanishes at its boundaries. However, all
even derivatives of the true Green function are maximal at the edges of the interval [0, β]. The
resulting misfit leads to unphysical ringing as illustrated in Fig. 9. Here, the noninteracting
Green function for a semi-elliptic DOS is chosen as an example since it can be computed with
arbitrary precision. Furthermore, moderate interactions do not lead to qualitative changes in the
Green function so that the example is representative. It is clearly seen that a fit of a discrete
set of data points (here for Λ = 40 and β = 100, i.e., a large discretization ∆τ = 2.5) using
a natural cubic spline with continuous second derivative leads to a large error oscillating with
the Nyquist frequency. While the initial misfit at τ = 0 is similarly large for a natural Akima
spline, the oscillation decays significantly faster due to jumps in the second derivative for this

spline fitting a given data set can be easily computed by solving a linear equation.
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fit. The discrepancies can be reduced by about an order of magnitude and a smooth curve can
be obtained by choosing an appropriate boundary condition (short-dashed line) which has here
been obtained by a numerical minimization procedure for the variation of the second derivatives
(see [38]). It is possible to avoid the minimization by computing the correct second derivative
G(2)(0) analytically (for arbitrary interaction U ):

d2G(τ)

dτ 2

∣∣∣
τ=0+

= −1

2

(
1 +

U2

4

)
; (36)

in any case, however, a cubic spline interpolation of the full Green function suffers from the
problem that derivatives of fourth and higher order vanish on segments of the splines while they
can be large for the true Green function, in particular at τ = 0.15

Splining the difference Green function using a model self-energy

A related method for improving on the natural spline scheme is to interpolate not {G(τl)}Λl=0,
but only the difference with respect to some reference Green function obtained from, e.g., plain
second order perturbation theory or IPT. This approach, discussed in a general context by Deisz
[39], is implemented in Jarrell’s code [5]. In addition, the high-frequency part may be directly
stabilized by supplementing the QMC estimates with IPT (using low-pass/high-pass filters).
In the following, we will describe a stable and accurate method which achieves excellent high-
frequency behavior without requiring any filters [38, 40, 41]. It is based on the following exact
high-frequency expansion for the self-energy [42]:16

Σσ(ω) = U (〈n̂−σ〉 −
1

2
) + U2 〈n̂−σ〉(1− 〈n̂−σ〉)

ω
+O(ω−2). (37)

One possible choice of a model self-energy with this asymptotic behavior (including the ω−1

term) which is nonsingular (and purely imaginary) on the imaginary axis is given by the follow-
ing two-pole approximation [38, 40, 41].

Σmodel,σ(ω) = U (〈n̂−σ〉 −
1

2
) +

1

2
U2 〈n̂−σ〉

(
1− 〈n̂−σ〉

)( 1

ω + ω0

+
1

ω − ω0

)
. (38)

While the quality of the low-frequency part of this fit could be tuned by adjusting the parameter
ω0, it does not depend very sensitively on it as long as it is not much larger than the bandwidth
or the Nyquist frequency. By evaluating Σmodel on the imaginary axis, the corresponding Green
function Gmodel can be computed for an arbitrary number of Matsubara frequencies. Conse-
quently, the Fourier transformation to imaginary time is unproblematic (when the “free” term
1/(iωn) is taken care of analytically). Thus, the difference of the Green functions can be accu-
rately evaluated at all time slices. Since the second derivative of the transformed model Green
function at τ = 0 exactly reproduces that of the true Green function, the difference is well

15This also implies that the boundary value (36) may not be the best choice for the whole interval τ ∈ [0, ∆τ ].
16The multi-band generalization [40] contains additional pair occupancy terms which have to be computed

numerically even at fixed band filling.
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the difference is generally small and has vanishing second derivatives at the boundaries, i.e. is
well approximated by a natural cubic spline (upper panel).

represented by a natural spline. The Green function is obtained as a function of Matsubara fre-
quencies by Fourier transforming the oversampled spline and adding the Matsubara-frequency
model Green function to the result.
We note that the concept of the method described here of supplementing QMC data with high-
frequency information derived from a weak-coupling approach is similar to Jarrell’s QMC im-
plementation [5]. The latter is, however, less stable since its Fourier transformation relies on
a numerical IPT calculation. At least for a symmetric DOS at half filling, our method is un-
conditionally stable for arbitrarily large frequencies without the need for bandpass filters. This
is illustrated in Fig. 11: The raw HF-QMC data (dashed lines) is indistinguishable from the
(numerically) exact result (solid line) already for |ωn| & 5 and converges quickly in the low-
frequency region for ∆τ → 0. In contrast, continuous-time methods achieve results without
systematic bias, however with significant noise at large frequencies, especially in the hybridiza-
tion variant.
Since each of the approaches discussed so far generates a number of Matsubara frequencies
which is much greater than the number of time slices, the inverse Fourier transform (then for G)
is unproblematic: the rounding-off near τ = 0 is already small for the first grid point τ = ∆τ

while at the end points τ = 0 and τ = β, the numerical Fourier transforms can be shifted by the
value 1/2 to exactly cancel the rounding effect.

Ulmke’s smoothing trick

A completely different approach was taken by Ulmke [44]. Here, the number of Matsubara fre-
quencies is chosen equal to the number of time slices. In order to enforce the correct analytical
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behavior of the Fourier transforms, a “smoothing” trick is employed: the naive Fourier trans-
form is combined with an approximate correcting transformation which approaches the identity
for ∆τ → 0. While this method recovers the high-frequency behavior of G(iωn) and Σ(iωn)

for |ω| ≤ π/∆τ about at the level of Krauth’s code, it (unnecessarily) introduces errors at small
Matsubara frequencies in insulating phases which may prevent the detection of coexistence re-
gions. This artifact can be cured by introducing a frequency cutoff in the transformation [38];
however, the resulting method is inferior to advanced splining schemes and also less elegant.

3.2 Search for solutions, hysteresis, overrelaxation

An important point not discussed so far is the initialization of the self-consistency cycle in a HF-
QMC run for some given set of physical parameters (e.g. U, T, µ) and discretization ∆τ . Since
in most cases the results and also self-energy and Green function will continuously depend on
the parameters, one will almost initialize the simulation with a self-energy previously obtained
for a related parameter set. One possibility is a sequence of runs for increasing or decreasing
values of a physical parameters such as the interaction U . In the vicinity of first-order phase
transitions, which show up in the DMFT due to its mean-field character as coexistence regions,
such hysteresis runs may be used for determining the phase boundaries. In principle, one could
also explore hysteresis in the temperature domain; this is, however, difficult for frequency-based
state variables (i.e. Σ(iωn)) since the Matsubara frequencies depend on the temperature.
In principle much can be gained from hysteresis runs at constant physical parameters, in which
the Trotter discretization ∆τ is initially chosen quite large; due to the scaling of the effort with
∆τ−3 convergency can then be obtained rather cheaply. Subsequent runs at intermediate values
of ∆τ , each initialized from the previous run, will then require only few iterations (which are
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Landau free energy in multidimensional space of hybridization functions {G}. The fixed points
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point (full circle) only for small ∆τ . In contrast, the multigrid method [45] solves all impurity
problems at the ∆τ = 0 fixed point (circles).

still relatively cheap). For a sufficiently large number of steps, about 5 iterations will then
suffice at the most costly target discretization. This strategy is, however, not without danger,
especially near phase transitions: as the location of coexistence regions will depend on ∆τ and
may, e.g., shift towards smaller interactions with decreasing ∆τ as illustrated in Fig. 12a, a
phase that is stable for some physical parameter set (cross) at low values of ∆τ may not be
stable at high ∆τ (and vice versa), so it cannot be obtained in such ∆τ hysteresis run.
A more abstract view on this problem is given in Fig. 12b: each DMFT fixed point can be
understood as the minimum of a generalized Ginzburg-Landau free energy functional in the
(high-dimensional) space of hybridization functions (full line). In the presence of Trotter errors,
this functional will in general shift and also change its shape, in particular the number of relative
minima. Such phase transition as a function of ∆τ clearly limit the possibilities for hysteresis
schemes as discussed above and also for ∆τ extrapolation to be discussed in the Sec. 4.
We should also stress that the convergence of a given iteration scheme (such as shown in Fig. 1)
to its fixed point is far from trivial; e.g., a reversed execution of the same scheme would have
the same fixed point, but the roles of stable and unstable fixed points would be reversed. [38]
However, the rate of convergence for a stable iteration scheme can be improved by overre-
laxation where the new solution is replaced by a linear combination with the old solution:
fnew −→ αfnew + (1 − α)fold with α > 0 (while 0 < α < 1 in an under-relaxation scheme
could be used for making a previously unstable scheme stable). While such strategies can save
computer time they are to be used with care close to phase transitions.
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4 Computing observables

So far, we have collected all essential concepts for achieving self-consistent DMFT solutions on
the basis of the HF-QMC impurity solver; these solutions are characterized by the resulting self-
energies Σ(iωn) or, equivalently, by the lattice and bath Green functions G(iωn) and G(iωn),
i.e., high-dimensional vectors in Matsubara space, or their Fourier transforms. Each of them
depends on the physical parameters, on the Trotter discretization ∆τ , and, within coexistence
regions, on the initialization.
We will now discuss the derivation of other properties from HF-QMC calculations, characterize
the errors of such estimates and show how the systematic Trotter bias can be removed (or at
least drastically reduced) by extrapolation.

4.1 Observables: mass renormalization, energetics, and spectra

The characterization of correlation properties and associated phase transitions is greatly simpli-
fied if one can find a scalar variable which plays (more or less) the role of an order parameter.
In the cases of magnetic or orbital order, an order parameter is trivially obtained from the spin,
orbital and/or sublattice resolved densities. The situation is more complicated at metal-insulator
transitions, at least at finite temperatures. However, the quasiparticle weight Z to be discussed
below often appears as a useful characteristic. In addition, we will explain how to compute the
energetics (i.e., kinetic and interaction energy), which are obviously relevant for all thermody-
namic properties, and illustrate the derivation of spectra.

Quasiparticle weight

One quantity closely related to the self-energy (which quantifies interaction effects) is the quasi-
particle weight also known as mass renormalization factor Z,17 which is defined in terms of the
real-frequency self-energy,

Z =
m

m∗
=

1

1− ∂
∂ω

ReΣ(ω)
∣∣
ω=0

. (39)

In the context of QMC simulations, one usually approximates this quantity in the discrete form

Z ≈ 1

1− ImΣ(iω1)
πT

. (40)

Due to the rules for complex derivatives (i.e., the Cauchy/Riemann equation ∂Re f(z)/∂Re z =

∂Im f(z)/∂Im z), both definitions agree in the limit T → 0 as long as the Luttinger theorem is
fulfilled, i.e., for ImΣ(ω = 0) = 0. For U → 0, no mass renormalization takes place so that
Z = 1. With increasing U , Z decreases until the quasiparticle peak (in the spectrum) vanishes
(cf. Fig. 14). Extending the Fermi liquid picture, one usually associates the disappearance of
the quasiparticle peak with Z ≈ 0. Z in the definition (39), however, is not positive near a

17This should not be confused with the coordination number also denoted by Z.
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Fig. 13: Quasiparticle weight Z (discrete estimate), double occupancyD, and energy contribu-
tions for the 1-band Hubbard model on the Bethe lattice (bandwidth W = 4) at T = 0.1 in the
paramagnetic phase. Crosses (connected with lines) denote QMC results for∆τ = 0.2, squares
are for ∆τ = 0.125. For comparison, results of second order perturbation theory (2OPT) are
shown for the total energy and the double occupancy for T = 0 (solid black lines).

metal-insulator transition so that its interpretation as a quasiparticle weight breaks down. In
contrast, the discrete version (40) always leads to positive Z and may therefore appear more
physical. In any case, Z loses its theoretical foundation outside the Fermi liquid phase where
it remains only a heuristic indicator of a metal-insulator transition. In the uppermost part of
Fig. 13, Z is shown for the relatively high temperature T = 0.1. A rapid change of slopes
indicates a transition or crossover near U ≈ 4.7.

Energy

Within the DMFT, the energy per lattice site is given as [1, 8]

E = lim
η→0+

T
∑

n,σ

∫ ∞

−∞
dε

eiωnη ερ(ε)

iωn − ε−Σσ(iωn)
+

1

2
T
∑

n,σ

Σσ(iωn)Gσ(iωn) . (41)
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Note the convergence factor eiωnη which is essential in order to get the correct result. Obviously,
such a term is difficult to handle numerically; in practice, η may be replaced, e.g., by the time
discretization parameter ∆τ , which also determines the cutoff frequency in the infinite sum.
This approximation can be avoided by evaluating the noninteracting part separately. For the
kinetic energy, this implies

Ekin = lim
η→0+

2T
∞∑

n=−∞
eiωnη

∫ ∞

−∞
dε ερ(ε)

1

iωn − ε+ µ−Σ(iωn)
(42)

= 2

∫ ∞

−∞
dε

ερ(ε)

eβ(ε−µ) + 1
+ 2T

∞∑

n=−∞

∫ ∞

−∞
dε ερ(ε)

(
Gε(iωn)−G0

ε(iωn)
)

(43)

≈ 2

∫ ∞

−∞
dε

ερ(ε)

eβ(ε−µ) + 1
+ 2T

L/2∑

n=−L/2+1

∫ ∞

−∞
dε ερ(ε)

(
Gε(iωn)−G0

ε(iωn)
)
, (44)

where we have assumed the paramagnetic case. Here, the interacting and noninteracting “momentum-
dependent” Green functions read

Gε(iωn) =
1

iωn − ε+ µ−Σ(iωn)
; G0

ε(iωn) =
1

iωn − ε+ µ
. (45)

In (44), the terms in the Matsubara sum fall off at least as 1/ω2, which makes it well-defined also
without convergence factor. At the same time, the truncation error is reduced significantly. The
complementary ingredient to the energy is the double occupancyD withE = Ekin +UD. In the
context of QMC calculations, this observable is best calculated directly from Wick’s theorem
(i.e. as 〈ni↑ni↓〉 or the corresponding expression in Grassmann variables) when sampling over
the auxiliary field. The overall behavior of D and E in the Hubbard model can be read off (for
T = 0.1) from the middle and lower parts of Fig. 13, respectively. For small U , the kinetic
energy increases quadratically while D and, consequently, Epot and E increase linearly. The
potential energy reaches a maximum below U = 3. A region of strong curvature of D, Epot,
and Ekin near U = 4.6 gives a rough indication of the metal-insulator crossover. The total
energy E, however, hardly shows any anomalies at this scale. Note also that the solutions for D
and E are quite close to the results of plain zero-temperature second-order perturbation theory.
The agreement actually becomes better for low-temperature QMC data, extrapolated to T → 0

(not shown). The offset of the curves for E gives (for not too large U ) an indication of the
specific heat cV = dE/dT which is linear within the Fermi-liquid phase and is, in general, best
evaluated by fitting the temperature dependence of E.18

Susceptibilities

The direct evaluation of the compressibility (as of most other susceptibilities) is numerically
costly since it requires the QMC computation of 2-particle vertex functions. The formalism is
omitted here; it can be found, e.g., in [1, 46].

18In Fermi liquid phases, the linear coefficient γ of the specific heat may also be obtained via the quasiparticle
weight Z (extrapolated to T = 0).
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Fig. 14: Example for analytic continuation of Green functions using the maximum entropy
method (MEM). (a) While the Green functions (Bethe lattice, T = 0.05) are featureless at all
interactions and differ mainly by their value and curvature near τ = β/2, the spectra derived
using MEM (inset) show clearly the narrowing and disappearance of the quasiparticle peak
with increasing interaction U . (b) Impact of the weighing factor α on the MEM result for
U = 4.0.

Spectra

Spectra and optical conductivity data also shed light on systems near an MIT and are essential
input for quantitative comparisons with experiments. Unfortunately, an analytic continuation is
needed for imaginary-time based algorithms (such as the HF-QMC method) which is inherently
unstable. In App. B, we discuss the maximum entropy method (MEM) which regularizes the
procedure by a constraint on the smoothness of the spectrum (quantified by the entropy func-
tion). As seen in Fig. 14 the essential correlation physics is much more transparent on the level
of the spectra than on that of the imaginary-time Green function. Thus, even significant efforts
in MEM related questions appear well spent.

4.2 Estimation of errors and extrapolation ∆τ → 0

As we have already mentioned, any “raw” estimate of an observable measured at some iteration
using HF-QMC contains various sources of errors: (i) the statistical MC error, (ii) the conver-
gency error associated with incomplete convergence of the self-consistency cycle, and (iii) the
discretization error stemming both from the Trotter decoupling and the approximate Fourier
transformations discussed in Sec. 2 and Sec. 3, respectively.
The first two errors can be treated at equal footing when we compute the observables at each
iteration and extract averages from their “traces” (i.e. their functional dependence as a function
of iteration number) as depicted in Fig. 15a for the double occupancy D. We see that the
measurements fluctuate significantly for each value of ∆τ ; the amplitude of such fluctuations
can be controlled by the number of sweeps. Also apparent is a gradient in the initial iterations
for the largest discretization shown, ∆τ = 0.20. It is clear that such lead-in data should not
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Fig. 15: Steps in the HF-QMC based computation of the double occupancy at U = 5, T = 0.04:
(a) estimates can be calculated as averages with statistical error bars from the analysis of time
series (traces), taking autocorrelation into account, for each value of∆τ . (b) Numerically exact
results are obtained in a second step using extrapolation by least-squares fits.

be included in averages. Moreover, all curves show significant autocorrelation which has to
be taken into account for error analysis. Taking these issues into account, standard analysis
techniques for time series yield raw HF-QMC results for each value of the discretization plus
an error bar which takes statistical and convergency error into account. Such data is shown in
Fig. 15b as a function of the squared discretization. Evidently, the discretization dependence is
very regular; a straightforward extrapolation using standard least-square fit methods (here with
the 3 free parameters corresponding to the orders ∆τ 0, ∆τ 2, and ∆τ 4) essentially eliminates
this systematic error, i.e. reduces the total error by two orders of magnitude.19

Due to the cubic scaling of the effort with the number of time slices, the total cost of achieving
extrapolated results for some grid range is dominated by the smallest discretization. Thus the
possibility of extrapolation comes (with the use also of coarser grids) at no significant cost; in
contrast, DMFT convergence can be accelerated by using the ∆τ hysteresis technique outlined
above. Taking all of this into account, HF-QMC with extrapolation can be competitive with
the recently developed continuous-time QMC solvers, as demonstrated in Fig. 16: at fixed total
computer time, this method achieves the highest precision [47] in energy estimates for a test
case established in [43].
Note that the use of insufficiently converged solutions is potentially a very significant source of
errors. It is important to realize that in principle measurements have to be performed exactly at
the solution of the self-consistency equations, i.e., for the exact bath Green function. Averages
over measurements performed for different impurity models corresponding to approximate so-
lutions do not necessarily converge to the exact answer in the limit of an infinite number of
models (i.e., iterations) and measurements.20 Still, the most important practical point when

19The reader may note a similarity to the MC example shown in Fig. 3.
20Trivially, a measurement of the free energy F itself (using a suitable impurity solver) is a good example.

Since F is minimal for the true solution, all measurements taken for approximate solutions will be too large. The
correct answer can, therefore, not be approached by averaging over many measurements, but only by reducing the
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Fig. 16: Comparison of energy estimates of the half-filled Hubbard model obtained within
DMFT using different QMC based impurity solvers at fixed computational effort, with (approx-
imate) leading terms subtracted. HF-QMC is competitive, here even more efficient, (only) after
careful extrapolation ∆τ → 0 [47].

computing observables is that only runs are included in averages which are close to the solution
in comparison to the asymptotic statistical error. For higher precision, the number of sweeps
(and not only the number of measurements) must be increased.
Let us, finally, stress that discretization errors can vary greatly between different observables
and, due to the DMFT self-consistency, also between points in parameter space. This is clearly
seen in Fig. 17: for the kinetic energy, the quadratic contribution to the Trotter error is signifi-
cant only in the strongly correlated metallic phase; it is negligible in the insulator! This shows
that rules for acceptable values of∆τ sometimes mentioned in the literature (e.g. ∆τU . 1) are
of limited value; in fact, they cannot follow from the Trotter decomposition since this becomes
exact both in the limits of weak and strong coupling. In the case of the double occupancy, the
quadratic term is surprisingly small close to the phase transition (and has a maximum in the ab-
solute value at U ≈ 3.5). However, in both cases the quartic terms are significant and irregular
close to the phase transition which will in practice limit the reliability of extrapolations. Inter-
estingly, some of the errors cancel in the total energy which makes numerically exact estimates
of this observables particularly accessible for HF-QMC.

5 Conclusion and outlook

Hopefully, these lecture notes give a good first overview of the most important generic aspects
of Hirsch-Fye QMC based method for calculating electronic properties within the dynamical
mean-field theory. However, they are certainly not complete in any respect: important topics
such as the minus-sign problem occurring in general multi-band and cluster DMFT calculations
could only be touched upon; also, important literature is missing.
The topics that we would have liked to discuss in an (yet unwritten) section on advanced as-
pects also include recent methodological developments such as the multigrid HF-QMC ap-
proach [45, 48] and our HF-QMC based implementation of real-space dynamical mean-field

deviations from the exact solution.
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Fig. 17: (a) Coefficients of Trotter errors in HF-QMC estimates of kinetic energy. Inset: relative
coefficients. (b) Trotter coefficients for double occupancy [47].

theory (RDMFT) [49, 50] as well as their applications, e.g., in the context of cold atoms on
optical lattices. It would also be tempting and potentially fruitful to explore the similarities
between the HF-QMC approach and the determinantal QMC method [33] for Hubbard model
studies in finite dimensions, in particular its recent application as DMFT impurity solver [51].
However, one has to stop at some point and the material presented so far is probably already
overwhelming for students and scientists just entering the field.
This audience should be aware of the fact that the future relevance of the HF-QMC method is
controversial; influential groups claim that it has been superseded by the continuous-time QMC
methods. These methods are, indeed, conceptually elegant and avoid the systematic discretiza-
tion bias which can be cumbersome in conventional HF-QMC calculations. We have shown,
however, that the HF-QMC method is competitive at least for some classes of problems already
in the conventional form [47]; the quasi-continuous time formulation in the multigrid approach
eliminates most of the remaining problems. Consequently it seems too early to abandon the
general HF-QMC concept.
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Appendices

A Multi-band Hubbard models

The applicability of the one-band Hubbard model to d or f electron systems is a priori question-
able since the partially filled bands correspond to atomic orbitals which are 5-fold and 7-fold
degenerate (for each spin direction), respectively. While bands in a lattice are more compli-
cated than orbitals of isolated atoms, the remaining degeneracy can be inferred from symmetry
considerations alone. Often it is useful to consider a cubic representation of the angular part of
atomic d orbitals,

|dxy〉 ∝ (|2, 2〉 − |2,−2〉) , |dyz〉 ∝ (|2, 1〉+ |2,−1〉) , |dzx〉 ∝ (|2, 1〉 − |2,−1〉)
|dx2−y2〉 ∝ (|2, 2〉+ |2,−2〉) , |d3z2−r2〉 ∝ |2, 0〉, (46)

expressed in terms of eigenfunctions of the angular momentum operator,

l2|l,m〉 = ~2l(l + 1)|l,m〉, lz|l,m〉 = ~m|l,m〉 . (47)

In lattices with cubic symmetry the five d orbitals are energetically split into the t2g orbitals
(|dxy〉, |dyz〉, |dzx〉) and the eg orbitals (|dx2−y2〉, |d3z2−r2〉), which give rise to one threefold de-
generate and one twofold degenerate band, respectively. Lower symmetry can lift the remaining
degeneracies; e.g., in the trigonal case the t2g orbitals are further split into one nondegenerate
a1g and one twofold degenerate eπg band. Thus, it is possible that in some d systems only one
band crosses or touches the Fermi surface which then justifies the one-band assumption made
in (1) and used for the examples in this lecture. In general, however, the inclusion of several
orbitals per site is important. An SU(2)-invariant generalization of the Hubbard model where
the interaction is still local but the valence band is degenerate then contains additional coupling
terms21 [53, 54]

Ĥm-band = −t
∑

〈ij〉,νσ
ĉ†iνσ ĉjνσ + U

∑

iν

n̂iν↑n̂iν↓

+U ′
∑

i;ν<ν′;σσ′

n̂iνσn̂iν′σ′ + J
∑

i;ν<ν′;σσ′

ĉ†iνσ ĉ
†
iν′σ′ ĉiνσ′ ĉiν′σ, (48)

where ν,ν ′ (with 1 ≤ ν ≤ m, 1 ≤ ν ′ ≤ m) are band indices. The exchange term parameterized
by the Hund’s rule coupling J can be rewritten as

ĤJ = −2J
∑

i,ν<ν′

(
Ŝiν · Ŝiν′ +

1

4
n̂iνn̂iν′

)
(49)

with Ŝiν = 1
2

∑
σσ′ ĉ

†
iνστ σσ′ ĉiνσ′being the spin operator for orbital ν at site i and the Pauli matri-

ces τ σσ′ . In quantum Monte Carlo (QMC) simulations, the spin-flipping terms implicit in (49)
21Here, an on-site pair hopping term which only contributes when one orbital is doubly and another singly

occupied is neglected [52].
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lead to a numeric (minus-sign) problem. Therefore, one here usually replaces the Heisenberg
interaction part of (49) by an Ising-type interaction at the cost of breaking the SU(2) symme-
try [55, 52]. Since ŝziν ŝ

z
iν′ = σσ′n̂iνσn̂iν′σ′/4 = (2δσσ′ − 1) n̂iνσn̂iν′σ′/4, one can write this

modified multi-band Hubbard Hamiltonian as

Ĥz
m-band =

∑

〈ij〉,νσ
εkν ĉ

†
kν ĉkν + U

∑

iν

n̂iν↑n̂iν↓ +
∑

i;ν<ν′;σσ′

(U ′ − δσσ′J) n̂iνσn̂iν′σ′ . (50)

The interaction U between electrons within each orbital is always larger than the interorbital
density-density interaction U ′. The smaller exchange coupling J can trigger ferromagnetic and
(possibly coexisting) orbital order.
A HF-QMC simulation for this type of models proceeds in principle as in the single-band case;
however, one auxiliary field is needed for each of the m(2m− 1) pair interactions.

B Maximum entropy method

Within the DMFT, all single-particle properties can be expressed in terms of the local single-
particle spectral function (also called “full” or “interacting” density of states) which is propor-
tional to the imaginary part of the local retarded Green function,

A(ω) = − 1

π
ImG(ω + i0+) . (51)

The spectral function A(ω) is accessible experimentally: measured (angular averaged) pho-
toemission spectra (PES) can under certain simplifying assumptions be identified with A(ω)

multiplied by the Fermi function nf(ω−µ). Correspondingly, inverse photoemission spectra or
X-ray absorption spectra (XAS) can be identified with A(ω) multiplied by 1− nf(ω − µ). Fur-
thermore, nonlocal spectral functions and the optical conductivity σ(ω) can, within the DMFT,
be calculated from A(ω).
In QMC calculations, however, the Green function G (and thus the spectral function A(ω))
cannot be directly computed on the real axis. Instead, real-time dynamical information has to
be extracted from imaginary-time data G(τ) (or, equivalently, from the Fourier transformed
Matsubara-frequency data G(iωn)) via analytic continuation. This is in principle possible
through inversion of the spectral representation for G(τ), i.e.,

G(τ) =

∫ ∞

−∞
dω K(τ, ω − µ; β) A(ω) , (52)

K(τ, ω; β) :=
exp(−τω)

1 + exp(−βω)
, (53)

but poses an ill-conditioned problem since G(τ) is only measured on a grid τl = l∆τ (where
∆τ = β/Λ) and since the kernel (53) becomes exponentially small for generic values of τ at
large absolute frequencies |ω| as illustrated in Fig. 18. For a symmetric problem, i.e., symmetric
noninteracting DOS and n = 1, the integral in (52) can be restricted to positive frequencies
when the symmetrized fermion kernel

Ks(τ, ω; β) = K(τ, ω; β) +K(τ,−ω; β) (54)
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Fig. 18: General fermion kernel (53) for an equidistant set of values of τ/β ≤ 1/2. Except for
τ = 0, large frequencies are suppressed exponentially. Inset: symmetrized fermion kernel (54).

shown in the inset of Fig. 18 is used. We stress that a very small number Λ = O(10) of time
slices poses a more serious limitation for obtaining reliable spectra with good resolution than the
exponential nature of the kernel since the number of degrees of freedom which can be reliably
resolved in a spectrum is obviously much smaller than the number of data points {G(l∆τ)}
and since there always exists an infinite number of spectra which correspond to the same data.
Still, in general, the resolution is much better at smaller frequencies and, according to Nyquist’s
theorem, essentially no information can be obtained from QMC for ω > Λπ/β = π/(∆τ).
Before we address the full analytic continuation problem and introduce the maximum entropy
method, we collect some useful relations (denoting the mth derivative as G(m)),

G(β) = n, G(0+) = 1− n, (55)

G(m)(0) +G(m)(β) = (−1)m〈(ω − µ)m〉A(ω) (56)

G(β/2) ≈ π

β
A(ω)

∣∣
|ω−µ|.π/β . (57)

Since the filling given by (55) is known in the symmetric case, the value of G(0) then provides
no useful information which is also seen in the inset of Fig. 18. Equation (56) also shows the
loss of high-frequency information from the discretization of imaginary time: for a finite grid
the error in estimating derivatives G(m) increases rapidly with order m; thus, the determination
of high order moments 〈(ω − µ)m〉A(ω) of the spectrum is in general an ill-posed problem. At
low temperatures, G(β/2) gives a hint as to the weight of a quasiparticle peak or the existence
of a gap via (57) since its value is proportional to the value of the spectral function near the
Fermi energy, averaged over an inverse hyperbolic cosine with width π/β.
First attempts to address the analytic continuation problem for QMC data included least-squares
fits, Padé approximants, and regularization (for references, see the pedagogical and concise
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review by Jarrell [56]). Least-squares fits of spectra approximated as a set of box functions
are inherently unstable. Padé approximations for G(iωn) only work well for very precise data
(e.g., in the context of Eliashberg equations), but not for QMC. Regularization of the kernel
(53) tends to produce overly smeared-out spectra. What is needed instead is a regularization of
the solution A(ω) that only shows features which are supported by the data, but is as smooth
as possible otherwise. This is essentially the idea of the maximum entropy method (MEM) of
finding the most probable spectrum compatible with the data.
The MEM is a very general approach for reconstructing continuous, positive semidefinite func-
tions (i.e., densities or spectra) from incomplete, noisy, and possibly oversampled22 data. It has
a long history in the context of image reconstruction in such diverse disciplines as radio aperture
synthesis, optical deconvolution, X-ray imaging, structural molecular biology, and medical to-
mography (see [58] and references therein). A preliminary study of its usefulness in the context
of the analytic continuation problem [59] was soon followed by applications to spectra [60, 61]
and correlation functions [62]. An efficient and general formulation of a MEM algorithm for
analytic continuation of (oversampled) QMC data was then given by Gubernatis [63], closely
following the general state-of-the-art approach by Bryan [57].
For simplicity, we will first assume that the QMC simulation produces Nd measurements of the
observables Gl ≡ G(l∆τ), 0 ≤ l < Λ which are independent both in computer time and in
imaginary time, i.e., without significant autocorrelation between subsequent measurements or
between adjacent imaginary time slices.23 If we further disregard systematic errors and assume
some “true” spectrum A [which corresponds to a discretized Green function Gl via (52)] as
well as a Gaussian distribution of statistical errors, the probability distribution for the observed
averaged values Ḡ ≡ {Ḡl} (where Ḡl =

∑Nd

i=1G
i
l) is

P (Ḡ|A) ∝ e−
1
2
χ2

; χ2 =
Λ−1∑

l=0

(
Ḡl −Gl

)2

σ2
l

. (58)

Here, σl can be estimated from the data alone, σ2
l ≈

∑Nd

i=1

(
Ḡl − Ḡi

l

)2
/(Nd(Nd − 1)). Obvi-

ously, the likelihood function P (Ḡ|A) is not directly helpful; in order to find the most probable
spectrum given the measured data, we need the converse probability P (A|Ḡ). These probabili-
ties are related by Bayes’ theorem,

P (A|Ḡ)P (Ḡ) = P (Ḡ|A)P (A) . (59)

Since the data Ḡ is constant in the search for an optimal A, the associated probability P (Ḡ)

drops out of the problem. For the probability P (A) of a spectrum A(ω) in absence of data,
an entropic ansatz is made where prior knowledge can also be incorporated by choosing an

22Data is called oversampled when measurements of different data points (here: for different τ ) are not statisti-
cally independent, but correlated [57]. In this case, the number of “good” degrees of freedom (entering the error
statistics) is reduced.

23Typically, one of the “measurements” of a set {Gl} is generated by binning a macroscopic number of measure-
ments within QMC. Autocorrelation in computer time, i.e., between different bins vanishes in the limit of infinite
bin size.
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appropriate (positive semidefinite) default model m(ω),

P (A) = eαS[A(ω),m(ω)] . (60)

Here, α is a numerical parameter while S is a generalized Shannon-Jaynes entropy,

S[A,m] =

∫
dω
(
A(ω)−m(ω)− A(ω) ln

(
A(ω)/m(ω)

))
. (61)

For a constant default model (within some finite frequency range), the entropic form (61) clearly
favors smooth spectra. This is also true for a general smooth default model. It also enforces
positivity of A and pushes the solution towards the (normalized) default model in absence of
data. From (58), (59), and (60), the posterior probability can be read off as

P (A|Ḡ,m, α) = eαS[A,m]− 1
2
χ2[Ḡ,A] . (62)

The balance between a tight match of data and a high entropy is calibrated by the Lagrange
parameter α which may be chosen so that χ2 = Λ (historic MEM). Alternatively, one may use
the value of αwith the highest probability P (α|Ḡ, A,m) which can approximately be calculated
within the method (classic MEM). Given the QMC data, a default model, a representation of
the spectrum (i.e., a possibly inhomogeneous grid of ωj of frequencies for which A is going
to be computed), and a starting guess for α, a simple MEM program thus both searches for
the spectrum {A(ωj)} with maximum probability P (A|Ḡ,m, α) for given α using, e.g., the
Newton-Raphson method and, in an outer loop, searches for the best value of α.
The former procedure can be stabilized using a singular value decomposition (SVD) of the
kernel:

K = V ΣUT (63)

Σ = diag(σ1, ..., σs)

where σ1 > ... > σs > 0.

Here U , V are orthogonal matrices. Typically, most of the singular values σi are equal to zero
(within machine precision). The columns of UT , restricted to σi 6= 0, then span the same
space as the columns of K. Projecting all related quantities to this new most smaller space (so-
called singular space) a stable search can be performed. In practice, the width of the Newton-
Raphson steps has to be restricted using a Levenberg-Marquardt-Parameter. An example for the
application of this method is shown in Fig. 14.
Alternatively to this deterministic approach, one may also use Markov chain Monte Carlo up-
dates directly in the image space (i.e. on the level of the spectrum) with simulated annealing,
as implemented, e.g., by Sandvik. This stochastic approach is however, quite sensitive to the
choice of the frequency discretization, requires smoothing runs, and is computationally more
costly.
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[21] R. Bulla, T.A. Costi, and T. Pruschke, Rev. Mod. Phys. 80, 395 (2008)
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1 Introduction

An impurity model describes an atom or molecule embedded in some host or bath, with which

it can exchange electrons. This exchange of electrons allows the impurity to make transitions

between different quantum states, and leads to a non-trivial dynamics. Therefore, despite the

zero dimensional nature (which makes impurity problems computationally much more tractable

than fermionic lattice models), their numerical simulation remains a challenging task. Methods

such as exact diagonalization or numerical RG, which explicitly treat a finite number of bath

states, work well for single orbital models. However, because the number of bath states must be

increased proportional to the number of orbitals, the computational effort grows exponentially

with system size, and requires severe truncations of the bath already for two orbitals. Monte

Carlo methods have the advantage that the bath is integrated out and thus the (infinite) size of

the bath Hilbert space does not affect the simulation. While restricted to non-zero temperature,

Monte Carlo methods are thus the method of choice for the solution of large multi-orbital or

cluster impurity problems.

U, µ

p

p

V 

ε

Fig. 1: Schematic representation of a quantum impurity model. Spin up and down electrons on

the impurity (black dot) interact with a repulsive energy U and can hop to non-interacting bath

levels ǫp with transition amplitude V ∗
p .

Over the last few years, significant progress has been made (both in terms of efficiency and

flexibility) with the development of continuous-time Monte Carlo techniques. This chapter pro-

vides an overview of two recently developed, complementary methods: (i) the weak-coupling

approach, which scales favorably with system size and allows the efficient simulation of large

impurity clusters, and (ii) the strong-coupling approach, which can handle impurity models with

strong interactions. The contents of this chapter is based on lecture notes originally written for

the Sherbrooke summer school in 2008 [1]. A comprehensive discussion of continuous-time

impurity solvers can be found in a recently published review article [2].

For simplicity, we will focus on the single orbital Anderson impurity model (Fig. 1) defined by
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the Hamiltonian H = H0 +HU +Hbath +Hmix with

H0 = −(µ − U/2)(n↑ + n↓), (1)

HU = U(n↑n↓ − (n↑ + n↓)/2), (2)

Hbath =
∑

σ,p

ǫpa
†
p,σap,σ, (3)

Hmix =
∑

σ,p

(V σ
p d

†
σap,σ + h.c.). (4)

Here, H0+HU ≡ Hloc describes the impurity with creation operators d†σ, Hbath a non-interacting

bath of electrons (labeled by quantum numbers p) with creation operators a†p,σ, while Hmix

controls the exchange of electrons between the impurity and the bath. The transition amplitudes

V σ
p are called hybridizations.

The impurity model partition function Z is given by

Z = Tr
[

e−βH
]

, (5)

with β the inverse temperature, and Tr = TrdTra denotes the trace over the impurity and bath

states. By solving the impurity model we essentially mean computing the impurity Green’s

function (0 < τ < β)

g(τ) = 〈Td(τ)d†(0)〉 = 1

Z
Tr
[

e−(β−τ)Hde−τHd†
]

, (6)

which we choose to be positive.

Continuous-time Monte Carlo simulation relies on an expansion of the partition function into a

series of diagrams and the stochastic sampling of (collections) of these diagrams. We represent

the partition function as a sum (or, more precisely, integral) of configurations c with weight wc,

Z =
∑

c

wc, (7)

and implement a random walk c1 → c2 → c3 → . . . in configuration space in such a way that

each configuration can be reached from any other in a finite number of steps (ergodicity) and

that detailed balance is satisfied,

|wc1| p(c1 → c2) = |wc2| p(c2 → c1). (8)

This assures that each configuration is visited with a probability proportional to |wc| and one

can thus obtain an estimate for the Green’s function from a finite number N of measurements:

g =

∑

c wcgc
∑

cwc
=

∑

c |wc|signc gc
∑

c |wc|signc

≈
∑N

i=1 signci
gci

∑N
i=1 signci

=
〈sign · g〉MC

〈sign〉MC
. (9)

The error on this estimate decreases like 1/
√
N . If the average sign of the configurations is

small and decreases exponentially with decreasing temperature, the algorithm suffers from a

sign problem.
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2 General recipe

The first step in the diagrammatic expansion is to rewrite the partition function as a time ordered

exponential using some interaction representation. We split the Hamiltonian into two parts,

H = H1 + H2 and define the time dependent operators in the interaction picture as O(τ) =

eτH1Oe−τH1 . We furthermore introduce the operator A(β) = eβH1e−βH and write the partition

function as Z = Tr[e−βH1A(β)]. The operator A(β) satisfies dA/dβ = eβH1(H1 −H)e−βH =

−H2(β)A(β) and can be expressed as A(β) = T exp[−
∫ β

0
dτH2(τ)].

In a second step, the time ordered exponential is expanded into a power series,

Z = Tr
[

e−βH1Te−
∫ β
0

dτH2(τ)
]

=
∞
∑

n=0

∫ β

0

dτ1 . . .

∫ β

τn−1

dτnTr
[

e−(β−τn)H1(−H2) . . . e
−(τ2−τ1)H1(−H2)e

−τ1H1

]

, (10)

which is a representation of the partition function of the form (7), namely the sum of all config-

urations c = {τ1, . . . , τn}, with n = 0, 1, . . . and τi ∈ [0, β) with weight

wc = Tr
[

e−(β−τn)H1(−H2) . . . e
−(τ2−τ1)H1(−H2)e

−τ1H1

]

dτn. (11)

In the following we will discuss in detail two complementary diagrammatic Monte Carlo algo-

rithms, namely

1. a weak-coupling approach, based on an expansion of Z in powers of the interaction U ,

and on an interaction representation in which the time evolution is determined by the

quadratic part H0 +Hbath +Hmix of the Hamiltonian,

2. a strong-coupling approach, based on an expansion of Z in powers of the impurity-bath

hybridization V , and an interaction representation in which the time evolution is deter-

mined by the local part H0 +HU +Hbath of the Hamiltonian.

3 Weak-coupling approach - expansion in the interaction

The first diagrammatic impurity solver, proposed by Rubtsov et al. in 2005 [3], is based on an

expansion in powers of the interaction. Here, we will discuss a variant of the weak coupling

approach, worked out by Gull et al. [4], which combines the weak-coupling expansion with

an auxiliary field decomposition. This continuous-time auxiliary field method is an adaptation

of an algorithm by Rombouts et al. [5] for lattice models (the first diagrammatic Monte Carlo

algorithm for Fermions) and in some respects similar to the time-honored Hirsch-Fye algorithm

[6].

3.1 Monte Carlo configurations

Following Rombouts and collaborators, we define H2 = HU − K/β and H1 = H − H2 =

H0 + Hbath + Hmix + K/β, with K some non-zero constant. Equation (10) then gives the ex-

pression for the partition function after expansion in H2, and (11) the weight of a configuration
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of n interaction vertices. At this stage, we extend our configuration space by decoupling each

interaction vertex using the decoupling formula proposed by Rombouts,

−H2 = K/β − U(n↑n↓ − (n↑ + n↓)/2) =
K

2β

∑

s=−1,1

eγs(n↑−n↓), (12)

cosh(γ) = 1 + (βU)/(2K). (13)

This formula can easily be verified by checking the four states |0〉, |↑〉, |↓〉, and |↑↓〉. The con-

figuration space is now the collection of all possible Ising spin configurations on the imaginary

time interval [0, β): c = {{τ1, s1}, . . . , {τn, sn}}, n = 0, 1, . . ., τi ∈ [0, β), si = ±1. These

configurations have weight

wc = Tr
[

e−(β−τn)H1eγsn(n↑−n↓) . . . e−(τ2−τ1)H1eγs1(n↑−n↓)e−τ1H1

]

(

Kdτ

2β

)n

. (14)

All the operators in the trace are quadratic in c and a, so we can first separate the spin compo-

nents and then proceed to the analytical calculation of the trace. Introducing Hσ
1 = −µ(nσ −

U/2)+
∑

p ǫpa
†
p,σap,σ +

∑

p(Vσ,pc
†
σap,σ +h.c.), which is the Hamiltonian of the non-interacting

impurity model, the trace in Eq. (14) becomes (Z0,σ = Tr[e−βHσ
1 ])

Tr
[

. . .
]

= e−K
∏

σ

Tr
[

e−(β−τn)Hσ
1 eγsnσnσ . . . e−(τ2−τ1)Hσ

1 eγs1σnσe−τ1Hσ
1

]

. (15)

Using the identity eγsσnσ = eγsσc†σcσ + cσc
†
σ = eγsσ − (eγsσ − 1)cσc

†
σ, the trace factors can be

expressed in terms of non-interacting impurity Green’s functions g0 and evaluated using Wick’s

theorem. For example, at first order, we find

Tr
[

e−(β−τ1)Hσ
1 (eγsσ − (eγsσ − 1)cσc

†
σ)e

−τ1H1

]

= Z0,σ(e
γsσ − g0σ(0+)(e

γsσ − 1)). (16)

For n spins, this expression generalizes to

Tr
[

e−(β−τn)Hσ
1 eγsnσnσ . . . e−(τ2−τ1)Hσ

1 eγs1σnσe−τ1Hσ
1

]

= Z0,σ detN
−1
σ ({si, τi}), (17)

where Nσ is a (n× n) matrix defined by the location of the decoupled interaction vertices, the

spin orientations, and the non-interacting Green’s functions:

N−1
σ ({si, τi}) ≡ eΓσ −G0σ

(

eΓσ − I
)

. (18)

The notation is eΓσ ≡ diag(eγσs1 , . . . , eγσsn), (G0σ)i,j = g0σ(τi − τj) for i 6= j, (G0σ)i,i =

g0σ(0+). Combining Eqs. (14), (15), (17) and (18) we thus obtain the following weight for the

configuration c = {{τ1, s1}, . . . , {τn, sn}}:

wc = e−K
(Kdτ

2β

)n∏

σ

Z0σ detN
−1
σ ({si, τi}). (19)
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β

0

0

β

Fig. 2: Local update in the continuous-time auxiliary field method. The dashed line represents

the imaginary time interval [0, β). We increase the perturbation order by adding a spin with

random orientation at a random time. The perturbation order is decreased by removing a

randomly chosen spin.

3.2 Sampling procedure and detailed balance

For ergodicity it is sufficient to insert/remove spins with random orientation at random times,

because this allows in principle to generate all possible configurations. Furthermore, the ran-

dom walk in configuration space must satisfy the detailed balance condition (8). Splitting the

probability to move from configuration ci to configuration cj into a probability to propose the

move and a probability to accept it,

p(ci → cj) = pprop(ci → cj)p
acc(ci → cj), (20)

we arrive at the condition

pacc(ci → cj)

pacc(cj → ci)
=

pprop(cj → ci)

pprop(ci → cj)

|w(cj)|
|w(ci)|

. (21)

There is some flexibility in choosing the proposal probabilities. A reasonable choice for the

insertion/removal of a spin is the following (illustrated in Fig. 2):

• Insertion

Pick a random time in [0, β) and a random direction for the new spin:

pprop(n → n+ 1) = (1/2)(dτ/β),

• Removal

Pick a random spin: pprop(n+ 1 → n) = 1/(n+ 1).

For this choice, the ratio of acceptance probabilities becomes

pacc(n → n+ 1)

pacc(n + 1 → n)
=

K

n+ 1

∏

σ=↑,↓

| det(N (n+1)
σ )−1|

| det(N (n)
σ )−1|

, (22)
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and the random walk can thus be implemented for example on the basis of the Metropolis

algorithm, i.e. the proposed move from n to n± 1 is accepted with probability

min

[

1,
pacc(n → n± 1)

pacc(n± 1 → n)

]

. (23)

3.3 Determinant ratios and fast matrix updates

From Eq. (22) it follows that each update requires the calculation of a ratio of two determinants.

Computing the determinant of a matrix of size (n× n) is an O(n3) operation (LU decomposi-

tion). The important thing to realize is that each insertion or removal of a spin merely changes

one row and one column of the matrix N−1
σ . We will now show that it is therefore possible to

evaluate the ratio in Eq. (22) in a time O(n2) (insertion) or O(1) (removal).

The objects which are stored and manipulated during the simulation are, besides the lists of the

times {τi} and spins {si}, the matrices Nσ = (eΓσ − G0σ(e
Γσ − I))−1. Inserting a spin adds a

new row and column to N−1
σ . We define the blocks (omitting the σ index)

(N (n+1))−1 =

(

(N (n))−1 Q

R S

)

, N (n+1) =

(

P̃ Q̃

R̃ S̃

)

, (24)

where Q, R, S denote (n × 1), (1 × n), and (1 × 1) matrices, respectively, which contain

the contribution of the added spin. The determinant ratio needed for the acceptance/rejection

probability is then given by

det(N (n+1))−1

det(N (n))−1
=

1

det S̃
= S − [R][N (n)Q]. (25)

As we store N (n), computing the acceptance/rejection probability of an insertion move is an

O(n2) operation. If the move is accepted, the new matrix N (n+1) is computed out of N (n), Q,R,

and S, also in a time O(n2):

S̃ = (S − [R][N (n)Q])−1, (26)

Q̃ = −[N (n)Q]S̃, (27)

R̃ = −S̃[RN (n)], (28)

P̃ = N (n) + [N (n)Q]S̃[RN (n)]. (29)

It follows from Eq. (25) that the calculation of the determinant ratio for removing a spin is O(1),

since it is just element S̃, and from the above formulas we also immediately find the elements

of the reduced matrix:

N (n) = P̃ − [Q̃][R̃]

S̃
. (30)
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3.4 Measurement of the Green’s function

To compute the contribution of a configuration c to the Green’s function measurement (6), we

insert a creation operator d† at time 0 and an annihilation operator d at time τ ,

gcσ(τ) =
1

wc
Tr
[

e−(β−τn)H1eγsn(n↑−n↓) . . . e−(τk+1−τ)H1dσe
−(τ−τk)H1 . . . eγs1(n↑−n↓)e−τ1H1d†σ

]

(

Kdτ

2β

)n

with wc given in Eq. (14). The same steps as in section 3.1 (Wick’s theorem) then lead to the

expression

gcσ(τ) =
1

detN−1
σ detN−1

σ̄

detN−1
σ̄ det

(

(N
(n)
σ )−1 [g0σ(τi)]

−[g0σ(τ − τj)(e
Γσj − 1)] g0σ(τ)

)

= g0σ(τ) + [g0σ(τ − τj)(e
Γσj − 1)]N (n)

σ [g0σ(τi)]. (31)

The second equality follows from Eq. (25) and square brackets denote vectors of length n. To

avoid unnecessary and time consuming summations during the Monte Carlo simulations, we

only accumulate the quantity

Sσ(τ̃) ≡
n
∑

k=1

δ(τ̃ − τk)
n
∑

l=1

[

(eΓσ − I)Nσ

]

kl
g0σ(τl), (32)

binning the time points τ̃ on a fine grid. After the simulation is completed, the Green’s function

is computed as

gσ(τ) = g0σ(τ) +

∫ β

0

dτ̃g0σ(τ − τ̃)
〈

Sσ(τ̃)
〉

MC
. (33)

3.5 Expansion order

It follows from Eq. (10) that

〈−H2〉 =
1

β

∫ β

0

dτ〈−H2(τ)〉

=
1

β

1

Z

∞
∑

n=0

n+ 1

(n + 1)!

∫ β

0

dτ

∫ β

0

dτ1 . . .

∫ β

0

dτnTr
[

e−βH1T (−H2(τ))(−H2(τn)) . . . (−H2(τ1))
]

=
1

β

1

Z

∑

c

n(c)wc =
1

β
〈n〉, (34)

and because 〈−H2〉 = K/β−U〈n↑n↓−(n↑+n↓)/2〉 we conclude that the average perturbation

order 〈n〉 is related to the parameter K and the potential energy by

〈n〉 = K − βU〈n↑n↓ − (n↑ + n↓)/2〉. (35)
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Increasing K leads to a higher perturbation order (and thus slower matrix updates), but through

Eq. (13) also to a smaller value of γ and thus to less polarization of the auxiliary spins. A K of

the order 1 appears to work well. We also learn from Eq. (35) that the average perturbation order

grows essentially proportional to U (as expected for a weak-coupling method), and proportional

to inverse temperature.

4 Strong coupling approach - expansion in the impurity-bath

hybridization

The second continuous-time method, which is in many ways complementary to the weak-

coupling approach, is based on an expansion of the partition function in powers of the impurity-

bath hybridization V . This method has been developed in Ref. [7] and applied to the Anderson

impurity model. A more general matrix formulation which allows to treat arbitrary impurity

models was presented in Refs. [8, 9]. An alternative to the matrix formulation, which we will

not touch in this chapter, is the recently proposed Krylov method [10].

4.1 Monte Carlo configurations

Here, we decompose the Hamiltonian as H2 = Hmix and H1 = H − H2 = H0 +HU +Hbath.

Since H2 ≡ Hd†

2 + Hd
2 =

∑

σ,p V
σ
p d

†
σap,σ +

∑

σ,p′ V
σ∗
p′ dσa

†
p,σ has two terms, corresponding to

electrons hopping from the bath to the impurity and from the impurity back to the bath, only

even perturbation orders contribute to Eq. (10). Furthermore, at perturbation order 2n only

the (2n)!/(n!)2 terms corresponding to n creation operators d† and n annihilation operators

d will contribute. We can therefore write the partition function as a sum over configurations

c = {τ1, . . . , τn; τ ′1, . . . , τ ′n}:

Z =

∞
∑

n=0

∫ β

0

dτ1 . . .

∫ β

τn−1

dτn

∫ β

0

dτ ′1 . . .

∫ β

τ ′n−1

dτ ′nTr
[

e−βH1THd
2 (τn)H

d†

2 (τ ′n) . . .H
d
2 (τ1)H

d†

2 (τ ′1)
]

.

Since the time evolution of the Anderson model (given by H1) does not rotate the spin, there is

an additional constraint, namely that both for spin up and spin down, there is an equal number

of creation and annihilation operators. Taking this into account and writing out the expressions

for Hd
2 and Hd†

2 explicitly, we find

Z =
∑

{nσ}

∏

σ

∫ β

0

dτσ1 . . .

∫ β

τσnσ−1

dτσnσ

∫ β

0

dτ ′σ1 . . .

∫ β

τ ′σnσ−1

dτ ′σnσ

× Tr
[

e−βH1T
∏

σ

∑

p1,...,pnσ

∑

p′
1
,...,p′nσ

V σ
p1
V σ∗
p′
1

...V σ
pnσ

V σ∗
p′nσ

dσ(τ
σ
nσ
)a†σ,pnσ

(τσnσ
)aσ,p′nσ

(τ ′σnσ
)d†σ(τ

′σ
nσ
) . . . dσ(τ

σ
1 )a

†
σ,p1(τ

σ
1 )aσ,p′1(τ

′σ
1 )d†σ(τ

′σ
1 )
]

. (36)
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Now, because the d and a operate on different spaces and H1 does not mix the impurity and

bath states, we can separate the bath and the impurity and write

Z = Zbath

∑

{nσ}

∏

σ

∫ β

0

dτσ1 . . .

∫ β

τσnσ−1

dτσnσ

∫ β

0

dτ ′σ1 . . .

∫ β

τ ′σnσ−1

dτ ′σnσ

× Trd

[

e−βHlocT
∏

σ

dσ(τ
σ
nσ
)d†σ(τ

′σ
nσ
) . . . dσ(τ

σ
1 )d

†
σ(τ

′σ
1 )
]

× 1

Zbath

Tra

[

e−βHbathT
∏

σ

∑

p1,...,pnσ

∑

p′
1
,...,p′nσ

V σ
p1
V σ∗
p′
1

...V σ
pnσ

V σ∗
p′nσ

a†σ,pnσ
(τσnσ

)aσ,p′nσ
(τ ′σnσ

) . . . a†σ,p1(τ
σ
1 )aσ,p′1(τ

′σ
1 )
]

, (37)

where Zbath = Trae
−βHbath , and Hloc = H0 + HU . Since the bath is non-interacting, there is a

Wick theorem for the bath and Tra[. . .] can be expressed as the determinant of some matrix,

whose size is equal to the perturbation order. To find the elements of this matrix, it is useful to

consider the lowest perturbation order, nσ = 1, nσ̄ = 0. In this case

∑

p1

∑

p′
1

V σ
p1V

σ∗
p′
1

1

Zbath

Tra

[

e−βHbathTa†σ,p1(τ
σ
1 )aσ,p′1(τ

′σ
1 )
]

=
∑

p1

|V σ
p1
|2

e−ǫp1β + 1

{

e−ǫp1 (β−(τσ
1
−τ ′σ

1
)) τσ1 > τ ′σ1

−e−ǫp1 (τ
′σ
1

−τσ
1
) τσ1 < τ ′σ1

. (38)

Note that Zbath =
∏

σ

∏

p(e
−ǫpβ + 1). Introducing the β-antiperiodic hybridization function

Fσ(τ) =
∑

p

|Vp|2
e−ǫpβ + 1

{

e−ǫp(β−τ) τ > 0

−e−ǫp(−τ) τ < 0
, Fσ(−iωn) =

∑

p

|V σ
p |2

iωn − ǫp
, (39)

which is related to the non-interacting Green’s function G0σ of Section 3 by Fσ(−iωn) = iωn+

µ − U/2 − G0σ(iωn)
−1, the first order result becomes Fσ(τ

σ
1 − τ ′σ1 ). For higher orders, one

obtains

1

Zbath

Tra

[

e−βHbathT
∏

σ

∑

p1,...,pnσ

∑

p′
1
,...,p′nσ

V σ
p1V

σ∗
p′
1

...V σ
pnσ

V σ∗
p′nσ

a†σ,pnσ
(τσnσ

)aσ,p′nσ
(τ ′σnσ

) . . . a†σ,p1(τ
σ
1 )aσ,p′1(τ

′σ
1 )
]

=
∏

σ

detM−1
σ , (40)

where M−1
σ is a (nσ × nσ) matrix with elements

M−1
σ (i, j) = Fσ(τ

σ
i − τ ′σj ). (41)

In the hybridization expansion method, the configuration space consists of all sequences c =

{τ ↑1 , . . . , τ↑n↑

; τ ′↑1 , . . . , τ
′↑
n↑

|τ ↓1 , . . . , τ↓n↓

; τ ′↓1 , . . . , τ
′↓
n↓

}, of n↑ creation and annihilation operators

for spin up (n↑ = 0, 1, . . .), and n↓ creation and annihilation operators for spin down (n↓ =
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0, 1, . . .). The weight of this configuration is

wc = ZbathTrd

[

e−βHlocT
∏

σ

dσ(τ
σ
nσ
)d†σ(τ

′σ
nσ
) . . . dσ(τ

σ
1 )d

†
σ(τ

′σ
1 )
]

×
∏

σ

detM−1
σ (τσ1 , . . . , τ

σ
nσ
; τ ′σ1 , . . . , τ ′σnσ

)(dτ)2nσ . (42)

The trace factor represents the contribution of the impurity, which fluctuates between different

quantum states, as electrons hop in and out. The determinants resum all the bath evolutions

which are compatible with the given sequence of transitions.

To evaluate the trace factor, we use the eigenbasis of Hloc, which is |0〉 (energy E0 = 0), | ↑〉,
| ↓〉 (energy E1 = −µ) and | ↑↓〉 (energy E2 = U − 2µ). In this basis, the time evolution

operator e−τHloc = diag(e−τE0, e−τE1 , e−τE1, e−τE2) is diagonal while the operators dσ and d†σ
will produce transitions between eigenstates with amplitude ±1.

Because the time evolution does not flip the spin, the creation and annihilation operators for

given spin have to alternate. This allows us to separate the operators for spin up from those for

spin down and to depict the time evolution by a collection of segments (each segment represent-

ing a time interval in which an electron of spin up or down resides on the impurity). At each

time, the eigenstate of the impurity follows immediately from the segment representation and

we can easily compute the trace factor as (s is a permutation sign)

Trd

[

e−βHlocT
∏

σ

dσ(τ
σ
nσ
)d†σ(τ

′σ
nσ
) . . . dσ(τ

σ
1 )d

†
σ(τ

′σ
1 )
]

= s exp
[

µ(l↑ + l↓)− Uloverlap

]

, (43)

with lσ the total length of the segments for spin σ and loverlap the total length of the overlap be-

tween up and down segments. The lower panel of Fig. 3 shows a configuration with 3 segments

for spin up and two segments for spin down; the time intervals where segments overlap, indi-

cated by gray rectangles, correspond to a doubly occupied impurity and cost a repulsion energy

U .

4.2 Sampling procedure and detailed balance

For ergodicity, it is sufficient to insert and remove pairs of creation and annihilation operators

(segments or anti-segments) for spin up and down. One possible strategy for inserting a segment

is the following: we pick a random time in [0, β) for the creation operator. If it falls on an

existing segment, the impurity is already occupied and the move is rejected. If it falls on an

empty space, we compute lmax, the length from this position to the next segment (in the direction

of increasing τ ). If there are no segments, lmax = β. The position of the new annihilation

operator is then chosen randomly in this interval of length lmax (see Fig. 3). If we propose to

remove a randomly chosen segment for this spin, then the proposal probabilities are

pprop(nσ → nσ + 1) =
dτ

β

dτ

lmax

, (44)

pprop(nσ + 1 → nσ) =
1

nσ + 1
, (45)
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overlap

0 β

0 βδ

l

l

l

max

new

Fig. 3: Local update in the segment picture. The two segment configurations correspond to

spin up and spin down. Each segment depicts a time interval in which an electron of the corre-

sponding spin resides on the impurity (the end points are the locations of the operators d† and

d). We increase the perturbation order by adding a segment or anti-segment of random length

for random spin. The perturbation order is decreased by removing a randomly chosen segment.

(Figure from Ref. [1].)

and the ratio of acceptance probabilities therefore becomes

pacc(nσ → nσ + 1)

pacc(nσ + 1 → nσ)
=

βlmax

nσ + 1
eµlnew−Uδloverlap

| det(M (nσ+1)
σ )−1|

| det(M (nσ)
σ )−1|

. (46)

Here, lnew is the length of the new segment, and δloverlap the change in the overlap. Again, we

compute the ratio of determinants using the fast update formulas discussed in Section 3.

4.3 Measurement of the Green’s function

The strategy is to create configurations which contribute to the Green’s function measurement

by decoupling the bath from a given pair of creation and annihilation operators in c. The idea is

to write

g(τ) =
1

Z

∑

c

wd(τ)d†(0)
c =

1

Z

∑

c

w(τ,0)
c

w
d(τ)d†(0)
c

w
(τ,0)
c

, (47)

where w
d(τ)d†(0)
c denotes the weight of configuration c with an additional operator d†(0) and

d(τ) in the trace factor, and w
(τ,0)
c the complete weight corresponding to the enlarged opera-

tor sequence (including enlarged hybridization determinants). Since the trace factors of both

weights are identical, and detM−1
c is a minor of det(M

(τ,0)
c )−1, we find

w
d(τ)d†(0)
c

w
(τ,0)
c

=
detM−1

c

det(M
(τ,0)
c )−1

= (M (τ,0)
c )j,i, (48)
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with i and j denoting the row and column corresponding to the new operators d† and d in the

enlarged (M
(τ,0)
c )−1. To transform the sum over c into a sum over configurations c̃ = {c, τi, τ ′j},

the new operators must be free to be anywhere on the imaginary time interval, which (due to

translational invariance) yields a factor 1
β
∆(τ, τi − τ ′j), with

∆(τ, τ ′) =

{

δ(τ − τ ′) τ ′ > 0

−δ(τ − τ ′ − β) τ ′ < 0
. (49)

Hence, the measurement formula for the Green’s function becomes

g(τ) =
1

Z

∑

c̃

wc̃

∑

i,j

1

β
∆(τ, τi − τ ′j)(Mc̃)j,i =

〈

∑

i,j

1

β
∆(τ, τi − τ ′j)Mj,i

〉

MC

. (50)

Note that if we let all the integrals run from 0 to β, there is a factor 1/(n!)2 in wc and 1/((n +

1)!)2 in wc̃, with n the size of Mc. Changing from a sum over c to a sum over c̃ therefore adds

a factor (n + 1)2 if we restrict the measurement to a specific pair of d† and d. Equivalently, we

can sum over all the (n + 1)2 pairs of operators in the enlarged configuration.

4.4 Generalization - Matrix formalism

It is obvious from the derivation in Section 4.1 that the hybridization expansion formalism is

applicable to general classes of impurity models. Because the trace factor in the weight (42) is

computed exactly, Hloc can contain essentially arbitrary interactions (e. g. spin-exchange terms

in multi-orbital models), degrees of freedom (e. g. spins in Kondo-lattice models) or constraints

(e. g. no double occupancy in the t-J model).

For multi-orbital impurity models with density-density interaction, the segment formalism is

still applicable: we have now a collection of segments for each flavor α (orbital, spin) and the

trace factor can still be computed from the length of the segments (chemical potential contribu-

tion) and the overlaps between segments of different flavor (interaction terms).

If Hloc is not diagonal in the occupation number basis defined by the d†α, the calculation of

Trd
[

e−βHlocT
∏

α dα(τ
α
nα
)d†α(τ

′α
nα
) . . . dσ(τ

α
1 )d

†
α(τ

′α
1 )
]

becomes more involved. We now have to

compute the trace explicitly in some basis of Hloc – for example the eigenbasis, in which the

time evolution operators e−Hlocτ become diagonal. The operators dα and d†α are expressed as

matrices in this eigenbasis, and the evaluation of the trace factor thus involves the multiplication

of matrices whose size is equal to the size of the Hilbert space of Hloc. Since the dimension of

the Hilbert space grows exponentially with the number of flavors, the calculation of the trace

factor becomes the computational bottleneck of the simulation, and the matrix formalism is

therefore restricted to a relatively small number of flavors (. 10).

An important point, explained in Ref. [9], is the use of conserved quantum numbers (typically

particle number for spin up and spin down, momentum, . . . ). If the eigenstates of Hloc are

grouped according to these quantum numbers, the operator matrices will acquire a sparse block

structure, because for example d†↑,q will connect the states corresponding to quantum numbers

m = {n↑, n↓, K} to those corresponding to m′ = {n↑ + 1, n↓, K + q} (if they exist). Checking
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the compatibility of the operator sequence with a given starting block furthermore allows one to

find the (potentially) contributing quantum number sectors without any matrix multiplications.

The evaluation of the trace is thus reduced to a block matrix multiplication of the form

∑

contr.m

Trm

[

. . . (O)m′′,m′(e−(τ ′−τ)Hloc)m′(O)m′,m(e
−τHloc)m

]

. (51)

5 Comparison between the two approaches

The weak- and strong-coupling methods are in many ways complementary and their respec-

tive strengths/weaknesses result from the scaling of the computational effort with interaction

strength and system size. For the Anderson impurity model considered in these notes, the U

dependence of the average perturbation order is shown in Fig. 4 (these are dynamical mean

field theory calculations for a one-band Hubbard model taken from Ref. [11]). In the weak-

coupling algorithms, where the average perturbation order is related to the potential energy, one

finds a roughly linear increase of the perturbation order with U . In the hybridization-expansion

method, the average perturbation order is related to the kinetic energy, and decreases as the in-

teraction strength increases. Thus, in single site models with only density density interactions,

where the evaluation of the trace factor in Eq. (42) is cheap, the hybridization expansion method

beats the weak coupling method in the regime of strong correlations.

For more complicated models, which require the matrix formalism discussed in section 4.4,

the hybridization expansion method scales exponentially with system size, and can only be ap-

plied to relatively small systems.1 Here, the weak-coupling approach – if applicable – becomes

the method of choice. Table 1 gives a summary of the different scalings (assuming diagonal

hybridization) and indicates which solver is appropriate for which type of problem.

solver scaling use for

weak-coupling β3 L3 impurity clusters with density-density

interactions and hopping

hybridization expansion β3 L single site multi-orbital models with

(segment formulation) density-density interaction

hybridization expansion β exp(L) single site multi-orbital models with

(matrix formulation) general Uijkl

Table 1: Scaling of the different impurity solvers with inverse temperature and system size.
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Fig. 4: Average perturbation order for the weak-coupling and strong coupling (hybridization

expansion) algorithm. These results correspond to the DMFT solution of the one-band Hubbard

model with semi-circular density of states of bandwidth 4t, and temperature β = 1/T = 30.

The bath is therefore different for each data point. (Figure adapted from Ref. [11].)

Appendices

A Rubtsov’s weak-coupling approach

The weak-coupling continuous time impurity solver originally proposed by Rubtsov [3] is based

on slightly different definitions of interaction and quadratic terms:

HU = Un↑n↓, (52)

H0 = −µ(n↑ + n↓). (53)

The method employs an expansion of the partition function in powers of H2 = HU . Equation

(11) then gives the weight of a configuration of n interaction vertices. Since H1 = H −H2 =

H0 + Hbath + Hmix is quadratic, we can use Wick’s theorem to evaluate the trace. The result

is a product of two determinants of n × n matrices (one for each spin), whose elements are

bath Green functions g̃0 (here without the chemical potential shift U/2) evaluated at the time
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intervals defined by the vertex positions:

wc

Z0
= (−Udτ)n

1

Z0
Tr
[

e−(β−τn)H1n↑n↓ . . . e
−(τ2−τ1)H1n↑n↓e

−τ1H1

]

= (−Udτ)n
∏

σ

det M̃−1
σ , (54)

(M̃−1
σ )ij = g̃0,σ(τi − τj), (55)

with Z0 = Tr[e−βH1 ] the partition function of the noninteracting model.

At this point, we encounter a problem. In the paramagnetic phase, where g̃0,↑ = g̃0,↓, the product

of determinants is positive, which means that for repulsive interaction (U > 0), odd perturbation

orders yield negative weights. Except in the particle-hole symmetric case, where one can show

that odd perturbation orders vanish, this will result in a severe sign problem. Fortunately, we

can solve this sign problem by shifting the chemical potentials for up and down spins in an

appropriate way. We rewrite the interaction term as [12]

HU =
U

2

∑

s

∏

σ

(nσ − ασ(s)) +
U

2
(n↑ + n↓)−

U

4
, (56)

ασ(s) = 1/2 + σs(1/2 + δ). (57)

Here δ is some constant and s = ±1 an Ising variable. The constant −U/4 in Eq. (56) is

irrelevant, while the contribution U(n↑ + n↓)/2 can be absorbed into the noninteracting Green

function by shifting the chemical potential as µ → µ − U/2. Explicitly, we redefine the bath

Green function as g̃−1
0,σ = iωn + µ−∆σ → g−1

0,σ = iωn + µ− U/2−∆σ.

The introduction of an Ising variable si at each vertex position τi enlarges the configuration

space exponentially. A configuration c now corresponds to a collection of Ising spin variables

on the imaginary time interval: c = {(τ1, s1), (τ2, s2), . . . , (τn, sn)}. The weight of these con-

figurations are

wc

Z0

= (−Udτ/2)n
∏

σ

detM−1
σ , (58)

(M−1
σ )ij = g0,σ(τi − τj)− ασ(si)δij . (59)

The Ising variables are in fact not needed to cure the sign problem. They have been introduced

to symmetrize the interaction term and prevent ergodicity problems.

Rubtsov’s weak-coupling approach is in principle applicable to models with arbitrarily compli-

cated interaction terms. However, the best type of auxiliary field representation, which min-

imizes the sign problem in multi-orbital systems with complicated interaction and correlated

hopping terms, is not yet known. For models with density-density interactions, the method

is in fact equivalent to the continuous-time auxiliary-field approach discussed in Section 3. It

was shown in Ref. [13] that the partition functions for the two weak-coupling methods become

identical if the parameters K (for the continuous-time auxiliary field method) and δ (Eq. 57) are

related by

K = βU [(1/2 + δ)− 1/4]. (60)
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11.2 A.I. Lichtenstein and H. Hafermann

1 Introduction

The tremendous success of Dynamical Mean-Field Theory (DMFT) [1, 2] in understanding the

Mott transition in simple model systems shows that the main correlation effects in fermionic

lattices have a local character. Moreover realistic investigations of correlated materials within

the LDA+DMFT scheme [3, 4, 5] also support the idea that the electronic structure of prototype

Mott insulators, like V2O3, can be well understood within a local multi-orbital t2g scheme. Nev-

ertheless many interesting correlation effects in solid state physics, such as antiferromagnetic

spin fluctuations, superconducting d-wave pairing, and many other phenomena have non-local

character. In this Lecture we will discuss different ways to go beyond the DMFT approximation

and include non-local correlations. There are two different approaches to non-local effects be-

yond the DMFT framework: one is based on numerical cluster DMFT extensions while another

one is built on an analytical expansion around the local DMFT solution.

2 Cluster DMFT scheme

There are two groups of cluster DMFT extensions, which are formulated in real space (cellu-

lar DMFT – CDMFT) or in reciprocal space (Dynamical Cluster Approximation – DCA). We

discuss first a simple model for the cluster DMFT scheme in real space which consists of a

supercell in a two dimensional square lattice (Fig.1). Lower-case letters will be used for the

original lattice vectors (x) and site indices (i, j), while upper-case will be reserved for supercell

coordinates (X) and position of atoms in a supercell (I, J). Similarly, for wave vectors in orig-

inal reciprocal lattice we will use (k) while for the reduced supercell Brillouin zone (K) will

be used. The minimal cluster which allows us to investigate both antiferromagnetic (AFM) and

superconducting (d-wave) order parameters on an equal footing consists of a 2× 2 plaquette in

an effective medium (see Fig.1).

The one band Hubbard model on the square lattice reads:

H =
∑

ijσ

tijc
†
iσcjσ + U

∑

i

ni↑ni↓, (1)

where tij are effective hopping parameters and U is the local Coulomb interaction. The exact

Green function for the one-band Hubbard model (1) can be written in the following form

G(k, iω) = (iω + µ− t(k)− Σ(k, iω))−1, (2)

where ω = (2n+ 1)π/β, n = 0,±1, ... are the Matsubara frequencies, β is the inverse temper-

ature, µ the chemical potential, t(k) the Fourier transform of the hopping parameters tij , and

Σ(k, iω) is the non-local self-energy, which contains all information on single-particle correla-

tions.

We can approximate the momentum-dependence of the self-energy in terms of a finite number

of basis functions φi(k) [6]

Σ(k, iω) ≈
N
∑

i=1

φi(k)Σi(ω) (3)
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Fig. 1: Schematic representation of the 2 × 2 supercell with antiferromagnetic and supercon-

ducting d-wave order parameters for cluster DMFT.

In the most general scheme we can find Σi(ω) as a solution of a fictitious N-site quantum

impurity model. Different cluster DMFT schemes differ in the choice of these basis functions.

Numerical solutions of generalized multi-site quantum impurity models can be found within the

recently developed continuous time Quantum Monte-Carlo scheme [7].

We introduce a ”super-site” object as the 2 × 2 plaquette on a square lattice. The enumeration

of the atoms inside the super-site is shown in the Fig. 1. A superspinor C†
I = {c†Iα} where

α = 1, 2, 3, 4 (including also the spin-indices) defines a super-fermionic operator for the I-th

plaquette. The plaquette Green’s function for the Hubbard model can be rewritten as

G (K, iω) = [(iω + µ) 1− T (K)− Σ (iω)]−1
(4)

where T (K) is the effective hopping supermatrix, and K are the wave vectors within the reduced

Brillouin zone, and Σ (iω) is the self-energy supermatrix. For simplicity we will write all

equations in the nearest-neighbor approximation, which means only one hopping in x- (tx) and

y- (ty) direction. After supercell Fourier-transform we have the following expression for the

supercell hopping matrix:

TI,J (K) =











0 txK
+
x 0 tyK

+
y

txK
−
x 0 tyK

+
y 0

0 tyK
−
y 0 txK

−
x

tyK
−
y 0 txK

+
x 0











(5)

where K±
x(y) ≡ 1+exp

(

±iKx(y)a
)

, a is the lattice constant, and each elements is a 2×2 matrix

in spin space. Within the cluster DMFT approach we introduce the intra-atomic self-energy Σ0
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and inter-atomic self-energies Σx, Σy as well as the non-local self-energy Σxy in xy direction,

which defines the local self-energy matrix for our 2× 2 super-site:

ΣI,J (iω) =











Σ0 Σx Σxy Σy

Σx Σ0 Σy Σxy

Σxy Σy Σ0 Σx

Σy Σxy Σx Σ0











For a general N ×N super-site impurity model (simp) the partition function can be written as a

functional integral over the 2N-component spin and site-dependent spinor Grassmann fields c∗

and c :

Z =

∫

D[c∗, c]e−Ssimp , (6)

where

Ssimp = −
N
∑

I,J=0

∫ β

0

dτ

∫ β

0

dτ ′ c∗Iσ(τ)
[

G−1
σ (τ − τ ′)

]

IJ
cJσ(τ

′)

+
N
∑

I=1

∫ β

0

dτUnI,↑(τ)nI,↓(τ),

(7)

where G is the N ×N matrix of effective bath Green’s function for a spin-collinear case.

The main problem of all cluster extension of DMFT is to find an optimal self-consistent way to

obtain the bath Green’s function matrix in imaginary time GIJ(τ − τ ′) or in Matsubara space

GIJ(iω). In the free-cluster version of the CDMFT scheme [6] which is equivalent to the cellular

DMFT method [8] or to the molecular CPA scheme in alloy theory [9] we can use the following

prescription. First, we need to integrate out the superlattice degrees of freedom, similarly to the

standard DMFT approach, and obtain the local Green’s function matrix:

GIJ (iω) =
∑

K

GIJ (K, iω) , (8)

where the summation runs over the reduced Brillouin zone of the plaquette superlattice.

Next we can write the matrix equation for the bath Green function matrix G, which describes the

effective interactions of the plaquette with rest of crystal. We use the impurity DMFT analogy,

which allowed us to account for double-counting corrections for the local self-energy matrix:

the bath Green function is not supposed to have any local self-energy contribution, since it

comes later from the solution of the effective super-impurity problem (7). Therefore one needs

to subtract the local self-energy contribution, which is equivalent to a solution of the following

impurity problem, where all super-cites in Fig. 1 have the self-energy contributions, but not the

”central-cluster”:

G−1 (iω) = G−1 (iω) + Σ (iω) , (9)

One can solve a complicated many-body problem described by super-impurity action Eq. (7).

We can use the numerically exact continuous-time QMC scheme [7] and get the super-impurity
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Green’s function Gsimp
IJ (τ) = −〈cIσ(τ)c†Jσ(0)〉simp. The new cluster-local self-energy is equal

to the difference of the inverse input and output Green’s functions of this local many-body

problem:

Σnew (iω) = G−1 (iω)−G−1
simp (iω) . (10)

Finally, we can close the CDMFT self-consistent loop for the cluster self-energy ΣI,J (iω) by

using in the next iterations the new self-energy from Eq. (10) in the super-lattice Hamiltonian

from Eq. (1). The CDMFT self-consistency condition reads:

Gsimp
IJ (iω) = GIJ (iω) . (11)

In fact this CDMFT scheme is equivalent to the multi-orbital LDA+DMFT approach [4], where

the super-site indices (I, J) play the role of different orbitals (m,m′). A crucial difference

is related to the fact, that multi-orbital DMFT does not break the translational symmetry of

original lattice, while the standard CDMFT scheme [8, 6] does lower the symmetry of lattice

due to the local form of the super-site self-energy Eq. (7). The present “matrix” form of CDMFT

with non-periodic self-energy allows us to study multicomponent order parameters (Fig. 1). In

this case we have the standard DMFT problem with four “orbital” states per super-site. We use

the generalized Gorkov-Nambu technique to analyze the coexistence of magnetic ordering and

superconductivity. Let us introduce the superspinor

Ψ+
I (τ) =

(

c†I↑, c
†
I↓, cI↑, cI↓

)

(12)

and the anomalous averages describing the (collinear) antiferromagnetism
〈

c†I↑cJ↓

〉

and the

superconductivity ∆IJ = 〈cI↓cJ↑〉.
One may realize that the cellular DMFT approximation is not very suitable for the supercon-

ducting d-wave order parameter since ∆ is located on the bonds as depicted in Fig. (1). There-

fore one can lose half of the superconducting bonds and reduce approximately by a factor of

two the HTSC transition temperature. We can also formulate a ”periodic” CDMFT scheme by

renormalizing the hopping with the cluster self-energy [6].

The effective Hamiltonian defined through the translationally invariant (k-dependent) self-energy

corresponds to the renormalized energy dependent hoppings: tx = t + Σx, ty = t + Σy. The

functions Σ0 (iω), Σx (iω), Σy (iω) are found self-consistently within the cluster DMFT scheme

[6] and for the d-wave superconducting state Σx 6= Σy. It is straightforward to generalize this

scheme for a next-nearest neighbor hopping as well as the long-range Green function and the

self-energy. In this case we can renormalize also the second-nearest hopping: txy = t′+Σxy for

the 2×2 cluster. The local cluster Green matrix in this case is equal to Gij (iω) =
∑

k

Gij (k,iω) ,

and the summation runs over the original Brillouin zone of the square lattice. Unfortunately we

can not prove that this periodic CDMFT scheme is causal. Later we will discuss different ways

of obtaining a periodic self-energy within CDMFT.
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Fig. 2: Decomposition of real-space lattice vectors, x = X + x̃, and reciprocal-space wave

vectors, k = ˜k+K, for a D = 1 dimensional lattice (lattice constant a) with L = 12 sites tiled

with L/Lc = 3 clusters consisting of Lc = 4 sites each. x: original lattice. x̃: superlattice. X:

sites in a cluster. Reciprocal space: There are L allowed wave vectors k in the unit cell of the

lattice reciprocal to x, and there are L/Lc allowed wave vectors ˜k in the unit cell of the lattice

reciprocal to the superlattice x̃. K are the reciprocal superlattice vectors, exp(iKx̃) = 1.

From Ref. [19].

3 Dynamical cluster approximation: general consideration

We start discussion of dynamical cluster approaches in reciprocal space with introducing some

notations (see Fig. 2) (for a review, see Ref. [10]). The cluster need not be a physical subsystem

of the original lattice [11, 12, 13]. We consider a system on a D-dimensional lattice of L sites

with periodic boundary conditions and L → ∞ in the end. The position vector to a site in

the lattice is denoted by x. There are L allowed wave vectors in a unit cell of the reciprocal

lattice which are denoted by k. The lattice is tiled with L/Lc clusters consisting of Lc sites

each. Let x̃ be the position vector of the cluster origin, and X the position vector of a site in a

cluster, referring to the cluster origin. We then have the unique decomposition x = X+ x̃. The

vectors x̃ form a superlattice with a unit-cell volume enlarged by the factor Lc. In a unit cell of

the reciprocal superlattice there are L/Lc allowed wave vectors ˜k. Its volume is reduced by the

factor Lc as compared to the volume of the reciprocal unit cell of the original lattice. For a given

k we have the unique decomposition k = ˜k + K where K are the vectors of the reciprocal

superlattice, i.e. exp(iKx̃) = 1. In the reciprocal unit cell of the original lattice, there are Lc

vectors K. These can also be interpreted as the allowed cluster wave vectors when imposing
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a)

b)

c)

d)

Fig. 3: a) Hubbard 1d-model. b) The original Hubbard model but with a modified one-particle

part t → t which is the starting point for the dynamical cluster approximation (DCA). t is

invariant under superlattice and cluster translations. c) Reference system generating the DCA.

Note that t′ has the same translational symmetries as t. d) Reference system generating a

simplified DCA. From Ref. [19].

periodic boundary conditions on the individual cluster.

In the following we consider the L× L matrix U with elements

Ux,k =
1√
L
eikx , (13)

and the L/Lc × L/Lc matrix V with elements

V
x̃,k̃ =

1
√

L/Lc

eik̃x̃ , (14)

and the Lc × Lc matrix W with elements

WX,K =
1√
Lc

eiKX . (15)

Notes, that U , V and W are unitary and define Fourier transformations between the respective

real and reciprocal spaces. It is obvious, that U 6= V W = WV :

Ux,k =
1√
L
eikx =

1√
L
ei(k̃X+k̃x̃+KX) 6= 1√

L
ei(k̃x̃+KX) = V

x̃,k̃WX,K . (16)

A hopping tx,x′ which is invariant under lattice translations x0, i.e. tx+x0,x′+x0
= tx,x′ , is di-

agonalized by normal Fourier transformations U : (U †
tU)kk′ = t(k)δk,k′ . By definition, the

one-electron spectrum is just Fourier transform of the hopping matrix elements: εk ≡ t(k). A

quantity Tx,x′ which is invariant under superlattice translations x̃0 as well as under cluster trans-

lations X0 (i.e. which is cyclic on the cluster), Tx+x̃0,x′+x̃0
= Tx+X0,x′+X0

= Tx,x′ , is diagonal-

ized by alternative DCA-transformation V W : (W †
V

†
TV W )

k̃K,k̃′K′ = T (˜k,K)δ
k̃,k̃′δK,K′.

Following Refs. [15, 16, 19], we introduce a fictitious hopping which corresponds to the real-

space formulation of the DCA-scheme:

t = (VW )U †
t U(V W )† , (17)
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which is just the DCA Fourier back-transform of the one-electron spectrum εk. For clusters of

finite size Lc, the combined Fourier transformation V W is different from U . For Lc → ∞,

however, this becomes irrelevant. With ε(k) = (U †
tU)(k) we have:

txx′ =
1

Lc

∑

K

eiK(X−X
′)Lc

L

∑

k̃

eik̃(x̃−x̃
′)ε(˜k +K) . (18)

Obviously, t is invariant under superlattice translations as well as under cluster translations

(with periodic cluster boundary conditions). The original and the modified system are repre-

sented by Fig. 3a, b. The construction of t is such that it exhibits the same translational sym-

metries as the one-particle parameters t
′ of a reference system consisting of isolated clusters

tiling the original lattice with periodic boundary conditions, see Fig. 3c, d. Since both, t and t,

are invariant under superlattice translations, we can compare tXX′(˜k) = (V †
tV )XX′(˜k) with

tXX′(˜k) = (V †
tV )XX′(˜k). It turns out they are equal up to a phase factor:

tXX′(˜k) =
1

Lc

∑

K

eiK(X−X
′)ε(˜k +K)

=
Lc

L

∑

x̃x̃′

e−ik̃(x̃+X−x̃
′−X

′)tx̃+X,x̃′+X′

= e−ik̃(X−X
′)tXX′(˜k) . (19)

The main idea of the DCA is to restore momentum conservation within the cluster by a rescale

the effective hoppings. In CDMFT, the intracluster transform of the dispersion given by the

super-cell Fourier sum:

tX,X′(k̃) =
1

Lc

∑

K

ei(K+k̃)(X−X′)ǫ
K+k̃

, (20)

while in the DCA, an addition phase factors eik̃X are excluded using the transform (see Eq.

(19)).

tX,X′(k̃) = tX,X′(k̃)e−ik̃(X−X
′) =

1

Lc

∑

K

eiK(X−X
′)ǫ

K+k̃
. (21)

The intracluster hopping in DCA is therefore given by the intracluster Fourier transform of the

dispersion Eq. (21), which is obvious by coarse-graining . This gives the DCA Green’s function

which is diagonal in cluster Fourier space:

G(K+ k̃, iω) =
1

iω + µ− ε(K+ k̃)− Σ(K, iω)
. (22)

The self-energy becomes a piecewise constant function in the k-space [10]. Finally, the self-

consistent condition for Σ(K, iω) in the DCA-scheme is similar to the CDMFT one Eq. (11):

Gimp(K, iω) = G(K, iω) ≡
∑

k̃

G(K+ k̃, iω). (23)
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We can also try to ’periodize’ the cluster-DMFT scheme [6, 15]. The CDMFT violates trans-

lational invariance with respect to the cluster sites. This is obvious for clusters with Lc ≥ 3,

where bulk and surface sites of a cluster may be distinguished. The CDMFT calculations are

carried out in the cluster real-space representation (i.e. all quantities are matrices in the cluster

sites), since there is no benefit in changing to the cluster k-space representation, which is not

diagonal.

Since translational invariance is broken, the lattice quantities are functions of two independent

momenta k and k′. They can differ by a reciprocal lattice vector Q, where Qi = 0, . . . , (Lc −
1)2π/Lc. The self-energy can be expressed in terms of the cluster self-energy as

Σ(k,k′, iω) =
1

Lc

∑

Q

∑

X,X′

eikXΣc(X,X′, iω)e−ik′X′

δ(k− k′ −Q), (24)

where the dependence on cluster sites is written explicitly. A translationally invariant solution

is obtained by approximating the lattice quantities only by the Q = 0 contribution:

Σ(k, iω) =
1

Lc

∑

X,X′

= eik(X−X
′)Σc(X,X′, iω). (25)

Transforming back to real space shows that the lattice quantities for a given distance x− x′ are

obtained as an average over the cluster quantities for the same distance,

Σ(x− x′, iω) =
1

Lc

∑

X,X′

Σc(X,X′, iω) δX−X′,x−x′. (26)

Spatial correlations are hence included up to a length determined by the extension of the cluster.

Note that Eq. (26) underestimates the nonlocal contributions, in particular for small clusters.

Using the shorthand notation ΣX,X′ = Σ(X,X′), one sees that the local self-energy is averaged

correctly, Σ(x = 0) = (Σc 00 + Σc 11)/2, while the nearest-neighbor self-energy contribution

according to (26) would read Σ(x = 1) = (1/2)Σc 10, since Σc 01 contributes to Σ(x = −1). It

was therefore suggested to reweigh the terms in the sum [15]. For the above example, Σ(x =

1) = Σc 10.

When translational invariance is recovered in this way, the solution of the lattice problem may

be viewed as shown in Fig. 4: The lattice is replaced by a lattice of clusters all of which are em-

bedded in a self-consistent bath. The self-energy on a cluster is obtained from the self-consistent

solution of the local problem and the intercluster self-energy between sites on neighboring clus-

ters at a distance x− x′ is artificially set equal to the average of the intracluster self-energy for

the same distance. The self-energy for distances exceeding the maximum distance between sites

within the cluster is zero.

Following Ref. [17] we can compare the CDMFT and DCA schemes for the linear 3-cite cluster

from Fig. (3). Writing the single-electron part of Hamiltonian as the supercell matrix T(k̃), the

average cluster hopping is given by

Tc =

∫

dk̃ T(k̃) . (27)
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∆00 ∆11

Σc 10

Σ(x = 1) = Σc 10Σ(x = −2) ≡ 0

Fig. 4: Illustration of the CDMFT lattice self-energy. The original lattice is replaced by a

collection of clusters embedded in a self-consistent bath. The intercluster self-energy Σ(x = 1)
is approximated by the intracluster self-energy Σc 10 for this distance not exceeding the maximal

distance between cluster sites and zero otherwise. From the Ref. [14].

The interaction terms are simply those of Eq. (1), restricted to the cluster.

The Hamiltonian H(k̃) in the reciprocal space of the super-lattice {x̃} of clusters can be ob-

tained by changing to the basis of fermionic-operators in Eq.(1):

c̃CDMFT
X,σ (k̃) =

∑

x̃

e−ik̃x̃ cx̃+X,σ . (28)

The resulting quantum cluster approximation is the CDMFT. Alternatively, we can start from

the operators in the reciprocal space of the lattice to obtain

c̃DCA
X,σ (k̃) =

∑

x̃

e−ik̃(x̃+X) cx̃+X,σ ≡=
∑

x̃

e−i(k̃x̃+φ(k̃,x̃)) cx̃+X,σ . (29)

The choice of the operators in the two approaches differs just by local phase factors φ(k̃, x̃)

[17]. In the CDMFT this gauge is chosen such that phases appear only in matrix elements

involving different clusters. Thus all matrix elements on the cluster are the same as in the

original Hamiltonian. The price for retaining the original matrix elements on the cluster is a

breaking of the translation-symmetry of the original lattice. The DCA-scheme opts instead to

retain this symmetry by distributing the phase change uniformly over the cluster-sites. The price

for retaining translation-invariance is that the matrix elements in the cluster Hamiltonian differ

from those in the original Hamiltonian. In both cases, CDMFT and DCA, the eigenvalues of

T(k̃) are identical to the eigenvalues of the non-interacting part of H .

In the CDMFT gauge we have we have for a three-site cluster (Lc = 3) in 1-d lattice [17] :

TCDMFT (k̃) = t







0 1 e−3ik̃

1 0 1

e3ik̃ 1 0






(30)

so that Tc is the original single-electron Hamiltonian restricted to the cluster:

TCDMFT
c =

3

2π

∫ π/3

−π/3

dk̃T(k̃) = t







0 1 0

1 0 1

0 1 0






. (31)
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In the DCA gauge for 3-cite linear cluster we have

TDCA(k̃) = t







0 eik̃ e−ik̃

e−ik̃ 0 eik̃

eik̃ e−ik̃ 0






. (32)

Now the Tc matrix is cyclic and has translation symmetry (see Fig.(3 c)), but rescaled hopping

matrix elements:

TDCA
c =

3

2π

∫ π/3

π/3

dk̃T(k̃) =
3
√
3

2π
t







0 1 1

1 0 1

1 1 0






. (33)

This effective rescaling of the hopping parameters in DCA-scheme can lead to a problem with

investigations of complex band structure effects, such as an extended van Hove singularities

[32]. We note also that the similar consideration apply to the variational cluster approach [11],

which is based on the self-energy functional theory [18, 19].

4 Symmetry properties of the cluster scheme

Let us discuss a symmetry properties of paramagnetic solution of culster extension of DMFT in

the simple case of 2- and 4-site clusters [20]. In Fig. Fig. (5) the simplest 2-site and 4-site tiling

on square and cubic lattices plotted. For each quantity, like Green’s function G, self energy Σ,

and bath function G, there are momentum and real-space components labeled by some subscript.

In this paper, the real-space component is labeled by a number (0 - on-site, 1 - nearest neighbor,

etc.) while the momentum-space sectors labelled by capital letters (S, P, D).

4.1 Formalism for the 2-site cluster method

Now we apply general cluster formalism to specific cases, first to the 2-site cluster in the square

lattice. The solution of 2-site impurity problem gives the following matrix Green function:

Ĝimp =

(

G0 G1

G1 G0

)

Σ̂imp =

(

Σ0 Σ1

Σ1 Σ0

)

(34)

The partitioning of Brillouin zone in this case is given in Fig(5), so two K points according

to this division is KI = 0, KII = (π, π). We label region I and II or S and P sectors.

Corresponding to KI and KII , one gets R0 = 0 and R1 = (±1, 0) or (0,±1). The lattice self

energy is related to Σ̂imp by

ΣDCA(~k, ω) =

{

Σimp
S = Σ0 + Σ1 fork ∈ Region I(S)

Σimp
P = Σ0 − Σ1 fork ∈ Region II(P )

(35)

The partial density of states are

DS(P )(ǫ) = 2×
∫

k∈I(II)

dk δ(ǫ− ǫk) (36)
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Fig. 5: Partition of the Brillouin zone. (a) 2-site DCA on square lattice. (b) 4-site DCA on

square lattice. (c) 2-site DCA on cubic lattice From Ref.[20].

and the self-consistency equation is

G0 = (GS +GP )/2

G1 = (GS −GP )/2 (37)

with

GS(P ) =

∫

DS(P )(ǫ) dǫ

ω + µ− ǫk − (Σ0 ± Σ1)
(38)

4.2 Formalism for the 4-site cluster method

In the 4-site cluster the Brillouin zone is divided into four sectors which are labelled as S, P, and

D, as shown in Fig(5). Four K points are (0, 0) (π, 0) (0, π) (π, π) leading to four R as (0, 0)

(1, 0) (0, 1) (1, 1). The partial DOS is defined as

D
(4)
S(P,D)(ǫ) = 4×

∫

k∈S(P,D)

dk δ(ǫ− ǫk) (39)

where the superscript (4) is used to distinguish from the partial DOS in 2-site DCA (see Fig(6)).

After solving a 4-site impurity cluster problem, in the disordered phase one gets

Ĝimp =











G0 G1 G2 G1

G1 G0 G1 G2

G2 G1 G0 G1

G1 G2 G1 G0











Σ̂imp =











Σ0 Σ1 Σ2 Σ1

Σ1 Σ0 Σ1 Σ2

Σ2 Σ1 Σ0 Σ1

Σ1 Σ2 Σ1 Σ0











(40)
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Fig. 6: The PDOS for 2-site and 4-site DCA partitioning on the square lattice with nearest

neighbor hopping. The total bandwidth is 12 which corresponds to the hopping t=1.5. From

Ref.[20].

and the momentum-dependent self energies are

ΣS = Σ0 + 2Σ1 + Σ2

ΣP = Σ0 − Σ2

ΣD = Σ0 − 2Σ1 + Σ2 (41)

and correspondingly the components of lattice Green’s functions are

GS(P,D) =

∫

DS(P,D)(ǫ)dǫ

iωn + µ− ǫ− ΣS(P,D)

(42)

The self-consistency equations are

G0 = (GS + 2GP +GD)/4

G1 = (GS −GD)/4

G2 = (GS − 2GP +GD)/4 (43)

We can compare the DCA-partial DOS with a similar consideration for the cluster DMFT [21].

In this case, one first calculate the proper local matrix of the Green functions Eq. (8) and then

transform it to the basis of molecular orbitals (inverse of Eqs. (37) and (43) ) in order to obtained

partial DOS ρm (Fig. (7)). It is clear that the DCA partial DOS overestimate ”localization” of the

partial sectors orbitals φm while the CDMFT has larger overlap between different partial DOS

with non-local Green function contributions. This can lead to spurious k-selective polarization

of correlated orbitals in the DCA-scheme compare to the CDMFT method.
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Fig. 7: Total density of states ρ(ω) and molecular orbital CDMFT-components ρm(ω) for 2-site

(left panel) and 4-site clusters (right panel) of square lattice. The total bandwidth is 8, which

corresponds to the hopping t=1. From Ref.[21].

5 Long-range correlations: Dual-Fermion approach

The shortcomings of cluster DMFT scheme have triggered many efforts to go beyond the mean-

field description, while maintaining DMFT as a starting point. The standard DMFT scheme

becomes exact in the limit of infinite coordination number z. An expansion in 1/z, however,

leads to difficulties as the action depends in a non-analytic way on the coordination number [22].

Building on earlier work on strong-coupling expansions for the Hubbard model [23, 24, 25], a

general framework to perform a systematic cumulant expansion around DMFT even considering

non-local Coulomb interaction was developed in Ref. [26].

While cluster extension to DMFT breaks translational symmetry of the lattice, the combination

of numerical and analytic methods is a promising route for including the effects of long-range

correlations. Recent developments have led to approaches which include long-range correla-

tions via straightforward diagrammatic corrections to DMFT [27, 28, 29]. Based on earlier

suggestions for bosonic fields [30], it was recognized that that a systematic, fully renormalized

expansion around DMFT can be formulated in terms of auxiliary fermions [31].

Our goal is to find optimal strong-coupling expansion of the general lattice problem described

by the imaginary time action

S[c∗, c] = −
∑

ωkσmm′

c∗ωkσm

[

(iω + µ)1− tmm′

kσ

]

cωkσm′ +
∑

i

SU[c
∗
i , ci]. (44)

Here tkσ is the one-electron part of the Hamiltonian, σ =↑, ↓ labels the spin projection, m,m′

are orbital indices and c∗, c are Grassmann variables. The index i labels the lattice sites and

k-vectors are quasimomenta. In order to keep the notation simple, it is useful to introduce the

combined index α ≡ {mσ}. Translational invariance is assumed for simplicity in the following.

For applications it is important to note that the local part of the action, SU, may contain any

type of local interaction. The only requirement is that it is local within the multi-orbital atom

or cluster.

In order to formulate a perturbation expansion around DMFT, a local quantum impurity problem
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is introduced:

Sloc[c
∗, c] = −

∑

ω αβ

c∗ωα [(iω + µ)1−∆ω]αβ cωβ + SU[c
∗, c], (45)

where ∆ω is the hybridization matrix describing the coupling of the impurity to an electronic

bath. Apart from the connection to DMFT, another motivation for rewriting the lattice action in

this form is to express it in terms of a reference problem that can be solved accurately for an

arbitrary hybridization function using the CTQMC methods [7]. Exploiting the locality of the

hybridization function ∆ω, the lattice action (44) is rewritten exactly by adding and subtracting

∆ω at each lattice site:

S[c∗, c] =
∑

i

Sloc[c
∗
i , ci] +

∑

ωkαβ

c∗ωkα (tk −∆ω)αβ cωkβ. (46)

Note that this step leaves the hybridization function unspecified. This will be used later to

optimize the approach. The lattice may now be viewed as a collection of impurities, which are

coupled through the bilinear term to the right of this equation (see Fig. 8. The effect of spatial

correlations enters here and renders an exact solution impossible. A perturbative treatment is

desirable, but not straightforward as the impurity action is non-Gaussian and hence there is no

Wick theorem. Therefore, dual fermions are introduced in the path integral representation of

the partition function from Eq. (6) through the standard Hubbard-Stratonovich transformation

exp
(

c∗αBαβ(A
−1)βγBγδcδ

)

=

1

detA

∫

D[γ∗, γ] exp (−f ∗
αAαβfβ − f ∗

αBαβcβ − c∗αBαβfβ) . (47)

In order to transform the exponential of the bilinear term in (46), we choose the matrices a, b in

accordance with Refs. [31] as

A = g−1
ω (∆ω − tk)

−1 g−1
ω , B = g−1

ω , (48)

where gω is the local, interacting Green function of the impurity problem. With this choice, the

lattice action transforms to

S[c∗, c, f ∗, f ] =
∑

i

Ssite,i +
∑

ωkαβ

f ∗
ωkα[g

−1
ω (∆ω − tk)

−1 g−1
ω ]αβfωkβ. (49)

Hence the coupling between sites is transferred to a local coupling to the auxiliary fermions:

Ssite,i[c
∗
i , ci, f

∗
i , fi] = Sloc[c

∗
i , ci] +

∑

αβ

f ∗
ωiα g−1

ωαβcωiβ + c∗ωiα g−1
ω αβfωiβ . (50)

Since gω is local, the sum over all states labeled by k could be replaced by the equivalent

summation over all sites by a change of basis in the second term. The crucial point is that the

coupling to the auxiliary fermions is purely local and Ssite decomposes into a sum of local terms.
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U t
U

D ( -t)D

g

Fig. 8: Construction of the dual fermion approximation: In a first step, the original lattice

problem (left) with bonds (red lines) is replaced by a collection of decoupled impurities exerted

to an electronic bath, as indicated by the red spheres (middle), finally spatial correlations in the

original lattice problem are treated perturbatively over (∆ω − tk) (blue wiggly line) with local

interaction vertex γ (right).

The lattice fermions can therefore be integrated out from Ssite for each site i separately. This

completes the change of variables:

∫

D[c∗, c] exp (−Ssite[c
∗
i , ci, f

∗
i , fi]) =

Zloc exp
(

−
∑

ω αβ

f ∗
ωiα g−1

ω αβfωiβ − Vi[f
∗
i , fi]

)

. (51)

The above equation may be viewed as the defining equation for the dual potential V [f ∗, f ].

The choice of matrices (48) ensures a particularly simple form of this potential. An explicit

expression is found by expanding both sides of Eq. (51) and equating the resulting expressions

by order. Formally this can be done up to all orders and in this sense the transformation to the

dual fermions is exact. For most applications, the dual potential is approximated by the first

non-trivial interaction vertex:

V [f ∗, f ] =
1

4
γ1234f

∗
1 f

∗
2 f4f3, (52)

where the combined index 1 ≡ {ωα} comprises frequency, spin and orbital degrees of freedom.

γ is the exact, fully antisymmetric, reducible two-particle vertex of the local quantum impurity

problem. It is given by

γ1234 = g−1
11′g

−1
22′

[

χ1′2′3′4′ − χ0
1′2′3′4′

]

g−1
3′3g

−1
4′4, (53)

with the two-particle Green function of the impurity being defined as

χ1234 = 〈c1c2c∗3c∗4〉loc =
1

Zloc

∫

D[c∗, c]c1c2c
∗
3c

∗
4 exp

(

− Sloc[c
∗, c]
)

. (54)
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Fig. 9: Diagrams contributing to the dual self-energy Σd. Diagrams a), a’), a”) and c) give

local, the other ones nonlocal contributions. The three diagrams labeled by a) do not contribute

in case the condition (66) is fulfilled. From the Ref. [14].

The disconnected part reads

χ0
1234 = g14g23 − g13g24. (55)

The single- and two-particle Green functions can be calculated using the CTQMC algorithms

[7]. After integrating out the lattice fermions, the dual action depends on the new variables only

and reads

S̃[f ∗, f ] = −
∑

ωkαβ

f ∗
ωkα[G̃

0
ω(k)]

−1
αβfωkβ +

∑

i

Vi[f
∗
i , fi]. (56)

and the bare dual Green function is found to be

G̃0
ω(k) = −gω

[

gω + (∆ω − tk)
−1]−1

gω, (57)

which involves the local Green function gω of the impurity model.

Up to now, Eqs. (56), (57) are merely a reformulation of the original problem. In practice,

approximate solutions are constructed by treating the dual problem perturbatively. Several di-

agrams that contribute to the dual self-energy are shown in Fig. 9. These are constructed from

the impurity vertices and dual Green functions as lines. The first diagram (a) is purely local,

while higher orders contain nonlocal contributions, e.g. diagram b). Inserting the renormalized

Green function into diagram a) includes contributions such as the one in a’). In practice, ap-

proximations to the self-energy are constructed in terms of skeleton diagrams. The lines shown

in Fig. 9 are therefore understood to be fully dressed propagators. The use of skeleton diagrams

is necessary to ensure the resulting theory to be conserving in the Baym-Kadanoff sense [33],

i. e. it fulfills the basic conservation laws for energy, momentum, spin and particle number.

It is an important consequence of the exact transformation (47) that for a theory which is con-

serving in terms of dual fermions, the result is also conserving in terms of lattice fermions [32].

This allows to construct general conserving approximations within the dual fermion approach.

Numerically, the self-energy is obtained in terms of skeleton diagrams by performing a self-

consistent renormalization as described below. Once an approximate dual self-energy is found,

the result may be transformed back to a physical result in terms of lattice fermions using exact

relations.
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The action (56) allows for a Feynman-type diagrammatic expansion in powers of the dual po-

tential V . The rules are similar to those of the antisymmetrized diagrammatic technique [34].

Extension of these rules to include generic n-particle interaction vertices is straightforward.

Due to the use of an antisymmetrized interaction, the diagrams acquire a combinatorial prefac-

tor. For a tuple of n equivalent lines, the expression has to be multiplied by a factor 1/n!. As

simplest example we can write schematically the first self-energy correction of the diagram a)

in Fig. 9 contains a single closed loop:

Σ̃
(a)
12 = −T

∑

34

γ1324G̃
loc
43 (58)

where G̃loc = (1/N)
∑

k
G̃(k) denotes the local part of the dual Green function. The second-

order contribution represented by diagram b) contains two equivalent lines and one closed loop

and hence is k-dependence:

Σ̃
(b)
12 (k) = −1

2

(

T

N

)2
∑

k1k2

∑

345678

γ1345G̃57(k1)G̃83(k2)G̃46(k+ k2 − k1)γ6728 (59)

In practice, it is more efficient to evaluate the lowest order diagrams in real space and transform

back to reciprocal space using the fast Fourier transform.

5.1 Dual-Fermion approach: Exact relations

After an approximate result for the dual self-energy or the dual Green function has been ob-

tained, it has to be transformed back to the corresponding physical quantities in terms of lattice

fermions. The fact that dual fermions are introduced through the exact Hubbard-Stratonovich

transformation (47) allows to establish exact identities between dual and lattice quantities.

Hence the transformation does not involve any additional approximations [14, 31].

The relations between the n-particle cumulants of dual and lattice fermions can be established

using the cumulant (linked cluster) technique. To this end, one may consider two different,

equivalent representations of the following generating functional:

F [J∗, J ;L∗, L] = ln Zf

∫

D[c∗, c; f ∗, f ] exp
(

−S[c∗, c; f ∗, f ] + J∗
1 c1 + c∗2J2

+ L∗
1f1 + f ∗

2L2

)

. (60)

Integrating out the lattice fermions from this functional similar to (51) (this can be done with

the sources J and J∗ set to zero) yields

F [L∗, L] = ln Z̃f

∫

D[f ∗, f ] exp
(

−S̃[f ∗, f ] + L∗
1f1 + f ∗

2L2

)

. (61)

with Z̃f = Z/Z̃ . The dual Green function and two-particle correlator related with non-local

susceptibilities are obtained from (61) by suitable functional derivatives, e.g.

G̃12 = − δ2F

δL2δL∗
1

∣

∣

∣

∣

L∗=L=0

,
[

X̃−G̃⊗ G̃
]

1234
=

δ4F

δL4δL3δL∗
2δL

∗
1

∣

∣

∣

∣

L∗=L=0

,

(62)
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where G ⊗ G is the antisymmetrized direct product of Green functions, so that the angular

brackets is the connected part of the dual two-particle Green function. Conversely, integrating

out the dual fermions from (60) using the HST, one obtains an alternative representation, which

more clearly reveals a connection of the functional derivatives with respect to the sources J ,J∗

and L, L∗. The result is

F [J∗, J ;L∗, L] =L∗
1[g(∆− h)g]12L2 + ln

∫

D[c∗, c] exp
(

− S[c∗, c] +

+ J∗
1 c1 + c∗2J2 + L∗

1[g(∆− t)]12c2 + c∗1[(∆− t)g]12L2

)

. (63)

In analogy to (62), the cumulants in terms of lattice fermions are obviously obtained by func-

tional derivative with respect to the sources J and J∗ with L and L∗ set to zero. Applying the

derivatives with respect to L, L∗ to (63) with J = J∗ = 0 and comparing to (62), e.g. yields the

following identity:

G̃12 = −[g(∆− t)g]12 + [g(∆− t)]11′G1′2′ [(∆− t)g]2′2. (64)

Solving for G provides the rule how to transform the dual Green function to the physical quan-

tity in terms of lattice fermions. For higher-order cumulants the additive term in (63) does not

contribute and the relation between the two-particle cumulants evaluates to
[

X̃ − G̃⊗ G̃
]

1234
=

[g(∆− t)]11′ [g(∆− t)]22′ [X −G⊗G]1′2′3′4′ [(∆− t)g]3′3 [(∆− t)g]4′4 , (65)

It is apparent that similar relations hold for higher-order cumulants. Note that the transforma-

tion only involves single-particle functions. Hence one may conclude that n-particle collective

excitations are the same for dual and lattice fermions.

5.2 Self-consistency condition and relation to DMFT

The hybridization function ∆, which so far has not been specified, allows to optimize the start-

ing point of the perturbation theory and should be chosen in an optimal way. The condition of

the first diagram (Fig. 9 a) in the expansion of the dual self-energy to be equal to zero at all

frequencies fixes the hybridization. This eliminates the leading order diagrammatic correction

to the self-energy and establishes a connection to DMFT, which can be seen as follows: Since

γ vertex is local, this condition amounts to demanding that the local part of the dual Green

function be zero:
∑

k

G̃ω(k) = 0. (66)

The simplest nontrivial approximation is obtained by taking the leading-order correction, dia-

gram a), evaluated with the bare dual propagator (57). Recalling the expression for the DMFT

Green function, Eq. (4), it is readily verified that

GDMFT
ω (k)− gω =

[

g−1
ω +∆ω − tk

]−1 − gω

= −gω
[

gω + (∆ω − tk)
−1
]−1

gω = G̃0
ω(k). (67)
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It immediately follows that (66) evaluated with the bare dual Green function is exactly equiva-

lent to the DMFT self-consistency condition:

1

N

∑

k

G̃0
ω(k) = 0 ⇐⇒ 1

N

∑

k

GDMFT
ω (k) = gω. (68)

Hence DMFT appears as the zero-order approximation in this approach and corrections to

DMFT are included perturbatively. A formal relation to DMFT can be established using the

Feynman variational functional approach. In this context, DMFT appears as the optimal ap-

proximation to a Gaussian ensemble of dual fermions [32].

When diagrammatic corrections are taken into account and the first diagram is evaluated with

the dressed propagator G̃, the condition (66) will in general be violated. It can be reinforced by

adjusting the hybridization function iteratively. This corresponds to eliminating an infinite par-

tial series starting from the diagrams labeled by a) in Fig. 9. These contributions are effectively

absorbed into the impurity problem. Note that such an expansion is not one around DMFT, but

rather around an optimized impurity problem.

The only difference between a DMFT and a DF calculation are the diagrammatic corrections

which are included into the dual Green function. To this end, the local impurity vertex γ has to

be calculated in addition to the Green function in the impurity solver step.

Since the choice of the hybridization function is not unique, one may replace it by a discrete

version ∆(n) =
∑n

k=1|Vk|2/(iω−ǫk) for a small number n of bath degrees of freedom, for which

the impurity problem can be solved efficiently using exact diagonalization. In this case, the

condition (66) cannot be fulfilled in general, but one may require the correction to be minimal

instead. This results in a variational approach. The corresponding perturbation expansion is

considerably more stable than an expansion around the atomic limit, i.e. ∆ ≡ 0 [24].

5.3 Results for the 2d-Hubbard model

In the following, we show some illustrative results for the Hubbard model, which is governed

by the Hamiltonian (1). Unless otherwise stated, only the two lowest-order diagrams a) and

b) of Fig. 9 have been used. It may be considered as a benchmark system for the approach,

because the importance of nonlocal correlations is expected to increase by reducing the dimen-

sionality. This is clearly an unfavorable situation for DMFT, which completely neglects spatial

correlations.

In order to visualized the nonlocal correlations, the k-dependent self-energy is shown in Fig.

(10). The upper panel of Figure 10 presents contour plots for ImΣω=0,k at U = 1.0 and U = 2.0

(the data are obtained by a polynomial extrapolation from the Matsubara frequencies). The

value of ImΣω=0,k grows dramatically as U changes from 1.0 to 2.0. Close to the Mott transition

there is a strong k-dependence of Σ. The renormalized dispersion law ǫk+ReΣω=0,k is now also

in a qualitative agreement with numerical data, as the lower panel of Figure 10. In these graphs,

ǫk + ReΣω=0,k is compared with the reference data for a 10 × 10 lattice. There is a qualitative

difference between the results for U = 1.0 and U = 2.0: for later case the corrections are quite

large so that there is a dependence resembling ǫ−1
k [31, 31].
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Fig. 10: Momentum dependence for the self-energy function at Fermi energy, obtained with

diagram (b) within the translationally-invariant approximation for the undoped Hubbard model.

Data are shown at t = 0.25, β = 20, for U = 1.0 and U = 2.0. Upper panel: contour plots for

k-dependence of the imaginary part of the self energy. Lower panel: renormalized dispersion

law ǫk + ReΣω=0,k, compared with the reference data obtained for 10 × 10 lattice. From the

Ref. [31].

The k-resolved spectral function A(k, ω) obtained from maximum-entropy analytical continu-

ation shown in Fig. 11. The DMFT spectral function displays a quasiparticle band, while in the

DF calculation, spectral weight is transferred away from the Fermi level. Recalling the nesting

condition ǫk+Q = −ǫk for the antiferromagnetic wave vector Q = (π, π), the locus of these fea-

tures allows to interpret them as shadow bands due to dynamical short-range antiferromagnetic

correlations. The strength of these correlations increases as the temperature is lowered.
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Fig. 11: Spectral function A(k, ω) for the 2D Hubbard model at half-filling obtained within

DMFT (left) and dual fermion calculations (right) for U = 8t and T/t = 0.235. From bottom

to top, the curves are plotted along the high-symmetry lines Γ → X → M → Γ. The high-

symmetry points X = (0, π) and M = (π, π) are marked by dashed lines. The structures

encircled in blue can be attributed to dynamical short-range antiferromagnetic correlations.

From the Ref. [14].
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Fig. 12: Metallic and insulating local density of states obtained in the coexistence region of the

Mott transition for U/t = 6.5 and T/t = 0.08. The insulating solution exhibits characteristic

peaks at the gap edge. The antiferromagnetic correlations lead to antiferromagnetic-gap-like

behavior [35]. The metallic solution exhibits shoulders on the peak at the Fermi level. From

the Ref. [14].

A detailed analysis of the phasediagram shows that these correlations lead to a drastic reduction

of the critical U from Uc/t ∼ 9.35 in DMFT down to Uc/t ∼ 6.5 within the dual fermion

calculation. This, as well as the density of states in the coexistence region (Fig. 12) and the

slope of the transition lines in the U − T phase diagram below the critical point, which are

modified from negative within DMFT to positive [14], is in qualitative agreement with cluster

DMFT results [36]. We emphasize that these results cannot be obtained from a straightforward

diagrammatic expansion around DMFT as the modification of the Weiss field is essential. This

distinguishes the present method from related approaches [28, 29].
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Fig. 13: Bethe-Salpeter equation for the dual vertex in the electron-hole channel with a local

approximation Γirr = γ to the irreducible vertex. The solution Γ contains the sum of all ladder

diagrams up to infinite order in γ.

+ Γ
eh0χ0(q ,Ω) + �χ(q ,Ω) =

Fig. 14: Diagrammatic representation of the susceptibility, Eqs. (71), (72).

5.4 Calculation of susceptibilities

For the calculation of the dual susceptibility, the dual vertex function is first calculated by means

of a Bethe-Salpeter equation [37, 38] (in the following we write the equations for a single-orbital

model for simplicity)

Γα
ωω′Ω(q) = γα

ωω′Ω − T

N

∑

ω′′

∑

k

γα
ωω′′ΩG̃ω′′(k)G̃ω′′+Ω(k+ q) Γα

ω′′ω′Ω(q). (69)

This equation is depicted diagrammatically in Fig. 13. Here the irreducible vertex is approxi-

mated by the local irreducible interaction of dual fermions to lowest-order and is hence given by

the reducible vertex of the impurity model γ (the index ’(4)’ is omitted in what follows). Here

α = d,m stands for the density (d) and magnetic (m) electron-hole channels: Γd = Γ↑↑↑↑+Γ↑↑↓↓,

Γm = Γ↑↑↑↑ − Γ↑↑↓↓. The physical content of the BSE is repeated scattering of particle-hole

pairs. In the two channels the particle-hole pair has a definite total spin S and spin projection

Sz. The density channel corresponds to the S = 0, Sz = 0 singlet channel, while Γm is the

vertex in the S = 1, Sz = 0 triplet channel. In the magnetic channel, the collective excitations

are magnons. The vertex Γ↑↓↓↑ (Γ↓↑↑↓) which corresponds to the Sz = +1(−1) spin projection

of the S = 1 channel must be equal to Γm in the paramagnetic state (longitudinal and transverse

modes cannot be distinguished).

The BSE may be solved iteratively, starting from the approximation Γ(0) ≈ γ. Inserting this

into the right-hand-side of Eq. (69) yields a new approximation Γ(1). Repeating this step suc-

cessively generates a sum of all ladder diagrams with 1, . . . , n + 1 irreducible rungs in the
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approximation Γ(n). In practice however, the BSE is solved by matrix inversion according to

[Γα
ωω′Ω(q)]

−1 = (γα
ωω′Ω)

−1 +
T

N

∑

k

G̃ω(k)G̃ω+Ω(k+ q)δωω′ , (70)

which corresponds to summing up the infinite series. The vertices are matrices in the fermionic

Matsubara frequencies ω, ω′. They are diagonal with respect to Ω and q, since the center of

mass energy and momentum of the particle-hole pair is conserved in scattering processes.

From the vertex, the non-local spin and charge susceptibility is finally obtained as X = X0+X1,

where

X0(q,Ω) = − T

N

∑

ω

∑

k

Gω(k)Gω+Ω(k+ q) (71)

and

Xα
1 (q,Ω) =

T 2

N2

∑

ωω′

∑

kk′

Gω(k)Gω+Ω(k+ q)Γα
ωω′ΩGω′(k′)Gω′+Ω(k

′ + q). (72)

In principle, these relations are valid for dual and lattice fermions. If one is only interested

in instabilities, which are signalled by the divergence of the corresponding susceptibility , it is

sufficient to consider the dual quantities. The equivalence of two-particle excitations in terms

of dual and lattice fermions ensures that the dual and lattice susceptibilities diverge at the same

parameters. The lattice susceptibility is obtained using the exact relations between dual and

lattice correlation functions (65). In the context of DMFT, the susceptibility is obtained using

relations similar to Eqs. (69), (71) and (72) [2]. The momentum dependence of the irreducible

vertex is neglected in DMFT. It is further approximated by the irreducible vertex of the impurity

model. Recall that the lattice Green function is exactly equal to the DMFT Green function when

dual corrections to the self-energy are neglected and the dual Green function fulfills the self-

consistency condition (66). Using the relation between the DMFT and bare dual Green function

Eq. (67) we can find a simple relations between the bare susceptibilities:

X̃0(q,Ω) = X0(q,Ω)− χ0(Ω). (73)

It is an important property of the above equations that under the same conditions the lattice

susceptibility calculated within the dual fermion approach is exactly equal to the DMFT sus-

ceptibility [14].

As a further illustration, we plot the dynamical susceptibility χ(q, ω) in Fig. 15. It clearly

displays the magnon spectrum in the paramagnetic state. The dispersion from spin wave theory

is shown for comparison. It is given by the expression [39] ǫ(k) = 2zJS
√

1− γ(k)2 where z

is the coordination number, S = 1/2 is the spin of the fermions and γ(k) = 1
z

∑

NN eikrNN =

(cos kx + cos ky) /2 for the square lattice. The right panel of Fig. 15 shows a cross-section

for the antiferromagnetic wave vector qAF = (π, π) (M-point). The peak is broadened and

slightly shifted from zero. Such a behavior is reminiscent of a 2D Heisenberg model at finite

temperature, where long-range order with a correlation length ξ ≫ a takes place (a is the lattice

constant) and a corresponding small energy scale of order Ja/ξ arises [35].
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Fig. 15: Left: Dynamical susceptibility χ(q, ω) for U/t = 4 and T/t = 0.19, obtained from

a dual fermion calculation and analytical continuation using Padé approximants. It shows the

magnon spectrum in the paramagnetic state. The dispersion from spin wave theory with effective

exchange coupling J = 4t2/U is shown for comparison. Values for χ > 6 are excluded from the

colormap to improve the contrast. Right: Cross-section through the peak at the M-point. The

displacement from zero is consistent with a small energy scale J/ξ, where ξ is the correlation

length (in units of the lattice constant). From the Ref. [14].

5.5 Convergence properties

For a perturbative approach, the convergence properties are of paramount importance. For

the present theory[41], the vertices appear as a small parameter in the expansion in the weak-

coupling limit (U → 0), because they vanish at least proportionally to U : γ(4) ∼ U , γ(6) ∼
U2,. . .. On the other hand, for an expansion around the atomic limit (∆ ≡ 0), the dual Green

function is small near this limit: For hk small, the bare dual Green function can be approximated

as

G̃0
ω(k) ≈ gω hk gω. (74)

This enforces the convergence of the series in the opposite strong coupling limit. In contrast,

IPT or FLEX, which operate with the bare interaction U , have to break down at intermediate to

large U . In the general case, a fast convergence cannot be proven rigorously. Here we examine

the convergence properties numerically in the vicinity of the antiferromagnetic instability (AFI)

in the 2D Hubbard model. These can be characterized using the eigenvalue problem derived

from the BSE (69).

The matrix is the building block of the particle-hole ladder and may be thought of as the effective

two-fermion interaction. For dual fermions, the irreducible vertex is given by the bare dual

interaction Γirr, m
ωω′Ω = γm

ωω′Ω = γ↑↑
ωω′Ω − γ↑↓

ωω′Ω in the magnetic channel and G̃ stands for the full

dual Green function. Here the focus is on the leading eigenvalues in the vicinity of the AFI and

hence q = (π, π) and Ω = 0. An eigenvalue of λmax = 1 implies a divergence of the ladder sum

and hence a breakdown of the perturbation theory.

− T

N

∑

ω′k′

Γirr, m
ωω′ΩG̃ω′(k)G̃ω′+Ω(k+ q)φω′ = λ̃φω′ . (75) Γ

irr, m

ωω′Ω

G ω′+Ω(k′ + q )
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Fig. 16: Leading eigenvalue of the Bethe-Salpeter equation obtained within various approxi-

mations in the q = (π, π) magnetic channel as a function of the interaction U . λ (λd) denotes

lattice (dual) fermion eigenvalues. The diagrams included are indicated in the legend (labels

are the same as in Fig. 9). The dual perturbation theory converges fast (i.e. the eigenvalues are

small) in particular for weak and strong coupling. A straightforward diagrammatic expansion

around DMFT breaks down for large U . From the Ref. [41].

The results are displayed in Fig. 16. For weak coupling, the leading eigenvalue is small and

implies a fast convergence of the diagrams in the electron-hole ladder. More significantly, the

eigenvalues decrease and converge to the same intercept in the large U limit. This nicely illus-

trates that the dual perturbation theory smoothly interpolates between a standard perturbation

expansion at small, and the cumulant expansion at large U , ensuring fast convergence in both

regimes. From the figure it is clear that this also improves the convergence properties for inter-

mediate coupling (U ∼ W ). Even here corrections from approximations involving higher-order

diagrams remain small, including those from the LDFA. Diagrams involving the three-particle

vertex give a negligible contribution.

For a straightforward diagrammatic expansion around DMFT, the building block of the particle-

hole ladder is constructed from the irreducible impurity vertex γirr, m
ωω′Ω and DMFT Green func-

tions. As seen in Fig. 16, the corresponding leading eigenvalue (and the effective interaction) is

much larger than for dual fermions over the whole parameter range (e.g. at red arrows). When

transforming the leading eigenvalue back to lattice fermions, it is close to the DMFT value for

these parameters. Hence convergence is enhanced for a perturbation theory in terms of dual

fermions. Remarkably, for the intermediate to strong coupling region, a straightforward pertur-

bation theory around DMFT breaks down (since the eigenvalue approaches one), while for a

theory in terms of dual fermions, this is not the case. The fact that the leading eigenvalue for

dual fermions is smaller is a generic feature. It is also observed away from half-filling and for

the electron-electron channel. Note that the interaction in the dual fermion approach is given

by the reducible vertex of the impurity. The frequency dependence accounts for the fact that

the Coulomb interaction acts on short time scales in this approach. Strong local correlations are

effectively separated (and treated non-perturbatively within the solution of the impurity model)

from weaker spatial correlations, which are treated diagrammatically.
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6 Summary and outlook

Different cluster extensions of the DMFT scheme are very useful tools to describe non-local

short-range correlations in solids. The solution of the effective multi-site cluster impurity prob-

lem in fermionic bath is a common feature of CDMFT and DCA methods and can be can

be found within numerically exact CTQMC approach. Nevertheless all cluster extension of

the DMFT have problems: while CDMFT breaks translational symmetry of crystals, DCA

effectively renormalized lattice hopping and makes a step-like momentum dependence of self-

energy. We still should find an optimal way of periodization the CDMFT scheme. For the DCA

approach one can average over different tiling of the Brillouin zone within the same cluster

as was suggested for non-local CPA scheme [9]. For the CDMFT scheme the main problem

is to find periodic self-energy solution, which preserve the analytical properties of the lattice

Green’s function [16]. In this case, even for small clusters one can find a similar solution for

both CDMFT and DCA methods.

The dual fermion scheme gives a general framework to include non-local correlations on all

scales. The bottleneck of DF-scheme related with finite number of diagrams which one can

calculate, and the accuracy of short-range correlations are not as good as in numerically exact

cluster solution. There are straightforward generalizations of the single site DF-approach to the

cluster dual fermion approach (CDFA)[40] as well as DFDCA-scheme [42]. We can think that

the cluster DMFT starting point will allow to find a better non-local solutions, which have exact

short-range correlations and reasonable long-range correlations. This may be an optimal way

to study the complicated non-local effects in solids.

Acknowledgment

Support of the Deutsche Forschungsgemeinschaft through FOR1346 is gratefully acknowledged.



11.28 A.I. Lichtenstein and H. Hafermann

References

[1] G. Kotliar and D. Vollhardt, Physics Today 57, 53 (2004)

[2] A. Georges, G. Kotliar, W. Krauth, and M.J. Rozenberg, Rev. Mod. Phys. 68 , 13 (1996)

[3] V.I. Anisimov, A.I. Poteryaev, M.A. Korotin, A.O. Anokhin, and G. Kotliar,

J. Phys.: Condensed Matter 9, 7359 (1997)

[4] A.I. Lichtenstein and M.I. Katsnelson, Phys. Rev. B 57, 6884 (1998)

[5] G. Kotliar, S.Y. Savrasov, K. Haule, V.S. Oudovenko, O. Parcollet, and C.A. Marianetti,

Rev. Mod. Phys. 78, 865 (2006)

[6] A.I. Lichtenstein and M.I. Katsnelson, Phys. Rev. B 62, R9283 (2000)

[7] E. Gull, A.J. Millis, A.I. Lichtenstein, A.N. Rubtsov, M. Troyer, and P. Werner,

Rev. Mod. Phys. 83, 349 (2011)

[8] G. Kotliar, S.Y. Savrasov, G. Palsson, and G. Biroli, Phys. Rev. Lett. 87, 186401 (2001)

[9] D.A. Rowlands, X.-G. Zhang, and A. Gonis, Phys. Rev. B 78, 115119 (2008)

[10] T. Maier, M. Jarrell, T. Pruschke, and M.H. Hettler, Rev. Mod. Phys. 77, 1027 (2005)

[11] M. Potthoff, M. Aichhorn, and C. Dahnken, Phys. Rev. Lett. 91, 206402 (2003)

[12] A. Fuhrmann, S. Okamoto, H. Monien, and A.J. Millis, Phys. Rev. B 75, 205118 (2007)

[13] S. Okamoto, A.J. Millis, H. Monien, and A. Fuhrmann, Phys. Rev. B 68, 195121 (2003)

[14] H. Hafermann: Numerical Approaches to Spatial Correlations in Strongly Interacting

Fermion Systems (Cuvillier Verlag, Göttingen, Singapore, 2010)

[15] G. Biroli and G. Kotliar, Phys. Rev. B 65, 155112 (2002)

[16] G. Biroli. O. Parcollet and G. Kotliar, Phys. Rev. B 69, 205108 (2004)

[17] E. Koch, G. Sangiovanni, and O. Gunnarsson, Phys. Rev. B 78, 115102 (2008)

[18] M. Potthoff, Eur. Phys. J. B 32, 429 (2003)

[19] M. Potthoff and M. Balzer, Phys. Rev. B 75, 125112 (2007)

[20] C. Lin and A.J. Millis, Phys. Rev. B 79, 205109 (2009)

[21] A. Liebsch, H. Ishida, J. Merino, Phys. Rev. B 78, 165123 (2008)

[22] A. Schiller and K. Ingersent, Phys. Rev. Lett. 75, 113 (1995)



Non-Local Correlations Effects in Solids 11.29
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[24] S. Pairault, D. Sénéchal, and A.-M.S. Tremblay, European Phys. Journal B 16, 85 (2000)

[25] S.K. Sarker, J. Physics C: Solid State Phys. 21, L667 (1988)

[26] T.D. Stanescu and G. Kotliar, Phys. Rev. B 70, 205112 (2004)

[27] C. Slezak, M. Jarrell, Th. Maier, and J. Deisz, J. Phys.: Condens. Matter 21, 435604 (2009)

[28] A. Toschi, A.A. Katanin, and K. Held, Phys. Rev. B 75, 045118 (2007)

[29] H. Kusunose, J. Phys. Soc. Japan 75, 054713 (2006)

[30] A.N. Rubtsov, Phys. Rev. B 66, 052107 (2002)

[31] A.N. Rubtsov, M.I. Katsnelson, and A.I. Lichtenstein, Phys. Rev. B 77, 033101 (2008)

[32] A.N. Rubtsov, M.I. Katsnelson, A.I. Lichtenstein, and A. Georges,

Phys. Rev. B 79, 045133 (2009)

[33] G. Baym and L.P. Kadanoff, Phys. Rev. 124, 287 (1961)

[34] A.A. Abrikosov, L.P. Gorkov, and I.E. Dzyaloshinskii: Methods of Quantum Field Theory

in Statistical Physics (Pergamon Press, New York, 1965)

[35] V.Y. Irkhin and M.I. Katsnelson, J. Phys.: Cond. Matter 3 3, 6439 (1991)

[36] H. Park, K. Haule, and G. Kotliar, Phys. Rev. Lett. 101, 186403 (2008)

[37] A.B. Migdal: Theory of Finite Fermi Systems and applications to atomic nuclei

(Interscience Publishers, New York, 1967)

[38] P. Nozières: Theory of interacting Fermi systems

(Benjamin, New York, 1964).

[39] A. Auerbach: Interacting Electrons and Quantum Magnetism

(Springer, New York, 1998).

[40] H. Hafermann, S. Brener, A.N. Rubtsov, M.I. Katsnelson, A.I. Lichtenstein,

JETP Lett. 86, 677 (2007)

[41] H. Hafermann, G. Li, A.N. Rubtsov, M.I. Katsnelson, A.I. Lichtenstein, and H. Monien,

Phys. Rev. Lett. 102, 206401 (2009)

[42] S.-X. Yang, H. Fotso, H. Hafermann, K.-M. Tam, J. Moreno, T. Pruschke, and M. Jarrell,

arXiv:1104.3854





12 Multiple-Scattering Formalism for Correlated

Systems: a KKR-DMFT Approach

H. Ebert, J. Minár, and D. Ködderitzsch

Department Chemie – Lehrbereich Phys. Chemie

Ludwig-Maximilians-Universität München

Contents

1 Introduction 2

2 The LSDA+DMFT scheme 4

3 Combination of the LSDA+DMFT with the KKR method 6

3.1 General idea of the KKR method . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.2 Solution of the single-site problem . . . . . . . . . . . . . . . . . . . . . . . . 7

3.3 Multiple scattering and Green’s function . . . . . . . . . . . . . . . . . . . . . 9

3.4 Electronic structure and relativistic extension . . . . . . . . . . . . . . . . . . 11

3.5 The self-consistency cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.6 Treatment of disordered alloys . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4 Applications 17

4.1 Ground state properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.2 Electron spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5 Summary 27

E. Pavarini, E. Koch, Dieter Vollhardt, and Alexander Lichtenstein
The LDA+DMFT approach to strongly correlated materials
Modeling and Simulation Vol. 1
Forschungszentrum Jülich, 2011, ISBN 978-3-89336-734-4
http://www.cond-mat.de/events/correl11

http://www.cond-mat.de/events/correl11


12.2 H. Ebert, J. Minár, and D. Ködderitzsch

1 Introduction

The combination of the DMFT (dynamical mean field theory) with the LSDA (local spin density

approximation) led to a very powerful approach to deal with correlations in solid state materials

beyond the capability of plain LSDA [1–3]. Due to this attractive feature the LSDA+DMFT

has now been implemented on the basis of many different band structure methods during the

last years [4]: first in the linear muffin-tin orbital method in the atomic sphere approximation

(ASA-LMTO) [5–7] and then in full-potential LMTO [8, 9]. Common to nearly all of these

band structure methods is that they are based on the variational principle representing the elec-

tronic structure in terms of Bloch functions Ψj~k(~r) and eigen energies Ej~k. Corresponding

LSDA+DMFT calculations are therefore done in several steps: starting from a standard LSDA

calculation the corresponding one-electron Green’s functionGLSDA(~k, E) = [E−HLSDA(~k)]
−1

is constructed in reciprocal space. In a next step the DMFT self-energy Σ(E), that accounts

for correlation effects beyond the LSDA level, is included by solving the Dyson equation

G−1(~k, E) = G−1
LSDA(

~k, E) − Σ(E). A Brillouin zone integration of G(~k) gives finally the

LSDA+DMFT one-electron Green’s function G(E) that enters the DMFT-problem. In the next

step the DMFT-problem is solved using G(E) as an input and giving a new self-energy Σ(E).

The last steps are repeated until self-consistency is reached with respect to the one-electron

Green’s function G(E) and the self-energy Σ (DMFT self-consistency). This sequence of steps

is sketched in Fig. 1. In many cases the calculations are stopped here, i.e. after a one-shot

SCF cycle

LSDA Green’s function in reciprocal space GLSDA(~k,E) =
[

E −HLSDA(~k)
]−1

AIM: Dyson-equation

for LSDA+DMFT Green’s function G−1(~k,E) = G−1
LSDA(

~k,E) −Σ(E)

LSDA+DMFT one-electron Green’s function G(E) = Ω−1
∫

d3k G(~k,E)

Effective medium or bath Green’s function G−1(E) = G−1(E) +Σ(E)

DMFT-solver: Gnew = G[G] ⇒ Σnew(E) = G−1(E)−G−1(E)

LSDA: G(E) → ρ(~r) → VLSDA → HLSDA

Fig. 1: Scheme for the implementation of the LSDA+DMFT using a standard ~k-space band

structure method including the SCF-cycle for the electronic charge ρ(~r) as an outer loop.

inclusion of the DMFT on the basis of a LSDA-calculation. Otherwise the LSDA+DMFT is
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performed in a charge self-consistent way by constructing the new charge density from the

one-electron Green’s function to be used in a standard SCF cycle. To underline the impor-

tance of complete LSDA+DMFT self-consistency one should mention that the first successful

attempt to combine the DMFT with LSDA charge self-consistency gave an important insight

into the long-standing problem of phase diagram and localization in f-electron systems [8, 9]

and has been used also to describe correlation effects in half-metallic ferromagnetic materials

like NiMnSb [10].

Due to the prominent role of the one-electron Green’s function it seems to be highly attractive

to implement the LSDA+DMFT scheme using a band structure method that delivers the Green’s

function directly. This was first done using the LMTO-Green’s function method in a non-charge

self-consistent way [11]. Subsequently, the so-called EMTO (exact muffin-tin orbital) method

was applied in a charge-self-consistent way as a computational framework for the band structure

part [12]. In the EMTO approach [13, 14] the one-electron effective potential is represented by

the optimized overlapping muffin-tin potential which is considered as the best possible spherical

approximation to the full-one electron potential. In essence the one-electron Green’s function

is evaluated on a complex contour similarly to the screened KKR (Korringa Kohn Rostoker)

technique, from which it was derived. In the iteration procedure the LSDA+DMFT Green’s

function is used to calculate the charge and spin densities. Finally, for the charge self-consistent

calculation one constructs the new LSDA effective potential from the spin and charge densi-

ties [15], using the Poisson equation in the spherical cell approximation [16]. However, the

EMTO-based LSDA+DMFT still follows essentially the scheme sketched above that deals with

the DMFT self-energyΣ after having solved the LSDA electronic structure problem. In contrast

to this, the KKR implementation [17] follows a natural development in which the self-energy is

added directly to the coupled radial differential equations which determine the electronic wave

function within a potential well and this way the single-site t-matrix. Because this way also

the scattering path operator of multiple scattering theory used to set up the electronic Green’s

function is determined unambiguously, no further approximations are needed to achieve charge

self-consistency.

Representing the electronic structure in terms of the Green’s function from the very beginning

provides many other advantages: In particular the use of the Dyson equation allows to deal

with quite complex systems by connecting the Green’s function of a perturbed system with the

Green’s function of a suitable complementary unperturbed reference system. This gives in par-

ticular access to systems without Bloch symmetry [18]. Furthermore, the use of the Coherent

Potential Approximation (CPA) alloy theory [19] in combination with Green’s function based

electronic structure methods allows to deal with substitutional disorder including both diluted

impurities and concentrated alloys [20]. The physical condition corresponding to the CPA is

simply that a single alloy component embedded in the effective CPA medium should produce

no change on the average. A similar philosophy is applied also when dealing with many-body

problems for crystals in the framework of the DMFT [21]. Accordingly, the alloy CPA and

DMFT can be combined without any conceptual problems [11]. Finally, it should be mentioned
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that spectroscopic properties of solids are investigated in a most flexible and powerful way us-

ing the Green’s function to represent the electronic structure that is probed [22–24]. Thus, an

implementation of the LSDA+DMFT using a Green’s function based band structure method

allows to combine an improved treatment of correlation effects via the DMFT for a wide vari-

ety of complex systems with a reliable description of their spectroscopic properties. This is a

very attractive feature as it allows on the on-hand side a reliable and detailed interpretation of

experimental results and on the other hand to monitor the achievements made by inclusion of

correlation effects via the DMFT.

In fact the KKR method of Korringa [25], Kohn and Rostoker [26] is the first band structure

method formulated in terms of Green’s functions. The obvious advantage of the KKR method

lies in the transparent multiple scattering formalism which allows to express the Green’s func-

tion directly in terms of single-site scattering and geometrical or structural quantities. Thus it

seems to be rather natural to combine the DMFT and KKR methods to arrive at a very reliable

and flexible band structure scheme that includes correlation effects beyond the standard local

density (LSDA) or generalized (GGA) approximations.

2 The LSDA+DMFT scheme

In order to account within LSDA-band structure calculations for correlations an improved hy-

brid Hamiltonian was proposed by Anisimov et al. [27, 28]. In its most general form such a

Hamiltonian is written as

H = HLSDA +HU −HDC , (1)

where HLSDA stands for the ordinary LSDA Hamiltonian, HU describes the effective electron-

electron interaction and the one-particle Hamiltonian HDC serves to eliminate double counting

of the interactions already accounted for by HLSDA.

Using second quantization a rather general expression for HU is given by:

HU =
1

2

∑

n,ijkl

Un
ijklĉ

†
niĉ

†
nj ĉnk ĉnl , (2)

where n runs over all the sites at ~Rn of the crystal and the creation (ĉ†) and annihilation (ĉ)

operators are defined with respect to some subset of localized orbitals φi(~r − ~Rn). For the

applications presented below these will be the d-orbitals of the transition metals considered.

The constants Un
ijkl are matrix elements of the screened Coulomb interaction v(~r − ~r ′):

Un
ijkl =

∫

d3r

∫

d3r ′φ†
i(~r − ~Rn)φ

†
j(~r

′ − ~Rn)v(~r − ~r ′)φk(~r
′ − ~Rn)φl(~r − ~Rn) . (3)

The resulting many-particle Hamiltonian can not be diagonalized exactly, thus various methods

were developed in the past to find an approximate solution [21]. Among them one of the most

promising approaches is to solve Eq. (1) within DMFT that was developed originally to deal

with the Hubbard model.
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The main idea of the DMFT is to map a periodic many-body problem onto an effective single-

impurity problem that has to be solved self-consistently. For this purpose one describes the

electronic properties of the system in terms of the one-electron Green’s function Ĝ(E), being

the solution of the equation:
[

E − Ĥ − Σ̂(E)
]

Ĝ = 1̂ , (4)

where E is the complex energy and the effective self-energy operator Σ̂(E) is assumed to be a

single-site quantity for site n:

Σ̂(E) =
∑

ij

|φni〉Σij(E)〈φnj| . (5)

Fig. 2 shows as an example the spin-dependent self-energy matrix Σij(E) for ferromagnetic Ni

that occurs within Eq. (5). Within DMFT, the self-energy matrix Σij(E) is a solution of the
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Fig. 2: The spin-dependent self-energy matrix Σij(E) for ferromagnetic Ni calculated using a

DMFT-solver based on the FLEX scheme. Only results for the d-orbitals with t2g-symmetry are

shown [17].

many-body problem of an impurity placed in an effective medium. This medium is described

by the so called bath Green’s function matrix G defined as:

G−1
ij (E) = G−1

ij (E) +Σij(E) , (6)

where the one-electron Green’s function matrix Gij(E) is calculated as a projection of Ĝ(E)

onto the impurity site:

Gij(E) = 〈φni|Ĝ(E)|φnj〉 . (7)

As the self-energy Σij(E) depends on the bath Green’s function Gij(E) the DMFT equations

have to be solved self-consistently. Accordingly, from a technical point of view the problem

can be split into two parts. One is dealing with the solution of Eq. (4) and the second one

is the effective many-body problem to find the self-energy Σij(E). The second part can be

dealt with in principle by any DMFT-solver as they are presented in the other lectures. To

have a reasonable balance between accuracy and computing time within charge self-consistent

calculations, one may use for example the perturbative SPTF (spin-polarized T -matrix + FLEX)

scheme [29, 30].
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3 Combination of the LSDA+DMFT with the KKR method

3.1 General idea of the KKR method

The KKR method in its original version [25, 26] was also a ~k-space band structure method

that calculates Bloch wave functions Ψn~k(~r) together with the associated eigen energies En~k

by solving the Lippmann-Schwinger equation complementary to the Schrödinger equation for

a periodic potential V (~r). The free electron gas was used as the reference system with its

corresponding one-electron Green’s function G0(~r, ~r ′, E) in real space. This scheme was later

extended by various authors [31] to determine the one-electron Green’s function G(~r, ~r ′E) of

a solid on the basis of the Dyson equation that again uses the free electron gas as the reference

system. Obviously, this scheme can be used without major modifications for an implementation

of the LSDA+DMFT leading to the following Dyson equation:

G(~r, ~r ′, E) = G0(~r, ~r ′, E) (8)

+

∫

d3r′′
∫

d3r′′′G0(~r, ~r ′′, E)
[

VLSDA(~r
′′)δ(~r ′′ − ~r ′′′) +Σ(~r ′′, ~r ′′′, E)

]

G(~r ′′′, ~r ′, E) .

Here VLSDA(~r) is the local, real and energy-independent LSDA-based potential while the self-

energy Σ(~r, ~r ′, E) is non-local, complex and energy-dependent. In the following it is assumed

that the self-energy is site-diagonal, i.e. Σ(~r, ~r ′, E) is non-zero only if ~r and ~r ′ are within the

same atomic cell n. This is well justified in most cases and allows to use the standard KKR

approach to deal with Eq. (8). It should be mentioned, however, that taking Σ(~r, ~r ′, E) to be

site-diagonal is not a necessary requirement for a KKR-based implementation. This implies

in particular that extensions necessary to deal with a cluster formulation of the DMFT or a ~k-

dependent self-energy are possible.

Within the KKR method the Dyson equation (8) is solved by application of multiple scattering

theory. This formalism splits the problem into two parts. In a first step the LSDA- or here the

LSDA+DMFT-based Schrödinger-like equation is solved for each inequivalent atomic site n in

the system (single-site problem). This implies that for a given energy E the corresponding wave

functions Ψ (~r, E) are calculated that in turn can be used to set up the single-site t-matrix tnLL′(E)

in an angular momentum representation (L = (l, ml)). In a second step, the multiple scattering

problem for the solid is solved assuming free-electron like propagation of the electrons between

the atomic sites n. The corresponding Green’s function of the free electron gas is represented

by the so-called structure constants G0nn′

LL′ (E) that contain only structural information on the

system. For periodic solids the multiple scattering problem is solved by a Fourier transformation

and G0
LL′(~k, E) depends on the wave vector ~k accordingly. For finite systems, the multiple

scattering problem can also be solved directly in real space [18]. Within the KKR-formalism,

the solution of the multiple scattering problem is represented by the so-called scattering path

operator τnn
′

LL′(E) that describes the transfer of an electronic wave with character L′ at site n′
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to a wave with character L at the site n with all possible scattering events in between self-

consistently taken into account. With the scattering path operator τnn
′

LL′(E) available the Green’s

function G(~r, ~r ′, E) of the system can be set up straight forwardly. The sequence of the various

steps of a KKR-implementation are shown in Fig. 3.

CPA

SCF cycle

VLSDA(~r) Σ(E)
⇓

single-site problem: tLL′(E)
⇓

multiple scattering: τLL′(E)
⇓

KKR-Green’s function: G(~r, ~r ′, E)
⇓

charge ρ(~r)
⇓

LSDA

⇓
VLSDA(~r)

⇓
G-matrix GLL′(E)

⇓
DMFT-solver

⇓
Σ(E)

F

KKR
Σ
G

E

DMFT
(FLEX)

Fig. 3: LSDA+DMFT scheme as implemented on the basis of the KKR formalism. The right

part of the figure shows the various energy contours used in case of using a FLEX DMFT-solver

(see text).

This brief description of the KKR-formalism makes clear that going from the LSDA to the

LSDA+DMFT affects only the single-site but not the multiple scattering problem. This also

implies that the DMFT self-energy Σ already enters the scheme when calculating the basis

functions. As can be seen from the Dyson equation (8) the LSDA- and DMFT-parts of the

electronic structure problem of the solid are accordingly dealt with on the same level.

3.2 Solution of the single-site problem

The solution of the single-site problem including the DMFT self-energy can be worked out fol-

lowing the full-potential description of the KKR formalism [32]. In terms of the wave functions

the single-site quasi particle equation to be solved for each spin channel σ reads

[−~∇2 + V σ(r)− E]Ψ (~r, E) +

∫

Σσ(~r, ~r ′, E)Ψ (~r ′, E) d3r ′ = 0 . (9)

In the following the spin index σ is omitted for the moment keeping in mind that for a spin-

polarized system described in a non-relativistic way, one has to solve Eq. (9) for each spin

channel (see for example Fig. 2) independently. For a particular solution Ψν(~r, E) labeled by
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the index ν one can start from the ansatz:

Ψν(~r, E) =
∑

L

ΨLν(~r, E) , (10)

where the partial waves ΨLν(~r, E) are chosen to have the same form as the linearly independent

solutions for the spherically symmetric potential:

ΨLν(~r, E) = ΨLν(r, E)YL(r̂) , (11)

with L = (l, ml) standing for the angular momentum and magnetic quantum numbers and

YL(r̂) are spherical harmonics. Inserting the ansatz (10) into the single-site equation (9) and in-

tegrating over angle variables leads to the following set of the coupled radial integro-differential

equations:

[

d2

dr2
− l(l + 1)

r2
− V (r) + E

]

ΨLν(r, E) =

∫

d3r′Σ(~r, ~r ′, E)ΨLν(~r
′, E) , (12)

where the basis functions φL(~r) = φl(r)YL(r̂) will be normalized and suitably chosen d-like

wave functions when dealing with transition metals.

For a general non-diagonal self-energy a radial equation similar to Eq. (12) has to be solved to

get the so-called left-hand solutions. This implies one has to consider the two adjoint equations

[33]:

(Ĥ + Σ̂ − E)|Ψ〉 = 0 (13)

〈Ψ×|(Ĥ + Σ̂ −E) = 0 , (14)

where the superscript × is used to distinguish the left hand solution |Ψ×〉 from the standard

right hand solution |Ψ〉.
In principle these equations can be solved by summing a corresponding Born series. So far,

however, the equations have been simplified taking advantage of the following special repre-

sentation for the self-energy:
∫

d3r′Σ(~r, ~r ′, E)ΨLν(~r
′, E) =

∑

L

∫

d3r′ΣL′L(E)φ
†
L′(~r)φL(~r

′)ΨLν(~r
′, E) (15)

≈
∑

L

ΣL′L(E)ΨLν(~r, E) .

This way the integro-differential equation Eq. (12) becomes a pure differential equation:

[

d2

dr2
− l(l + 1)

r2
− V (r) + E

]

ΨLν(r, E) =
∑

L′

ΣLL′(E) ΨL′ν(r, E) . (16)

After having solved the set of coupled equations for the wave functions one gets the correspond-

ing single-site t-matrix by introducing the auxiliary matrices a and b [20]:

aLν(E) = −ipr2
[

h−L (pr), Ψ
ν
L(r)

]

r
(17)

bLν(E) = −ipr2
[

h+L (pr), Ψ
ν
L(r)

]

r
.
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Here p =
√
E is the momentum, h±L(pr) are Hankel functions of the first and second kind and

[. . .]r denotes the Wronskian. Evaluating the Wronskians at Wigner-Seitz radii rWS that defines

the range of the potential associated with site n one finally has (in matrix notation) [20, 34]:

t(E) =
i

2p

[

a(E)− b(E)
]

b−1(E) . (18)

The regular wave functions Z used to set up the electronic Green’s function within the KKR-

formalism [35] are obtained by a superposition of the wave functions Ψν according to the bound-

ary conditions at r = rWS:

ZL(~r, E) =
∑

ν

Cν
LΨν(~r)

r=rWS−→
∑

L ′

jL ′(~r, E)t(E)−1
L′L − iph+L (~r, E) . (19)

The irregular solutions JL needed in addition are fixed by the boundary condition

JL(~r, E)
r=rWS−→ jL(~r, E) (20)

with the functions jL being the spherical Bessel functions.

3.3 Multiple scattering and Green’s function

Instead of considering the single-site problem for the wave function ψn(~r, E) in terms of the

Lippmann-Schwinger equation (9) one can alternatively deal with the single-site Green’s func-

tion Gn(~r, ~r ′, E) in terms of the corresponding Dyson equation with the potential and self-

energy restricted to site n (see Eq. (8)). Ignoring the self-energy Σ for the moment and repre-

senting all quantities by their associated operators this may be written as [36]:

Ĝn(E) = Ĝ0(E) + Ĝ0(E) V̂ n Ĝn(E) . (21)

The single-site t-matrix tnl (E) used above to account for the matching of the wave functions

Ψn
Lν(r, E) at the radius r = rWS is related to a corresponding single-site t-matrix operator

t̂n(E) that allows to write an explicit expression for Ĝn(E) [36]:

Ĝn(E) = Ĝ0(E) + Ĝ0(E) t̂n(E) Ĝ0(E) . (22)

Completely analogous equations emerge when one is dealing with an array of scatterers [36]:

Ĝ = Ĝ0(E) + Ĝ0(E) V̂ Ĝ(E) (23)

= Ĝ0(E) + Ĝ0(E) T̂ (E) Ĝ0(E) , (24)

where all quantities refer now to the total system. Decomposing all scattering processes into

sequences of single-site scattering events, represented by single-site t-matrix operators t̂n(E),

and free propagation according to Ĝ0(E) in-between, one may decompose the total t-matrix

operator T̂ (E) accordingly. This central idea of multiple scattering theory is illustrated by

Fig. 4. Using the scattering path operator τ̂nn
′

(E) introduced by Gyorffy and Stott [37] one



12.10 H. Ebert, J. Minár, and D. Ködderitzsch

Fig. 4: Central idea of multiple scattering theory: decomposition of electronic motion into

scattering at atomic sites and free-electron like propagation in between. The bottom of the

figure gives a sketch for the potential along the dashed line.

gets [36, 38]:

T̂ (E) =
∑

nn′

τ̂nn
′

(E) , (25)

where τ̂nn
′

(E) is defined to transfer an electronic wave incoming at site n′ into a wave outgoing

from site nwith all possible scattering events that may take place in-between in a self-consistent

way. Adopting an angular momentum representation as introduced in the previous section, this

requirement implies for the corresponding matrix the following equation of motion

τnn
′

(E) = tn(E) δnn′ + tn(E)
∑

k 6=n

G0nk(E) τkn
′

(E) , (26)

where the underline indicates matrices with respect to L with (τnn
′

)LL′ = τnn
′

LL′ etc. For a finite

system this equation is solved straight forwardly by a matrix inversion [39]:

τ (E) = [t(E)−1 −G0(E)]−1 , (27)

where M = [t−1 −G0] is the so-called real-space KKR-matrix. The double underline indicates

matrices with respect to the angular momentum and site indices, L and n, respectively, with

[τ ]nn′ = τnn
′

, [G0]nn′ = G0nn′

and [t]nn′ = tnδnn′ . The energy argument has been dropped

here. Dealing with a three-dimensional periodic system Eq. (26) can also be solved exactly by

Fourier transformation leading to [36, 38]:

τnn
′

(E) =
1

ΩBZ

∫

ΩBZ

d3k [t(E)−1 −G0(~k, E)]−1 ei
~k·(~Rn−~R

n′ ) , (28)

with the (reciprocal space) structure constants matrixG0(~k, E) being the Fourier transformed of

the real-space structure constants matrixG0(E) that represent the free-electron like propagation.

Having constructed a set of regular (Z) and irregular (J) solutions of the single-site problem

together with the t-matrix and solved the multiple-scattering problem in Eq. (26) subsequently,
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the corresponding Green’s function is obtained from the expression [35]:

G(~rn + ~Rn, ~r
′
m + ~Rm, E) =

∑

LL′

ZL(~rn, E)τ
nm
LL′(E)Z×

L′(~r
′
m, E)

−δnm
∑

L

[

ZL(~rn, E)J
×
L (~r

′
n, E)Θ(r

′
n − rn)

+JL(~rn, E)Z
×
L (~r

′
n, E)Θ(rn − r′n)

]

. (29)

Given the local nature of the many-body solver used within the DMFT approach, the KKR

Green’s function in Eq. (29) has to be projected accordingly to the matrix Gnm
LL′ (see Eq. (7)).

The projection is performed through the following integration:

Gnm
LL′(E) =

∑

L1L2

(
∫

d3rφ†
L(~r)ZL1

(~r, E)

)

τnmL1L2
(E)

(
∫

d3r ′Z×
L2
(~r ′, E)φL′(~r ′)

)

−δnm
∑

L1

[

∫

d3r ′

(

∫ r ′

0

d3rφ†
L(~r)ZL1

(~r, E)

)

J×
L1
(~r ′, E)φL′(~r ′)

+

∫

d3r ′

(
∫ rWS

r ′

d3rφ†
L(~r)JL1

(~r, E)

)

Z×
L1
(~r ′, E)φL′(~r ′)

]

. (30)

The Green’s function matrixGnm
LL′(E) (actually Gσnm

LL′ (E) for both spin channels) represents the

input into the solution of the effective impurity problem. As the DMFT-approach concentrates

on the correlation among electrons of the same angular momentum l only the l− l-subblock of

this matrix will be used in the following. For the transition metal systems dealt here this implies

that only the d-d-subblock is considered with φL(~r) being appropriate reference wave functions

with l = 2.

3.4 Electronic structure and relativistic extension

With the Green’s function available the most prominent electronic properties of a solid may be

expressed and calculated in a straight forward way. For example the density of states (DOS)

n(E), the electron density ρ(~r) and the expectation value of a one-electron operator A may be

obtained from the expressions

n(E) = −1

π
ℑ
∫

V

d3r G+(~r, ~r, E) (31)

ρ(~r) = −1

π
ℑ
∫ EF

dE G+(~r, ~r, E) (32)

〈A〉 = −1

π
ℑ
∫ EF

dE

∫

V

d3rAG+(~r, ~r, E) , (33)

where V is the volume associated with the atom at site n. As an example Fig. 5 shows the

spin-resolved density of states n↑(↓)(E) calculated for fcc-Ni on the basis of the LSDA and

LSDA+DMFT. Obviously, one can note three prominent changes in the DOS when going
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Fig. 5: Spin-resolved density of states n↑(↓)(E) for fcc-Ni calculated via the LSDA and

LSDA+DMFT. The upper (lower) panel shows the DOS for the minority (majority) spin [17].

from the LSDA to the LSDA+DMFT: The DOS curves show much less structures and ap-

pear smeared-out, the band width shrinks and a satellite peak at around 7 - 8 eV binding energy

occurs. All these features can be traced back to the characteristics of the self-energy Σ shown

in Fig. 2. In particular one can ascribe the smearing out of the DOS to the imaginary part of Σ

while the shrinking of the band width and the satellite is associated with its real part.

To allow for a more detailed discussion of the electronic structure one may introduce the

Bloch spectral functionAB(~k, E) by a Fourier transformation of the real space Green’s function

G(~r, ~r ′, E)

AB(~k, E) = − 1

πN

N
∑

n,m

eı
~k(~Rn−~Rm)ℑ

∫

Ω

d3r
〈

G(~r + ~Rn, ~r + ~Rm, E)
〉

. (34)

For an ordered system dealt with on the basis of the LSDA this leads simply to a set of δ-

functions representing the conventional dispersion relation Ej~k. Calculating AB(~k, E), how-

ever, on the basis of the LSDA+DMFT the imaginary part of the self-energy leads to a corre-

sponding broadening, that reflects the finite life time of electronic states with fixed ~k-vector.

Corresponding results are shown in Fig. 6 for fcc-Ni. As one notes, the shrinking of the band

width and the broadening of the bands take place primarily in the d-band regime.

For the sake of clarity the KKR formulation has been introduced above on a non-relativistic

level. For many situations, however, relativistic corrections to the Schrödinger equation play a

central role. In fact the interplay of relativistic effects and correlations have been investigated

already by various authors on the basis of the LSDA+DMFT [41, 8, 42, 29, 43–45]. Obviously,

the most reliable treatment is achieved on the basis of the fully relativistic Dirac formalism.

Ignoring the self-energy for the moment this takes the form [46]:

[

~

i
c~α · ~∇+ βmc2 + V̄ (~r) + β~σ · ~Beff(~r)

︸ ︷︷ ︸

Vspin(~r)

]

Ψ (~r, E) = E Ψ (~r, E) , (35)
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Fig. 6: Band structure of ferromagnetic Ni for ~k along ΓX. Left: LSDA-based dispersion

relation Ej~k , right: LSDA+DMFT-based Bloch spectral function AB(~k, E) [40].

where αi and β are the standard 4 × 4 Dirac matrices [47] and V̄ (~r) is the scalar Coulomb and

spin-averaged part of the exchange-correlation potential. The spin-dependent part Vspin(~r) of

the latter one is represented by an effective magnetic field

~Beff(~r) =
δExc[n, ~m]

δ ~m(~r)
(36)

that is determined by the spin magnetization ~m(~r). Assuming a collinear spin magnetization

within an atomic cell one can always choose ẑ′ such to have:

Vspin(~r) = βσz′ Beff(r) . (37)

To deal with the KKR single-site problem the ansatz

Ψν(~r, E) =
∑

Λ

ΨΛν(~r, E) =
∑

Λ

(

gΛν(r, E)χΛ(r̂)

ifΛν(r, E)χ−Λ(r̂)

)

(38)

is made for the four-component wave function Ψν(~r, E) in analogy to Eq. (10). Here the partial

waves ΨΛν(~r, E) are constructed using the radial functions, gΛν(r, E) and fΛν(r, E), of the large

and small, respectively, components together with the spin-angular functions [47]

χΛ(r̂) =
∑

ms=±1/2

C(l
1

2
j;µ−ms, ms) Y

µ−ms

l (r̂)χms
(39)

with the Clebsch-Gordon coefficientsC(l 1
2
j;µ−ms, ms) and the short hand notationΛ = (κ, µ)

and −Λ = (−κ, µ) for the relativistic spin-orbit and magnetic quantum numbers, κ and µ,

respectively. Obviously, the spin-angular functions χΛ(r̂) are the relativistic counter part to the

spherical harmonics occurring in Eq. (10). In particular they are eigen functions to the square

of the total angular momentum operator~j2, its z-component jz as well as the spin-orbit operator
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K̂ with the eigen values j(j + 1), µ and −κ, respectively, with the quantum numbers restricted

by the relations j = l± 1
2
, µ = −j · · ·+j, κ = l = j+ 1

2
for j = l− 1

2
and κ = −l−1 = −j− 1

2

for j = l + 1
2

[47].

Inserting the ansatz in Eq. (38) into the Dirac equation (35) leads to a coupled set of radial equa-

tions for the radial functions gΛν(r, E) and fΛν(r, E) in analogy to Eq. (16). With an extension

of Eqs. (16) through (18) the corresponding single-site t-matrix can finally be evaluated [48].

This scheme implies that the spin-polarization i.e. magnetization of a solid is treated on the

same footing as all relativistic effects – in particular the spin-orbit coupling. Complementing

the LSDA potential V (~r) with the DMFT self-energy Σ, as done in Eq. (12) leads to a coherent

treatment of all relativistic and correlation effects as well as spin-polarization when solving the

single-site problem. Treatment of the multiple-scattering problem is done again in full analogy

to the non-relativistic formalism described by Eqs. (21) through (28).

The relativistic approach sketched above was formulated in the (κ, µ)-representation. Restrict-

ing the expansion of the wave functions ΨΛν in Eq. (38) up to the angular momentum lmax = 2

the resulting matrices have the dimension 2(lmax+1)2 = 18. Accounting for correlation effects

by means of the DMFT scheme for transition metals implies that the corresponding one-electron

Green’s function matrix GΛΛ′ for the d-electrons has the dimension 10. To deal with the DMFT

the (l, ml, ms)-representation is more suitable implying that one has spin-flip components like

G↑↓
mlm

′

l

for the Green’s function matrix because of the inclusion of spin-orbit coupling. As a

consequence the DMFT self-energy Σ will also be a 10× 10 matrix with spin-flip components.

As an example Fig. 12 shows corresponding results for the d-states of Ni in fcc-Ni and for the

f-states of U in ferromagnetic US. As one can see, the spin-flip componentsΣ↓↑ are quite small
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Fig. 7: Spin-dependent self-energy Σmsm′

s(E) of the d-states of Ni in fcc-Ni (left) and the f-

states of U in ferromagnetic US (right) (unpublished).

compared to the spin-diagonal ones Σmsms in the case of Ni. For U on the other hand, they are

much larger and comparable to Σmsms . This is explained of course by the high atomic number

of U and the strong spin-orbit coupling associated with this.



KKR-DMFT 12.15

3.5 The self-consistency cycle

A flow chart depicting the self-consistent LSDA+DMFT approach is shown in Fig. 3. The radial

equations Eq. (12) provide the set of regular (Z) and (J) irregular solutions of the single-site

problem. Together with the t-matrix, the scattering path operator τ and the KKR Green’s func-

tion is constructed via Eq. (29). To solve the many-body problem the projected impurity Green’s

function matrix is constructed according to Eq. (30). The LSDA Green’s function Gnn
LL′(E) is

calculated on a complex contour (semi circle) which encloses the valence band one-electron en-

ergy poles. The Padé analytical continuation is used to map the complex local Green’s function

Gnn
LL′(E) on the Matsubara axis which is used when dealing with the many-body problem. For

most applications the perturbative SPTF (spin-polarized T -matrix + FLEX) solver of the DMFT

problem has been used so far. In fact any DMFT solver could be included which supplies the

self-energy Σ(E) as a solution of the many-body problem. The Padé analytical continuation

is used once more to map back the self-energy from the Matsubara axis to the complex plane,

where the new local Green’s function is calculated. As was described in the previous sections,

the key role is played by the scattering path operator τnnLL′(E), which allows to calculate the

charge at each SCF iteration and the new potentials that are used to generate the new LSDA

Green’s function. In practice it turns out that the self-energy converges faster than the charge

density. Of course double counting corrections have to be considered explicitly when calculat-

ing the total energy. Concerning the self-energy used in the applications presented below the

double counting corrections are included when solving the many-body problem (see Ref. [30]).

3.6 Treatment of disordered alloys

Using a local mean-field approximation to treat electron correlations, the corresponding self-

energy gets diagonal in the site representation. This allows to use the coherent potential alloy

theory (CPA) [19] for the configurational averaging as suggested by Drchal et al. [11]. These

authors pointed out that an averaged coherent potential for disordered interacting systems can

be constructed using the so-called terminal-point approximation when dealing with disordered

alloys, as it was suggested.

Among the electronic structure theories, those based on the multiple scattering formalism are

the most suitable to deal with disordered alloys within the CPA. This scheme is considered to be

the best theory among the so-called single-site (local) alloy theories that assume complete ran-

dom disorder and ignore short-range order [20]. Combining the CPA with multiple scattering

theory leads to the KKR-CPA scheme, which is applied nowadays extensively for quantitative

investigations of the electronic structure and properties of disordered alloys [20,49]. Within the

CPA the configurationally averaged properties of a disordered alloy are represented by an aux-

ilary ordered CPA-medium, which in turn may be described by a corresponding site-diagonal

(n = m) scattering path operator τCPA. The corresponding single-site t-matrix tCPA and multi-

ple scattering path operator τCPA are determined by the so called CPA-condition:

xAτ
A + xBτ

B = τCPA. (40)
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Here a binary system AxB1−x with relative concentrations xA = x and xB = 1−x is considered.

The above equation represents the requirement that embedding substitutionally an atom (of type

A or B) into the CPA medium should not cause additional scattering as illustrated by Fig. 8. The

xA + xB =

Fig. 8: The major ideas of the CPA: The configurational average over all configurations of a

disordered alloy AxB1−x is represented by an auxiliary CPA medium. Embedding of an A or B

atom should not give rise to additional scattering with respect to the CPA medium.

scattering properties of an A atom embedded in the CPA medium, are represented by the site-

diagonal component-projected scattering path operator τA

τA = τCPA
[

1 +
(

t−1
A − t−1

CPA

)

τCPA
]−1

, (41)

where tA and tCPA are the single-site matrices of the A component and of the CPA effective

medium. A corresponding equation holds also for the B component in the CPA medium. The

coupled sets of equations for τCPA and tCPA have to be solved iteratively within the CPA cycle.

It is obvious that the above scheme can straightforwardly be extended to include the many-

body correlation effects for disordered alloys. As was pointed above, within the KKR+DMFT

approach the local multi-orbital and energy dependent self-energy ΣA(B) is directly included

in the single-site matrices tA and tB, respectively. Having solved the CPA equations self-

consistently, one has to project the CPA Green’s function onto the components A and B by

using Eqs. (30) and (41). In Eq. (30) the multiple scattering path operator τσLL′ has to be replaced

by the component-projected scattering path operator τA,σ
LL′ of an A-atom in a CPA medium. The

components Green’s functionsGA(B) are used to construct the corresponding bath Green’s func-

tions for which the DMFT self-consistency condition is used according to Eq. (6):

G−1
A(B)(E) = G−1

A(B)(E) +ΣA(B)(E) . (42)

The many-body solver in turn is used to produce the component specific self-energies ΣA(B):

ΣA(B)(E) = ΣA(B)(E)[GA(B)(E)] . (43)

As an example for this Fig. 9 shows the corresponding results of an application to the ferromag-

netic alloy system fcc-FexNi1−x. As one notes the self-energy for the two alloy components

are quite different and show a pronounced concentration dependency. For Fe the results of pure

bcc-Fe are given in addition. These demonstrate the strong change of the Fe self-energy that

occurs when going from the bcc to the fcc phase with a stronger exchange splitting present for

the later one.
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Fig. 9: Left: Concentration dependence of the real part of the spin resolved self-energy for Fe

in FexNi1−x. Only results for t2g d-orbitals are shown. Right: Same as in the left panel but for

Ni. (dashed: x=0.1, dotted: x=0.4, dash-dotted: x=0.75, full: bcc-Fe) [17].

In the alloy system FexNi1−x both components are influenced by correlation effects in a com-

parable way. For the alloy system NixPd1−x, on the other hand, correlation effects should play

a minor role for Pd due to the broader width of the d-band. In addition Pd as a pure element

is non-magnetic and has a much higher atomic number than Ni. As a consequence one can

follow simultaneously the variation of correlation effects, exchange splitting and of spin-orbit

splitting in this alloy system when the concentration is varied. Fig. 10 shows a sequence of

Bloch spectral functions AB(~k, E) for NixPd1−x including the pure elements Ni and Pd. As

DMFT-corrections are included only for Ni the Bloch spectral function is smeared out only

for Ni, while for Pd a conventional dispersion relation Ej~k emerges. For the alloys additional

broadening occurs due to the chemical disorder in the system.

4 Applications

4.1 Ground state properties

The KKR-based implementation of the LSDA+DMFT allows the calculation of a large variety

of physical properties of the system under investigation. This permits a direct comparison with

experimental data and this way to check the theoretical results. Corresponding studies have

been made so far in particular for the magnetic moments in various transition metal systems

[43, 17, 40, 50]. Using the relativistic KKR formalism the spin and orbital magnetic moments

are obtained as expectation values of the operators µBβΣz and µBβlz, resp. (see Eq. (33)). A

comparison to experiment for the magnetic moments calculated within the LSDA as well as



12.18 H. Ebert, J. Minár, and D. Ködderitzsch

Fig. 10: Spin-polarized Bloch spectral functions for NixPd1−x. Results for LSDA (first and third

row) and LSDA+DMFT (second and fourth row) calculations are shown starting from pure Pd

(upper panel, left side) to pure Ni (lower panel, right side) [40].
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the LSDA+DMFT for bcc Fe, hcp Co and fcc Ni is shown in Fig. 11. The self-energy was

parameterized using the values U = 3 eV for Co and Ni, and U = 2 eV for Fe. As expected, the

Fe Co Ni
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Fig. 11: Spin (left) and orbital (right) magnetic moments in bcc Fe, hcp Co and fcc Ni calculated

using LSDA+DMFT (hatched blue bars) compared with plain LSDA calculations (black filled

bars) and experimental data (red bars). The corresponding DMFT parameters are UFe = 2 eV,

UCo = UNi = 3 eV and JFe = JCo = JNi = 0.9 eV [43].

LSDA+DMFT approach gives results similar to the orbital polarization (OP) scheme of Brooks

[51, 52]: the small orbital splittings imposed by the LSDA+DMFT around the Fermi level have

almost no effect on the spin moment, but enhance the orbital moment in an appreciable way.

By construction the dynamical part of the self-energy Σ in the vicinity of the Fermi level be-

haves like that of a Fermi liquid. Thus it cannot noticeably affect integral quantities as spin

and orbital magnetic moments. On the other hand, the applied AMF (around mean field) static

double counting which splits the orbitals only slightly at the Fermi level, has no impact on the

renormalization of the density of states. As a consequence from Fig. 2, the total DOS curves

calculated within LSDA and LSDA+U as well as within LSDA+Σ (i.e. only the dynamical part

of the self energy is used) and LSDA+DMFT are nearly indistinguishable [43]. As the energy

shifts of the (−m,−m) and (m,m) matrix elements of the Green’s function occur in opposite

directions, the total DOS shift for a given spin character appears to be small. As a result, the

most affected quantity is the orbital magnetic moment while the change of the spin moment is

negligible. At the same time the renormalization of the spectrum is controlled by the dynamical

part of the self-energy (see below).

It follows from the various DMFT studies as well as from the DMFT+GW-based calculation

[53] that realistic values of U for 3d-TMs are found between 2-3 eV. As it is shown in Fig. 11

this range of U parameters brings both spin and orbital moments into very close agreement

with experiment. In the case of Fe the deviation of the orbital moment for U above 2 eV are

found to be rather big [43], so that the optimal values of U are confined within 1.5-2 eV. On

the other hand, it was already proposed [54] that the local approximation (DMFT) works much

better for Ni and Co than for Fe due to relative softness of magnons in the latter case. Recently,

the essential non-locality of correlation effects in Fe was also demonstrated experimentally by

angle-resolved photo emission [55].

The KKR formalism offers a great flexibility concerning the geometry of the investigated sys-
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Fig. 12: Left: Spin-dependent self-energy Σ↑(↓) for the surface, sub-surface (L1) and bulk-

like atomic layers at the (100)-surface of Ni. Right: spin (top) and orbital (bottom) magnetic

moments for the individual atomic layers of the (100)-surface of Ni calculated via the LSDA

(circles) and LSDA+DMFT (squares) (unpublished).

tem. An example for this is the treatment of surface systems that are usually described in an

approximate way by using a film geometry. Within KKR formalism one may consider a number

surface near atomic layers on top of a half-infinite bulk-like substrate. As an example Fig. 12

shows some preliminary results for the (100)-surface of Ni for which the 8 top most layers were

allowed to relax concerning the charge and potential. As one can see in the left part of the

figure the self-energy approaches very rapidly the bulk; already the subsurface layer (L1) has

a self-energy very close to that for the bulk. The spin and orbital magnetic moments, however,

show an oscillatory behavior very similar to that found within LSDA-calculations.

As described above, a combination of the KKR with the CPA alloy theory allows to deal

straight forwardly with disordered alloys. This appealing feature has been exploited so far

to study among others the impact of correlations effects on the alloy systems FexNi1−x [17],

FexCo1−x [43] and NixPd1−x [40]. Corresponding results for the spin and orbital magnetic

moments of FexCo1−x are shown in Fig. 13. As can be seen from this figure, while the spin

magnetic moments for all approaches agree rather well, LSDA+DMFT considerably improves

the orbital moments in comparison to plain LSDA calculations in a way similar to the result

obtained using the LSDA+OP combined with the CPA [52]. Also in contrast to both the LSDA

and LSDA+OP calculations, a better agreement with experimental spin magnetic moments is

achieved by LSDA+DMFT within the Fe-rich area of concentrations.

Bulk fcc Ni is a sort of standard test-case for every approach to correlated materials. For this

reason it has been chosen for first KKR-based investigations on the influence of correlation ef-

fects on the total energy [56]. For this purpose LSDA+DMFT calculations on fcc Ni for various

lattice constants starting from a = 6.2 a.u. and up to a = 7.4 a.u. have been performed. The

local DMFT problem was studied for different values of U in the range between 2 and 3 eV,

considered acceptable from the results of constrained LSDA calculations [58, 59] and previous
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Fig. 13: Spin (left) and orbital (right) total magnetic moments of bcc FexCo1−x alloys calcu-

lated via LSDA+DMFT (filled squares), compared to plain LSDA (open squares), LSDA+OP

calculations [52] (filled circles), and experimental data (red triangles). The corresponding

DMFT parameters are UFe = 2 eV, UCo = 3 eV and JFe = JCo = 0.9 eV [43].
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Fig. 14: Left: Energy versus lattice-constant curves for fcc Ni in the LSDA and in the

LSDA+DMFT scheme. The zero of the energy of each curve is set to its own minimum value

E0 and three chosen values of U are presented (T = 400 K). Right: Computed values of the

equilibrium atomic volume V0 and the bulk modulus B of fcc Ni for the standard LSDA and for

the LSDA+DMFT scheme [57].

LSDA+DMFT simulations. The temperature was set as T = 400 K and 2048 Matsubara fre-

quencies were used. As for the DFT part, convergence in the LSDA+DMFT total energy was

considered acceptable when the changes for subsequent iterations were smaller than 0.1 meV.

On the left-hand side of Fig. 14, one can see the total energy curves as functions of the lat-

tice constant for the KKR implementation. The curves have been shifted with respect to their

minima, so it is easier to compare them. As observed in previous calculations [60], in LSDA

the equilibrium value of the lattice constant is slightly (3%) underestimated with respect to the

experimental one. Looking at the curves for the LSDA+DMFT simulations, one immediately

notices that the results are strongly dependent on the value of the Hubbard U . Furthermore

the best result seems to be obtained for U = 2 eV, i.e. for a value smaller than the widely

accepted U = 3 eV. On the other hand, the curve for U = 3 eV seems to overestimate corre-



12.22 H. Ebert, J. Minár, and D. Ködderitzsch

lation effects. The explanation of these results is in the perturbative nature of the SPTF solver,

which tends to overestimate correlation effects in fcc Ni. This was noticed since the first im-

plementation [30], when comparison between LSDA+DMFT results with the SPTF solver and

numerically exact Quantum Monte-Carlo solver showed the best agreement for U = 2 eV. Fur-

thermore in the already mentioned calculation of the orbital polarization of Ni, it is shown that

SPTF with U = 3 eV gives too strong a correction to the orbital moment [43]. The table on the

right-hand side of Fig. 14, where the equilibrium atomic volume V0 and the bulk modulusB are

given, allows a more quantitative comparison of implementations of the DMFT using the KKR

and LMTO respectively, and with previous LSDA studies of fcc Ni [60]. These values of V0
and B have been computed with polynomial fitting of the energy versus atomic volume curve

around the minimum. In addition also fitting through Birch-Murnaghan equation of state [61]

was done, leading to almost identical results and confirming the stability of the data.

As for the total energy curves, the best results are obtained for U = 2 eV, and one can see that

the inclusion of local correlation effects into the LSDA results corrects both the equilibrium

atomic volume and the bulk modulus in the right way. While this fact is interesting on its own,

one should notice that to have more precise results from a quantitative point of view, a more

strict relation between solver, correlated orbitals and values of U is needed. Naturally it would

be interesting to repeat these calculations with the numerically exact quantum Monte-Carlo

solver to check if better agreement with the experiment can be obtained. Another interesting

property can be deduced from the table on the right-hand side of Fig. 14: while the equilibrium

atomic volumes are independent of the full self-consistency, the bulk modulus looks to be more

strongly influenced. As expected, this discrepancy is proportional to the strength of U .

4.2 Electron spectroscopy

Photo emission is an experimental tool that allows to probe the electronic structure of a solid

in a most detailed way. An appropriate theoretical description can be given on the basis of the

one-step model that treats the excitation process, the transfer of the photo electron to the surface

as well as its escape to the vacuum in a coherent way [22]. Within this framework the photo

current intensity is written as:

j~qλ~kms

(E + ω) ∝
∫

d3r

∫

d3r′
[

TRφ
LEED
~kms

(~r, E+ω)

]†

X~qλ(~r)

ℑG(~r, ~r ′, E)X†
~qλ(~r

′) TRφ
LEED
~kms

(~r ′, E+ω) . (44)

Here the manifold of initial states is represented in terms of the one-electron Green’s function

G(~r, ~r ′, E). Within a fully relativistic approach, the interaction of the electrons with the radia-

tion field is described by the operator X~qλ that involves the electronic current density operator

~j = −|e|c~α and the polarization vector ~A~qλ of the radiation with frequency ω. Furthermore, the

final state is written as a so-called time-reversed LEED-state that is expressed by a Lippmann-

Schwinger equation with the free-electron wave function Ξms
ei
~k~r [47] used as a reference:

φLEED
~kms

(~r, E) = Ξms
ei
~k~r +

∫

d3r′G(~r, ~r ′, E) V (~r ′)Ξms
ei
~k~r ′

. (45)
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Implementation of these expressions using the KKR formalism allows, first of all, a proper

description of all geometrical aspects of a photo emission experiment [22]. This includes in

particular the surface of the sample as well as the directions of the incoming photo and outgoing

electron beams. With a proper relativistic treatment of the transition matrix elements all types

of dichroism can be dealt with including the spin polarization of the photo electrons.

Eqs. (44) and (45) allow the calculation of photo electron intensities as measured by a spin

and angle resolved photo emission (ARPES) experiment. Averaging over the emission angle

allows to discuss the spectra of an angle integrated experiment. The results of a corresponding

combined experimental and theoretical study on the pure ferromagnetic metals Fe, Co and Ni

in the soft X-ray regime (~ω = 600 eV) are shown in Fig. 15 [45]. The upper panel shows the

spin-averaged spectra calculated on the basis of the LSDA and LSDA+DMFT in comparison

with experiment. Taking into account the influence of the secondary electrons the theoretical

results for the VB-XPS spectra are in fairly good agreement with experiment in the case of Fe

and Co. For Ni, on the other hand, the LSDA-based calculations lead to a band-width that is

much too large. Furthermore they are not able to reproduce the satellite at about 6 eV binding

energy. In case of the LSDA+DMFT calculations, on the other hand, the appreciable real part

of the self-energy Σ(E) gives rise to a corresponding shrinking of the d-band width of Ni

(compare with discussion of the DOS in Fig. 5). This leads to a much better agreement of the

theoretical VB-XPS spectrum with experiment, as can be seen in Fig. 15. In addition, use of

the LSDA+DMFT scheme leads to a pronounced increase of the intensity in the regime of the

6 eV satellite. The bottom row of Fig. 15 gives the spin difference of the photo-current ∆I+,
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Fig. 15: Top: spin and angle-integrated VB-XPS spectrum of ferromagnetic Fe (left), Co (mid-

dle), and Ni (right) for a photon energy of 600 eV. Bottom: spin difference ∆I = I+↑ − I+↓
of the photo current for excitation with left circularly polarized radiation. Theory: solid line;

experiment: dashed line. The same scale has been used for the intensity and corresponding

spin-difference plots [45].

i.e. the difference of the currents of photo-electrons with spin-up and spin-down with respect

to the surface normal, for an excitation with left circularly polarized radiation. Because the
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polarization analysis of the photo-current is done with respect to an axis that is perpendicular to

the spontaneous magnetization ~m (oriented parallel to the surface), ∆I+ cannot be caused by

the exchange splitting of the ground state. In fact ∆I+ is caused by the Fano-effect. This term

denotes the fact that the spin-orbit coupling together with the transition selection rules gives in

general rise to a spin-polarized photo electron beam - even in case of non-magnetic solids.

As for the total intensity, the theoretical spin difference∆I+ shown in the bottom row of Fig. 15

is found in rather good agreement with experiment in particular for Fe and Co. The sequence for

the maximum (minimum) of∆I+ of Fe, Co and Ni is found to be 1.3, 2.2 and 2.6 (-1.9, -2.7 and

-3.5). Although there are several electronic and structural properties that determine these data,

they nevertheless correlate reasonably well with the strength of the spin-orbit coupling parame-

ters of the d-states (66, 85 and 107 meV, respectively) [62] to identify once more the spin-orbit

coupling as the source for the observed spin-polarization. As for the standard VB-XPS spectra

inclusion of the self-energy Σ(E) leads to a substantial improvement for the agreement of the

theoretical ∆I+ spectrum with experiment. As one can see in Fig. 15, the shrinking of the

band width is also reflected by the ∆I+ curves, while their amplitude and shape is only slightly

changed.

Performing photo emission experiments in the angle-resolved mode (ARPES) obviously sup-

plies much more detailed information on the electronic structure than angle-integrated exper-

iments. If no specific surface-related features show up in the spectra the observed peaks in

an ARPES spectrum may be interpreted qualitatively to reflect the dispersion relation Ej~k via

vertical transitions (∆~k = 0) to free-electron like final states. Fig. 16 shows corresponding

experimental and theoretical ARPES spectra for the (110) surface of Ni with the initial state ~k

vector along ΓY and different angles of emission. The dotted lines represent the experimental

data, whereas the solid lines denote the one-electron approach to the measured spectral function.

Obviously, the LSDA-based (top row) calculation completely fails. The energetic positions of

the theoretical peaks deviate strongly from the measured ones. Furthermore, the complicated

intensity distributions that appear for higher angles of emission could not be reproduced by the

LSDA method at all. In contrast, the non-selfconsistent quasi particle calculation based on the

three-body scattering formalism of Manghi et al. [63] provides a significant improvement when

compared to the measured spectra. For the complete variety of emission angles the energetic

peak positions coincide with the experiment within about 0.1 eV.

Only the overall shape of the measured spectral intensities deviate from the calculations be-

cause of the neglect of multiple scattering and surface-related effects. In the experiment the

different peaks seem to be more broadened and the spectral weight especially for nearly normal

emission is shifted by about 0.1 eV to higher binding energies. In addition, it seems that for

very high emission angles like 60◦ an even more complicated peak structure is hidden in the

experimental resolution. KKR calculations allowed to go far beyond previous theoretical stud-

ies by combining the self-consistent LSDA DMFT method with the one-step based calculation

of the corresponding spectral function. The resulting intensity distributions are shown in the

lower row of Fig. 16. A first inspection reveals very satisfying quantitative agreement between
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Fig. 16: Spin-integrated ARUPS spectra from Ni(110) along ΓY for three different angles of

emission. Upper row: comparison between LSDA-based calculation and experiment [63], mid-

dle row: comparison between experiment and non-self-consistent quasi particle calculations

neglecting matrix element and surface effects [63], lower row: spin-integrated LSDA+DMFT

spectra including photo emission matrix elements (this work). Theory: solid red line, experi-

ment: black dots [44].

experiment and theory for all emission angles. For the emission angle 5◦ the spin-integrated

spectrum exhibits a pronounced double-peak structure with binding energies of 0.1 eV and 0.3

eV. The second peak is slightly reduced in intensity which is also in accordance with the experi-

mental findings. Furthermore, the width of the spectral distribution is quantitatively reproduced.

The calculated binding energies can be ascribed to the real part of the self-energy that corrects

the peak positions due to dynamical renormalization procedure of the quasi particles which is

missing in a typical LSDA-based calculation. The relative intensities and the widths of the dif-

ferent peaks, on the other hand, must be attributed to the matrix-element effects which enter the

calculations from the very beginning via the one-step model of photo emission. As it has been

found for Ni(001) the double-peak structure originates from excitation of the spin-split d bands

in combination with a significant amount of surface-state emission [11]. The two spectra cal-

culated for high angles of emission show the more broadened spectral distributions observable

from the experimental data. An explanation can be given in terms of matrix-element effects, due

to the dominating dipole selection rules. The spin-resolved spectra reveal a variety of d-band

excitations in both spin channels, which in consequence lead to the complicated shape of the
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spectral distributions hardly to be interpreted in the spin-integrated mode.

Spin-resolved ARPES experiments have been made recently for the elemental ferromagnets Fe,

Co and Ni [55, 64]. Fig. 17 displays a comparison between spin-resolved ARPES data and

theoretical LSDA+DMFT calculations of Fe(110) along the ΓN direction of the bulk Brillouin

zone (BZ) for p- and s-polarized photons together with LSDA+DMFT calculations. The k

Fig. 17: Spin-resolved ARPES spectra of Fe(110) in normal emission along ΓN. The curves are

labeled by k in units of ΓN=1.55 Å−1. (a), (c) Experiment [upwards (black) triangles: majority

states, downwards (red) triangles: minority states]. (b), (d) LSDA DMFT theory [dark (black)

and light (red) lines for majority and minority electrons, respectively]. (a), (b) For p- and (c),

(d) for s polarization [55].

values were calculated from the used photon energies ranging from 25eV to 100 eV, using an

inner potential V =14.5 eV.

Near the Γ point (k∼0.06 ΓN), the intense peak close to the Fermi level corresponds to a Σ↓
1,3

minority surface resonance. Experimentally, its Σ↓
3 bulk component crosses the Fermi level at

k ∼0.33 ΓN, leading to a reversal of the measured spin-polarization and to a strong reduc-

tion of the intensity at k =0.68 ΓN in the minority channel, in agreement with the theoretical

results (Fig. 17 (b) and (d)). The peak at the binding energy BE∼0.7 eV, visible mainly for

p-polarization in a large range of wave vectors between Γ and N can be assigned to almost

degenerate Σ↑
1,4 bulk-like majority states (Figs. 17 (a) and (b)). For s-polarization (Fig. 17 (c)

and (d)), a Σ↑
3 feature at BE∼1.1 eV dominates the spectrum at the Γ point. For p-polarization

its degenerate Σ↑
1 states form a shoulder around the same BE. The broad feature around 2.2 eV,

visible at various k points, but not at the N point, is related to a majority Σ↑
1,3 surface state (see

below). Around the N-point (0.76≤ k ≤1.0) and at BE≥3 eV (Figs. 17 (a)) one observes a

Σ↓
1 band having strong sp-character. The pronounced difference between its theoretical and ex-

perimental intensity distributions can be attributed to the fact that in the calculations only local

Coulomb repulsion between d-electrons is considered, without additional lifetime effects for

the sp-bands. Finally, one notices that the background intensity of the spectrum at k=0.66 ΓN,

corresponding to a photon energy of 55 eV, is strongly increasing by the appearance of the Fe 3p

resonance. Comparing the experimental results from spin-integrated and spin-resolved ARPES

measurements with LSDA+DMFT results, one obtains at low BE good agreement for many of
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the peak positions. This is also demonstrated in Fig. 18 (a) and (b) were the experimental peak

positions are compared with the LSDA+DMFT spectral function. Similar calculations based on

the LSDA+3BS scheme are compared with the experimental data in Fig. 17(a) and (c). Since

the theoretical calculations do not show big differences, also the LSDA+3BS spectral function

agrees well at low BE with the experimental peak positions. On the other hand, quantitative

Fig. 18: Spectral functions of Fe(110) and photo emission peak positions obtained from the

spin-resolved measurements for different polarizations (Diamonds for horizontal and circles for

vertical polarization). Results obtained by LSDA+DMFT ((a), (b)) and by LSDA+3BS ((c), (d))

methods for majority and minority electronic states, respectively [55].

agreement cannot be achieved for higher BE. In particular, the calculated spectral weight near

Γ for the Σ↑
1,3 bands is in between the experimental features at 1.2 eV and 2.2 eV. Assuming

negligible correlation effects would move the calculated feature to the LSDA value at BE=2.2

eV. Thus the experimental peak at 2.2 eV could be assigned to the bulk Σ↑
1,3 bands. However, a

complete neglect of correlation effects in Fe would make the overall comparison between theory

and experiment much worse. Thus the experimental peak at BE=2.2 eV is interpreted as a Σ↑
1,3

surface state in agreement with previous experimental and theoretical studies [65]. The theo-

retical results confirm this view since one clearly observes how changes in the surface barrier

potential induce additional shifts in its BE position. Thus, from the data shown in Fig. 18 one

can conclude that correlation effects in the calculations using U=1.5 eV are underestimated and

that a stronger band narrowing is needed to achieve agreement between theory and experiment.

Other investigations on spectroscopic properties using the implementation of the LSDA+DMFT

via the KKR method were dealing so far with the magneto-optical Kerr effect, the magnetic X-

ray dichroism in X-ray absorption and the magnetic Compton effect. As for the photo emission

considered here, it turned out that treatment of correlation effects via the DMFT substantially

improves agreement with experiment compared to plain LSDA calculations.

5 Summary

The implementation of the LSDA+DMFT on the basis of the KKR method has been described

in some detail. The appealing feature of this approach is that the KKR delivers the one-electron
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Green’s function directly. It therefore allows to combine the treatment of correlations via the

DMFT with calculation of a great variety of physical properties for, in principle, any type of

system. As was demonstrated by results for magnetic moments and photo emission spectra of

various transition metal systems, this allows in particular a direct comparison with experiment.
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Fig. 1: In GW , the self energy is given by the Hartree term plus a Fock-like term which is

however in terms of the screened Coulomb interaction W (double wiggled line) instead of the

bare Coulomb interaction V (single wiggled line). The interacting Green function G is denoted

by a double straight line.

1 Introduction

An alternative to density functional theory [1–3] for calculating materials ab initio is the so-

called GW approach [4, 5]. The name stems from the way the self energy is calculated in

this approach: It is given by the product of the Green function G and the screened Coulomb

interaction W , see Fig. 1:

ΣGW(r, r′;ω) = i

∫

dω′

2π
G(r, r′;ω + ω′)W (r, r′;ω′) . (1)

This self energy contribution supplements the standard Hartree term (first diagram in Fig. 1.)

Here, r and r′ denote two positions in real space, ω the frequency of interest; and the imaginary

unit i in front of G stems from the standard definition of the real time (or real frequency) Green

function and the rules for evaluating the diagram Fig. 1, see e.g. [6].

In GW , the screened Coulomb interaction W is calculated within the random phase approxi-

mation (RPA) [7]. That is, the screening is given by the (repeated) interaction with independent

electron-hole pairs, see Fig. 2. For example, the physical interpretation of the second diagram in

the second line of Fig. 2 is as follows: two electrons do not interact directly with each other as

in the first term (bare Coulomb interaction) but the interaction is mediated via a virtual electron-

hole pair (Green function bubble). Also included are repeated screening processes of this kind

(third term etc.). Because of the virtual particle-hole pair(s), charge is redistributed dynami-

cally, and the electrons only see the other electrons through a screened interaction. Since this

RPA-screening is a very important contribution from the physical point of view and since, at the

same time, it is difficult to go beyond, one often restricts oneself to this approximation when

considering screening, as it is done in GW .

For visualizing what kind of electronic correlations are included in the GW approach, we can

replace the screened interaction in Fig. 1 by its RPA expansion Fig. 2. This generates the

Feynman diagrams of Fig. 3. We see that besides the Hartree and Fock term (first line), addi-

tional diagrams emerge (second line). By the definition that correlations are what goes beyond

Hartree-Fock, these diagrams constitute the electronic correlations of the GW approximation.

They give rise to quasiparticle renormalizations and finite quasiparticle lifetimes as well as to

renormalizations of the gaps in band insulators or semiconductors.

It is quite obvious that a restriction of the electronic correlations to only the second line of

Fig. 3 is not sufficient if electronic correlations are truly strong such as in transition metal
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= +

= + ...+

Fig. 2: The screened interaction W (double wiggled line) is calculated from the bare Coulomb

interaction V (single wiggled line) and corrections which describe screening processes. In

GW , the screening is given by the random phase approximation, i.e., only bubble diagrams in

a geometric series (second line) are considered. This geometric series can be generated from

a single bubble connected to the screened interaction (first line). If we start with W = V on

the right hand side of the first line, we will generate the second term of the second line, and by

further iterations obtain the whole series (whole second line).

+

++

=

+...

Fig. 3: Substituting the screened interaction of Fig. 2 into the self energy diagram Fig. 1 gen-

erates besides the Hartree term (which is independently considered) the Fock term (first line),

and some electronic correlations beyond (second line).

oxides or f -electron systems. The GW approximation cannot describe Hubbard side bands or

Mott-Hubbard metal-insulator transitions. Its strength is for weakly correlated electron systems

and, in particular, for semiconductors. For these, extended sp3 orbitals lead to an important

contribution of the non-local exchange. This is not well included (underrated) in the local

exchange-correlation potential Vxc of the local density approximation (LDA) and overrated by

the bare Fock term. The GW exchange is “in between” in magnitude and energy dependence,

which is also important, as we will see later. If it is, instead, the local correlation-part of Vxc

which needs to be improved upon, as in the aforementioned transition metal oxides or f -electron

systems, we need to employ dynamical mean field theory (DMFT) [8–10] or similar many-body

approaches.

Historically, the GW approach was put forward by Hedin [4] as the simplest approximation

to the so-called Hedin equations. In Section 2, we will derive these Hedin equations from a

Feynman-diagrammatical point of view. Section 3.1 shows how GW arises as an approximation

to the Hedin equations. In Section 3.2, we will briefly present some typical GW results for

materials, including the aforementioned quasiparticle renormalizations, lifetimes, and band gap

enhancements. In Section 4, the combination of GW and DMFT is summarized. Finally, as a

prospective outlook, ab initio dynamical vertex approximation (DΓA) is introduced in Section

5 as a unifying scheme for all that: GW , DMFT and non-local vertex correlations beyond.
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2 Hedin equations

In his seminal paper [4], Hedin noted, when deriving the equations bearing his name: ”The

results [i.e., the Hedin equations] are well known to the Green function people”. And indeed,

what is known as the Hedin equations in the bandstructure community are simply the Heisen-

berg equation of motion for the self energy (also known as Schwinger-Dyson equation) and the

standard relations between irreducible and reducible vertex, self energy and Green function, po-

larization operator and screened interaction. While Hedin gave an elementary derivation with

only second quantization as a prerequisite, we will discuss these from a Feynman diagram-

matic point of view as the reader/student shall by now be familiar with this technique from the

previous chapters/lectures of the Summer School. Our point of view gives a complementary

perspective and sheds some light to the relation to standard many body theory. For Hedin’s

elementary derivation based on functional derivatives see [4] and [5].

Let us start with the arguably simplest Hedin equation: the well known Dyson equation, Fig.

4, which connects self energy and Green function:

G(11′) = G0(11′) +G(12)βΣ(22′)G0(2′1′) (2)

= G0(11′) +G0(12)βΣ(22′)G0(2′1′) +G0(13)βΣ(33′)G0(3′2)βΣ(22′)G0(2′1′) + . . .

Here, we have introduced a short-hand notation with 1 representing a space-time coordinate

(r1, τ1) also subsuming a spin if present; employ Einstein summation convention; G and G0

denote the interacting and non-interacting (V = 0) Green function1, respectively. Here and in

the following part of this Section we will consider the Green function in imaginary time with

Wick rotation t → −iτ , and closely follow the notation of [11]2.

In terms of Feynman diagrams, the Dyson equation means that we collect all one-particle irre-

ducible diagrams, i.e., all diagrams that do not fall apart into two pieces if one Green function

line is cut, and call this object Σ. All Feynman diagrams for the interacting Green function are

then generated simply by connecting the one-particle irreducible building blocks Σ by Green

function lines in the Dyson equation (second line of Fig. 4). This way, no diagram is counted

twice since all additional diagrams generated by the Dyson equation are one-particle reducible

and hence not taken into account for a second time. On the other hand all diagrams are gener-

ated: the irreducible ones are already contained in Σ and the reducible ones have by definition

1Please recall the definition of the Green function with Wick time-ordering operator T for τ1 and τ ′1:

G(11′) ≡ −〈T c(1)c(1′)†〉 . (3)

≡ −〈T c(1)c(1′)†〉Θ(τ1 − τ1′) + 〈T c(1′)†c(1)〉Θ(τ1′ − τ1) (4)

The first term of Eq. (4) describes the propagation of a particle from 1′ to 1 (and the second line the corresponding

propagation of a hole). Graphically we hence denote G(11′) by a straight line with an arrow from 1′ to 1 (The

reader might note the reverse oder in G(11′); we usually apply operators from right to left).
2Note that in [11] summations are defined as (1/β)

∫ β

0 dτ or in Matsubara frequencies
∑

m
; Fourier transfor-

mations are defined asG(τ) =
∑

m
e−iνmτG(νm). The advantage of this definition is that the equations have then

the same form in τ and νm. Hence, we employ this notation in this Section and in Section 3. In Sections 1 and

4, the more standard definitions [6] are employed, i.e.,
∫ β

0 dτ ; (1/β)
∑

m
. This results in some factors β (inverse

temperatur), which can be ignored if one only wants to understand the equations.
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+=

+ += ...

Fig. 4: One of the five Hedin equations is the well-known Dyson equation, connecting the

interacting Green function G (double line), non-interacting Green function G0 (single line) and

self energy Σ.

the form of the second line of Fig. 4.

Let us note that the Dyson equation (2) can be resolved for

G(11′) =

(

[

(

G0
)−1 − βΣ

]−1
)

(11′)

(5)

with a matrix inversion in the spatial and temporal coordinates. It is invariant under a basis

transformation from r1 to, say, an orbital basis or from time to frequency (note in a momentum-

frequency basis, the G and Σ matrices are diagonal).

A second equation of the five Hedin equations actually has the same form as the Dyson equation

but with the Green function and interaction changing their role. It relates the screened Coulomb

interaction W to the polarization operator P , see Fig. 5, which is a generalization of Fig. 2 to

arbitrary polarizations. As W we simply define (sum) all Feynman diagrams which connect to

the left and right side by interactions V . Physically, this means that we consider, besides the

bare interaction, also all more complicated processes involving additional electrons (screening).

Similar as for the Dyson equation (2), we collect all Feynman diagrams which do not fall apart

into a left and a right side by cutting one interaction line V , and call this object P . From P , we

can generate all diagrams of W connecting left and right side by a geometric series (second and

third line of Fig. 5) with a repeated application of P and V (second line of Fig. 5). As for the

Dyson equation, we generate all Feynman diagrams (in this case for W ) and count none twice

this way.

Mathematically, Fig. 5 translates into a second Hedin equation

W (11′; 22′) = V (11′; 22′) +W (11′; 33′)P (3′3; 4′4)V (44′; 22′) . (6)

Note, that in a general basis the two particle objects have four indices: an incoming particle 2’

and hole 2, and an outgoing particle 1’ and hole 1, with possible four different orbital indices.

In real space two of the indices are identical r1 = r1′ and r2 = r2′ .
3

Next, we turn to the polarization operator P which can be related to a vertex Γ ∗. This is the

standard relation between two particle Green functions (or response functions) and the vertex

3 This is obvious for the bare Coulomb interaction V (r1, r
′

1; r2, r
′

2) = V (r1, r2)δ(r1 − r
′

1)δ(r2 − r
′

2) with

V (r1, r2) = e
2

4πǫ0
1

|r1−r2|
. As one can see in Fig. 5 this property is transfered to W for which hence only a

polarization with two r’s needs to be calculated in real space.
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=

= +

+

P

+ ...P P

+ P

Fig. 5: A second of the five Hedin equations is an ananlogon of the Dyson equation, Fig.

4 but for the Coulomb interaction. It relates the screened Coulomb interaction W (double

wiggled line) with the bare Coulomb interaction V and the polarization operator P . As the

Dyson equation can be considered as the defining equation for Σ, this second Hedin equation

effectively defines what P is.

+

=

=

( +

P

)
Fig. 6: A third Hedin equation relates the polarization operator P to two separated Green

functions (“bubble” term) plus vertex (Γ ∗) corrections. This is the standard relation between

two particle Green functions and fully reducible vertex Γ . However since the polarization

operator cannot include interaction-reducible diagrams Γ has to be replaced by Γ ∗ (see text).

Second line: In terms of real space or momentum (but not in an orbital representation) two

indices can be contracted to a single one (cf. footnote 3).

and represents a third Hedin equation. That is P is given by the simple connection of left and

right side by two (separated) Green functions plus vertex corrections, see Fig. 6:

P (11′; 22′) = βG(12′)G(21′) + βG(13)G(3′1′)Γ ∗(33′; 44′)βG(4′2′)G(24) . (7)

Note, in real space 2 = 2′ and 1 = 1′ (cf. footnote 3) so that working with a two index

object, see second line of Fig. 6, is possible (and was done by Hedin), the inverse temperature β

(kB ≡ 1) arises from the rules for Feynman diagrams in imaginary times/frequencies, see [11].

Let us keep in mind, that in P or Γ ∗ not all Feynman diagrams are included: those diagrams,

that can be separated into left and right by cutting a single interaction line have to be explicitly

excluded, see Fig. 7. This is the reason why we put the symbol ∗ to the vertex Γ ∗; indicating

that some diagrams of the full vertex Γ are missing.

Having introduced the two-particle vertex Γ ∗, the fourth Hedin equation is obtained by relat-

ing this vertex to another object, the particle-hole irreducible vertex Γ ∗
ph. This relation is the
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Fig. 7: Left: A Feynman diagram that is not part of Γ ∗ (or P ) since cutting a single interaction

line separates the diagram into left and right part. Right: This Feynman diagram is included in

Γ ∗ (or P ).

= ph
* + ph

*

Fig. 8: A fourth Hedin equation is the Bethe-Salpeter equation between the irreducible Γ ∗
ph and

particle-hole reducible vertex Γ ∗. The particle-hole irreducible vertex Γ ∗
ph collects the Feynman

diagrams which cannot be separated into left and right part by cutting two Green function lines.

All diagrams are then generated by the Bethe-Salpeter equation.

standard Bethe-Salpeter equation. As in the Dyson equation, we define the vertex Γ ∗ as the

irreducible vertex Γ ∗
ph plus a geometric series of repetitions of Γ ∗

ph connected by two Green

functions, see Fig. 8:

Γ ∗(11′; 22′) = Γ ∗
ph(11

′; 22′) + Γ ∗(11′; 33′)βG(3′4)G(4′3)Γ ∗
ph(44

′; 22′) (8)

Here, the particle-hole irreducible vertex collects all Feynman diagrams which cannot be sepa-

rated by cutting two Green function lines into a left and right (incoming and outgoing) part. The

Bethe-Salpeter equation then generates all vertex diagrams by connecting the irreducible build-

ing blocks with two Green function lines, in analogy to the Dyson equation for the one-particle

irreducible vertex Σ.

Since in the polarization operator P (and the corresponding reducible vertex vertex Γ ∗) dia-

grams which connect left and right by only one bare Coulomb interaction line V are however

excluded, we have to explicitly take out this bare Coulomb interaction V from the vertex Γ ∗,

i.e., we have the standard particle-hole vertex Γph (i.e., all particle-hole irreducible diagrams)

minus the bare Coulomb interaction V diagram, see Fig. 9:

Γ ∗
ph(11

′; 22′) = Γph(11
′; 22′)− V (11′; 22′) (9)

The bare V and any combinations of Γ ∗
ph and V are then generated in the screening equation

(6), Fig. 5.
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= ph −ph
*

Fig. 9: We have to exclude the bare Coulomb interaction V from the particle-hole vertex Γph

since such contributions are already considered in Fig. 5.

Fig. 10: By hands of selected Feynman diagrams we illustrate that differentiation of Σ w.r.t. G
yields the particle-hole irreducible vertex.

In this fourth equation, Hedin directly expresses Γ ∗
ph as the derivative of the self-energy w.r.t.

the Green function [5] (respectively V [4]). This is a standard quantum field theoretical relation

Γph(11
′; 22′) =

δΣ(11′)

δG(2′2)
, (10)

which in terms of Feynman diagrams follows from the observation that differentiation w.r.t. G

means removing one Green function line, see Fig. 10 and Ref. [11]. If we, as Hedin, consider

the self energy without Hartree term ΣHartree(11
′) = V (11′; 22′)G(2′2) we obtain the vertex

Γ ∗
ph instead of Γph:

Γ ∗
ph(11

′; 22′) =
δ[Σ(11′)−ΣHartree(11

′)]

δG(2′2)
(11)

Note, the derivative of the Hartree term w.r.t. G(2′2) yields V (11′; 22′), i.e., precisely the term

not included in Γ ∗
ph, see first diagram of Fig. 10.

The fifth Hedin equation is the Heisenberg equation of motion for the self energy, which

follows from the derivative of the Green function (3) w.r.t. τ1, i.e., the time-part of the coordinate
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1. Let us start with the Heisenberg equation for the Heisenberg operator c(1) (~ ≡ 1):

− ∂c(r1, τ1)

∂τ1
= [c(r1, τ1), H ] (12)

and a general Hamiltonian of the form

H = H0(11
′)c(1)†c(1′) +

1

2
V (11′; 22′)c(1)†c(1′)c(2)†c(2′). (13)

From Eq. (12), we obtain the Heisenberg equation of motion for the Green function:4

− ∂G(11′)

∂τ1
= δ(1− 1′) +H0(12

′)G(2′1′)− V (13′; 22′)〈T c(3′)c(2)†c(2′)c(1′)†〉 . (14)

The last term on the right hand side of Eq. (14) is by definition the self energy times the Green

function. Hence this combination equals the interaction V times a two-particle Green function.

The two particle Green function in turn is, in analogy to Fig. 6, given by the bubble term (two

Green function lines; there are actually two terms of this: crossed and non-crossed) and vertex

correction with the full (reducible) vertex Γ . Besides the Hartree term, the self energy is given

by (see Fig. 11):

Σ(11′) = −V (13′; 22′)βG(4′2)G(2′4)G(3′3)Γ (31′; 44′)− V (12′; 21′)G(2′2) (15)

Note Eq. (15) can be formualted in an alternative way (see Appendix A for a detailed calcula-

tion): Instead of expressing this correlation part of the self energy by the bare interaction and

the full vertex we can take out the bare interaction line V and any particle-hole repetitions of

V from the vertex, i.e., take Γ ∗ instead of Γ . Consequently we need to replace V by W to

generate the same set of all Feynman diagrams:

Σ(11′) = −W (13′; 22′)βG(4′2)G(2′4)G(3′3)Γ ∗(31′; 44′)−W (12′; 21′)G(2′2) (16)

see second line of Fig. 11.5

The five equations Eq. (2), (6), (7), (8), (16) correspond to Hedin’s equations (A13), (A20),

(A24), (A22), (A23), respectively [4] [or to equations (44), (46), (38), (45), and (43), respec-

tively, in [5]). This set of equations is exact; it is equivalent to the text book quantum field

4 Note, the first term here is generated by the time derivative of the Wick time ordering operator, the second

term stems from [c(1), H0(22
′)c(2)†c(2′)] and the third one from

[c(1),
1

2
V (33′; 22′)c(3)†c(3′)c(2)†c(2′)]

employing [A,BC] = B[A,C] + [A,B]C and the Fermi algebra {c(1′), c(1)†} ≡ c(1′)c(1)† + c(1)†c(1′) =
δ(1− 1′), {c(1), c(1′)} = {c(1)†, c(1′)†} = 0.

5 Note, Hedin defines as a “vertex”Λ [5] a combination of Γ ∗ and two Green function lines. Because he works

in real space (or momentum) coordinates only at a common point 2 = 2′ needs to be considered (in the same way

as in the second line of Fig. 6). Hedin also adds a “1” in form of two δ-functions:

Λ(11′; 2) = Γ ∗(11′; 33′)βG(3′2)G(32) + δ(1′ − 2)δ(2− 1) . (17)
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Fig. 11: The fifth Hedin equation is the Heisenberg equation of motion, which connects the

one-particle Green function with the two particle Green function or as shown in the figure (and

as employed) the self energy with the vertex.

theory [6, 11] relations between Γ ,Γir, Σ and G; but it contains additional equations since W

and P are introduced. The advantage is that, this way, one can develop much more directly

approximations where the screened Coulomb interaction plays a pronounced role such as in the

GW approach.

3 GW approximation

3.1 From Hedin equations to GW

The simplest approximation is to neglect the vertex corrections completely, i.e., to set set Γ ∗
ph =

0.6 Then the Bethe-Salpeter equation (8) yields

Γ ∗ = 0 . (18)

The polarization in Eq. (7) simplifies to the bubble

PGW(11′; 22′) = βG(12′)G(21′) . (19)

The screened interaction in Eq. (6) is calculated with this simple polarization

W (11′; 22′) = V (11′; 22′) +W (11′; 33′)PGW(3′3; 4′4)V (44′; 22′) . (20)

The self energy in the Heisenberg equation of motion (16) simplifies to Fig. 2, i.e.,

ΣGW(11′) = −W (12′; 21′)G(2′2) (21)

(plus Hartree term).

From this, the Green function is obtained via the Dyson equation (2):

G(11′) = G0(11′) +G(12)βΣGW(22′)G0(2′1′) (22)

These five (self-consistent) equations constitute the GW approximation.

6Note this violates the Pauli principle, see last paragraph of Appendix A.
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3.2 GW band gaps and quasiparticles

While the five GW equations above are meant to be solved self-consistently, most calculations

hitherto started from a LDA bandstructure calculation7 and calculated from the LDA polariza-

tion (or dielectric constant) a screened interaction W0 which in turn was used to determine the

self energy with the Green function G0 from the LDA: Σ = iG0W0.

Such calculations are already pretty reliable for semiconductor band gaps, which are underesti-

mated in the LDA. Due to the energy(frequency)-dependence of Σ bands at different energies

are under the influence of differently strong screened exchange contributions. In semiconduc-

tors, it turns out that the conduction band is shifted upwards in an approximately rigid way.

The valence band is much less affected so that the GW band gap increases in comparison to

the LDA gap. This effect can be mimicked by a so-called scissors operator, defined as cutting

the density functional theory (DFT) bandstructure between valence and conduction band and

moving the conduction band upwards. Cutting LDA bandstructures by a pair of scissors and

rearranging them yields the GW bandstructure within an error of 0.1 eV for Si and 0.2 eV for

GaAs [17].

More recently, self-consistent GW calculations became possible. Many of these calculations

employ an approximation of Schilfgaarde and Kotani [18, 19] where instead of the frequency

dependent GW self energy Σnn′(ω,q) a frequency-independent Hermitian operator

Σ̄nn′ = Re[Σnn′(ǫq,q) +Σn′n(ǫq,q)]/2 (23)

is constructed in the basis n, n′ employed in the GW /LDA algorithm. This self energy operator

has the advantage that (as in LDA) we can remain in a one-particle description and employ the

Kohn-Sham equations with Hermitian operator Σ̄nn′ to recalculate electron densities and Bloch

eigenfunctions.

The band gaps of this self-consistent approach are slightly larger than experiment, see open

triangles of Fig. 12. This can be improved upon and band gaps can be calculated very reliably if

additional to GW (some) vertex corrections are taken into account. In Fig. 12, the inclusion of

electron-hole ladder diagrams (visualized on the right hand side of Fig. 12) results in the filled

triangles with band gaps being within a few percent of the experimental ones. As in other areas

of many-body theory, doing the self-consistency without including vertex corrections does not

seem to be an improvement w.r.t. the non-self-consistent GW since self-consistency and vertex

corrections compensate each other in part. Full GW calculations beyond the Schilfgaarde and

Kotani one-particle-ization (23) have only been started and applied to simple systems such as

molecules [14, 13] and simple elements [15, 16].

Besides this big success to overcome a severe LDA/DFT shortcoming for semiconductor gaps,

GW or G0W0 calculations also show a quasiparticle renormalization of the bandwidth. For

alkali metals, electronic correlation are expected to be weak. Nonetheless experiments observe

e.g. in Na a band narrowing (of the occupied bands) of 0.6 eV [22] compared to the nearly free

electron theory. While GW [23] yields such a band narrowing, it is quantitatively with 0.3 eV

7An alternative, in particular for f electron systems, is to use LDA+U as a starting point [12].
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Fig. 12: Theoretical vs. experimental band gap of DFT, self-consistent GW (scGW ) without

and with (some) vertex corrections (electron-hole ladder diagrams) (reproduced from [21]).

only half as large as in experiment [23]. Of the more strongly correlated transition metals, Ni

is best studied: here, the occupied d bandwidth is 1.2 eV smaller in experiment than LDA and

there is a famous satellite peak at -6eV in the spectrum [24]. While GW [25] yields a band-

narrowing of 1 eV which is surprisingly good (see Fig. 13), the satellite is missing. In fact, it can

be identified as a (lower) Hubbard band whose description requires the inclusion of strong local

correlation. This is possible by DMFT; and indeed the satellite is found in LDA+DMFT [26]

and GW+DMFT calculations [27], see next section.

Besides the mentioned band-narrowing which is associated with a reduced quasiparticle weight

or effective mass enhancement (related to the real part of the self energy), there is also the

imaginary part of the GW self energy, which corresponds to a scattering rate. For Ag the GW

scattering rate is reported to be in close agreement with the experimental one obtained from

two-photon photoemission [28].

4 GW+DMFT

Since GW yields bandstructures similar to LDA (with the improvements for semiconductors

discussed in the previous section) substituting the LDA part in LDA+DMFT by GW is very

appealing from a theoretical point of view: Both approaches GW and DMFT are formulated

in the same many-body framework, which does not only has the advantage of a more elegant

combination, but also overcomes two fundamental problems of LDA+DMFT: (i) The screened

Coulomb interaction employed for d-d or f -f interactions in DMFT can be straight forwardly

calculated via W ; one does not need an additional constrained LDA approximation [29–31] to

this end; (ii) the double counting problem, i.e., to subtract the LDA/DFT contribution of the

local d-d or f -f interaction which is included a second time in DMFT, can be addressed in a

rigorous manner since for GW+DMFT we actually know which Feynman diagram is counted



Hedin Equations, GW, GW+DMFT and All That 13.13

Fig. 13: Experimental, LDA and GW bandstructure of Ni (reproduced from [25]).

DMFT +

++

=

all irreducible
local diagrams

Fig. 14: The DMFT self energy is calculated from the local contribution of all (one-particle

irreducible) Feynman diagrams.

twice.

Biermann et al. [27] proposed GW+DMFT, which they discuss from a functional integral point

of view: a GW functional and a local impurity functional are added; the derivatives yield the

mixed GW+DMFT equations. From a Feynman diagrammatic point of view, this corresponds

to adding the GW self energy, Fig. 1 and the DMFT self energy which is just given by the

local contribution of all (one-particle irreducible) Feynman diagrams, see Fig. 14. From these,

the local screened exchange GW and the doubly counted Hartree term need obviously to be

explicitly subtracted for not counting any diagram twice.

This results in the algorithm Fig. 15. Here, we leave the short-hand notation of Section 2 and

3.1 with 1, 2 since GW is diagonal in ω and k and DMFT is diagonal in ω and site indices. Let

us briefly discuss the GW+DMFT algorithm step-by-step; for more details see [32]:

• In most GW calculations, the starting point is a conventional LDA calculation (or another

suitably chosen generalized Kohn-Sham calculation), yielding an electron density ρ(r),

bandstructure ǫLDA(k) and also an LDA Green function Gk(ω) (the latter is calculated as
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Do LDA calculation, yielding Gk(ω)=[ω1+µ1−ǫLDA(k)]−1.

Calculate GW polarization P GW(ω)=−2i
∫

dω′

2π G(ω + ω′)G(ω′) .

If DMFT polarization P DMFT is known (after the 1st iteration), include it

P GW+DMFT(k, ω)=P GW(k, ω)− 1

VBZ

∫

d3kP GW(k, ω) +P DMFT(ω) .

With this polarization, calculate the screened interaction:

W (k;ω) = Vee(k)[1− Vee(k)P (k;ω)]−1.

Calculate ΣHartree
k =

∫ d3q
VBZ

Gq(τ=0−)W (k − q, 0) and ΣHartree
dc .

Calculate ΣGW (r, r′;ω) = i
∫

dω′

2π G(r, r′;ω + ω′)W (r, r′;ω′) .

Calculate the DMFT self-energy ΣDMFT and polarization P DMFT as follows:

From the local Green function G and old self-energy ΣDMFT calculate

(G0)−1(ω)=G−1(ω)+ΣDMFT(ω) ΣDMFT=0 in 1st iteration.

Extract the local screening contributions from W :

U(ω) = [W−1(ω)− P DMFT(ω)]−1.

With U and G0, solve impurity problem with effective action

A=
∑

νσ lm

ψσ∗
νm(Gσ0

νmn)
−1ψσ

νn+
∑

lmσσ′

∫

dτψσ∗
l (τ)ψσ

l (τ)Ulm(τ−τ ′)ψσ′∗
m (τ ′)ψσ′

m (τ ′),

resulting in G and susceptibility χ.

From G and χ, calculate ΣDMFT(ω) = (G0)−1(ω)−G−1(ω),

P DMFT(ω) = U−1(ω)− [U −UχU ]−1(ω).

Combine this to the total GW self-energy:

ΣGW+DMFT(k,ω)=ΣGW(k, ω)−
∫

d3kΣGW(k,ω)+ΣHartree(k)−ΣHartree
dc +ΣDMFT(ω).

From this and G0, calculate Gnew
k (ω)−1 = G0

k(ω)
−1 −Σk(ω).

Iterate with Gk = Gnew
k until convergence, i.e. ||Gk −Gnew

k ||<ǫ.

Fig. 15: Flow diagram of the GW+DMFT algorithm (reproduced from [32]).

in the first line of Fig. 15, where bold symbols denote an (orbital) matrix representation).

• From this Green function, the independent particle polarization operator PGW is calcu-

lated convoluting two Green functions (2nd line of flow diagram Fig. 15). Note there is a

factor of 2 for the spin.

• From the polarization operator in turn, the local polarization has to be subtracted since

this can (and has to) be calculated more precisely within DMFT, which includes more

than the RPA bubble diagram (after the first DMFT iteration).

• Next, the screened interaction W is calculated from the bare Coulomb interaction Vee and

the overall polarization operator PGW+DMFT .

• Now, we are in the position to calculate the GW self energy. The first term is the Hartree



Hedin Equations, GW, GW+DMFT and All That 13.15

diagram, which can be calculated straight forwardly in imaginary time τ , yieldingΣHartree

and the corresponding local contribution ΣHartree
dc , which we need to subtract later to avoid

a double counting as it is also contained in the DMFT.

• The second diagram is the exchange from Fig. 1 which has the form G times W for the

GW self energy.

• This GW self energy has to be supplemented by the local DMFT self energy, which

together with the DMFT polarization operator is calculated in the following four steps:

1. The non-interacting Green function G0 which defines a corresponding Anderson

impurity model is calculated.

2. The local (screened) Coulomb interaction U(ω) has to be determined without the

local screening contribution, since the local screening will be again included in the

DMFT. That is we have to “unscreen” W for these contributions.

3. The Anderson impurity model defined by G0 and U(ω) has to be solved for its

interacting Green function G(ω) and two-particle charge susceptibility χ. This is

numerically certainly the most demanding step.

4. From this G(ω) and G0, we obtain a new DMFT self energy Σ(ω) and from the

charge susceptibility a new DMFT polarization operator.

• All three terms of the self-energy have now to be added; and the local screened exchange

and Hartree contribution need to be subtracted to avoid a double counting.

• From this GW+DMFT self energy we can finally recalculate the Green function and

iterate until convergence.

The flow diagram already shows that the GW+DMFT approach is much more involved than

LDA+DMFT. However, it has the advantage that the double counting problem is solved and

also the Coulomb interaction is calculated ab initio in a well defined and controlled way. Hence,

no ad hoc formulas or parameters need to be introduced or adjusted.

For defining a well defined interface between GW and DMFT a particular problem is that GW

is naturally formulated in real or k space and is presently implemented, e.g., in the LMTO [5]

or PAW basis [20]. However, on the DMFT side we do need to identify the interacting local d-

or f -orbitals on the sites of the transition metal or rare earth/lanthanoid sites, respectively. The

switching between these two representations is non-trivial. It can be done by a downfolding

[33, 34] or a projection onto Wannier orbitals, e.g., using maximally localized Wannier orbitals

[35, 37] or a simpler projection onto the d (or f ) part of the wave function within the atomic

spheres [36, 38]. However, not only the one-particle wave functions and dispersion relation

need to be projected onto the interacting subspace but also the interaction itself. To approach

the latter, a constrained random phase approximation (cRPA) method has been proposed [39,7]

and improved by disentangling the d(or f )-bands [40]. The latter improvement now actually
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Fig. 16: Spectrum (k-integrated) of Ni [left: LDA+DMFT (solid lines), spinpolarized LDA

(LSDA) (dotted lines); right: GW+DMFT]. The two lines represent the minority- and majority-

spin spectrum respectively. At roughly -6eV, a satellite peak is clearly visible in the majority-

spin spectrum (reproduced from [26] and [27], respectively).

allows us to do cRPA in practice. For the calculation of the two-particle polarization operators

and interactions, Aryasetiawan et al. [41] even proposed to use a third basis: the optimal product

basis.

On the DMFT side, the biggest open challenges are to actually perform the DMFT calcula-

tions with a frequency dependent Coulomb interaction U(ω) and to calculate the DMFT charge

susceptibility or polarization operator.

As the fully self-consistent GW+DMFT scheme is a formidable task, Biermann et al. [27]

employed a simplified implementation for their GW+DMFT calculation of Ni, which is ac-

tually the only GW+DMFT calculation hitherto: For the DMFT impurity problem, only the

local Coulomb interaction between d orbitals was included and its frequency dependence was

neglected W(ω) ≈ W(0). Moreover, only one iteration step has been done, calculating the

inter-site part of the self energy by GW with the LDA Green function as an input and the intra-

site part of the self energy by DMFT (with the usual DMFT self-consistency loop). The GW

polarization operator PGW was calculated from the LDA instead of the GW Green function.

This is, actually, common practice even for conventional GW calculations which are often of

the G0W0 form (see Section 3.2).

Fig. 16 (right panel) shows theGW+DMFT k-integrated spectral function of Ni which is similar

to LDA+DMFT results (left panel). Both approaches yield a satellite peak at ≈ −6 eV.

5 All of that: ab intito DΓA

From the Hedin equations, it seems to be much more natural to connect (i) the GW physics

of screened exchange and (ii) strong, local correlations on the two-particle level than on the

one particle level as done in GW+DMFT. In the Hedin equations, the natural starting point is

the two-particle (particle-hole) irreducible vertex. A generalization of DMFT to n-particle cor-

relation functions is the dynamical vertex approximation (DΓA) [42] which approximates the
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Fig. 17: In ab initio DΓA we take as the fully irreducible vertex the bare Coulomb interaction

plus all local vertex corrections (only one such diagram is exemplarily shown) [44].

n-particle fully irreducible8 vertex Γir by the corresponding local contribution of all Feynman

diagrams. For n = 1 the one-particle irreducible vertex is the self energy so that DΓA yields

the DMFT. For n = 2, we obtain non-local correlations on all length scales and can calculate,

e.g., the critical exponents of the Hubbard model [43].

Recently, some of us have proposed to use this DΓA ab initio for materials calculation [44]. The

fully irreducible vertex Γir is then given by the bare Coulomb interaction, which possibly is non-

local, and all higher order local Feynman diagrams, see Fig. 17. From Γir the full (reducible)

vertex is calculated via the parqet equations [11]. The calculation of the local part of Γir only

requires us to calculate the two-particle Green functions of a single-site Anderson impurity

model, which is well doable even for realistic multi-orbital models. For the parquet equations

on the other hand, there has been some recent progress [45].

As a simplified version of ab initio DΓA one can restrict oneself to a subset of the three channels

of the parquet equations, as was done in [42,43]. In this case one has to solve the Bethe-Salpeter

equation with the particle-hole irreducible vertex Γph instead of the parquet equations with the

fully irreducible vertex Γir. That is, our approximation to the Hedin equations is to take the

local Γ ∗
ph (all Feynman diagrams given by the local Green function and interaction) in the Hedin

equation (8). In practice, one solves an Anderson impurity model numerically to calculate Γ ∗
ph.

Full and simplified version of ab initio DΓA contain the diagrams (and physics) of GW , DMFT

as well as non-local correlations which are responsible for (para-)magnons, (quantum) critical-

ity and “all that”.

Acknowledgment

Support of the Austrian Science Fund (FWF) through I597 (Austrian part of FOR 1346 with the

Deutsche Forschungsgemeinschaft as lead agency) is gratefully acknowledged.

8Fully irreducible means, cutting any two Green function lines does not separate the diagram into two parts. It

is even more restrictive (less diagrams) than the particle-hole irreducible vertex (whose diagrams can be reducible

e.g. in the particle-particle channel).



13.18 K. Held, C. Taranto, G. Rohringer, and A. Toschi

Appendices

A Additional steps: equation of motion

In this appendix a detailed explanation is given how to derive the Hedin equation of motion for

Σ, i.e., equation (16), from the standard equation of motion (15). In a first step Γ is expressed

in terms of Γ ∗. In order to keep the notation simple, the arguments of all functions are omitted

and the functions are considered as operators.

The starting point of the calculations are the Bethe-Salpeter equations for Γ and Γ ∗:

Γ = Γph + ΓβGGΓph =⇒ Γ = Γph(1− βGGΓph)
−1

Γ ∗ = Γ ∗
ph + Γ ∗

phβGGΓ ∗ =⇒ Γ ∗
ph = Γ ∗(1 + βGGΓ ∗)−1.

(24)

Using equation (10), i.e., Γph = Γ ∗
ph + V , one gets:

Γ =

(

Γ ∗(1 + βGGΓ ∗)−1 + V

)

1

1− βGG

(

Γ ∗(1 + βGGΓ ∗)−1 + V

) (25)

Multiplying this equation with 1 = (1 + βGGΓ ∗)−1(1 + βGGΓ ∗) and using the standard

relations for operators, A−1B−1 = (BA)−1 leads to:

Γ =

(

Γ ∗(1 + βGGΓ ∗)−1 + V

)

V −1V
︸ ︷︷ ︸

1

(

1− (βGG+ βGGΓ ∗βGG
︸ ︷︷ ︸

P

)V

)−1(

1 + βGGΓ ∗

)

,

(26)

where 1 = V −1V was inserted and the definition for the polarization operator, equation (7).

Now one can use the second Hedin equation (6), which can be rewritten as W = V (1−PV )−1.

Inserting this relation into the equation for Γ , one arrives at the following result:

Γ =

(

Γ ∗(1 + βGGΓ ∗)−1

)

V −1W

(

1 + βGGΓ ∗

)

+W

(

1 + βGGΓ ∗

)

. (27)

Another formulation of the second Hedin equation gives V −1 = W−1 + P = W−1 + (1 +

βGGΓ ∗)βGG. Replacing V −1 by this expression gives:

Γ = Γ ∗ + Γ ∗βGGW (1 + βGGΓ ∗) +W (1 + βGGΓ ∗)

= Γ ∗ + Γ ∗βGGW + Γ ∗βGGWβGGΓ ∗ +WβGGΓ ∗ +W .
(28)

This equation shows how the full Γ is related to the Γ ∗. Diagrammatically this relation is shown

in Fig. 18.

In the next step Γ as given in equation (28) is inserted into equation (15), yielding

Σ = −GV βGGΓ −GV

= −GV (βGG+ βGGΓ ∗βGG
︸ ︷︷ ︸

P

)W −GV
(

(βGG+ βGGΓ ∗βGG
︸ ︷︷ ︸

P

)W + 1
)

βGGΓ ∗ −GV .

(29)
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Fig. 18: Relation between Γ and Γ ∗ in terms of Feynman diagrams.

From the second Hedin equation it follows that V PW = W − V . Inserting this relation into

Equation (29) yields:

Σ = −G(W − V )−G(W − V )βGGΓ ∗ −GV βGGΓ ∗ −GV =

= −GW −GWβGGΓ ∗,
(30)

which is exactly equation (16).

Let us also, at this point, mention that Γ should satisfy an important relation:

Γ (11′; 22′) = −Γ (12′; 21′) (31)

This relation is known as crossing symmetry (see e.g. [11], equation 7.5) and is simply a con-

sequence of the Pauli-principle: Exchanging two identical fermions leads to a − sign in the

wave function. The screened interaction W , however, does not fulfill this crossing symmetry.

Therefore, setting Γ ∗ = 0, as it is done in the GW -approximation leads to Γ = W (see Fig.

18) which violates this crossing symmetry, i.e. it violates the Pauli-principle.
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1 Introduction

1.1 Strongly correlated materials

One of the most intriguing aspects of transition-metal and rare-earth materials is the wide va-

riety and richness of their physical properties. These are often quite spectacular and include

phenomena such as metal-insulator transitions (MIT), colossal magneto-resistance (CMR) be-

havior, and superconductivity [1, 2]. It is well accepted by now that the interplay between

electron correlation and band formation effects is somehow responsible for these unexpected

and novel phenomena. Although conceptually clean and beautiful, theoretical simplifications

in terms of, for instance, a Heisenberg model or a single band Hubbard model turn out to be

inadequate [3–5]. It now becomes more and more clear that a full identification of the relevant

charge, orbital and spin degrees of freedom of the metal ions involved is needed to understand

the intricate balance between band formation and electron-correlation effects. An important

example is the manganates [6], where orbital ordering and charge distribution [7, 8] of the Mn

ions play an important role for its CMR behavior. For the newly synthesized layered cobaltates,

it is the spin-state transitions that are thought to govern the CMR and MIT phenomena [9, 10].

Another example is V2O3 [11–13], for which it has been discovered that the orbital occupa-

tions across the various MITs change dramatically, leading to a switch of the nearest-neighbor

spin-spin correlations so that in turn the effective band widths are strongly modified.

An important characteristic determining the charge, orbital and spin degrees of freedom is the

presence of the so-called atomic-like multiplet interactions on the transition-metal and rare-

earth ions [14, 15]. The ground state and near ground state properties could depend very much

on the intricate details of these local Coulomb and exchange interactions, and how they play out

in the presence of crystal or ligand fields as well as band formation. It is not trivial to describe

these multiplet effects using ab-initio mean-field theories. LDA+U type of approaches, for

example, utilize occupation number operators of the type Uijd
†
idid

†
jdj , but these do not capture

the spin and orbital flip processes contained in the Uijkld
†
idjd

†
kdl terms of the full Hamiltonian

[16], leading to major errors in the total energy level diagram for both the ground state problem

as well as for the excited states. In this respect an approach based on the LDA+DMFT is perhaps

more promising and hopefully its implementation can be made in the very near future. It is also

not trivial for real materials to determine experimentally their energy levels associated with

the multiplet interactions. One often needs synchrotron based spectroscopies in order to have

sufficient dynamic range in energy to map out the excitations as well as to have well defined

matrix elements to quantitatively analyze the spectra.

1.2 Electronic structure and synchrotron based spectroscopies

Electron spectroscopies are powerful tools to unravel the basic electronic structure of materials.

Use can be made of the extremely large dynamic range in energy that these forms of spectro-

scopies can cover. By studying excitation spectra in the energy range from several eV up to

several hundreds of eV, one can obtain direct information about the ’bare’ electrons, e.g. the
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charge, spin, and orbital state of the ions that make up the correlated material. By measuring

the excitation spectra in the vincinity of the chemical potential with ultra-high resolution, one

can find directly the momentum dependent behavior of the ’dressed’ electrons, i.e., quasi par-

ticles. In the case of photoemission or inverse photoemission, we should stress that it is not

the excitation energy that determines whether the measurement probes the high or low energy

scale physics. Instead, it is the resolution with which the measurement is carried out, since

this determines the quality of the observed features, and thus of the measured low energy scale

phenomena if the measurement is focussed on the region near the chemical potential.

There are several forms of electron spectroscopies, and which one to apply depends very much

on the material and the problem that needs to be solved. While photoemission and inverse pho-

toemission are well established techniques [17], the use of synchrotron radiation based high en-

ergy spectroscopies such as linearly and circularly polarized soft-X-ray absorption spectroscopy

is relatively new [18–20,22,21]. This type of spectroscopy has been developed into full maturity

only in the last 15 years, both in terms of instrumentation as well as in terms of a quantitative

theoretical analysis of the spectra, which are often dominated by multiplet structures. These

spectra are not only element specific, but above all, their multiplet structures are extremely sen-

sitive to the charge, spin and orbital state of the ion due to the very effective dipole selection

rules associated with the K (1s → 2p), L2,3 (2p → 3d), and M4,5 (3d → 4f ) transitions for the

oxygen, transition metal and rare-earth ions, respectively. In fact, the specificity to the initial

state symmetry is so large, that one does not need a very good energy resolution in order to

measure which of the possible initial state symmetries is occupied, since different symmetries

lead to completely different multiplet structured spectra. In other words, an experimental energy

resolution of 500 meV is often enough to distinguish initial states that are different by not more

than a few meV or less in energy, making the technique extremely valuable for the study of

phase transitions which usually occur in the temperature range up to roughly room temperature

(kT = 25 meV).

1.3 Challenges for theory

In the following, we will address two long standing topics in the research field of strongly

correlated transition metal oxides, namely the spin-state transition in LaCoO3 and the electronic

structure of NiO. Synchrotron based spectroscopic experiments are presented. The results on

the first topic show how crucial it is to take the full multiplet theory into account in order to

be able to understand the magnetic properties of a partially filled t2g material, while the results

from the second topic provide a clear cut example how on-site multiplet structures could be

affected by band formation. These experimental results illustrate the challenges faced by ab-

initio based theories, namely to describe accurately both the (near) ground state properties and

excitation spectra of strongly correlated transition metal oxides. We hope that LDA+DMFT and

its extensions will provide a further major contribution in this research field.
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2 Spin-state transition in LaCoO3

2.1 Introduction

LaCoO3 shows a gradual non-magnetic to magnetic transition with temperature, which has

been interpreted originally four decades ago as a gradual population of high spin (HS, t42ge
2
g,

S = 2) excited states starting from a low spin (LS, t62g, S = 0) ground state [23–30]. This

interpretation continued to be the starting point for experiments carried out up to roughly the

first half of the 1990’s [31–34]. All this changed with the theoretical work in 1996 by Korotin

et al., who proposed on the basis of local density approximation + Hubbard U (LDA+U) band

structure calculations, that the excited states are of the intermediate spin (IS, t52ge
1
g, S = 1)

type [35]. Since then many more studies have been carried out on LaCoO3 with the majority

of them [36–49] claiming to have proven the presence of this IS mechanism. In fact, this

LDA+U work is so influential [50] that it forms the basis of most explanations for the fascinating

properties of the recently synthesized layered cobaltate materials, which show giant magneto

resistance as well as metal-insulator and ferro-ferri-antiferro-magnetic transitions with various

forms of charge, orbital and spin ordering [51, 52]. There have been several attempts made

since 1996 in order to revive the LS-HS scenario [53–57], but these were overwhelmed by

the above mentioned flurry of studies claiming the IS mechanism [36–49]. Moreover, a new

investigation using inelastic neutron scattering (INS) has appeared in [58] making again the

claim that the spin state transition involves the IS states. In the following we describe our soft

X-ray absorption spectroscopy (XAS) and magnetic circular dichroism (MCD) experiments at

the Co-L2,3 edge [59] to evaluate the validity of the various scenarios.

2.2 Experimental

Single crystals of LaCoO3 have been grown by the traveling floating-zone method in an image

furnace. The magnetic susceptibility was measured using a Quantum Design vibrating sample

magnetometer (VSM), reproducing the data reported earlier [41]. The Co-L2,3 XAS measure-

ments were performed at the Dragon beamline of the National Synchrotron Radiation Research

Center (NSRRC) in Taiwan with an energy resolution of 0.3 eV. The MCD spectra were col-

lected at the ID08 beamline of the European Synchrotron Radiation Facility (ESRF) in Grenoble

with a resolution of 0.25 eV and a degree of circular polarization close to 100% in a magnetic

field of 6 Tesla. Clean sample areas were obtained by cleaving the crystals in-situ in chambers

with base pressures in the low 10−10 mbar range. The Co-L2,3 spectra were recorded using the

total electron yield method (TEY). O-K XAS spectra were collected by both the TEY and the

bulk sensitive fluorescence yield (FY) methods, and the close similarity of the spectra taken

with these two methods verifies that the TEY spectra are representative for the bulk material. A

CoO single crystal is measured simultaneously in a separate chamber to obtain relative energy

referencing with better than a few meV accuracy, sufficient to extract reliable MCD spectra.
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Fig. 1: Experimental Co-L2,3 XAS spectra taken from LaCoO3 at various temperatures between

20 and 650 K, together with the corresponding theoretical isotropic spectra calculated using a

CoO6 cluster in the LS-HS scenario. For clarity, only the 20, 300 and 650 K spectra are shown.

2.3 Results: XAS

Fig. 1 shows the set of Co-L2,3 XAS spectra of LaCoO3 taken for a wide range of temperatures.

The set is at first sight similar to the one reported earlier [61], but it is in fact essentially different

in details. First of all, our set includes a low temperature (20 K) spectrum representative for the

LS state, and second, our spectra do not show a pronounced shoulder at 777 eV photon energy

which is characteristic for the presence of Co2+ impurities [62]. The extended temperature

range and especially the purity of the probed samples provide the required sensitivity for the

spin-state related spectral changes.

The spectra are dominated by the Co 2p core-hole spin-orbit coupling which splits the spectrum

roughly in two parts, namely the L3 (hν ≈ 780 eV) and L2 (hν ≈ 796 eV) white lines regions.

The line shape of the spectrum depends strongly on the multiplet structure given by the Co 3d-

3d and 2p-3d Coulomb and exchange interactions, as well as by the local crystal fields and the

hybridization with the O 2p ligands. Unique to soft X-ray absorption is that the dipole selection

rules are very effective in determining which of the 2p53dn+1 final states can be reached and

with what intensity, starting from a particular 2p63dn initial state (n=6 for Co3+) [20, 21]. This

makes the technique extremely sensitive to the symmetry of the initial state, e.g., the spin state

of the Co3+ [52].

2.4 Analysis

We now simulate the spectrum of a Co3+ ion in the LS state using the successful configuration

interaction cluster model that includes the full atomic multiplet theory and the hybridization

with the O 2p ligands [20–22]. The CoO6 cluster is taken to have the octahedral symmetry

and the parameters are the same as the ones which succesfully reproduce the spectrum of LS
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Fig. 2: Energy level diagram of a CoO6 cluster [63] as a function of the ionic part of the crystal

field splitting 10Dq.

EuCoO3 [52,63]. The result with the ionic part of the crystal field splitting set at 10Dq = 0.7 eV

is shown in Fig. 1 and fits well the experimental spectrum at 20 K.

Next we analyze the spectra for the paramagnetic phase. We use the same cluster keeping the

O′
h symmetry, and calculate the total energy level diagram as a function of 10Dq, see Fig. 2.

We find that the ground state of the cluster is either LS or HS (and never IS) with a cross-over

at about 10Dq = 0.58 eV [64]. We are able to obtain good simulations for the spectra at all

temperatures, see Fig. 1, provided that they are made from an incoherent sum of the above

mentioned LS cluster spectrum calculated with 10Dq = 0.7 eV and a HS cluster spectrum

calculated with 10Dq = 0.5 eV. It is not possible to fit the entire temperature range using one

cluster with one particular temperature-independent 10Dq value for which the ground state is

LS-like and the excited states HS-like. Moreover, each of these two 10Dq values have to be

sufficiently far away from the LS-HS crossover point to ensure a large enough energy separation

between the LS and HS so that the two do not mix due to the spin-orbit interaction. Otherwise,

the calculated low temperature spectrum, for instance, will disagree with the experimental one.

All this indicates that LaCoO3 at finite temperatures is an inhomogeneous mixed spin state

system.

The temperature dependence has been fitted by taking different ratios of LS and HS states con-

tributing to the spectra. The extracted HS percentage as a function of temperature is shown

in Fig. 3a. The corresponding effective activation energy is plotted in Fig. 3b. It increases

with temperature and varies between 20 meV at 20 K to 80 meV at 650 K, supporting a recent

theoretical analysis of the thermodynamics [57]. Here we would like to point out that these

numbers are of the order kBT and reflect total energy differences which include lattice relax-

ations [57] as sketched in the inset of Fig. 3b. Without these relaxations, we have for the LS

state (10Dq = 0.7 eV) an energy difference of at least 50 meV between the LS and the HS as
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Fig. 3: (a) The percentage of the HS population as obtained from the XAS data. (b) Correspond-

ing effective activation energy between the LS and the lowest HS state. The inset sketches the

role of lattice relaxations. (c) Magnetic susceptibility measured by VSM (solid line), calculated

from the cluster (red triangles) using the HS population of (a), and extracted from MCD data

(black squares) of Fig. 4.

shown in Fig. 2. In such a frozen lattice, the energy difference is larger than kBT . It is also so

large that the ground state is indeed highly pure LS as revealed by the 20 K spectrum.

To check the validity of our analysis, we calculate the magnetic susceptibility using the CoO6

cluster and the HS occupation numbers from Fig. 3 as derived from the XAS data. The results

are plotted in Fig. 3c (red triangles) together with the magnetic susceptibility as measured by the

VSM (solid line). We can observe clearly a very good agreement: the magnitude and its temper-

ature dependence is well reproduced. This provides another support that the spin-state transition

is inhomogeneous and involves lattice relaxations. A homogeneous LS-HS model, on the other

hand, would produce a much too high susceptibility if it is to peak at 110 K [33, 34, 36, 41]. In

addition, it is crucial to realize that the Van Vleck contribution to the magnetic susceptibility

strongly depends on the intermixing between the LS and HS states. It is precisely this aspect

which also sets the condition that the energy separation between the LS and HS states in the

cluster should be larger than 50 meV, otherwise the calculated Van Vleck contribution would al-

ready exceed the experimentally determined total magnetic susceptibility at low temperatures.

This in fact is a restatement of the above mentioned observation that the low temperature spec-

trum is highly pure LS.

2.5 Results: MCD

To further verify the direct link between the spectroscopic and the VSM magnetic susceptibility

data, we carried out MCD experiments on LaCoO3 at 60, 110 and 300 K, i.e. in the paramagnetic

phase, using a 6 Tesla magnet. Fig. 4 shows XAS spectra taken with circularly polarized soft-X-

rays with the photon spin parallel and antiparallel aligned to the magnetic field. The difference

in the spectra using these two alignments is only of the order of 1%, but can nevertheless be

measured reliably due to the good signal to noise ratio, stability of the beam, and the accurate

photon energy referencing. The difference curves are drawn in the middle of Fig. 4 with a
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Fig. 4: Top curves: experimental Co-L2,3 XAS spectra taken from LaCoO3 at 60, 110, and

300 K using circularly polarized X-rays with the photon spin aligned parallel (black dotted

line, σ+) and antiparallel (red solid line, σ−) to the 6 Tesla magnetic field. Middle curves:

experimental MCD spectra defined as the difference between the two spin alignments. Bottom

curves: theoretical MCD spectra calculated in the LS-HS scenario.

magnification of 25x. Hereby we have subtracted a small signal due to the presence of about

1.5% Co2+ impurities. We also plotted the simulated MCD spectra from the cluster model

within the LS-HS scenario, and we can clearly observe a very satisfying agreement with the

experiment. Alternatively, using the MCD sum-rules developed by Thole and Carra et al. [65,

66], we can extract directly the orbital (Lz) and spin (2Sz) contributions to the induced moments

without the need to do detailed modeling [67]. This result normalized to the applied magnetic

field is plotted in Fig. 3c, and we can immediately observe the close agreement with the VSM

data.

An important aspect that emerges directly from the MCD experiments, is the presence of a

very large induced orbital moment: we find that Lz/Sz ≈ 0.5. This means that the spin-orbit

coupling (SOC) must be considered in evaluating the degeneracies of the different levels, as is

done for the energy level diagram in Fig. 2. Let us discuss the consequences for the HS state.

We see that the 15-fold degenerate (3-fold orbital and 5-fold spin) HS state is split by the SOC.

A t2g electron has a pseudo orbital momentum of L̃=1 [68] which couples with the spin to a

pseudo total momentum of J̃=1, 2, or 3. The J̃=1 triplet is the lowest in energy and we find

from our cluster that this state has Lz=0.6 and Sz=1.3, in good agreement with the experimental

Lz/Sz ≈ 0.5. Realizing that this state is a triplet with a spin momentum (Sz) so close to 1, it

is no wonder that many studies incorrectly interpreted this state as an IS state. Its expectation
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value for the spin (〈S2〉 = S(S + 1)) is however very close to 6 and the formal occupation

numbers of the dz2 and the dx2−y2 orbitals are both equal to 1. This state is clearly a HS state

and should not be confused with an IS state. We find a g-factor of 3.2, in good agreement with

the values found from ESR [54, 56] and INS data [60].

2.6 Discussion

We have shown so far that the spin state transition in LaCoO3 is in very good agreement with

a LS–HS picture. The question now remains if it could also be explained within a LS–IS

scenario. For that we first have to look what the IS actually is. The IS state has one hole

in the t2g shell and one electron in the eg shell. Due to the strong orbital dependent Coulomb

interactions, the strong-Jahn-Teller states of the type dz2dxy and their x, y, z-cyclic permutations

have much higher energies than the weak-Jahn-Teller dx2−y2dxy plus cyclic permutations. Here

the underline denotes a hole (see Fig. 2). These weak-Jahn-Teller states indeed form the basis

for the orbital ordering scheme as proposed for the IS scenario by Korotin et al. [35]. However,

these real-space states do not carry a large orbital momentum, and are therefore not compatible

with the values observed in the MCD measurements. Likewise, the strong Jahn-Teller-like

local distortions in the IS state proposed by Maris et al. [46] would lead to a quenching of the

orbital momentum. We therefore can conclude that the IS scenarios proposed so far have to

be rejected on the basis of our MCD results. Moreover, an IS state would lead in general to

a much larger van Vleck magnetism than a HS state. This is related to the fact that the LS

state couples directly to the IS via the SOC, while the HS is not. To comply with the measured

low temperature magnetic susceptibility, the energy difference between the LS and IS has to

be 150 meV at least, making it more difficult to find a mechanism by which the maximum of

the susceptibility occurs at 110 K. Finally, within the LS-IS scenario, we were not able to find

simulations which match the experimental XAS and MCD spectra.

To summarize, we provide unique spectroscopic evidence that the spin state transition in LaCoO3

can be well described by a LS ground state and a triply degenerate HS excited state, and that

an inhomogeneous mixed-spin-state system is formed. The large orbital momentum revealed

by the MCD measurements invalidates existing LS-IS scenarios. A consistent picture has now

been achieved which also explains available magnetic susceptibility, ESR and INS data.

3 Electronic structure of NiO

3.1 Introduction

NiO is a benchmark system in solid state physics. It crystallizes in the NaCl structure, has a

partially filled 3d shell (Ni2+ d8), and is an antiferromagnetic insulator with a Néel temperature

of 523 K [69]. It was pointed out early on by de Boer and Verwey [70] that many of the

properties of the 3d transition metal compounds do not agree with the predictions of band theory,

e.g., standard band theory predicts NiO to be metallic. A qualitative explanation was proposed
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Fig. 5: Valence band XPS (1486.6 eV) spectrum of an in situ cleaved NiO single crystal. The

results of two single-site cluster calculations (reproduced from Refs. 79 and 80), and LDA and

LDA+U calculations are also included for comparison.

in terms of the Mott-Hubbard model [71,72] in which the on-site Ni 3d-3d Coulomb interaction

plays a decisive role.

An early ab initio attempt to fix the shortcoming of band theory was to treat NiO as a Slater in-

sulator in which the doubling of the unit cell allows for the existence of a gap [73–75]. However,

the calculated gap of about 0.2 eV [73] turned out to be much too small: A combined photoe-

mission (PES) and bremsstrahlung-isochromat (BIS) spectroscopy study showed that the band

gap is 4.3 eV [76] and established thereby the correlated nature of NiO. The inclusion of a

self-interaction-correction (SIC) or Hubbard U term to the density-functional formalism may

provide a justification for the magnitude of the experimental band gap [77, 78].

Yet, one of the most direct methods to critically test the accuracy of the different approaches,
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is to determine the excitation spectrum associated with the introduction of an extra particle into

the system [81]. Curve (a) in Fig. 5 displays the valence band X-ray photoemission spectrum

(XPS, hν = 1486.6 eV) of an in situ cleaved NiO single crystal. This spectrum represents

essentially the Ni 3d spectral weight since the photoionization cross section of the O 2p is

relatively small [82]. One can clearly observe from curve (e) in Fig. 5 that the Ni 3d density

of states calculated by band theory (in the local density approximation, LDA) does not match

at all: It has a Fermi cut-off and the line shape is completely different. The inclusion of the

Hubbard U in the calculations (LDA+U) does not solve the line shape problem, see curve (d).

All this demonstrates the shortcomings of mean field theories to describe spectra associated

with the fundamental one-particle Green’s function of the system [78, 83].

A completely different approach is to give up the translational symmetry of the system in or-

der to focus on the local correlations and, especially, the dynamics of the propagation of the

injected particle. Curve (c) of Fig. 5 shows the Ni 3d spectral weight from an early cluster

configuration-interaction calculation by Fujimori and Minami [80], which also includes the full

atomic multiplet theory. The agreement with the experimental spectrum is extremely good.

Nevertheless, a later cluster calculation by van Elp et al. [79] arrived at a less satisfactory re-

sult: Peak B has almost disappeared in the calculation, see curve (b). The prime motivation

to use a different set of model parameters here is to infer that the first ionization state is low

spin (2E) [84] rather than the Hund’s rule high spin (4T ), analogous to the case of Zhang-Rice

singlets in the cuprates [85, 86]. Recent developments combining LDA with dynamical mean

field [87–90] or GW approaches [91] yield Ni 3d spectral weights which deviate in important

details from the experimental spectrum. These discrepancies between the experiment and the

later theoretical simulations [79, 87–90] do not provide confidence that one has made progress

in understanding the nature of the first ionization state.

The issues that we need to address now are threefold. First of all we have to establish whether

the XPS valence band spectrum in Fig. 5 is truly representative for bulk NiO. There are reports

in the literature claiming that certain satellite peaks in the Ni 2p spectrum are due to surface

effects [92–95]. Second, we have to determine to what extent a single-site many body approach

can be utilized to describe the electronic structure of NiO for which band formation is also

essential. Third, we need to identify the nature of the first ionization state in the framework

of a local ansatz. To this end we measured the valence band of NiO utilizing the more bulk-

sensitive hard X-ray photoelectron spectroscopy (HAXPES) and we investigated experimentally

the electronic structure of NiO impurities in MgO [96].

3.2 Experimental

The XPS data (hν = 1486.6 eV) on in situ cleaved NiO single crystals were recorded using

a Vacuum Generators twin crystal monochromator Al-Kα source and an Scienta SES-100 an-

alyzer, with an overall energy resolution set to 0.35 eV. The HAXPES data (hν = 6500 eV)

were taken at the Taiwan beamline BL12XU of SPring-8 in Hyogo, Japan using an MBS A-1HE

analyzer. The overall energy resolution was set to 0.35 eV. The NiO impurity in MgO system
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Fig. 6: Valence band photoemission spectra of an in situ cleaved NiO single crystal recorded

using 1486.6 eV (XPS) and 6500 eV (HAXPES) photons.

was prepared in situ as 10-20 nm thin films on polycrystalline Ag by means of molecular beam

epitaxy. The measurements were performed at the 11A1 Dragon beamline of the NSRRC in

Hsinchu, Taiwan. The photoemission spectra were recorded at the Cooper minimum of Ag 4d

(hν = 140 eV) [97] using a Scienta SES-100 analyzer with an overall energy resolution set at

about 0.15 eV.

3.3 Results

In Fig. 6 we show the valence band photoemission spectra of a freshly cleaved NiO bulk crystal,

taken with a photon energy of 1486.6 eV (XPS) and 6500 eV (HAXPES). By increasing the

photon energy we increase also the kinetic energy of the outgoing photoelectron and, thus,

also the inelastic mean free path. One can estimate that the probing depth is then enhanced

from about 15 Å to roughly 80 Å [98]. We observe that the spectra are very similar. We,

thus, conclude that the XPS data as displayed in Figs. 5 and 6 is representative for the NiO

bulk material and that the contribution of surface effects [92–95] can be safely neglected. To

be specific: Peak B is intrinsic for bulk NiO. We would like to note that increasing the photon

energy from 1486.6 eV to 6500 eV does not alter much the Ni 3d character of the spectrum. The

O 2p photoionization cross section relative to that of the Ni 3d remains very small, it changes

from 1/13 to only 1/10 [82], meaning that peak B truly belongs to the Ni 3d spectral weight and

not to the O 2p [89].

The valence band spectrum of the Ni0.05Mg0.95O impurity system is shown in Fig. 7 together

with the spectrum of an MgO reference thin film grown simultaneously under identical oxygen

and substrate conditions. The Ni0.05Mg0.95O film (and also the MgO film) was capped by 2

monolayers of MgO in order to prevent the surface termination to have an effect on the local

electronic structure of the Ni impurity. The inset in the figure displays the Ni L2,3 X-ray ab-

sorption spectra of the Ni0.05Mg0.95O and the NiO bulk. The spectra are essentially identical,
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spectra of Ni0.05Mg0.95O and an MgO reference, together with the resulting difference spectrum.

Also included is the result of a single-site NiO6 configuration-interaction cluster calculation.

The inset shows the Ni L2,3 X-ray absorption spectrum of the Ni0.05Mg0.95O together with that

of bulk NiO.

verifying that the Ni in the Ni0.05Mg0.95O has very similar local surrounding (NiO6 octahedra)

as in the bulk.

The valence band spectra of the Ni0.05Mg0.95O and MgO systems are normalized to their O 2s

core level intensities. Both are dominated by the O 2p valence band, yet, there are clear dif-

ferences between them due to the presence or absence of the 5% NiO impurity. The difference

spectrum multiplied by a factor of 6 is given by the red curve in Fig. 7. The line shape remains

the same for films with lower Ni concentrations, as is the case for that of the Ni 2p [99]. This

curve represents essentially the Ni 3d spectral weight of the NiO impurity since the photoion-

ization cross section of the Ni 3d is an order of magnitude larger than that of the O 2p at the

photon energy used [82]. Remarkable is that it is different from the spectrum of bulk NiO as

shown in Figs. 5 and 6. The impurity spectrum lacks specifically peak B which is prominently

present in the bulk spectrum.

3.4 Analysis

To interpret and understand the impurity spectrum, we have performed simulations using the

well-proven configuration-interaction cluster model which includes the full atomic multiplet

theory [22, 20, 21]. The simulations have been carried out for a NiO6 cluster using the program

XTLS 8.3 [22].

The bottom curve in Fig. 7 shows the Ni 3d one-electron removal spectrum from the cluster
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configuration-interaction cluster calculation.

calculation. The agreement with the experiment is very satisfactory. In order to achieve this,

we have started the calculations by using parameter values which were suggested from earlier

studies on NiO [79, 22, 100, 101]. We then fine-tune the parameters describing the octahedral

crystal and ligand fields, and also the difference between the Hubbard U and the O 2p-Ni 3d

charge transfer energy [102]. The crucial issue here is to obtain a main line (peak A) without

having another feature appearing at about 2 eV higher energies (peak B) as was the case in the

simulations by Fujimori and Minami [80] and by van Elp et al. [79]. This has implications for

the energetics of the states making up the valence band as we explain in the following.

A detailed look at the cluster calculations displayed in Fig. 5 shows that peak A is given by the
4T1 final state of the Ni 3d7 multiplet structure while peak B is due to the 2T1. Avoiding the

appearance of peak B means that the energy splitting between these two states must be made

smaller, e.g., 1 eV or less. This is what we have done in our simulation in Fig. 7, using different

but equally reasonable parameter values [102]. The consequences for the physics are quite far

reaching. Given the fact that various X-ray absorption studies find an effective octahedral crystal

and ligand field splitting of about 1.65 eV [100, 101], i.e., the splitting between the isospin 2T1

and 2E states, we arrive at the conclusion that the 2E must be lower in energy than the 4T1 by

0.65 eV or more. This is what we read from our results in Fig. 7. In other words, our impurity

study provides the spectroscopic evidence that the first ionization state has a compensated-spin

character rather than the Hund’s rule high-spin. This in turn justifies that the ground state of a

hole doped NiO system may indeed be low-spin in nature [84].



Challenges from Experiment 14.15

We now return to the problem of the bulk NiO valence band spectrum. Fig. 8 shows the Ni 3d

spectral weight taken with XPS and compares it with the spectra of the NiO impurity and of

the single-site LDA+DMFT calculation [89]. One can clearly observe that peak B is absent in

the impurity as well as in the Ni 3d spectral weight of the single-site calculation. In fact, one

could infer that the calculation reproduces quite well the impurity spectrum, with perhaps some

discrepancies due to the incomplete implementation of the multiplet structure of the on-site

Coulomb interactions. Yet, the discrepancy with the bulk spectrum strongly suggests that the

origin of peak B must be sought in non-local correlations, i.e., effects which cannot be included

in a single-site approach.

3.5 Non-local screening

Our suggestion is that peak B is due to non-local screening processes involving the formation of

low-energetic coherent many body states on neighboring NiO clusters, which are of the 2E type

as we have shown above. The mechanism is analogous as proposed earlier for the Ni 2p core

level spectrum of bulk NiO [103], but the application of it for the valence band is only valid for

local states which are relatively stable against band formation. This may not be applicable for

the 2E state, which is a state in which a hole is injected in an eg orbital starting from the 3d8

3A2 ground state [101]. This hole can be expected to readily propagate in the lattice since the

hopping between the Ni 3d(eg) and O 2p(σ) orbitals are rather large [79, 103], yet, it may leave

behind an energetically costly wake of wrong spins in the antiferromagnetic lattice. In any case,

it would not be meaningful to describe its band formation as a low-energy screening process

involving neighboring 2E states [104].

However, for the main peak of the bulk NiO spectrum, i.e., the 4T1 state, we infer that we can

make a meaningful approximation by using the coherent 2E screening model. The 4T1 consists

of a hole injected into the t2g orbital, and its ability to move is rather limited since the overlap

between the Ni 3d(t2g) and O 2p(π) is small. One could consider the 4T1 as a localized quasi-

core state. We then can invoke the non-local screening process as follows: After the creation

of the 4T1 state, an eg electron from a neighboring NiO cluster hops onto the Ni site, leaving

behind a coherent 2E hole state on that neighbor. A sketch for this process is given in Fig.

9. These two states are energetically almost degenerate [103], and the Ni 3d(eg) and O 2p(σ)

hybridization between them is then strong enough to produce two peaks: Not only the main

peak A but also the satellite peak B.

3.6 Multi-site analysis

To confirm our assignments, Tanaka [96] has performed a Ni3O16 cluster calculation consisting

of three edge-shared NiO6 octahedra. While all the O 2p and Ni 3d orbitals are included for

the NiO6 octahedron in the center where the photo-excitation takes place, those on the other

parts of the cluster are replaced by a reduced basis set using the method in Ref. [105]. The

results are displayed in Fig. 8 and demonstrate the presence of both peaks A and B. Note that

the same parameters have been used as for the single-site calculation which produces only peak
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Fig. 9: Non-local screening in valence band photoemission on NiO: (a) Creation of the atomic-

like (quasi-core) 4T1 hole state by the photoemission process. (b) Screening by a next nearest

neighbor NiO6 cluster producing a coherent low-energetic 2E hole state there.

A, see Fig. 7. We also note that the energy difference between peaks A and B is somewhat

smaller and the intensity of peak B is slightly larger than those of the experiments. This can be

explained by the fact that the number of neighboring Ni sites is only two in the Ni3O16 cluster:

the energy difference will increase and the intensity of peak B will decrease for a larger number

of neighboring sites [105].

3.7 Conclusion

To summarize: We have succeeded to determine reliably the Ni 3d valence band spectra rep-

resentative for bulk NiO as well as for NiO as an impurity system. From the impurity data we

are able to extract the local electronic structure and the correlations herein, thereby establish-

ing firmly the compensated-spin character of the first ionization state. By comparing the bulk

with the impurity system, we were able to identify features in the bulk NiO spectrum which

are caused by screening processes involving local quasi-core valence band states and non-local

low-energetic many body states.
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