
3 NMTOs and their Wannier Functions

Ole K. Andersen

Max Planck Institute for Solid State Research

Heisenbergstrasse 1, D-70569 Stuttgart

Contents

1 Introduction 2

2 Classical LMTOs 4

2.1 Crystals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 EMTOs 9

3.1 SSWs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.2 KPWs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.3 Structure matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.4 Example: sp3 bonded Si . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4 NMTOs 16

4.1 Smoothness and products of NMTOs . . . . . . . . . . . . . . . . . . . . . . . 20

4.2 Hamiltonian and overlap matrices . . . . . . . . . . . . . . . . . . . . . . . . 21

4.3 Orthonormal NMTOs (Wannier orbitals) . . . . . . . . . . . . . . . . . . . . . 22

4.4 LMTOs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.5 Example: NiO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
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1 Introduction

The electronic structure of condensed matter is usually described in terms of one-electron basis

sets. Basis functions used for computation, or rather, their envelopes are usually mathemati-

cally simple functions, plane waves or Gaussians, in particular. A plane wave is a solution of

Schrödinger’s equation for a flat potential, and products of plane waves are plane waves; as a

result, the charge density and its Hartree potential are plane-waves as well. Similarly, a Gaus-

sian is a solution of Schrödinger’s equation for a parabolically increasing potential, products of

Gaussians are Gaussians, and the Hartree potential for a Gaussian charge density is 1/r times

the error function. However, in order for such sets to give accurate results, the number of basis

functions must be orders of magnitude larger than the number of valence electrons to be de-

scribed. This is so, because as illustrated at the top of Fig. 1, the potential V (r) in the effective

one-electron Schrödinger (Kohn-Sham) equation is neither flat inside the atoms nor paraboli-

cally increasing between them. Therefore, a plane-waves basis must include plane waves with

energies spread over a region much larger than the one of the one-electron energies ε of inter-

est, and a Gaussian basis must include Gaussians not only with many widths, but also at many

positions displaced from those of the atoms. For a discussion of plane-wave basis sets, we refer

to the last year’s lecture notes [1] by Blöchl [2].

By virtue of solving Schrödinger’s equation for a muffin-tin well, the classical linear muffin-tin

orbitals (LMTOs) [3, 4] form a comparatively small basis set. But only in the atomic-spheres

approximation (ASA) where the MTOs are expanded in partial waves inside atomic spheres,

assumed to fill space, do the products ϕl (ε, r)Ylm (r̂) × ϕl̄ (ε̄, r)Y
∗
l̄m̄

(r̂) have the same form,

fL′ (r) Yl′m′ (r̂) , as each factor, and this is what makes the LMTO-ASA method exceedingly

fast. However, the ASA is only accurate when the atoms are at high-symmetry positions.

For many purposes it is therefore desirable to extract a small set of intelligible, localized or-

bitals spanning merely selected conduction and/or valence states. For instance, if we want to

describe the bonding, we need a localized basis set which spans the occupied states only (bond

orbitals). If we want to construct models which add interactions to the one-electron Hamil-

tonian, e.g. electron-electron repulsions, we need a basis set of localized, atomic-like orbitals

which describes the one-electron energies and wave functions in a suitable region around the

Fermi level.

For an isolated set of energy bands in a crystal, εi (k) (i = 1, ., A) , this can be done by pro-

jecting from their delocalized Bloch eigenstates, Ψi (k; r) (i = 1, ., A) computed with the large

basis set, a suitable set of generalized Wannier functions, wa (r− t) . These are enumerated by

a (= 1, ., A) and the lattice translations, t, of which there are N → ∞, and they form a set of

orthonormal functions related to the orthonormal Bloch eigenstates by a unitary transformation:

Ψi (k; r) = N− 1

2

∑

t

∑A

a=1
uia exp (ik · t) wa (r− t) , (1)

The inverse transformation:

wa (r− t) = N− 1

2

∑

k

∑A

i=1
u∗ai exp (−ik · t) Ψi (k; r) , (2)
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Fig. 1: Top: Effective one-electron potential in condensed matter (black) and the energy re-

gion of interest (blue). Bottom: Basis functions (red), their generating potentials (black), and

energies (blue).

is the Wannier projection. Wannier functions are not unique, because performing a unitary

transformation, Waā;t−t′ , of one set of Wannier functions produces another set which also sat-

isfies Eq. (1), merely with different i and k-dependent phases of the Bloch functions. So the

art of Wannier projection from the Bloch states (2) is to choose the i and k-dependent phases

of the latter in such a way that the Wannier functions attain desired properties, in particular

optimal localization – in some sense. Mazari and Vanderbilt chose to minimize the spread
〈

w
∣

∣|r− 〈w |r|w〉|2
∣

∣w
〉

and developed an – otherwise general – numerical procedure for pro-

jecting such “maximally localized” Wannier functions from Bloch states expanded in plane

waves [5].

We shall only be interested in generating localized Wannier functions which resemble atomic

orbitals, so-called Wannier orbitals, or simple linear combinations hereof such as bond orbitals.

In this case, it is obvious that the phases in the projection (2) should be chosen such that when

summing the Bloch states over i and k, the atomic-orbital characters chosen for the Wannier

functions should add up constructively. How localized the resulting Wannier orbitals are, then

depends on how well the set of A bands are described by the characters chosen. This procedure

was applied –presumably for the first time– by Satpathy and Pawlowska [6] to compute the sp3

bond orbital in Si. They used the TB-LMTO basis [4] which makes the procedure quite obvious

because the LMTO expansion has the same form as the expansion (2) in terms of Wannier

functions, except that the unitary A×A matrix uia is replaced by the rectangular A× (A+ P )
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matrix of LMTO eigenvectors. The projection is thus seen to be a downfolding in which each

Wannier orbital becomes an active LMTO dressed by a tail of all the passive (P ) LMTOs not

in the set of active (A) ones. With other local-orbital basis sets, somewhat similar techniques

can be used, but unless all basis functions are well localized, the Wannier orbitals obtained may

not be sufficiently localized. For a further discussion we refer to last year’s lecture notes by

Kunes [7].

For molecules, Boys [8] had a long time ago recognized that chemical bonds should be associ-

ated with those linear combinations of the occupied molecular orbitals which are most localized,

because those linear combinations are most invariant to the surroundings.

The present notes deal with a different kind of basis set, specifically with minimal bases of

N th-order muffin-tin orbitals (NMTOs), also known as 3rd generation MTOs [9–13]. We

shall demonstrate that with NMTOs it is possible to generate Wannier functions directly, in-

stead of via projection from the delocalized Bloch states. NMTOs are constructed from the

partial-wave solutions of Schrödingers equation for a superposition of overlapping spherical

potential wells (muffin tins, MTs) [14,15] and NMTO sets are therefore selective in energy. As

a consequence, one can construct an NMTO set which picks a specific set of isolated energy

bands. Since NMTOs are atom-centered and localized by construction, they do –after sym-

metric orthonormalization– form a set of localized Wannier functions which, if needed, can be

recombined locally to have maximal localization. The NMTO technique is primarily for gen-

erating a localized, minimal basis set with specific orbital characters, and it can therefore be

used also to pick a set of bands which overlap other bands outside the energy region of inter-

est [16]. The corresponding NMTOs –orthonormalized or not– we refer to as Wannier-like.

Once a computationally efficient representation is implemented for products of NMTOs [17],

they should be suitable for full-potential, real-space calculations with a computational effort in-

creasing merely linearly with the size (N) of the system, so-called order-N calculations [18,19].

We start by explaining the LMTO idea of how to construct small basis sets of orbitals, χRlm (r) ,

from partial waves, ϕRl (ε, r)Ylm (r̂) , and spherical waves, hl (κr)Ylm (r̂). Then we define

the set of exact, energy-dependent MTOs (EMTOs) [20, 21], also called kinked partial waves

(KPWs), which includes downfolding and employs overlapping MT spheres for their definition.

The KPWs are used to derive, first the screened KKR equations, and then theNMTO basis sets.

NMTOs with N=1 turn out to have the same form as classical TB-LMTOs in their atomic-

spheres approximation (ASA), but without invoking this approximation. Examples of Wannier

functions which are orthonormalized NMTOs are given along the way.

2 Classical LMTOs

The idea [22,3,23,24] of how to generate small basis sets of accurate orbitals can be understood

by considering first the way in which Wigner and Seitz [25] thought about solving the one-

electron eigenvalue problem for a close-packed solid; in case of a crystal, that is the band-

structure problem. They divided space into WS cells and assumed the potential to be spherically
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symmetric inside each cell,

V (r) =
∑

R
vR (rR) . (3)

Here and in the following, rR ≡ |r−R| , and R labels the sites, R. With this approximation,

Schrödinger’s equation (in atomic Rydberg units),

[H− ε]Ψ (ε, r) =
[

−▽2 +V (r)− ε
]

Ψ (ε, r) = 0, (4)

can be treated as a separable differential equation: The eigenfunctions must have a partial-wave

expansion inside each cell,

Ψ (ε, r) =
∑

lm
ϕRl (ε, rR)Ylm (r̂R) cRlm, (5)

and one may therefore proceed by first solving the radial Schrödinger equations,

− [rϕRl (ε, r)]
′′ =

[

ε− vR (r)− l (l + 1) /r2
]

rϕRl (ε, r) , (6)

for allR and l and a given energy, ε, and then seek coefficients, cRlm, for which the partial-wave

expansions join together continuously and differentiably at the cell boundaries. The energies

for which this is possible are the eigenvalues, ε=εi, and Ψi (εi, r) the eigenfunctions.

This point of view for instance leads to the approximate Wigner-Seitz rules stating that for

an elemental, close-packed crystal, where the cell can be substituted by an atomic sphere of

the same volume (Ω=4πs3/3), a band of l-character exists between the energies εlB and εlA for

which respectively the slope and the value of ϕl (ε, r) vanishes at the atomic sphere. These band

edges correspond to the bonding and antibonding states of a homonuclear diatomic molecule.

In this atomic-spheres approximation (ASA), the input to the band structure from the potential

enters exclusively via the dimensionless, radial logarithmic derivative functions,

D {ϕl (ε, s)} ≡ ∂ ln |ϕl (ε, r)| /∂ ln r|s = sϕl (ε, s)
′ /ϕl (ε, s) , (7)

evaluated at the WS sphere, s. These are ever decreasing functions of energy and the bond-

ing/antibonding boundary condition is: D {ϕl (ε, s)} = 0/∞. The shape of the l-partial wave

thus changes significantly across a band of predominant l-character (Fig. 2) and, as we shall see

in Sect. 3.4, even more across the hybridized sp3 valence band of Si.

To set up this matching problem correctly, however, it is necessary to deal with cells rather than

spheres and with all the partial waves required to make the one-center expansion (5) converged

at the cell-boundary. This takes l . 15 and is not practical.

Next, consider the customary and more general way of solving Schrödinger’s equation, namely

by use of the Raleigh-Ritz variational principle for the Hamiltonian with a trial function ex-

pressed as a superposition of basis functions, χj (r) ,

Ψ (r) ≈
∑

j
χj (r) bj . (8)

Variation of the coefficients bj leads to the algebraic, generalized eigenvalue problem:

∑

j

(〈

χj̄ |H|χj

〉

− ε
〈

χj̄|χj

〉)

bj = 0, (9)
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Fig. 2: Radial potential (green) and energies (colored) together with the corresponding radial

wave functions. The latter curve towards the r-axis in the classically allowed r-regions and

away from the axis in the classically forbidden regions (schematic).

for all j̄, in terms of Hamiltonian and overlap matrices, H = 〈χ |H|χ〉 and O = 〈χ|χ〉. The

eigenvalues, εi, are variational estimates of the one-electron energies, and the eigenvectors, bj,i,

give the wave functions Ψi (r) .

The idea is now to construct the basis set in such a way that for the approximate model po-

tential (3), the set solves Schrödinger’s equation exactly to linear order in the deviation of the

eigenvalue from an energy, ǫν , chosen at the center of interest, i.e. such that the error is

Ψi (r)− Ψi (εi, r) ∝ (εi − ǫν)
2 .

By virtue of the variational principle, the errors of the eigenvalues will then be of order (εi − ǫν)
4 .

Imagine what such linear basis functions must look like if we choose them as atom-centered or-

bitals, χRlm (rR): In order that the linear combination (8) be able to provide the correct eigen-

functions (5) for a spectrum of eigenvalues, εi, near ǫν , the tails of the orbitals entering a par-

ticular cell (R) must, when expanded in spherical harmonics around R, have radial parts which

are energy-derivative functions, ϕ̇Rl (ǫν , rR) ≡ ∂ϕRl (ε, rR) /∂ε|ǫν , because then, the sum of

the tails added to the head of the orbital will be able to yield the result

ϕRl (ǫν , rR) + (εi − ǫν) ϕ̇Rl (ǫν , rR) = ϕRl (εi, rR) +O
(

(εi − ǫν)
2) . (10)

Hence, the radial shape of a head must be ϕRl (ǫν , rR) , plus maybe a bit of ϕ̇Rl (ǫν , rR) .

The condition that the spherical-harmonics expansion of the tail around site R have the radial

behavior ϕ̇Rl (ǫν , rR) for all lm and all R, might seem to determine the shape of the orbital

completely and not even allow it to be smooth, but merely continuous. However, adding ϕ to ϕ̇
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Fig. 3: Partial waves for the bonding and antibonding states on the central site of a diatomic

molecule and the LMTOs on the two sites (schematic). From Ref. [26].

yields another ϕ̇, corresponding to a different energy-dependent normalization, e.g.

∂ [1 + (ε− ǫν) o]ϕ (ε, r) /∂ε|ǫν = ϕ̇ (ǫν , r) + oϕ (ǫν , r) .

Hence, ϕ̇Rl (ǫν , r) can be adjusted to have, say, a required value and slope at some radius, aR,

where a linear combination of ϕ̇Rl (ǫν , rR) Ylm (r̂R) functions can then be matched smoothly

onto any given orbital shape.

Fig. 3 illustrates that in order to describe the bonding ϕ (εB, r) and antibonding ϕ (εA, r) states

for a diatomic molecule with energy-independent orbitals (LMTOs), those orbitals must have

heads proportional to ϕl (εB, r) + ϕl (εA, r) and tails proportional to ϕl (εB, r) − ϕl (εA, r) .

Now, the overbars on the partial waves in the figure indicate that particular normalizations have

been chosen. Had we renormalized say ϕl (εA, r) to oϕl (εA, r) , the shapes of the heads and

tails of the orbitals would have changed.

More practical than matching the partial waves at the cell boundaries, is therefore to embed

the partial waves in a set of envelope functions or, from the point of view of the latter, to

augment the envelope functions with partial waves. In order that the one-center expansions

(5) converge in l, the envelope functions must be such that they match ϕRl (ε, rR) for high l,

whereby augmentation of the high-l waves becomes unnecessary, as long as they are taken into

account as the high-l part of the envelopes. As l increases, the centrifugal term of the radial

Schrödinger equation (6) drives ϕRl (ε, r) outwards such that eventually only the outermost, flat

part of the potential is being felt. At that point,

ϕRl (ε, r) → jl (rκR) → const.× rl, where κ2R ≡ ε− vR (sR) . (11)

Acceptable envelope functions are therefore decaying solutions of the wave equation:

[

▽2 + κ2
]

hl (κr) Ylm (r̂) = 0, with energies κ2 ∼ ε, (12)
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and potential zero taken as the average between the atoms. These spherical waves may be

linear combined into short-ranged, so-called screened spherical waves (SSWs). What makes

the orbitals spread out are thus the requirements (a) that the orbitals be smooth in all space

(hermeticity), (b) that partial waves with high l should be treated as tails from low-l orbitals

at neighboring sites, and (c) that the basis set should span a range of energies. The two latter

requirements are to some extent flexible: (b) is a choice of how many partial waves to downfold,

the rest having to be kept as (active) orbitals, and (c) is a choice of linearization or N-ization of

the energy dependence of the partial waves. Finally, it should be noted that any delocalization

is enhanced by orthogonalization. But all of this should become clear in the following sections.

For all kinds of augmented basis sets, the model potential (3) defining the basis functions is a

superposition of spherically symmetric potential wells, but their range, sR, varies. LAPWs and

LMTOs used in full-potential calculations employ muffin-tin potentials with non-overlapping

spheres. Empty spheres –i.e. without nuclei– are included at interstitial sites for open structures.

Owing to the sizeable interstitial region (∼ 0.3Ω) and strong discontinuities of the potential

at the spheres, such a MT-potential remains a bad approximation to the full potential, whose

matrix elements must therefore be included in the Hamiltonian. Nevertheless, such a basis is

not optimal and –whenever possible– one uses space-filling potential spheres with a positive

radial overlap,

ωs
RR̄ ≡ sR + sR̄

∣

∣R− R̄
∣

∣

− 1, (13)

not exceeding 20%, and usually neglects the associated errors. For comparison, the overlaps

of the WS spheres in face-centered and body-centered cubic packings are respectively 11 and

14%. Nevertheless, if as in the LMTO-ASA method only the ASA potential is included in the

one-electron Hamiltonian, the results are too dependent on the choice of sphere radii.

Since distances between close-packed spheres are small compared with the shortest wavelength

2π/κF of the valence electrons, the κ2 dependence of the spherical waves (12) is of far less

importance [27] than that of the ε dependence of the logarithmic derivatives (7). For that reason

LMTOs of the 1st [22, 3] and 2nd [4] generations used κ2≡0, thus simplifying the decaying

Hankel functions to multipole potentials ∝ r−l−1, which got screened in the 2nd generation.

With κ≡0 and the ASA, the WS rules for the energies of the band edges in an elementary close-

packed solid could be generalized to the unhybridized band structures, εli (k) = fct (Dl) , the

so-called canonical bands [22, 3, 23, 24, 26, 28].

For the exact, energy-dependent MTOs (EMTOs) [20] with κ2=ε, which we shall consider in

the following section, the overlap errors turn out to be merely of 2nd order in the potential

overlap [14] and, as a consequence, EMTOs can handle up to 50% overlap. The overlapping

MT approximation (OMTA) is a least-squares fit to the full potential [14, 15] so that the MT

discontinuities decrease with increasing overlap.

With EMTOs, also downfolding works perfectly [20], which was not the case with the old LM-

TOs [29]. However, with increasing downfolding, the range of the EMTOs and herewith their

energy dependence increases. So it became necessary to construct not only energy-independent

linear basis sets, but also basis sets of arbitrary order without increasing the size of the set.
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Specifically, for a mesh of N + 1 energies, ǫ0, ..., ǫN , a basis set of N th order will span the

solutions of Schrödinger’s equation for the model potential with the error

Ψi (r)− Ψi (εi, r) ∝ (εi − ǫ0) (εi − ǫ1) ... (εi − ǫN) . (14)

These are the so-called NMTO and NAPW basis sets, of which we shall consider the former.

2.1 Crystals

In the above, R runs over all spheres in the system. If it is a crystal with translations t, the

wave functions and the basis functions can be chosen to translate according to: Ψ (r+ t) =

Ψ (r) exp (ik · t) .
Orbitals can then be Bloch-summed:

χRlm (k; r) ≡
∑

t

χRlm (rR − t) exp (ik · t) ,

where R now labels the atoms in the primitive cell. Rather than normalizing the Bloch sums

over the entire crystal, we have normalized them in the primitive cell. Accordingly,
∑

k
must be

taken as the average, rather than the sum, over the Brillouin zone. Matrices like the Hamiltonian

are translationally invariant, 〈χR̄l̄m̄ (rR̄) |H|χRlm (rR − t)〉 = 〈χR̄l̄m̄ (rR̄ + t) |H|χRlm (rR)〉 ,
and as a consequence,

〈χR̄l̄m̄ (k; r) |H|χRlm (k; r)〉 ≡
∑

t

〈χR̄l̄m̄ (rR̄) |H|χRlm (rR − t)〉 exp (ik · t) .

Numerical calculations are often carried out in the k-representation, but since it is trivial to add

k and limit R to the sites in the primitive cell, in formalisms for orbitals it is simpler and more

general to use the real-space representation.

3 EMTOs

In this section we define the set of EMTOs (KPWs) [20,21] and use them to derive the screened

KKR equations (21). We first explain what the EMTOs are, starting with their envelope func-

tions, and only thereafter, in Sect. 3.3, how to construct them.

Since EMTOs use overlapping MT-potentials for their definition, allow arbitrary downfoldings,

enabling the construction of truly minimal sets [16], and are usually localized, their definition

is tricky:

3.1 SSWs

The members, hα
R̄l̄m̄

(ε, rR) , of the set of envelope functions, |hα (ε)〉 , are superpositions of the

decaying spherical waves in Eq. (12), at all active sites R and with all active lm, but with the

same energy, κ2=ε. The set of SSW envelopes are thus:

|hα (ε)〉 = |h (ε)〉Mα (ε) , (15)
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with a notation in which a set of functions is considered a row-vector: |h (ε)〉 , for instance, has

the elements hl (κrR)Ylm (r̂R) ≡ hRlm (ε, r) andMα (ε) is a matrix with elementsMα
Rlm,R̄l̄m̄

(ε) .

The set of SSWs (15) is characterized by (a) the set of R̄l̄m̄ values to be included in the set, the

active values, (b) a set of non-overlapping screening spheres, so-called hard-spheres, with radii

aR for the active sites, and (c) the phase shifts ηRl (ε) of the MT potential for the remaining –the

passive– Rlm values. With such a partition into active and passive channels, a choice of hard

spheres for the former, and the phase shifts for the latter, we can state the boundary condition

to be satisfied for a member, hα
R̄l̄m̄

(ε, rR) , of the set:

Its spherical-harmonics projections,

Pa
Rlm ≡

∫

d3r δ (aR − rR) Y
∗
lm (r̂R) , (16)

onto the hard spheres must vanish for all active Rlm values, except for the own value, R̄l̄m̄,

for which we choose to normalize the hard-sphere projection to 1. For the the passive Rlm

values, the projection Pr
Rlmh

α
R̄l̄m̄

(ε, rR̄) should be a spherical wave phase shifted by ηRl (ε) .

As discussed in connection with Eq. (12), this holds automatically for all partial waves with

l > 1− 3 because their phase shifts vanish.

With this boundary condition satisfied, the passive channels can be augmented smoothly with the

appropriate Schrödinger solutions, ϕRl (ε, rR) , and the active channels, which usually diverge

at the origin of rR, can be truncated inside the hard spheres, i.e. for rR < aR. This truncation

of the active channels of hα
R̄l̄m̄

(ε, rR̄) is continuous for Rlm 6= R̄l̄m̄, but jumps by 1 in the own

channel. In all active channels there is a discontinuity of outwards slope,

∂

∂r
Pr

Rlmh
a
R̄l̄m̄ (ε, rR̄)

∣

∣

∣

∣

aR

≡ Sa
Rlm,R̄l̄m̄ (ε) , (17)

(for the own channel, the derivative should be taken slightly outside the sphere), specified by a

slope matrix whose calculation we shall explain in the section 3.3.

3.2 KPWs

The resulting augmented, truncated, and renormalized SSW, usually denoted ψa
R̄l̄m̄ (ε, rR̄) , is

now ready to have the hole in its own channel (head) filled: The radial filling function is obtained

by integrating the radial R̄l̄ equation (6) outwards from 0 to sR̄ with the proper potential, and

from there, smoothly inwards to aR̄ with the flat (zero) potential. The solution, ϕ̄R̄l̄ (ε, r) , for

the flat potential, and of course the one, ϕR̄l̄ (ε, r) , for the proper potential, are subsequently

normalized such that the value of the former is 1 at aR̄. This, we indicate by a superscript a :

ϕa
R̄l̄ (ε, r) ≡ ϕR̄l̄ (ε, r) /ϕ̄R̄l̄ (ε, aR̄) , ϕ̄a

R̄l̄ (ε, r) ≡ ϕ̄R̄l̄ (ε, r) /ϕ̄R̄l̄ (ε, aR̄) . (18)

Finally, ϕ̄a
R̄l̄
(ε, r) is matched continuously, but with a kink to ψa

R̄l̄m̄ (ε, rR̄) , and it is truncated

outside the interval aR̄ ≤ r ≤ sR̄. The Schrödinger solution, ϕR̄l̄ (ε, r) , is truncated outside

the interval 0 ≤ r ≤ sR̄. Hence, the resulting radial function has been constructed like an
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accordion: It starts from the origin as the regular Schrödinger solution which extends all the

way out to the radius, sR̄, of the potential well. Here, it is matched smoothly to a phase-shifted

wave, which then runs inwards to the radius, aR̄, of the hard sphere where it matches the SSW

wave with a kink. Finally, the SSW continues outwards. The active channels of the SSW are

truncated inside all hard spheres with kinks, and the passive channels are substituted smoothly

inside all hard spheres with regular Schrödinger solutions. This is illustrated in Fig. 4.

The EMTO, also called the kinked partial wave (KPW) is now:

φaR̄l̄m̄ (ε, rR̄) =
[

ϕa
R̄l̄ (ε, rR̄)− ϕ̄a

R̄l̄ (ε, rR)
]

Yl̄m̄ (r̂R̄) + ψa
R̄l̄m̄ (ε, rR̄) . ◭ (19)

Here, the first term is the product of a spherical harmonic times a radial function, which vanishes

smoothly at, and outside the own potential-sphere (sR̄) . The second term is the augmented

and truncated SSW, which matches onto the first, pure-angular-momentum term at the central

hard sphere with a kink of size Sa
R̄l̄m̄,R̄l̄m̄

(ε) − ϕ̄a
R̄l̄
(ε, aR̄)

′ . Although the KPW is everywhere

continuous, it has kinks at the hard spheres in all active channels, but is smooth in the passive

channels.

We can now try to make a linear combination,

∑A

Rlm
φa
Rlm (εi, rR) c

a
Rlm,i, (20)

of active (A) KPWs which is smooth. This requires that its coefficients satisfy the kink-

cancellation condition,
∑A

R̄l̄m̄
Ka

Rlm,R̄l̄m̄ (ε) caR̄l̄m̄ = 0, (21)

for each Rlm. Here we have multiplied each Rlm-equation by a2R such that

Ka
Rlm,R̄l̄m̄ (ε) ≡ a2RS

a
Rlm,R̄l̄m̄ (ε)− aRD {ϕ̄a

Rl (ε, aR)} δRR̄δll̄δmm̄. ◭ (22)

becomes a Hermitian matrix. Since the passive channels are smooth by construction, Eqs. (21)

must be solved only for the active channels and therefore constitute a set of homogeneous, linear

equations. These have a proper solution for those energies, εi, which make the determinant

of the matrix vanish. Most importantly, the corresponding linear combination is a solution of

Schrödinger’s equation at energy εi for the overlapping MT potential to 1st order in the overlap.

That this is true, can be seen from the following arguments: The kinks of a KPW are always be-

tween two solutions of the same radial wave equation, either partial-wave projections of SSWs,

zero, or inwards integrated phase-shifted waves. Since only two linearly independent radial

solutions exist, e.g. Bessel and Neumann functions, it follows that if they match without a kink

at aR, as they are required to do for the smooth linear combination of KPWs, then they must be

identical in the entire range aR ≤ r ≤ sR. This means that throughout the MT-sphere at R̄,

A
∑

Rlm

ψa
Rlm (εi, rR̄) c

a
Rlm,i =

A
∑

l̄m̄

ϕ̄a
R̄l̄ (εi, rR)Yl̄m̄ (r̂R̄) c

a
R̄l̄m̄,i +

P
∑

l̄m̄

ϕa
R̄l̄ (εi, rR) Yl̄m̄ (̂rR̄) c

a
R̄l̄m̄,i.

Here, the last term comes from the passive (P ) channels and the corresponding coefficients, caP,i
are given by the solutions, caA,i, of (21), times PA expansion coefficients. If site R̄ is passive
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Fig. 4: Si p111 KPW (full) and its constituents: the SSW ψp111 (ǫ0, r) (dashed), the partial wave

ϕa
p (ǫ0, r)Yp111 (111) labelled φ (dot-dashed) for the MT potential, and ϕ̄a

p (ǫ0, r)Yp111 (111)

labelled φ0 (dotted) for the flat potential. The plot is along the [111]-line from the central Si

atom to its nearest neighbor, and from here into the large voids in the diamond structure. The

latter were not described by empty-sphere potentials and, as a consequence, the MT overlap

ωs was as large as 50%; see definition (13). The overlap, ωa, of the hard screening spheres

was −25%. Kink are seen at the central and nearest-neighbor a-spheres. This KPW is the

member of the 9 orbital/atom set of Si s, p, and d KPWs, so that the partial waves with l > 2
were downfolded into the SSWs. This is the reason why ψ does not exactly vanish inside the

a-spheres. The value of ψ just outside the own a-sphere is 1 × Yp111 (111) < 1. The energy of

this KPW was chosen slightly above the bottom of the valence band. A 2D plot of this KPW in

the (11̄0)-plane may be found in Fig. 5. From Ref. [12].

(downfolded), only that term is present on the right-hand side. As a result, the smooth linear

combination of KPWs reduces to:

∑A

Rlm
φa
Rlm (εi, rR) c

a
Rlm,i =

∑A+P

l̄m̄
ϕa
R̄l̄ (εi, rR̄) Yl̄m̄ (r̂R̄) c

a
R̄l̄m̄,i (23)

+
∑A

R6=R̄

∑A

lm
[ϕa

Rl (εi, rR)− ϕ̄a
Rl (εi, rR)]Ylm (r̂R) c

a
Rlm,i,

near site R̄. This is a solution of Schrödinger’s equation, Ψi (εi, r) , plus an error consisting of

tongues from the overlap of the neighboring muffin tins.

Now, the radial part of such a tongue is

1

2
(sR − rR)

2 vR (sR)ϕ
a
Rl (ε, sR) ,

to lowest order in sR − rR, as may be seen from the radial equation (6). Here, vR (sR) is the

MT-discontinuity. Operating finally with H − εi on the smooth linear combination (20), of
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which (23) is the expansion around site R̄, yields the error:

∑

R̄
vR̄ (rR̄)

∑A

R6=R̄

∑A

lm
[ϕa

Rl (εi, rR)− ϕ̄a
Rl (εi, rR)] Ylm (r̂R) c

a
Rlm,i

∼ 1

2

∑pairs

RR̄
vR̄ (rR̄)

[

(sR̄ − rR̄)
2 + (sR − rR)

2] vR (sR)Ψi (r) ,

which is obviously of 2nd order in the potential overlap. Q.E.D.

The set of homogeneous linear equations (21) are the screened KKR equations, albeit in radial-

derivative gauge (denoted by a Latin superscript, e.g. a) rather than in phase-shift gauge (de-

noted by the corresponding greek superscript, α). For other uses of screened KKR –or multiple

scattering– theory see e.g. Refs. [31] and [32].

Before we use this to derive NMTOs, let us explain how the slope-matrix is computed.

3.3 Structure matrix

The bare Hankel function to be used in the construction (15) of the SSW envelopes, is a spherical

harmonics times the radial function,

κl+1 [nl (κr)− ijl (κr)] =
[

κl+1nl (κr)
]

− iκ2l+1
[

κ−ljl (κr)
]

(24)

→ − (2l − 1)!!

rl+1

[

1 +
εr2

2(2l − 1)
...

]

− iκ
(εr)l

(2l + 1)!!

[

1− εr2

2(2l + 3)
...

]

,

for ε → 0. Here, (2l + 1)!! ≡ (2l + 1) (2l − 1) · .. · 3 · 1 and (−1)!! ≡ 1. For ε=κ2 ≤ 0,

this Hankel function is real and decays asymptotically as e−r|κ|/r. The spherical Neumann and

Bessel functions, normalized as respectively κl+1nl (κr) and κ−ljl (κr) , are real for all real

energies and they are respectively irregular and regular at the origin. For ε > 0, the Hankel

function therefore has an imaginary part, which is the solution for the homogeneous problem.

The energy region of interest for the valence and low-lying conductions bands is ε ∼ 0, and the

advantage of using screened Hankel functions (15), is that in this region there are no solutions

to the homogeneous hard-sphere problem; they start at higher energies. The screened Hankel

functions are therefore localized and real.

In order to obtain explicit expressions for the transformation and slope matrices, Ma (ε) and

Sa (ε) , we first need to expand a bare spherical wave centered at R̄ in spherical harmonics

aroundR 6= R̄. Since the wave is regular aroundR, its expansion is in terms of Bessel functions

and is:

nl̄ (κrR̄)Yl̄m̄ (r̂R̄) =
∑

lm

jl (κrR)Ylm (r̂R)×
∑

l′

4πi−l̄+l−l′ Cl̄m̄,lm,l′ nl′
(

κ
∣

∣R̄−R
∣

∣

)

Y ∗
l′ m−m̄

(

̂̄
R−R

)

.

Here, nl̄ and nl′ can be any l-independent linear combination of a Neumann and a Bessel func-

tion. For a pure Bessel function, the expansion holds for all rR,while for an irregular function, it

holds for rR <
∣

∣R̄−R
∣

∣ 6= 0. The l′-summation runs over
∣

∣l − l̄
∣

∣ ,
∣

∣l − l̄
∣

∣+2, ..., l+ l̄ whereby
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i−l̄+l−l′ is real, and Cl̄m̄,lm,l′ ≡
∫

Yl̄m̄(r̂)Y
∗
lm(r̂)Yl′ m−m̄(r̂)dr̂. Now, since we shall renormalize

the Bessel and Neumann functions when changing to radial-derivative gauge, we can start out

in phase-shift gauge and use these functions without prefactors which make them real, and for

the Hankel function use:

κ [nl (κr)− ijl (κr)] ≡ hα=0
l (κr) .

The conventional bare structure matrix is then

Bα=0
Rlm,R̄l̄m̄ (ε) ≡

∑

l′

(−)
−l̄+l−l

′

2 4πCl̄m̄,lm,l′h
0
l′

(

κ
∣

∣R̄−R
∣

∣

)

Y ∗
l′ m−m̄

(

̂̄
R−R

)

◭ (25)

and if we define the on-site part of the structure matrix as B0
R̄lm,R̄l̄m̄

(ε) = −iκδll̄δmm̄, the

one-center expansions may be written as:

∣

∣h0
〉

= |κn〉+ |j〉B0. (26)

Here and in the following we drop the common energy argument.

This screening transformation (15) is now defined by the requirement that the set of screened

Hankel functions have one-center expansions formally similar to (26):

|hα〉 =
∣

∣h0
〉

Mα = |κn〉+ |jα〉Bα, (27)

but with modified radial tail-functions:

jαRlm (ε, r) ≡ jl (κr)− nl (κr) tanαRlm (ε) . (28)

For the active channels, these should vanish at the hard sphere and for the passive channels, they

should join onto the proper Schrödinger solutions. Hence, αRlm (ε) is the hard-sphere phase

shift when Rlm is active and the proper phase shift when Rlm is passive, i.e.:

tanαRlm (ε) =
jl (κaR)

nl (κaR)

D {jαRlm (ε, a)} −D {jl (κaR)}
D {jαRlm (ε, a)} −D {nl (κaR)}

(29)

with

D {jαRlm (ε, a)} ≡
{

∞ Rlm ∈ A

D {ϕ̄Rl (ε, aR)} Rlm ∈ P
.

α (ε) depends on m, only if the division into active and passive channels is m-dependent. This

is the case, say, if one wants to select the Cu dx2−y2 conduction band in a high-temperature

superconducting cuprate [9, 12].

If we now insert Eqs. (28) and (26) in (27) and compare the coefficients of |κn〉 and |j〉 , we

obtain the following expressions for the screening transformation and the screened structure

matrix:

Mα = 1− tanα

κ
Bα, (30)

Bα = κ cotα− κ cotα
[

B0 + κ cotα
]−1

κ cotα.
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Here, all matrices are square with the high-l blocks neglected (see Eq. (11)) and κ cotα is a

diagonal matrix. We see that the amount of lm-multipole charge at site R which screens the

l̄m̄-multipole at site R̄, is (tanαRl/κ)B
α
Rlm,R̄l̄m̄

. By taking the radial derivatives at the hard

spheres, we can find the desired expression for the slope matrix:

a2Sa (ε) = aD {j (κa)}+ 1

j (κa)

[

B0 (ε) + κ cotα (ε)
]−1 1

j (κa)
. ◭ (31)

Note that κ cotα (ε) is real for all real energies and that

j (κa) κ cotα (ε) j (κa) → − 1

(2l + 1) a

D {jα (ε, a)}+ l + 1

D {jα (ε, a)} − l
, for ε→ 0.

For most purposes, the hard screening spheres can be taken to depend only on the type of

atom, and it turns out that for respectively spdf -, spd-, sp-, and s-sets, the shortest range of the

spherical waves is obtained for radial overlaps (13) of ωa
RR̄

= –15, –23, –36, and –52%. In the

first two cases, the range of the structure matrix is so short that it can be generated by inversion

ofB0 (ε)+κ cotα (ε) in real space, using clusters of 20-100 sites, depending on the hard-sphere

packing. Whereas a bare Hankel function has pure l̄m̄ character, and the bare structure matrix

therefore transforms according to the Slater-Koster scheme, the screened structure matrix does

not, because a screened Hankel function merely has dominant l̄m̄-character and tends to avoid

the surrounding hard spheres.

Downfolding of channels with attractive potentials increases the range and energy dependence

of the structure matrix (31). Downfolding is therefore usually performed as a second, k-space

step, after the strongly screened structure matrix has been generated in real space and subse-

quently Bloch-summed to k-space.

3.4 Example: sp3 bonded Si

As an example, let us now consider the effects of downfolding on the Si p111 member of the spd

set of KPWs shown in Fig. 4. This KPW set was for an energy ǫ0 near the bottom of the valence

band. Using also the KPW set for an energy ǫ1 at the middle of the valence band, plus the one

for ǫ3 near the top of the valence band, an spd NMTO set with N = 2 can be formed. How,

will be explained in the following section. The p111 KPWs at the three energies, the NMTO,

and the band structure obtained with the set of nine spd NMTOs per atom are all shown in the

left-hand double column of Fig. 5. The middle column shows the same for the sp set, that is the

one where also the Si d partial waves are downfolded, and therefore only contains fourNMTOs

per atom. With 2 atoms per cell, the first set yields 18 bands and the latter 8. Those bands are

seen to be identical. In order to describe merely the filled bands, the 4 valence bands, we have

to construct a set with merely 4 orbitals per cell and this we do by starting from the symmetry-

breaking, completely ionic description Si4−Si4+ and put the s and p orbitals on Si4− and none

on Si4+. That is, all partial waves are downfolded on every second Si atom. The corresponding

KPW and NMTO sets are shown in the last column. We see that this NMTO set does give the
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valence band only, and that it does so very well. Such a set which picks merely the occupied

bands, we call truly minimal [16].

The pictures KPW(E0) show how for the spd set the p111 KPW has a kink at its own hard sphere

and vanishes inside the neighboring sphere, except for the f and higher partial waves which are

allowed to penetrate. Allowing also the d partial waves inside the neighbor has fairly little

effect, but allowing all partial waves makes the KPW spill smoothly onto the site. Going now

to higher energies, the KPW(E1) and KPW(E2) pictures show how the central kink vanishes as

the p radial function bends increasingly toward the axis and how the KPW spreads increasingly

around the neighboring hard sphere. Without any confinement in that sphere, the delocalization

increases dramatically near the top of the valence band. Nevertheless, the NMTO valence band

Wannier orbitals are correct and their sp3 hybrid shown in Fig. 6 is the well-known bond orbital,

which is as localized as can be. Examples for graphite sp2 σ-bonds, as well as for pz π-bonds

and anti-bonds, may be found in Ref. [16].

4 NMTOs

Finally, we have come to construct energy-independent orbitals [10]. Specifically, we want to

make a superposition of the set of KPWs (19), evaluated at a mesh of energies, ǫ0, .., ǫN , such

that the resulting set of NMTOs,

∣

∣χ(0..N)
〉

=
∑N

n=0
|φ (ǫn)〉L(0..N)

n = (32)

|φ [0]〉+ |φ [01]〉
(

E(0..N) − ǫ0
)

+ . + |φ [0..N ]〉
(

E(N−1,N) − ǫN−1

)

.
(

E(0..N) − ǫ0
)

, ◭

spans the solutions of Schrödinger’s equation for the model potential to within an error given

by Eq. (14). This is discrete polynomial approximation for a Hilbert space, and L
(0..N)
n are

Lagrangian matrices, whose sum is the unit matrix. For N = 0, the NMTO set is the set of

EMTOs evaluated at the energy ǫ0≡ ǫν . The second, rearranged series is the ascending Newton

interpolation formula in terms of divided differences, e.g. φ [0] ≡ φ (ǫ0) and φ [01] ≡ φ(ǫ0)−φ(ǫ1)
ǫ0−ǫ1

.

In general, they are defined by:

φ [0..N ] ≡
N
∑

n=0

φ (ǫn)
∏N

m=0, 6=n (ǫn − ǫm)
. (33)

Moreover,
(

E(N−1,N) − ǫN−1

)

.
(

E(0..N) − ǫ0
)

is a product of N energy matrices, which are

generally not Hermitian and do not commute. The NMTO is independent of the order of the

energy points, but the individual terms in the Newton series are not, and only when the energies

are ordered according to size does this series have a clear interpretation. If the energy mesh

condenses onto ǫν , then φ [0..N ] →
(N)

φ (ǫν) /N ! and the Newton series becomes a truncated

Taylor series. In order to be able to pick bands which overlap other bands, it is necessary to put

the energies where only active bands are present. With only one energy point at disposal, there

is little flexibility, so the Taylor series is not practical.
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Fig. 5: Band structure of Si obtained with (N=2)MTO sets of increasing downfolding. The first

set contains the 9 s, p, and d NMTOs per atom, the second the 4 s and p NMTOs per atom,

and the last merely the s and p NMTOs on every second atom. The Si p111 members of the

corresponding NMTO sets, as well as of the constituting KPW sets at the three energies, ǫ0, ǫ1,
and ǫ2, indicated to the right of the band structures, are shown in the (11̄0) plane containing

a Si and its nearest neighbor along [111] . The NMTO bands are red and the exact ones blue.

For the first two sets, no difference can be seen. The last set is seen to give merely the valence

bands, and that very well. After orthonormalization, this NMTO set is thus a set of Wannier

functions for the valence band. By being placed only on every second atom, this NMTO set

breaks the symmetry, but does spills onto the other atoms correctly because the sp3 hybrid of

the orthonormalized NMTOs yields the well-known, symmetric bond orbital shown in Fig. 6.

Hence, by starting from the ionic Si4−Si4+ picture, which gets the electron count right, the

NMTO method creates the correct covalency. From Ref. [12]

We have dropped all superscripts a because, from now on they do not change; screening and

downfolding is done at the level of forming the EMTOs. Note that, in contrast to LMTO sets of

the 2nd generation [4], NMTO sets for different screenings span different Hilbert spaces; the

factor in front of the error term (14) depends on s − a [10]. It is obvious that for N given, the

error must increase with the degree of downfolding, because downfolding decreases the size of

the basis set. This, on the other hand, makes it necessary to go beyond linear basis sets if one

wants to generate truly minimal basis sets picking merely the occupied bands (see Fig. 6).

NMTOs can be used to generate Wannier functions directly, because with an appropriate choice

of active channels, one can generate an NMTO set for the isolated set of bands in question.

Upon making the mesh finer, the NMTO set will converge to the proper Hilbert space spanned

by any set of Wannier functions. After orthonormalization, theNMTO set will therefore be a set
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Fig. 6: Si sp3 bond orbital computed as the sp3 directed orbital from the set of s and p NMTOs

on every second atom. See Fig. 5. In order that no asymmetry of the bond orbital could be seen,

it was necessary to use N = 6. (Courtesy A. Alam).

of Wannier functions. NMTOs are localized a priory by virtue of the hard-sphere confinement

of the constituent EMTOs, and since NMTOs are not orthonormal, they can –but must not– be

more localized than maximally localized Wannier functions.

We shall now see that the Lagrangian matrices as well as the Hamiltonian and overlap matrices

for the model potential, are all expressed solely in terms of the kink- or KKR matrix (22) and

its first energy derivative matrix evaluated at points of the energy mesh. In fact, the NMTO

formalism is much simpler if expressed in terms of the Green matrix,

G (ε) ≡ K (ε)−1 , ◭ (34)

also called the resolvent or scattering path operator [31, 32].

Since a single KPW (19) solves Schrödinger’s differential equation for the model potential,

except at the kinks, operation with the Hamiltonian gives a series of delta-functions at the hard

spheres in the active channels:

(ε−H)φR̄l̄m̄ (ε, r) =

A
∑

Rlm

δ (rR − aR) Ylm (r̂R)KRlm,R̄l̄m̄ (ε) . (35)

Solving for δ (rR − aR) Ylm (r̂R) , leads to:

δ (rR − aR)Ylm (r̂R) = (ε−H)
∑A

R̄l̄m̄
φR̄l̄m̄ (ε, r)GR̄l̄m̄,Rlm (ε) (36)
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which shows that the linear combinations,

γRlm (ε, r) =
A
∑

R̄l̄m̄

φR̄l̄m̄ (ε, r)GR̄l̄m̄,Rlm (ε) , (37)

of KPWs –all with the same energy and screening– may be considered a Green function,

G (ε, r̄, r) , which has r̄ confined to the hard spheres, i.e. r̄ → Rlm. Considered a function of

r, this Green function is a solution with energy ε of the Schrödinger equation, except at its own

sphere and for its own angular momentum, where it has a kink of size unity. This kink becomes

negligible when ε is close to a one-electron energy, because the Green function has a pole there.

In Eq. (37), the confined Green function is factorized into a vector of KPWs, |φ (ε)〉 , which has

the full spatial dependence and a weak energy dependence, and a Green matrix, G (ε) , which

has the full energy dependence. Now, we want to factorize the r and ε-dependences completely

and, hence, to approximate the confined Green function, |φ (ε)〉G (ε) , by
∣

∣χ(0..N)
〉

G (ε) .

Note that subtracting from the Green function a function which is analytical in energy and re-

mains in the Hilbert space spanned by the set |φ (ǫn)〉 produces an equally good Green function,

in the sense that both yield the same solutions of Schrödinger’s equation. We therefore first

define a set
∣

∣χ(0..N) (ε)
〉

by:

|γ (ε)〉 = |φ (ε)〉G (ε) ≡
∣

∣χ(0..N) (ε)
〉

G (ε) +

N
∑

n=0

|φ (ǫn)〉G (ǫn)F
(0..N)
n (ε) , (38)

and then determine the analytical functions, F
(0..N)
n (ε) , in such a way that

∣

∣χ(0..N) (ε)
〉

takes

the same value,
∣

∣χ(0..N)
〉

, at all mesh points. If that can be done, then
∣

∣χ(0..N) (ε)
〉

=
∣

∣χ(N)
〉

+O ((ε− ǫ0) .. (ε− ǫN)) ,

and
∣

∣χ(0..N)
〉

is the set of NMTOs. Now, since
∣

∣χ(0..N) (ǫ0)
〉

= .. = χ(0..N) (ǫN ) ,

the N th divided difference of
∣

∣χ(0..N) (ε)
〉

G (ε) equals
∣

∣χ(0..N)
〉

times the N th divided differ-

ence of G (ε) . Moreover, if we let F
(0..N)
n (ε) be a polynomium of (N-1)st degree (N th degree

yields zero-solutions for the NMTOs), their N th divided difference on the mesh will vanish.

As a result

|γ [0..N ]〉 = (|φ〉G) [0..N ] =
∣

∣χ(0..N)
〉

G [0..N ] ,

and we have therefore found the solution:
∣

∣χ(0..N)
〉

= (|φ〉G) [0..N ] G [0..N ]−1
(39)

for the NMTO set. The divided difference of the product is easily evaluated using (33):

(|φ〉G) [0..N ] =
N
∑

n=0

|φ (ǫn)〉G (ǫn)
∏N

m=0, 6=n (ǫn − ǫm)
,

in terms of the values of the KPWs and the Green matrix on the energy mesh. This expression,

together with the similar one for G [0..N ] , are those needed to determine the Lagrange matrices

in Eq. (32).
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4.1 Smoothness and products of NMTOs

(N=0)MTOs are of course the kinked partial waves at ǫ0, but (N>0)MTOs are smooth because

according to (36), the kinks of |γ (ε)〉 are independent of ε. This does however not imply

that for a single NMTO, the KPW accordion is completely compressed, like for a smooth

linear combination of KPWs (20) with the same energy. The linear combinations making up

an NMTO have different energies and, as a consequence, discontinuities remain in (2N+1)st

radial derivatives at the hard spheres. Projecting an NMTO onto an active channel, leads to a

radial function of the type ϕ (r)− ϕ̄ (r) +Prψ (r) , where ϕ (r)− ϕ̄ (r) ∝ (s− r)2 near s and

Prψ (r)− ϕ̄ (r) ∝ (r − a)2N+1 (ε− ǫ0) .. (ε− ǫN)

near a. Since the latter error is of the same order as (14), it should be included there. This means

that cross-terms between ϕ, ϕ̄, and Prψ can be neglected, and that leads to the following simple

prescription for evaluating the product of two KPWs with different energies:

|φ〉 〈φ| = |ϕY 〉 〈Y ϕ| − |ϕ̄Y 〉 〈Y ϕ̄| + |ψ〉 〈ψ| , (40)

occurring in the expression for the product
∣

∣χ(N)
〉 〈

χ(N)
∣

∣ of two NMTOs as needed for evalua-

tion of matrix elements and the charge density. The sum of the first two terms in (40) is simply a

finite sum of spherical harmonics times radial functions which vanish smoothly outside the MT

spheres. The third term is more complicated because the SSWs do not have pure lm-character

but merely short range. What we know about the SSWs is the structure matrix which specifies

the spherical-harmonics expansions of the radial derivatives at the hard spheres. It is therefore

practical to interpolate a product of strongly screened spherical waves across the hard-sphere

interstitial by a sum of SSWs. Specifically, we fit –at all spheres and for all spherical-harmonics

with l . 6− the radial values plus first 3 derivatives of the product (e.g. the charge-density)

to those of a sum of SSWs with 4 different energies. The so-called value-and-derivative func-

tions, each one vanishing in all channels except its own, are purely structural and exceedingly

well localized because the value and first 3 derivatives vanish at all other spheres. We are cur-

rently writing an efficient self-consistent, full-potential NMTO code using this interpolation

technique [17].

In order to figure out how the Hamiltonian operates on an NMTO, we use Eq (35) for N=0 and

obtain: (H− ε0)
∣

∣χ(0)
〉

= − |δ〉K (ǫ0) . For the smooth NMTOs with N>0 we can neglect the

kink terms when operating on (38), and then take the N th divided difference to get rid of the

polynomials:

H |γ [0..N ]〉 = |(εγ (ε)) [0..N ]〉 = |γ [0.N − 1]〉+ ǫN |γ [0..N ]〉 . (41)

Using the definition (39) of the NMTO we multiply by G [0..N ]−1
from the right and obtain:

(H− ǫN)
∣

∣χ(0..N)
〉

= |γ [0.N − 1]〉 G [0..N ]−1 =
∣

∣χ(0.N−1)
〉 (

E(0..N) − ǫN
)

, (42)

where
∣

∣χ(0.N−1)
〉

is the set obtained by omitting the last point on the mesh and

E(0..N) − ǫN ≡ G [0..N − 1]G [0...N ]−1
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is the coefficient of all but the first term of the descending Newton series analogous to the

ascending one in (32). The energy matrices are in general given by:

E(0..M) = (εG) [0..M ] G [0..M ]−1
(43)

Expression (42) shows that increasingN increases the smoothness of theNMTOs and also their

range, unless E(0..N) converges as is the case for a set of isolated bands. If E(0..N) is converged,

so is the NMTO basis, and so is the Newton series. This series expresses the NMTO as a

kinked partial wave at the same site and with the same angular momentum, plus a smoothing

cloud of energy-derivative functions centered at all sites and with all angular momenta.

4.2 Hamiltonian and overlap matrices

With the aim of obtaining the expressions for the overlap and Hamiltonian matrices needed in a

variational calculation (9), we first find expressions involving |φ (ε)〉 and |γ (ε)〉 .
Multiplication of (35) from the left by 〈φ (ε)| and using (40), together with the facts that

ϕ̄ (ε, a)=1, that Paψ (ε, r)=1 in the own channel, 0 in the other active channels, and solves

the radial Schrödinger equation in the passive channels, leads to the result:

〈φ (ε) |H − ε|φ (ε)〉 = −K (ε) . ◭ (44)

Here again we have resorted to matrix notation. The Hamiltonian matrix for the N=0 set is thus

〈

χ(0) |H − ǫ0|χ(0)
〉

= −K (ǫ0) . (45)

In a similar way, and with the use of Green’s second theorem, one finds that the overlap matrix

between two EMTOs with different energies is:

〈φ (ε̄) |φ (ε)〉 = K (ε̄)−K (ε)

ε̄− ε
→ K̇ (ε) , for ε̄→ ε. (46)

Note that by virtue of the definition of |ψ〉 , there are no 3-center terms here. Hence, the overlap

matrix for the N=0 set is simply:

〈

χ(0)|χ(0)
〉

= 〈φ (ǫ0) |φ (ǫ0)〉 = K̇ (ǫ0) . (47)

From Eqs. (44), (46), and (37) one finds:

〈γ (ε̄) |γ (ε)〉 = −G (ε̄)−G (ε)

ε̄− ε
→ Ġ (ε) = G (ε) K̇ (ε)G (ε) , for ε̄ → ε. (48)

If we now take the M th divided difference with respect to ε̄ and the N th with respect to ε, both

on the mesh, then use (33) and order such that M ≤ N , we find a double sum. If reordered to a

single sum, with due care taken for the terms where ε̄=ε, it reduces to the expression

〈γ [0..M ] |γ [0...N ]〉 = −G [[0..M ] ..N ] , (49)
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where the right-hand side is minus the highest derivative of that polynomium of degree M +

N+1 which coincides withG (ε) at the points ǫ0, ..., ǫN and has the same first derivatives Ġ (ε)

at the points ǫ0, .., ǫM (Hermit interpolation) [10]. For the matrix element of the Hamiltonian,

expressions (41) and (49) yield:

〈γ [0..N ] |H − ǫN | γ [0..N ]〉 = 〈γ [0..N ] |γ [0.N − 1]〉 = −G [[0.N − 1]N ] .

The NMTO Hamiltonian and overlap matrices are thus given by the following, most elegant

expression which involves nothing but the values and first derivatives of the KKR Green matrix,

G (ε) , on the energy mesh:

G [0..N ]
〈

χ(0..N) |H − ε|χ(0..N)
〉

G [0..N ] = −G [[0.N − 1]N ] + (ε− ǫN)G [[0..N ]] , (50)

i.e.
〈

χ(0..N) |H − ǫN |χ(0..N)
〉

= −G [0..N ]−1 G [[0.N − 1]N ] G [0..N ]−1
◭ (51)

and

O(0..N) ≡
〈

χ(0..N) | χ(0..N)
〉

= G [0..N ]−1 G [[0..N ]] G [0..N ]−1 . ◭ (52)

The variational calculation will give eigenvalues, which for the model potential has errors pro-

portional to (εi − ǫ0)
2 (εi − ǫ1)

2 .. (εi − ǫN)
2 .

4.3 Orthonormal NMTOs (Wannier orbitals)

In many cases one would like to work with a set of orthonormalNMTOs, e.g. Wannier orbitals,

and preserve the Rlm-character of each NMTO. In order to arrive at this, we should – in the

language of Löwdin – perform a symmetrical orthonormalization of the NMTO set. According

to (52), such a representation is obtained by the following transformation:
∣

∣χ̌(0..N)
〉

=
∣

∣χ(0..N)
〉

G [0..N ]
√

−G [[0..N ]]
−1

=
∣

∣χ(0..N)
〉

√
O(0..N)

−1
, ◭ (53)

because it yields:
〈

χ̌(0..N) | χ̌(0..N)
〉

= −
√

−G [[0..N ]]
−1†
G [[0...N ]]

√

−G [[0..N ]]
−1

= 1.

Note that this means: −G [[0..N ]] =
√

−G [[0..N ]]
†√−G [[0..N ]]. In this orthonormal repre-

sentation, the Hamiltonian matrix becomes:
〈

χ̌(0..N) |H − ǫN | χ̌(0..N)
〉

= −
√

−G [[0..N ]]
−1 †

G [[0.N − 1]N ]
√

−G [[0..N ]]
−1
. ◭ (54)

To find an efficient way to compute the square root of the Hermitian, positive definite matrix

−G [[0...N ]] may be a problem. Of course one may diagonalize the matrix, take the square root

of the eigenvalues, and then back-transform, but this is time consuming. Cholesky decompo-

sition is a better alternative, but that usually amounts to staying in the original representation.

Löwdin orthogonalization works if the set is nearly orthogonal, because then the overlap matrix

is nearly diagonal, and Löwdin’s solution was to normalize the matrix such that it becomes 1

along the diagonal and then expand in the off-diagonal part, ∆ :
√
1 +∆

−1
= 1− 1

2
∆+

3

8
∆2 − ... (55)

This should work for the NMTO overlap matrix (52) when the NMTOs are nearly orthogonal.
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4.4 LMTOs

For N=0, we have the results:
∣

∣χ(0)
〉

= |φ (ǫ0)〉 , (45), and (47).

For comparison with classical TB-LMTOs [4, 26, 33, 34], now consider the case N=1 with the

two-point mesh condensed onto ǫν . From Eq. (43) we find the following energy matrix:

E(1) = ǫν +GĠ−1 = ǫν − K̇−1K = ǫν + 〈φ|φ〉−1 〈φ |H − ǫν |φ〉 ,

Here and in the following an omitted energy argument means that ε=ǫν . Insertion in the Taylor

series (32), yields:
∣

∣χ(1)
〉

= |φ〉 −
∣

∣

∣
φ̇
〉

K̇−1K, (56)

which shows that the LMTO is smooth and has the form anticipated in Sect. 2. The Hamiltonian

and overlap matrices are from Eq. (50):

〈

χ(1) |H − ǫν |χ(1)
〉

= −Ġ−1 G̈

2!
Ġ−1 = −K +KK̇−1 K̈

2!
K̇−1K,

〈

χ(1) | χ(1)
〉

= −Ġ−1

...
G

3!
Ġ−1 = K̇ −KK̇−1 K̈

2!
− K̈

2!
K̇−1K +KK̇−1

...
K

3!
K̇−1K.

Had we instead used the Taylor series (56) to compute the overlap matrix, we would of course

have obtained the same result and as consequences, K̈=2!
〈

φ|φ̇
〉

and
...
K=3!

〈

φ̇|φ̇
〉

. This may

also be obtained from the general relation (49). Had we used the Taylor series to compute the

Hamiltonian matrix, we would have used Eq. (42) with N=1, to obtain the same result.

In order to make E(1) Hermitian and, hence, to transform it into a 1st-order Hamiltonian:

K̇
1

2E(1)K̇− 1

2 = ǫν − K̇− 1

2KK̇− 1

2 ≡ Hα,

one must symmetrically orthonormalize the 0th-order set, which now becomes:

∣

∣χ̌(0)
〉

= |φ〉 K̇− 1

2 = |φ〉 〈φ|φ〉−
1

2 ≡ |φα〉 .

Here and in the following, the superscript α is the one used in the classical LMTO [4] –not

the new NMTO– formalism. After applying the same transformation to the LMTO set (56), it

becomes:
∣

∣χ(1)
〉

K̇− 1

2 = |φα〉+
∣

∣

∣
φ̇
α
〉

(Hα − ǫν) = |χα〉 , ◭

where
∣

∣

∣
φ̇
α
〉

=
∣

∣

∣
φ̇
〉

K̇− 1

2 . This expression for the LMTO is the one envisaged in expression (10)

of Sect. 2: The tail-functions are φ̇
α
(r) and the head of the R̄l̄m̄-orbital is

φαR̄l̄m̄ (rR̄) +
∑

lm
φ̇
α

R̄lm (rR̄) (H
α − ǫν)R̄lm,R̄l̄m̄ .

In order to show explicitly how the solutions of Schrödinger’s equation for the solid can be

described through overlap of orbitals, we may simply diagonalize Hα. Naming its eigenvec-

tors and eigenvalues respectively uRlm,i and εi, the linear combination of orbitals given by an

eigenvector is:

|χα〉ui = |φα〉ui +
∣

∣

∣
φ̇
α
〉

Hαui =
[

|φα〉+
∣

∣

∣
φ̇
α
〉

(εi − ǫν)
]

ui

= |φα (εi)〉 ui +O
(

(εi − ǫν)
2) ,
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as anticipated. LMTOs thus naturally describe the way in which the overlap of orbitals leads to

broadening of levels into bands. It is however worth pointing out that although this (N=1)MTO

formalism has been brought to the same form as the classical TB-LMTO formalism in the ASA,

the (N=1)MTO formalism employs no ASA.

4.5 Example: NiO

The Mott insulator NiO has the NaCl structure so that each Ni is surrounded by an O octahedron

and vice versa. In the ionic picture, the configuration is Ni 3d8 with the 2 electrons of highest

energy in the eg orbitals. LDA band structures are shown on the left-hand side of Fig. 7 with

the corresponding sets of (N=1)MTO Wannier orbitals on the right-hand side.

Starting from the bottom, we see the 3 O p bands and the 3 congruent Wannier orbitals which

span those green bands. No discrepancy can be seen between the green and the highly accurate

LAPW bands (black). We remember that, except for the effects of linearization and orthogonal-

ization, which are small in this case of a rather narrow band, this O pz orbital can have no O p

character on any other O site. However, it has all other characters downfolded and we see, in

particular, pdσ bonds to two Ni eg d3z2−1 orbitals and pdπ bonds to the four Ni t2g orbitals.

Going now to the 5 Ni d bands seen in the middle panel, we see the corresponding pdσ anti-

bonds for the Ni eg orbitals to the appropriate O p orbitals and the corresponding pdπ anti-bonds

for the Ni t2g orbitals. Since pdσ hopping is stronger than pdπ, the reddish eg-like band lies

above the blueish t2g-like band, which is full in the LDA. Like for a member of the O p set,

the d3z2−1 member of the Ni d set can have no d character on any other Ni atom, and this is

seen to localize the orbitals quite well. The electronic configuration with respect to this set is

p6d8 = t62g e
2
g.

The members of the 8-orbital O p Ni d set describing the 10 eV wide pd band structure are

shown at the top of the figure, to the right. By virtue of having neither O p nor Ni d character

in their tails, these orbitals are more localized and atomic-like. Merely the O p orbitals have a

bit of bonding Ni sp character due to covalency with the band seen above 2 eV. Due to the O p

character in the empty part of the eg the configuration and the concomitant eg character in the

full O p band, the configuration with respect to this set is p5.4d8.6, i.e. with holes in the p orbitals

and more than 8 d electrons!

As is evident from the figure, NiO is a metal in the LDA, which is completely wrong. Never-

theless, LDA Wannier orbitals form very reasonable one-electron basis sets for many-electron

calculations such as LDA+DMFT and multiplet ligand-field theory (MLFT) cluster calculations

for x-ray spectroscopies [35]. Due to the complexities of many-electron calculations, one is

tempted to use a small basis set, e.g. for NiO, the set of 5 Ni d orbitals, or even a set of merely 2

Ni eg orbitals. This is however inaccurate, because the Coulomb repulsion is strong between two

d electrons on the same site and one cannot neglect the d character in the p band. A small com-

putational bonus for using the larger pd set, is that the d orbitals have simpler shapes so that the

dd Coulomb repulsion with good approximation can be described by the 3 Slater integrals [35].

On the other hand, the pictures of the pd set tell little, whereas those of the smaller sets bring
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Fig. 7: LDA band structures of NiO calculated with a large set of LAPWs (black) and three

different (N=1)MTO basis sets (colored) whose Wannier orbitals are shown to the right of the

bands. From the bottom and up: The 3 O p bands (green), the 5 Ni d bands with t2g character

blue and eg character red, and the 8 O p Ni d bands. The Wannier orbitals are shown asw (r) =
±const surfaces with the ± sign indicated by red/blue and const determined by the condition

that 90% of the probability density is inside the surface. From Ref. [35].
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out covalency effects very clearly. This becomes particularly relevant when symmetry-lowering

lattice distortions take place. Examples may be found in Refs. [36], [37], [38, 39], and [40].

5 Standard Löwdin downfolding and N-ization

In the NMTO method we first construct the set of energy-dependent, downfolded KPWs (EM-

TOs) from multiple scattering theory, i.e. we compute the structure matrix (31) in a strongly

screened (e.g. spd) representation and then downfold this matrix to the desired degree for each

energy. Thereafter weN-ize the EMTOs to form the energy-independentNMTO basis set. This

is different from standard Löwdin downfolding which partitions a given, large set of energy-

independent, strongly localized orbitals into active and passive subsets, |χ〉 = |χA〉+ |χB〉 , and

then eliminates the latter. Had one chosen this large basis set to be one of strongly screened

NMTOs, N-ization would have come before downfolding, and this is also the sequence in

which LMTO downfolding was first done [29]. Below, we shall first review Löwdin downfold-

ing because it is similar to, but much more familiar than screened multiple scattering theory,

and then indicate that subsequent use of the N-ization technique might be useful.

Partitioning the generalized eigenvalue equations (9) yields:

(H − εO)AA bA + (H − εO)AP bP = 0

(H − εO)PA bA + (H − εO)PP bP = 0

in block notation. Solving the bottom equations for bP ,

bP = − [(H − εO)PP ]
−1 (H − εO)PA bA, (57)

and inserting in the upper equations, yields the well-known set of Löwdin-downfolded secular

equations:

{

(H − εO)AA − (H − εO)AP [(H − εO)PP ]
−1 (H − εO)PA

}

bA = 0. (58)

These, together with the ”upfolding” (57) give the exact eigenfunction coefficients bI = (bA, bP ) ,

as long as the proper energy dependences are kept. But in order for the secular matrix to have

the desirable H − εO form, the energy dependence of the complicated matrix

(H − εO)AP [(H − εO)PP ]
−1 (H − εO)PA

is either neglected or linearized.

We are interested in the set of downfolded orbitals giving rise to this secular matrix. This is the

energy-dependent set:

|φA (ε)〉 ≡ |χA〉 − |χP 〉 [(H − εO)PP ]
−1 (H − εO)PA ≡ |χA〉+ |χP 〉 DPA (ε) , ◭ (59)

with each member |φa (ε)〉 being the active orbital |χa〉 , dressed by an energy-dependent linear

combination of passive orbitals. How well localized |φa (ε)〉 is, depends on how well the chosen

set |χA〉 reproduces the eigenstates at ε.



NMTOs 3.27

That H − ε represented in this set is the matrix in (58), is seen by first operating on (59) with

H− ε, and then projecting onto the active and passive subsets:

〈χA |H − ε|φA (ε)〉 = (H − εO)AA − (H − εO)AP [(H − εO)PP ]
−1 (H − εO)PA

〈χP |H − ε|φA (ε)〉 = 0.

Forming finally the linear combination (59) yields the desired result:

〈

φA (ε)
∣

∣

∣
Ĥ − ε

∣

∣

∣
φA (ε)

〉

= (H − εO)AA − (H − εO)AP [(H − εO)PP ]
−1 (H − εO)PA . ◭

One can show that this equals −GAA (ε)−1 , exactly as equations (44) and (34) in MTO theory.

In fact, the entire N-ization procedure could be used to remove the energy dependence of the

Löwdin-downfolded set (59). The result for the dress is:

D
(0..N)
PA = GPA [0..N ] GAA [0..N ]−1 ≈ GPA (ε)GAA (ε)−1 = DPA (ε) ,

and therefore the major cause for delocalization seems to be the Löwdin downfolding (59).

This procedure is computationally more demanding than the one we have described, and yields

less localized downfolded obitals. It certainly only works for orbital basis sets with merely one

radial function per Rlm [41].

6 Localization

It seems to me, that theNMTO construction in which one first generates a set of most localized

solutions (KPWs) of Schrödinger’s equation at a each energy, and then interpolates both the

local (from the radial functions) and the global (from the downfolding) energy dependencies in

one, commonN-ization step, leads to a set of Wannier orbitals which are at least as localized as

those obtained by Löwdin downfolding of the set of classical LMTOs as explained above, and

have a spread close to the minimal one [5]. Computed rms values,
〈

w
∣

∣|r− 〈w |r|w〉|2
∣

∣w
〉1/2

,

of the spread support this:

For the vanadium t2g Wannier orbitals in V2O3, we [38] find 1.30 Å for the a1g and 1.40 Å

for the eπg orbitals. These values are significantly smaller than those, 1.35 Å and 1.57 Å ob-

tained from TB-LMTOs [42]. This is consistent with results for the t2g Wannier orbitals in the

cubic perovskite SrVO3 where the rms spread, 1.38 Å, of the NMTO Wannier orbital [43] is

significantly smaller than the one, 1.54 Å, obtained by downfolding plus (N=0)-ization of the

classical, nearly-orthonormal LMTO set [44]. The 1.38 Å rms spread of this NMTO Wannier

orbital is, in fact, only marginally above the minimum value found to be 1.36̇ Å or 1.37 Å, de-

pending on whether a mixed-basis-pseudopotential scheme or the FP-LAPW scheme was used

for the LDA calculation of the Bloch functions in (2) [43]. Hence, at least for these t2g systems,

the NMTO Wannier functions seem to be close to those maximally localized in the sense of

Marzari and Vanderbilt [5].
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