
2011 Autumn School Hands-on LDA+DMFT

Exercises on “strong-coupling” impurity solvers
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For simplicity, we will consider a spin-less impurity coupled to a single bath site, H = −µd†d + ǫa†a +
V (d†a + a†d), with hybridization V , chemical potential µ = 0 and impurity level energy ǫ = 0 (see
Fig. 1).
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FIG. 1: Illustration of the spin-less impurity coupled to a single bath level.

In this case, the hybridization function is ∆(iωn) = |V |2

iωn

, or in imaginary time

∆(τ) =

{

− 1
2 |V |2 0 < τ < β
1
2 |V |2 −β < τ < 0

(1)

and the impurity Green function becomes (0 < τ < β)

G(τ) = −
cosh[V (β

2 − τ)]

2 cosh[V β
2 ]

. (2)

1. Hybridization expansion

We want to understand the determinant structure in the hybridization expansion CT-QMC algorithm,
and its effect on the average perturbation order and sign. Starting from the action formulation

Z = TrTe−Sloc−
R

dτdτ ′d†(τ)∆(τ−τ ′)d(τ ′) (3)

we obtain individual strong-coupling diagrams by expanding Z in powers of ∆.

(i) Convince yourself by looking at contributions of order n = 1, 2, 3, . . . that the weights of the n!
diagrams with identical operator sequence can be summed up into a determinant |V |2n det Mn with
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

. (4)

Examples for n = 2 are shown in Fig. 2. The thin line represents the imaginary time interval [0, β],
full dots correspond to creation operators d† and open dots to annihilation operators d. Thick black
segments represent the imaginary-time intervals in which an electron resides on the impurity, dashed
lines the hybridization functions connecting pairs of creation and annihilation operators.

(ii) Show by induction that detMn = 1
2 , for all n ≥ 1. The weight of a configuration with n segments is

therefore (dτ)2n|V |2n 1
2 .

(iii) To find the total contribution of configurations with perturbation order n to Z, we have to compute
the corresponding “phase space”, i. e. the integral (◦τ1 means that the integral winds around the [0, β]
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FIG. 2: Illustration of two diagrams for perturbation order n = 2, whose weight can be summed up into a
determinant. Consider also the case where the d and d† operators are exchanged.

interval)

In =

∫ β
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dτ1

∫ β
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1
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τ ′
1

dτ2

∫ β

τ2
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2 . . .

∫ β

τ ′
n−1

dτn

∫ ◦τ1

τn

dτ ′
n. (5)

Show that In = 2β2n

(2n)! , and hence that the probability distribution for the perturbation orders is

p(n) =
1

cosh(β|V |)

(β|V |)2n

(2n)!
. (6)

(iv) What would the expression for the probability distribution be if we had not resummed collections
of strong-coupling diagrams into determinants, i. e. if we had sampled individual diagrams with the
absolute value of their weight?

(v) Plot the results of (iii) and (iv) for several values of β|V |, and discuss what we can learn from this
comparison about the efficiency of the determinant based algorithm and the sign problem in simulations
based on individual diagrams.

Try to reproduce the results in Fig. 3 (for c = |V |2

2 ).
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FIG. 3: Distribution of perturbation orders for algorithms sampling individual strong-coupling diagrams (dots)
and determinants (lines).

2



2011 Autumn School Hands-on LDA+DMFT

1. Non-crossing approximation

In the non-crossing approximation, one only resums the strong-coupling diagrams which have no crossing

hybridization lines. This can be done by introducing “pesudo-particle” Green functions G0 and G1 for
the empty and occupied state, respectively, and selfconsistently solving the coupled Dyson equations

G0(τ) = g0(τ) +

∫ τ

0

dτ2

∫ τ2

0

dτ1G0(τ1)Σ0[G1](τ2 − τ1)g0(τ − τ2), (7)

G1(τ) = g1(τ) +

∫ τ

0

dτ2

∫ τ2

0

dτ1G1(τ1)Σ1[G0](τ2 − τ1)g1(τ − τ2), (8)

where gi(τ) = −e−Eiτ is the noninteracting pseudo-particle Green function corresponding to the
eigenstate of Hloc with energy Ei.

(i) Rewrite the NCA equations as integro-differential equations, and solve them iteratively using the
initial condition Gi(0) = −1.

In the case of our simple model E0 = E1 = 0, ∆(τ) = ± 1
2 |V |2, so you should get

∂τG0(τ) = −

∫ τ

0

dτ1G0(τ1)
1

2
|V |2G1(τ − τ1), (9)

∂τG1(τ) = −

∫ τ

0

dτ1G1(τ1)
1

2
|V |2G0(τ − τ1). (10)

(ii) Compute the Green function from the converged pseudoparticle propagators as

G(τ) =
G1(τ)G0(−τ)

G0(τ) + G1(τ)
. (11)

(iii) Compare the NCA result to the exact Green function (2). For βV = 5, 20 you should find the Green
functions plotted in Fig. 4.
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FIG. 4: Green functions for βV = 5, 20.
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