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11.2 Frithjof B. Anders

1 Introduction

Jun Kondo was intrigued [1, 2] by the puzzling experimental observation [3] that the resistance
in noble or divalent metals typically shows a minimum at low temperatures when containing
small concentrations of transition metals. It was expected that the inelastic scattering is reduced
with decreasing temperature and, therefore, the resistance should be a monotonic function of T ,
which reaches a finite temperature-independent value for T → 0 proportional to the remaining
lattice imperfections. It had been noted that the increase of the residual resistance is proportional
to the transition metal concentration [3,4] and only occurs when those impurities are magnetic.
In 1961, Anderson [5] proposed a simple model for the understanding of the formation of stable
magnetic moments in transition metals ions. Since the Coulomb interactions is only weakly
screened on atomic length scales, valence fluctuations on unfilled d and f shells are suppressed
at integer fillings, and a finite total angular momentum is formed according to Hund’s rules.
The Anderson model, which we will discuss in Sec. 1.2, provides a microscopic understanding
of the Friedel sum rule [6] which relates the phase shifts of the conduction electrons scattered
on the impurity to the number of displaced electrons.
The overwhelming experimental evidence hints towards the generic nature of this effect: the
details of the conduction bands actually do only enter into a single material-dependent low
energy scale TK , the so-called Kondo scale. Kondo realized that the position of the resistance
minimum remains unaltered when reducing the concentration of the magnetic impurities which
rules out interaction induced correlation effects between different localized spins. From the
first observation [3] in 1934, it took three decades until Kondo [1, 2] proposed his seminal
Hamiltonian, which provides a simple physical picture and explains the experimental data. In
the Kondo model,

H = Hb +HK , (1)

the conduction electrons are described by a non-interacting electron gas

Hb =
∑
~kσ

ε~kσc
†
~kσ
c~kσ (2)

and the interaction with a localized magnetic moment ~S is modelled by a simple Heisenberg
term

HK = J ~S~sb . (3)

c†~kσ (c~kσ) generates (destroys) a conduction electron with momentum ~k and spin σ, ~S represents
the impurity spin, ~sb

~sb =
1

2

1

N

∑
~k~k′

∑
αβ

c†~kα ~σαβ c~k′β (4)

is the spin of the conduction electrons at the impurity site and ~σ are the Pauli matrices. The
lattice has a finite size of N sites which are sent to N →∞ in the thermodynamic limit.
Over the period of the last 50 years we have learned that the Kondo problem is not restricted to
magnetically doped noble or divalent metals: it has turned out to be one of the most fundamental
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problems in solid state physics. It involves the change of ground states when going from high-
energy to low energy physics indicated by the infrared divergent perturbation theory.

1.1 Resistance minimum

Before we proceed to the Kondo problem itself, let us investigate the scattering of free con-
duction electrons on a finite number of impurities. The Nimp identical impurities are located
at positions {~Ri}, and each contributes a potential V (~r − ~Ri) to Hb generating the additional
potential scattering term

V =
∑
i

∑
~k~qσ

ei~q
~Ri V (~q) c†~k+~q,σ

c~kσ , (5)

where V (~q) is the Fourier transform of V (~r). For a given configuration of impurities, {~Ri}, the
single-particle Green function of the conduction electrons is determined by Dyson’s equation
[7],

G~k,~k′(z) =
δ~k,~k′

z − ε~kσ
+
∑
i

∑
~qσ

ei~q
~Ri V (~q)G0

~k
(z)G~k−~q,~k′(z) , (6)

where G0
~k
(z) = [z − ε~kσ]−1. After expanding this equation in powers of V (~q), we need to

average over the different configurations {~Ri} in order to obtain the configuration averaged
Green function 〈G~k,~k′(z)〉conf . In linear order, we obtain〈∑

i

ei~q
~RiV (~q)

〉
= NimpV (0) δ~q,0 , (7)

while in second order, two terms [4] arise〈∑
i

ei~q
~RiV (~q)

∑
j

ei
~q′ ~RjV (~q′)

〉
= NimpV (q)V (q′)δ~q+~q′,0 +Nimp(Nimp − 1)V 2(0)δ~q,0δ~q′,0 .

(8)
The first describes two scattering events on a single impurity and the other a single scattering
of two different impurities. Summing up all these zero momentum transfers V (0) produces a
uniform background which we absorb into the dispersion ε~kσ. In higher order, there are two
types of skeleton diagrams [8] generated: either the diagram describes multiple scattering on
a single impurity, or several impurities are involved. The latter include interference effects
which can be neglected if the mean free path is shorter than the average distance between two
impurities. In the following, we assume such a small concentration of cimp that the condition
cimp = Nimp/N � 1 is always fulfilled. Then G~k(z) = [z − ε~kσ − Σ~k(z)]−1 acquires a
self-energy

Σ~k(z) = cimpT~k(z), (9)

which is proportional to the impurity concentration. The scattering matrix T~k(z) accounts for
the sum of all multi-scattering processes on a single impurity.
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The imaginary part of the self-energy is related to the single-particle life-time τ~k:

=mΣ~k(εk − iδ) = 1/2τ(~k) ,

whose value close to the Fermi energy might be mistaken for a transport life-time entering the
simple Drude model for the conductance,

σ =
ne2τDrude

m
, (10)

where n is the concentration of electrons. According to Kubo’s transport theory [7], however,
the conductance is obtained from the current-current correlation function. A closer inspection
reveals immediately that this correspondence of single-particle and transport life-time is in-
correct in general: Clearly, forward scattering by the T -matrix contributes less to resistance
than backward scattering. Hence, the average over the momentum transfer directions is re-
quired to connect τDrude with Tk(z). However, we can employ the optical theorem to connect
the imaginary part of the forward scattering =mT~k(z) to the angular integrated matrix ele-
ments =mTk(z) ∝

∫
dΩ|〈~k|T̂ |~k′〉|2. Since we deal with isotropic s-wave scattering in the

Kondo problem, the T -matrix becomes angular independent and the angular averaging yields
τDrude = τkF .
Just taking the contribution linear in J , the spin-diagonal scattering of conduction electrons
reads JSz and the spin flip terms yields 〈~k↑|T̂ |~k′↓〉 = JS−, so that all three contributions from
the scalar product J ~S~sb add up to =mT = J2S(S + 1) + O(J3) using the optical theorem. In
second order in J , we just find a constant contribution similar to a residual potential scattering
term. Its magnitude, however, is proportional to the square of the effective moment.
In order to understand Kondo’s theory of the resistance minimum, the second order contribution
to the T -matrix [1]

〈~kσ|T̂ |~k′σ′〉|(2) =

〈
~kσ

∣∣∣∣HK
1

z − Ĥ0

HK

∣∣∣∣~k′σ′〉 (11)

is needed. Since the details of the calculation can be found in Hewson’s book [4], and a similar
calculation is presented in the Sec. 2.1 below, we will only state the final result for the resistivity
contribution of a single impurity:

ρimp =
3πmJ2S(S + 1)

2e2~εF

[
1− Jρ(εF ) ln

(
kBT

D

)
+O(J3)

]
, (12)

where m is the electron mass, ρ(εF ) the conduction band density of state at the Fermi energy
εF and D the band width. The infrared divergent logarithm arises from the integration of the
resolvent 1/(z−Ĥ0) ∝ 1/(z−ε) over all intermediate conduction electron states since the spin-
flipped local states are degenerate. In a magnetic field, however, the logarithmic divergency will
be cut off on the energy scale given by the Zeeman energy.
Typically, the bare coupling g = Jρ(εF ) � 1 is small. However, the logarithmic corrections
causes an increase in ρimp for decreasing temperatures and J > 0, which diverges for T → 0.
The effective scattering rate becomes of the order O(1) at temperatures of an exponentially
small energy scale TK

TK ∝ De−
1
ρJ , (13)
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which is non perturbative in the bare coupling constant ρJ . This scale indicates the breakdown
of the perturbation theory and is called the Kondo scale. At the heart of the problem are diver-
gent spin-flip contributions, which occur in quantum impurity problems with degenerate local
quantum states.

1.2 Anderson model

As mentioned already in the introduction, Anderson proposed a model [5] for the understanding
of local moment formation in 1961. Its simplest version comprises of a single localized spin-
degenerate level with energy εd and a Coulomb repulsion U when the level is filled with two
electrons of opposite spin. This local Hamiltonian

Himp =
∑
σ

εdd†σdσ + Un↑n↓ (14)

is then trivially diagonalized by the four atomic states |0〉, |σ〉, |2〉. For the single particle energy
we use the notation εd which is identical to εf in Bulla’s lecture. This different notation roots
historically in the modeling of either d-electron or f -electron systems.
Such an atomic orbital [5] is then coupled to a single conduction band

Hb =
∑
~kσ

ε~kσc
†
~kσ
c~kσ (15)

via a hybridization term

Hmix =
∑
~kσ

V~k

(
c†~kσdσ + d†σc~kσ

)
. (16)

The local dynamics of the single-impurity Anderson model (SIAM), defined by the Hamiltonian

HSIAM = Himp +Hb +Hmix (17)

is completely determined by the hybridization function

Γσ(ω) = π
∑
~k

|V~k|
2δ(ω − ε~kσ) . (18)

The SIAM and the Kondo model belong to the class of quantum impurity models (QIM) which
are defined by a finite number of local degrees of freedom, which are coupled to one or more
bath continua.
In the regime εd < 0 and εd + U > 0, the energies of the empty and double occupied state,
|0〉 and |2〉, lie above the |σ〉 states and can be neglected at low temperatures: a local mo-
ment represented by a spin 1/2 is formed. Although local charge fluctuations on the d-level
are suppressed at low temperatures and odd integer fillings, virtual exchange of electrons with
the conduction are still possible, leading to spin-flip processes. Using a unitary transformation,
Schrieffer and Wolff have derived [9] an effective energy dependent Kondo coupling Jeff be-
tween the local conduction electron and the two local moment states |σ〉. First, the Fock space
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is partitioned into a low energy sector, which contains |σ〉, projected out by P̂L and its comple-
ment P̂H = (1̂ − P̂L) which includes |0〉 and |2〉. The Hamiltonian can then be divided into a
diagonal part Hd = P̂LHP̂L + P̂HHP̂H and an off-diagonal part λV = P̂LHP̂H + P̂HHP̂L.
The subsequent unitary transformation U = exp(λS)

H ′ = eλSHe−λS = Hd +
λ2

2
[S, V̄ ] +

∑
n=2

λn+1 n

n+ 1!
[S, V̄ ]n , (19)

is defined by the requirement of eliminating V in first order. The generator S is determined by
the condition [S,Hd] = −V . Then, the effective Hamiltonian of the low energy subspace

H ′LL = P̂LH
′P̂L = P̂LHP̂L + PL

λ2

2
[S, V̄ ]PL +O(λ3) (20)

acquires renormalized parameters and additional interaction terms via virtual transitions be-
tween the low and the high energy sectors mediated by V up to second order in λ. By applying
this transformation to the HSIAM , HK = P̂L

λ2

2
[S, V̄ ]P̂L takes the form of the Kondo interac-

tion [9]

HK =
1

2

∑
~k,~k′

∑
αβ

J~k~k′c
†
~kα
~σαβc~k′β

~S

J~k~k′ = −V~kV~k′
(

1

ε~k − (εd + U)
+

1

ε~k′ − (εd + U)
− 1

ε~k − εd
− 1

ε~k′ − εd

)
(21)

since the local low energy sector is only comprised of the two singly occupied spin states |σ〉
while |0〉, |2〉 ∈ PH .
For a constant hybridization |V~k|2 = V 2 and conduction band energies close to the Fermi en-
ergy, ε~k can be neglected, and J~k~k′ → J = −2V 2U/[εd(εd + U)] > 0 for the local moment
regime where εd < 0 and εd + U > 0. At the particle-hole symmetric point εd = −U/2 the di-
mensionless Kondo coupling ρJ = 8Γ0/(πU) determines the charge fluctuation scale at, where
Γ0 = Γ (0).
We have demonstrated that the Schrieffer-Wolff transformation generates an effective Kondo
Hamiltonian for the low energy sector of the SIAM in second order in the hybridization. This
clearly reveals the connection between the SIAM, which includes all orbital and spin degrees
of freedom, and the Kondo model focusing solely on the local spin degrees of freedom. The
numerical renormalization group approach [10, 11], discussed in the lecture of R. Bulla, is able
to explicitly track the flow from a free-orbital fixed point for β = 1/T → 0 to the Kondo model
at intermediate temperatures T/Γ0 ≈ 0.1 and odd integer fillings of the orbital by iteratively
eliminating the high energy degrees of freedom, which involve charge fluctuations.
More realistic descriptions of 3d and 4f -shell dynamics requires more than one orbital. Himp is
easily generalized from a single to many orbitals:

Himp =
∑
iσ

εdin
d
iσ +

∑
σσ′
mnpq

Umnpqd
†
nσd
†
mσ′dpσ′dnσ . (22)
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The direct and exchange Coulomb matrix elements Umnpq will differ but are related by sym-
metry in the absence of relativistic effects, such as the spin-orbit interaction. This is discussed
in more detail in the lecture of R. Eder. The Coulomb interaction in Himp takes the rotational
invariant form

HU =
U

2

∑
iσ

ndiσn
d
i−σ +

2U ′ − J
4

∑
m6=m′

σσ′

ndmσn
d
m′σ′ − J

∑
m 6=m′

~Sm~Sm′

−J
2

∑
m6=m′
σ

d†mσd
†
m−σdm′−σdm′σ (23)

in spin-space by identifying Unnnn = U , Unmmn = U − 2J = U ′, Unmnm = J , Unnmm =

−J . Clearly, neglecting the orbital pair-transfer term d†mσdm−σdm′−σdm′σ breaks this rotational
invariance. Since J > 0, the ~Sm~Sm′ term is responsible for the Hund’s rules, which favor the
maximizing of the local spin and of the angular momentum by a ferromagnetic alignment.

2 Renormalization group

We have learned several important points in the previous sections: (i) The low energy physics
of the Kondo effect shows universality and is characterized by a single energy scale TK . (ii)
The universality suggests that the problem can be tackled by approaches which were developed
in the context of phase transitions: the renormalization group approach. (iii) The perturbative
analysis breaks down due to infrared divergencies.
These divergencies indicate that the ground state of the starting point, a free conduction band
coupled to a single spin, is orthogonal to the ground state of the strong-coupling fixed-point
which governs the low energy physics.

2.1 Anderson’s poor man’s scaling

This section covers the simplest perturbative renormalization group (RG) approach to the Kondo
model developed by Anderson [12] 1970. Although it does not solve the problem, it sets the
stage for the deeper understanding of the physics provided by Wilson’s numerical renormaliza-
tion group approach.
We begin with the definition of s-wave conduction band annihilation operators cεσ

cεσ =

√
1

Nρ(ε)

∑
~k

δ(ε− ε~k)c~kσ , (24)

which are obtained by angular integrating on a shell of constant energy ε. Starting from the
anti-commutator

{
c~kσ, c

†
~k′σ′

}
= δσσ′δ~k,~k′ of a discretized system, the prefactor [

√
Nρ(ε)]−1

ensures the proper normalization of{
cεσ, c

†
ε′σ′

}
= δσσ′δ(ε− ε′) (25)
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in the continuum limit since the density of state ρ(ε) is defined as

ρ(ε) =
1

N

∑
~k

δ(ε− ε~k) . (26)

By supplementing the δ-function with some suitable symmetry adapted form factorB(~k), δ(ε−
ε~k) → δ(ε − ε~k)B(~k), such as a spherical harmonics Ylm(Ω) or a Fermi surface harmonics
[13], we could generalize these operators to the appropriate symmetry beyond simple s-wave
scattering considered here. With those operators, the Hamiltonian (1) takes on the continuous
form

H =
∑
σ

∫ ∞
−∞

dε εc†εσcεσ +

∫ ∞
−∞

dε

∫ ∞
−∞

dε′J(ε, ε′)
∑
αβ

c†εα~σcε′β ~Simp (27)

where we have defined J(ε, ε′) = 1
2
J
√
ρ(ε)ρ(ε′).

This formulation is still very general. It turns out, however, that the occurrence of the infrared
divergence is linked to finite density of states at the Fermi energy. For simplicity, we assume
a constant density of states restricted to the interval ε ∈ [−D,D]. ρ0 = 1/(2D) on this en-
ergy interval, and the Fermionic operator cε has the dimension of 1/

√
E. After introducing the

dimensionless coupling constant g = ρ0J/2, the dimensionless energy x = ε/D and the dimen-
sionless operators cxσ =

√
Dcεσ, we obtain the dimensionless isotropic Kondo Hamiltonian

H̃ =
H

D
=
∑
σ

∫ 1

−1

dx xc†xσcxσ + g

∫ 1

−1

dx

∫ 1

−1

dx′
∑
αβ

c†xα~σcx′β
~Simp (28)

which will be subject to a perturbative renormalization group treatment. Since δ(ε − ε′) =

δ([x−x′]D) = δ(x−x′)(1/D), the rescaled operators also obey a normalized anti-commutator
relation

{cxσ, c†x′σ′} = (
√
D)2{cεσ, cε′σ′} = Dδσσ′δ(ε− ε′) = δσσ′δ(x− x′) . (29)

The key ingredients to any renormalization group (RG) transformation are

1. separation of energy scale

2. eliminating high energy contributions by renormalizing low energy coupling constants

3. rescaling of all parameters and quantum fields

In the first step we define the appropriate low and high energy sector P̂L and P̂H = 1 − P̂L by
partitioning the Fock-space appropriately. In the second step we perform the same transforma-
tions as outlined in Eq. (19). By eliminating the coupling between these sectors up to quadratic
order, the effective Hamiltonian of the low energy subspace

H ′LL = P̂LH
′P̂L = P̂LHP̂L + P̂L

λ2

2
[S, V̄ ]P̂L +O(λ3) = HLL +∆H

(2)
LL +O(λ3) (30)

acquires renormalized parameters via virtual transitions between the low and the high energy
sectors mediated by V up to the second order in λ.
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(b)

k’’

k
k k’

k’k’’

(a)
Fig. 1: The particle (a) and the hole (b) spin-flip processes in second order in J contributing to
the renormalization of J .

Since the procedure is rather trivial for the free electron gas, we illustrate the steps on this
part of the Hamiltonian. We introduce a dimensionless parameter s > 1 and split Hb into two
contributions:

Hb

D
=
∑
σ

∫ 1/s

−1/s

dx xc†xσcxσ +
∑
σ

(∫ −1/s

−1

dx+

∫ 1

1/s

dx

)
x c†xσcxσ . (31)

One contribution contains all low energy modes |x| < 1/s and the other all high energy modes
1/s < |x| < 1. Defining P̂L as the operator which projects onto all modes |x| < 1/s, the
Hamiltonian is written as Hb = P̂LHbP̂L + P̂HHbP̂H and, therefore, V = 0. Focusing on the
low energy part

H ′b = HLL = P̂LHbP̂L =
∑
σ

∫ 1/s

−1/s

dx x c†xσcxσ (32)

we have to rescale the energy modes x to x′ = sx in order to restore the original mode distribu-
tion |x′| < 1 and obtain

H ′b =
∑
σ

s−2

∫ 1

−1

dx′ x′c†x(x′)σcx(x′)σ . (33)

Since original Fermionic operators have the dimension 1/
√
E, they must also be scaled as

cx′ =
√
scx(x′)σ on expansion of the scale from 1/s→ 1, which leads to

H ′b =
1

s

∑
σ

∫ 1

−1

dx′ x′c†x′σcx′σ . (34)

This completes the third and last step of the RG procedure.
The dimensionful Hamiltonian Hb remains invariant under the mode elimination procedure if
Hb/D = H ′b/D

′. Comparing the rescaling of the integrals and fields after the mode elimination,
Eq. (34) yields the scaling equation of the band width: D′ = D/s. Such an invariance is called
a fixed point under the RG transformation, and the Hamiltonian of the free electron gas is
obviously such a fixed point Hamiltonian.
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Before we come back to the Kondo interaction, we briefly review the scaling of an additional
local Coulomb interaction HU ∝ c†x1σc

†
x2σ′cx3σ′cx4σ under the RG transformation. Performing

the same RG steps in linear order, we accumulate [s1/2]4 for the rescaling of the four fields and
[s−1]4 for the four integral transformation, s−2 in total. The Coulomb interaction is irrelevant
since it vanishes under the RG flow. As a consequence, we, therefore, expect a local Fermi-
liquid with vanishing scattering cross sections∝ ω2 at T → 0, described by the strong-coupling
fixed-point. Since we have understood the transformation of the free electron gas, we can add
the dimensionless Kondo interaction HK

HK =
1

2

∑
α,β

∑
i=x,y,z

∫ 1

−1

dx1

∫ 1

−1

dx2 c
†
x1α
cx2β g

iσi
αβ
τ i , (35)

to the Hb and investigate H = Hb + HK under this RG transformation. In this expression, the
local spin is represented by ~Sloc = ~τ/2 and g = ρ0J/2 is generalized to three components gi

which include the anisotropic Kondo models.
Performing the unitary transformation (20), the low energy sector of HK contributes to H in
linear order via ∆Hd = P̂LHintP̂L+ P̂HHintP̂H . Additionally it generates the off-diagonal part
V = P̂LHKP̂H + P̂HHKP̂L for the Schrieffer-Wolff type transformation. Since the term linear
in g, ∆Hd is invariant under the RG transformation, HK is called a marginal operator in the
vicinity of the local moment fixed point defined by HK = 0.
In order to decide whether it is a relevant or irrelevant marginal operator, we have to go to
second order in g. Using the eigenstates of Hd, |p〉 of the low-energy and |q〉 of the high-energy
sector of the Fock space, we derive with the condition, [S,Hd] = −V

∆H
(2)
LL =

∑
p,p′

|p〉〈p′|1
2

∑
q

VpqVqp′

(
1

Ep − Eq
+

1

Ep′ − Eq

)
. (36)

HK contains a spin-spin interaction bilinear in the conduction electron operators. Therefore,
one of the operators in c†x1αcx2β must contain a high-energy particle or hole excitation in V

which is connected with the same conduction electron mode to one conduction electron line
integrated out by mode elimination. Those matrix elements of ∆H(2)

LL can be calculated dia-
grammatically using the two diagrams depicted in Fig. 1(a) and (b). Again, we eliminate a
very thin shell of high energy excitations of width ∆l = 1 − 1/s = −∆D/D, and the two
diagrammatic contributions yield the quadratic corrections to gi

∆H
(2)
LL = ∆l

∑
αβ

∫ 1/s

−1/s

∫ 1/s

−1/s

dx1dx2 c
†
x1α
cx2β (gxgyτ zσz + gygzτxσx + gxgzτ yσy) . (37)

In the derivation of these equations, we have used the eigenstates of Hb and neglected the
correction generated byHK . This is a further approximation since the construction of S requires
eigenstates of Hd and not only of Hb. This clearly restricts the validity of the flow equations
derived below to small values of gi.
The flow of the effective band width dD/D = −dl is used to eliminate ∆l. The combination of
the infinitesimal change ∆H(2)

LL in the limit ∆l → dl with the linear contribution of HK to the
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zg

g

Fig. 2: Flow of the coupling constants gz and g⊥, which is given by a set of hyperbolic curve
as show in Eq. (39). For transverse coupling |g⊥| > gz, the Kondo coupling always flows to
the strong-coupling fixed-point gz, g⊥ → ∞. For a ferromagnetic gz < 0, g⊥ renormalized to
g⊥ = 0 where the RG-flow stops.

low-energy sector, PLHKPL, yields the three perturbative RG equations

dgx

d lnD
= −2gygz (38a)

dgy

d lnD
= −2gxgz (38b)

dgz

d lnD
= −2gxgy (38c)

for the parameter flow of the coupling constants. Fixed points of those flow equations are
defined by dgi/d lnD = 0 for all i = x, y, z. These equations are called poor man’s scaling in
the literature.
In the transversal Kondo model defined by two independent parameters gz and g⊥ = gx = gy

these equations reduce to

dg⊥
d lnD

= −2g⊥g
z ;

dgz

d lnD
= −2g2

⊥ , (39)

from which we obtain by integration [gz]2 − g2
⊥ = const. Therefore, the flow of the parameters

gz and g⊥ are located on a hyperbolic curve in the parameter space (gz, g⊥) which is depicted
in figure 2. Since the RG-flow in Eq. (39) alway stops when g⊥ vanishes, (gz, 0) defines a line
of fixed points for [gz]2 − g2

⊥ > 0 and gz < 0. If the transverse coupling is larger than the
ferromagnetic coupling gz, gz < 0, the transversal coupling g⊥ remains finite for gz = 0 and
induces a sign change of gz. The couplings flow to the strong-coupling fixed-point (g⊥, g

z) →
(∞,∞). These flow equations have one stable fixed point (gz, g⊥) = (∞,∞) and one line of
fixed points (gz, 0). The latter are stable for a ferromagnetic gz < 0 and unstable for gz > 0. For
a fully isotropic Kondo coupling, g = gz = g⊥, we only need to integrate the single differential
equation

dg

d lnD
= β(g) = −2g2 . (40)
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The function β(g) is called the β-function in the literature and determines how the coupling
constants flow while reducing the band width: a negative β-function is a signature of weak
interactions at high-energies and a growing interaction strength while reducing the band width.
With the initial values of the model D0, g0, we integrate this differential equation to

g(D′) =
g0

1 + 2g0 ln(D0/D′)
. (41)

This solution obviously breaks down at a low energy scale TK = D at which the denominator
diverges:

TK = D0e
−1/2g0 = D0e

−1/ρ0J . (42)

However, the poor-man scaling approach is only valid for small coupling constants g, since
higher order processes will modify the β-function. Nevertheless, we can use the new energy
scale to express the running coupling constant g(D′) as function of TK

g(D′) =
1

ln(D′/TK)
(43)

which removes all reference to the original parameters. The coupling constant became an uni-
versal function of the ratio between cutoff and the new characteristic low energy scale TK .
How can we understand the divergence of the effective coupling constant? If we let g →∞, we
can ignore the kinetic energy of the conduction electrons for a moment and focus on the local
Kondo interaction (35):

HK =
1

2

µ=x,y,z∑
α,β

c†0αc0βg
µσµ

αβ
τµ , (44)

where c0σ =
∫ 1

−1
dxcxσ. Since HK conserves spin and charge, a singlet and a triplet state is

formed for nc = 1, while the empty and doubly occupied conduction electron state does not
couple to the local spin. The singlet has the energy of −3/2g, the three triplet states lie at the
energy g/2 and the other two at E = 0. In the anti-ferromagnetic case g > 0, the ground
state is a singlet, which is energetically decoupled from the rest of the conduction electrons for
g → ∞. The ground state in this strong-coupling limit will be a free electron gas with one
electron removed and absorbed into this bound state. Hence, the ground state is orthogonal to
the ground state of the local moment fixed point we started with. That is the reason why these
ground states cannot be connected via perturbation theory. Since the scattering turns out to be
irrelevant in the vicinity of this so-called strong-coupling fixed-point, it is a stable fixed point
under the RG transformation.
Although the presented perturbative RG fails to solve the Kondo problem, it already proves
that the original Kondo Hamiltonian is unstable in second order of g and predicts the correct
crossover scale TK . However, the divergence of the coupling constant happens already at a finite
cutoff D = TK which must be an artifact of the approximation used since the model cannot
have any phase transition at finite temperature. The correct solution can only be obtained by the
numerical renormalization group [14, 15] or the Bethe ansatz [16].
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2.2 Wilson’s numerical renormalization group approach

Although Anderson’s perturbative RG has already provided some deeper physical insight, its
perturbative nature restricts its validity to a close range around its starting point: it cannot access
the crossover regime from high to low temperature.
The Hamiltonian of a quantum impurity system is generally given by

H = Hbath +Himp +Hmix , (45)

where Hbath models the continuous bath, Himp represents the decoupled impurity, and Hmix

accounts for the coupling between the two subsystems.
Such a system can be accurately solved using Wilson’s numerical renormalization group (NRG)
[14, 15]. At the heart of this approach is a logarithmic discretization of the continuous bath,
controlled by the discretization parameter Λ > 1. The continuum limit is recovered for Λ →
1. Using an appropriate unitary transformation, the Hamiltonian is then mapped onto a semi-
infinite chain, with the impurity coupled to the open end. The nth link along the chain represents
an exponentially decreasing energy scale: Dn ∼ Λ−n/2 for a fermionic bath [14] andDn ∼ Λ−n

for a bosonic bath [17]. Using this hierarchy of scales, the sequence of dimensionless finite-size
Hamiltonians

Λ−(N−1)/2HN =
2

D (1 + Λ−1)
(Himp +Hmix)

+
∑
α

N∑
n=0

Λ−(n−1)/2 ε̄nαf
†
nαfnα (46)

+
∑
α

N−1∑
n=0

Λ−n/2 t̄nα(f †nαfn+1α + f †n+1αfnα)

for the N -site chain is solved iteratively, discarding the high-energy states at the conclusion of
each step to maintain a manageable number of states. This reduced basis set of HN is expected
to faithfully describe the spectrum of the full Hamiltonian on a scale of DN , corresponding to a
temperature TN ∼ DN .
Note that the dimensionless energies ε̄nα and tight-binding parameters t̄nα are of the orderO(1).
In general, α labels all independent flavor and spin degrees of freedoms of the bath Hamiltonian.
In the case of the single-band Kondo model, α denotes only the two spin states of the conduction
electron band. The parameters ε̄nα and t̄nα encode all relevant details of a non-constant density
of states.
Therefore, the NRG can be applied to pseudo-gap systems and used as an impurity solver for the
dynamical mean field theory where in the self-consistently obtained coupling function Γ (ω) the
lattice information and the formation of a Mott-Hubbard insulator is encoded [15]. The details
on the connection between the coupling function Γ (ω) and the NRG parameters ε̄nα and t̄nα
will be connected in R. Bulla’s subsequence lecture.
We have followed the notation of Ref. [10, 11] where a mapped bath electron of flavor α is
created (annihilated) by f †nα(fnα) at chain link n while in Bulla’s lecture c†nσ(cnσ) is used for the
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same operators. We also defined the Hamiltonian HN in accordance with the original literature,
while Bulla kept the factor D/[2(1 + Λ−1)] in his definition of HN . We also emphasize the
energy hierarchy by making the exponential decay of the tight binding parameters explicitly.
The dimensionless parameters ε̄nα and t̄nα and those used in Bulla’s lecture are connected by

εn =
D (1 + Λ−1)

2
Λ−(n−1)/2 t̄nα (47a)

tn =
D (1 + Λ−1)

2
Λ−n/2 t̄nα (47b)

Due to the exponential form of the Boltzmann factors in the density operator, ρ̂ = exp(−βH)/Z,
the reduced NRG basis set of HN is sufficient for an accurate calculation of thermodynamic
quantities at temperature TN . The fixed points under the RG transformation

HN+1 =
√
ΛHN +

∑
α

(
ε̄N+1αf

†
N+1αfN+1α + t̄Nα(f †NαfN+1α + f †N+1αfNα)

)
(48)

determines the thermodynamics properties and allows deep insight into the physics of the sys-
tem. In SIAM, they have been explicitly stated in Refs. [10,11]. It has been shown [14] that the
Kondo temperature indeed determines the crossover scale from the local moment fixed point
to the strong-coupling fixed-point. TK is the only relevant energy scale at low temperatures
so that all physical properties can be obtained from universal scaling functions for T/TK and
ω/TK < 1.
More details on the NRG and its power can be found in the lecture by R. Bulla or the NRG
review [15] he co-authored.

2.3 Exotic Kondo effects in metals

In the previous section we have focused on the simplest case of a single spin-degenerate band
coupled anti-ferromagnetically to a single local spin S = 1/2. The Kondo temperature TK
defines the crossover scale below which a singlet ground state emerges and the local spin is
asymptotically screened.
How does the physics change if we couple a local spin with S > 1/2 to a single conduction
band, or a spin S = 1/2 to more than one spin-degenerate conduction electron band?
We have discussed above that a Kondo Hamiltonian can be derived as an effective low energy
Hamiltonian by applying a Schrieffer-Wolff (SW) transformation to the SIAM. If we consider
its multi-orbital extension, Eq. (22), a much richer variety of impurity ground states emerge
after freezing out the charge fluctuations. In Mn, Co, or other transition metal ions, Hund’s
rules generate a ground state spin S > 1/2, while point group symmetries in lattices or lig-
and symmetries in molecules [18] can suppress the hybridization to more than one conduction
band. After a SW-transformation we could end up with an under-compensated Kondo model,
schematically depicted in Fig. 3(c). The single conduction electron band will partially screen
the local spin S to an effective spin S ′ = S−1/2 which asymptotically decouples from the con-
duction band. It turns out that the RG fixed point is similar to the strong-coupling fixed-point,
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but with a degeneracy of 2S remaining. The remaining very weakly coupled magnetic scatterer
significantly modifies the universal functions describing the physical properties at temperatures
T < TK , and corrections to the T 2 behavior of a Fermi liquid are found. Hence, it is also called
a singular Fermi-liquid which is characterized by a residual impurity entropy Sloc = log(2S).
The impurity entropy Sloc is defined as the difference of the total entropy and the entropy of the
conduction band without impurity.
In the overcompensated Kondo model (M > 1)

HK =
M∑
α=1

Jα~S~sb,α , (49)

no Kondo singlet ground state can be formed by the local S = 1/2 impurity spin and the local
conduction electron spins ~sb,α, a consequence of the flavor conservation in such models. How-
ever, such flavor conservation is very hard to obtain from the SW transformation and might
only occur in very exotic systems due to symmetry restrictions. Such models are character-
ized by an additional unstable intermediate-coupling fixed-point which can be understood by a
simple argument: In very weak coupling gα = ρ0Jα/2 → 0, the poor man’s scaling is appli-
cable and gα increases as we have discussed in the previous section. However, in the opposite
limit, 1/gα → 0, we only need to consider one localized conduction electron in each channel
α coupled to the local spin and treat the kinetic energy as perturbation. The ground state for
anti-ferromagnetic g is formed by a composite S ′ = M − S spin, which remains coupled to the
rest of the conduction electrons by an effective matrix element of the order of the band width.
Hence, an effective Kondo model is generated in which the coupling has been reduced from
gα � 1 to geff ≈ 1. A detailed analysis proves [19] that the large coupling flows to smaller cou-
plings, and the small couplings increase. Hence, both must flow to a fixed point of intermediate
coupling strength. This requires the inclusion of the third order contributions to the β-function
in Eq. (40). In the case of the isotropic two-channel Kondo model, S = 1/2 and M = 2, it
takes the simple form β(g) = −g2 + g3 for a uniform Kondo coupling. In addition to the trivial
fixed-point, g = 0, it has an intermediate fixed-point β(gc = 1) = 0 [19]. It is interesting to
note that the intermediate-coupling fixed-point impurity entropy reaches (kB/2) log(2), indicat-
ing that a Majorana fermion decouples [20] from the system in the low energy limit. However,
this fixed point is unstable against breaking of channel and spin symmetry. Under channel
symmetry breaking, i.e. J1 6= J2, the RG flow renormalizes Jmax = max(J1, J2) → ∞ and
Jmin = min(J1, J2) → 0: the channel with the larger coupling forms a normal Kondo singlet
while the other channel decouples.
In Fig. 3(a), the temperature dependent local entropy Sloc for the three cases, the compensated
(black), the under-compensated (red) and the overcompensated (blue) model is depicted. For
the compensated Kondo model, Sloc ≈ kB log(2) at high temperature, which is reduced to
Sloc → 0 for T → 0 indicating the Kondo singlet formation. This corresponds to a vanishing
effective local moment on the temperature scale TK ≈ 10−5D.
The under-compensated model presented here comprises of a two-orbital Anderson model with
a ferromagnetic Hund’s rule coupling in Eq. (22), coupled to single conduction electron band.
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Fig. 3: (a) Impurity entropy of the S = 1/2 Kondo model (black line), the under-compensated
S = 1 model (red line) and the two-channel Kondo model (blue) line. (b) The local effective
moment µ2

eff defined as µ2
eff = 〈S2

z 〉H − 〈S2
z 〉Hb for the same three models as in (a). (c) the local

S > 1/2 coupled to one conduction spin is under-compensated, (d) a spin S = 1/2 is coupled
to two conduction bands which is described by the two-channel Kondo model.

For T → ∞, the free orbital fixed point is 24-fold degenerate resulting in Sloc(β = 0) =

4kB log(2). As depicted in Fig. 3(a), it approaches kB log(2) for T → 0, indicating an un-
screened decoupled S = 1/2 degree of freedom.

Sloc(T ) for the overcompensated two-channel Anderson model [21–23] is shown as a blue
curve. Starting from 4-fold degenerate local orbital fixed point, an effective two-channel Kondo
model is found in the interval 10−3 < T/D < 10−1, and approaches the intermediate-coupling
two-channel Kondo fixed point value of Sloc ≈ kB log(2)/2. By applying a weak external
magnetic field of H = 10−4Γ0, the two-channel symmetry is broken and a crossover to the
strong-couping fixed point is observed – blue dotted line in Fig. 3(a). The crossover is governed
by the scale T ∗ ∝ H2/TK . The effective magnetic moment µ2

eff tracks the H = 0 curve up T ∗

and approaches a finite value induced by the finite magnetic field.

This model has originally been proposed by Cox [21] for uranium-based Heavy Fermions in
which the U 5f -shell is doubly occupied. It predicts an orbital Kondo effect where the non-
magnetic Γ3 doublet is screened by a four-fold degenerate Γ8 conduction band. Experimentally,
however, there is still no evidence for the realization of such a two-channel Kondo fixed point.
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3 Kondo effect in lattice systems

3.1 Heavy Fermion materials

Heavy Fermions [24] are Ce and U based metallic compounds which show a strongly enhanced
γ-coefficient of the specific heat. Typically an enhancement over simple Cu of a factor of
300− 6000 is found. Since γ ∝ m∗ in a simple effective Fermi-liquid theory, the name Heavy
Fermions was coined for this material class. It has been noted that the additional magnetic
contribution to the specific heat scales with the number of magnetic ions upon substitution with
non-magnetic elements such as La [24]. Apparently the major contribution in such strongly
correlated materials stems from the electrons in the localized 4f or 5f -shells. Early on, local
approximations were proposed [25, 26] in which each Ce or U site is treated as an indepen-
dent Kondo scatterer interacting with an averaged conduction band. Coherence is recovered by
summing up all single particle scattering events on a periodic lattice [24].
The most simplified description starts from a singly occupied 4f -shell of Ce. Employing Hund’s
rules, spin-orbit coupling yields a J = 5/2 ground state multiplet which is quenched by the
lattice point group symmetry either to a quartet and doublet in cubic crystal, or three Kramers
doublets in a tetragonal environment. Taking into account only a single Kramers doublet on
each 4f -shell and hybridizing the orbital with one effective conduction band defines the periodic
extension of the Anderson model (PAM)

H =
∑
iσ

εfi f
†
iσfiσ + Uni↑ni↓ +

∑
~kσ

ε~kσc
†
~kσ
c~kσ +

∑
i,~k,σ

Vk

(
ei
~k ~Rif †iσc~kσ + e−i

~k ~Ric†~kσfiσ

)
, (50)

where fiσ annihilates an f -electron at lattice site i with spin σ. Although this model can already
explain some basic properties of HF materials [24], a more realistic description requires the
full J = 5/2 ground state multiplet structure, since experimentally the influence of crystal-field
effects are clearly seen in the specific heat or transport measurements [24].
As mentioned above, experimental evidence has indicated that the magnetic contribution to the
specific heat scales with number of magnetic Lanthanide ions, hinting towards locally generated
strong correlations. It was proposed that the single-particle dispersion can be calculated using
a local t-matrix which accounts for all local correlations, while different lattice [25] sites are
linked only by a free propagation of electrons. A physically intuitive picture emerges: at the
chemical potential, the electrons are mainly trapped in local Kondo-resonances and propagate
only rather rarely from site to site. On a larger length scale, a very slow coherent motion is
generated which is equivalent to a quasi-particle with a large effective mass.

3.2 Dynamical mean field theory (DMFT)

The combination of local-density approximation (LDA) and DMFT for realistic description
of material properties of a large variety of strongly correlated electron systems has been the
topic of the last year’s school [27] entitled The LDA+DMFT approach to strongly correlated
materials.
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In DMFT, the k-dependence of the lattice self-energy is neglected. The original idea for such
a local approximation dates back to the mid 1980s [25, 26, 28] and has been applied to Heavy
Fermion systems. In 1989, it was proven that such an approximation has an exact limit in
infinite spatial dimensions [29–31] which broaden the applicability of this approximation to a
much larger range of problems.
The basic idea of the DMFT [32, 33] can be summarized as follows: One picks out a single
lattice site or a unit-cell. Instead of solving the local dynamics embedded in the full lattice
exactly, which is usually not possible, the rest of the interacting lattice is replaced by a fictitious
tight-binding model. This implies that two-particle and higher order correlation functions are
treated as factorized, which imposes restrictions on the applicability of the theory to phase-
transitions. This is augmented by a self-consistency condition (SCC) which equates the local
lattice Green function Glat(z)

Glat(z) =
1

N

∑
~k

G~k(z) =
1

N

∑
~k

1

z − ε~k −Σ(z)
= Gloc(z) (51)

with the local Green function Gloc(z) of such an effective site. This effective site of the DMFT
is equivalent to an Anderson impurity model as defined in Sec. (1.2), and its local dynamics is
determined byGloc(z) = [z−εd−Σ(z)−∆̃(z)]−1. It requires the knowledge of the local orbital
energy εd, the local Coulomb repulsion U and the hybridization function Γ̃ (ω) = =m∆̃(ω−iδ).
In the subsequent lecture by Bulla, the notation ∆̄(z) will be used instead of ∆(z) (∆̃(z)) for
a single impurity problem (effective DMFT site). Since Γ (ω) can be interpreted as energy
dependent single orbital decay rate in the absence of any Coulomb interaction, we used the
letter Γ in this lecture while Bulla denotes the same quantity as ∆(ω). In the literature, both
notations are found for the same quantity.
For single band lattice models such as the PAM, Eq. (50), or the Hubbard model

H =
∑
iσ

εdi c
†
iσciσ −

∑
ij

tij(c
†
iσcjσ + c†jσciσ) + Uni↑ni↓ (52)

the effective site is given by Eq. (17) and can be easily extended to multi-orbital models [27]
required for realistic transition metal compounds with partially filled 3d-shells. In the latter
case, Eq. (51) acquires a matrix form and the multi-orbital SIAM introduced in Sec. (1.2) is
used to describe the effective site.
The self-consistent solution is obtained iteratively: after an initial guess of ∆(z), the dynamics
of effective SIAM is calculated. Then its local self-energy Σ(z) is used to obtain Glat(z) via
Eq. (51). Equating it with Gloc(z) yields a new ∆̃′(z) for the next step of the iteration. Usually
convergence can be achieved in 10-20 iterations.

3.3 Impurity solver

It turns out that the k-summation in Eq. (51) is the computationally least expensive part of
the DMFT iteration, even for multi-orbital problems. The calculation of local self-energy of a
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Fig. 4: (a) Impurity self-energy Σ(ω) and (b) spectral function for a symmetric single orbital
Anderson impurity model with εd = −5Γ, U = 10Γ and a symmetric featureless band of width
D = 30Γ calculated using the NRG [40] for T = 0. TK = 0.021Γ . The inset in (a) shows the
behavior of Σ(ω) for |ω/TK | < 1.

single or multi-orbital SIAM remains the major challenge since the Kondo problem lies at the
heart of these quantum impurity problems.

In the 1970s, it was shown that equation-of-motion techniques fail to describe the Kondo
physics of the Anderson model. The perturbation expansion in U [34] was successful in ac-
counting for the local Fermi liquid properties which develop adiabatically from the solution of
the resonant level model. However, such conserving approximations [35,36] are not able to gen-
erate the correct energy scale TK which is exponentially dependent on U ; they remain restricted
to the weakly correlated regime U/(πΓ ) ≤ 1. In the early 1980s, the non-crossing approxima-
tion [37–39] was developed. It starts out from the atomic limit and includes the local Coulomb
interaction exactly. The hybridization is then considered as small compared to other energy
scales, so it only included in the leading-order diagrams. Although this approach contains the
correct energy scale up to some small correction, it remains essentially a high-temperature ex-
pansion, since the local Fermi-liquid is not described correctly. Friedel’s sum rule is violated
and the extracted =mΣ(ω − iδ) becomes negative at low temperatures T � TK . Only for the
two-channel Anderson model, this approach yields remarkably good results [21,19] such as the
correct power law of the self-energy.

Huge progress was made with the advent of quantum Monte Carlo algorithms [41] which yield,
at least in principle, the correct dynamics. In practice, such approaches have two drawbacks:
(i) they rely on a Trotter decomposition which limits the lowest accessible temperature. For
typical parameters in high-temperature superconductors, this would often correspond to 500-
1000K. (ii) The results are obtained on the imaginary time axis leaving an ill-defined problem
of reconstructing the spectral function [42].

Nevertheless, new QMC approaches, based the expansion of the partition function Z rather
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than on a Trotter decomposition, the so-called continuous-time QMC algorithms (CT-QMC)
boosted the applicability range considerably and became standard within a few years (for a
detailed comprehensive review see [43] and P. Werner’s lecture in Ref. [27]). In the CT-QMC,
the partition functionZ is either expanded in the Coulomb-interaction, called the weak-coupling
CT-QMC, or, similarly to the NCA, in the hybridization, called the strong-coupling CT-QMC.
One of the big advantages of those solvers are that they scale very well with the number of
the local orbitals. However, the sign problem of the fermionic determinants often restricts the
applicability of QMC solvers to density-density type inter-orbital interactions, which breaks
rotational invariance in spin-space.
Wilson’s NRG has also been successfully employed as an impurity solver. While this approach
includes the correct solution of any Kondo problem, the numerical effort scales exponentially
with the number of conduction bands, which essentially limits the approach to two-band models,
far from the five-band multi-orbitial models required, e.g., for FeAs based superconductors. A
typical result for the dynamical properties of the single-orbital symmetric SIAM obtained using
the NRG is shown in Fig. 4. The spectral function exhibits reminiscences of the two charge
excitation peaks at ω ≈ εd and εd+U each carrying half of the spectral weight and are broadened
by 2Γ (0). Clearly visible is a narrow peak called Kondo or Abrikosov-Suhl resonance.
The peak height is pinned to approximately 1/(πΓ (0)) due to the Friedel sum rule [44]. We have
discussed already that the strong-coupling fixed-point is a Fermi-liquid, since asymptotically the
electron-electron scattering is freezing out for |ω| → 0. As a consequence, the imaginary self-
energy shows a quadratic behavior =mΣ(ω − iδ) ∝ (ω/TK)2 for frequencies (ω/TK)2 � 1

which is depicted in the inset of Fig. 4(a). Recovering a local Fermi-liquid on exponentially
small energy scales TK ∝ exp(−1/ρJeff) with a pinned resonance close to ω = 0 in accordance
with the Friedel sum rule remains the biggest challenge for any impurity solver. This low energy
spectral behavior converts immediately into the quasi-particle band formation in the DMFT as
can be seen from the analytic form of the lattice Green functionG~k(z) = [z−ε~k−Σ(z)]−1. For
a true lattice solution, the full energy dependence of the self-consistently obtained hybridization
function Γ (ω) plays a crucial role. This is neglected in Fig. 4 as it is beyond the scope of this
lecture.

4 Kondo effect in nano-devices

In this section, a brief introduction to the Kondo-effect in nano-devices such as single-electron
transistors (SET) is given. In the 1980s huge progress has been made in structuring semi-
conductors which opened new possibilities for designing nano-devices using semiconductor
hetero-junctions. In 1998, David Goldhaber-Gordon demonstrate in a seminal paper [45] that
the Kondo effect can also be observed in single-electron transistors [46]. We illustrate the con-
nection to the Anderson model and also discuss how in larger quantum boxes a two-channel
charge Kondo effect has been predicted by Matveev [47]. Combining a single-electron tran-
sistor with a quantum box might yield the first physical realization of a two-channel Kondo
model [48].
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Fig. 5: (a) Schematic picture of a quantum dot which is weakly coupled to two leads. The
filling of the confined region can be controlled by the gate voltage Vg. (b) Schematic picture of
a quantum dot coupled to a larger quantum box and to two leads. The filling in the quantum
box is controlled by Ng, the filling in the quantum dot is controlled by the gate voltage Vg.

4.1 Kondo effect in single-electron transistors

A typical realization of a single-electron transistor is schematically depicted in Fig. 5(a). It
consists of negatively charged gates which are added on top of an insulating layer covering a
GaAs hetero-junction. Those gates partition the underlying 2D electron gas and confine some
of the electron gas in smaller areas, forming the quantum dot. These confinement regions have
a diameter of d = 10− 100 nm, and their filling is controlled by a gate voltage. The tunneling
matrix elements between the leads can be individually tuned by a set of gates. Nowadays,
molecules and carbon nano-tubes are also used to form SETs, giving additional complexity due
to their internal degrees of freedom. The single-particle levels in the confined area are discrete
and randomly distributed. They can be characterized by a finite average level-spacing ∆ε. The
leading contribution from the Coulomb interaction is given by the classical charging energy of
a capacitor Echarge = (Q̂ − eNg)

2/(2C) = (e2/2C)(N̂ − Ng)
2, where Q̂ = eN̂ is the charge

operator of the quantum dot, C its classical capacitance, and Ng ∝ Vg controls the filling.Then,
the so-called constant interaction model for a quantum dot reads

Hdot =
∑
i

εin̂i +
1

2
Ec(N̂ −Ng)

2 , (53)

where ni is the number operator of the ith level with energy εi and the Coulomb interaction
enters only via the charging energy Ec = e2/C, ignoring the details of the individual single-
electron wave functions.
At high temperatures 〈Q̂〉 ∝ Vg, and we recover the classical limit. At low temperatures,
βEc � 1, the quantization of the charge becomes relevant. The transport through the quantum
dot can only occur by single-electron hopping processes, from which the name single-electron
transistor [46] was coined. At low temperatures, current-transport only occurs when the gate
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voltage Vg is tuned such that the charging energy Echarge become energetically degenerate for
states with N and N + 1 electrons.
The coupling to the leads generates the additional energy scale Γ = π

∑
α ρα(0)t2α, the charge

fluctuation scale. tα is the tunneling matrix element between the dot and the lead α. We can dis-
tinguish two different regimes: (i) the level spacing is large compared to the charge fluctuation
scale, i. e. ∆ε > Γ , or (ii) ∆ε� Γ which will be discussed in Sec. 4.2.
In the first case, all levels up to some level εi < εl are filled and all levels εi > εl are empty.
The charge fluctuations just involve the spin-degenerate level i = l, and the Hamiltonian is
identical to (14) after identifying U = Ec and εd = εl + (N0 − Ng + 1

2
)Ec, where N0 counts

the number of occupied levels εi < εl. The single particle level εd is tuned by the external gate
voltage Vg ∝ Ng; the tunneling matrix elements take the role of the hybridization in the SIAM.
In equilibrium, one can define a linear combination of both lead electrons

f0σ =
1√

t2L + t2R

∑
α

tαc0ασ (54)

which couples to the quantum-dot level,

HT = t0
∑
σ

(d†σf0σ + f †0σdσ) (55)

while the orthogonal linear combination can be eliminated; t0 =
√
t2L + t2R. Hence the local

dynamics is complete determined by the solution of the SIAM which contains the Kondo effect.
Meir and Wingreen have shown [49] that the transmission matrix T (z) governing the current
transport through such a quantum dot is proportional to the local Green function of the dot,
T (z) ∝ Gloc(z). At high temperatures, the transport is favored when εd ≈ 0 or εd + U ≈ 0.
At low temperatures and nl ≈ 1, the Kondo effect yields a pinned maximum of the spectral
function which opens up a new correlation induced transport channel: the conductance increases
in the Coulomb blockade valley when lowering the temperature, which is one of the hallmarks
of the Kondo-effect in SETs.
Although, this connection had been understood quite early on, the mesoscopic community be-
lieved for a long time that the exponentially smallness of the Kondo scale prevents this effect
from being observed. Realizing that the Kondo resonance is adiabatically connected to the
resonant-level model, David Goldhaber-Gordon was the first to see that the Kondo temperature
in nano-devices can be pushed into a reasonable regime by increasing the tunneling matrix el-
ements tα. In a seminal paper [45], he proved the existence of the Kondo effect in a quantum
dot, stimulating a huge amount of research in Kondo-related physics in nano-devices.

4.2 Charge Kondo effect

Now we discuss the opposite limit of very small level spacings, i. e. ∆ε � Γ . In this regime,
the levels on the quantum dot are treated as continuum, and the single-particle dynamics is
modeled by two electron gases, indexed by α = L(D) for the single lead (states on the dot)

H =
∑
kασ

εkασc
†
kασckασ +

t

N

∑
k,q

(c†kLσckDσ + c†kDσckLσ) + Echarge (56)
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which are coupled by a tunneling matrix element t. To distinguish this limit from the SET,
this type of quantum dot is called a quantum box since the small level spacing occurs only in
devices with much larger diameters. The filling of the dot remains controlled by the charging
energy Echarge. A fixed dot filling and, therefore, a fixed Echarge still enables many different
configurations which share approximately the same kinetic energy. Therefore, a mapping of the
electronic occupation number operator to a new charge operator N̂c =

∑
n n|n〉〈n| has been

introduced [50]. This new operator acts on a fictitious space of charge degrees of freedom,
and the mapped charging energy is given by Echarge = 1/2Ec(N̂c − Ng)

2. Since the number
of electrons in the quantum box can only change by the tunneling term, the latter requires a
modification

HT =
t

N

∑
k,q

(c†kLσckDσ + c†kDσckLσ) → t

N

∑
k,q

(c†kLσckDσN
−
c +N+

c c
†
kDσckLσ) , (57)

where N+
c is the charge raising operator N̂+

c =
∑

n |n + 1〉〈n| and N̂−c its adjoint operator.
Assigning the lead flavor up, the box flavor down, on can show that H conserves flavor, since it
commutes with the flavor operator

N̂f =
1

2
(N̂L − N̂D) + N̂c (58)

where N̂α =
∑

kσ nkασ account for the total number of fermions in the lead or the box.

Due to the quantization of the charge,Echarge can only take discrete values on a parabola with its
minimum at Ng. The two lowest charge states become energetically degenerate at half-integer
values ofNg. Therefore, charge fluctuations are restricted toN,N+1 close toNg = N+1/2+

∆ng and βEc � 1. With this restriction, the charging energy Echarge = Ec
2

(1
4
−∆ngσz +∆n2

g)

is converted to a Zeeman term −Ec/2∆ngσz, since ∆ng acts as a magnetic field in the iso-spin
space of the two charge states N,N + 1 [51]. The tunneling term HT translates to a transversal
Kondo interaction for the charge iso-spin and the physical spin, being a conserved number,
converts into the conserved channel of the two-channel Kondo Hamiltonian. The effective
capacitance C(Ng, T ) = −∂〈eN̂〉/∂Ng diverges logarithmically at Ng = N + 1/2 for T → 0

where the prefactor C(Ng, T ) ∝ −1/(TK) log(T/TK) is governed by the two-channel Kondo
scale TK . In turned out that the NRG is the optimal tool to investigate the crossover from the
classical high temperature regime to the two-channel Kondo model [52].

By coupling an additional small quantum dot to the larger quantum box as depicted in Fig. 5(b),
the charging energy of the quantum box can generate a dynamical channel conservation. It has
been conjectured [48] that this might be the way to experimentally realize a spin two-channel
Kondo model. Interestingly, it turned out that the two-channel charge Kondo effect discussed
above and the spin Kondo effect are adiabatically connected in such a complex nano-device by
the two gate voltages controlling the filling in the quantum dot and the quantum box.
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5 Conclusion

In this lecture, we have presented a chronological introduction to the Kondo problem. We have
started with Kondo’s explanation of the resistance minimum in metals weakly doped with mag-
netic scatterers. In the late 1960s, it was shown that Kondo’s model is related to a much more
general class of models, the Anderson models: Removing charge fluctuations on partially filled
3d and 4f -shells, effective Kondo models can be derived using the Schrieffer-Wolff transfor-
mation.
Major progress toward a deeper understanding of the Kondo problem and its inaccessibility
to perturbative approaches was made in the 1970s. In Sec. 2.1, we derived Anderson’s poor
man’s scaling using a perturbative renormalization group approach. The first accurate solu-
tion of the problem was given by Ken Wilson in 1975 [14]. He applied his newly developed
numerical renormalization group approach which elegantly circumvents the weaknesses of the
perturbative treatment by using a discretized many-body Fock space. In this discrete basis, any
arbitrarily complex Hamiltonian is simply defined by its matrix elements while perturbative RG
approaches rely on an a-priori known low-energy field theory. We also included a discussion
of exotic Kondo effects in metals where the local spin is over- or under-compensated by the
coupling to conduction electron channels.
In the 1980s and 1990s, it was realized that correlated electron systems such as Heavy Fermions,
High-Tc superconductors, or Mott-Hubbard are connected to the Kondo problem. In Sec. 3, we
briefly introduced the dynamical mean field theory. Within DMFT, the lattice self-energy is
approximated by a ~k-independent function. Then, the complex lattice problem is mapped onto
an effective impurity problem which is supplemented by the lattice self-consistency condition.
This effective impurity comprises of the unit cell which is embedded in a fictitious bath of non-
interaction conduction electron. Again, at the heart of its solution lies the Kondo problem: the
calculation of the local self-energy requires an adequate impurity solver which remains valid
for all temperature and parameter regimes of interest.
Sec. 4 has been devoted to a brief introduction of the Kondo-effect in nano-devices. We have
covered two extreme limits of nano-structured quantum dots: small dots with large level spacing
are used as single electron transistors. At odd fillings, the Kondo effect opens up a new transport
channel which lifts the Coulomb blockade. In large dots, the level spacing is treated as contin-
uous: the low energy physics should be governed by a two-channel Kondo model [19, 47, 48].
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