Challenges from experiment

Hao Tjeng

Physics of Correlated Matter

Max-Planck-Institute Chemical Physics of Solids Dresden

- Zhiwei Hu, Jonas Weinen, Yi-Ying Chin, Nils Hollmann, Stefano Agrestini Dresden
- Maurits Haverkort MPI FKF, Stuttgart
- Thomas Koethe, Hua Wu, Roger Chang, Tobias Burnus, Christian Zobel, Marco Reuther, Helena Hartmann, Daniel Khomskii, Markus Braden, Thomas Lorenz, *Cologne*
- Arata Tanaka Hiroshima, Japan
- J. Cezar, N. Brookes *ESRF, France*
- H.-J. Lin, K.-D. Tsuei, H.-H. Hsieh, C.T. Chen – *NSRRC, Taiwan*

Correlated electron systems:

• how does the spectral weight distribution change as a function of U / W?

Transition metal oxides: wide range of properties

• d ¹ :		Ti ₂ O ₃	VO_2	LaTiO ₃		
• d ² :	TiO	V_2O_3	CrO ₂	YVO ₃		
• d ³ :	VO	Cr_2O_3		LaCrO ₃		
• d ⁴ :				LaMnO ₃	Ca_2RuO_4	
• d ⁵ :	MnO	Fe ₂ O ₃		BaCoO ₃		+ doping
• d ⁶ :	FeO			LaCoO ₃	NaCoO ₂	
• d ⁷ :	CoO			LaNiO ₃		
• d ⁸ :	NiO				La ₂ NiO ₄	
• d ⁹ :	CuO				La_2CuO_4	

atomic multiplet interactions nearest neighbor interactions

→ determine effective U, W

and more !!!

(difficult to make a general scheme – each compound form ist own universe)

I. Importance of atomic multiplet interactions

Example: cobaltates

(a material class with very rich phyiscs)

- Metal-Insulator-Transitions, Colossal-Magneto-Resistance, Thermoelectric power in:
 - layered: $RBaCo_2O_{5+x}$ (R=Eu,Gd)
 - "113": $La_{1-x}A_xCoO_3$ (A=Ca,Sr,Ba)
- Superconductivity: Na_xCoO₂.yH₂O
- Unusual magnetic properties: Ca₃Co₂O₆ (*Ising/steps*)
- Multiferroicity: Ca₃MnCoO₆ (Ising)

What is special about Co ions?

- valence state : 2+ 3+ 4+
 spin state: HS HS/IS/LS HS/IS/LS
- spin state transitions and *spin-blockade* mechanism
- local coordination: oct/pyramidal/trig/prismatic-trig
- *spin-orbit interaction*

Confusion in the literature about:

- valence, orbital, and spin state
- all kinds of possible scenarios are proposed from neutron and magnetic susceptibility experiments
- band theories give conflicting results

LaCoO₃ : a benchmark system Co³⁺: 3d⁶

- non-magnetic insulator at low T
- non-magnetic to paramagnetic transition for T>25K, with max. in magn. susceptibility at 100K
- resistivity drop T = 350K -550K, "metal-insulator transition"

Spin-state transitions ? Low – Intermediate – High spin ?

Puzzle: what is the spin state of Co³⁺??

competition: <u>crystal field - band formation - Hund's exchange</u>

Energetics of 3d⁶ spin states: ionic picture

Energetics of 3d⁶ spin states: an ionic picture

<u>full atomic</u> <u>multiplet theory</u>

Sugano, Tanabe, Kamimura - 1970

3d⁶ can either be LS or HS but never IS in O_H

LS-HS crossing at 10Dq=20B≈2.2eV

Classic model: LS-HS scenario

J.B. Goodenough et al. (1960s) proposed:

non-magnetic at T = 0K

• LS ground state • increasing paramagnetism through thermal population of HS, $E_{HS} - E_{LS} \le 80 \text{meV}$

• reduced resistivity through ordering of LS-HS Co-sites at higher temperatures

Classic model: LS-HS scenario

J.B. Goodenough et al. (1960s) proposed:

non-magnetic at T = 0K

• LS ground state • increasing paramagnetism through thermal population of HS, $E_{HS} - E_{LS} \le 80 \text{meV}$

• reduced resistivity through ordering of LS-HS Co-sites at higher temperatures

Modern model: LS-IS scenario

Remark:

Kor Saw LDA+U cannot implement full-multiplet effects $U_{ijkl} \mathbf{d}_i \mathbf{d}_j \mathbf{d}_k \mathbf{d}_l$ LDA+U is a single Slater determinant approach: $U_{ij} \mathbf{d}_i^{\dagger} \mathbf{d}_j \mathbf{d}_j^{\dagger} \mathbf{d}_j$ \rightarrow incorrect energies for especially IS !!

• spin state transition from LS to *orbitally ordered* IS at 150K

• metallic *disordered* IS at higher temperatures

Remark: results may strongly depend on details of calculations, e.g.

- assumed magnetic ordering
- value of Hubbard U parameter
- coexistence of spin states not considered
- incomplete implementation of multiplet effects

<u>How to determine spin state of Co ions:</u> Soft-X-Ray Absorption and Magnetic Circular Dichroism (spectroscopically-resolved magnetic susceptibility measurement)

Spectrum $(hv) = \Sigma_{f} |\langle i | e.r | f \rangle |^{2} \delta(hv - E_{f} + E_{i})$

 $|i\rangle$ = initial state, $|f\rangle$ = final state e.r = dipole transition.

If experimental spectrum is simulated correctly, then also initial state and final states are known

use of core levels → local transitions → element and site specific
involves most relevant orbitals: 2p-3d (TM), 3d-4f (RE), 1s-2p (O,N,C)
dipole allowed → very strong intensities
dipole selection rules + multiplet structure give extreme sensitivity to symmetry of initial state: charge, spin and orbital

theory:

TM 2p-3d: Cluster calculations with full atomic multiplet theory *O 1s-2p* : LDA+U calculations

Technique developed in late 1980's:

- Fink, Sawatzky, Fuggle
- Thole, van der Laan
- Chen, Sette

6196

J. Phys. Chem. 1992, 96, 6196-6198

Spin Transition Evidenced by Soft X-ray Absorption Spectroscopy

Christophe Cartier dit Moulin,*.[†] Petra Rudolf,^{1,§} Anne-Marie Flank,[†] and Chien-Te Chen[‡]

LURE, Bâtiment 209d, F-91405 Orsay, France, and AT&T Bell Laboratories, Murray Hill, New Jersey 079074 (Received: January 14, 1992; In Final Form: March 31, 1992)

Fe^{II}(phen)₂(NCS)₂ Fe 3d⁶

XAS study on the spin state of Co³⁺ ion in LaCoO₃

LaCoO₃: occupation of HS in the LS-HS scenario

Effective activation energy: temperature dependent !

Energy level diagram: CoO₆ cluster incl. covalency

Spin state transition: local lattice relaxation

• frozen lattice: $\Delta E >> k_B T$

otherwise too much Van Vleck and incorrect XAS spectra

• inhomogeneous mixed spin-state system

Magnetic Circular Dichroism: *paramagnetic* LaCoO₃

Magnetic susceptibility – MCD - XAS

Can we rule out the LS-IS scenario ?!

crucial finding: orbital/spin-moment sum-rules: $L_z/S_z \approx 1/2$

Energy level diagram: CoO₆ cluster incl. covalency

Very difficult to find an IS state with L_z which also fits the XAS/MCD spectra

Summary: magnetic properties of LaCoO₃

- LaCoO₃: non-magnetic at low T $[Co^{3+} = 3d^6]$ paramagnetic T>25 K
- 1960's : Low-Spin (S=0) \rightarrow High-Spin (S=2)
- 1996 : Low-Spin (S=0) \rightarrow Intermediate-Spin (S=1)

Korotin, Ezhov, Solovyev, Anisimov, Khomskii, Sawatzky, PRB 54, 5309 (1996): LS-IS

claimed experimental proof: thermodynamic properties best explained by *triply* degenerate excited state

Spectroscopy XAS/MCD

- Low-Spin (S=0) to High-Spin (S=2)
- temperature dependent activation energy

Full multiplet theory:

- High-Spin (S=2) is 3-fold degenerate !!
- Interm.-Spin (S=1) is 5-fold degenerate !!
- due to spin-orbit interaction

Temperature dependence of the resistivity of LaCoO₃

non-magnetic insulator at low T
non-magnetic to paramagnetic transition for T>25K, with max. in magn. susceptibility at 100K

• resistivity drop T = 350K -550K, "metal-insulator transition"

What happens with the band gap of LaCoO₃?

Photoelectron spectrocopy on LaCoO₃

T. Koethe -- PhD thesis

spectrum of **surface** different from spectrum of **bulk** !!

Probing depth of photoelectron spectroscopy

Problematic for obtaining bulk PES electronic structure of LaCoO₃

Problematic for high temperature phases: loss of oxygen at surface

How to increase the probing depth of photoemission ?

SURFACE AND INTERFACE ANALYSIS Surf. Interface Anal. 29, 108-114 (2000)

Evaluation of electron inelastic mean free paths for selected elements and compounds[†]

C. J. Powell¹* and A. Jablonski²

electron energies 10 keV \rightarrow probing depths 80-200 Ångstrom !!

 \rightarrow hard-x-ray photoelectron spectroscopy = HAXPES

Photo-ionization cross-section

- cross-sections go down with increasing hv
- transition metal 3d
 20 eV→10 keV : 10⁻⁶
- needs bright sources !!

Hard-x ray photoelectron spectroscopy (HAXPES):

MPI-CPfS-Dresden Univ. Cologne

NSRRC-Taiwan

• PhD project Jonas Weinen

FOR 1346: Dynamical Mean-Field Approach with Predictive Power for Strongly Correlated Materials

HAXPES: valence band LaCoO₃

Stefano Agrestini, Jonas Weinen

conduction band LaCoO₃: O-1s XAS (IPES would have been better)

Co-XAS

T(K)

Band gap reduces by 1 eV from 0 to 650 K LaCoO₃ is still a bad metal across the "MIT"

HAXPES: core levels LaCoO₃

• LaCoO₃ is an inhomogeneous spin-state system

• Cobaltates: a material class with very rich physics *metal-insulator-transitions, colossal-magneto-resistance, thermoelectric power, superconductivity, multiferroicity, unusual magnetic properties.*

• valence state :	2+	3+	4+
• spin state:	HS	HS/IS/LS	HS/IS/LS

• spin state transitions and spin-blockade mechanism

• local coordination: oct/pyramidal/trig/prismatic-trig

<u>113 cobaltates:</u>	one-dimensional cobaltates:	
LaCoO ₃ Co: 3+ LS/HS	$Ca_3Co_2O_3$ Co: trig. 3+ HS Co:	oct. 3+ LS
LaMn _{0.5} Co _{0.5} O ₃ Co: 2+ HS Mn: 4+ HS	Ca ₃ CoRhO ₆ Co: trig. 2+ HS Rh	oct. 4+ LS
$EuMn_{0.5}Co_{0.5}O_3$ Co: 2+ HS Mn: 4+ HS	Ca ₃ FeRhO ₆ Fe : trig. 3+ HS Rh:	oct. 3+ LS
	Ca_3CoMnO_6 Co: trig. 2+ HS Mn	: oct. 4+ HS
layered cobaltates:		
$GdBaCo_2O_{5.5}$ Co: 3+ HS/LS Co_{pvr} : 3+ 1	S $Na_x CoO_2$ Co: 3+ LS	Co: 4+ LS
$La_{1.5}Sr_{0.5}CoO_4$ Co: 3+ LS Co: 2+ HS	$Na_{x}CoO_{2} \cdot nH_{2}O$ Co: 3+ LS	Co: 4+ LS

II. Multiplet interactions and band formation

Benchmark system in solid state physics

- partially field 3d-shell
- antiferromagnetic insulator

Standard band theory: NiO metallic

Benchmark system in solid state physics

- partially field 3d-shell
- antiferromagnetic insulator

Standard band theory: NiO metallic

Early attempt to fix: Slater insulator

Benchmark system in solid state physics

- partially field 3d-shell
- antiferromagnetic insulator

Benchmark system in solid state physics

- partially field 3d-shell
- antiferromagnetic insulator

VOLUME 65, NUMBER 9

PHYSICAL REVIEW LETTERS

27 AUGUST 1990

Transition-Metal Oxides in the Self-Interaction-Corrected Density-Functional Formalism

A. Svane Institute of Physics, University of Aarhus, DK-8000 Aarhus C, Denmark

O. Gunnarsson Max-Planck Institut für Festokörperforschung, D-7000 Stuttgart 80, West Germany (Received 14 May 1990)

TABLE I. The LSD, SIC-LSD, and experimental energy band gaps (in eV) and spin magnetic moments (in μ_B) for VO, CrO, MnO, FeO, CoO, NiO, and CuO. The moments in parenthesis include the orbital contribution. The last column shows the energy difference ΔE (in eV) between the LSD and the SIC-LSD calculation.

	Band gap			Magnetic moment			
Compound	LSD	SIC-LSD	Expt.	LSD	SIC-LSD	Expt.	ΔE
vo	0.0	0.0	0.0	0.0	0.0	0.0	
CrO	0.0	1.01		2.99	3.49 (3.44)		1.0
MnO	0.8	3.98	3.6-3.8 ^a	4.39	4.49 (4.49)	4.79, ^b 4.58 ^c	3.9
FeO	0.0	3.07		3.42	3.54 (4.55)	3.32 ^d	4.6
CoO	0.0	2.81	2.4 ^e	2.33	2.53 (3.72)	3.35, ^f 3.8, ^d 3.8 ^g	6.6
NiO	0.2	2.54	4.3, ^h 4.0 ⁱ	1.04	1.53 (1.80)	1.77, ^b 1.64, ^j 1.90°	9.5
CuO	0.0	1.43	1.37 ^k	0	0.65 (0.78)	0.65 ¹	14.7

Ab-initio: SIC fixes the gap

Benchmark system in solid state physics

- partially field 3d-shell
- antiferromagnetic insulator

PHYSICAL REVIEW B

VOLUME 44, NUMBER 3

15 JULY 1991-I

Band theory and Mott insulators: Hubbard U instead of Stoner I

Vladimir I. Anisimov,* Jan Zaanen,[†] and Ole K. Andersen

PHYSICAL REVIEW B

VOLUME 48, NUMBER 23

15 DECEMBER 1993-I

Density-functional theory and NiO photoemission spectra

V. I. Anisimov, I. V. Solovyev, and M. A. Korotin M. T. Czyżyk and G. A. Sawatzky

FIG. 3. The experimental (dots) and the calculated (solid line) photoemission spectra for NiO.

LDA+U not "dynamic" enough for excitation spectra

FIG. 1. The density of states (DOS) for the NiO valence band in the LDA + U calculation ("unmodified"). (a) The total DOS,
(b) the Ni 3d partial DOS, and (c) the O 2p partial DOS.

PHYSICAL REVIEW LETTERS

Aspects of the Correlation Effects, Antiferromagnetic Order, and Translational Symmetry of the Electronic Structure of NiO and CoO

Z.-X. Shen,⁽¹⁾ C. K. Shih,⁽²⁾ O. Jepsen,⁽³⁾ W. E. Spicer,⁽¹⁾ I. Lindau,⁽¹⁾ and J. W. Allen⁽⁴⁾

peak B due to surface effects ??

experimental spectrum

cluster: even smaller peak B

cluster: small peak B

LDA+U: wrong lineshape

LDA: metal

$$\frac{d\sigma_i}{d\Omega} = \frac{\sigma_i}{4\pi} [1 + \beta P_2(\cos\theta) + \dots]$$

β-parameters @ hv= 5-10 keVCu 3d0.48 - 0.32Cu 4s1.985Zn 3d0.50 - 0.33Zn 4s1.987 - 1.986

HAXPES is more bulk sensitive than XPS 80 Angstrom - probing depth - 20 Angstrom

> peak B belongs to bulk spectrum !!

How does the NiO impurity spectrum looks like ?? \rightarrow Ni:MgO

NiO impurity spectrum \rightarrow Ni:MgO

before PES

PES

Screening from a neighboring Ni cluster, creating a *many-body* hole state ('ZRS')

Testing non-local screening model: temperature dependence ?

Screening is reduced above T_N :

indeed, screening needs AF nearest neighbor spin alignment !

Concluding remarks:

LaCoO₃: a prototype spin state transition material

- full atomic multiplet theory is necessary
- influence of lattice is important

NiO: simple AFI system but very complex electronic structure

- correlations, multiplets, band formation, screening
- charge transfer insulator, compensated-spin 1st ionization state

<u>Soft-x-ray absorption spectroscopy (XAS/MCD):</u>

• extremely sensitive to valence, spin and orbital state

Photoelectron spectroscopy:

• very sensitive to short-range spin-spin correlations