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Forschungszentrum Jülich, 2012, ISBN 978-3-89336-796-2
http://www.cond-mat.de/events/correl12

http://www.cond-mat.de/events/correl12


4.2 Matteo Cococcioni

One of the most well known and well documented failures of Density Functional Theory
(DFT) [1, 2] is certainly represented by Mott insulators . In these systems the insulating char-
acter of the ground state stems from the strong Coulomb repulsion between electrons that,
prevailing on their kinetic energy (minimized by delocalization), forces them to localize on
atomic-like orbitals (Mott localization) [3]. The precise description of this behavior requires
the full account of the multi-determinant nature of the N-electron wave function and of the
many-body terms of the electronic interactions. In molecular dissociation processes, for exam-
ple, the localization of electrons on the resulting fragments can only be properly described if the
so-called ionic terms (describing multiple valence electrons on the same site) of the ground state
wave function are allowed to decrease their weight (e.g., in a variational calculation) while the
distance between the fragments increases. This is only possible if the N-electron wave function
is constructed as a linear combination of multiple Slater determinants. In other words, when
electrons are strongly localized their motion becomes “correlated” and their wave function ac-
quires a marked many-body character. Thus, the Hartree-Fock (HF) method, that describes the
electronic ground state with a variationally optimized single determinant, cannot capture the
physics of Mott insulators. The insulating character of these materials is also beyond reach for
band theory.For these reasons they are generally classified as “strongly-correlated” materials (in
fact, the formal definition of correlation energy is Ec = Eexact − EHF where EHF represents
the HF approximation to the exact quantity). Describing the behavior of these systems within
(approximate) DFT is a formidable task (although the unknown exact exchange-correlation en-
ergy functional would be able to predict their ground state properties) due to the expression of
the electron-electron interaction as a functional of the electronic charge density, and to the use
of an effective single particle (Kohn-Sham) representation of this quantity [2]. In fact, most
commonly used approximate exchange-correlation (xc) functionals such as, the Local Density
Approximation (LDA) [4–6], or the Generalized Gradient Approximation (GGA), fail quite dra-
matically in predicting the insulating character of these materials and also provide a quite poor
representation of other physical properties, including their equilibrium crystal structure, their
magnetic moments, their vibrational spectrum, etc. In general, these problems can be traced
back to the tendency of most approximate xc functionals to over-delocalize valence electrons
and to over-stabilize metallic ground states. Other inaccuracies of approximate xc function-
als such as, the imprecise account of the exchange interaction and the consequent incomplete
cancellation of the electronic self-interaction contained in classical (density-density) Coulomb
integrals may sometimes concur to the over-delocalization of electronic states.
One of the simplest models that have been formulated to rationalize (albeit in a semi-quantitative
way) the physics of correlated materials, is the Hubbard model [7–12] whose real-space second-
quantization formalism is ideally suited to describe systems with electrons localized on atomic
orbitals. In its simplest, one-band incarnation, the Hubbard Hamiltonian can be written as
follows:

HHub = t
∑
〈i,j〉,σ

(c†i,σcj,σ + h.c.) + U
∑
i

ni,↑ni,↓ (1)

where 〈i, j〉 denotes nearest-neighbor atomic sites, c†i,σ, cj,σ, and ni,σ are electronic creation,



LDA+U for correlated materials 4.3

annihilation and number operators for electrons of spin σ on site i. When electrons are strongly
localized, their motion is described by a “hopping” process from one atomic site to its neighbors
(first term of Eq. (1)) whose amplitude t is proportional to the dispersion (the bandwidth) of the
valence electronic states and represents the single-particle term of the total energy. In virtue
of the strong localization, the Coulomb repulsion is only accounted for between electrons on
the same atom through a term proportional to the product of the occupation numbers of atomic
states on the same site, whose strength is U (the “Hubbard U”). The hopping amplitude and
the on-site Coulomb repulsion represent the minimal set of parameters necessary to capture the
physics of Mott insulators. In fact, in these systems, the insulating character of the ground
state emerges when single-particle terms of the energy (generally minimized by electronic de-
localization on more extended states) [3] are overcome by short-range Coulomb interactions
(the energy cost of double occupancy of the same site): t << U . In other words, the system
becomes insulator (even at half-filling conditions, when band theory would predict a metal)
when electrons cannot hop around because they don’t have sufficient energy to overcome the
repulsion from other electrons on neighbor sites. Therefore, the balance between U and t con-
trols the behavior of these systems and the character of their electronic ground state. While the
regime dominated by single-particle terms of the energy (t >> U ) is generally well described
by approximate DFT, the opposite one (t << U ) is far more problematic.
The LDA+U (by this name I indicate a “+U” correction applied to a generic approximate DFT
functionals, not necessarily LDA) is one of the simplest corrective approaches that were formu-
lated to improve the accuracy of DFT functionals in describing the ground state of correlated
systems [13–17]. The idea it is based on is quite simple and consists in using the the Hubbard
Hamiltonian to describe “strongly correlated” electronic states (typically, localized d or f or-
bitals), while the rest of valence electrons are treated at the “standard” level of approximation.
Within LDA+U the total energy of a system can be written as follows:

ELDA+U [ρ(r)] = ELDA[ρ(r)] + EHub[{nIσmm′}]− Edc[{nIσ}]. (2)

In this equation EHub is the term that contains electron-electron interactions as modeled in
the Hubbard Hamiltonian. Because of the additive nature of this correction it is necessary to
eliminate from the (approximate) DFT energy functionalELDA the part of the interaction energy
already contained in EHub to avoid double-counting problems. This task is accomplished by the
subtraction of the so-called “double-counting” (dc) term Edc that models the contribution to
the DFT energy from correlated electrons as a mean-field approximation to EHub. Due to the
lack of a precise diagrammatic expansion of the DFT total energy, the dc term is not uniquely
defined, and different possible formulations and implementations will be discussed in section
2.1 It is important to stress that the Hubbard correction is only applied to the localized states of
the system (typically the ones most affected by correlation effects). In fact, it is a functional of
occupation numbers that are often defined as projections of occupied Kohn-Sham orbitals (ψσkv)
on the states of a localized basis set (φIm):

nIσm,m′ =
∑
k,v

fσkv〈ψσkv|φIm′〉〈φIm|ψσkv〉 (3)
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where fσkv are the Fermi-Dirac occupations of the Kohn-Sham (KS) states (k and v being,
respectively, the k-point and band indexes). Using the occupations defined in Eq. (3) in the
functional of Eq. (2) corresponds to substituting the number operators appearing in Eq. (1)
with their (mean-field) average on the occupied manifold of the system. While this operation
is necessary to use the Hubbard model in current implementations of DFT, the choice of the
localized basis set is not unique. Some of the most popular choices, as atomic orbitals or
maximally localized Wannier functions, are briefly discussed in section 2.3.
The reminder of this chapter is organized as follows. In section 1 I will review the historical
formulation of LDA+U and the most widely used implementations, discussing the theoretical
background of the method in the framework of DFT. In section 2 I will compare different
flavors of LDA+U obtained from different choices of the corrective functional, of the set of
interactions, of the localized basis set to define atomic occupations. In section 3 I will review
different methods to compute the necessary interaction parameters, particularly focusing on one
based on linear-response. Section 4 will illustrate the calculation of energy derivatives (forces,
stress, dynamical matrix) in LDA+U . In section 5 I will present a recently introduced extension
to the LDA+U that contains both on-site and inter-site effective interactions. Finally, in section
6 I will offer some conclusions and an outlook on the future of this method.

1 Basic formulations and approximations

1.1 General formulation

In Eq. (2) the general structure of the LDA+U energy functional was introduced. I will now
discuss the most common implementations of this corrective approach starting from the simplest
and most general one. The LDA+U approach was first introduced in Refs. [14–16] and consisted
of an energy functional that, when specialized to on-site interactions, can be written as follows:

E = ELDA +
∑
I

[
U I

2

∑
m,σ 6=m′,σ′

nIσm n
Iσ′

m′ −
U I

2
nI(nI − 1)

]
. (4)

In Eq. (4) nIσm = nIσmm, and nI =
∑

m,σ n
Iσ
m , and the index m labels the localized states of the

same atomic site I . The second and the third terms of the right-hand side of this equation repre-
sent, respectively, the Hubbard and the double-counting terms of Eq. (2). Using the definition
of atomic orbital occupations given in Eq. (3), one can easily define the action of the Hubbard
corrective potential on the Kohn-Sham wave functions needed for the minimization process:

V |ψσk,v〉 = VLDA|ψσk,v〉+
∑
I,m

U I

(
1

2
− nIσm

)
|φIm〉〈φIm|ψσk,v〉. (5)

It is important to notice that, because the definition of the atomic occupations (Eq. (3)), the
Hubbard potential is non-local. Therefore, the LDA+U energy functional (Eq. (4)) is out of
the validity domain of the Hohenberg-Kohn theorem [1]. It respects, however, the conditions
of the Gilbert theorem [18]; the Kohn-Sham equations obtained from Eq. (4) will thus yield
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the ground state one-body density matrix of the system. As evident from Eq. (5), the Hubbard
potential is repulsive for less than half-filled orbitals (nIσm < 1/2), attractive for the others. This
is the mechanism through which the Hubbard correction discourages fractional occupations of
localized orbitals (often indicating significant hybridization with neighbor atoms) and favors
the Mott localization of electrons (nIσm → 1). The difference between the potential acting on
occupied and unoccupied states (whose size is of the order of U ) also gives a measure of the
energy gap opening between their eigenvalues. Thus, consistently with the predictions of the
Hubbard model, the explicit account of on-site electron-electron interactions favors electronic
localization and may lead to a band gap in the KS spectrum of the system, provided the on-site
Coulomb repulsion prevails on the kinetic term of the energy, minimized through delocaliza-
tion. Although this appears as a significant improvement over the result of approximate DFT,
it is important to remark that a gap only appears in the band structure if possible degenera-
cies between the (localized) states around the Fermi level are lifted. To achieve this result it is
sometimes necessary to artificially impose the symmetry of the electronic system to be lower
than the point group of the crystal as, for example, in the case of FeO [19] and CuO [20]. This
operation corresponds to “preparing” the system in one of the possibly degenerate insulating
states (having electrons localized on different subsets of orbitals), characterized by a finite gap
in the band structure of the corresponding KS spectrum. As will be discussed in sections 1.4
and 3.3, this result highlights that the LDA+U is out of the realm of DFT, as the Kohn-Sham
spectrum of the exact functional is not constrained to reflect any physical property (while the
charge density should maintain the whole symmetry of the crystal).

1.2 Rotationally-invariant formulation

While able to capture the main essence of the LDA+U approach, the formulation presented in
Eq. (4) is not invariant under rotation of the atomic orbital basis set used to define the occupa-
tion of d states nImσ, which produces an undesirable dependence of the results on the specific
choice of the localized basis set. To solve these problems, A. Liechtenstein and coworkers [21]
introduced a basis set independent formulation of LDA+U in which EHub and Edc are given a
more general expression borrowed from the HF method:

EHub[{nImm′}] =
1

2

∑
{m},σ,I

{
〈m,m′′|Vee|m′,m′′′〉nIσmm′nI−σm′′m′′′+

(〈m,m′′|Vee|m′,m′′′〉 − 〈m,m′′|Vee|m′′′,m′〉)nIσmm′nIσm′′m′′′
}

(6)

Edc[{nImm′}] =
∑
I

{U
I

2
nI(nI − 1)− J I

2
[nI↑(nI↑ − 1) + nI↓(nI↓ − 1)]}. (7)

The invariance of the “Hubbard” term (Eq. (6)) stems from the fact that the interaction param-
eters transform as quadruplets of localized wavefunctions, thus compensating the variation of
the (product of) occupations associated with them. In Eq. (7), instead, the invariance stems
from the dependence of the functional on the trace of the occupation matrices. In Eq. (6) the
Vee integrals represents the electron-electron interactions computed on the wave functions of
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the localized basis set (e.g., d atomic states) that are labeled by the index m. Assuming that
atomic (e.g., d or f ) states are chosen as the localized basis, these quantities can be computed
from the expansion of the e2/|r− r′| Coulomb kernel in terms of spherical harmonics (see [21]
and references quoted therein):

〈m,m′′|Vee|m′,m′′′〉 =
∑
k

ak(m,m
′,m′′,m′′′)F k (8)

where 0 ≤ k ≤ 2l (l is the angular moment of the localized manifold; −l ≤ m ≤ l) and the ak
factors can be obtained as products of Clebsh-Gordan coefficients:

ak(m,m
′,m′′,m′′′) =

4π

2k + 1

k∑
q=−k

〈lm|Ykq|lm′〉〈lm′′|Y ∗kq|lm′′′〉. (9)

In Eq. (8) the F k coefficients are the radial Slater integrals computed on the Coulomb kernel
[21]. For d electrons only F 0, F 2, and F 4 are needed to compute the Vee matrix elements
(for higher k values the corresponding ak would vanish) while f electrons also require F 6.
Consistently with the definition of the dc term (Eq. (7)) as the mean-field approximation of the
Hubbard correction (Eq. (6)), the effective Coulomb and exchange interactions, U and J , can
be computed as atomic averages of the corresponding Coulomb integrals over the states of the
localized manifold (in this example, atomic orbitals of fixed l):

U =
1

(2l + 1)2

∑
m,m′

〈m,m′|Vee|m,m′〉 = F 0, (10)

J =
1

2l(2l + 1)

∑
m 6=m′,m′

〈m,m′|Vee|m′,m〉 =
F 2 + F 4

14
. (11)

These equations have often been used (assuming that F 2/F 4 has the same value as in isolated
atoms) to evaluate screened Slater integrals F k from the values of U and J , computed from
the ground state of the system of interest (some methods to calculate these quantities will be
illustrated in section 3). The screened Vee integrals, to be used in the corrective functional of
Eq. (6), can then be easily obtained from the computed F k using Eqs. (8) and (9). Although
Eqs. (8)-(11) are strictly valid for atomic states and unscreened Coulomb kernels, this procedure
can be assumed quite accurate for solids if the localized orbitals retain their atomic character.

1.3 A simpler formulation

The one presented in section 1.2 is the most complete formulation of the LDA+U , based
on a multi-band Hubbard model. However, in many occasions, a much simpler expression
of the Hubbard correction (EHub), introduced in Ref. [22], is actually adopted and imple-
mented. This simplified functional can be obtained from the full formulation discussed in
section 1.2 by retaining only the lower order Slater integrals F 0 and throwing away the oth-
ers: F 2 = F 4 = J = 0. This simplification corresponds to neglecting the non-sphericity of
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the electronic interactions (a0(m,m′,m′′,m′′′) = δm,m′δm′′,m′′′) and the differences among the
couplings between parallel spin and anti-parallel spin electrons (i.e., the exchange interaction
J). The energy functional can be recalculated from Eqs. (6) and (7) and one easily obtains:

EU [{nIσmm′}] = EHub[{nImm′}]− Edc[{nI}]

=
∑
I

U I

2

[(
nI
)2 −∑

σ

Tr [(nIσ)2]

]
−
∑
I

U I

2
nI(nI − 1)

=
∑
I,σ

U I

2
Tr [nIσ(1− nIσ)]. (12)

It is important to stress that the simplified functional in Eq. (12) still preserves the rotational
invariance of the one in Eqs. (6) and (7), that is guaranteed by the dependence of the “+U”
functional on the trace of occupation matrices and of their products. On the other hand, the
formal resemblance to the HF energy functional is lost and only one interaction parameter (U I)
is needed to specify the corrective functional. This simplified version of the Hubbard correction
has been successfully used in several studies and for most materials it shows similar results
as the fully rotationally invariant one (Eqs. (6) and (7)). Some recent literature has shown,
however, that the Hund’s rule coupling J is crucial to describe the ground state of systems
characterized by non-collinear magnetism [23, 24], to capture correlation effects in multiband
metals [25, 26], or to study heavy-fermion systems, typically characterized by f valence elec-
trons and subject to strong spin-orbit couplings [23, 24, 27]. A recent study [28] also showed
that in some Fe-based superconductors a sizeable J (actually exceeding the value of U and re-
sulting in negative Ueff = U − J) is needed to reproduce (with LDA+U ) the magnetic moment
of Fe atoms measured experimentally. Several different flavors of corrective functionals with
exchange interactions were also discussed in Ref. [29]. Due to the spin-diagonal form of the
simplified LDA+U approach in Eq. (12), it is customary to attribute the Coulomb interaction U
an effective value that accounts for the exchange correction: Ueff = U − J . As discussed in
section 2.2, this assumption is actually not completely justifiable as the resulting functional is
missing other terms of the same order in J as the one included.

1.4 Conceptual and practical remarks

After introducing the general formulation of the LDA+U approach I think it is appropriate to
clarify in a more detailed way its theoretical foundation (possibly in comparison with other
corrective methods) and to discuss the range of systems it can be applied to, its strengths and its
limitations.
The formal resemblance of the full rotationally invariant Hubbard functional (Eqs. (6)) with
the HF interaction energy could be misleading: how can a corrective approach provide a better
description of electronic correlation if it is based on a functional that, by definition, can not
capture correlation? Some differences are, of course, to be stressed: i) the effective interactions
in the LDA+U functional are screened rather than based on the bare Coulomb kernel (as in HF);
ii) the LDA+U functional only acts on a subset of states (e.g., localized atomic orbitals of d or
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f kind) rather than on all the states in the system; iii) the effective interactions have an orbital-
independent value and correspond to atomically averaged quantities. These differences between
LDA+U and HF, while making the first approach more computationally efficient than the latter
(and related ones as exact-exchange - EXX - and hybrid functionals), do not dissolve the doubts
raised above, and actually make HF appear more accurate and general. In order to clarify this
point one needs to keep in mind that LDA+U is designed to capture the effects of electronic cor-
relation (more precisely, of the static correlation, descending from the multi-determinant nature
of the electronic wave function) into an effective one-electron (KS) description of the ground
state. From this point of view significant improvements in the description of a correlated system
may result from the application of an HF-like correction to KS states. In other words, the main
difference between LDA+U and HF is that the first approach applies a corrective functional (re-
sembling a screened HF) to a sub-group of single-particle (KS) wave functions that do not have
any physical meaning (except being constrained to produce the ground state density), in the
assumption that this correction can help a better description of the properties of the correlated
system they represent through the effects it has on the exchange-correlation functional. In real
HF calculations, instead, no xc energy exist and the optimized single particle wave functions
are associated with a physical meaning. In Mott insulators, for example, a more precise evalua-
tion of the structural and the vibrational properties can be obtained using the LDA+U approach
through improving the size of the fundamental gap (possibly after lowering the symmetry of
their electronic system) that can be computed from total energy finite differences when varying
the number of electrons in the system around a reference value (in a molecule this quantity
corresponds to the difference between the first ionization potential and the electron affinity).

An equivalent way to look at this problem is to study the dependence of the total energy of
a system on the number of electrons in its orbitals. As explained in Ref. [30], for example,
the energy of a system exchanging electrons with a “bath” (a reservoir of charge), should be
linear with the number of electrons (in either part) and the finite discontinuity in its derivative
at integer values of this number, represents the fundamental gap. Approximate DFT function-
als do not satisfy this condition and result in upward convex energy profiles (this flaw can be
seen as caused by a residual self-interaction). The linearization of the total energy imposed by
the Hubbard correction is more transparent from its simpler formulation (Eq. (12)) where it
is evident that the corrective functional subtracts from the DFT energy the spurious quadratic
term and substitutes it with a linear one. This topic will be discussed with more details in
section 3 that describes a linear-response approach to the calculation of the Hubbard U . Self-
interaction corrected (SIC) functionals [4] are specifically designed to eliminate the residual
self-interaction that manifests itself with the lack of linearity of the energy profile. In HF, the
exchange functional exactly cancels the self-Coulomb interaction contained in the Hartree term,
but usually produces a downward convex energy profile. Therefore, in HF-related methods as
hybrid functionals, the strength of the exchange interaction must be properly tuned by a scaling
factor (see, for example, [31]). However, the value of the scaling factor (generally in the 0.2
- 0.3 range) is usually determined semi-empirically and has no immediate physical meaning.
LDA+U performs a linearization of the energy only with respect to the electronic degrees of
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freedom for which self-interaction is expected to be stronger (localized atomic states) and with
an effective coupling that, although orbital-independent (indeed corresponding to an atomically
averaged quantity), can be evaluated ab-initio. Thus it results, at the same time, more computa-
tionally efficient and (arguably) more physically transparent than EXX and hybrid functionals
as a corrective scheme to DFT. The formal similarity with SIC and EXX approaches suggests
that LDA+U should be also effective in correcting the underestimated band gap of covalent
insulators (e.g., Si, Ge, or GaAs), for which a more precise account of the exchange interaction
proves to be useful. Indeed, while the “standard” “+U” functional is not effective on these sys-
tems, this result is actually achievable through a generalized formulation of the “+U” functional
(with inter-site couplings) that will be discussed in section 5.

It is important to notice that the orbital independence of the effective electronic interaction,
makes the simpler version of the “+U” correction, Eq. (12), effectively equivalent to a penalty
functional that forces the on-site occupation matrix to be idempotent. This action corresponds
to enforcing a ground state described by a set of KS states with integer occupations (either
0 or 1) and thus with a gap in its band structure. While this is another way to see how the
“+U” correction helps improving the description of insulators, it should be kept in mind that the
linearization of the energy as a function of (localized) orbital occupations is a more general and
important effect to be obtained. In fact, in case of degenerate ground states, charge densities
with fractional occupations (corresponding to a metallic Kohn-Sham system) can, in principle,
represent linear combinations of insulating states (with different subgroups of occupied single
particle states), as long as the total energy is equal to the corresponding linear combination of
the energies of the single configurations. Thus, the insulating character of the KS system should
not be expected/pursued unless the symmetry of the electronic state is broken. An example of
a degenerate ground state is provided by FeO. In fact, the energy of this system is minimized
when the minority-spin d electron of Fe is described by a combination of states on the (111)
plane of the crystal (lower left panel of Fig. 1) rather than by the z2 state along the [111] (upper
left panel of Fig. 1). This combination can only be obtained through lowering the symmetry of
the lattice and breaking the equivalence between d states on the same (111) plane as explained
in Ref. [19]. The right panel in Fig. 1 shows that the orbital-ordered broken symmetry phase
not only gives a good estimate of the band gap but also reproduces the rhombohedral distortion
of the crystal under pressure. The real material has to be understood as resulting from the
superposition of equivalent orbital-ordered phases that re-establish the symmetry of the crystal.

In spite of the appealing characteristics described above, LDA+U provides a quite approximate
description of correlated ground states. Being a correction for atomically localized states, their
possible dispersion is totally ignored and so is the k-point dependence of the effective interac-
tion (the Hubbard U ). This limit can be alleviated, in part, by taking into account inter-site elec-
tronic interactions as explained in Ref. [34]. LDA+U also completely neglects the frequency
dependence of the electronic interaction and, in fact, it has been shown [17] to correspond to
the static limit of GW [35–44]. This particular aspect implies that LDA+U completely misses
the role of fluctuations around the ground state which also corresponds to neglecting its pos-
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Fig. 1: (From [19]). Projected density of states (left) and highest energy occupied orbital of FeO
(center) in the unbroken symmetry (upper panels) and broken symmetry states (lower panels).
In the graph on the right the rhombohedral angle is plotted as a function of pressure. The solid
line describes DFT+U results in the broken-symmetry phase (from [19]). Diamonds represent
the experimental data from [32, 33].

sible multi-configurational character. In order to account for these dynamical effects higher
order corrections are needed as, for example, the one provided by DMFT [45–50]. However,
DFT+DMFT also solves a Hubbard model on each atom (treated as an impurity in contact with
a “bath” represented by the rest of the crystal) and the final result depends quite strongly on the
choice of the interaction parameter U . Recently, LDA+U has also been successfully used in
conjunction with GW [51] and TDDFT [52] to compute the photo-emission spectra and quasi-
particle energies of systems from their correlated ground states. Thus, in spite of its limits,
LDA+U still plays an important role in the description of these materials (besides being one
of the most inexpensive approaches to provide their ground state, at least) and improving its
accuracy and its descriptive and predictive capabilities is very important.

2 Functionals and implementations

In this section I will discuss some particular aspects of the formulation and the implementation
of LDA+U that can influence its effectiveness and accuracy.

2.1 Which double counting?

The lack of a diagrammatic expansion of the DFT total energy makes it quite difficult to model
the electronic correlation already contained in semilocal xc functionals through simple dc terms
(Eqs. (7) and (12)) that are general and flexible enough to work for many different classes of
systems. As a result, the choice of Edc is not univocal and different formulations have been
proposed in literature for different kinds of materials.
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The first one to be introduced was the one given in Eq. (7). that was obtained as a mean-field ap-
proximation to the Hubbard correction (Eq. 6) in the so-called “fully-localized” limit (FLL), in
which each localized (e.g., atomic) orbital is either full or completely empty. This formulation
of the dc term is consistent with the idea behind the Hubbard model as an expansion of the elec-
tronic energy around the strongly localized limit and thus tends to work quite well for strongly
correlated materials with very localized orbitals. For other systems such as, for example, metals
or “weakly correlated” materials in general, the excessive stabilization of occupied states due
to the “+U” corrective potential (see Eq. 5) can lead to a description of the ground state incon-
sistent with experimental data and to quite unphysical results (such as, e.g., the enhancement
of the Stoner factor [53]) that seriously question its applicability in these cases. In order to
alleviate these difficulties a different Hubbard corrective functional, called “around mean-field”
(AMF), was introduced in Ref. [54] and further developed in Ref. [53]. This functional can be
expressed as follows:

EDFT+U = EDFT −
∑
I

U I

2
Tr
(
nI − 〈nI〉

)2
(13)

where nI = Tr nI and 〈nI〉 is the average diagonal element of the occupation matrix nI (multi-
plied by the unit matrix). As evident from Eq. (13), this functional encourages deviations from
a state with uniform occupations (i.e., with all the localized states equally occupied) represent-
ing the approximate DFT ground state. Its expression can be obtained from the combination of
the EHub term of Eq. (12) and a modified dc that reads:

EAMF
dc =

∑
I

U I

2
nI(nI − 〈nI〉) . (14)

In Ref. [53] a linear combination of the AMF and the FLL flavors of LDA+U is proposed, also
used in [27]. The mixing parameter has to be determined for each material and is a function
of various quantities related to its electronic structure. In spite of this connection between the
two schemes, the AMF one has had limited success and diffusion, except for relatively few
works [27, 29]. Because of its derivation from the Hubbard model, the LDA+U approach is
generally viewed as a corrective scheme for systems with localized orbitals and the FLL limit
is usually adopted. In cases where these are embedded in a “background” of more delocalized
or hybridized states the use of the FLL flavor is still justifiable with a corrective functional that
selectively correct only the most localized orbitals. This approach has recently shown promising
results (to be published elsewhere) for bulk Fe with a FLL LDA+U applied on eg states only.

2.2 Which corrective functional?

Another source of uncertainty when using LDA+U derives from the level of approximation in
the corrective Hamiltonian. While rotational invariance is widely recognized as a necessary
feature of the functional, whether to use the full rotationally invariant correction, Eqs. (6) and
(7), or the simpler version of it, Eq. (12), seems more a question of taste or of availability in
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current implementations. In fact, the two corrective schemes give very similar results for a large
number of systems in which electronic localization is not critically dependent on Hund’s rule
magnetism. However, as mentioned in section 1.3, in some materials that have recently attracted
considerable interest, this equivalence does not hold anymore and the explicit inclusion of the
exchange interaction (J) in the corrective functional appears to be necessary. Examples of
systems in this group include recently discovered Fe-pnictides superconductors [28], heavy-
fermion [27, 24], non-collinear spin materials [23], or multiband metals for which the Hund’s
rule coupling, promotes, depending on the filling, metallic or insulating behavior [25, 26]. In
our recent work on CuO [20] the necessity to explicitly include the Hund’s coupling J in the
corrective functional was determined by a competition (likely to exist in other Cu compounds as
well, such as high Tc superconductors), between the tendency to complete the external 3d shell
and the one towards a magnetic ground state (dictated by Hund’s rule) with 9 electrons on the d
manifold. The precise account of exchange interactions between localized d electrons beyond
the simple approach of Eq. (12) (with Ueff = U − J) turned out to be crucial to predict the
electronic and structural properties of this material. In this work we used a simpler J-dependent
corrective functional than the full rotationally invariant one to reach this aim. The expression
of the functional was obtained from the full second-quantization formulation of the electronic
interaction potential,

V̂int =
1

2

∑
I, J,K,L

∑
i, j, k, l

∑
σ, σ′

〈φIiφJj |Vee|φKk φLl 〉 ĉ
†
I i σ ĉ

†
J j σ′ ĉK k σ′ ĉL l σ (15)

(where Vee represent the kernel of the effective interaction, upper- and lower-case indexes la-
bel atomic sites and orbitals respectively) keeping only on-site terms describing the interac-
tion between up to two orbitals. Approximating on-site effective interactions with the (orbital-
independent) atomic averages of Coulomb and exchange terms,

U I =
1

(2l + 1)2

∑
i,j

〈φIiφIj |Vee|φIjφIi 〉,

and
J I =

1

(2l + 1)2

∑
i,j

〈φIiφIj |Vee|φIiφIj〉,

and substituting the product of creation and destruction operators with their averages, associated
to the occupation matrices defined in Eq. 3, nI σi j = 〈ĉ†I i σ ĉI j σ〉, one arrives at the following
expression:

EHub − Edc =
∑
I, σ

U I − J I

2
Tr[nI σ (1− nI σ)] +

∑
I, σ

J I

2
Tr[nI σ nI −σ]. (16)

Comparing Eqs. (12) and (16), one can see that the on-site Coulomb repulsion parameter
(U I) is effectively reduced by J I for interactions between electrons of parallel spin and a
positive J term further discourages anti-aligned spins on the same site stabilizing magnetic
ground states. The second term on the right-hand side of equation (16) can be explicated as
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∑
I, σ (J

I/2)nI σmm′ n
I −σ
m′m which shows how it corresponds to an “orbital exchange” between

electrons of opposite spins (e.g. up spin electron from m′ to m and down spin electron from m

tom′). It is important to notice that this term is genuinely beyond Hartree-Fock. In fact, a single
Slater determinant containing the four states m ↑ , m ↓, m′ ↑ , m′ ↓ would produce no interac-
tion term like the one above. Thus, the expression of the J term given in equation (16), based on
a product of nI σ and nI −σ is an approximation of a functional that would require the calculation
of the 2-body density matrix to be properly included. However, in the spirit of the elimination
of the spurious quadratic behavior of the total energy, one can assume that the J term in Eq. (16)
is a fair representation of the exchange energy contained in the approximate DFT functionals.
Therefore its formulation and use in corrective functionals are legitimate. Similar terms in the
corrective functional have already been proposed in literature [25, 26, 55–57] although with
slightly different formulation than in Eq. (16) when used in model Hamiltonians.
Eq. (16) represents a significant simplification with respect to Eqs. (6) and (7) and proved effec-
tive to predict the insulating character of the cubic phase of CuO and to describe its tetragonal
distortion [20]. The simplicity of its formulation greatly facilitates its use and the implementa-
tion of other algorithms (such as, for example, the calculation of forces, stresses or phonons that
will be discussed below). It is also important to report that the LDA+U scheme has recently
been implemented with a non-collinear formalism (see, e.g., Ref. [23]). to study correlated
systems characterized by canted magnetic moments, magnetic anisotropy or strong spin-orbit
interactions (as common in rare earth compounds) [24]. This extension will not be further
discussed in this chapter.

2.3 Which localized basis set?

The formulation of the corrective LDA+U functional discussed so far is valid independently
from the particular choice of the localized set used to define the occupation matrices that enter
the expression of the same functional. Many different choices are indeed possible. The first
formulations of LDA+U [14–16] were based on a linear muffin-tin orbital (LMTO) implemen-
tation and thus had muffin-tin-orbitals (MTOs - constructed using Bessel, Neumann and Henkel
spherical functions and spherical harmonics) as a natural choice to define on-site occupations.
In plane-wave - pseudo-potential implementations of DFT, the atomic wave functions used to
construct the pseudopotentials probably represent the easiest basis to use. In this case, it is use-
ful to keep in mind that, since the valence electrons wave functions are defined at every point
in the unit cell and are expanded on a plane-wave basis set, the definition of the occupation
of atomic orbitals requires a projection of valence states on the atomic one. This is reflected
in the expression in Eq. (3) and obviously determines the way the Hubbard potential acts on
the Kohn-Sham states (Eq. (5)). Other choices are also possible as, for example, atomically
centered gaussians or maximally localized Wannier functions [58].
In principles, the final result (the description of the properties of a system obtained from the
LDA+U ) should not depend on the choice of the localized basis set, provided the effective in-
teraction parameters appearing in the functional (U and possibly J) are computed consistently,
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as described in section 3. However, the approximations operated in the Hubbard functional (and
the consequent lack of flexibility) may introduce some basis set dependence. Another source of
(undesirable) dependence on the basis set is represented by the lack of invariance of the correc-
tive functional with respect to possible rotations of its wave function. In sections 1.2 and 1.3 I
highlighted the rotational invariance of the LDA+U formulated in Eqs. (6) and (7). However,
it is important to stress that this formulation is only invariant for rotations of localized wave
functions belonging to the same atomic site. In other words, if one mixes orbitals centered on
different atoms the corrective energy changes. In these conditions different basis sets may show
different ability to capture the localization of electrons and yield results somewhat different
from each other. A particularly good choice in this context seems to be represented by Wannier
functions [59, 60]. This choice may lead, however, to some additional computational cost re-
lated to the necessity to optimize the localized basis set and to adapt it to the system for optimal
performance [60]. An alternative solution to the problem is represented by the extension of the
corrective functional to include inter-site interactions (and, ideally higher order terms) that will
be discussed in section 5.

3 Computing U (and J?)

3.1 The necessity to compute U

As evident from the expression of the Hubbard functionals discussed in previous sections, the
“strength” of the correction to approximate DFT total energy functionals is controlled by the
effective on-site electronic interaction - the Hubbard U - whose value is not known a-priori.
Consistently with a wide-spread use of this approach as a means to roughly assess the role of
electronic correlation, it has become common practice to tune the Hubbard U in a semiem-
pirical way, through seeking agreement with available experimental measurements of certain
properties and using the so determined value to make predictions on other aspects of the system
behavior. Besides being not satisfactory from a conceptual point of view, this practice does not
allow to appreciate the variations of the on-site electronic interaction U , e.g., during chemi-
cal reactions, structural transitions or under changing physical conditions. Therefore, in order
to obtain quantitatively predictive results, it is crucial to have a method to compute the Hub-
bard U (and possibly J) in a consistent and reliable way. The interaction parameters should be
calculated, in particular, for every atom the Hubbard correction is to be used on, for the crys-
tal structural and the magnetic phase of interest. The obtained value depends not only on the
atom, its crystallographic position in the lattice, the structural and magnetic properties of the
crystal, but also on the localized basis set used to define the on-site occupation (the same as in
the LDA+U calculation). Therefore, contrary to another practice quite common in literature,
these values have limited portability, from one crystal to another, or from one implementation
of LDA+U to another.
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3.2 Other approaches: a quick overview

In the first implementations of LDA+U , based on the use of localized basis sets (e.g., in the
LMTO approximation), the Hubbard U was calculated (consistently with its definition as the
energy cost of the reaction 2dn → dn+1 + dn−1) from finite differences between Kohn-Sham
energy eigenvalues computed (within the atomic sphere approximation) with one more or one
less electron on the d states. [13]. This approach allows to obtain a value that is automatically
screened by electrons of other kinds on the same atom (e.g., on 4s and 4p orbitals for a 3d
transition metal). The use of the LMTO basis set also makes it possible to change the occu-
pation of 3d states and to eliminate hopping terms between these atomic orbitals (for which U
is calculated) and the rest of the crystal so that single-particle terms of the energy, accounted
for explicitly in the Hubbard model, are not included in the calculation. These latter features
are quite specific to implementations that use localized basis sets (e.g., LMTO); other imple-
mentations (based, e.g., on plane waves) require different procedures to compute the effective
interaction parameters [61].
One of the latest methods to compute the effective (screened) Hubbard U is based on con-
strained RPA (cRPA) calculations and yields a screened, fully frequency dependent interaction
parameter that can be used, e.g., in DFT+DMFT calculations [62]. This approach has been
extensively described in one of the chapter of the 2011 volume of this same series [57] and will
not be discussed here.

3.3 Computing U from linear-response

In the following I will describe a linear response approach to the calculation of the effective
Hubbard U [19] that allows to use atomic occupations defined as projections of Kohn-Sham
states on a generic localized basis set, as shown in Eq. (3). The one described below is the
method implemented in the plane-wave pseudopotential total-energy code of the Quantum-
ESPRESSO package [63]. The basic idea of this approach is the observation that the (ap-
proximate) DFT total energy is a quadratic function of on-site occupations (as also suggested in
Ref. [64]). This is consistent with the definition of the dc term (Eq. (7)). In fact, if one considers
a system able to exchange electrons with a reservoir (e.g., an atom exchanging electrons with
a metallic surface or another atom) the approximate DFT energy is an analytic function of the
number of electrons on the orbitals of the system. As demonstrated by quite abundant litera-
ture [65, 30, 66], it should consist, instead, of a series of straight segments joining the energies
corresponding to integer occupations. Examining Fig. 2, that compares the DFT total energy
with the piece-wise linear behavior of the exact energy (it should be noted that they represent
cartoons as the energy of the system does not increase for larger N), it is easy to understand
that, if the DFT energy profile is represented by a parabola (actually a very good approxima-
tion within single intervals between integer occupations [67]), the correction needed to recover
the physical piece-wise linear behavior (blue curve) has the expression of the Hubbard func-
tional of Eq. (12), provided that U represents the (spurious) curvature of the approximate total
energy profile one aims to eliminate. It is important to notice that recovering the linear behav-
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Fig. 2: (From [19]) Sketch of the total energy profile as a function of the number of electrons in
a generic atomic system in contact with a reservoir. The black line represents the DFT energy,
the red the exact limit, the blue the difference between the two. The discontinuity in the slope of
the red line for integer occupations, corresponds to the difference between ionization potential
and electron affinity and thus measures the fundamental gap of the system.

ior corresponds to reintroducing the discontinuity in the first derivative of the energy (i.e., the
single-particle eigenvalue) when the number of electrons increases by one, from N to N + 1.
This discontinuity, also proportional to U , represents the fundamental gap of the system (i.e.,
the difference between ionization potential and electron affinity in molecules). Thus, the Hub-
bard U is associated to important physical quantities if calculated as the second derivative of
the (approximate) DFT energy.
Unfortunately, when using plane waves (and, typically, pseudopotentials) the on-site occupa-
tions cannot be controlled or changed “by hand” because they are obtained as an outcome from
the calculation after projecting Kohn-Sham states on the wave function of the localized basis
set (Eq. (3)). Therefore, to obtain the second derivative of the total energy with respect to occu-
pations we adopted a different approach that is based on a Legendre transform [19]. In practice,
we add a perturbation to the Kohn-Sham potential that is proportional to the projector on the
localized states φIm of a certain atom I ,

Vtot|ψσkv〉 = VKS|ψσkv〉+ αI
∑
m

|φIm〉〈φIm|ψσkv.〉 (17)



LDA+U for correlated materials 4.17

In this equation αI represents the “strength” of the perturbation (usually chosen small enough to
maintain a linear response regime). The potential in Eq. 17 is the one entering the Kohn-Sham
equations of a modified energy functional that yields a α-dependent ground state:

E(αI) = min
γ

{
EDFT [γ] + αInI

}
(18)

where γ is the one-body density matrix. If one defines E[{nI}] = E(αI) − αInI (where
nI indicates the value of the on-site occupation computed when the minimum in Eq. (18)
is achieved), the second derivative d2E/d(nI)2 can be computed as −dαI/d(nI). In actual
calculations, we change αI on each “Hubbard” atom and, solving the minimization problem
of Eq. (18) through modified Kohn-Sham equations, we collect the response of the system in
terms of variation in all the nJ . Thus, the quantity that we can directly measure is the response
function χIJ = d(nI)/dαJ , where I and J are site indexes that label all the Hubbard atoms. The
Hubbard U is obtained from the inverse of the response matrix: U I = −χ−1. This definition
is actually not complete. In fact, a term to the energy second derivative, coming from the
reorganization (rehybridization) of the electronic wave functions in response to the perturbation
of the potential, Eq. (17), would be present even for independent electron systems and is not
related to electron-electron interactions. Thus, it must be subtracted out. The final expression
of the Hubbard U then results:

U I = (χ−10 − χ−1)II (19)

where χ0 measures the response of the system that accounts for the rehybridization of the elec-
tronic states upon perturbation. Subtracting this term corresponds to eliminate the hopping
between the localized “Hubbard” states and the rest of the system, or to kill the kinetic con-
tribution to the second derivative of the energy as suggested in Ref. [61]. The necessity to
compute χ0 (besides χ) actually dictates the the way these calculations are performed. The
first step is a well converged self-consistent calculation of the system of interest with the ap-
proximate xc functional of choice. Starting from the ground-state potential and wave functions
we then switch the perturbation on and run separate DFT calculations (solving the problem in
Eq. (18)) for each Hubbard atom and for each alpha in an interval of values typically centered
around 0. The variation of on-site occupation at the first iteration of the perturbed run defines
χ0. In fact, at this stage electron-electron interactions have not yet come into play to screen
the perturbation, and the response one obtains is that of a system that has the same electronic
density of the ground state but the potential frozen to its self-consistent value. Thus it is en-
tirely due to the re-hybridization of the orbitals. The response measured at self-consistency will
give, instead, χ. More details about the theoretical aspects of this calculation can be found in
Ref [19], and a useful hands-on tutorial with examples on these calculations is linked from the
web-page of the Quantum-ESPRESSO package (http://wwww.quantumespresso.org).
The Hubbard U , calculated as in Eq. (19), is screened by other orbitals and atoms: in fact, when
perturbing the system the “non-Hubbard” degrees of freedom silently participate to the redistri-
bution of electrons and to the response of “Hubbard” orbitals. To account for this contribution
more explicitly an extra row and column are added to the response matrices χ and χ0 to con-
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tain the collective response (computed with a simultaneous perturbation) of these “background”
states.

The calculation of J could, in principles, be performed along similar lines, adding a pertur-
bation that effectively couples with the on-site magnetization mI = nI↑ − nI↓. However, the
energy of a magnetic ground state is not generally quadratic in the magnetization as it is mini-
mized on the domain-border. In other words, the magnetization is often the maximum it could
be compatibly with the number of electronic localized states. In these circumstances nI and mI

are not independent variables and one can only obtain linear combinations of U and J but not
solve them separately. A possible way around this problem could be to perturb a state corre-
sponding to a magnetization slightly decreased with respect to its ground state value (e.g., with
a penalty functional) in order to allow for the independent variation of nI andmI . However, this
calculation has not been actually attempted yet and it is impossible to comment on its reliability.

The approach described above renders the LDA+U ab-initio, eliminating any need of semi-
empirical evaluations of the interaction parameters in the corrective functional. It also in-
troduces the possibility to re-compute the values of these interactions in dependence of the
crystal structure, the magnetic phase, the crystallographic position of atoms, etc. This ability
proved critical to improve the predictive capability of LDA+U and the agreement of its results
with available experimental data for a broad range of different materials and different condi-
tions. The ability to consistently recompute the interaction parameters significantly improved
the description of the structural, electronic and magnetic properties of a variety of transition-
metal-containing crystals and was particularly useful in presence of structural [19, 68], mag-
netic [69] and chemical transformations [70, 71]. In Ref. [69] the use of the “self-consistent”
Hubbard U (recomputed for different spin configurations) allowed to predict a ground state
for the (Mg,Fe)(Si,Fe)O3 perovskite with high-spin Fe atoms on both A and B sites, and a
pressure-induced spin-state crossover of Fe atoms on the B sites that couples with a noticeable
volume reduction, an increase in the quadrupole splitting (consistent with recent x-ray diffrac-
tion and Mössbauer spectroscopy measurements) and a marked anomaly in the bulk modulus of
the material. These results have far-reaching consequences for understanding the physical be-
havior of the Earth’s lower mantle where this mineral is particularly abundant. The calculation
of the Hubbard U also improved the energetics of chemical reactions [72, 73], and electron-
transfer processes [74]. Thanks to this calculation, LDA+U has become significantly more
versatile, flexible and accurate. A recent extension to the linear response approach has further
improved its reliability through the self-consistent calculation of the U from an LDA+U ground
state [34, 72]. This improved method, that is mostly useful for systems where the LDA and
LDA+U ground states are qualitatively different, is based on a similar calculation to the one
described above with a perturbed run performed on a LDA+U ground state for which the “+U”
corrective potential is frozen to its self-consistent unperturbed value. This guarantees that the
+U part does not contribute to the response and, consistently to its definition, the Hubbard U
is measured as the curvature of the LDA energy in correspondence of the LDA+U ground state
charge density.
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4 Energy derivatives

One of the most important advantages brought about by the simple formulation of the LDA+U
corrective functional consists in the possibility to easily compute energy derivatives, as forces,
stresses, dynamical matrices, etc. These are crucial quantities to identify and characterize the
equilibrium structure of materials in different conditions, and to compute various other prop-
erties (as, e.g., vibrational spectra) or to account for finite temperature effects in insulators. In
this section I will review the calculation of LDA+U forces, stresses, and second derivatives (see
Refs. [75,76] for details), that are contained in the total energy, Car-Parrinello MD, and phonon
codes of the QUANTUM-ESPRESSO package [63]. In the last subsection I will also offer some
comments on the importance of the derivative of the Hubbard interaction. In the remainder of
this section I will present the implementation of energy derivatives in a code using a localized
basis set of atomic orbitals taken from norm-conserving pseudo-potential. Mathematical com-
plications deriving from the use of other kinds of pseudo-potentials (e.g., ultra-soft [77]) will
not be addressed here.

4.1 The Hubbard forces

The Hubbard forces are defined as the derivative of the Hubbard energy with respect to the
displacement of atoms. The force acting on the atom α in the direction i is defined as:

FU
α,i = −

∂EU
∂ταi

= −
∑

I,m,m′,σ

∂EU
∂nIσm,m′

∂nIσm,m′

∂ταi
= −U

2

∑
I,m,m′,σ

(δmm′ − 2nIσm′m)
∂nIσm,m′

∂ταi
(20)

where ταi is the component i of the position of atom α in the unit cell, EU and nIσm,m′ are the
Hubbard energy and the elements of the occupation matrix as defined in Eq. (3). Based on that
definition it is easy to derive the following formula:

∂nIσm,m′

∂ταi
=
∑
k,v

fkv[
∂

∂ταi

(
〈ϕImk|ψσkv〉

)
〈ψσkv|ϕIm′k〉+ 〈ϕImk|ψσkv〉

∂

∂ταi
〈ψσkv|ϕIm′k〉] (21)

(k and v being the k-point and band indexes, respectively) so that the problem is reduced to
determine the quantities

∂

∂ταi
〈ϕImk|ψσkv〉 (22)

for each I , m, m′, σ, k and v. Since the Hellmann-Feynman theorem applies, no response of
the electronic wave function has to be taken into consideration for first derivatives of the energy.
The quantities in Eq. (22) can thus be calculated considering only the derivative of the atomic
wave functions:

∂

∂ταi

〈
ϕImk|ψσkv

〉
=

〈
∂ϕImk
∂ταi

|ψσkv
〉
. (23)

Although the atomic occupations are defined on localized atomic orbitals, the product with
Kohn-Sham wavefunctions of a given k-vector (Eq. (3)) selects the Fourier component of the
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atomic wavefunction at the same k-point. This component can be constructed as a Bloch sum
of localized atomic orbitals:

ϕati,k,I(r) =
1√
N

∑
R

e−ik·Rϕati,I(r−R− τI) = e−ik·r
1√
N

∑
R

eik·(r−R)ϕati,I(r−R− τI). (24)

In this equation i is the cumulative index for all the quantum numbers {n, l,m} defining the
atomic state, τI is the position of atom I inside the unit cell, N is the total number of k-points
and the sum runs over all theN direct lattice vectors R. The second factor in the right hand side
of Eq. (24) is a function with the periodicity of the lattice. Its Fourier spectrum thus contains
only reciprocal lattice vectors:

ϕati,k,I(r) =
1√
Ω

∑
G

e−i(k+G)·rci,I(k+G). (25)

In this equation G are reciprocal lattice vector (G ·R = 2πn), and V is the total volume of N
unit cells: V = NΩ). The response to the ionic displacement thus results:

∂ϕati,k,I
∂ταj

= δI,α
i√
Ω

∑
G

e−i(k+G)·rci,α(k+G)(k+G)j (26)

where (k + G)j is the component of the vector along direction j and i is the imaginary unit.
Due to the presence of the Kronecker δ in front of its expression, the derivative of the atomic
wave function is different from zero only in the case it is centered on the atom which is being
displaced. Thus, the derivative in Eq. (23) only contributes to forces on atoms subject to
the Hubbard correction. Finite off-site terms in the expression of the forces arise when using
ultrasoft pseudopotentials. However this case is not explicitly treated in this chapter.

4.2 The Hubbard stresses

Starting from the the expression for the Hubbard energy functional, given in Eq. (12), we can
compute the contribution to the stress tensor as:

σUαβ = − 1

Ω

∂EU
∂εαβ

(27)

where Ω is the volume of the unit cell (the energy is also given per unit cell), εαβ is the strain
tensor that describes the deformation of the crystal:

rα → r′α =
∑
β

(δαβ + εαβ)rβ (28)

where r is the space coordinate internal to the unit cell. The procedure, already developed for
the forces (see Eqs. (20), (21)), can be applied to the case of stresses as well. The problem thus
reduces to evaluating the derivative

∂

∂εαβ
〈ϕImk|ψσkv〉. (29)
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In order to determine the functional dependence of atomic and KS wavefunctions on the strain
we deform the lattice accordingly to Eq. (28) and study how these functions are modified by
the distortion. Distortions will be assumed small enough to justify first order expansions of
physical quantities around the values they have in the undeformed crystal. To linear order, the
distortion of the reciprocal lattice is opposite to that of real space coordinates:

kα → k′α =
∑
β

(δαβ − εαβ)kβ. (30)

Thus, the products (k +G) · r appearing in the plane wave (PW) expansion of the wave func-
tions (see, for example, Eq. (25)) remain unchanged.
Let’s first study the modification of the atomic wavefunctions taking in consideration the ex-
pression given in Eq. (25). The volume appearing in the normalization factor transforms as
follows:

V → V ′ = |1 + ε|V (31)

where |1 + ε| is the determinant of the matrix δαβ + εαβ that describes the deformation of
the crystal. Applying the strain defined in Eq. (28), to the expression of the k + G Fourier
component of the atomic wave function one obtains:

c′i,I(k
′ +G′) =

1√
|1 + ε|

√
NΩ

ei(k
′+G′)·τ ′I

∫
V ′
dr′ei(k

′+G′)·r′ϕati,k,I(r
′)

=
1√
|1 + ε|

1√
NΩ

ei(k+G)·τI
∫
V ′
drei(k

′+G′)·rϕati,k,I(r). (32)

Since the integral appearing in this expression does not change upon distorting the integration
volume, defining

c̃i,I(k+G) = ci,I(k+G)e−i(k+G)·τI (33)

one obtains:

c̃′i,I(k
′ +G′) =

1√
|1 + ε|

c̃i,I(k
′ +G′) =

1√
|1 + ε|

c̃i,I((1− ε)(k+G)). (34)

Thus, the “deformed” atomic wave function results:

ϕati,k,I(r) =
1√
Ω

∑
G

e−i(k+G)·rei(k+G)·τI c̃i,I(k+G)→

1√
Ω′

∑
G′

e−i(k
′+G′)·r′ei(k

′+G′)·τ ′I c̃′i,I(k
′ +G′)

=
1

|1 + ε|
1√
Ω

∑
G

e−i(k+G)·rei(k+G)·τI c̃i,I((1− ε)(k+G)). (35)

According to the Bloch theorem Kohn-Sham (KS) wavefunctions can be expressed as follows:

ψσkv(r) =
1√
V

∑
G

e−i(k+G)·raσkv(G) (36)
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where
aσkv(G) =

1√
V

∫
V

drei(k+G)·rψσkv(r). (37)

Upon distorting the lattice as described in Eq. (28) the electronic charge density is expected to
rescale accordingly. One can thus imagine the electronic wave function in a point of the strained
space to be proportional to its value in the corresponding point of the undistorted lattice:

ψσkv(r)→ ψ′
σ
k′v(r

′) = αψσkv((1− ε)r′) (38)

where the proportionality constant α is to be determined by normalizing the wave function in
the strained crystal. By a simple change of the integration variable we obtain:

1 =

∫
V ′
dr′|ψ′σkv|2 = |1 + ε|

∫
V

dr|αψσkv|2 = |1 + ε|α2 (39)

from which, choosing α real, we have

α =
1√
|1 + ε|

. (40)

Using this result we can determine the variation of the k + G Fourier component of ψσkv (Eq.
(37)). We easily obtain:

aσk′v(G
′) =

1√
V ′

∫
V ′
dr′ei(k

′+G′)·r′ψ′
σ
k′v(r

′)

=
1√
|1 + ε|

1√
V

∫
V

|1 + ε|drei(k+G)·r 1√
|1 + ε|

ψσkv(r) = aσkv(G). (41)

We can now compute the first order variation of the scalar products between atomic and Kohn-
Sham wavefunctions:

〈ϕImk|ψσkv〉′ =
1√
|1 + ε|

∑
G

ei(k+G)·τI [cImk((1− ε)(k+G))]∗aσkv(G). (42)

The expression of the derivative follows immediately (for small strains |1 + ε| ∼ 1 + Tr(ε)):

∂

∂εαβ
〈ϕImk|ψσkv〉|ε=0 = −1

2
δαβ〈ϕImk|ψσkv〉 (43)

−
∑
G

ei(k+G)·τIaσkv(G)∂α[c
I
mk(k+G)]∗(k+G)β.

The explicit expression of the derivative of the Fourier components of the atomic wavefunctions
won’t be detailed here. In fact this quantity depends on the particular definition of the atomic
orbitals that can vary in different implementations.

4.3 Phonons and second energy derivatives

Many important properties of materials (such as, for example, their vibrational spectrum) are
related to the second derivatives of their total energy. It was therefore important to develop
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the capability to compute these quantities from first principles for correlated systems. The
main linear response technique to obtain second derivatives of the DFT energies is Density
Functional Perturbation Theory (DFPT). In this section I present the recent extension of DFPT
to the LDA+U energy functional to compute the vibrational spectrum (and other linear-response
properties) of materials from their correlated (LDA+U ) ground state [76].
DFPT is based on the application of first-order perturbation theory to the self-consistent DFT
ground state. I refer to Ref. [78] for an extensive description and for the definition of the notation
used here. The displacement of atom L in direction α from its equilibrium position induces a
(linear) response ∆λVSCF in the KS potential VSCF , leading to a variation ∆λn(r) of the charge
density (λ ≡ {Lα}). The Hubbard potential,

VHub =
∑

Iσm1m2

U I

[
δm1m2

2
− nIσm1m2

]
|φIm2
〉〈φIm1

|,

also responds to the shift of atomic positions and its variation, to be added to ∆λVSCF , reads:

∆VHub =
∑

Iσm1m2

U I

[
δm1m2

2
− nIσm1m2

] [
|∆φIm2

〉〈φIm1
|+ |φIm2

〉〈∆φIm1
|
]

−
∑

Iσm1m2

U I∆nIσm1m2
|φIm2
〉〈φIm1

| (44)

where ∆φIm is the variation of atomic wavefunctions due to the shift in the position of their
centers and

∆nIσm1m2
=

occ∑
i

{〈ψσi |∆φIm1
〉〈φIm2

|ψσi 〉+ 〈ψσi |φIm1
〉〈∆φIm2

|ψσi 〉}

+
occ∑
i

{〈∆ψσi |φIm1
〉〈φIm2

|ψσi 〉+ 〈ψσi |φIm1
〉〈φIm2

|∆ψσi 〉}. (45)

In Eq. (45) |∆ψσi 〉 is the linear response of the KS state |ψσi 〉 to the atomic displacement and is
to be computed solving the DFPT equations [78].
It is important to note that, in the approach discussed in this section, the derivative of the Hub-
bard U is assumed to be small and neglected.
Once the self-consistent density response∆n(r) is obtained, the dynamical matrix of the system
can be computed to calculate the phonon spectrum and the vibrational modes of the crystal. The
Hubbard energy contributes to the dynamical matrix with the following term

∆µ(∂λEHub) =
∑
Iσmm′

U I

[
δmm′

2
− nIσmm′

]
∆µ
(
∂λnIσmm′

)
−
∑
Iσmm′

U I∆µnIσmm′∂
λnIσmm′ (46)

which represents the total derivative of the Hellmann-Feynman Hubbard forces (Eq. (20)). In
Eq. 46, the symbol ∂λ indicates an explicit derivative (usually called “bare”) with respect to
atomic positions that does not involve linear-response terms (i.e., the variation of the Kohn-
Sham wave functions).
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When computing phonons in ionic insulators and semiconductor materials a non-analytical term
Cna
Iα,Jβ must be added to the dynamical matrix to account for the coupling of longitudinal vi-

brations with a macroscopic electric field generated by ion displacement [79, 80]. This term,
responsible for the LO-TO splitting at q = Γ , depends on the Born effective charge tensor
Z∗ and the high-frequency dielectric tensors ε∞: Cna

Iα,Jβ = 4πe2

Ω

(q·Z∗I )α(q·Z
∗
J )β

q·←→ε ∞·q . The calculation
of Z∗I,αβ and ε∞αβ is based on the response of the electronic system to a macroscopic electric
field and requires the evaluation of the transition amplitudes between valence and conduction
KS states, promoted by the commutator of the KS Hamiltonian with the position operator r,
〈ψc,k|[HSCF , r]|ψv,k〉 [81]. A contribution to this quantity from the Hubbard potential must be
also included:

〈ψc,k|[V σ
Hub, rα]|ψv,k〉 =

∑
Imm′

U I

[
δmm′

2
− nIσmm′

] [
−i〈ψc,k|

d

dkα

(
|φIm,k〉〈φIm′,k|

)
|ψv,k〉

]
(47)

where φIm,k are Bloch sums of atomic wave functions and kα represents one of the components
of the Bloch vector k.
To summarize, the extension of DFPT to the DFT+U functional requires three terms: the varia-
tion of the Hubbard potential∆λVHub to be added to∆λVSCF; the second derivative∆µ(∂λEHub)

to be added to the analytical part of the dynamical matrix; and the commutator of the Hubbard
potential with the position operator to contribute to the non analytical part of the dynamical ma-
trix. This extension of DFPT, called DFPT+U , was introduced in Ref. [76] and implemented in
the PHONON code of the QUANTUM ESPRESSO package [63]. As an example of application
I present below the results obtained from the DFPT+U calculation of the vibrational spectrum
of MnO and NiO, also discussed in Ref. [76]. The Hubbard U for both systems was computed
using the linear-response method discussed in one of the previous sections and resulted 5.25 eV
for Mn and 5.77 eV for Ni.
As other transition metal mono-oxides, MnO and NiO crystallize in the cubic rock-salt structure
but acquire a rhombohedral symmetry due to their antiferromagnetic order (called AFII) con-
sisting of ferromagnetic planes of cations alternating with opposite spin. Because of the lower
symmetry, the directions corresponding to the cubic diagonals lose their equivalence which
leads to the splitting of the transverse optical modes (with oxygen and metal sublattices vibrat-
ing against each other) around the zone center [82]. Figure 3 compares the phonon dispersions
of MnO and NiO obtained from the GGA+U ground state with those resulting from GGA. As
it can be observed, the Hubbard correction determines an overall increase in the phonon fre-
quencies for both materials, significantly improving the agreement with available experimental
results [83–86]. Moreover, the phonon frequencies computed from the GGA+U ground state
lead to a decreased splitting between transverse optical modes compared to GGA, which also
is in better agreement with experimental data (although for NiO the sign of the splitting is still
controversial [83, 87, 88]).
These results demonstrate that, on the contrary to what is sometimes expected or assumed,
electronic correlations have significant effects on the structural and vibrational properties of
materials and a corrected functional should be used when calculating properties related to the
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Fig. 3: (From [76]) The phonon dispersion and the vibrational DOS of MnO (upper panel) and
NiO (lower panel), calculated with GGA (dashed lines) and GGA+U (solid thick lines). Blue
(black) arrows mark the GGA+U (GGA) magnetic splittings and their sign. Filled symbols:
Experimental data [83–86]. Open symbols: Results of other calculations (at zone center) [82].

vibrational spectrum, such as, e.g., Raman spectroscopy, or when integrating over the Brillouin
zone to calculate thermodynamic quantities.

4.4 Derivatives of U

In all the preceding sections discussing the contribution of the Hubbard corrective functional
to the first and second derivatives of the energy (forces, stresses, force-constant/dynamical ma-
trices) the effective Hubbard U was held fixed. In fact, its dependence on the atomic positions
and/or the cell parameters is usually assumed to be small and neglected. This is, of course, an
approximation as the Hubbard U should be thought of as a functional of the charge density as
well and thus depends on any factor able to change the electronic structure of the ground state.
The validity of this approximation should be tested carefully, case by case. In fact, some recent
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works have shown that accounting for the variation of the interaction parameter with the ionic
positions and the lattice parameter can be quite important to obtain quantitatively predictive
results. In Ref. [68], focused on the properties of the low-spin ground state of LaCoO3 under
pressure, the Hubbard U (necessary to reproduce the insulating character of this material and for
a better description of its electronic and bonding structure) was recalculated for every volume
explored. The structurally-consistent U proved crucial to predict the variation of the structural
parameters of the material (lattice spacing, rhombohedral angle, Co-O distance and bond an-
gles) with pressure in good agreement with experimental data. In Ref. [89] the linear-response
calculation of the U as a function of the unit cell volume (or the applied pressure) allowed for
a precise evaluation of the pressure-induced high-spin to low-spin transition in (Mg1−xFex)O
Magnesiowüstite for different Fe concentrations.
The lack of an analytic expression for the Hubbard U makes it very difficult to account for its
variation with the atomic position and lattice parameters. However, a recent article [90] has
introduced a method to efficiently compute the derivative dU I/dRJ that allows to capture (at
least at first order) the variation of U with the ionic position. This extension is based on the
linear-response approach to compute U [19] that was discussed in section 3 and, in particular,
on the calculation of the linear-response of the ionic forces to the external perturbation α (see
Eq. 17). The same method could be easily generalized to stress and used to evaluate dU I/dεαβ .
In Ref. [90] this approach is used to account for the variation of U with atomic positions during
chemical interactions involving bi-atomic molecules. It is demonstrated that a configuration-
dependent effective interaction parameter significantly improves the quantitative description of
the potential energy surfaces that the system explores during these processes and eliminates the
inaccuracies related to the use of the same (average) value of U for all the configurations, that
has become quite common practice in literature. The promising results obtained in this work
give hope that analogous implementations could actually be completed for the calculation of
stresses and second derivatives and to improve the accuracy of molecular dynamics simulations
based on LDA+U [74, 91].

5 The LDA+U+V approach: when covalency is important

5.1 Extended Hubbard model and formulation of LDA+U+V functional

In this section I would like to introduce and briefly discuss one of the latest extensions to the
LDA+U functional: the LDA+U+V [34]. This modification is shaped on the “extended” Hub-
bard model and includes both on-site and inter-site electronic interactions. The extended for-
mulation of the Hubbard Hamiltonian (Eq. (1)) has been considered since the early days of this
model [10, 11] and can be expressed as follows:

HHub = t
∑
〈i,j〉,σ

(c†i,σcj,σ + h.c.) + U
∑
i

ni,↑ni,↓ + V
∑
〈i,j〉

ninj (48)

where V represents the strength of the interaction between electrons on neighbor atomic sites.
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The interest on the extended Hubbard model has been revamped in the last decades by the
discovery of high Tc superconductors and the intense research activity focusing around them.
Whether the inter-site coupling V has a determinant role in inducing superconductivity is, how-
ever, still matter of debate. Although the “resonating valence bond” model [92] predicts a
superconducting state (at least within mean-field theory) for a doped Mott insulator with only
on-site couplings [93], several numerical studies suggest that the inter-site interaction plays in-
deed an important role [94, 95] and superconductivity is predicted in a regime with repulsive
on-site (U > 0) and attractive inter-site (V < 0) couplings [96–99]. Several studies have also
demonstrated that the relative strength of U and V controls many properties of the ground state
of correlated materials, as, for example, the occurrence of possible phase separations [100], the
magnetic order [101, 102], the onset of charge-density and spin-density-wave regimes [103].
In Refs. [17, 104] the inter-site coupling (between d states) was recognized to be important to
determine a charge-ordered ground state in mixed-valence systems, while in Ref. [105] the ex-
tended Hubbard model was used to calculate the Green’s function of two particles on a lattice
and to refine the Auger core-valence-valence line shapes of solids. More recently, the extended
Hubbard model has been used to study the conduction and the structural properties of poly-
mers and carbon nano-structures and the interplay between U and V was shown to control, for
example, the dimerization of graphene nanoribbons [106].
Our motivation to include inter-site interactions in the formulation of the corrective Hubbard
Hamiltonian was the attempt to define a more flexible and general computational scheme able
to account for (rather than just suppress) the possible hybridization of atomic states on different
atoms. In order to understand the implementation of the LDA+U+V [34] it is useful to start from
the second-quantization expression of the site- and orbital- dependent electronic interaction
energy:

Eint =
1

2

∑
I,J,K,L

∑
i,j,k,l

∑
σ

〈φIiφJj |Vee|φKk φLl 〉
(
nKIσki nLJσ

′

lj − δσσ′nKJσkj nLIσ
′

li

)
(49)

where nKIσki represent the average values of number operators (〈cIσi
†
cKσk 〉), to be associated to

occupations defined as in Eq. (3). Generalizing the approach described for the on-site case,
the EHub of the DFT+U+V can be obtained from Eq. (49) supposing that a significant con-
tribution to the corrective potential also comes from the interactions between orbitals on cou-
ples of distinct sites: 〈φIiφJj |Vee|φKk φLl 〉 → δIKδJLδikδjlV

IJ + δILδJKδilδjkK
IJ . Similarly

to the on-site case, the effective inter-site interactions are assumed to be all equal to their
atomic averages over the states of the two atoms: 〈φIiφJj |Vee|φKk φLl 〉 → δIKδJLδikδjlV

IJ =
δIKδJLδikδjl

(2lI+1)(2lJ+1)

∑
i′,j′〈φIi′φJj′ |Vee|φIi′φJj′〉. Within this hypothesis it is easy to derive the following

expression (V II = U I):

EHub =
∑
I

U I

2

[
(nI)2 −

∑
σ

Tr
[
(nIIσ)2

] ]
+

?∑
IJ

V IJ

2

[
nInJ −

∑
σ

Tr(nIJσnJIσ)

]
(50)

where the star in the sum operator reminds that for each atom I , index J covers all its neighbors
up to a given distance (or belonging to a given shell). Eq. (50) uses a generalized formulation of
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the occupation matrix (Eq. (3)) to allow for the possibility that the two atomic wave functions
involved in its definition belong to different atoms:

nIJσm,m′ =
∑
k,v

fσkv〈ψσkv|φJm′〉〈φIm|ψσkv〉 (51)

where fσkv are the occupations of the KS states. In Eq. (51) the indexes m and m′ run over the
angular momentum manifolds that are subjected to the Hubbard correction on atoms I and J
respectively. It is important to notice that the occupation matrix defined in Eq. (51) contains
information about all the atoms in the same unit cell and the on-site occupations defined in
Eq. (3) correspond to its diagonal blocks (nIσ = nIIσ). Generalizing the FLL expression of the
on-site double-counting term we arrive at the following expression:

Edc =
∑
I

U I

2
nI(nI − 1) +

?∑
I,J

V IJ

2
nInJ . (52)

Subtracting Eq. (52) from Eq. (50) one finally gets:

EUV = EHub − Edc =
∑
I,σ

U I

2
Tr
[
nIIσ

(
1− nIIσ

)]
−

∗∑
I,J,σ

V IJ

2
Tr
[
nIJσnJIσ

]
. (53)

To better understand the effect of the inter-site part of the energy functional it is convenient
to derive the contribution of the extended Hubbard correction to the KS potential (actually
corresponding to δEHub

δ(ψσkv)
∗ ):

VUV |ψσkv〉 =
∑
I,m,m′

U I

2

(
δmm′ − 2nIIσm′m

)
|φIm〉〈φIm′|ψσkv〉 −

∗∑
I,J,m,m′

V IJnJIσm′m|φIm〉〈φJm′ |ψσkv〉. (54)

From Eq. (54) it is evident that while the on-site term of the potential is attractive for occupied
states that are, at most, linear combinations of atomic orbitals of the same atom (resulting in
on-site blocks of the occupation matrix, nIIσ, dominant on others), the inter-site interaction sta-
bilizes states that are linear combinations of atomic orbitals belonging to different atoms (e.g.,
molecular orbitals, that lead to large off-site blocks, nJIσ, of the occupation matrix). Thus, the
two interactions are in competition with each other. The detailed balance between these quan-
tities, controlling the character of the resulting ground state (e.g., the degree of localization),
is guaranteed by the possibility to compute both parameters simultaneously through the linear-
response approach described in [19]. In fact, the inter-site interaction parameters correspond to
the off-diagonal terms of the interaction matrix defined in Eq. (19).
It is important to notice that the trace operator in the on-site functional guarantees the invariance
of the energy only with respect to rotations of atomic orbitals on the same atomic site. In fact,
the on-site corrective functional (Eq. (12)) is not invariant for general rotations of the atomic
orbital basis set that mixes states from different atoms. In the inter-site term (Eq. (53)), the
trace applied to the product of generalized occupation matrices is not sufficient to re-establish
this invariance due to the lack of higher order terms (e.g., involving more than two sites) and to
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Fig. 4: (From Ref. [34]) The density of states of NiO obtained with different approximations:
GGA (left); GGA+U (center); GGA+U+V (right). The energies were shifted for the top of the
valence band to correspond to the zero of the energy in all cases. The black line represents
majority spin d states, the red line minority d states, the blue line oxygen p states.

the use of site- and orbital- averaged interaction parameters. However, the inter-site extension
of the corrective functional represents, with respect to the on-site case, a significant step towards
general invariance as it contains, at least, some of the multiple-site terms that would be gener-
ated by the rotation of on-site ones. Site- and orbital-dependence of the corrective functional are
implicitly included in Wannier-function-based implementations of the DFT+U [59, 107, 108]
as it becomes evident by re-expressing Wannier functions on the basis of atomic orbitals. The
two approaches would thus lead to equivalent results if all the relevant multiple-center interac-
tions parameters are included in the corrective functionals and are computed consistently with
the choice of the orbital basis. While on the basis of Wannier-functions the number of relevant
electronic interactions to be computed is probably minimal (especially if maximally-localized
orbitals are used [58]), the atomic orbital representation, besides providing a more intuitive and
transparent scheme to select relevant interactions terms (e.g., based on inter-atomic distances),
is more convenient to compute derivatives of the energy as, for example, forces and stresses that
are crucial to evaluate the structural properties of systems.
In the implementation of Eq. (53) we have added the possibility for the corrective functional
to act on two l manifolds per atom as, for example, the 3s and 3p orbitals of Si, or the 4s and
3d orbitals of Ni. The motivation for this extension consists in the fact that different manifolds
of atomic states may require to be treated on the same theoretical ground in cases where hy-
bridization is relevant (as, e.g., for bulk Si whose bonding structure is based on the sp3 mixing
of s and p orbitals).

5.2 LDA+U+V case studies: NiO, Si, and GaAs

The new LDA+U+V was first employed to study the electronic and structural properties of
NiO, Si and GaAs [34], prototypical representatives of Mott or charge-transfer (NiO) and band
insulators (Si and GaAs). The choice of these systems was made to test the ability of the new
functional to bridge the description of Mott or charge-transfer insulators (NiO) with that of
band insulators (Si and GaAs). In fact, the fundamental gap of a system is the sum of the KS
gap and the discontinuity in the KS potential (usually missing in most approximate local or
semi-local xc functionals) [109]. Since the main effect of the Hubbard correction consists in
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a B Eg
GGA 7.93 188 0.6
GGA+U 8.069 181 3.2
GGA+U+V 7.99 197 3.2
Exp 7.89 166-208 3.1-4.3

Table 1: The equilibrium lattice parameter (a, in Bohr atomic radii), the bulk modulus (B, in
GPa), and the band gap (Eg, in eV) of NiO obtained with different computational approaches:
GGA, “traditional” GGA+U (with U only on the d states of Ni) and GGA+U+V with the
interaction parameters computed “self-consistently” from the GGA+U+V ground state (see
text). Comparison is made with experimental results on all the computed quantities.

re-introducing the discontinuity of the KS potential at integer occupations it should be able to
correct the description of the electronic properties for both classes of materials .

As mentioned in section 4.3, NiO has a cubic rock-salt structure with a rhombohedral symme-
try brought about by its AFII ground state. Because of the balance between crystal field and
exchange splittings of the d states of Ni, (nominally) occupied by 8 electrons, the material has
a finite KS gap with oxygen p states occupying the top of the valence band. This gap, how-
ever, severely underestimates the one obtained from photoemission experiments (of about 4.3
eV [110]). LDA+U has been used quite successfully on this material (the spread of results is
mostly due to the different values of U used) providing a band gap between 3.0 and 3.5 eV,
and quite accurate estimates for both the magnetic moments and the equilibrium lattice parame-
ter [111–113]. DFT+U has also been employed recently to compute the k-edge XAS spectrum
of NiO using a novel, parameter-free computational approach [114] that has produced results
consistent with experimental data. The use of GW on top of a LDA+U calculation has pro-
vided a better estimate of the energy gap compared to LDA+U , even though other details of the
density of states were almost unchanged [115].

Besides the on-site UNi, the LDA+U+V calculations we performed also included the interac-
tions between nearest neighbor Ni and O (VNi−O) and between second nearest neighbor Ni
atoms (VNi−Ni). The corrective functional included interactions between d states, between d
and p and between d and s (on-site). Other interactions were found to have a negligible effect
on the results and were neglected. The numerical values of the interaction parameters, all deter-
mined through the linear-response approach discussed above, can be found in Ref [34]. Fig. 4
compares the density of states (DOS) of NiO as obtained from GGA, GGA+U and GGA+U+V
calculations. It is easy to observe that the GGA+U+V obtains a band gap of the same width as
GGA+U , also maintaining the charge-transfer character of the material with O p states at the
top of the valence band, as observed in photoemission experiments. As anticipated, the GGA
band gap is far too small if compared with experiments and also has Ni d states at the top of the
valence band. As expected, the inter-site interactions between Ni and O electrons also results
in a more significant overlap in energy between d and p states. In table 1 a comparison is made
between experiments and calculations on the equilibrium lattice parameter, bulk modulus and
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Uss Usb Ubs Ubb Vss Vsb Vbs Vbb
Si-Si 2.82 3.18 3.18 3.65 1.34 1.36 1.36 1.40

Ga-Ga 3.14 3.56 3.56 4.17
As-As 4.24 4.38 4.38 4.63
Ga-As 1.72 1.68 1.76 1.75

Table 2: Interaction parameters U and V (eV) for Si and GaAs (Ga 3d electrons as valence
electrons). Inter-site terms are for first-neighbors and the listed values are for the equilibrium
lattice parameters found with GGA+U+V . Indexes s and b stand for “standard” (higher l) and
“background” (lower l) orbitals respectively.

energy gap. One can see that while GGA provides the better estimate of the experimental lattice
parameter, GGA+U+V improves on the result of GGA+U for the structural parameter and the
bulk modulus is also corrected towards the experimental value. Thus, accounting for inter-site
interactions does not destroy the quality of the LDA+U description of the ground state of corre-
lated materials and has the potential to improve problematic aspects (e.g., structural properties)
counter-balancing the effects of excessive electronic localization.
The application to Si and GaAs is, in some sense, the “proof of fire” for the LDA+U+V ap-
proach, as the insulating character of these materials is due to the hybridization of s and p

orbitals) from neighbor atoms which leads to the formation of fully occupied bonding states
and empty anti-bonding orbitals. The excessive stabilization of atomic orbitals induced by the
on-site U suppresses the overlap with neighbor atoms and tends to reduces the gap between va-
lence and conduction states [34]. While providing a quite good description of the ground state
properties of these materials, the LDA and GGA functionals drastically underestimate the ex-
perimental band gap. A better estimate of the band gap has been obtained using SIC and hybrid
functionals [116–118] or with the GW approach based on an LDA [119, 120] or a EXX [121]
ground state.
As mentioned above, for the LDA+U+V method to work on these systems both on-site and
inter-site interactions had to be computed for s and p states to account for the sp3 hybridization.
Table 2 collects all the interaction parameters computed for Si and GaAs. It is important to
notice how, in virtue of the hybridization between s and p states the value of these parameters
is almost constant both for on-site and inter-site interactions. In table 3, the equilibrium lat-
tice parameter, the bulk modulus and the band energy gap obtained from GGA, GGA+U and
GGA+U+V calculations on Si and GaAs can be directly compared with experimental measure-
ments of the same quantities (we refer to the data collected in the web-database, Ref. [122]).
As it can be observed from this table, the (on-site only) GGA+U predicts the equilibrium lattice
parameter in better agreement with the experimental value than GGA for GaAs while it over-
corrects GGA for Si; however, the bulk modulus is improved with respect to the GGA value
only in the case of Si. Due to the suppression of the interatomic hybridization, in both cases, the
energy band gap is lowered compared to GGA, further worsening the agreement with experi-
ments. The use of the inter-site correction results in a systematic improvement for the evaluation
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Si GaAs
a B Eg a B Eg

GGA 5.479 83.0 0.64 5.774 58.4 0.19
GGA+U 5.363 93.9 0.39 5.736 52.6 0.00
GGA+U+V 5.370 102.5 1.36 5.654 67.7 0.90
Exp. 5.431 98.0 1.12 5.653 75.3 1.42

Table 3: Comparative results for lattice parameter (a, in Å), bulk modulus (B, in GPa) and
energy gap (Eg, in eV).

of all these quantities. In fact, encouraging the occupations of hybrid states, the inter-site inter-
actions not only enlarge the splittings between populated and empty orbitals (which increases
the size of the band gap), but also make bonds shorter (so that hybridization is enhanced) and
stronger, thus tuning both the equilibrium lattice parameter and the bulk modulus of these ma-
terials to values closer to the experimental results. Calculations on GaAs explicitly included Ga
3d states in the valence manifold as this was reported to produce a Ga pseudopotential of better
quality [123].

Fig. 5 shows a comparison between the band structures of Si and GaAs obtained with GGA and
GGA+U+V . As it can be observed, the increase in the band gap obtained with the “+U+V ”
correction is the result of an almost uniform shift of electronic energies (downwards for valence,
upwards for conduction states) that maintains, however, the overall dispersion pattern.

These results confirm that the extended Hubbard correction is able to significantly improve
the description of band insulators and semiconductors with respect to GGA, providing a more
accurate estimate of structural and electronic properties. In view of the fact that these systems
are normally treated with hybrid functionals or SIC approaches, the good results obtained with
LDA+U+V are the demonstration that this approach has similar capabilities and the inaccuracy
of the LDA+U (with on-site interactions only) is not inherent to the reference model but rather
to the approximations used to obtain its final expression. These results also clarify that, within
the single particle KS representation of the N -electron problem, band and Mott insulators can
be treated within the same theoretical framework.

The fact that LDA+U+V can be equally accurate in the description of band and Mott insula-
tors opens to the possibility to use it in a broad range of intermediate situations where (Mott)
electronic localization coexists with or competes against the hybridization of atomic states from
neighbor atoms, (as, e.g., in magnetic impurities in semiconductors or metals, high Tc super-
conductors, etc), or in the description of processes (such as, e.g., electronic charge transfers
excitation [124]) involving a significant shift in the degree of electronic localization. In a re-
cent work [90] LDA+U+V was used to study transition-metal dioxide molecules (e.g., MnO2);
the inclusion of the inter-site interaction was found to be crucial to predict the electronic con-
figuration, the equilibrium structure and its deformations in agreement with experiments. The
extended corrective functional has also been used as the starting point of DFT+DMFT calcu-
lations [125] and it has been demonstrated that the inclusion of the inter-site interaction in the



LDA+U for correlated materials 4.33

Fig. 5: (From Ref. [34]) The band structure of Si (left) and GaAs ( right). Continuous lines
represent GGA+U+V results and dashed lines represent standard GGA results. All energies
were shifted so that the top of valence bands are at zero energy.

local part of the functional (not updated in the inner DMFT calculation) produced results of the
same quality of cluster-DMFT but at the same computational cost of standard DMFT calcula-
tions.

6 Summary and outlook

Introduced as a simple correction to the DFT exchange-correlation functionals to improve the
description of systems with strongly localized electrons, the LDA+U has become one of the
most widely used numerical approaches to capture the effects of static electronic correlation.
Much of the success this method continues to have in the scientific community is certainly
related to the fact that it is quite easy to implement in existing DFT codes, it is very simple
to use, allows to easily compute energy derivatives and also carries very limited additional
computation costs. These characteristics, as also the availability of a single, easy-to-change
interaction parameter to tune the strength of the correction, have encouraged the use of this
scheme in a semiempirical way, as a first order, rough assessment of the (mostly qualitative)
effects of electronic correlation on the physical properties of a given system. As a consequence,
it has been regarded as a semiquantitative approach (as is the Hubbard model it is based on)
or, at most, as a first order correction upon which to build higher level, more sophisticated
approaches (as, for example, DMFT).
Notwithstanding the inherent limits of this approach (as, e.g., its static character and the con-
sequent inability to capture dynamical, frequency dependent effects), I think it is important to
stress the fact that it offers a unique possibility to compute properties related to energy deriva-
tives from the correlated ground state of a system and thus allows to study (albeit in an ap-
proximate way) the effects of electronic correlation on equilibrium structural properties, on
the dynamic evolution of systems, on phase stability and transitions, on the behavior at finite
temperature. It also represents a better starting point than (uncorrected) approximate DFT func-
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tionals for higher order corrections or to compute the excitation spectrum of materials (e.g.,
with TDDFT or GW) thanks to the corrections it introduces to the KS spectrum.
In the present chapter I have illustrated the theoretical foundation of the LDA+U corrective ap-
proach, its prerogatives and limits, its historical construction and recent refinements. Above all,
I hope I have provided a strong evidence of how this approach can represent a useful framework
to capture some effects of electronic correlation and of how relatively minor extensions to its
formulation can significantly improve its quantitative predictivity and the quality and numer-
ical efficiency of computational approaches that are based on this simple correction. There-
fore, further theoretical work on the “+U” functional (e.g., to include higher order many-body
terms or to automatize the calculation of effective interactions) is highly desirable and can have
far-reaching consequences for the definition of more accurate and efficient computational ap-
proaches able to capture the physics of correlated systems.
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