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12.2 Ralf Bulla

1 Introduction

In the preceding lecture notes by F. Anders you find an introduction to the Kondo effect and
quantum impurity systems in general, along with the quantum mechanical models which are
supposed to explain the phenomena observed in these systems. Some intuition is required to
formulate these models, but the phenomena cannot be read off by just looking at the model
Hamiltonian. To actually see the screening of the impurity magnetic moment below the Kondo
temperature TK we need (more or less) sophisticated techniques, and in the context of quan-
tum impurity systems it is the Numerical Renormalization Group method (NRG, developed by
K.G. Wilson in the early 1970’s [1]) which helped a lot in understanding the Kondo and related
effects.1

The NRG method is special compared to other methods (such as Quantum Monte Carlo) as it
is designed exclusively for quantum impurity systems, with a small impurity – an object with a
small number of degrees of freedom with arbitrary interactions – coupled to a non-interacting
bath – usually a free conduction band, that is non-interacting fermions. Nevertheless, there is
an enormous range of physical phenomena which can be realized in such systems, and to which
the NRG has been applied. For an overview, see the review Ref. [4] and the hints for further
reading in the final section.
In these lecture notes, we will purely focus on the single-impurity Anderson model, to be intro-
duced in Sec. 2, for which all the technicalities of the NRG can be explained without the compli-
cations of multi-impurity or multi-channel systems. The single-impurity Anderson model has
also been used as a prototype model in Sec. II of the NRG-review [4], and I will use basically
the same notation here in the lecture notes.
Any introduction to the NRG method will go through the basic steps of logarithmic discretiza-
tion, mapping onto a semi-infinite chain, iterative diagonalization and so on, and, of course,
you will find precisely this structure in Sec. 2 (Figure 1 illustrates the initial steps of the NRG
procedure). These technical steps can be understood with a background in quantum mechanics,
in particular some experience in working with creation and annihilation operators for fermions
(c†iσ/ciσ, see below), but even if each single step is clear, beginners in the field very often find it
difficult to see the overall picture. I will try to convince the reader that there is indeed a general
strategy behind the NRG approach, and that each individual step has its purpose.
There is one issue which very often leads to confusion: that is the role of geometry and the
dimension of the bath in which the impurity is embedded. One frequently encounters correlated
electron systems in which the dimension is crucial for the physical properties, but for quantum
impurity systems you can find remarks in the literature saying that the impurity couples to
a single channel only, so it is effectively a one-dimensional problem, possibly like the semi-
infinite chain as depicted in Fig. 1c. So if the dimension does not play a role at all, you might
want to define the model directly on a semi-infinite chain – I hope these lecture notes will help
to clarify this issue.

1Of course, the NRG is not the only method which can be successfully applied to quantum impurity systems;
for an overview see the lecture notes from last year’s autumn school [2] and A.C. Hewson’s book [3]
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Fig. 1: Initial steps of the NRG illustrated for the single-impurity Anderson model in which an
impurity (filled circle) couples to a continuous conduction band via the hybridization function
∆(ω); a) a logarithmic set of intervals is introduced through the NRG discretization parameter
Λ; b) the continuous spectrum within each of these intervals is approximated by a single state; c)
the resulting discretized model is mapped onto a semi-infinite chain where the impurity couples
to the first conduction electron site via the hybridization V ; the parameters of the tight-binding
model (see Eq. (38)) are εn and tn. Figure taken from Ref. [4].

2 The single-impurity Anderson model

The Hamiltonian of a general quantum impurity model consists of three parts, the impurity
Himp, the bath Hbath, and the coupling between impurity and bath, Himp−bath:

H = Himp +Hbath +Himp−bath . (1)

In the single-impurity Anderson model (siAm, Ref. [5]), the impurity consists of a single level
with energy εf . The Coulomb repulsion between two electrons occupying this level (which then
must have opposite spin, σ = ↑ and σ = ↓) is given by U . All the Hamiltonians appearing in
these lecture notes are most conveniently written in second quantization, so we have

Himp =
∑
σ

εff
†
σfσ + Uf †↑f↑f

†
↓f↓ , (2)

with f (†)
σ annihilation (creation) operators for a fermion with spin σ on the impurity level.
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Fig. 2: One possible realization of the single-impurity Anderson model in which the impurity
couples to one site (site ‘0’) of a one-dimensional tight-binding chain.

Let us start with a specific geometry of the bath, that is a one-dimensional chain as shown in
Fig. 2, with hopping between nearest neighbours (matrix element tl) and on-site energies εl, so
we have

Hbath =
∑
σ

∞∑
l=−∞

εl c
†
lσclσ +

∑
σ

∞∑
l=−∞

tl

(
c†lσcl+1σ + c†l+1σclσ

)
. (3)

The operators for the states at site l of the chain are denoted as c(†)
lσ . Note that there is no

interaction term between the band states, which is first of all an assumption, but is actually
necessary to perform the transformations to be described below.
As indicated in Fig. 2, the impurity only couples to the bath state at site l = 0, and in the siAm
the form of this coupling is given by

Himp−bath = V
∑
σ

(
f †σc0σ + c†0σfσ

)
, (4)

corresponding to a hybridization of the respective states, with V the hybridization strength.
One might want to set the parameters εl and tl in Eq. (3) to a constant value, which simplifies
the calculation, but in general, εl and tl can be site-dependent and, for example, describe a
one-dimensional disordered system.
Let us now generalize the model to an arbitrary non-interacting bath. The operators Himp and
Himp−bath are still given by eqs. (2) and (4), respectively, and Hbath now has the form

Hbath =
∑
σ

∑
l

εlc
†
lσclσ +

∑
σ

∑
ij

tij

(
c†iσcjσ + c†jσciσ

)
. (5)

For later use we write Hbath in the form

Hbath =
∑
σ

~cσ
† T ~cσ , (6)

with
~cσ
† =

(
. . . , c†−1σ, c

†
0σ, c

†
1σ, . . .

)
, (7)

and the matrix elements of T built up by the εl and tij in Eq. (5).
The site index of the operators c(†)

lσ now runs over all sites of an arbitrary geometry, for example,
the two-dimensional lattice as shown in Fig. 3, and tij is the hopping between any pair (i, j) of
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Fig. 3: In this geometry, the impurity couples to one site of a two-dimensional lattice of con-
duction electrons.

the bath states. The bath might have a complicated structure, but as it is non-interacting, it can
always be written in a diagonal form:

Hbath =
∑
σk

εkb
†
kσbkσ , (8)

with the operators c(†)
iσ and b(†)

kσ related via a unitary transformation

ciσ =
∑
k

aikbkσ , c†iσ =
∑
k

a∗ikb
†
kσ . (9)

The aik are the matrix elements of the unitary matrix A which diagonalizes the matrix T as
defined above (

AtTA
)
kq

= εkδkq . (10)

The actual diagonalization of the matrix T is, of course, limited by the size of the matrices which
can be handled by the computer, but for now it is sufficient to assume that the diagonalization
can de done in principle.
Inserting Eq. (9) for i = 0 into Himp−bath from Eq. (4) gives the following form for the hy-
bridization term

Himp−bath =
∑
kσ

Vk

(
f †σbkσ + b†kσfσ

)
, (11)

with Vk = V a0k. Let us denote the Hamiltonian written with the operators b(†)
kσ , that is Himp

together with Hbath Eq. (8) and Himp−bath Eq. (11), as the k-representation of the siAm, in
contrast to the site-representation, eqs. (4,5).
We can now easily calculate the form of the hybridization function using equations of motion.
This is described in detail in Ref. [6] and shall not be repeated here. The essential point is that
the one-particle Green function Gσ(z) = 〈〈fσ, f †σ〉〉z can be written in the form

Gσ(z) =
1

z − εf − ∆̄(z)−ΣU(z)
, (z = ω + iδ) , (12)

with ΣU(z) the correlation part of the one-particle self energy and the hybridization function

∆̄(z) =
∑
k

V 2
k

1

z − εk
. (13)
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Usually it is the imaginary part of this quantity which is referred to as the hybridization function:

∆(ω) = − lim
δ→0

Im
[
∆̄(z = ω + iδ)

]
= π

∑
k

V 2
k δ(ω − εk) , (14)

with the second equality following from Eq. (13). In any case, it is this single frequency de-
pendent quantity in which all the details of the bath are encoded, or, in other words, all that the
impurity sees from the bath is the hybridization function ∆(ω). This can also be shown more
formally by starting from the functional integral for the k-representation of the siAm, and by
integrating out the conduction electron degrees of freedom (this can be done analytically, since
the conduction electrons are non-interacting). The effective action for the impurity degree of
freedom then contains the ∆(ω) as the only remnant of the bath.
We are now able – at least in principle – to calculate the hybridization function for any given
geometry, but can this be reversed? Is it possible to deduce the precise form of the siAm in the
site representation, that is all the εl and tij in Eq. (5) purely from the form of ∆(ω)? This is, in
fact, not the case, and to see this let us have a look at the siAm defined for a semi-infinite chain
as shown in Fig. 4, with

Hbath =
∑
σ

∞∑
l=0

εl c
†
lσclσ +

∑
σ

∞∑
l=0

tl

(
c†lσcl+1σ + c†l+1σclσ

)
, (15)

and Himp−bath given by Eq. (4).

0 1 2 3

...

4 5

Fig. 4: In this geometry, the impurity couples to the first site of a semi-infinite chain of conduc-
tion electrons.

There is a straightforward procedure (‘continued fraction expansion’) to calculate, for a given
∆(ω), the set of parameters {εl} and {tl} of this semi-infinite chain. This means that we
can start, for example, with a two-dimensional model as in Fig. 3, calculate the ∆(ω) for this
geometry, and then calculate the {εl} and {tl} for the semi-infinite chain via a continued fraction
expansion. The resulting model looks different, apparently, but for the impurity all that counts
is the hybridization function and this is the same for both models. In this sense the siAm is said
to be effectively a one-dimensional problem and we can view the chain in Fig. 4 as the single
channel the impurity is coupling to.
A side remark: the calculation of ∆(ω) for the siAm given in the form of a semi-infinite chain
is rather simple, as it can be cast in the form of a continued fraction

∆(z) =
V 2

z − ε0 − t20

z−ε1−
t21

z−ε2−
t22

z−ε3−...

. (16)
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In the site representation, we have so far considered a coupling of the impurity to a single site,
as in Figs. 2 and 3. Let us now generalize this to

Himp−bath =
∑
σm

Vm
(
f †σcmσ + c†mσfσ

)
, (17)

that is a coupling to the sites m with hybridization strength Vm. Figure 5 shows a possible
realization.

... ...

...

...

Fig. 5: In this geometry, the impurity couples to one site plus the four nearest neighbours of
this site of a two-dimensional lattice of conduction electrons.

We can now insert Eq. (9) for i = m into this expression and arrive at the same form of
Himp−bath Eq. (11) as above, with Vk =

∑
m Vmamk. The structure of the Hamiltonian in the

k-representation is thus exactly the same as before.
Before we continue, let us summarize what we have learned so far. Whatever the geometry of
the siAm, one can always write the model in the k-representation eqs. (8,11) (from which the
form of ∆(ω) follows directly) or as a semi-infinite chain. The actual calculation of ∆(ω) can
be done in various ways – in the simplest case Hbath is translationally invariant and the diago-
nalization of Hbath can be done via Fourier transformation, but in the general case one cannot
avoid diagonalizing large matrices. Leaving aside these technical issues, we have obtained a
quantity which completely characterizes the impurity-bath coupling, so the next question is,
what ∆(ω) can tell us about Kondo physics. The important feature here is the behaviour of
∆(ω) for ω → 0. Standard Kondo physics requires ∆(ω → 0) 6= 0, whereas the situation is
more complex if ∆(ω) ∝ |ω|r for ω → 0, with an exponent r > −1 (see the discussion in
Sec. IV.C.2 of Ref. [4]).
We have now seen various ways to write the siAm, but the actual starting point for the NRG
procedure has not been introduced yet. This is the Hamiltonian in the ‘integral representation’

Hbath =
∑
σ

∫ 1

−1

dε g(ε)a†εσaεσ ,

Himp−bath =
∑
σ

∫ 1

−1

dε h(ε)
(
f †σaεσ + a†εσfσ

)
. (18)

The conduction band is now assumed to be continuous, with the band operators satisfying the
standard fermionic commutation relations:

[
a†εσ, aε′σ′

]
+

= δ(ε− ε′)δσσ′ . The dispersion of the
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band is given by g(ε), with the band cutoffs set to −1 and 1 (for simplicity). The hybridization
between the impurity and the band states is given by h(ε).
The calculation of the hybridization function for the model in this form works in the same way
as for the k-representation, Eq. (14). The result is

∆(ω) = π

∫ 1

−1

dε h(ε)2 δ(ω − g(ε)) = πh(g−1(ω))2 d

dω
g−1(ω) , (19)

with g−1(ω) the inverse function of g(ε), that is g−1(g(ε)) = ε. Now remember that the relevant
quantity is the hybridization function∆(ω), given by the specific geometries as discussed above.
For a given ∆(ω), there are obviously many ways to divide the ω-dependence between g−1(ω)

and h(g−1(ω)), corresponding to different ways of dividing the ε-dependence between g(ε) and
h(ε). This feature will be useful later.
With the siAm in the integral representation eqs. (18) we can now turn to the NRG treatment of
the model.

3 The numerical renormalization group

3.1 Logarithmic discretization

The Hamiltonian in the integral representation Eq. (18) is a convenient starting point for the
logarithmic discretization of the conduction band. As shown in Fig. 1a, the parameter Λ > 1

defines a set of intervals with discretization points

xn = ±Λ−n , n = 0, 1, 2, . . . . (20)

The width of the intervals is given by

dn = Λ−n(1− Λ−1) . (21)

Within each interval we introduce a complete set of orthonormal functions

ψ±np(ε) =

{
1√
dn
e±iωnpε for xn+1 < ±ε < xn

0 outside this interval .
(22)

The index p takes all integer values between −∞ and +∞, and the fundamental frequencies
for each interval are given by ωn = 2π/dn. The next step is to expand the conduction electron
operators aεσ in this basis, i.e.

aεσ =
∑
np

[
anpσψ

+
np(ε) + bnpσψ

−
np(ε)

]
, (23)

which corresponds to a Fourier expansion in each of the intervals. The inverse transformation
reads

anpσ =

∫ 1

−1

dε
[
ψ+
np(ε)

]∗
aεσ ,

bnpσ =

∫ 1

−1

dε
[
ψ−np(ε)

]∗
aεσ . (24)
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The operators a(†)
npσ and b(†)

npσ defined in this way fulfill the usual fermionic commutation rela-
tions. The Hamiltonian Eq. (18) is now expressed in terms of these discrete operators.
In particular, the transformed hybridization term (first part only) is∫ 1

−1

dε h(ε)f †σaεσ = f †σ
∑
np

[
anpσ

∫ +,n

dε h(ε)ψ+
np(ε) + bnpσ

∫ −,n
dε h(ε)ψ−np(ε)

]
, (25)

where we have defined ∫ +,n

dε ≡
∫ xn

xn+1

dε ,

∫ −,n
dε ≡

∫ −xn+1

−xn
dε . (26)

For a constant h(ε) = h, the integrals in Eq. (25) filter out the p = 0 component only∫ ±,n
dε hψ±np(ε) =

√
dnh δp,0 . (27)

In other words, the impurity couples only to the p = 0 components of the conduction band
states. It will become clear soon, that this point was essential in Wilson’s original line of
arguments, so we would like to maintain this feature (h(ε) being constant in each interval of
the logarithmic discretization) also for a general, non-constant ∆(ω). Note that this restriction
for the function h(ε) does not lead to additional approximations for a non-constant ∆(ω) as one
can shift all the remaining ε-dependence to the dispersion g(ε), see Eq. (19).
As discussed in [7] in the context of the soft-gap model, one can even set h(ε) = h for all ε.
Here we follow the proposal of [8], that is, we introduce a step function for h(ε)

h(ε) = h±n , xn+1 < ±ε < xn , (28)

with h±n given by the average of the hybridization function ∆(ω) within the respective intervals,

h±n
2

=
1

dn

∫ ±,n
dε

1

π
∆(ε) . (29)

This leads to the following form of the hybridization term∫ 1

−1

dε h(ε)f †σaεσ =
1√
π
f †σ
∑
n

[
γ+
n an0σ + γ−n bn0σ

]
, (30)

with γ±n
2

=
∫ ±,n

dε∆(ε).
Next, we turn to the conduction electron term, which transforms into∫ 1

−1

dε g(ε)a†εσaεσ =
∑
np

(
ξ+
n a
†
npσanpσ + ξ−n b

†
npσbnpσ

)
+
∑
n,p 6=p′

(
α+
n (p, p′)a†npσanp′σ − α−n (p, p′)b†npσbnp′σ

)
.

(31)
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The first term on the right hand side of Eq. (31) is diagonal in the index p. The discrete set of
energies ξ±n can be expressed as (see Ref. [8])

ξ±n =

∫ ±,n
dε∆(ε)ε∫ ±,n
dε∆(ε)

[
= ±1

2
Λ−n(1 + Λ−1)

]
, (32)

where we give the result for a constant ∆(ε) in brackets. The coupling of the conduction band
states with different p, p′ (the second term) recovers the continuum (no approximation has been
made so far, Eq. (31) is still exact). For the case of a linear dispersion, g(ε) = ε, the prefactors
α±n (p, p′) are the same for both sides of the discretization and take the following form

α±n (p, p′) =
1− Λ−1

2πi

Λ−n

p′ − p
exp

[
2πi(p′ − p)

1− Λ−1

]
. (33)

The actual discretization of the Hamiltonian is now achieved by dropping the terms with p 6= 0

in the expression for the conduction band Eq. (31). This is, of course, an approximation, the
quality of which is not clear from the outset. To motivate this step we can argue that (i) the p 6= 0

states couple only indirectly to the impurity (via their coupling to the p = 0 states in Eq. (31))
and (ii) the coupling between the p = 0 and p 6= 0 states has a prefactor (1 − Λ−1) which
vanishes in the limit Λ → 1. In this sense one can view the couplings to the states with p 6= 0

as small parameters and consider the restriction to p = 0 as zeroth order step in a perturbation
expansion with respect to the coefficients a±n (p, p′) [1]. As it turns out, the accuracy of the
results obtained from the p = 0 states only is surprisingly good even for values of Λ as large as
Λ = 2, so that in all NRG calculations the p 6= 0 states have never been considered so far.
Finally, after dropping the p 6= 0 terms and relabeling the operators an0σ ≡ anσ, etc., we arrive
at the discretized Hamiltonian as depicted by Fig. 1b:

H = Himp +
∑
nσ

[
ξ+
n a
†
nσanσ + ξ−n b

†
nσbnσ

]
(34)

+
1√
π

∑
σ

f †σ

[∑
n

(
γ+
n anσ + γ−n bnσ

)]
+

1√
π

∑
σ

[∑
n

(
γ+
n a
†
nσ + γ−n b

†
nσ

)]
fσ .

While the various steps leading to the discretized Hamiltonian, Eq. (34), are fairly straightfor-
ward from a mathematical point of view, the question may arise here, why are we performing
such a specific discretization at all?
Quite generally, a numerical diagonalization of Hamiltonian matrices allows to take into ac-
count the various impurity-related terms in the Hamiltonian, such as a local Coulomb repulsion,
non-perturbatively. Apparently, the actual implementation of such a numerical diagonalization
scheme requires some sort of discretization of the original model, which has a continuum of
bath states. There are, however, many ways to discretize such a system, so let me try to explain
why the logarithmic discretization is the most suitable one here. As it turns out, quantum impu-
rity models are very often characterized by energy scales orders of magnitudes smaller than the
bare energy scales of the model Hamiltonian. If the ratio of these energy scales is, for example,
of the order of 105, a linear discretization would require energy intervals of size at most 10−6 to
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properly resolve the lowest scale in the system. Since for a finite system the splitting of energies
is roughly inversely proportional to the system size, one would need of the order of 106 sites,
which renders an exact diagonalization impossible.
Apparently, the logarithmic discretization reduces this problem in that the low-energy resolution
now depends exponentially on the number of sites in the discretized model, so that energy scales
of the order of 105 (in units of the bandwidth) can be reached by performing calculations for
fairly small clusters, say with ≈ 20 sites.

3.2 Mapping on a semi-infinite chain

According to Fig. 1b and c, the next step is to transform the discretized Hamiltonian Eq. (34)
into a semi-infinite chain form with the first site of the chain (filled circle in Fig. 1c) repre-
senting the impurity degrees of freedom. You will notice, of course, that we have introduced a
representation of the siAm in the form of a semi-infinite chain already in Fig. 4, with the Hamil-
tonian given by Eq. (15). The structure of the Hamiltonian Eq. (15) and the one corresponding
to Fig. 1c (see Eq. (38) below) is exactly the same, so why should we distinguish these Hamil-
tonians at all? The essential point here is that the semi-infinite chain introduced in Sec. 2 is an
exact representation of the original model, that means it has the same hybridization function
as the model in the original site representation, for example, the model for a single impurity
coupled to a two-dimensional system as shown in Fig. 3.
In contrast, the semi-infinite chain to be introduced in this subsection corresponds to the dis-
cretized Hamiltonian Eq. (34), which is an approximation of the original, continuous model, so
the model corresponding to Fig. 1c – for which the expression ‘Wilson chain’ is often used – is
an approximation as well. As will be discussed in the following, the main feature of the Wilson
chain is that the tl are falling off exponentially with distance from the impurity.
In the Hamiltonian for the Wilson chain, the impurity directly couples only to one conduction
electron degree of freedom with operators c(†)

0σ , the form of which can be directly read off from
the second and third line in Eq. (34). With the definition

c0σ =
1√
ξ0

∑
n

[
γ+
n anσ + γ−n bnσ

]
, (35)

in which the normalization constant is given by

ξ0 =
∑
n

(
(γ+
n )2 + (γ−n )2

)
=

∫ 1

−1

dε∆(ε) , (36)

the hybridization term can be written as

1√
π
f †σ
∑
n

(
γ+
n anσ + γ−n bnσ

)
=

√
ξ0

π
f †σc0σ , (37)

(similarly for the Hermitian conjugate term). Note that for a coupling to a single site as in
Eq. (4), the coupling in Eq. (37) reduces to

√
ξ0/π = V .



12.12 Ralf Bulla

The operators c(†)
0σ are of course not orthogonal to the operators a(†)

nσ, b(†)
nσ. Constructing a new

set of mutually orthogonal operators c(†)
nσ from c

(†)
0σ and a(†)

nσ, b(†)
nσ by a standard Gram-Schmidt

procedure leads to the desired chain Hamiltonian, which takes the form

H = Himp+

√
ξ0

π

∑
σ

[
f †σc0σ + c†0σfσ

]
+

∞∑
σ,n=0

[
εnc
†
nσcnσ + tn

(
c†nσcn+1σ + c†n+1σcnσ

)]
, (38)

with the operators c(†)
nσ corresponding to the n-th site of the conduction electron part of the chain.

The parameters of the chain are the on-site energies εn and the hopping matrix elements tn. The
operators c(†)

nσ in Eq. (38) and the operators {a(†)
nσ, b

(†)
nσ} in Eq. (34) are related via an orthogonal

transformation

anσ =
∞∑
m=0

umncmσ , bnσ =
∞∑
m=0

vmncmσ ,

cnσ =
∞∑
m=0

[unmamσ + vnmbmσ] . (39)

From the definition of c0σ in Eq. (35) we can read off the coefficients u0m and v0m

u0m =
γ+
m√
ξ0

, v0m =
γ−m√
ξ0

. (40)

For the remaining coefficients unm, vnm, as well as for the parameters εn, tn, one can derive
recursion relations following the scheme described in detail in, for example, Appendix A of [9].
The starting point here is the equivalence of the free conduction electron parts∑

nσ

[
ξ+
n a
†
nσanσ + ξ−n b

†
nσbnσ

]
=

∞∑
σ,n=0

[
εnc
†
nσcnσ + tn

(
c†nσcn+1σ + c†n+1σcnσ

)]
. (41)

The recursion relations are initialized by the equations

ε0 =
1

ξ0

∫ 1

−1

dε∆(ε)ε ,

t20 =
1

ξ0

∑
m

[
(ξ+
m − ε0)2(γ+

m)2 + (ξ−m − ε0)2(γ−m)2
]
,

u1m =
1

t0
(ξ+
m − ε0)u0m ,

v1m =
1

t0
(ξ−m − ε0)v0m . (42)

For n ≥ 1, the recursion relations read

εn =
∑
m

(
ξ+
mu

2
nm + ξ−mv

2
nm

)
,

t2n =
∑
m

[
(ξ+
m)2u2

nm + (ξ−m)2v2
nm

]
− t2n−1 − ε2

n ,

un+1,m =
1

tn

[
(ξ+
m − εn)unm − tn−1un−1,m

]
,

vn+1,m =
1

tn

[
(ξ−m − εn)vnm − tn−1vn−1,m

]
. (43)
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Note that for a particle-hole symmetric hybridization function, ∆(ω) = ∆(−ω), the on-site
energies εn are zero for all n.
For a general hybridization function, the recursion relations have to be solved numerically.
Although these relations are fairly easy to implement, it turns out that the iterative solution
breaks down typically after about 20-30 steps. The source of this instability is the wide range
of values for the parameters entering the recursion relations (for instance for the discretized
energies ξ±m). In most cases this problem can be overcome by using arbitrary precision routines
for the numerical calculations. Furthermore, it is helpful to enforce the normalization of the
vectors unm and vnm after each step.
Analytical solutions for the recursion relations have so far been given only for few special cases.
Wilson derived a formula for the tn for a constant density of states of the conduction electrons
in the Kondo version of the impurity model [1]; this corresponds to a constant hybridization
function ∆(ω) in the interval [−1, 1]. Here we have εn = 0 for all n and the expression for the
tn reads

tn =
(1 + Λ−1) (1− Λ−n−1)

2
√

1− Λ−2n−1
√

1− Λ−2n−3
Λ−n/2 . (44)

Similar expressions have been given for the soft-gap model, see [8]. In the limit of large n this
reduces to

tn −→
1

2

(
1 + Λ−1

)
Λ−n/2 . (45)

The fact that the tn fall off exponentially with the distance from the impurity is essential for the
following discussion, so let me briefly explain where this n-dependence comes from. Consider
the discretized model Eq. (34) with a finite number 1 + M/2 (M even) of conduction electron
states for both positive and negative energies (the sum over n then goes from 0 to M/2). This
corresponds to 2+M degrees of freedom which result in 2+M sites of the conduction electron
part of the chain after the mapping to the Wilson chain. The lowest energies in the discretized
model Eq. (34) are the energies ξ±M/2 which, for a constant hybridization function, are given by
ξ±M/2 = ±1

2
Λ−M/2(1 + Λ−1), see Eq. (32). This energy shows up in the chain Hamiltonian as

the last hopping matrix element tM , so we have tM ∼ ξM/2 equivalent to Eq. (45).
Equation (38) is a specific one-dimensional representation of the siAm with the special feature
that the hopping matrix elements tn fall off exponentially. As mentioned above, this represen-
tation is not exact since in the course of its derivation, the p 6= 0 terms have been dropped.
Nevertheless, the conduction electron sites of the chain do have a physical meaning in the orig-
inal model as they can be viewed as a sequence of shells centered around the impurity. The
first site of the conduction electron chain corresponds to the shell with the maximum of its
wavefunction closest to the impurity [1,3]; this shell is coupled to a shell further away from the
impurity and so on.

3.3 Iterative diagonalization

The transformations described so far are necessary to map the problem onto a form (the Wilson
chain, Eq. (38)) for which an iterative renormalization group (RG) procedure can be defined.
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This is the point at which, finally, the RG character of the approach enters.
The chain Hamiltonian Eq. (38) can be viewed as a series of HamiltoniansHN (N = 0, 1, 2, . . .)
which approaches H in the limit N →∞.

H = lim
N→∞

Λ−(N−1)/2HN , (46)

with

HN = Λ(N−1)/2

[
Himp +

√
ξ0

π

∑
σ

(
f †σc0σ + c†0σfσ

)
+

N∑
σ,n=0

εnc
†
nσcnσ +

N−1∑
σ,n=0

tn

(
c†nσcn+1σ + c†n+1σcnσ

)]
. (47)

The factor Λ(N−1)/2 in Eq. (47) (and, consequently, the factor Λ−(N−1)/2 in Eq. (46)) has been
chosen to cancel the N -dependence of tN−1, the hopping matrix element between the last two
sites of HN . Such a scaling is useful for the discussion of fixed points, as described below.
For a different n-dependence of tn, as for the spin-boson model [9], the scaling factor has to
be changed accordingly. (The n-dependence of εn is, in most cases, irrelevant for the overall
scaling of the many-particle spectra.)
Two successive Hamiltonians are related by

HN+1 =
√
ΛHN + ΛN/2

[∑
σ

εN+1c
†
N+1σcN+1σ +

∑
σ

tN

(
c†NσcN+1σ + c†N+1σcNσ

)]
, (48)

and the starting point of the sequence of Hamiltonians is given by

H0 = Λ−1/2

[
Himp +

∑
σ

ε0c
†
0σc0σ +

√
ξ0

π

∑
σ

(
f †σc0σ + c†0σfσ

)]
.

This Hamiltonian corresponds to a two-site cluster formed by the impurity and the first conduc-
tion electron site. Note that in the special case of the siAm, one can also chooseH−1 = Λ−1Himp

as the starting point (with a proper renaming of parameters and operators) since the hybridiza-
tion term has the same structure as the hopping term between the conduction electron sites.
The recursion relation Eq. (48) can now be understood in terms of a renormalization group
transformation R:

HN+1 = R (HN) . (49)

In a standard RG transformation, the Hamiltonians are specified by a set of parameters ~K and
the mapping R transforms the Hamiltonian H( ~K) into another Hamiltonian of the same form,
H( ~K ′), with a new set of parameters ~K ′. Such a representation does not exist, in general,
for the HN which are obtained in the course of the iterative diagonalization to be described
below. Instead, we characterizeHN , and thereby also the RG flow, directly by the many-particle
energies EN(r)

HN |r〉N = EN(r)|r〉N , r = 1, . . . , Ns , (50)
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Fig. 6: In each step of the iterative diagonalization scheme one site of the chain (with operators
c

(†)
N+1 and on-site energy εN+1) is added to the Hamiltonian HN . A basis |r; s〉N+1 for the

resulting Hamiltonian, HN+1, is formed by the eigenstates of HN , |r〉N , and a basis of the
added site, |s(N + 1)〉. Figure taken from Ref. [4].

with the eigenstates |r〉N and Ns the dimension of HN . This is particularly useful in the
crossover regime between different fixed points, where a description in terms of an effective
Hamiltonian with certain renormalized parameters is not possible. Only in the vicinity of the
fixed points (except for certain quantum critical points) one can go back to an effective Hamil-
tonian description, as described below.
Our primary aim now is to set up an iterative scheme for the diagonalization of HN , in order
to discuss the flow of the many-particle energies EN(r). Let us assume that, for a given N , the
Hamiltonian HN has already been diagonalized, as in Eq. (50). We now construct a basis for
HN+1, as sketched in Fig. 6:

|r; s〉N+1 = |r〉N ⊗ |s(N + 1)〉 . (51)

The states |r; s〉N+1 are product states consisting of the eigenbasis of HN and a suitable basis
|s(N +1)〉 for the added site (the new degree of freedom). From the basis Eq. (51) we construct
the Hamiltonian matrix for HN+1:

HN+1(rs, r′s′) = N+1〈r; s|HN+1|r′; s′〉N+1 . (52)

For the calculation of these matrix elements it is useful to decompose HN+1 into three parts

HN+1 =
√
ΛHN + X̂N,N+1 + ŶN+1 , (53)

(see, for example, Eq. (48)) where the operator ŶN+1 only contains the degrees of freedom
of the added site, while X̂N,N+1 mixes these with the ones contained in HN . Apparently, the
structure of the operators X̂ and Ŷ , as well as the equations for the calculation of their matrix
elements, depend on the model under consideration.
The following steps are illustrated in Fig. 7: In Fig. 7a we show the many-particle spectrum
of HN , that is the sequence of many-particle energies EN(r). Note that, for convenience, the
ground-state energy has been set to zero. Figure 7b shows the overall scaling of the energies by
the factor

√
Λ, see the first term in Eq. (48).
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EN+1 (r)EN (r) EN (r)
1/2a)

after truncation
b) c) d)

0

Fig. 7: (a): Many-particle spectrum EN(r) of the Hamiltonian HN with the ground-state
energy set to zero. (b): The relation between successive Hamiltonians, Eq. (48), includes a
scaling factor

√
Λ. (c) Many-particle spectrum EN+1(r) of HN+1, calculated by diagonalizing

the Hamiltonian matrix Eq. (52). (d) The same spectrum after truncation where only the Ns

lowest-lying states are retained; the ground-state energy has again been set to zero. Figure
taken from Ref. [4].

Diagonalization of the matrix Eq. (52) gives the new eigenenergies EN+1(w) and eigenstates
|w〉N+1 which are related to the basis |r; s〉N+1 via the unitary matrix U :

|w〉N+1 =
∑
rs

U(w, rs)|r; s〉N+1 . (54)

The set of eigenenergies EN+1(w) of HN+1 is displayed in Fig. 7c (the label w can now be
replaced by r). Apparently, the number of states increases by adding the new degree of freedom
(when no symmetries are taken into account, the factor is just the dimension of the basis |s(N+

1)〉). The ground-state energy is negative, but will be set to zero in the following step.
The increasing number of states is, of course, a problem for the numerical diagonalization;
the dimension of HN+1 grows exponentially with N , even when we consider symmetries of
the model so that the full matrix takes a block-diagonal form with smaller submatrices. This
problem can be solved by a very simple truncation scheme: after diagonalization of the various
submatrices of HN+1 one only keeps the Ns eigenstates with the lowest many-particle energies.
In this way, the dimension of the Hilbert space is fixed toNs and the computation time increases
linearly with the length of the chain. Suitable values for the parameter Ns depend on the model;
for the siAm,Ns of the order of a few hundred is sufficient to get converged results for the many-
particle spectra, but the accurate calculation of static and dynamic quantities usually requires
larger values of Ns. The truncation of the high energy states is illustrated in Fig. 7d.
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Such an ad-hoc truncation scheme needs further explanations. First of all, there is no guarantee
that this scheme will work in practical applications and its quality should be checked for each
individual application. Important here is the observation that the neglect of the high-energy
states does not spoil the low-energy spectrum in subsequent iterations – this can be easily seen
numerically by varying Ns. The influence of the high-energy on the low-energy states is small
since the addition of a new site to the chain can be viewed as a perturbation of relative strength
Λ−1/2 < 1. This perturbation is small for large values of Λ but for Λ → 1 it is obvious that
one has to keep more and more states to get reliable results. This also means that the accuracy
of the NRG results is getting worse when Ns is kept fixed and Λ is reduced (vice versa, it is
sometimes possible to improve the accuracy by increasing Λ for fixed Ns).

From this discussion we see that the success of the truncation scheme is intimately connected
to the special structure of the chain Hamiltonian (that is tn ∝ Λ−n/2) which in turn is due to
the logarithmic discretization of the original model. A direct transformation of the siAm to a
semi-infinite chain as in Eq. (15) results in tn → const [3], and the above truncation scheme
fails.

Let us now be a bit more specific on how to construct the basis |r; s〉N+1. For this we have to
decide, first of all, which of the symmetries of the Hamiltonian should be used in the iterative
diagonalization. In the original calculations of Ref. [1] and Refs. [10,11] the following quantum
numbers were used: total chargeQ (particle number with respect to half-filling), total spin S and
z-component of the total spin Sz. It was certainly essential in the 1970’s to reduce the size of the
matrices and hence the computation time as much as possible by invoking as many symmetries
as possible. This is no longer necessary to such an extent on modern computer systems, i.e. one
can, at least for single-band models, drop the total spin S and classify the subspaces with the
quantum numbers (Q,Sz) only. This simplifies the program considerably as one no longer has
to worry about reduced matrix elements and the corresponding Clebsch-Gordan coefficients,
see, for example [10]. The |r; s〉N+1 are then constructed as:

|Q,Sz, r; 1〉N+1 = |Q+ 1, Sz, r〉N ,

|Q,Sz, r; 2〉N+1 = c†N+1↑
∣∣Q,Sz − 1

2
, r
〉
N
,

|Q,Sz, r; 3〉N+1 = c†N+1↓
∣∣Q,Sz + 1

2
, r
〉
N
,

|Q,Sz, r; 4〉N+1 = c†N+1↑c
†
N+1↓ |Q− 1, Sz, r〉N .

(55)

Note that the quantum numbers (Q,Sz) on each side of these equations refer to different sys-
tems: on the left-hand side they are for the system including the added site, and on the right-
hand side without the added site. We do not go into the details of how to set up the Hamiltonian
matrices Eq. (52), as this procedure is described in great detail in Appendix B of Ref. [10].

For fermionic baths, the discretization parameter Λ and the number of states Ns kept in each
iteration are the only parameters which govern the quality of the results of the NRG procedure.
For a bosonic bath, the infinite dimensional basis |s(N + 1)〉 for the added bosonic site requires
an additional parameter Nb, which determines the dimension of |s(N + 1)〉.
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3.4 Renormalization group flow

The result of the iterative diagonalization scheme are the many-particle energies EN(r) with
r = 1, . . . , Ns (apparently, the number of states is less than Ns for the very first steps before the
truncation sets in). The index N goes from 0 to a maximum number of iterations, Nmax, which
usually has to be chosen such that the system has approached its low-temperature fixed point.

As illustrated in Fig. 7, the set of many-particle energies cover roughly the same energy range
independent of N , due to the scaling factor Λ(N−1)/2 in Eq. (47). The energy of the first excited
state of HN is of the order of Λ(N−1)/2tN−1, a constant according to Eq. (45). The energy of the
highest excited state kept after truncation depends on Ns – for typical parameters this energy is
approximately 5-10 times larger than the lowest energy.

Multiplied with the scaling factor Λ−(N−1)/2, see Eq. (46), the energies EN(r) are an approx-
imation to the many-particle spectrum of the Wilson chain Eq. (38) within an energy window
decreasing exponentially with increasing N . Note, that the energies for higher lying excitations
obtained for early iterations are not altered in later iteration steps due to the truncation proce-
dure. Nevertheless one can view the resulting set of many-particle energies and states from all
NRG iterations N as approximation to the spectrum of the full Hamiltonian and use them to
calculate physical properties in the whole energy range.

Here we want to focus directly on the many-particle energies EN(r) and show how one can
extract information about the physics of a given model by analyzing their flow, that is the de-
pendence of EN(r) on N .

As a typical example for such an analysis, we show in Fig. 8 the flow of the many-particle
energies for the symmetric siAm, with parameters εf = −0.5 · 10−3, U = 10−3, V = 0.004,
and Λ = 2.5 (the same parameters as used in Fig. 5 of Ref. [10]; note that we show here a
slightly different selection of the lowest-lying states). The energies are plotted for odd N only,
that is an odd total number of sites (which isN+2). This is necessary, because the many-particle
spectra show the usual even-odd oscillations of a fermionic finite-size system (the patterns for
even N look different but contain, of course, the same physics). The data points are connected
by lines to visualize the flow. As in Ref. [10], the many-particle energies are labeled by total
charge Q and total spin S.

What is the information one can extract from such a flow diagram? First of all we note the
appearance of three different fixed points of the RG transformation for early iteration numbers
N < 10, for intermediate values of N and for N > 60 (strictly speaking, because we look at
N odd only, these are fixed points of R2, not of R). The physics of these fixed points cannot be
extracted by just looking at the pattern of the many-particle energies. This needs some further
analysis, in particular the direct diagonalization of fixed point Hamiltonians (which usually
have a simple structure) and the comparison of their spectrum with the numerical data. An
excellent account of this procedure for the symmetric and asymmetric siAm has been given
in Refs. [10, 11], and there is no need to repeat this discussion here. The analysis shows that
for N ≈ 3 − 9, the system is very close to the free-orbital fixed point, with the fixed point
Hamiltonian given by Eq. (38) for εf = 0, U = 0, and V = 0. This fixed point is unstable and



NRG 12.19

0 20 40 60 80
N

0.0

1.0

2.0

3.0

4.0

E N
(r)

Q=0, S=1/2
Q=1, S=0
Q=1, S=1

Fig. 8: Flow of the lowest-lying many-particle energies of the single-impurity Anderson model
for parameters εf = −0.5 · 10−3, U = 10−3, V = 0.004, and Λ = 2.5. The states are labeled
by the quantum numbers total charge Q and total spin S. See the text for a discussion of the
fixed points visible in this plot. Figure taken from Ref. [4].

forN ≈ 11−17, we observe a rapid crossover to the local-moment fixed point. This fixed point
is characterized by a free spin decoupled from the conduction band (here we have εf = −U/2,
U →∞, and V = 0). The local-moment fixed point is unstable as well and after a characteristic
crossover (see the discussion below) the system approaches the stable strong-coupling fixed
point of a screened spin (with εf = −U/2 and V 2/U → ∞). Note that the terminology
‘strong-coupling’ has been introduced originally because the fixed point Hamiltonian can be
obtained from the limit V →∞, so ‘coupling’ here refers to the hybridization, not the Coulomb
parameter U .

The NRG does not only allow to match the structure of the numerically calculated fixed points
with those of certain fixed point Hamiltonians. One can in addition identify the deviations from
the fixed points (and thereby part of the crossover) with appropriate perturbations of the fixed
point Hamiltonians. Again, we refer the reader to Refs. [10, 11] for a detailed description of
this analysis. The first step is to identify the leading perturbations around the fixed points. The
leading operators can be determined by expressing them in terms of the operators which diago-
nalize the fixed point Hamiltonian; this tells us directly how these operators transform under the
RG mapping R2. One then proceeds with the usual classification into relevant, marginal, and
irrelevant perturbations. The final results of this analysis perfectly agree with the flow diagram
of Fig. 8: There is a relevant perturbation which drives the system away from the free-orbital
fixed point, but for the local-moment fixed point there is only a marginally relevant perturbation,
therefore the system only moves very slowly away from this fixed point. Note that this marginal
perturbation – which is the exchange interaction between the local moment and the spin of the
first conduction electron site – gives rise to the logarithms observed in various physical quan-
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tities. Finally, there are only irrelevant operators which govern the flow to the strong-coupling
fixed point. These are responsible for the Fermi-liquid properties at very low temperatures [3].
Flow diagrams as in Fig. 8 also give information about the relevant energy scales for the
crossover between the fixed points. For example, an estimate of the Kondo temperature TK

(the temperature scale which characterizes the flow to the strong-coupling fixed point) is given
by TK ≈ ωcΛ

−N̄/2, with N̄ ≈ 55 for the parameters in Fig. 8.

4 Final remarks

The main purpose of these lecture notes was to give a brief introduction to the basic steps of the
NRG method, that is the logarithmic discretization (Sec. 3.1), the mapping onto a semi-infinite
chain (Sec. 3.2), and the iterative diagonalization (Sec. 3.3). A number of improvements of
these technical steps have been introduced since the development of the method by Wilson [1]
and I just want to mention a few here.
The discreteness of the model Eq. (34) can be (in some cases) problematic for the calculation
of physical quantities. As it is not possible in the actual calculations to recover the continuum
by taking the limit Λ → 1 (or by including the p 6= 0 terms), it has been suggested to average
over various discretizations for fixed Λ [12–14]. The discretization points are then modified as

xn =

{
1 : n = 0

Λ−(n+Z) : n ≥ 1 ,
(56)

where Z covers the interval [0, 1). This ‘Z-averaging’ indeed removes certain artificial oscilla-
tions.
Another shortcoming of the discretized model is that the hybridization function ∆(ω) is sys-
tematically underestimated. It is therefore convenient to multiply ∆(ω) with the correction
factor

AΛ =
1

2
lnΛ

Λ+ 1

Λ− 1
, (57)

which accelerates the convergence to the continuum limit. For a recent derivation of this cor-
rection factor, see [15].
The equations for the recursive calculation of the parameters of the semi-infinite chain, the {εn}
and {tn} in Eq. (38), have been given in Sec. 3.2, but it is certainly not obvious how to arrive at
analytical expressions as in Eq. (44) (for the special case of constant∆(ω)). This issue has been
discussed in more general terms in Ref. [16]. By using the theory of orthogonal polynomials,
expressions for the parameters {εn} and {tn} can now be given for more complex hybridization
functions, like the ones appearing in the Ohmic and sub-Ohmic spin-boson model.
Another technical improvement to be mentioned here is about the truncation of basis states in
the iterative diagonalization of the Wilson chain. It is not at all clear how many states one should
keep here and the convergence is usually checked by repeating the calculation for various values
of Ns. A quantitative criterion to analyze the convergence, based on the discarded weight in the
reduced density matrices, has been recently given in Ref. [17].
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The physics of the siAm, in particular the Kondo effect, has been mentioned here only in the
context of the renormalization group flow of the many-particle levels (Sec. 3.4). To actually
see the screening of the local moment by the conduction electrons, one has to calculate an
appropriate physical quantity, for example the magnetic susceptibility. Some extra care has to
be taken to calculate such quantities, for more details, see Sec. III in Ref. [4]. As an example
of the technical difficulties one has to solve to obtain reliable data for the specific heat, see the
recent paper Ref. [18].
The starting point for the NRG is the integral representation Eq. (18), which is just one possible
representation of the siAm. In Sec. 2 you have seen that there are many different ways to
represent the model which are all equivalent provided they give the same hybridization function
∆(ω). We have discussed that the siAm can always be viewed as a single-channel model. As
a side remark, note that for multi-impurity Anderson models it is not at all trivial to count the
number of screening channels. So far this has been done only for a few special cases.
There is a wide range of models and physical phenomena to which the NRG has been applied
(for an overview, see Secs. 4 and 5 in Ref. [4]). To conclude, here is a list of a few very recent
applications:

• Real-space charge densities and their connection to the Kondo-screening cloud [19].

• Real-time dynamics in quantum impurity systems [20].

• Steady-state currents through nanodevices [21].

• Transport through multi-level quantum dots [22].

• Multi-channel and multi-impurity physics [23].

• Zero-bias conductance in carbon nanotube quantum dots [24].
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[16] A.W. Chin, Á. Rivas, S.F. Huelga, and M.B. Plenio, J. Math. Phys. 51, 092109 (2010)

[17] A. Weichselbaum, Phys. Rev. B 84, 125130 (2011)

[18] L. Merker and T.A. Costi, preprint arXiv:1206.3201 (2012)

[19] A.K. Mitchell, M. Becker, and R. Bulla, Phys. Rev. B 84, 115120 (2011)

[20] F.B. Anders and A. Schiller, Phys. Rev. Lett. 95, 196801 (2005)

[21] F.B. Anders, Phys. Rev. Lett. 101, 066804 (2008)

[22] D.E. Logan, C.J. Wright, and M.R. Galpin, Phys. Rev. B 80, 125117 (2009)

http://www.cond-mat.de/events/correl11


NRG 12.23

[23] E. Sela, A.K. Mitchell, and L. Fritz, Phys. Rev. Lett. 106, 147202 (2011);
A.K. Mitchell, E. Sela, and D.E. Logan, Phys. Rev. Lett. 108, 086405 (2012)

[24] F.B. Anders, D.E. Logan, M.R. Galpin, and G. Finkelstein,
Phys. Rev. Lett. 100, 086809 (2008)


	Introduction
	The single-impurity Anderson model
	The numerical renormalization group
	Logarithmic discretization
	Mapping on a semi-infinite chain
	Iterative diagonalization
	Renormalization group flow

	Final remarks

