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Preface

Density-functional theory (DFT) is considered the Standard Model of solid-state physics. The

state-of-the-art approximations to DFT, the local-density approximation (LDA) or its simple

extensions, fail, however, even qualitatively, for strongly-correlated systems. When correla-

tions are strong, electrons become entangled and novel properties emerge. Mott-transitions,

Kondo- and heavy-fermion behavior, non-conventional superconductivity and orbital-order are

just some examples of this emergent behavior.

The realistic description of emergent properties is one of the grand-challenges of mod-

ern condensed-matter physics. To understand this physics beyond the Standard Model, non-

perturbative many-body techniques are essential. Still, DFT-based methods are needed to de-

vise materials-specific Hamiltonians for strong correlations. Mastering these novel techniques

requires a vast background, ranging from DFT to model building and many-body physics.

The aim of this school is to introduce advanced graduate students and up to the modern

methods for modeling emergent properties of correlated electrons and to explore the relation of

electron correlations with quantum entanglement and concepts from quantum information.

A school of this size and scope requires support and help from many sources. We are very

grateful for all the financial and practical support we have received. The Institute for Advanced

Simulation and the German Research School for Simulation Sciences at the Forschungszentrum

Jülich provided the funding and were vital for the organization of the school and the production

of this book. The DFG Forschergruppe FOR1346 offered travel grants for students and the

Institute for Complex Adaptive Matter (ICAM) travel support for international speakers and

participants.

The nature of a school makes it desirable to have the lecture-notes available already during

the lectures. In this way the participants get the chance to work through the lectures thoroughly

while they are given. We are therefore extremely grateful to the lecturers that, despite a tight

schedule, provided their manuscripts in time for the production of this book. We are confident

that the lecture notes collected here will not only serve the participants of the school but will

also be useful for other students entering the exciting field of strongly correlated materials.

We thank Mrs. H. Lexis of the Forschungszentrum Jülich Verlag and Mr. D. Laufenberg

of the Graphische Betriebe for providing their expert support in producing the present volume

on a tight schedule and for making even seemingly impossible requests possible. We heartily

thank our students and postdocs that helped in proofreading the manuscripts, often on short no-

tice: Carmine Autieri, Fabio Baruffa, Michael Baumgärtel, Monica Bugeanu, Andreas Flesch,

Evgeny Gorelov, Amin Kiani Sheikhabadi, Joaquin Miranda, German Ulm, and Guoren Zhang.

Finally, our special thanks go to Dipl.-Ing. R. Hölzle for his invaluable advice on all ques-

tions concerning the organization of such a school and to Mrs. L. Snyders and Mrs. E. George

for expertly handling all practical issues.

Eva Pavarini, Erik Koch, Frithjof Anders, and Mark Jarrell

August 2012





1 Correlated Electrons: Why we need Models

to Understand Real Materials?

Alexander Lichtenstein

I. Institut für Theoretische Physik

Universität Hamburg, 20355 Hamburg, Germany

Contents

1 Introduction 2

2 Functional approach: Route to fluctuations 4

3 Local correlations and beyond 7

4 Solving multiorbital quantum impurity problems 12

5 From models to real materials 16

6 Summary and outlook 19

E. Pavarini, E. Koch, F. Anders, and M. Jarrell
Correlated Electrons: From Models to Materials
Modeling and Simulation Vol. 2
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1.2 Alexander Lichtenstein

1 Introduction

The technical inventions of the last century are closely related with the design of silicon based

materials for the semiconductor industry. The theoretical development of the last fifty years and

the associated success in describing electronic properties of such weakly correlated materials

started with the conception of the density functional theory (DFT), which was initiated by sem-

inal works of Walter Kohn, Pierre Hohenberg, and Lu Sham [1, 2]. This is the first-principles

scheme based on the exact theorem, stating that the ground state of interacting electron systems

can be found by minimizing an universal functional of the density in some additional external

field. The main problem of DFT is related with the fact, that this functional is not known in

general and can be calculated numerically with a reasonable accuracy only for the simple case

of the homogeneous electron gas. These calculations, which have been proven to be very useful

for the DFT scheme, have been done by David Ceperley and Berni Alder [3] using the two-step

quantum Monte Carlo procedure starting from the “fixed-node” approximation followed by a

“released-node” calculation. Nevertheless the accuracy of such scheme is still limited and is

very sensitive to the computational details [4]. The main restriction of the density functional

scheme is the fact that it only gives ground state properties, while spectral information can be

found only in the time-dependent DFT scheme [5]. While the structural relaxation of com-

plex materials can be carried out very efficiently in the generalized gradient approximation of

the DFT, due to almost spherical properties of the exchange-correlation hole [6], the quality

of spectral properties crucially depends on systems in question. The TDFT scheme has more

problems than the static DFT approach, since there are no suitable time-dependent reference

systems to find an exchange correlation kernel.

The enormous progress of the last three decades in designing completely new materials for

high-Tc superconductivity, giant and colossal magnetoresistance, or artificially created two-

dimensional lattices brings new importance to the theory of transition-metal systems. It turns

out that even the ground state properties of antiferromagnetic oxides or orbitally ordered com-

k
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w

k

w
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Fig. 1: Schematic view of angular-resolved photoemission spectra (ARPES) for normal (left)

and correlated electron materials (right).
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E

M

Fig. 2: Schematic representation of spin (as well as charge or orbital) fluctuations in correlated

electron systems.

pounds are not described well in the DFT scheme [7]. The accurate angle-resolved photoemis-

sion study of the cuprate superconductors clearly shows, that the spectral properties of such

systems, with strong electron-electron interactions in the 3d-shell of transition metals has well

pronounced incoherent features [8]. We present in Fig. 1 the qualitative difference between

the spectral function of normal metals with well-defined quasiparticle peaks at all momenta k

and the strongly correlated case with an incoherent part and a non-quasiparticle spectrum in the

Brillouin zone.

The main source of complex correlated behavior of electronic systems, related with strong

fluctuations between different low-energy fermionic configurations, is shown schematically in

Fig. 2. For example, if the free energy of an electronic system has only one well defined

minimum at zero local moment (the dashed curve) then one can expect small electron fluctu-

ations and normal paramagnetic quasiparticle behavior. In the case of two low-lying minima

corresponding to singlet and triplet excitations (solid curve) one can expect strong many-body

fluctuations and possibly non-quasiparticle behavior related with local so-called Hund’s rule

physics [9]. In order to treat the system with such effective energy profiles, we need to use

the path-integral approach and calculate the corresponding correlation functions using compli-

cated quantum Monte Carlo schemes, which can handle many local minima in the free-energy

functional on an equal footing.

In this lecture we review the general functional approach to strongly correlated electron systems,

discuss an elegant way to separate the local and non-local correlations, and show how one

can solve the local correlation problem using the recently developed continuous time Monte

Carlo (CT-QMC) scheme. Finally we show an efficient way to go from the simple model

investigations of strongly correlated systems to realistic investigation of complex electronic

materials.
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2 Functional approach: Route to fluctuations

We introduce a general functional approach which will cover Density Functional (DFT), Dy-

namical Mean-Field (DMFT), and Baym-Kadanoff (BK) Theory [10]. Let us start from the full

many–body Hamiltonian describing electrons moving in the periodic external potential of ions

V (r), with chemical potential µ, and interacting via Coulomb law: U(r − r
′) = 1/|r− r

′|. We

use atomic units ~ = m = e = 1. In the field-operator representation the Hamiltonian takes the

form

H =
∑

σ

∫

dr ψ̂†
σ(r)

(

−
1

2
∇2 + V (r)− µ

)

ψ̂σ(r) (1)

+
1

2

∑

σσ′

∫

dr

∫

dr′ ψ̂†
σ(r)ψ̂

†
σ′(r

′)U(r − r
′) ψ̂σ′(r′)ψ̂σ(r).

We can always use a single-particle orthonormal basis set φn(r), for example Wannier orbitals,

with a full set of quantum numbers, e.g., site, orbital and spin index: n = (imσ) and expand

the fields in creation and annihilation operators

ψ̂(r) =
∑

n

φn(r)ĉn (2)

ψ̂†(r) =
∑

n

φ∗
n(r)ĉ

†
n

Going from fermionic operators to the Grassmann variables {c∗n, cn}, we can write the func-

tional integral representation of the partition function of the many-body Hamiltonian in the

imaginary time domain using the Euclidean action S

Z =

∫

D[c∗, c]e−S (3)

S =
∑

12

c∗1 (∂τ + t12) c2 +
1

4

∑

1234

c∗1c
∗
2 U1234 c4c3 , (4)

where the one- and two-electron matrix elements are defined as

t12 =

∫

drφ∗
1(r)

(

−
1

2
▽2 + V (r)− µ

)

φ2(r) (5)

U1234 =

∫

dr

∫

dr′ φ∗
1(r)φ

∗
2(r

′)U(r− r
′)φ3(r)φ4(r

′).

and we use the following short definition of the sum:

∑

1

... ≡
∑

im

∫

dτ... (6)

The one-electron Green function is defined via a simplest non-zero correlation function

G12 = −〈c1c
∗
2〉S = −

1

Z

∫

D[c∗, c] c1c
∗
2 e

−S (7)
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=c G- +

Fig. 3: Representation of the full two-particle Green function in terms single-particle Green

functions and the full vertex function Γ .

The main problems of strongly interacting electronic systems are related to the fact that the

higher order correlation functions do not separate into a product of lower order correlation

functions. For example the two-particle Green function or generalized susceptibilities, χ, are

defined in the following form [11]

χ1234 = 〈c1c2c
∗
3c

∗
4〉S =

1

Z

∫

D[c∗, c] c1c2c
∗
3c

∗
4 e

−S , (8)

and can be expressed graphically through Green functions and the full vertex function Γ1234 [12]

as shown in Fig. 3

X1234 = G14G23 −G13G24 +
∑

1′2′3′4′

G11′G22′Γ1′2′3′4′G3′3G4′4 (9)

In the case of non-interacting electron systems, the high-order correlations χ are reduced to

the antisymmetrized products of lower-order correlations G, which would correspond to the

first two terms (Hartree and Fock like) with the vertex function Γ in Eq. (9) equal to zero. In

strongly correlated electron systems the last part with the vertex is dominant and even diverges

close to an electronic phase transition.

The Baym-Kadanoff functional [13] gives the one-particle Green function and the total free

energy at its stationary point. In order to construct the exact functional of the Green function

(Baym-Kadanoff), we modify the action by introducing the source term J

S[J ] = S +
∑

ij

c∗iJijcj . (10)

The partition function Z, or equivalently the free energy of the system F , becomes a functional

of the auxiliary source field

Z[J ] = e−F [J ] =

∫

D[c∗, c] e−S[J ] . (11)

Variation of this source function gives all correlation functions, for example the Green function

G12 =
1

Z[J ]

δZ[J ]

δJ12

∣

∣

∣

∣

J=0

=
δF [J ]

δJ12

∣

∣

∣

∣

J=0

. (12)

Likewise, the generalized susceptibility χ is obtained as a second variation of the partition

function Z[J ]. The second variation of the free energy functiontional F [J ] gives the connected

part of the χ-function, which is the last term of Eq. (9).
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The Baym–Kadanoff functional can be obtained by Legendre transforming from J to G

F [G] = F [J ]− Tr(JG), (13)

We can use the standard decomposition of the free energy F into the single particle part and the

correlated part

F [G] = Tr lnG− Tr (ΣG) + Φ[G], (14)

were Σ12 is single particle self-energy and Φ[G] is a correlated part of the Baym–Kadanoff

functional and is equal to the sum of all two-particle irreducible diagrams. At its stationary

point this functional gives the free energy of the system. One can use a different Legendre

transform and obtain functionals of the self-energy Σ [14], or complicated functionals of two

variables G and Γ [15], or a more simple functional of G and screened Coulomb interactions

W [10] which is useful in GW theory.

In practice, Φ[G] is not known for interacting electron systems, which is similar to the problem

of the unknown universal functional in density functional theory. Moreover, this general func-

tional approach reduces to the DFT theory, if one only uses the diagonal part in the space-time

representation of the Green function, which corresponds to the one-electron density

n1 = G12δ12 = 〈c∗1c1〉S, (15)

with the Kohn-Sham potential VKS = Vext+VH +Vxc playing the role of the“constrained field”

J . In this case we lose information about the non equal-time Green’s function, which gives the

single-particle excitation spectrum as well as the k-dependence of the spectral function, and we

restrict ourselves to only the ground state energy of the many-electron system. Moreover, we

also lose information about all collective excitations in solids, such as plasmons or magnons,

which can be obtained from a generalized susceptibility or from the second variation of the free

energy.

One can probably find the Baym-Kadanoff interacting potential Φ[G] for simple lattice models

using quantum Monte Carlo (QMC). Unfortunately, due to the sign problem in lattice simu-

lations, this numerically exact solution of electronic correlation problem is not possible. On

the other hand, one can obtain the solution of local interacting quantum problem in a general

fermionic bath, using a QMC scheme, which has no sign problem if it is diagonal in spin and

orbital space. Therefore, a reasonable approach to strongly correlated systems is to keep only a

local part of the many-body fluctuations. In such a Dynamical Mean-Field Theory (DMFT) one

can obtain numerically the correlated part of the local functional. In this scheme we only use

the local part of the many-electron vertex and obtain, in a self-consistent way, an effective func-

tional of the local Green function. In the following section we discuss the general dual-fermion

(DF) transformations [16] which will help us to separate the local fluctuations in many-body

system and show a perturbative way to go beyond the DMFT approximations.
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3 Local correlations and beyond

We will only consider the local, but multiobital, interaction vertex U i
mm′m′′m′′′ . Sometimes we

will omit all orbital indices for simplicity. All equations will be written in matrix form, giving

the idea of how to generalize a dual-fermion (DF) scheme to the multi-orbital case [17,18]. The

general strategy to separate the local and non-local correlations effects is associated with the

introduction of auxiliary fermionic fields which will couple separated local correlated impurities

models back to the lattice [16]. In order to include the smaller non-local part of the Coulomb

interactions one can use a more general approach using auxiliary fermionic and bosonic fields

[19].

We rewrite corresponding original action, Eq. (3), in Matsubara space as a sum of the non-local

one-electron contribution with t12 and the local interaction part U

S[c∗, c] = −
∑

ωkσmm′

c∗ωkσm

[

(iω + µ)1− tmm′

kσ

]

cωkσm′ +
∑

i

SU[c
∗
i , ci]. (16)

The index i labels the lattice sites, m refers to different orbitals, σ is the spin projection and

the k-vectors are quasi-momenta. In order to keep the notation simple, it is useful to introduce

the combined index α ≡ {m, σ}. Translational invariance is assumed for simplicity in the

following, although a real space formulation is straightforward. The local part of the action, SU,

may contain any type of local multi-orbital interaction.

In order to formulate an expansion around the best possible auxiliary local action, a quantum

impurity problem is introduced

Sloc[c
∗, c] = −

∑

ω αβ

c∗ωα
[

(iω + µ)1−∆αβ
ω

]

cωβ + SU[c
∗, c], (17)

where ∆ω is the effective hybridization matrix describing the coupling of the impurity to an

auxiliary fermionic bath. The main motivation for rewriting the lattice action in terms of a

quantum impurity model is that such a reference system can be solved numerically exactly for

an arbitrary hybridization function using the CT-QMC methods [20]. Using the locality of the

hybridization function ∆ω, the lattice action (16) can be rewritten exactly in terms of individual

impurity models and the effective one-electron coupling (tij−∆ω) between different impurities

S[c∗, c] =
∑

i

Sloc[c
∗
i , ci] +

∑

ωkαβ

c∗ωkα

(

tαβ
k

−∆αβ
ω

)

cωkβ. (18)

We will find the condition for the optimal choice of the hybridization function later. Although

we can solve the individual impurity model exactly, the effect of spatial correlations due to

the second term in Eq. (18) is very hard to treat, even perturbatively, since the impurity ac-

tion is non-Gaussian and one cannot use the Wick theorem. The main idea of a dual-fermion

transformation is the change of variables from (c∗, c) to weakly correlated Grassmann fields

(f ∗, f) in the path integral representation of the partition function, Eq. (3), followed by a sim-

ple perturbative treatment. The new variables are introduced through the Hubbard-Stratonovich
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U t

m m´

Umm´

U
D

( -t)D

g g

Fig. 4: From the lattice model (left) via real-space DMFT (middle) to the non-local dual-

fermion perturbation (right).

transformation

exp
(

c∗αbα(M
−1)αβbβcβ

)

=
1

detM

∫

D[f ∗, f ] exp
(

−f ∗
αMαβfβ − c∗αbαfα − f ∗

βbβcβ
)

. (19)

In order to transform the exponential of the bilinear term in (18), we choose the matrices Mαβ ,

and scaling function bα (if we assume for simplicity that the local Green’s function is diagonal

in orbital and spin space) in accordance with Refs. [16] as

M = g−1
ω (∆ω − tk)

−1 g−1
ω , b = g−1

ω , (20)

where gω is the local, interacting Green function of the impurity problem

g12 = −〈c1c
∗
2〉loc = −

1

Zloc

∫

D[c∗, c]c1c
∗
2 exp

(

− Sloc[c
∗, c]

)

. (21)

With this choice, the lattice action transforms to

S[c∗, c, f ∗, f ] =
∑

i

Si
site +

∑

ωkαβ

f ∗
ωkα[g

−1
ω (∆ω − tk)

−1 g−1
ω ]αβfωkβ. (22)

Hence the coupling between sites is transferred to a local coupling to the auxiliary fermions

Si
site[c

∗
i , ci, f

∗
i , fi] = Sloc[c

∗
i , ci] +

∑

αβ

f ∗
ωiα g

−1
ω αβcωiβ + c∗ωiα g

−1
ω αβfωiβ. (23)

Since gω is local, the sum over all states labeled by k can be replaced by a summation over

all sites by a change of basis in the second term. The crucial point is that the coupling to the

auxiliary fermions is purely local and Ssite decomposes into a sum of local terms. The lattice

fermions can therefore be integrated-out from Ssite for each site i separately. This completes the

change of variables

∫

D[c∗, c] exp (−Ssite[c
∗
i , ci, f

∗
i , fi]) = Zloc exp

(

−
∑

ω αβ

f ∗
ωiα g

−1
ω αβfωiβ − Vi[f

∗
i , fi]

)

. (24)
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Fig. 5: Diagrams contributing to the dual self-energy Σ̃.

The above equation may be viewed as the defining equation for the dual potential V [f ∗, f ].

The choice of matrices (20) ensures a particularly simple form of this potential. An explicit

expression is found by expanding both sides of Eq. (24) and equating the resulting expressions

order by order. Formally this can be done to all orders and in this sense the transformation to

the dual-fermions is exact. For most applications, the dual potential is approximated by the first

non-trivial interaction vertex

V [f ∗, f ] =
1

4
γ1234 f

∗
1 f

∗
2 f4f3, (25)

where the combined index 1 ≡ {ωα} comprises frequency, spin and orbital degrees of freedom.

γ is the exact, fully antisymmetric, reducible two-particle vertex of the local quantum impurity

problem. It is given by

γ1234 = g−1
11′g

−1
22′

[

χ1′2′3′4′ − χ0
1′2′3′4′

]

g−1
3′3g

−1
4′4, (26)

with the two-particle Green function of the impurity being defined as

χ1234 = 〈c1c2c
∗
3c

∗
4〉loc =

1

Zloc

∫

D[c∗, c] c1c2c
∗
3c

∗
4 e

−Sloc[c
∗,c] . (27)

The disconnected part reads

χ0
1234 = g14g23 − g13g24 . (28)

The single- and two-particle Green functions can be calculated using the CT-QMC [20]. After

integrating-out the lattice fermions, the dual action depends only on the new variables

S̃[f ∗, f ] = −
∑

ωkαβ

f ∗
ωkα[G̃

0
ω(k)]

−1
αβfωkβ +

∑

i

Vi[f
∗
i , fi]. (29)

and the bare dual Green function involves the local Green function gω of the impurity model

G̃0
ω(k) =

[

g−1
ω +∆ω − tk

]−1
− gω . (30)

Up to now, Eqs. (29) and (30) are mere reformulations of the original problem. In practice,

approximate solutions are constructed by treating the dual problem perturbatively. Several di-

agrams contributing to the dual self-energy are shown in Fig. 5. These are constructed from

the impurity vertices and dual Green functions. The first diagram is purely local, while higher
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orders contain nonlocal contributions, e.g., the second diagram in Fig. 5. In practice, approx-

imations to the self-energy are constructed in terms of skeleton diagrams. The lines shown in

Fig. 5 are therefore understood to be fully dressed propagators. The use of skeleton diagrams

is necessary to ensure that the resulting theory is conserving in the Baym-Kadanoff sense [13],

i.e., it fulfills the basic conservation laws for energy, momentum, spin, and particle number. The

most useful property of such dual perturbation theory is good convergence both in the weak-

coupling limit, when the local vertex is small and in the strong-coupling limit, when the dual

Green’s function is small [21].

The hybridization function ∆, which so far has not been specified, allows to optimize the start-

ing point of the perturbation theory and should be chosen in an optimal way. The condition

of the first diagram (Fig. 5) as well as all local diagrams with higher-order correlation func-

tions in the expansion of the dual self-energy to be equal to zero at all frequencies, fixes the

hybridization. This eliminates the leading-order diagrammatic correction to the self-energy and

establishes a connection to DMFT, which can be seen as follows: Since the γ vertex is local,

this condition amounts to demanding that the local part of the dual Green function be zero

∑

k

G̃ω(k) = 0. (31)

The simplest nontrivial approximation is obtained by taking the leading-order correction, the

first diagram in Fig. 5, evaluated with the bare dual propagator (30). Using the expression for

the DMFT Green function [22]

GDMFT
ω (k) =

[

g−1
ω +∆ω − tk

]−1
, (32)

it immediately follows that (31) evaluated with the bare dual Green function is exactly equiva-

lent to the DMFT self-consistency condition for ∆ω

1

Nk

∑

k

GDMFT
ω (k) = gω . (33)

In the limit of infinitely large lattice connectivity the DMFT scheme becomes exact with the

local self-energy [23]. The DMFT approximation for real lattice models appears to be one of the

most successful many body schemes for realistic multi orbital systems [10]. Since it involves

the exact solution of the many-body multi-orbital impurity model Eq. (21) all local quantum

fluctuations of different orbitals, spins, and charges (Fig. 6) are included in this scheme.

In the DMFT approach one can study paramagnetic correlated phases of complex crystals

with strong spin and orbital fluctuations above transition temperatures of the spin- and orbital-

ordered states [24].

Hence DMFT appears as the zero-order approximation in this approach and corrections to

DMFT are included perturbatively. A formal relation to DMFT can be established using the

Feynman variational functional approach. In this context, DMFT appears as the optimal ap-

proximation to a Gaussian ensemble of dual fermions [25].

When diagrammatic corrections are taken into account and the first diagram is evaluated with

the dressed propagator G̃, the condition (31) will in general be violated. It can be reinforced
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DMFT time scale

D(t-t )´

Fig. 6: Schematic representations of initial lattice model (left) and the local DMFT approach

with orbital and spin fluctuations (right).

by adjusting the hybridization function iteratively. This corresponds to eliminating an infinite

partial series of all local diagrams, starting from the first term in Fig. 5. These contributions are

effectively absorbed into the impurity problem. Note that such an expansion is not one around

DMFT, but rather around an optimized impurity problem.

The only difference between a DMFT and a DF calculation are the diagrammatic corrections

which are included into the dual Green function. To this end, the local impurity vertex γ has to

be calculated in addition to the Green function in the impurity solver step.

It is an important consequence of the exact transformation (19) that for a theory, which is con-

serving in terms of dual fermions, the result is also conserving in terms of lattice fermions [25].

This allows to construct general conserving approximations within the dual fermion approach.

Numerically, the self-energy is obtained in terms of skeleton diagrams by performing a self-

consistent renormalization as described below. Once an approximate dual self-energy is found,

the result may be transformed back to a physical result in terms of lattice fermions using exact

relations.

The action (29) allows for a Feynman-type diagrammatic expansion in powers of the dual po-

tential V . The rules are similar to those of the antisymmetrized diagrammatic technique [26].

Extension of these rules to include generic n-particle interaction vertices is straightforward.

Due to the use of an antisymmetrized interaction, the diagrams acquire a combinatorial prefac-

tor. For a tuple of n equivalent lines, the expression has to be multiplied by a factor 1/n!. As

simplest example we can write schematically the first self-energy correction of the diagram in

Fig. 5, which contains a single closed loop

Σ̃
(1)
12 = −T

∑

34

γ1324 G̃
loc
43 (34)

where G̃loc = (1/Nk)
∑

k
G̃(k) denotes the local part of the dual Green function. The second-

order contribution represented in Fig. 5 contains two equivalent lines and one closed loop, and



1.12 Alexander Lichtenstein

hence is k-dependent

Σ̃
(2)
12 (k) = −

1

2

(

T

Nk

)2
∑

k1k2

∑

345678

γ1345 G̃57(k1) G̃83(k2) G̃46(k+ k2 − k1) γ6728 . (35)

In practice, it is more efficient to evaluate the lowest-order diagrams in real space and transform

back to reciprocal space using the fast Fourier transform. After calculating the best possible

series for the self-energy Σ̃ in the dual space one can calculate the renormalized Green function

matrix for the original fermions using the following simple transformations [19]

Gω(k) =

[

(

gω + gωΣ̃ω(k)gω

)−1

+∆ω − tk

]−1

(36)

which is a useful generalization of the DMFT Green’s function (see Eq. (32)) to include non-

local correlation effects.

The progress of the DMFT approach strongly depends on the development of efficient numerical

solvers for an effective quantum impurity model.

4 Solving multiorbital quantum impurity problems

Even though DMFT reduces the extended lattice problem to a single-site problem, the solution

of the underlying Anderson impurity model remains a formidable quantum many-body problem,

which requires accurate solvers. Recently a new class of solvers has emerged, the continuous-

time quantum impurity solvers. These are based on stochastic Monte-Carlo methods and mainly

come in two different flavors: The weak and strong-coupling approach.

The weak-coupling or interaction expansion continuous-time (CT-INT) quantum Monte Carlo

algorithm for fermions was originally introduced by Aleksei Rubtsov [27]. There are two main

previous attempts: the first work by Nikolay Prokof’ev et. al [29], who devised a continuous-

time scheme to sample the infinite series of Feynman diagrams for bosons, and a second work

by Natalie Jachowicz and co-workers [30], who developed a continous-time lattice Monte Carlo

algorithm using the Hubbard-Stratonovich decomposition. The power of new CT-QMC scheme

is that it represents just the integration of the complex path integral without any transformation

to effective non-interacting models and can be used for any compacted electron-electron vertex.

We introduce the algorithm in the path integral formulation for the single-orbital Anderson im-

purity problem with a Hubbard-type interaction Un↑n↓. The generalization to the multiorbital

case can be found in Ref. [20]. First, the action of the Anderson impurity model is divided into

a Gaussian part S0 and an interaction part SU as follows:

S0 =
∑

σ

∫ β

0

dτ

∫ β

0

dτ ′c∗σ(τ) [∂τ − µ+∆(τ − τ ′) + Uα−σ(τ)δ(τ − τ ′)] cσ(τ
′) , (37)

SU = U

∫ β

0

dτ [c∗↑(τ)c↑(τ)− α↑(τ)] [c
∗
↓(τ)c↓(τ)− α↓(τ)] . (38)
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Fig. 7: The four contributions to the partition function for k = 2. The interaction vertices are

depicted by squares, bare Green functions as lines.

The parameters α are introduced to control the sign problem. A formal series expansion for the

partition function is obtained by expanding the exponential in the interaction term,

Z =

∫

D[c∗, c] e−S0[c∗,c]

∞
∑

k=0

(−1)k

k!
Uk

∫ β

0

dτ1 . . .

∫ β

0

dτk [c
∗
↑(τ1)c↑(τ1)− α↑(τ1)] (39)

×[c∗↓(τ1)c↓(τ1)−−α↓(τ1)] . . . [c
∗
↑(τk)c↑(τk)− α↑(τk)][c

∗
↓(τk)c↓(τk)− α↓(τk)] .

Using the definition of the average over the noninteracting action

〈...〉0 =
1

Z0

∫

D[c∗, c]... exp(−S0), (40)

the partition function can be expressed in the following form

Z = Z0

∞
∑

k=0

∫ β

0

dτ1 . . .

∫ β

τk−1

dτk sgn(Ωk) |Ωk| , (41)

where the integrand is given by

Ωk = (−1)kUk〈[c∗↑(τ1)c↑(τ1)− α↑(τ1)][c
∗
↓(τ1)c↓(τ1)− α↓(τ1)] . . .

. . . [c∗↑(τk)c↑(τk)− α↑(τk)][c
∗
↓(τk)c↓(τk)− α↓(τk)]〉0 . (42)

Note that here the range of time integration has been changed such that time ordering is explicit:

τ1 < . . . < τk−1 < τk. For a given set of times all k! permutations of this sequence contribute

to Eq. (39). These can be brought into the standard sequence by permuting quadruples of

Grassmann numbers, and hence without gaining an additional sign. Since all terms are subject

to time-ordering, their contribution to the integral is identical, so that the factor 1/k! in Eq. (39)

cancels. A configuration can be fully characterized by specifying a perturbation-order k and a

set of k times: Ck = {τ1, . . . , τk}.

The Monte Carlo algorithm performs importance sampling over this configuration space. The

weight of a configuration is thereby taken to be equal to the modulus of the integrand, Eq. (42).

Since S0 is Gaussian, the average over the noninteracting system can be evaluated using Wick’s

theorem. Hence the weight of a configuration is essentially given by a fermionic determinant of

a matrix containing the bare Green functions

Ωk = (−1)kUk
∏

σ

det ĝσ, (43)
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Fig. 8: Diagrammatic representation of the six contributions to the partition function for spin-

less fermions at k = 3. An electron is inserted at the start of a segment (marked by an open

circle) and removed at the segment endpoint. The hybridization function lines∆(τi−τ
′
j) (shown

in red) are connected to the segments in all possible ways. The sign of each diagram is given

on the left. (Reproduced from Ref. [28].)

where the local Green function in the α fields is equal to

(ĝσ)ij = gσ0 (τi − τj)− ασ(τi)δij . (44)

Note that determinants for different spin-orientations factorize, since the Green function is di-

agonal in spin-space.

The hybridization expansion (CT-HYB) or strong-coupling algorithm was initially introduced

by Philipp Werner et al. [28] and has been generalized to multiorbital systems with general

interactions [31, 32]. Here the algorithm is discussed in the segment representation, which

exploits the possibility of a very fast computation of the trace for a density-density type of

interaction. The action is regrouped into the atomic part

Sat =

∫ β

0

dτ
∑

σ

c∗σ(τ) [∂τ − µ] cσ(τ) + U

∫ β

0

dτ c∗↑(τ)c↑(τ)c
∗
↓(τ)c↓(τ) (45)

and the part of the action S∆ which contains the hybridization term

S∆ = −

∫ β

0

dτ ′
∫ β

0

dτ
∑

σ

cσ(τ)∆(τ − τ ′) c∗σ(τ
′) . (46)

Here the sign is taken out by reversing the original order of c and c∗ to avoid an alternating sign

in the expansion. To simplify the notation, consider first the spinless-fermion model, which

is obtained by disregarding the spin sums and interaction in Eqs. (45) and (46). The series

expansion for the partition function is generated by expanding in the hybridization term:

Z =

∫

D[c∗, c] e−Sat

∑

k

1

k!

∫ β

0

dτ ′1

∫ β

0

dτ1 . . .

∫ β

0

dτ ′k

∫ β

0

dτk×

× c(τk)c
∗(τ ′k) . . . c(τ1)c

∗(τ ′1)∆(τ1 − τ ′1) . . .∆(τk − τ ′k). (47)
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Fig. 9: Example single-band CT-HYB in a segment picture: blue dots illustrate a creation oper-

ator, red ones annichilation operators and the black line represents the hybridization function

∆(τi − τ ′j). The green regions represent the time interval at which two electrons are present on

the impurity with the total time ld and the price U has to be paid.

The important observation now is that, at any order, the diagrams can be collected into a deter-

minant of hybridization functions. The partition function then takes the form

Z = Zat

∑

k

∫ β

0

dτ ′1

∫ β

τ ′
1

dτ1 . . .

∫ β

τk−1

dτ ′k

∫ ◦τ ′
k

τ ′
k

dτk 〈c(τk)c
∗(τ ′k) . . . c(τ1)c

∗(τ ′1)〉at det ∆̂
(k), (48)

where the average is over the states of the atomic problem described by Sat. Here det ∆̂(k)

denotes the determinant of the matrix of hybridizations ∆̂ij = ∆(τi − τ ′j). The diagrams con-

tributing to the partition function for k = 3 are shown in Fig. 8. A diagram is depicted by a

collection of segments, where a segment is symbolic for the time interval where the impurity

is occupied. The collection of diagrams obtained by connecting the hybridization lines in all

possible ways corresponds to the determinant. Collecting the diagrams into a determinant is

essential to alleviate, or completely suppress the sign problem. Note that the imaginary-time

interval in Eq. (48) is viewed as a circle denoted by ◦τ ′k. The trajectories in the path integral are

subject to antiperiodic boundary conditions which is accommodated by an additional sign if a

segment winds around the circle.

For the single-orbital Anderson impurity model with Hubbard interaction the segment picture

still holds and gives a very intuitive picture of the imaginary time dynamics. A configuration is

visualized by two separate timelines, one for each spin. The additional sum over spins,
∑

σ1...σk
,

which enters in the first line of Eq. (48), generates contributions such as the one shown in Fig. 9.

The only difference to the spinless-fermion model is, that when the impurity is doubly occupied,

the energy U has to be paid and the trace is eµ(l↑+l↓)−Uld , where lσ is the time spent on the

impurity for an electron with spin σ and ld is the time the impurity is doubly occupied.

In the Fig. 10 shows the comparison of CT-INT and CT-HYB for the strong-coupling case

U ≥ W of single-band model. The perfect agreement of these two complementary CT-QMC

schemes gives evidence for the possibility of a numerically exact solution of the quantum im-

purity problem.
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Fig. 10: Comparison of the weak- (CT-INT) and strong-coupling (CT-HYB) CT-QMC impurity

solvers for a one-band, semicircular model with U ≥W . The insert shows the density of states

obtained with maximum entropy scheme.

5 From models to real materials

In order to investigate real correlated systems with the local DMFT scheme, we need to have

an efficient way of partitioning the spacial and orbital degrees of freedom. For example in

the high-temperature superconducting oxide YBa2Cu3O7, the strongly correlated electrons are

Cu-3d, and, moreover, there is only one per non-equivalent copper dx2−y2 band which crosses

the Fermi level with strong many-body fluctuations. Just a few percent of the total number of

electronic states need to be included in the DMFT calculations. Therefore the simplest realistic

correlated scheme would be a DFT+DMFT approach [33, 34] with partitioning of the orbital

space into normal band electrons |K〉 described by the DFT Bloch basis and correlated local

orbitals |L〉 described by some optimal Wannier basis (see Fig. 11 for illustration).

The treatment of correlated electron systems requires the calculation of Green functions and

hybridization functions in terms of local orbitals. This is readily achieved when using a basis set,

which is localized in real space, such as linear (or N-th order) muffin-tin orbitals (NMTO) [35]

or Gaussian basis sets [37]. However, many implementations of the density functional theory

use a delocalized plane-wave basis set. This has the advantage, that the basis set is simple,

universal, and its convergence is controlled in principle by a single parameter, the energy cutoff.

The projector augmented wave method (PAW) [38], being a representative of a plane-wave

based methods, can be used as a simple example of the general projection scheme from the

Bloch to the local basis: 〈K|L〉.

Following the general projection scheme of Ref. [36,37], the desired quantity for an implemen-

tation of a DFT+DMFT method is a projection PC =
∑

L |L〉〈L| of the full DFT Kohn-Sham
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|L>
|K>

Fig. 11: Schematic representation of the projection from a Bloch basis to a local Wannier

correlated subset.

Green function GKS(ω) on a set of localized orbitals {|L〉}

GC(ω) = PCGKS(ω)PC. (49)

The subspace C = span({|L〉}) is usually called correlated subspace. It is the subspace of

orbitals in which many-body fluctuations play a major role and where the DMFT corrections

to the DFT will be considered. In plane-wave based calculations, GKS(ω) in Matsubara space

is available in terms of an almost complete set of Bloch states |K〉 that are eigenstates of the

Kohn-Sham Hamiltonian HKS|K〉 = εK |K〉:

GKS(ω) =
∑

K

|K〉〈K|

iω + µ− εK
. (50)

Inserting equation (50) into equation (49) shows that one needs to evaluate projections of the

type 〈L|K〉 in order to access the matrix elements GC
LL′(ω) of the local Green function. In

most cases the correlated orbitals are d- or f -orbitals, which are localized inside the PAW aug-

mentation spheres to a good approximation. For |L〉 within these spheres and given the PAW

decomposition [38] of a Bloch state |K〉 one obtains

〈L|K〉 =
∑

i

〈L|φi〉〈p̃i|K̃〉.

The index i of the augmentation functions |φi〉 includes site s, angular momentum l, and m as

well as an index ν labeling the radial function: i = (s, l,m, ν). |p̃i〉 are the PAW projectors.

In the described projection scheme the |L〉〈L| matrices are not properly normalized for two rea-

sons: (1) the Bloch basis is incomplete since only a limited number of Bloch bands is included

and (2) the PAW augmentation functions are, in general, not orthonormal. The simplest way is

to orthonormalize the projection matrices by the following Wannier-type construction: By defi-

nition, the localized states |L〉 are labeled by site and angular-momentum indices: L = (s, l,m).
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We split the site index s = R +T such that R labels the position within the unit cell and T is

the Bravais lattice vector of the unit cell in which s is located. This allows us to construct the

Bloch transform of the localized states

|Lk〉 =
∑

T

eikT|LT〉, (51)

where k is from the first Brillouin zone and |LT〉 ≡ |L〉 = |s, l,m〉. The sum in equation

(51) runs over the Bravais lattice. Labeling the Bloch states |K〉 = |k, n〉 by their crystal

momentum, k, and band index, n, we normalize our projection matrices PC
Ln(k) = 〈Lk|k, n〉

using the overlap operator

OLL′(k) =
∑

n

PC
Ln(k)P

∗C
L′n(k) (52)

in

P̄C
Ln(k) =

∑

L′

O
−1/2
LL′ (k)P C

L′n(k). (53)

These orthonormalized projection matrices are calculated once at the beginning of any calcula-

tion and can then be used to obtain the local Green function of the correlated orbitals from the

full Bloch Green function GB
nn′

GC
LL′(ω) =

∑

k,nn′

P̄C
Ln(k)G

B
nn′(k, ω)P̄∗C

L′n′(k).

Similarly the hybridization function, ∆(ω), is available. It is related to the local Green function

by

G−1(ω) = iω − ǫd −∆(ω), (54)

where ǫd is the static crystal field. Equation (54) is a matrix equation with G, ∆, and ǫd being

dim C × dim C matrices, in general. To separate the hybridization from the static DFT crystal

field, we numerically evaluate the limit ω → ∞, where ω −G−1(ω) → ǫd.

In a DFT+DMFT calculation the projection matrices P̄C
Ln(k) are used for up- and down-folding

quantities like the Green function and the self-energy in the course of the iterative DMFT pro-

cedure in exactly the same way as shown for the local Green function above. For example,

the self-energy obtained by an impurity solver for the effective impurity model ΣC
LL′(ω) can be

upfolded to the Bloch basis as follows

ΣB
nn′(k, ω) =

∑

LL′

P
∗C

Ln(k) Σ
C
LL′(ω) P

C

L′n′(k) .

Since the self-energy in DMFT is a purely local quantity, the index k on ΣB
nn′(k, ω) reflects

the momentum dependence brought about by the projection matrices. The presented projection

scheme allows for the inclusion of both correlated and uncorrelated states in the procedure.

Therefore, information about the interplay of correlated orbitals with their uncorrelated ligands

can be obtained. As example, we show a realistic DFT+DMFT calculation of the SrVO3 spectral

function in the Fig. 12, were one can see the renormalisation of the valence correlated V-t2g
states as well as broadening of the Bloch O-2p states [39].
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Fig. 12: Momentum resolved impurity spectral function of SrVO3 obtained by DFT+DMFT.

The LDA band-structure of the V-t2g and O-2p Bloch states is shown for comparison.

6 Summary and outlook

We have learnt from simple model investigations how to treat electronic correlations within the

local DMFT scheme. This knowledge can be used in realistic DFT+DMFT calculations for

strongly correlated transition metals and rare earth systems, where the spin, orbital and charge

fluctuations in the d- of f -shell play the crucial role for the photoemission spectrum as well

as magnetic and optical excitations. The numerically exact solution of the quantum impurity

problem gives us an effective local exchange-correlation functional for a given correlation ma-

terial in a specific external field. Moreover, we have shown a direct way to include effects of

non-local fluctuations in terms of a renormalized, locally screened dual perturbation scheme.

The combination with first-principle approaches still offers many challenging problems.
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1 Introduction

These are the lecture notes for a talk in a Course on Correlated Electrons: From Models to
Materials held in Juelich in September, 2012. This lecture is intended to provide an introductory
description of standard density functional calculations, with emphasis on oxides. In the context
of the course it is a starting point for the advanced correlated methods that will be discussed in
the following lectures.
This chapter consists of two main parts. The first part is a very basic introduction to density
functional theory (DFT). The second part focuses on a particular aspect of transition metal oxide
physics, that is magnetism and the formation of magnetic moments illustrated by the example
of three rather different perovskite compounds, SrMnO3, SrTcO3 and SrRuO3.

2 Density functional theory in condensed matter physics

It is fair to say that DFT calculations play a central role in condensed matter theory and have
revolutionized the way we understand the physical properties of solids today. This chapter
discusses aspects of DFT in relation to correlated materials and its use in providing microscopic
understanding in diverse systems.
DFT, and the widely used local density approximation (LDA) to it, were formulated in the
1960’s in two seminal papers by Kohn, Hohenberg and Sham [1, 2] and started to be applied
to real solids in the 1970’s. Normally, when one uses approximations, one imagines that the
availability of better computers would mean that one could do better and use more exact theo-
ries. Computer speeds have followed Moore’s law from that time to the present, increasing by
approximately three orders of magnitude per decade, or by ∼109 from the ∼10 MFlop comput-
ers of the late 1970’s to the present state of the art of ∼10 PFlops as realized on the Fujitsu K
computer in 2011.
109 is a big number. A person with a dollar (or Euro) standing outside a McDonald’s can eat
at the most famous restaurant in the world. A billionaire has more options, and one should
take note if he chooses the dine at the same place. Today, DFT calculations based on the
LDA and the computationally similar generalized gradient approximations (GGAs) remain the
standard workhorse in condensed matter. This can perhaps be appreciated by noting some
citation statistics. As of this writing, the paper of Perdew, Burke and Ernzerhof [3], which lays
out one of the more commonly used generalized gradient approximations for solids has been
cited 21,557 times, including 4,056 times in 2011 alone, while that of Perdew and co-workers
laying out the so-called “PW91” functional [4], which is another common functional was cited
9,084 times, including 845 times in 2011. This reflects just how useful these approximations
are.
There are many reasons for the popularity and successes of DFT calculations. Two particularly
important ones are (1) the fact DFT calculations are based on the chemical compositions and
structures of materials without the use of intervening models and (2) the fact that such calcula-
tions, while approximate, are predictive.
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Condensed matter physics increasingly focuses on materials that are structurally and chem-
ically complex. This trend started with the 1986 discovery of cuprate superconductivity in
(La,Ba)2CuO4, which is a layered perovskite material. This was closely followed by discov-
eries in increasingly complex materials, YBa2Cu3O7−δ, Bi2SrCu2O8, and HgBa2Ca2Cu3O8+δ.
Approximate DFT calculations were helpful in establishing the large scale features of the elec-
tronic structure of these cuprates [5, 6]. In complex materials it is particularly difficult to sort
out the key structural features and how they relate to the physical properties. One may guess
the shape of the Fermi surface of Na metal without recourse to detailed calculations but it is
unlikely that one would correctly guess the complex multisheet Fermi surfaces of materials like
YBa2Cu3O7. A more recent example comes from the iron-pnictide superconductors, where
DFT calculations revealed a very non-oxide-like electronic structure and the presence of rela-
tively small disconnected multisheet Fermi surfaces that are of importance for understanding
the superconductivity [7, 8].
There have been many excellent reviews of DFT and DFT calculations, and so we do not attempt
to provide another one here. We simply mention a few relevant points and refer the reader to
the extensive literature on this subject for detailed discussions. Some excellent resources are
the books, Density Functional Theory of Atoms and Molecules, by Parr and Yang [9], Density
Functional Methods in Physics, by Dreizler and da Provincia [10], Density Functionals: Where
do the come from, why do they work?, by Ernzerhof, Burke and Perdew [11], Theory of the
Inhomogeneous Electron Gas, by Lundqvist and March [12], and the review article by Callaway
and March [13].
Finally, we note that while DFT is an exact theory, practical applications require tractable ap-
proximations to the DFT functional. The success of DFT really rests on the fact that relatively
simple and general approximate forms such as the LDA and GGAs yield very good descriptions
of the properties of diverse solid state and molecular systems. The remarkable success of simple
approximations, such as the local density approximation, in accurately describing the proper-
ties of condensed matter was hardly anticipated before detailed calculations were performed
starting in the 1970’s. There has been theoretical discussion of the reasons for the successes of
simple approximations like the LDA since then. However, it remains the case that approximate
DFT calculations are used to predict many properties of materials based mainly on the fact that
previous calculations have shown these properties to be in good agreement with experiment on
other materials. Put another way, the local density approximation is built around the many body
physics of the uniform electron gas. Nonetheless it is able to describe materials that have highly
inhomogeneous electron distributions that at first sight have nothing to do with the electron gas.
The success of these simple approximations in describing diverse properties of materials with-
out experimental input provides an explanation for the conundrum, posed above, i.e. the long
lived popularity of DFT methods.
A simple example is bcc Fe, which is a commonly known ferromagnet. Like Fe, the uniform
electron gas shows magnetism. However, the magnetism of the uniform electron gas only oc-
curs at densities of ∼1020 cm−3 and below [14]. In contrast the average electron density of bcc
Fe is 2.2x1024 cm−3 including all electrons and 6.8x1023 cm−3 if only the valence electrons are
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included. Thus Fe shows ferromagnetism at densities four orders of magnitude above where
the uniform electron gas does. So the non-uniform electron gas constituting Fe has very dif-
ferent properties than the uniform electron gas. Nonetheless, this non-uniform electron gas is
extremely well described by the local density approximation, with a moment that agrees within
∼3% of the experimental value, and a lattice parameter also in good agreement.
The point is that even though the LDA and GGAs are seemingly rather simple approximations
they have certain advantages. These are (1) that they are truly ab-initio, in the sense of not
requiring any input from experiment specific to the material being studied – this is key to making
predictions – and (2) they are often rather precise for properties of materials, including non-
trivial but important properties such as Fermi surfaces. In fact, the predictions made by simple
LDA and GGA calculations have been transformational in many areas of condensed matter, e.g.
the prediction of high pressure phases and their properties, complex Fermi surfaces of materials
such as the high Tc cuprate superconductors, and many other areas.
Clearly, as will be shown in subsequent lectures of this school, these simple approximations
have important deficiencies, especially in treating so-called strongly correlated systems. The
simplest example is the failure of these approximations to describe the insulating ground states
of Mott insulators, such NiO and the physics associated with the electron correlations that pro-
duce such ground states. In devising needed improvements to these approximations for treating
correlated materials it is perhaps helpful to keep in mind the features of the LDA that make it so
successful – absence of empirical or material specific parameters or tunable heuristics (i.e. mak-
ing choices based on knowledge of the material in question) and its ability to make predictions
based on the chemical composition and structure of a material and not much else.

2.1 Basics

Density functional theory itself is, as the name implies, an exact theorem. It states that the
ground state energy, E of an interacting system subject to an external potential, Vext(r) is a
functional of the density, E=E[ρ(r)], and furthermore that the actual density, ρ(r) is the den-
sity that minimizes this total energy functional. This means that the density ρ(r), which is a
non-negative function of the three spatial variables, can be used as the fundamental variable
in quantum mechanical descriptions of the correlated system, as opposed to the many-body
wavefunction, which is a function of 3N spatial variables for an N particle system.
As mentioned, while DFT is an exact theorem, the important aspect is that there are practical
approximations based on it that can be applied to a wide variety of materials with frequently
useful results. The first practical approximation to DFT was the local density approximation
(LDA), which was proposed by Kohn and Sham in the paper where they derived the so-called
Kohn-Sham equations [2]. They proceeded by observing that any density corresponding to an
interacting N electron density can be written as the density corresponding to some N electron
non-interacting wavefunction. Thus,

ρ(r) =
∑
i

ϕ∗i (r)ϕi(r); i = 1, 2, ..., N, (1)
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where the ϕi are the so-called Kohn-Sham orbitals and are orthonormalized functions. While
the density can be exactly written in this way, it is to be emphasized that a determinant of the
Kohn-Sham orbitals would typically be a very poor approximation to the true wavefunction,
and so in general the Kohn-Sham orbitals are quite distinct from the actual wavefunction of a
system.
Kohn and Sham then separated from the functional, E[ρ], some large terms that are readily
evaluated, leaving a presumably smaller remainder Exc[ρ] to be approximated.

E[ρ] = Ts[ρ] + Eext[ρ] + UHartree [ρ] + Exc[ρ], (2)

where Eext is the interaction with the external potential, UHartree is the Hartree energy,

UHartree [ρ] =
e2

2

∫
d3rd3r′

ρ(r)ρ(r′)

|r− r′|
. (3)

and Ts is the non-interacting kinetic energy of the Kohn-Sham orbitals (which is not the true
kinetic energy of the many-body system).
The Kohn-Sham equations can then be derived using the fact that the true density is the density
that minimizes E[ρ],

(
Ts + Vext + VHartree + Vxc

)
ϕi = εiϕi, (4)

where the εi are the Kohn-Sham eigenvalues, which are not equal to true excitation energies of
the system, Ts is the single particle kinetic energy operator and the various potential terms V
are functional derivatives of the corresponding energy terms with respect to ρ(r).
The local density approximation is obtained by writing,

Exc[ρ] =

∫
d3r ρ(r)εxc(ρ(r)), (5)

where εxc(ρ) is approximated by a local function of the density, usually that which reproduces
the known energy of the uniform electron gas.
To treat spin-polarized systems, a generalization to so-called spin-density functional theory
is needed to produce useful approximations. The generalization is straight-forward. For a
collinear magnetic system one replaces ρ by the two spin-densities, ρ↑ and ρ↓, so that the energy
becomes a functional of these two spin-densities, E[ρ↑, ρ↓], Exc[ρ↑, ρ↓], and Vxc[ρ↑, ρ↓] [15].
Replacing Exc by the exchange-correlation energy of the partially spin polarized electron gas
using the local spin densities yields the so-called local spin density approximation (LSDA),
which is a very popular and effective method at least as a starting point. In the more general non-
collinear case, the magnetization has both a magnitude and direction that vary with position, and
so the density takes four components, instead of two as in the collinear case. In this case, the
LSDA is formulated in terms of 2x2 density and potential matrices, ρ and V, which can be
expanded in terms of Pauli spin matrices, e.g. ρ = ρ1 + m · σ [15]. This formalism, with
a local approximation in which the exchange correlation term is again taken from the uniform
electron gas with the same local polarization magnitude and a direction for Vxc parallel to the
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local magnetization direction, yields a useful non-collinear version of the LSDA that has been
widely applied to non-collinear systems [16].
The generalized gradient approximations (GGAs) are the other commonly used class of density
functionals in solids. They use the local gradient as well as the density in order to incorporate
more information about the electron gas in question, i.e. εxc(ρ) is replaced by εxc(ρ, |∇ρ|).
These generalized gradient approximations, which originated in the work of Langreth and Mehl
[17] and Perdew and co-workers [4] are very different from gradient expansions, which lead to
greatly degraded results from the LDA.
Actually, considering how different the electron gas in solids is from the uniform electron gas,
it is perhaps not surprising that a Taylor expansion, which treats solids as a minor perturbation
of the homogeneous gas, would not work. The modern GGA’s are instead rather sophisticated
functionals build around sum rules and scaling relations for the exchange-correlation hole in the
general non-uniform electron gas.
The central relation is the adiabatic connection formula, which in Rydberg units is

Exc[n] =

∫
d3r

∫
d3r′

n(r)n(r′)

|r− r′|
(ḡ[n, r, r′]− 1) =

∫
d3r

∫
d3r′

n(r)n̄xc(r, r
′)

|r− r′|
, (6)

where ḡ is the coupling-constant average (from the non-interacting e2 = 0 value to the physical
value of e2) of the pair distribution function, n is the density as usual and n̄xc is defined by the
equation. This may be understood as the interaction energy of each electron with its exchange
correlation hole less the energy needed to “dig out” the hole. The latter includes contributions to
the kinetic energy beyond the single-particle level. The LDA then consists of the replacement
of n(r′)ḡ[n, r, r′] by n(r)ḡh(n(r), |r − r′|), where ḡh is the coupling constant averaged pair
distribution function of the homogeneous electron gas.
Modern GGA functionals are built using the adiabatic connection formula based on knowledge
of exact sum rules, scaling relations and limits for the exchange correlation hole in the general
non-uniform case. The simplest such sum rule is that the exchange correlation hole contains a
charge of exactly unity. This rule, which is satisfied by the LDA, and the spherical Coulombic
average in Eqn. 6 have been used to explain why such a simple approximation works as well as
it does (see especially, Ref. [12] for clear discussions of this).

2.2 DFT, Jellium and Hartree-Fock

In thinking about DFT and approximations, it is helpful to remember what it is not, particularly
when considering what one might do to improve such approximations to DFT. Sometimes it is
said that LDA or GGA calculations represent either a jellium or a Hartree-Fock approximation
to the many-body system. One purpose of this section is to emphasize that this is not really
correct.
Hartree-Fock, unlike approximate DFT methods, is a variational method based on the exact
Hamiltonian. The Hartree-Fock energy is always higher than the true energy. Hartree-Fock
consists of restricting the wavefunctions to Slater determinants. This gives an exact exchange
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description with no correlation. Hartree-Fock generally overestimates the band gaps of semi-
conductors and insulators, opposite to standard approximate DFT methods, such as the LDA.
Furthermore, importantly, unlike DFT, Hartree-Fock cannot describe metals, since all metals
are unstable in this approximation. Thus it is incorrect to consider a starting description of a
metal within e.g. the LSDA as representing a Hartree-Fock description to which one may add
correlations as if none were present in this starting point. Also, it should be noted that approx-
imate DFT because of its uncontrolled approximations is not self-interaction free. Specifically,
while the exact exchange correlation hole has a charge of exactly unity, this is not the case for
e.g. the LDA in a non-uniform electron gas. Hartree-Fock on the other hand has an exchange
hole that does contain a charge of exactly unity and therefore is self-interaction free.
The distinction between Hartree Fock and approximate DFT is also important from a historical
point of view. Several approximations similar to the LSDA had been proposed and widely used
prior to the development of Kohn-Sham DFT. The Xα method of Slater and co-workers is the
most widely known such method [18]. However, while the formalism of the Xα method is very
similar in appearance to that of the LSDA, from a conceptual point of view it is very different.
In particular, the Xα method was viewed as a simplification of the Hartree-Fock method, i.e. an
approach for fast approximate Hartree-Fock calculations. As such, it was typically parametrized
to reproduce Hartree-Fock as well as possible, often taking the band gap as a quantity that
should be fit. When used in this way it gave many interesting and useful results, e.g. the body
of work produced by J.C. Slater and his group, but did not approach the predictive capabilities
of modern approximate DFT methods. The key point is that approximate DFT methods, like the
modern LDA, are approximations to an exact theory that has density and energy as fundamental
quantities, and which does not reproduce band gaps. This new view led to the use of the energy
of the uniform electron gas in the LDA, rather than a functional form that comes from the
high density exchange, and is what underlies the much better predictive power of the modern
approximate DFT methods.
We now turn to jellium. Jellium is the uniform electron gas that forms the basis of the LDA.
It is a metal that at densities appropriate to solids is far from magnetism. It is also a gas and
as such has no shear strength. In solid state physics, perhaps the simple materials closest to
jellium are the alkali metals, e.g. K or Cs, which are indeed very soft metals that are far from
magnetism. Also, like jellium, they have nearly spherical Fermi surfaces. In any case, the
implication of regarding the LDA as a jellium model is that one adopts a view in which solids
that are well described by the LDA are essentially well described as a uniform electron gas
with weak perturbation by pseudopotentials representing the atomic cores. However, while
LDA and GGA calculations do provide a reasonable description of K and Cs, they provide an
equally good description of materials like diamond and Al2O3, which are insulators and not
only support shear modes, but in fact are among the stiffest known materials.
The point is that solids are not like blueberry muffins (a kind of small cake with embedded
berries that is popular in the United States). The characteristic of blueberry muffins is that they
taste roughly the same independent of the exact number or distribution of the blueberries inside
them. Solids are not at all like that. Instead they show a tremendous diversity of properties
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YBa2Cu3O7 LaFeAsO YNi2B2C 

Fig. 1: The Fermi surfaces of three superconductors, YBa2Cu3O7 (left, following Ref. [6]),
YNi2B2C (middle, following Ref. [19]) and LaFeAsO (right, following Ref. [7]).

depending on the exact type and arrangement of the atoms making them up. Many of the
diverse observed behaviors of materials are in fact rather well described by approximate DFT
calculations. The fact that the properties of Cs appear to be like those of jellium, while those of
diamond appear to be very different does not imply that diamond is a more strongly correlated
material than Cs but is simply a reflection of the fact that the properties of non-uniform electron
gasses, are different from those of the uniform electron gas. This emphasizes the fact that LDA
and GGA approximations do not represent some kind of slowly varying approximation for the
electron gas and so they are often well able to describe the highly non-uniform electron gasses
that comprise condensed matter.

Related to this, in solid state physics it is very useful to start with simple models in order to
understand phenomena. For metals, jellium is a very useful pedagogical starting point, and
because of this many common formulas for metals are written in text books for the case of a
spherical Fermi surface. On the other hand the Fermi surfaces of real metals are often very
complex, as shown for three superconductors in Fig. 1.

All three of these superconductors show multiple sheets, with no obvious relationship to a
simple sphere. However, these Fermi surfaces from LDA calculations agree remarkably well
with experiment. This was perhaps particularly surprising in the case of the high Tc cuprate,
YBa2Cu3O7, since like the other cuprates it is in close proximity to undoped phases (YBa2Cu3O6

in this case) that are Mott insulators and are not even qualitatively described by standard LSDA
calculations.

In any case, the Fermi surface plays the central role in setting the low energy properties of
a metal. Also, superconductivity is fundamentally an instability of the Fermi surface, and so
knowledge of the Fermi surface can reveal a lot about the nature of the superconductivity in a
given compound. For example, all three materials shown in Fig. 1 have crystal structures that
may be described as layered. However, as shown, the Fermi surfaces of the boro-carbides and
boro-nitrides (LuNi2B2C, YNi2B2C, etc.) are clearly three dimensional and in particular do not
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take the form of cylinders. This was one of the first indications following their discovery that
the superconductivity of these materials is unrelated to that of the high Tc cuprates [20]. It is
also an illustration of why approximate DFT has become so widely used – DFT calculations
predicted the three dimensionality of the Fermi surfaces and some other important aspects well
in advance of experimental measurements.

Returning to the jellium model, in characterizing the nature of correlations in a material, the fact
that experiment may show that a certain metal cannot be described by spherical Fermi surface
formulas, does not in itself mean that it cannot be described by detailed DFT calculations, nor
does it in itself imply that a material is strongly correlated (although it may be). In other words,
unconventional behavior in relation to simple jellium based models could be a consequence of
strong correlations, or it could alternatively be a consequence of a non-trivial electronic structure
that is, however, still well described by approximate DFT calculations. It is important to sort
this out in each case. Also, there is sometimes confusion that arises from the simplifications in
spherical Fermi surface models. For example, in a metal the bands and their dispersions at the
Fermi energy EF play a central role in the low energy physics.

The band velocity, vk = ∇kε(k), where ε(k) are the band energies, is an important quantity
both for transport and thermodynamic properties. Within Boltzmann theory the conductivity is
essentially related to the velocity, σxx ∼ N(EF )〈v2x〉τ , where τ is an inverse scattering rate, 〈 〉
denotes the Fermi surface average, and N(EF ) is the density of states at EF . The square of
the Drude plasma frequency, which can be measured from infrared optics, is given by a similar
factor,N(EF )〈v2x〉. However, for a parabolic band (spherical Fermi surface) system this can also
be written as n/m, where m is the effective mass, and n is the carrier density (volume of the
Fermi surface), and similarly one can also eliminate n in favor of the Fermi energy, EF relative
to the band edge. However, it is to be emphasized that infrared optics does not measure EF nor
does it measure n or m (and obviously considering the excitation energy it cannot be sensitive
to such high energy properties), but only a certain integral over the actual Fermi surface.

The bottom line is that extraction of high energy quantities such as Fermi energy and band
filling from experiments such as transport, infrared optics, superconducting properties etc., is
generally model dependent and simple conclusions about high energy properties based on such
measurements should be carefully considered. One exception is the extraction of the Fermi sur-
face volume in layered materials from Hall data, which has been shown to be exact, independent
of the detailed band dispersions and Fermi surface shape provided that the Fermi surfaces are
all open (e.g. cylinders) in the third dimension [21].

3 Aspects of magnetism in oxides

In this section we illustrate some aspects of magnetism in oxides using three compounds, cubic
perovskite SrMnO3, perovskite SrTcO3 and the ferromagnetic perovskite metal SrRuO3.
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3.1 SrMnO3

Manganites attracted much attention because of the colossal magnetoresistance effect (CMR)
and novel exchange couplings in materials like (La,Ca)MnO3 and (La,Sr)MnO3. starting in the
1950’s [22–25] and then again following the rediscovery and enhancement of the CMR effect
the 1990’s [26, 27]. The basic features of the electronic structure from point of view of band
theory have been extensively elucidated by many authors. (see e.g. [28]). Here we focus on the
end-point compound SrMnO3.

SrMnO3 has both hexagonal and cubic polytypes, with hexagonal being the ground state. Here
we consider the cubic polytype, which is an antiferromagnet with Neel temperature, TN=240 K
[29]. The related, and more studied compound, CaMnO3 has an orthorhombic structure, char-
acterized by tilts of the MnO6 octahedra, up to Ts ∼ 720 K, above which it takes a different
rhombohedral structure. The ground state is a G-type antiferromagnet (nearest neighbor anti-
ferromagnetism) with a Neel temperature TN=124 K. Importantly, the resistivity is insulating
both above and below TN , which is a characteristic of a correlated (i.e. Mott type) insula-
tor [30,31]. Interestingly, there is a metal-insulator transition at the structural transition, Ts, and
in the rhombohedral phase CaMnO3 is metallic.

Standard DFT calculations for CaMnO3 predict a G-type antiferromagnetic insulator with a
small band gap [28]. Like CaMnO3, standard DFT calculations (without U ) yield a small band
gap insulator for SrMnO3 (see Fig. 2) with G-type AFM order. In contrast, if ferromagnetic
order is imposed, SrMnO3 is predicted to be a metal. Here we discuss some calculations, which
were done with the LAPW method using the standard PBE GGA functional at the experimental
cubic lattice parameter (a=3.808 Å), and are basically the same as previously reported results.
Integration of the spin density within the Mn LAPW spheres, radius 1.9 Bohr, yields moments
within the spheres of 2.52 µB for the ferromagnetic (corresponding to 3 µB per formula unit for
the whole cell), and a similar value of 2.41 µB for the ground state antiferromagnetic structure.
This weak dependence of the moment on the ordering means that even at the level of standard
band calculations, SrMnO3 behaves like a local moment magnet.

From an experimental point of view SrMnO3 is a borderline material. It is clearly insulating
both above and below TN , although very small perturbations make it metallic [30]. In any case,
it illustrates some important features of the band description of correlated oxides.

First of all, there can be some ambiguity, because band calculations can yield an insulating
state and so it can in some cases be difficult to decide if a material is a band insulator or a
true Mott-Hubbard system. In a Mott system, one expects insulating behavior independent of
magnetic order, one manifestation is that the resistivity shows similar insulating behavior both
above and below TN . In contrast the band picture in a material like SrMnO3 implies that the
conductivity should increase when the AFM order is destroyed above TN since it relates to the
specific magnetic order. Also, in strongly correlated transition metal oxides, the gaps predicted
by standard DFT calculations are often very small in comparison with experiment, for example
tenths of an eV in materials that have several eV band gaps, such as NiO. Essentially, while
there can be a band gap for such materials in standard band calculations, the description of the
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Fig. 2: Electronic density of states of cubic perovskite SrMnO3 as obtained with the PBE GGA.
The calculations were done using the LAPW method and the projections are onto the Mn LAPW
spheres of radius 1.9 Bohr. Majority spin is shown above the horizontal axis, and minority
below. The left panel shows the result for the G-type antiferromagnetic ground state, while the
right panel is for ferromagnetic order.

electronic structure and the true nature of the gap is qualitatively incorrect. Cases like SrMnO3

are less clear. This is because there is not a clear experiment showing the magnitude of the
gap in the paramagnetic phase for this material, and because very tiny dopings produce metallic
conduction about TN suggesting that the material is almost metallic [30]. In general, care is
needed in deciding the extent and nature of correlations in materials.

The second point is the connection between structure and correlations. CaMnO3 is a much more
clear case of a Mott insulator that SrMnO3, which from an experimental point of view is more
borderline. The principal difference between the two materials is structural, i.e. that in CaMnO3

the MnO6 octahedra are rotated yielding an orthorhombic structure. Such a structural distortion
will generally narrow the bands (especially the eg band) in a perovskite, favoring a correlated
state. The Mott transition is typically first order and is frequently strongly coupled to structure.
Thus properties of a metal near a Mott transition, as in the cuprate superconductors, can be very
different from those of the nearby Mott insulator. The presence of the Mott phase in materials
like cuprates shows the importance of the interactions that give rise to it on both sides of the
metal-insulator transition, but the manifestation of these interactions in the physical properties
can be very different in these different phases. An interesting note is that, even though standard
band calculations yield completely wrong descriptions of the Mott phases, many aspects of the
nearby conducting phases, such as the Fermi surfaces of YBa2Cu3O7, can be well described.
While, as will be discussed in other chapters in this volume, there has been significant recent
progress, it remains challenging to add the essential effect of the missing correlations to DFT
calculations, without destroying the good features of those calculations, or changing from a first
principles approach to an approach based on model parameters.
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Fig. 3: The octahedral crystal field splitting in transition metal oxides such as SrMnO3.

3.2 Crystal fields, moment formation and ordering

In order to continue with our discussion of SrMnO3, it is useful to first overview some aspects
of magnetism in perovskite oxides. In the cubic perovskite ABO3 structure the B-site ions are
separated by the lattice parameter a, typically ∼4 Å in oxides, while the bond lengths along
B-site – O – B-site paths are a/2. Thus the main interactions both for forming the electronic
structure and for magnetism are through the oxygen ions, specifically the O 2p orbitals. These
orbitals are px, py and pz.
These orbitals mix with the transition metal d orbitals. The Pauling electronegativity of O is
3.44, which is higher than that of any transition element. Therefore the center of the transition
metal d bands lies above the center of the O p bands in almost any such material (for this purpose
ZnO, CdO and HgO with their full d shells are not regarded as transition metal oxides). In a
cubic environment, the five d orbitals are separated by symmetry into a two-fold degenerate (per
spin) eg and a three-fold degenerate t2g set.
The eg orbitals, labeled x2−y2 and z2, have lobes that point towards the O ions in an octahedral
environment, while the t2g orbitals, xy, xz and zy point in between the O ions. If one adopts
a local frame in which the pz orbital points to the B-site ion and the px and py are oriented
perpendicular to this bond, one sees that there is a strong σ bonding interaction between the pz
the eg d orbitals on the B-site and a weaker π bonding between the O px, py orbitals and the
t2g d B-site orbitals. This explains the crystal field scheme in perovskites. The metal bands are
formally metal d – O p antibonding combinations. The t2g bands are more weakly antibonding
than the eg bands, and therefore occur lower in energy. This is shown in Fig. 3. Also it follows
that in perovskites absent structure distortions, the t2g bands are generally narrower than the
corresponding eg bands and also that the eg bands have a more mixed metal d – O p character
than the t2g bands. Importantly, the crystal field splittings in the d bands of transition metal
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Fig. 4: Band structure depiction of the superexchange mechanism for interaction between two
transition metal ions.

oxides are primarily due to hybridization and covalency with the p states of the neighboring O
as opposed to non-spherical electrostatic potentials. As such, large crystal field splittings are an
indicator of strong hybridization.
Within a local moment picture, which as mentioned is a good starting point for SrMnO3, mag-
netism generally has two aspects: (1) Moment formation and (2) coupling of the moments at
different sites to produce ordering. In most materials these two processes can be considered
separately. The moment formation is driven by the on-site Hund’s coupling in open shell ions,
while the magnetic interactions are through the band formation, i.e. hopping between sites,
which for the reasons discussed above in perovskites is expected to involve O.
For magnetic ordering, large inter-site interactions, i.e. large effective Heisenberg parameters
J , or more generally large hopping integrals, should lead to high ordering temperatures. On the
other hand, strong hopping implies both covalency between theB-site and O orbitals, which will
reduce the on-site Hund’s coupling through mixing of the orbitals and also large band width. If
the band width becomes comparable to the Hund’s coupling, one may expect the moments (and
therefore magnetism) to be lost.
Superexchange is by far the most commonly discussed exchange mechanism in oxides. The
theory for this interaction was formulated by P.W. Anderson [32] and further elucidated by
Goodenough [33] and Kanamori [34]. Here we describe it within a band structure framework.
The left panel of Fig. 4 shows an energy level scheme for two ions with their spins aligned anti-
parallel (i.e. anti-ferromagnetically, so that the majority spin is in the global spin-up direction
on one site and in the opposite spin-down global direction on the other site). Allowing hopping
through O mixes orbitals on different atoms within the same global spin direction. For anti-
parallel alignment this means that the majority spin on one atom mixes with the minority spin
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on the next, and vice versa. The result is that the lower lying majority states will be pushed down
in energy and the minority spin states pushed up. If the Fermi level is placed so that the majority
levels are occupied, while the minority are unoccupied, the result will be a net energy lowering.
On the other hand, if the spins are aligned ferromagnetically, then the majority spin on one atom
mixes with the majority spin on the neighboring atom, and if this level is completely occupied
there will be no gain from this and similarly for the fully unoccupied minority spin channel.
Thus one has an energy gain for antiferromagnetic alignment but not for ferromagnetic. This
constitutes the superexchange interaction.

So, what favors strong superexchange from a chemical point of view? Superexchange arises due
to hopping between sites via O. This means that strong hopping favors strong superexchange.
Cases where this can be expected are (1) transition metal atoms in high valence states such as
in the cuprate superconductors (because in that case the d levels will be low in energy, i.e. close
to the O 2p levels); (2) cases involving eg orbitals, i.e. systems with an empty eg in the minority
spin and a full eg in the majority spin (since eg orbitals participate in strong σ bonds with O
2p orbitals); (3) straight bonds for the eg case, since the hopping will be strongest in that case;
(4) structures with short metal – O distances; and (5) heavier 4d and 5d elements to the extent
that they can have moments as in SrTcO3, which we discuss below (these have larger d orbitals
with more covalency than 3d elements) [35]. With the exception of straight bonds, these are the
same factors that lead to large crystal field splittings.

3.3 SrMnO3 revisited

Returning to SrMnO3 (Fig. 2), one has both substantial crystal field and exchange splittings of
the d bands. From electron counting, there are three d electrons in Mn4+, and so this should
normally lead to a fully occupied majority spin t2g manifold, with the other d bands empty, and
a spin moment of 3 µB/Mn, consistent with the calculated and experimental results. The main
O 2p bands occur in the energy range from 0 eV (top of the valence band) to ∼ 6 eV binding
energy (-6 eV), with the pσ in the bottom 3 eV. Focusing on the G-AFM (left panel) the minority
spin shows a crystal field splitting of ∼ 2 eV between well defined t2g and eg manifolds. In the
majority spin the occupied t2g manifold overlaps the top of the O 2p bands due to the exchange
splitting, which is a little smaller than 3 eV.

A closer examination shows Mn eg character at the bottom of the valence bands (i.e. the bonding
O pσ - Mn eg combination) in both spin channels but much more strongly in the majority spin.
The reason for the spin dependence is that the d bands are lower in energy in the majority
channel, which favors covalency through a smaller energy denominator. Thus the hybridization
in SrMnO3 is very spin dependent, with clearly stronger hybridization for the majority spin eg
than for the minority spin. This is important for the metallicity of the ferromagnetic ordering,
and also as it is generic to perovskite manganites, it is important for the band formation of those
compounds in general.
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Fig. 5: Electronic density of states of SrTcO3 as obtained within the LSDA following Ref. [35].
The Tc d projections are onto the LAPW spheres of radii 2.1 Bohr.

3.4 SrTcO3

Tc is the element directly below Mn in the periodic table, i.e. it is the 4d analogue of the 3d
element Mn. Tc is in general chemically similar to Mn, but as is generally the case in going from
the 3d element to a 4d element, it has a lower Hund’s coupling and more extended d orbitals,
with the result that Tc has less tendency to form high spin compounds and has a tendency to
be more covalent in compounds. Finally, Tc is larger than Mn in the sense that its Shannon
ionic radii are larger than those of Mn. Structural distortions in ABO3 perovskites are often
understood in terms of a tolerance factor, t = (rA+rO)/(

√
2(rB+rO)), where rA, rB and rO are

the ionic radii of the A, B and O ions. Thus the tolerance factor of SrTcO3 is smaller than that
of SrMnO3, which from a structural point of view makes it more analogous to CaMnO3, and in
accord with this SrTcO3 forms in an orthorhombic distorted perovskite structure characterized
by tilts of the TcO6 octahedra.
As mentioned, the Neel temperature of CaMnO3 is lower by approximately a factor of two than
that of SrMnO3. In contrast, SrTcO3 has received recent attention because of its extremely high
TN > 1000 K [35]. Similar to CaMnO3 and SrMnO3, the ground state of SrTcO3 is a G-type
antiferromagnet.
The density of states for the ground state magnetic structure as obtained within the LSDA
is shown in Fig. 5. As may be seen, again similar to SrMnO3, a small band gap insulator
is predicted. However, the electronic density of states (DOS) is qualitatively different. The
projections show very strong covalency between O and Tc even for the nominal t2g manifold
(Tc t2g – O p π antibonding combinations; recall that for SrMnO3 the t2g hybridization was
weak and it was only the direct σ bonding eg states that showed large hybridization). Because
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of this strong covalency, the Tc d character as measured by the weight inside the 2.1 Bohr
LAPW sphere amounts to only ∼60% of the total N(EF ). Furthermore, the Hund’s coupling
on the 4d Tc atoms is smaller than that on 3d atoms because of the more extended orbitals in
this case. One can see this in the smaller exchange splitting in the Tc compound, as compared
to the Mn analogue (note the exchange splitting of the t2g states, ∼ 1 eV).
As in SrMnO3, the G-type ground state state can be understood in a simple chemical bonding
picture. Hybridization occurs between states of the same global spin direction and yields the
best energy lowering when occupied states mix with unoccupied states to leave bonding combi-
nations occupied and antibonding combinations unoccupied. With G-type order, the occupied
majority spin states on a given site hybridize with unoccupied minority states on each of the
six neighboring sites, which is most favorable. However, unlike SrMnO3, SrTcO3 does not
show local moment behavior at the DFT level. For example, it was found that the moments
collapse to zero for ferromagnetic ordering. Rodriguez and co-workers also considered other
orderings [35]. These were a so-called A-type ordering, consisting of ferromagnetic sheets of
Tc stacked antiferromagnetically, a C-type arrangement with sheets of nearest neighbor antifer-
romagnetic Tc stacked to give ferromagnetic chains along the stacking direction, and a G-type
nearest neighbor antiferromagnetic arrangement. They found that the A-type arrangement had
no stable moments, similar to the ferromagnetic, while the C-type showed a very weak mag-
netic solution, with moments in the Tc LAPW spheres of 0.44 µB and an energy lower than the
NSP state by only 0.4 meV / Tc. In contrast a very robust solution was found for the G-type
ordering. Therefore, at the LSDA level, SrTcO3 should be described not as a local moment
system, but as being closer to the itinerant limit.
In standard oxide magnets there are two energy scales. The first is a scale set by intra-atomic
Coulomb repulsions, particularly the Hund’s coupling, which drive moment formation. This
is typically a high energy scale and leads to stable moments at all solid state temperatures.
The second scale controls the ordering temperature, and is that associated with the relative
orientation of moments on neighboring sites. This is determined by inter-atomic hopping, as
for example in the superexchange mechanism. In perovskites it arises from the hybridization
between transition metal d orbitals and oxygen p orbitals. Importantly, the ordering temperature
is set by the energy differences between different configurations of the moments, and these
differences in turn are related to metal oxygen covalency and details of the bonding topology.
In SrTcO3 the larger extent of the Tc 4d orbitals relative to e.g. the 3d orbitals of Mn lowers
the on-site interactions that underlie moment formation, but strongly increases the amount of
covalency as seen in the DOS projections. The result is that the two energy scales become
comparable and moment formation and ordering are intertwined. This type of situation is often
described as itinerant magnetism. This term should however be used with caution, since the
moments are not small, and as a result there is a rearrangement of the DOS not only near EF
but over most of the ∼3 eV wide t2g manifold.
There are two important differences between SrMnO3 and SrTcO3 that imply high ordering
temperature in the Tc compound. First of all, the energy scale is increased because of the greater
hybridization and the smaller energy splitting between minority and minority spin orbitals (this
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enters in the denominator). Secondly, because the moment formation is intimately connected to
the magnetic order, competing states, as exemplified by the C-type pattern are suppressed: with
two of the six neighboring Tc flipped the moment is strongly reduced, so that even though four
neighbors are oppositely aligned for a net favorable alignment of two neighbors, the energy that
might have been gained is lost because the moment collapses. This is related to the physics that
leads to high ordering temperatures in low moment itinerant magnets such as Cr and Ni. In any
case, these two facts provide a qualitative explanation for the high observed Neel temperature.
Turning to the connection of approximate DFT results with experiment, we note that in the
Mott case the insulating state is incorrectly described. The band prediction for SrTcO3 would
be that it has a metal-insulator transition associated with magnetic order, i.e. that it becomes
conducting above TN . It is not known at present what happens in SrTcO3 from an experimental
point of view. However, the 5d analogue, NaOsO3, which shows many features in common
with SrTcO3, except that TN=410 K is lower, is reported to have a metal-insulator transition
associated with magnetic ordering [36].

3.5 SrRuO3 and itinerant ferromagnetism

As mentioned, the half-filled t2g band is important for the G-type antiferromagnetism in SrTcO3;
with G-type order, one has a majority spin band of bonding character that is filled, and a cor-
responding minority spin band of antibonding character that is empty. Thus one may expect
interesting behavior with doping.
Ru is the element next to Tc in the periodic table. Thus SrRuO3 can be roughly viewed as
an electron doped SrTcO3. Like SrTcO3, SrRuO3 has an orthorhombic distorted perovskite
structure characterized by octahedral tilts. The ground state is metallic and ferromagnetic, with
a total spin moment of ∼1.6 µB on a per Ru basis (this is distributed between Ru and O,
however) and a Curie temperature, Tc=160 K [37–39, 41]. The material is of interest in its
own right as a rare example of a 4d ferromagnet, and also because many of the related ruthenate
phases show very unusual physical behavior, much of it related to magnetism and electron
correlations. Notably, the layered perovskite, Sr2RuO4, which has the same Ru valence and
coordination as ferromagnetic SrRuO3, is an apparently triplet superconductor [42, 43], while
Ca2RuO4 is a Mott insulator [44]. The bilayer perovskite Ca3Ru2O7 is a metamagnetic metal
and is ferromagnetic within its bilayers, but with very slight alloying by Ti, becomes a G-type
antiferromagnetic Mott insulator [45], again showing borderline behavior in ruthenates.
DFT calculations for SrRuO3 show a clear ferromagnetic instability, with parameters (such as
moments) that are in accord with experimental measurements. Also, like SrTcO3, but in contrast
to SrMnO3, the moments are highly dependent on the magnetic order; in SrRuO3 the moments
are suppressed for G-type order. Also, there is a strong dependence on structure. Without the
octahedral tilting, i.e. with the cubic perovskite structure the moment is reduced from 1.59 µB
per formula unit to 1.17 µB in the LSDA [40]. CaRuO3, which differs structurally from the Sr
compound in having larger tilts due to the smaller ionic radius of Ca, is paramagnetic although
highly enhanced (i.e. very near ferromagnetism) according to experiment. This is in accord with
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Fig. 6: Electronic density of states of SrRuO3 as obtained within the LSDA (see Ref. [40]) on a
per formula unit basis. The Ru d projections are onto the LAPW spheres of radii 2.0 Bohr.

LSDA calculations [46], although within the LSDA CaRuO3 is closer to ferromagnetism than in
experiment. This may be a sign of renormalization due to quantum spin fluctuations associated
with the proximity to the ferromagnetic state. Such renormalizations are not described by stan-
dard approximate DFT calculations, because the electron gas upon which these approximations
are based is at densities that place the uniform electron gas far from magnetism [47–49]. In any
case, the strong dependence of the moments on the ordering as well as on the structure indicate
an itinerant aspect to the magnetism.

The interplay between moment formation and magnetic order discussed above for SrTcO3 and
SrRuO3 is a characteristic common to many 4d and 5d magnetic oxides. Essentially, compared
to 3d magnets, (1) the Coulomb interactions, including the exchange interactions are relatively
weaker since they depend on Slater integrals, which are smaller for more extended orbitals and
(2) the hopping and covalency involving the d orbitals is stronger, as these larger orbitals overlap
more strongly with orbitals on neighboring O atoms. These two characteristics are generic to
such materials.

Another aspect that is important is that because of the heavier atoms involved, spin orbit can
play a more important role. Although we do not discuss this in detail here, we note that it has
received recent attention both in terms of correlation effects in materials such as iridates [50],
and in providing mechanisms for high magnetocrystalline anisotropies and magneto-optical
coefficients. This may be important from a practical point of view especially in ferromagnetic
(or ferrimagnetic) materials with heavy element moments and Curie temperatures above room
temperature, such as double perovskites (e.g. Sr2CrReO6 [51]).

Fig. 6 shows the calculated density of states of orthorhombic SrRuO3 in its ferromagnetic
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ground state as obtained within the LSDA (this is a new calculation, done similarly to that
reported in Ref. [40] but with a better converged zone sampling; the moment of 1.55 µB in
this calculation is slightly lower than in the reference, 1.59 µB). The electronic structure shows
exchange split bands that are otherwise similar between the majority and minority spin. The
region near the Fermi energy is derived primarily from Ru t2g states as expected. However, even
in the π bonding t2g manifold strong hybridization with O is evident. This can be seen clearly
in the DOS via the Ru d bonding contributions to the nominal O 2p bands.
SrRuO3 provides an example of itinerant magnetism. In its simplest form it arises from an
instability of the Fermi surface, but in general the moments are finite and states away from the
Fermi surface are important as well. In any case, in the simplest picture, if the density of states
at the Fermi energy, N(EF ) is high then a system may lower its energy by an exchange splitting
where the majority spin states move to higher binding energy (lower absolute energy) relative to
the minority spin and accordingly charge is transferred from the minority to the majority channel
as seen in the DOS. This instability is described by Stoner theory [52], and was generalized to
the case of finite moments in the so-called extended Stoner theory [53] (ref. [46] discusses
ruthenates from this point of view).
Within Stoner theory, the bare Pauli susceptibility (χ0 = N(EF ), with suitable units) is en-
hanced by a factor (1-N(EF )I)−1, whereN(EF ) is expressed on a per spin basis. An instability
towards ferromagnetism occurs when the Stoner parameter, N(EF )I exceeds unity. The physi-
cal origin of I is in the exchange interaction, i.e. through the Coulomb repulsion, and therefore
more compact orbitals lead to larger I , while covalency reduces I . The Stoner criterion amounts
to a criterion that the gain in exchange energy from polarizing the bands exceeds the loss in ki-
netic energy due to the unequal occupation. Typical values of I for 3d transition elements are in
the range 0.7-0.8 eV, and so a Stoner instability can be anticipated if N(EF ) for a 3d transition
atom exceeds∼1.3 eV−1 on a per spin per atom basis. Values for various elements can be found
in Ref. [54]. However, it should be noted that while these values are useful for understanding
the type of magnetic behavior that is expected in a given material, in practice the precise value
of I varies from material to material and one would not use the tabulated values of I , but would
directly obtain the susceptibility and magnetic behavior from self-consistent calculations.
Actually, the Stoner enhancement, above, is a special case of the RPA enhancement, which can
be written,

χ(q) = χ0(q)/(1− I(q)χ0(q)), (7)

where χ0 is the bare Lindhard susceptibility, and I(q) is an interaction term that is now q-
dependent. As in the case of ferromagnetism, an instability occurs when the product I(q)χ0(q)

reaches unity, in this case towards a spin density wave at the nesting vector, q. Details and
interesting discussion about itinerant magnetism from a band structure point of view can be
found in the book of Kubler [55].
Returning to SrRuO3, one sees a substantial peak in the DOS, which is what drives the magnetic
instability. Because this peak is derived from hybridized bands rather than pure d bands a rigid
splitting will result in a magnetization density that reflects this character, i.e. the character of
the band states near the Fermi energy. In the case of SrRuO3 this is approximately 2/3 from
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Ru t2g states and 1/3 from O 2p states (note that there is always ambiguity in defining where
contributions to states come from as there is no unique physical decomposition of the charge
density into atomic contributions). In SrRuO3 the t2g bands do in fact exchange split rather
rigidly as can be seen by comparing the majority and minority DOS, and similarly for the Ru
d projection of the DOS. The reason why the bands exchange-split rigidly in this way is that
the energy cost associated with breaking the Ru - O hybridization is high in this material. In
any case, the consequence is the prediction of substantial moments on the O sites amounting in
aggregate to ∼1/3 of the total magnetization. This has been confirmed by neutron diffraction
measurements.
Another consequence of the induced spin-polarization on O is that not only the pπ states of O
that are hybridized with the polarized Ru t2g orbitals are exchange-split, but as seen in the DOS,
the entire O 2p manifold is exchange-split. This includes the lower part that comes from the pσ
orbitals.
As was discussed in Ref. [46], the ferromagnetic ground state of SrRuO3 can be analyzed us-
ing extended Stoner theory. Extended Stoner analysis helps shed some additional light on the
general features of the magnetic instabilities in ruthenates. The key parameter in this theory
is N(EF )I , where the Stoner I is a normally atomic-like quantity giving the local exchange
enhancement. Generally, I is determined by the density distribution on an ion, and is larger
for more compact orbitals, as in 3d ions relative to 4d ions. In compounds, I is replaced by a
material dependent average I . The appropriate averaging for calculating the energetics is with
the decomposed DOS, I = IAn

2
A + IBn

2
B, for two components, A and B, where IA and IB

are the Stoner I for atoms A and B, and nA and nB are the fractional weights of A and B in
N(EF ) (normalized to nA + nB = 1). The O2− ion is highly polarizable (it does not exist
outside crystals) and because of this the value of IO may be expected to be material dependent.
Nonetheless, O2− is a small ion and so IO may also be large. Mazin and Singh got IRu=0.7 eV
and IO = 1.6 eV for SrRuO3, yielding I = 0.38 eV including O and I = 0.31 eV without the O
contribution. The O contribution to I is generic to perovskite derived ruthenates, as it simply
reflects the hybridization of the t2g orbitals of nominally tetravalent octahedrally coordinated
Ru with O. This provides a ferromagnetic interaction between Ru ions connected by a common
O. The interaction comes about because for a ferromagnetic arrangement the O polarizes, and
this contributes to the energy, while for a strictly antiferromagnetic arrangement, O does not
polarize by symmetry, and so in this case there is no O contribution to the magnetic energy.
This is local physics and so this contribution to the paramagnetic susceptibility, while peaked at
the zone center, is smooth in reciprocal space.
This ferromagnetic tendency, which is generic to all the ruthenates, competes with an antiferro-
magnetic nesting related tendency in the layered perovskite Sr2RuO4, which is a superconduc-
tor. In that compound, spin-fluctuation theory predicts that the ferromagnetic tendency provides
an interaction that can stabilize the triplet state [56, 57]. It is not clear what the role of the anti-
ferromagnetic tendency is in the superconductivity, but one possibility is that it competes with
the ferromagnetic tendency, moving the system away from magnetic ordering and thus allowing
triplet superconductivity to appear as the ground state.



DFT Calculations 2.21

3.6 Summary

There are a wide variety of oxide magnets, including many useful materials. In spite of many
decades of productive research on these, entirely new systems and new physics continue to be
discovered in oxides. The above represents a narrow selection of three materials that illustrate
some concepts (and leaves out other very important topics, e.g. orbital ordering). Nonetheless,
I hope that it is useful.

4 Concluding remarks

Life would be much less interesting (and perhaps not existent at all) in a universe where all
substances had roughly the same properties, e.g. a world where all solids had the mechanical
properties of Jello. Fortunately for us this is not the case, and instead condensed matter displays
a richly varied diversity of properties. According to density functional theory, all of this variety
is fundamentally associated with the different charge-density distributions in materials. If one
considers that the valence charge-density is most important, it is remarkable to observe that the
average valence-density in a material like diamond is not so much different from that in iron or
BaTiO3 even though the properties of those substances are very different. As mentioned, solids
are not like blueberry muffins. From this point of view it is most remarkable that approximate
DFT methods, such as the LDA, effectively describe many of these differences even though it
would seem at least superficially to be based on a description adapted from the uniform electron
gas. This success, which is reflected in the widespread use of approximate DFT in condensed
matter physics, chemistry and materials science, often provides a very useful starting point for
understanding correlated materials and their properties.
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1 Introduction

The electronic structure of condensed matter is usually described in terms of one-electron basis

sets. Basis functions used for computation, or rather, their envelopes are usually mathemati-

cally simple functions, plane waves or Gaussians, in particular. A plane wave is a solution of

Schrödinger’s equation for a flat potential, and products of plane waves are plane waves; as a

result, the charge density and its Hartree potential are plane-waves as well. Similarly, a Gaus-

sian is a solution of Schrödinger’s equation for a parabolically increasing potential, products of

Gaussians are Gaussians, and the Hartree potential for a Gaussian charge density is 1/r times

the error function. However, in order for such sets to give accurate results, the number of basis

functions must be orders of magnitude larger than the number of valence electrons to be de-

scribed. This is so, because as illustrated at the top of Fig. 1, the potential V (r) in the effective

one-electron Schrödinger (Kohn-Sham) equation is neither flat inside the atoms nor paraboli-

cally increasing between them. Therefore, a plane-waves basis must include plane waves with

energies spread over a region much larger than the one of the one-electron energies ε of inter-

est, and a Gaussian basis must include Gaussians not only with many widths, but also at many

positions displaced from those of the atoms. For a discussion of plane-wave basis sets, we refer

to the last year’s lecture notes [1] by Blöchl [2].

By virtue of solving Schrödinger’s equation for a muffin-tin well, the classical linear muffin-tin

orbitals (LMTOs) [3, 4] form a comparatively small basis set. But only in the atomic-spheres

approximation (ASA) where the MTOs are expanded in partial waves inside atomic spheres,

assumed to fill space, do the products ϕl (ε, r)Ylm (r̂) × ϕl̄ (ε̄, r)Y
∗
l̄m̄

(r̂) have the same form,

fL′ (r) Yl′m′ (r̂) , as each factor, and this is what makes the LMTO-ASA method exceedingly

fast. However, the ASA is only accurate when the atoms are at high-symmetry positions.

For many purposes it is therefore desirable to extract a small set of intelligible, localized or-

bitals spanning merely selected conduction and/or valence states. For instance, if we want to

describe the bonding, we need a localized basis set which spans the occupied states only (bond

orbitals). If we want to construct models which add interactions to the one-electron Hamil-

tonian, e.g. electron-electron repulsions, we need a basis set of localized, atomic-like orbitals

which describes the one-electron energies and wave functions in a suitable region around the

Fermi level.

For an isolated set of energy bands in a crystal, εi (k) (i = 1, ., A) , this can be done by pro-

jecting from their delocalized Bloch eigenstates, Ψi (k; r) (i = 1, ., A) computed with the large

basis set, a suitable set of generalized Wannier functions, wa (r− t) . These are enumerated by

a (= 1, ., A) and the lattice translations, t, of which there are N → ∞, and they form a set of

orthonormal functions related to the orthonormal Bloch eigenstates by a unitary transformation:

Ψi (k; r) = N− 1

2

∑

t

∑A

a=1
uia exp (ik · t) wa (r− t) , (1)

The inverse transformation:

wa (r− t) = N− 1

2

∑

k

∑A

i=1
u∗ai exp (−ik · t) Ψi (k; r) , (2)
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Fig. 1: Top: Effective one-electron potential in condensed matter (black) and the energy re-

gion of interest (blue). Bottom: Basis functions (red), their generating potentials (black), and

energies (blue).

is the Wannier projection. Wannier functions are not unique, because performing a unitary

transformation, Waā;t−t′ , of one set of Wannier functions produces another set which also sat-

isfies Eq. (1), merely with different i and k-dependent phases of the Bloch functions. So the

art of Wannier projection from the Bloch states (2) is to choose the i and k-dependent phases

of the latter in such a way that the Wannier functions attain desired properties, in particular

optimal localization – in some sense. Mazari and Vanderbilt chose to minimize the spread
〈

w
∣

∣|r− 〈w |r|w〉|2
∣

∣w
〉

and developed an – otherwise general – numerical procedure for pro-

jecting such “maximally localized” Wannier functions from Bloch states expanded in plane

waves [5].

We shall only be interested in generating localized Wannier functions which resemble atomic

orbitals, so-called Wannier orbitals, or simple linear combinations hereof such as bond orbitals.

In this case, it is obvious that the phases in the projection (2) should be chosen such that when

summing the Bloch states over i and k, the atomic-orbital characters chosen for the Wannier

functions should add up constructively. How localized the resulting Wannier orbitals are, then

depends on how well the set of A bands are described by the characters chosen. This procedure

was applied –presumably for the first time– by Satpathy and Pawlowska [6] to compute the sp3

bond orbital in Si. They used the TB-LMTO basis [4] which makes the procedure quite obvious

because the LMTO expansion has the same form as the expansion (2) in terms of Wannier

functions, except that the unitary A×A matrix uia is replaced by the rectangular A× (A+ P )



3.4 Ole K. Andersen

matrix of LMTO eigenvectors. The projection is thus seen to be a downfolding in which each

Wannier orbital becomes an active LMTO dressed by a tail of all the passive (P ) LMTOs not

in the set of active (A) ones. With other local-orbital basis sets, somewhat similar techniques

can be used, but unless all basis functions are well localized, the Wannier orbitals obtained may

not be sufficiently localized. For a further discussion we refer to last year’s lecture notes by

Kunes [7].

For molecules, Boys [8] had a long time ago recognized that chemical bonds should be associ-

ated with those linear combinations of the occupied molecular orbitals which are most localized,

because those linear combinations are most invariant to the surroundings.

The present notes deal with a different kind of basis set, specifically with minimal bases of

N th-order muffin-tin orbitals (NMTOs), also known as 3rd generation MTOs [9–13]. We

shall demonstrate that with NMTOs it is possible to generate Wannier functions directly, in-

stead of via projection from the delocalized Bloch states. NMTOs are constructed from the

partial-wave solutions of Schrödingers equation for a superposition of overlapping spherical

potential wells (muffin tins, MTs) [14,15] and NMTO sets are therefore selective in energy. As

a consequence, one can construct an NMTO set which picks a specific set of isolated energy

bands. Since NMTOs are atom-centered and localized by construction, they do –after sym-

metric orthonormalization– form a set of localized Wannier functions which, if needed, can be

recombined locally to have maximal localization. The NMTO technique is primarily for gen-

erating a localized, minimal basis set with specific orbital characters, and it can therefore be

used also to pick a set of bands which overlap other bands outside the energy region of inter-

est [16]. The corresponding NMTOs –orthonormalized or not– we refer to as Wannier-like.

Once a computationally efficient representation is implemented for products of NMTOs [17],

they should be suitable for full-potential, real-space calculations with a computational effort in-

creasing merely linearly with the size (N) of the system, so-called order-N calculations [18,19].

We start by explaining the LMTO idea of how to construct small basis sets of orbitals, χRlm (r) ,

from partial waves, ϕRl (ε, r)Ylm (r̂) , and spherical waves, hl (κr)Ylm (r̂). Then we define

the set of exact, energy-dependent MTOs (EMTOs) [20, 21], also called kinked partial waves

(KPWs), which includes downfolding and employs overlapping MT spheres for their definition.

The KPWs are used to derive, first the screened KKR equations, and then theNMTO basis sets.

NMTOs with N=1 turn out to have the same form as classical TB-LMTOs in their atomic-

spheres approximation (ASA), but without invoking this approximation. Examples of Wannier

functions which are orthonormalized NMTOs are given along the way.

2 Classical LMTOs

The idea [22,3,23,24] of how to generate small basis sets of accurate orbitals can be understood

by considering first the way in which Wigner and Seitz [25] thought about solving the one-

electron eigenvalue problem for a close-packed solid; in case of a crystal, that is the band-

structure problem. They divided space into WS cells and assumed the potential to be spherically
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symmetric inside each cell,

V (r) =
∑

R
vR (rR) . (3)

Here and in the following, rR ≡ |r−R| , and R labels the sites, R. With this approximation,

Schrödinger’s equation (in atomic Rydberg units),

[H− ε]Ψ (ε, r) =
[

−▽2 +V (r)− ε
]

Ψ (ε, r) = 0, (4)

can be treated as a separable differential equation: The eigenfunctions must have a partial-wave

expansion inside each cell,

Ψ (ε, r) =
∑

lm
ϕRl (ε, rR)Ylm (r̂R) cRlm, (5)

and one may therefore proceed by first solving the radial Schrödinger equations,

− [rϕRl (ε, r)]
′′ =

[

ε− vR (r)− l (l + 1) /r2
]

rϕRl (ε, r) , (6)

for allR and l and a given energy, ε, and then seek coefficients, cRlm, for which the partial-wave

expansions join together continuously and differentiably at the cell boundaries. The energies

for which this is possible are the eigenvalues, ε=εi, and Ψi (εi, r) the eigenfunctions.

This point of view for instance leads to the approximate Wigner-Seitz rules stating that for

an elemental, close-packed crystal, where the cell can be substituted by an atomic sphere of

the same volume (Ω=4πs3/3), a band of l-character exists between the energies εlB and εlA for

which respectively the slope and the value of ϕl (ε, r) vanishes at the atomic sphere. These band

edges correspond to the bonding and antibonding states of a homonuclear diatomic molecule.

In this atomic-spheres approximation (ASA), the input to the band structure from the potential

enters exclusively via the dimensionless, radial logarithmic derivative functions,

D {ϕl (ε, s)} ≡ ∂ ln |ϕl (ε, r)| /∂ ln r|s = sϕl (ε, s)
′ /ϕl (ε, s) , (7)

evaluated at the WS sphere, s. These are ever decreasing functions of energy and the bond-

ing/antibonding boundary condition is: D {ϕl (ε, s)} = 0/∞. The shape of the l-partial wave

thus changes significantly across a band of predominant l-character (Fig. 2) and, as we shall see

in Sect. 3.4, even more across the hybridized sp3 valence band of Si.

To set up this matching problem correctly, however, it is necessary to deal with cells rather than

spheres and with all the partial waves required to make the one-center expansion (5) converged

at the cell-boundary. This takes l . 15 and is not practical.

Next, consider the customary and more general way of solving Schrödinger’s equation, namely

by use of the Raleigh-Ritz variational principle for the Hamiltonian with a trial function ex-

pressed as a superposition of basis functions, χj (r) ,

Ψ (r) ≈
∑

j
χj (r) bj . (8)

Variation of the coefficients bj leads to the algebraic, generalized eigenvalue problem:

∑

j

(〈

χj̄ |H|χj

〉

− ε
〈

χj̄|χj

〉)

bj = 0, (9)
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Fig. 2: Radial potential (green) and energies (colored) together with the corresponding radial

wave functions. The latter curve towards the r-axis in the classically allowed r-regions and

away from the axis in the classically forbidden regions (schematic).

for all j̄, in terms of Hamiltonian and overlap matrices, H = 〈χ |H|χ〉 and O = 〈χ|χ〉. The

eigenvalues, εi, are variational estimates of the one-electron energies, and the eigenvectors, bj,i,

give the wave functions Ψi (r) .

The idea is now to construct the basis set in such a way that for the approximate model po-

tential (3), the set solves Schrödinger’s equation exactly to linear order in the deviation of the

eigenvalue from an energy, ǫν , chosen at the center of interest, i.e. such that the error is

Ψi (r)− Ψi (εi, r) ∝ (εi − ǫν)
2 .

By virtue of the variational principle, the errors of the eigenvalues will then be of order (εi − ǫν)
4 .

Imagine what such linear basis functions must look like if we choose them as atom-centered or-

bitals, χRlm (rR): In order that the linear combination (8) be able to provide the correct eigen-

functions (5) for a spectrum of eigenvalues, εi, near ǫν , the tails of the orbitals entering a par-

ticular cell (R) must, when expanded in spherical harmonics around R, have radial parts which

are energy-derivative functions, ϕ̇Rl (ǫν , rR) ≡ ∂ϕRl (ε, rR) /∂ε|ǫν , because then, the sum of

the tails added to the head of the orbital will be able to yield the result

ϕRl (ǫν , rR) + (εi − ǫν) ϕ̇Rl (ǫν , rR) = ϕRl (εi, rR) +O
(

(εi − ǫν)
2) . (10)

Hence, the radial shape of a head must be ϕRl (ǫν , rR) , plus maybe a bit of ϕ̇Rl (ǫν , rR) .

The condition that the spherical-harmonics expansion of the tail around site R have the radial

behavior ϕ̇Rl (ǫν , rR) for all lm and all R, might seem to determine the shape of the orbital

completely and not even allow it to be smooth, but merely continuous. However, adding ϕ to ϕ̇
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Fig. 3: Partial waves for the bonding and antibonding states on the central site of a diatomic

molecule and the LMTOs on the two sites (schematic). From Ref. [26].

yields another ϕ̇, corresponding to a different energy-dependent normalization, e.g.

∂ [1 + (ε− ǫν) o]ϕ (ε, r) /∂ε|ǫν = ϕ̇ (ǫν , r) + oϕ (ǫν , r) .

Hence, ϕ̇Rl (ǫν , r) can be adjusted to have, say, a required value and slope at some radius, aR,

where a linear combination of ϕ̇Rl (ǫν , rR) Ylm (r̂R) functions can then be matched smoothly

onto any given orbital shape.

Fig. 3 illustrates that in order to describe the bonding ϕ (εB, r) and antibonding ϕ (εA, r) states

for a diatomic molecule with energy-independent orbitals (LMTOs), those orbitals must have

heads proportional to ϕl (εB, r) + ϕl (εA, r) and tails proportional to ϕl (εB, r) − ϕl (εA, r) .

Now, the overbars on the partial waves in the figure indicate that particular normalizations have

been chosen. Had we renormalized say ϕl (εA, r) to oϕl (εA, r) , the shapes of the heads and

tails of the orbitals would have changed.

More practical than matching the partial waves at the cell boundaries, is therefore to embed

the partial waves in a set of envelope functions or, from the point of view of the latter, to

augment the envelope functions with partial waves. In order that the one-center expansions

(5) converge in l, the envelope functions must be such that they match ϕRl (ε, rR) for high l,

whereby augmentation of the high-l waves becomes unnecessary, as long as they are taken into

account as the high-l part of the envelopes. As l increases, the centrifugal term of the radial

Schrödinger equation (6) drives ϕRl (ε, r) outwards such that eventually only the outermost, flat

part of the potential is being felt. At that point,

ϕRl (ε, r) → jl (rκR) → const.× rl, where κ2R ≡ ε− vR (sR) . (11)

Acceptable envelope functions are therefore decaying solutions of the wave equation:

[

▽2 + κ2
]

hl (κr) Ylm (r̂) = 0, with energies κ2 ∼ ε, (12)
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and potential zero taken as the average between the atoms. These spherical waves may be

linear combined into short-ranged, so-called screened spherical waves (SSWs). What makes

the orbitals spread out are thus the requirements (a) that the orbitals be smooth in all space

(hermeticity), (b) that partial waves with high l should be treated as tails from low-l orbitals

at neighboring sites, and (c) that the basis set should span a range of energies. The two latter

requirements are to some extent flexible: (b) is a choice of how many partial waves to downfold,

the rest having to be kept as (active) orbitals, and (c) is a choice of linearization or N-ization of

the energy dependence of the partial waves. Finally, it should be noted that any delocalization

is enhanced by orthogonalization. But all of this should become clear in the following sections.

For all kinds of augmented basis sets, the model potential (3) defining the basis functions is a

superposition of spherically symmetric potential wells, but their range, sR, varies. LAPWs and

LMTOs used in full-potential calculations employ muffin-tin potentials with non-overlapping

spheres. Empty spheres –i.e. without nuclei– are included at interstitial sites for open structures.

Owing to the sizeable interstitial region (∼ 0.3Ω) and strong discontinuities of the potential

at the spheres, such a MT-potential remains a bad approximation to the full potential, whose

matrix elements must therefore be included in the Hamiltonian. Nevertheless, such a basis is

not optimal and –whenever possible– one uses space-filling potential spheres with a positive

radial overlap,

ωs
RR̄ ≡

sR + sR̄
∣

∣R− R̄
∣

∣

− 1, (13)

not exceeding 20%, and usually neglects the associated errors. For comparison, the overlaps

of the WS spheres in face-centered and body-centered cubic packings are respectively 11 and

14%. Nevertheless, if as in the LMTO-ASA method only the ASA potential is included in the

one-electron Hamiltonian, the results are too dependent on the choice of sphere radii.

Since distances between close-packed spheres are small compared with the shortest wavelength

2π/κF of the valence electrons, the κ2 dependence of the spherical waves (12) is of far less

importance [27] than that of the ε dependence of the logarithmic derivatives (7). For that reason

LMTOs of the 1st [22, 3] and 2nd [4] generations used κ2≡0, thus simplifying the decaying

Hankel functions to multipole potentials ∝ r−l−1, which got screened in the 2nd generation.

With κ≡0 and the ASA, the WS rules for the energies of the band edges in an elementary close-

packed solid could be generalized to the unhybridized band structures, εli (k) = fct (Dl) , the

so-called canonical bands [22, 3, 23, 24, 26, 28].

For the exact, energy-dependent MTOs (EMTOs) [20] with κ2=ε, which we shall consider in

the following section, the overlap errors turn out to be merely of 2nd order in the potential

overlap [14] and, as a consequence, EMTOs can handle up to 50% overlap. The overlapping

MT approximation (OMTA) is a least-squares fit to the full potential [14, 15] so that the MT

discontinuities decrease with increasing overlap.

With EMTOs, also downfolding works perfectly [20], which was not the case with the old LM-

TOs [29]. However, with increasing downfolding, the range of the EMTOs and herewith their

energy dependence increases. So it became necessary to construct not only energy-independent

linear basis sets, but also basis sets of arbitrary order without increasing the size of the set.
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Specifically, for a mesh of N + 1 energies, ǫ0, ..., ǫN , a basis set of N th order will span the

solutions of Schrödinger’s equation for the model potential with the error

Ψi (r)− Ψi (εi, r) ∝ (εi − ǫ0) (εi − ǫ1) ... (εi − ǫN) . (14)

These are the so-called NMTO and NAPW basis sets, of which we shall consider the former.

2.1 Crystals

In the above, R runs over all spheres in the system. If it is a crystal with translations t, the

wave functions and the basis functions can be chosen to translate according to: Ψ (r+ t) =

Ψ (r) exp (ik · t) .

Orbitals can then be Bloch-summed:

χRlm (k; r) ≡
∑

t

χRlm (rR − t) exp (ik · t) ,

where R now labels the atoms in the primitive cell. Rather than normalizing the Bloch sums

over the entire crystal, we have normalized them in the primitive cell. Accordingly,
∑

k
must be

taken as the average, rather than the sum, over the Brillouin zone. Matrices like the Hamiltonian

are translationally invariant, 〈χR̄l̄m̄ (rR̄) |H|χRlm (rR − t)〉 = 〈χR̄l̄m̄ (rR̄ + t) |H|χRlm (rR)〉 ,

and as a consequence,

〈χR̄l̄m̄ (k; r) |H|χRlm (k; r)〉 ≡
∑

t

〈χR̄l̄m̄ (rR̄) |H|χRlm (rR − t)〉 exp (ik · t) .

Numerical calculations are often carried out in the k-representation, but since it is trivial to add

k and limit R to the sites in the primitive cell, in formalisms for orbitals it is simpler and more

general to use the real-space representation.

3 EMTOs

In this section we define the set of EMTOs (KPWs) [20,21] and use them to derive the screened

KKR equations (21). We first explain what the EMTOs are, starting with their envelope func-

tions, and only thereafter, in Sect. 3.3, how to construct them.

Since EMTOs use overlapping MT-potentials for their definition, allow arbitrary downfoldings,

enabling the construction of truly minimal sets [16], and are usually localized, their definition

is tricky:

3.1 SSWs

The members, hα
R̄l̄m̄

(ε, rR) , of the set of envelope functions, |hα (ε)〉 , are superpositions of the

decaying spherical waves in Eq. (12), at all active sites R and with all active lm, but with the

same energy, κ2=ε. The set of SSW envelopes are thus:

|hα (ε)〉 = |h (ε)〉Mα (ε) , (15)
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with a notation in which a set of functions is considered a row-vector: |h (ε)〉 , for instance, has

the elements hl (κrR)Ylm (r̂R) ≡ hRlm (ε, r) andMα (ε) is a matrix with elementsMα
Rlm,R̄l̄m̄

(ε) .

The set of SSWs (15) is characterized by (a) the set of R̄l̄m̄ values to be included in the set, the

active values, (b) a set of non-overlapping screening spheres, so-called hard-spheres, with radii

aR for the active sites, and (c) the phase shifts ηRl (ε) of the MT potential for the remaining –the

passive– Rlm values. With such a partition into active and passive channels, a choice of hard

spheres for the former, and the phase shifts for the latter, we can state the boundary condition

to be satisfied for a member, hα
R̄l̄m̄

(ε, rR) , of the set:

Its spherical-harmonics projections,

Pa
Rlm ≡

∫

d3r δ (aR − rR) Y
∗
lm (r̂R) , (16)

onto the hard spheres must vanish for all active Rlm values, except for the own value, R̄l̄m̄,

for which we choose to normalize the hard-sphere projection to 1. For the the passive Rlm

values, the projection Pr
Rlmh

α
R̄l̄m̄

(ε, rR̄) should be a spherical wave phase shifted by ηRl (ε) .

As discussed in connection with Eq. (12), this holds automatically for all partial waves with

l > 1− 3 because their phase shifts vanish.

With this boundary condition satisfied, the passive channels can be augmented smoothly with the

appropriate Schrödinger solutions, ϕRl (ε, rR) , and the active channels, which usually diverge

at the origin of rR, can be truncated inside the hard spheres, i.e. for rR < aR. This truncation

of the active channels of hα
R̄l̄m̄

(ε, rR̄) is continuous for Rlm 6= R̄l̄m̄, but jumps by 1 in the own

channel. In all active channels there is a discontinuity of outwards slope,

∂

∂r
Pr

Rlmh
a
R̄l̄m̄ (ε, rR̄)

∣

∣

∣

∣

aR

≡ Sa
Rlm,R̄l̄m̄ (ε) , (17)

(for the own channel, the derivative should be taken slightly outside the sphere), specified by a

slope matrix whose calculation we shall explain in the section 3.3.

3.2 KPWs

The resulting augmented, truncated, and renormalized SSW, usually denoted ψa
R̄l̄m̄ (ε, rR̄) , is

now ready to have the hole in its own channel (head) filled: The radial filling function is obtained

by integrating the radial R̄l̄ equation (6) outwards from 0 to sR̄ with the proper potential, and

from there, smoothly inwards to aR̄ with the flat (zero) potential. The solution, ϕ̄R̄l̄ (ε, r) , for

the flat potential, and of course the one, ϕR̄l̄ (ε, r) , for the proper potential, are subsequently

normalized such that the value of the former is 1 at aR̄. This, we indicate by a superscript a :

ϕa
R̄l̄ (ε, r) ≡ ϕR̄l̄ (ε, r) /ϕ̄R̄l̄ (ε, aR̄) , ϕ̄a

R̄l̄ (ε, r) ≡ ϕ̄R̄l̄ (ε, r) /ϕ̄R̄l̄ (ε, aR̄) . (18)

Finally, ϕ̄a
R̄l̄
(ε, r) is matched continuously, but with a kink to ψa

R̄l̄m̄ (ε, rR̄) , and it is truncated

outside the interval aR̄ ≤ r ≤ sR̄. The Schrödinger solution, ϕR̄l̄ (ε, r) , is truncated outside

the interval 0 ≤ r ≤ sR̄. Hence, the resulting radial function has been constructed like an
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accordion: It starts from the origin as the regular Schrödinger solution which extends all the

way out to the radius, sR̄, of the potential well. Here, it is matched smoothly to a phase-shifted

wave, which then runs inwards to the radius, aR̄, of the hard sphere where it matches the SSW

wave with a kink. Finally, the SSW continues outwards. The active channels of the SSW are

truncated inside all hard spheres with kinks, and the passive channels are substituted smoothly

inside all hard spheres with regular Schrödinger solutions. This is illustrated in Fig. 4.

The EMTO, also called the kinked partial wave (KPW) is now:

φaR̄l̄m̄ (ε, rR̄) =
[

ϕa
R̄l̄ (ε, rR̄)− ϕ̄a

R̄l̄ (ε, rR)
]

Yl̄m̄ (r̂R̄) + ψa
R̄l̄m̄ (ε, rR̄) . ◭ (19)

Here, the first term is the product of a spherical harmonic times a radial function, which vanishes

smoothly at, and outside the own potential-sphere (sR̄) . The second term is the augmented

and truncated SSW, which matches onto the first, pure-angular-momentum term at the central

hard sphere with a kink of size Sa
R̄l̄m̄,R̄l̄m̄

(ε) − ϕ̄a
R̄l̄
(ε, aR̄)

′ . Although the KPW is everywhere

continuous, it has kinks at the hard spheres in all active channels, but is smooth in the passive

channels.

We can now try to make a linear combination,

∑A

Rlm
φa
Rlm (εi, rR) c

a
Rlm,i, (20)

of active (A) KPWs which is smooth. This requires that its coefficients satisfy the kink-

cancellation condition,
∑A

R̄l̄m̄
Ka

Rlm,R̄l̄m̄ (ε) caR̄l̄m̄ = 0, (21)

for each Rlm. Here we have multiplied each Rlm-equation by a2R such that

Ka
Rlm,R̄l̄m̄ (ε) ≡ a2RS

a
Rlm,R̄l̄m̄ (ε)− aRD {ϕ̄a

Rl (ε, aR)} δRR̄δll̄δmm̄. ◭ (22)

becomes a Hermitian matrix. Since the passive channels are smooth by construction, Eqs. (21)

must be solved only for the active channels and therefore constitute a set of homogeneous, linear

equations. These have a proper solution for those energies, εi, which make the determinant

of the matrix vanish. Most importantly, the corresponding linear combination is a solution of

Schrödinger’s equation at energy εi for the overlapping MT potential to 1st order in the overlap.

That this is true, can be seen from the following arguments: The kinks of a KPW are always be-

tween two solutions of the same radial wave equation, either partial-wave projections of SSWs,

zero, or inwards integrated phase-shifted waves. Since only two linearly independent radial

solutions exist, e.g. Bessel and Neumann functions, it follows that if they match without a kink

at aR, as they are required to do for the smooth linear combination of KPWs, then they must be

identical in the entire range aR ≤ r ≤ sR. This means that throughout the MT-sphere at R̄,

A
∑

Rlm

ψa
Rlm (εi, rR̄) c

a
Rlm,i =

A
∑

l̄m̄

ϕ̄a
R̄l̄ (εi, rR)Yl̄m̄ (r̂R̄) c

a
R̄l̄m̄,i +

P
∑

l̄m̄

ϕa
R̄l̄ (εi, rR) Yl̄m̄ (̂rR̄) c

a
R̄l̄m̄,i.

Here, the last term comes from the passive (P ) channels and the corresponding coefficients, caP,i
are given by the solutions, caA,i, of (21), times PA expansion coefficients. If site R̄ is passive
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Fig. 4: Si p111 KPW (full) and its constituents: the SSW ψp111 (ǫ0, r) (dashed), the partial wave

ϕa
p (ǫ0, r)Yp111 (111) labelled φ (dot-dashed) for the MT potential, and ϕ̄a

p (ǫ0, r)Yp111 (111)

labelled φ0 (dotted) for the flat potential. The plot is along the [111]-line from the central Si

atom to its nearest neighbor, and from here into the large voids in the diamond structure. The

latter were not described by empty-sphere potentials and, as a consequence, the MT overlap

ωs was as large as 50%; see definition (13). The overlap, ωa, of the hard screening spheres

was −25%. Kink are seen at the central and nearest-neighbor a-spheres. This KPW is the

member of the 9 orbital/atom set of Si s, p, and d KPWs, so that the partial waves with l > 2
were downfolded into the SSWs. This is the reason why ψ does not exactly vanish inside the

a-spheres. The value of ψ just outside the own a-sphere is 1 × Yp111 (111) < 1. The energy of

this KPW was chosen slightly above the bottom of the valence band. A 2D plot of this KPW in

the (11̄0)-plane may be found in Fig. 5. From Ref. [12].

(downfolded), only that term is present on the right-hand side. As a result, the smooth linear

combination of KPWs reduces to:

∑A

Rlm
φa
Rlm (εi, rR) c

a
Rlm,i =

∑A+P

l̄m̄
ϕa
R̄l̄ (εi, rR̄) Yl̄m̄ (r̂R̄) c

a
R̄l̄m̄,i (23)

+
∑A

R6=R̄

∑A

lm
[ϕa

Rl (εi, rR)− ϕ̄a
Rl (εi, rR)]Ylm (r̂R) c

a
Rlm,i,

near site R̄. This is a solution of Schrödinger’s equation, Ψi (εi, r) , plus an error consisting of

tongues from the overlap of the neighboring muffin tins.

Now, the radial part of such a tongue is

1

2
(sR − rR)

2 vR (sR)ϕ
a
Rl (ε, sR) ,

to lowest order in sR − rR, as may be seen from the radial equation (6). Here, vR (sR) is the

MT-discontinuity. Operating finally with H − εi on the smooth linear combination (20), of
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which (23) is the expansion around site R̄, yields the error:

∑

R̄
vR̄ (rR̄)

∑A

R6=R̄

∑A

lm
[ϕa

Rl (εi, rR)− ϕ̄a
Rl (εi, rR)] Ylm (r̂R) c

a
Rlm,i

∼
1

2

∑pairs

RR̄
vR̄ (rR̄)

[

(sR̄ − rR̄)
2 + (sR − rR)

2] vR (sR)Ψi (r) ,

which is obviously of 2nd order in the potential overlap. Q.E.D.

The set of homogeneous linear equations (21) are the screened KKR equations, albeit in radial-

derivative gauge (denoted by a Latin superscript, e.g. a) rather than in phase-shift gauge (de-

noted by the corresponding greek superscript, α). For other uses of screened KKR –or multiple

scattering– theory see e.g. Refs. [31] and [32].

Before we use this to derive NMTOs, let us explain how the slope-matrix is computed.

3.3 Structure matrix

The bare Hankel function to be used in the construction (15) of the SSW envelopes, is a spherical

harmonics times the radial function,

κl+1 [nl (κr)− ijl (κr)] =
[

κl+1nl (κr)
]

− iκ2l+1
[

κ−ljl (κr)
]

(24)

→ −
(2l − 1)!!

rl+1

[

1 +
εr2

2(2l − 1)
...

]

− iκ
(εr)l

(2l + 1)!!

[

1−
εr2

2(2l + 3)
...

]

,

for ε → 0. Here, (2l + 1)!! ≡ (2l + 1) (2l − 1) · .. · 3 · 1 and (−1)!! ≡ 1. For ε=κ2 ≤ 0,

this Hankel function is real and decays asymptotically as e−r|κ|/r. The spherical Neumann and

Bessel functions, normalized as respectively κl+1nl (κr) and κ−ljl (κr) , are real for all real

energies and they are respectively irregular and regular at the origin. For ε > 0, the Hankel

function therefore has an imaginary part, which is the solution for the homogeneous problem.

The energy region of interest for the valence and low-lying conductions bands is ε ∼ 0, and the

advantage of using screened Hankel functions (15), is that in this region there are no solutions

to the homogeneous hard-sphere problem; they start at higher energies. The screened Hankel

functions are therefore localized and real.

In order to obtain explicit expressions for the transformation and slope matrices, Ma (ε) and

Sa (ε) , we first need to expand a bare spherical wave centered at R̄ in spherical harmonics

aroundR 6= R̄. Since the wave is regular aroundR, its expansion is in terms of Bessel functions

and is:

nl̄ (κrR̄)Yl̄m̄ (r̂R̄) =
∑

lm

jl (κrR)Ylm (r̂R)×

∑

l′

4πi−l̄+l−l′ Cl̄m̄,lm,l′ nl′
(

κ
∣

∣R̄−R
∣

∣

)

Y ∗
l′ m−m̄

(

̂̄
R−R

)

.

Here, nl̄ and nl′ can be any l-independent linear combination of a Neumann and a Bessel func-

tion. For a pure Bessel function, the expansion holds for all rR,while for an irregular function, it

holds for rR <
∣

∣R̄−R
∣

∣ 6= 0. The l′-summation runs over
∣

∣l − l̄
∣

∣ ,
∣

∣l − l̄
∣

∣+2, ..., l+ l̄ whereby
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i−l̄+l−l′ is real, and Cl̄m̄,lm,l′ ≡
∫

Yl̄m̄(r̂)Y
∗
lm(r̂)Yl′ m−m̄(r̂)dr̂. Now, since we shall renormalize

the Bessel and Neumann functions when changing to radial-derivative gauge, we can start out

in phase-shift gauge and use these functions without prefactors which make them real, and for

the Hankel function use:

κ [nl (κr)− ijl (κr)] ≡ hα=0
l (κr) .

The conventional bare structure matrix is then

Bα=0
Rlm,R̄l̄m̄ (ε) ≡

∑

l′

(−)
−l̄+l−l

′

2 4πCl̄m̄,lm,l′h
0
l′

(

κ
∣

∣R̄−R
∣

∣

)

Y ∗
l′ m−m̄

(

̂̄
R−R

)

◭ (25)

and if we define the on-site part of the structure matrix as B0
R̄lm,R̄l̄m̄

(ε) = −iκδll̄δmm̄, the

one-center expansions may be written as:

∣

∣h0
〉

= |κn〉+ |j〉B0. (26)

Here and in the following we drop the common energy argument.

This screening transformation (15) is now defined by the requirement that the set of screened

Hankel functions have one-center expansions formally similar to (26):

|hα〉 =
∣

∣h0
〉

Mα = |κn〉+ |jα〉Bα, (27)

but with modified radial tail-functions:

jαRlm (ε, r) ≡ jl (κr)− nl (κr) tanαRlm (ε) . (28)

For the active channels, these should vanish at the hard sphere and for the passive channels, they

should join onto the proper Schrödinger solutions. Hence, αRlm (ε) is the hard-sphere phase

shift when Rlm is active and the proper phase shift when Rlm is passive, i.e.:

tanαRlm (ε) =
jl (κaR)

nl (κaR)

D {jαRlm (ε, a)} −D {jl (κaR)}

D {jαRlm (ε, a)} −D {nl (κaR)}
(29)

with

D {jαRlm (ε, a)} ≡

{

∞ Rlm ∈ A

D {ϕ̄Rl (ε, aR)} Rlm ∈ P
.

α (ε) depends on m, only if the division into active and passive channels is m-dependent. This

is the case, say, if one wants to select the Cu dx2−y2 conduction band in a high-temperature

superconducting cuprate [9, 12].

If we now insert Eqs. (28) and (26) in (27) and compare the coefficients of |κn〉 and |j〉 , we

obtain the following expressions for the screening transformation and the screened structure

matrix:

Mα = 1−
tanα

κ
Bα, (30)

Bα = κ cotα− κ cotα
[

B0 + κ cotα
]−1

κ cotα.
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Here, all matrices are square with the high-l blocks neglected (see Eq. (11)) and κ cotα is a

diagonal matrix. We see that the amount of lm-multipole charge at site R which screens the

l̄m̄-multipole at site R̄, is (tanαRl/κ)B
α
Rlm,R̄l̄m̄

. By taking the radial derivatives at the hard

spheres, we can find the desired expression for the slope matrix:

a2Sa (ε) = aD {j (κa)}+
1

j (κa)

[

B0 (ε) + κ cotα (ε)
]−1 1

j (κa)
. ◭ (31)

Note that κ cotα (ε) is real for all real energies and that

j (κa) κ cotα (ε) j (κa) → −
1

(2l + 1) a

D {jα (ε, a)}+ l + 1

D {jα (ε, a)} − l
, for ε→ 0.

For most purposes, the hard screening spheres can be taken to depend only on the type of

atom, and it turns out that for respectively spdf -, spd-, sp-, and s-sets, the shortest range of the

spherical waves is obtained for radial overlaps (13) of ωa
RR̄

= –15, –23, –36, and –52%. In the

first two cases, the range of the structure matrix is so short that it can be generated by inversion

ofB0 (ε)+κ cotα (ε) in real space, using clusters of 20-100 sites, depending on the hard-sphere

packing. Whereas a bare Hankel function has pure l̄m̄ character, and the bare structure matrix

therefore transforms according to the Slater-Koster scheme, the screened structure matrix does

not, because a screened Hankel function merely has dominant l̄m̄-character and tends to avoid

the surrounding hard spheres.

Downfolding of channels with attractive potentials increases the range and energy dependence

of the structure matrix (31). Downfolding is therefore usually performed as a second, k-space

step, after the strongly screened structure matrix has been generated in real space and subse-

quently Bloch-summed to k-space.

3.4 Example: sp3 bonded Si

As an example, let us now consider the effects of downfolding on the Si p111 member of the spd

set of KPWs shown in Fig. 4. This KPW set was for an energy ǫ0 near the bottom of the valence

band. Using also the KPW set for an energy ǫ1 at the middle of the valence band, plus the one

for ǫ3 near the top of the valence band, an spd NMTO set with N = 2 can be formed. How,

will be explained in the following section. The p111 KPWs at the three energies, the NMTO,

and the band structure obtained with the set of nine spd NMTOs per atom are all shown in the

left-hand double column of Fig. 5. The middle column shows the same for the sp set, that is the

one where also the Si d partial waves are downfolded, and therefore only contains fourNMTOs

per atom. With 2 atoms per cell, the first set yields 18 bands and the latter 8. Those bands are

seen to be identical. In order to describe merely the filled bands, the 4 valence bands, we have

to construct a set with merely 4 orbitals per cell and this we do by starting from the symmetry-

breaking, completely ionic description Si4−Si4+ and put the s and p orbitals on Si4− and none

on Si4+. That is, all partial waves are downfolded on every second Si atom. The corresponding

KPW and NMTO sets are shown in the last column. We see that this NMTO set does give the



3.16 Ole K. Andersen

valence band only, and that it does so very well. Such a set which picks merely the occupied

bands, we call truly minimal [16].

The pictures KPW(E0) show how for the spd set the p111 KPW has a kink at its own hard sphere

and vanishes inside the neighboring sphere, except for the f and higher partial waves which are

allowed to penetrate. Allowing also the d partial waves inside the neighbor has fairly little

effect, but allowing all partial waves makes the KPW spill smoothly onto the site. Going now

to higher energies, the KPW(E1) and KPW(E2) pictures show how the central kink vanishes as

the p radial function bends increasingly toward the axis and how the KPW spreads increasingly

around the neighboring hard sphere. Without any confinement in that sphere, the delocalization

increases dramatically near the top of the valence band. Nevertheless, the NMTO valence band

Wannier orbitals are correct and their sp3 hybrid shown in Fig. 6 is the well-known bond orbital,

which is as localized as can be. Examples for graphite sp2 σ-bonds, as well as for pz π-bonds

and anti-bonds, may be found in Ref. [16].

4 NMTOs

Finally, we have come to construct energy-independent orbitals [10]. Specifically, we want to

make a superposition of the set of KPWs (19), evaluated at a mesh of energies, ǫ0, .., ǫN , such

that the resulting set of NMTOs,

∣

∣χ(0..N)
〉

=
∑N

n=0
|φ (ǫn)〉L

(0..N)
n = (32)

|φ [0]〉+ |φ [01]〉
(

E(0..N) − ǫ0
)

+ . + |φ [0..N ]〉
(

E(N−1,N) − ǫN−1

)

.
(

E(0..N) − ǫ0
)

, ◭

spans the solutions of Schrödinger’s equation for the model potential to within an error given

by Eq. (14). This is discrete polynomial approximation for a Hilbert space, and L
(0..N)
n are

Lagrangian matrices, whose sum is the unit matrix. For N = 0, the NMTO set is the set of

EMTOs evaluated at the energy ǫ0≡ ǫν . The second, rearranged series is the ascending Newton

interpolation formula in terms of divided differences, e.g. φ [0] ≡ φ (ǫ0) and φ [01] ≡ φ(ǫ0)−φ(ǫ1)
ǫ0−ǫ1

.

In general, they are defined by:

φ [0..N ] ≡

N
∑

n=0

φ (ǫn)
∏N

m=0, 6=n (ǫn − ǫm)
. (33)

Moreover,
(

E(N−1,N) − ǫN−1

)

.
(

E(0..N) − ǫ0
)

is a product of N energy matrices, which are

generally not Hermitian and do not commute. The NMTO is independent of the order of the

energy points, but the individual terms in the Newton series are not, and only when the energies

are ordered according to size does this series have a clear interpretation. If the energy mesh

condenses onto ǫν , then φ [0..N ] →
(N)

φ (ǫν) /N ! and the Newton series becomes a truncated

Taylor series. In order to be able to pick bands which overlap other bands, it is necessary to put

the energies where only active bands are present. With only one energy point at disposal, there

is little flexibility, so the Taylor series is not practical.
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Fig. 5: Band structure of Si obtained with (N=2)MTO sets of increasing downfolding. The first

set contains the 9 s, p, and d NMTOs per atom, the second the 4 s and p NMTOs per atom,

and the last merely the s and p NMTOs on every second atom. The Si p111 members of the

corresponding NMTO sets, as well as of the constituting KPW sets at the three energies, ǫ0, ǫ1,
and ǫ2, indicated to the right of the band structures, are shown in the (11̄0) plane containing

a Si and its nearest neighbor along [111] . The NMTO bands are red and the exact ones blue.

For the first two sets, no difference can be seen. The last set is seen to give merely the valence

bands, and that very well. After orthonormalization, this NMTO set is thus a set of Wannier

functions for the valence band. By being placed only on every second atom, this NMTO set

breaks the symmetry, but does spills onto the other atoms correctly because the sp3 hybrid of

the orthonormalized NMTOs yields the well-known, symmetric bond orbital shown in Fig. 6.

Hence, by starting from the ionic Si4−Si4+ picture, which gets the electron count right, the

NMTO method creates the correct covalency. From Ref. [12]

We have dropped all superscripts a because, from now on they do not change; screening and

downfolding is done at the level of forming the EMTOs. Note that, in contrast to LMTO sets of

the 2nd generation [4], NMTO sets for different screenings span different Hilbert spaces; the

factor in front of the error term (14) depends on s − a [10]. It is obvious that for N given, the

error must increase with the degree of downfolding, because downfolding decreases the size of

the basis set. This, on the other hand, makes it necessary to go beyond linear basis sets if one

wants to generate truly minimal basis sets picking merely the occupied bands (see Fig. 6).

NMTOs can be used to generate Wannier functions directly, because with an appropriate choice

of active channels, one can generate an NMTO set for the isolated set of bands in question.

Upon making the mesh finer, the NMTO set will converge to the proper Hilbert space spanned

by any set of Wannier functions. After orthonormalization, theNMTO set will therefore be a set
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Fig. 6: Si sp3 bond orbital computed as the sp3 directed orbital from the set of s and p NMTOs

on every second atom. See Fig. 5. In order that no asymmetry of the bond orbital could be seen,

it was necessary to use N = 6. (Courtesy A. Alam).

of Wannier functions. NMTOs are localized a priory by virtue of the hard-sphere confinement

of the constituent EMTOs, and since NMTOs are not orthonormal, they can –but must not– be

more localized than maximally localized Wannier functions.

We shall now see that the Lagrangian matrices as well as the Hamiltonian and overlap matrices

for the model potential, are all expressed solely in terms of the kink- or KKR matrix (22) and

its first energy derivative matrix evaluated at points of the energy mesh. In fact, the NMTO

formalism is much simpler if expressed in terms of the Green matrix,

G (ε) ≡ K (ε)−1 , ◭ (34)

also called the resolvent or scattering path operator [31, 32].

Since a single KPW (19) solves Schrödinger’s differential equation for the model potential,

except at the kinks, operation with the Hamiltonian gives a series of delta-functions at the hard

spheres in the active channels:

(ε−H)φR̄l̄m̄ (ε, r) =

A
∑

Rlm

δ (rR − aR) Ylm (r̂R)KRlm,R̄l̄m̄ (ε) . (35)

Solving for δ (rR − aR) Ylm (r̂R) , leads to:

δ (rR − aR)Ylm (r̂R) = (ε−H)
∑A

R̄l̄m̄
φR̄l̄m̄ (ε, r)GR̄l̄m̄,Rlm (ε) (36)
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which shows that the linear combinations,

γRlm (ε, r) =
A
∑

R̄l̄m̄

φR̄l̄m̄ (ε, r)GR̄l̄m̄,Rlm (ε) , (37)

of KPWs –all with the same energy and screening– may be considered a Green function,

G (ε, r̄, r) , which has r̄ confined to the hard spheres, i.e. r̄ → Rlm. Considered a function of

r, this Green function is a solution with energy ε of the Schrödinger equation, except at its own

sphere and for its own angular momentum, where it has a kink of size unity. This kink becomes

negligible when ε is close to a one-electron energy, because the Green function has a pole there.

In Eq. (37), the confined Green function is factorized into a vector of KPWs, |φ (ε)〉 , which has

the full spatial dependence and a weak energy dependence, and a Green matrix, G (ε) , which

has the full energy dependence. Now, we want to factorize the r and ε-dependences completely

and, hence, to approximate the confined Green function, |φ (ε)〉G (ε) , by
∣

∣χ(0..N)
〉

G (ε) .

Note that subtracting from the Green function a function which is analytical in energy and re-

mains in the Hilbert space spanned by the set |φ (ǫn)〉 produces an equally good Green function,

in the sense that both yield the same solutions of Schrödinger’s equation. We therefore first

define a set
∣

∣χ(0..N) (ε)
〉

by:

|γ (ε)〉 = |φ (ε)〉G (ε) ≡
∣

∣χ(0..N) (ε)
〉

G (ε) +

N
∑

n=0

|φ (ǫn)〉G (ǫn)F
(0..N)
n (ε) , (38)

and then determine the analytical functions, F
(0..N)
n (ε) , in such a way that

∣

∣χ(0..N) (ε)
〉

takes

the same value,
∣

∣χ(0..N)
〉

, at all mesh points. If that can be done, then
∣

∣χ(0..N) (ε)
〉

=
∣

∣χ(N)
〉

+O ((ε− ǫ0) .. (ε− ǫN)) ,

and
∣

∣χ(0..N)
〉

is the set of NMTOs. Now, since
∣

∣χ(0..N) (ǫ0)
〉

= .. = χ(0..N) (ǫN ) ,

the N th divided difference of
∣

∣χ(0..N) (ε)
〉

G (ε) equals
∣

∣χ(0..N)
〉

times the N th divided differ-

ence of G (ε) . Moreover, if we let F
(0..N)
n (ε) be a polynomium of (N-1)st degree (N th degree

yields zero-solutions for the NMTOs), their N th divided difference on the mesh will vanish.

As a result

|γ [0..N ]〉 = (|φ〉G) [0..N ] =
∣

∣χ(0..N)
〉

G [0..N ] ,

and we have therefore found the solution:
∣

∣χ(0..N)
〉

= (|φ〉G) [0..N ] G [0..N ]−1
(39)

for the NMTO set. The divided difference of the product is easily evaluated using (33):

(|φ〉G) [0..N ] =
N
∑

n=0

|φ (ǫn)〉G (ǫn)
∏N

m=0, 6=n (ǫn − ǫm)
,

in terms of the values of the KPWs and the Green matrix on the energy mesh. This expression,

together with the similar one for G [0..N ] , are those needed to determine the Lagrange matrices

in Eq. (32).
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4.1 Smoothness and products of NMTOs

(N=0)MTOs are of course the kinked partial waves at ǫ0, but (N>0)MTOs are smooth because

according to (36), the kinks of |γ (ε)〉 are independent of ε. This does however not imply

that for a single NMTO, the KPW accordion is completely compressed, like for a smooth

linear combination of KPWs (20) with the same energy. The linear combinations making up

an NMTO have different energies and, as a consequence, discontinuities remain in (2N+1)st

radial derivatives at the hard spheres. Projecting an NMTO onto an active channel, leads to a

radial function of the type ϕ (r)− ϕ̄ (r) +Prψ (r) , where ϕ (r)− ϕ̄ (r) ∝ (s− r)2 near s and

Prψ (r)− ϕ̄ (r) ∝ (r − a)2N+1 (ε− ǫ0) .. (ε− ǫN)

near a. Since the latter error is of the same order as (14), it should be included there. This means

that cross-terms between ϕ, ϕ̄, and Prψ can be neglected, and that leads to the following simple

prescription for evaluating the product of two KPWs with different energies:

|φ〉 〈φ| = |ϕY 〉 〈Y ϕ| − |ϕ̄Y 〉 〈Y ϕ̄| + |ψ〉 〈ψ| , (40)

occurring in the expression for the product
∣

∣χ(N)
〉 〈

χ(N)
∣

∣ of two NMTOs as needed for evalua-

tion of matrix elements and the charge density. The sum of the first two terms in (40) is simply a

finite sum of spherical harmonics times radial functions which vanish smoothly outside the MT

spheres. The third term is more complicated because the SSWs do not have pure lm-character

but merely short range. What we know about the SSWs is the structure matrix which specifies

the spherical-harmonics expansions of the radial derivatives at the hard spheres. It is therefore

practical to interpolate a product of strongly screened spherical waves across the hard-sphere

interstitial by a sum of SSWs. Specifically, we fit –at all spheres and for all spherical-harmonics

with l . 6− the radial values plus first 3 derivatives of the product (e.g. the charge-density)

to those of a sum of SSWs with 4 different energies. The so-called value-and-derivative func-

tions, each one vanishing in all channels except its own, are purely structural and exceedingly

well localized because the value and first 3 derivatives vanish at all other spheres. We are cur-

rently writing an efficient self-consistent, full-potential NMTO code using this interpolation

technique [17].

In order to figure out how the Hamiltonian operates on an NMTO, we use Eq (35) for N=0 and

obtain: (H− ε0)
∣

∣χ(0)
〉

= − |δ〉K (ǫ0) . For the smooth NMTOs with N>0 we can neglect the

kink terms when operating on (38), and then take the N th divided difference to get rid of the

polynomials:

H |γ [0..N ]〉 = |(εγ (ε)) [0..N ]〉 = |γ [0.N − 1]〉+ ǫN |γ [0..N ]〉 . (41)

Using the definition (39) of the NMTO we multiply by G [0..N ]−1
from the right and obtain:

(H− ǫN)
∣

∣χ(0..N)
〉

= |γ [0.N − 1]〉 G [0..N ]−1 =
∣

∣χ(0.N−1)
〉 (

E(0..N) − ǫN
)

, (42)

where
∣

∣χ(0.N−1)
〉

is the set obtained by omitting the last point on the mesh and

E(0..N) − ǫN ≡ G [0..N − 1]G [0...N ]−1
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is the coefficient of all but the first term of the descending Newton series analogous to the

ascending one in (32). The energy matrices are in general given by:

E(0..M) = (εG) [0..M ] G [0..M ]−1
(43)

Expression (42) shows that increasingN increases the smoothness of theNMTOs and also their

range, unless E(0..N) converges as is the case for a set of isolated bands. If E(0..N) is converged,

so is the NMTO basis, and so is the Newton series. This series expresses the NMTO as a

kinked partial wave at the same site and with the same angular momentum, plus a smoothing

cloud of energy-derivative functions centered at all sites and with all angular momenta.

4.2 Hamiltonian and overlap matrices

With the aim of obtaining the expressions for the overlap and Hamiltonian matrices needed in a

variational calculation (9), we first find expressions involving |φ (ε)〉 and |γ (ε)〉 .

Multiplication of (35) from the left by 〈φ (ε)| and using (40), together with the facts that

ϕ̄ (ε, a)=1, that Paψ (ε, r)=1 in the own channel, 0 in the other active channels, and solves

the radial Schrödinger equation in the passive channels, leads to the result:

〈φ (ε) |H − ε|φ (ε)〉 = −K (ε) . ◭ (44)

Here again we have resorted to matrix notation. The Hamiltonian matrix for the N=0 set is thus

〈

χ(0) |H − ǫ0|χ
(0)
〉

= −K (ǫ0) . (45)

In a similar way, and with the use of Green’s second theorem, one finds that the overlap matrix

between two EMTOs with different energies is:

〈φ (ε̄) |φ (ε)〉 =
K (ε̄)−K (ε)

ε̄− ε
→ K̇ (ε) , for ε̄→ ε. (46)

Note that by virtue of the definition of |ψ〉 , there are no 3-center terms here. Hence, the overlap

matrix for the N=0 set is simply:

〈

χ(0)|χ(0)
〉

= 〈φ (ǫ0) |φ (ǫ0)〉 = K̇ (ǫ0) . (47)

From Eqs. (44), (46), and (37) one finds:

〈γ (ε̄) |γ (ε)〉 = −
G (ε̄)−G (ε)

ε̄− ε
→ Ġ (ε) = G (ε) K̇ (ε)G (ε) , for ε̄ → ε. (48)

If we now take the M th divided difference with respect to ε̄ and the N th with respect to ε, both

on the mesh, then use (33) and order such that M ≤ N , we find a double sum. If reordered to a

single sum, with due care taken for the terms where ε̄=ε, it reduces to the expression

〈γ [0..M ] |γ [0...N ]〉 = −G [[0..M ] ..N ] , (49)



3.22 Ole K. Andersen

where the right-hand side is minus the highest derivative of that polynomium of degree M +

N+1 which coincides withG (ε) at the points ǫ0, ..., ǫN and has the same first derivatives Ġ (ε)

at the points ǫ0, .., ǫM (Hermit interpolation) [10]. For the matrix element of the Hamiltonian,

expressions (41) and (49) yield:

〈γ [0..N ] |H − ǫN | γ [0..N ]〉 = 〈γ [0..N ] |γ [0.N − 1]〉 = −G [[0.N − 1]N ] .

The NMTO Hamiltonian and overlap matrices are thus given by the following, most elegant

expression which involves nothing but the values and first derivatives of the KKR Green matrix,

G (ε) , on the energy mesh:

G [0..N ]
〈

χ(0..N) |H − ε|χ(0..N)
〉

G [0..N ] = −G [[0.N − 1]N ] + (ε− ǫN)G [[0..N ]] , (50)

i.e.
〈

χ(0..N) |H − ǫN |χ
(0..N)

〉

= −G [0..N ]−1 G [[0.N − 1]N ] G [0..N ]−1
◭ (51)

and

O(0..N) ≡
〈

χ(0..N) | χ(0..N)
〉

= G [0..N ]−1 G [[0..N ]] G [0..N ]−1 . ◭ (52)

The variational calculation will give eigenvalues, which for the model potential has errors pro-

portional to (εi − ǫ0)
2 (εi − ǫ1)

2 .. (εi − ǫN)
2 .

4.3 Orthonormal NMTOs (Wannier orbitals)

In many cases one would like to work with a set of orthonormalNMTOs, e.g. Wannier orbitals,

and preserve the Rlm-character of each NMTO. In order to arrive at this, we should – in the

language of Löwdin – perform a symmetrical orthonormalization of the NMTO set. According

to (52), such a representation is obtained by the following transformation:
∣

∣χ̌(0..N)
〉

=
∣

∣χ(0..N)
〉

G [0..N ]
√

−G [[0..N ]]
−1

=
∣

∣χ(0..N)
〉

√
O(0..N)

−1
, ◭ (53)

because it yields:
〈

χ̌(0..N) | χ̌(0..N)
〉

= −
√

−G [[0..N ]]
−1†
G [[0...N ]]

√

−G [[0..N ]]
−1

= 1.

Note that this means: −G [[0..N ]] =
√

−G [[0..N ]]
†√

−G [[0..N ]]. In this orthonormal repre-

sentation, the Hamiltonian matrix becomes:
〈

χ̌(0..N) |H − ǫN | χ̌
(0..N)

〉

= −
√

−G [[0..N ]]
−1 †

G [[0.N − 1]N ]
√

−G [[0..N ]]
−1
. ◭ (54)

To find an efficient way to compute the square root of the Hermitian, positive definite matrix

−G [[0...N ]] may be a problem. Of course one may diagonalize the matrix, take the square root

of the eigenvalues, and then back-transform, but this is time consuming. Cholesky decompo-

sition is a better alternative, but that usually amounts to staying in the original representation.

Löwdin orthogonalization works if the set is nearly orthogonal, because then the overlap matrix

is nearly diagonal, and Löwdin’s solution was to normalize the matrix such that it becomes 1

along the diagonal and then expand in the off-diagonal part, ∆ :
√
1 +∆

−1
= 1−

1

2
∆+

3

8
∆2 − ... (55)

This should work for the NMTO overlap matrix (52) when the NMTOs are nearly orthogonal.
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4.4 LMTOs

For N=0, we have the results:
∣

∣χ(0)
〉

= |φ (ǫ0)〉 , (45), and (47).

For comparison with classical TB-LMTOs [4, 26, 33, 34], now consider the case N=1 with the

two-point mesh condensed onto ǫν . From Eq. (43) we find the following energy matrix:

E(1) = ǫν +GĠ−1 = ǫν − K̇−1K = ǫν + 〈φ|φ〉−1 〈φ |H − ǫν |φ〉 ,

Here and in the following an omitted energy argument means that ε=ǫν . Insertion in the Taylor

series (32), yields:
∣

∣χ(1)
〉

= |φ〉 −
∣

∣

∣
φ̇
〉

K̇−1K, (56)

which shows that the LMTO is smooth and has the form anticipated in Sect. 2. The Hamiltonian

and overlap matrices are from Eq. (50):

〈

χ(1) |H − ǫν |χ
(1)
〉

= −Ġ−1 G̈

2!
Ġ−1 = −K +KK̇−1 K̈

2!
K̇−1K,

〈

χ(1) | χ(1)
〉

= −Ġ−1

...
G

3!
Ġ−1 = K̇ −KK̇−1 K̈

2!
−
K̈

2!
K̇−1K +KK̇−1

...
K

3!
K̇−1K.

Had we instead used the Taylor series (56) to compute the overlap matrix, we would of course

have obtained the same result and as consequences, K̈=2!
〈

φ|φ̇
〉

and
...
K=3!

〈

φ̇|φ̇
〉

. This may

also be obtained from the general relation (49). Had we used the Taylor series to compute the

Hamiltonian matrix, we would have used Eq. (42) with N=1, to obtain the same result.

In order to make E(1) Hermitian and, hence, to transform it into a 1st-order Hamiltonian:

K̇
1

2E(1)K̇− 1

2 = ǫν − K̇− 1

2KK̇− 1

2 ≡ Hα,

one must symmetrically orthonormalize the 0th-order set, which now becomes:

∣

∣χ̌(0)
〉

= |φ〉 K̇− 1

2 = |φ〉 〈φ|φ〉−
1

2 ≡ |φα〉 .

Here and in the following, the superscript α is the one used in the classical LMTO [4] –not

the new NMTO– formalism. After applying the same transformation to the LMTO set (56), it

becomes:
∣

∣χ(1)
〉

K̇− 1

2 = |φα〉+
∣

∣

∣
φ̇
α
〉

(Hα − ǫν) = |χα〉 , ◭

where

∣

∣

∣
φ̇
α
〉

=
∣

∣

∣
φ̇
〉

K̇− 1

2 . This expression for the LMTO is the one envisaged in expression (10)

of Sect. 2: The tail-functions are φ̇
α
(r) and the head of the R̄l̄m̄-orbital is

φαR̄l̄m̄ (rR̄) +
∑

lm
φ̇
α

R̄lm (rR̄) (H
α − ǫν)R̄lm,R̄l̄m̄ .

In order to show explicitly how the solutions of Schrödinger’s equation for the solid can be

described through overlap of orbitals, we may simply diagonalize Hα. Naming its eigenvec-

tors and eigenvalues respectively uRlm,i and εi, the linear combination of orbitals given by an

eigenvector is:

|χα〉ui = |φα〉ui +
∣

∣

∣
φ̇
α
〉

Hαui =
[

|φα〉+
∣

∣

∣
φ̇
α
〉

(εi − ǫν)
]

ui

= |φα (εi)〉 ui +O
(

(εi − ǫν)
2) ,
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as anticipated. LMTOs thus naturally describe the way in which the overlap of orbitals leads to

broadening of levels into bands. It is however worth pointing out that although this (N=1)MTO

formalism has been brought to the same form as the classical TB-LMTO formalism in the ASA,

the (N=1)MTO formalism employs no ASA.

4.5 Example: NiO

The Mott insulator NiO has the NaCl structure so that each Ni is surrounded by an O octahedron

and vice versa. In the ionic picture, the configuration is Ni 3d8 with the 2 electrons of highest

energy in the eg orbitals. LDA band structures are shown on the left-hand side of Fig. 7 with

the corresponding sets of (N=1)MTO Wannier orbitals on the right-hand side.

Starting from the bottom, we see the 3 O p bands and the 3 congruent Wannier orbitals which

span those green bands. No discrepancy can be seen between the green and the highly accurate

LAPW bands (black). We remember that, except for the effects of linearization and orthogonal-

ization, which are small in this case of a rather narrow band, this O pz orbital can have no O p

character on any other O site. However, it has all other characters downfolded and we see, in

particular, pdσ bonds to two Ni eg d3z2−1 orbitals and pdπ bonds to the four Ni t2g orbitals.

Going now to the 5 Ni d bands seen in the middle panel, we see the corresponding pdσ anti-

bonds for the Ni eg orbitals to the appropriate O p orbitals and the corresponding pdπ anti-bonds

for the Ni t2g orbitals. Since pdσ hopping is stronger than pdπ, the reddish eg-like band lies

above the blueish t2g-like band, which is full in the LDA. Like for a member of the O p set,

the d3z2−1 member of the Ni d set can have no d character on any other Ni atom, and this is

seen to localize the orbitals quite well. The electronic configuration with respect to this set is

p6d8 = t62g e
2
g.

The members of the 8-orbital O p Ni d set describing the 10 eV wide pd band structure are

shown at the top of the figure, to the right. By virtue of having neither O p nor Ni d character

in their tails, these orbitals are more localized and atomic-like. Merely the O p orbitals have a

bit of bonding Ni sp character due to covalency with the band seen above 2 eV. Due to the O p

character in the empty part of the eg the configuration and the concomitant eg character in the

full O p band, the configuration with respect to this set is p5.4d8.6, i.e. with holes in the p orbitals

and more than 8 d electrons!

As is evident from the figure, NiO is a metal in the LDA, which is completely wrong. Never-

theless, LDA Wannier orbitals form very reasonable one-electron basis sets for many-electron

calculations such as LDA+DMFT and multiplet ligand-field theory (MLFT) cluster calculations

for x-ray spectroscopies [35]. Due to the complexities of many-electron calculations, one is

tempted to use a small basis set, e.g. for NiO, the set of 5 Ni d orbitals, or even a set of merely 2

Ni eg orbitals. This is however inaccurate, because the Coulomb repulsion is strong between two

d electrons on the same site and one cannot neglect the d character in the p band. A small com-

putational bonus for using the larger pd set, is that the d orbitals have simpler shapes so that the

dd Coulomb repulsion with good approximation can be described by the 3 Slater integrals [35].

On the other hand, the pictures of the pd set tell little, whereas those of the smaller sets bring
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Fig. 7: LDA band structures of NiO calculated with a large set of LAPWs (black) and three

different (N=1)MTO basis sets (colored) whose Wannier orbitals are shown to the right of the

bands. From the bottom and up: The 3 O p bands (green), the 5 Ni d bands with t2g character

blue and eg character red, and the 8 O p Ni d bands. The Wannier orbitals are shown asw (r) =
±const surfaces with the ± sign indicated by red/blue and const determined by the condition

that 90% of the probability density is inside the surface. From Ref. [35].
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out covalency effects very clearly. This becomes particularly relevant when symmetry-lowering

lattice distortions take place. Examples may be found in Refs. [36], [37], [38, 39], and [40].

5 Standard Löwdin downfolding and N-ization

In the NMTO method we first construct the set of energy-dependent, downfolded KPWs (EM-

TOs) from multiple scattering theory, i.e. we compute the structure matrix (31) in a strongly

screened (e.g. spd) representation and then downfold this matrix to the desired degree for each

energy. Thereafter weN-ize the EMTOs to form the energy-independentNMTO basis set. This

is different from standard Löwdin downfolding which partitions a given, large set of energy-

independent, strongly localized orbitals into active and passive subsets, |χ〉 = |χA〉+ |χB〉 , and

then eliminates the latter. Had one chosen this large basis set to be one of strongly screened

NMTOs, N-ization would have come before downfolding, and this is also the sequence in

which LMTO downfolding was first done [29]. Below, we shall first review Löwdin downfold-

ing because it is similar to, but much more familiar than screened multiple scattering theory,

and then indicate that subsequent use of the N-ization technique might be useful.

Partitioning the generalized eigenvalue equations (9) yields:

(H − εO)AA bA + (H − εO)AP bP = 0

(H − εO)PA bA + (H − εO)PP bP = 0

in block notation. Solving the bottom equations for bP ,

bP = − [(H − εO)PP ]
−1 (H − εO)PA bA, (57)

and inserting in the upper equations, yields the well-known set of Löwdin-downfolded secular

equations:

{

(H − εO)AA − (H − εO)AP [(H − εO)PP ]
−1 (H − εO)PA

}

bA = 0. (58)

These, together with the ”upfolding” (57) give the exact eigenfunction coefficients bI = (bA, bP ) ,

as long as the proper energy dependences are kept. But in order for the secular matrix to have

the desirable H − εO form, the energy dependence of the complicated matrix

(H − εO)AP [(H − εO)PP ]
−1 (H − εO)PA

is either neglected or linearized.

We are interested in the set of downfolded orbitals giving rise to this secular matrix. This is the

energy-dependent set:

|φA (ε)〉 ≡ |χA〉 − |χP 〉 [(H − εO)PP ]
−1 (H − εO)PA ≡ |χA〉+ |χP 〉 DPA (ε) , ◭ (59)

with each member |φa (ε)〉 being the active orbital |χa〉 , dressed by an energy-dependent linear

combination of passive orbitals. How well localized |φa (ε)〉 is, depends on how well the chosen

set |χA〉 reproduces the eigenstates at ε.
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That H − ε represented in this set is the matrix in (58), is seen by first operating on (59) with

H− ε, and then projecting onto the active and passive subsets:

〈χA |H − ε|φA (ε)〉 = (H − εO)AA − (H − εO)AP [(H − εO)PP ]
−1 (H − εO)PA

〈χP |H − ε|φA (ε)〉 = 0.

Forming finally the linear combination (59) yields the desired result:

〈

φA (ε)
∣

∣

∣
Ĥ − ε

∣

∣

∣
φA (ε)

〉

= (H − εO)AA − (H − εO)AP [(H − εO)PP ]
−1 (H − εO)PA . ◭

One can show that this equals −GAA (ε)−1 , exactly as equations (44) and (34) in MTO theory.

In fact, the entire N-ization procedure could be used to remove the energy dependence of the

Löwdin-downfolded set (59). The result for the dress is:

D
(0..N)
PA = GPA [0..N ] GAA [0..N ]−1 ≈ GPA (ε)GAA (ε)−1 = DPA (ε) ,

and therefore the major cause for delocalization seems to be the Löwdin downfolding (59).

This procedure is computationally more demanding than the one we have described, and yields

less localized downfolded obitals. It certainly only works for orbital basis sets with merely one

radial function per Rlm [41].

6 Localization

It seems to me, that theNMTO construction in which one first generates a set of most localized

solutions (KPWs) of Schrödinger’s equation at a each energy, and then interpolates both the

local (from the radial functions) and the global (from the downfolding) energy dependencies in

one, commonN-ization step, leads to a set of Wannier orbitals which are at least as localized as

those obtained by Löwdin downfolding of the set of classical LMTOs as explained above, and

have a spread close to the minimal one [5]. Computed rms values,
〈

w
∣

∣|r− 〈w |r|w〉|2
∣

∣w
〉1/2

,

of the spread support this:

For the vanadium t2g Wannier orbitals in V2O3, we [38] find 1.30 Å for the a1g and 1.40 Å

for the eπg orbitals. These values are significantly smaller than those, 1.35 Å and 1.57 Å ob-

tained from TB-LMTOs [42]. This is consistent with results for the t2g Wannier orbitals in the

cubic perovskite SrVO3 where the rms spread, 1.38 Å, of the NMTO Wannier orbital [43] is

significantly smaller than the one, 1.54 Å, obtained by downfolding plus (N=0)-ization of the

classical, nearly-orthonormal LMTO set [44]. The 1.38 Å rms spread of this NMTO Wannier

orbital is, in fact, only marginally above the minimum value found to be 1.36̇ Å or 1.37 Å, de-

pending on whether a mixed-basis-pseudopotential scheme or the FP-LAPW scheme was used

for the LDA calculation of the Bloch functions in (2) [43]. Hence, at least for these t2g systems,

the NMTO Wannier functions seem to be close to those maximally localized in the sense of

Marzari and Vanderbilt [5].
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4.2 Matteo Cococcioni

One of the most well known and well documented failures of Density Functional Theory
(DFT) [1, 2] is certainly represented by Mott insulators . In these systems the insulating char-
acter of the ground state stems from the strong Coulomb repulsion between electrons that,
prevailing on their kinetic energy (minimized by delocalization), forces them to localize on
atomic-like orbitals (Mott localization) [3]. The precise description of this behavior requires
the full account of the multi-determinant nature of the N-electron wave function and of the
many-body terms of the electronic interactions. In molecular dissociation processes, for exam-
ple, the localization of electrons on the resulting fragments can only be properly described if the
so-called ionic terms (describing multiple valence electrons on the same site) of the ground state
wave function are allowed to decrease their weight (e.g., in a variational calculation) while the
distance between the fragments increases. This is only possible if the N-electron wave function
is constructed as a linear combination of multiple Slater determinants. In other words, when
electrons are strongly localized their motion becomes “correlated” and their wave function ac-
quires a marked many-body character. Thus, the Hartree-Fock (HF) method, that describes the
electronic ground state with a variationally optimized single determinant, cannot capture the
physics of Mott insulators. The insulating character of these materials is also beyond reach for
band theory.For these reasons they are generally classified as “strongly-correlated” materials (in
fact, the formal definition of correlation energy is Ec = Eexact − EHF where EHF represents
the HF approximation to the exact quantity). Describing the behavior of these systems within
(approximate) DFT is a formidable task (although the unknown exact exchange-correlation en-
ergy functional would be able to predict their ground state properties) due to the expression of
the electron-electron interaction as a functional of the electronic charge density, and to the use
of an effective single particle (Kohn-Sham) representation of this quantity [2]. In fact, most
commonly used approximate exchange-correlation (xc) functionals such as, the Local Density
Approximation (LDA) [4–6], or the Generalized Gradient Approximation (GGA), fail quite dra-
matically in predicting the insulating character of these materials and also provide a quite poor
representation of other physical properties, including their equilibrium crystal structure, their
magnetic moments, their vibrational spectrum, etc. In general, these problems can be traced
back to the tendency of most approximate xc functionals to over-delocalize valence electrons
and to over-stabilize metallic ground states. Other inaccuracies of approximate xc function-
als such as, the imprecise account of the exchange interaction and the consequent incomplete
cancellation of the electronic self-interaction contained in classical (density-density) Coulomb
integrals may sometimes concur to the over-delocalization of electronic states.
One of the simplest models that have been formulated to rationalize (albeit in a semi-quantitative
way) the physics of correlated materials, is the Hubbard model [7–12] whose real-space second-
quantization formalism is ideally suited to describe systems with electrons localized on atomic
orbitals. In its simplest, one-band incarnation, the Hubbard Hamiltonian can be written as
follows:

HHub = t
∑
〈i,j〉,σ

(c†i,σcj,σ + h.c.) + U
∑
i

ni,↑ni,↓ (1)

where 〈i, j〉 denotes nearest-neighbor atomic sites, c†i,σ, cj,σ, and ni,σ are electronic creation,
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annihilation and number operators for electrons of spin σ on site i. When electrons are strongly
localized, their motion is described by a “hopping” process from one atomic site to its neighbors
(first term of Eq. (1)) whose amplitude t is proportional to the dispersion (the bandwidth) of the
valence electronic states and represents the single-particle term of the total energy. In virtue
of the strong localization, the Coulomb repulsion is only accounted for between electrons on
the same atom through a term proportional to the product of the occupation numbers of atomic
states on the same site, whose strength is U (the “Hubbard U”). The hopping amplitude and
the on-site Coulomb repulsion represent the minimal set of parameters necessary to capture the
physics of Mott insulators. In fact, in these systems, the insulating character of the ground
state emerges when single-particle terms of the energy (generally minimized by electronic de-
localization on more extended states) [3] are overcome by short-range Coulomb interactions
(the energy cost of double occupancy of the same site): t << U . In other words, the system
becomes insulator (even at half-filling conditions, when band theory would predict a metal)
when electrons cannot hop around because they don’t have sufficient energy to overcome the
repulsion from other electrons on neighbor sites. Therefore, the balance between U and t con-
trols the behavior of these systems and the character of their electronic ground state. While the
regime dominated by single-particle terms of the energy (t >> U ) is generally well described
by approximate DFT, the opposite one (t << U ) is far more problematic.
The LDA+U (by this name I indicate a “+U” correction applied to a generic approximate DFT
functionals, not necessarily LDA) is one of the simplest corrective approaches that were formu-
lated to improve the accuracy of DFT functionals in describing the ground state of correlated
systems [13–17]. The idea it is based on is quite simple and consists in using the the Hubbard
Hamiltonian to describe “strongly correlated” electronic states (typically, localized d or f or-
bitals), while the rest of valence electrons are treated at the “standard” level of approximation.
Within LDA+U the total energy of a system can be written as follows:

ELDA+U [ρ(r)] = ELDA[ρ(r)] + EHub[{nIσmm′}]− Edc[{nIσ}]. (2)

In this equation EHub is the term that contains electron-electron interactions as modeled in
the Hubbard Hamiltonian. Because of the additive nature of this correction it is necessary to
eliminate from the (approximate) DFT energy functionalELDA the part of the interaction energy
already contained in EHub to avoid double-counting problems. This task is accomplished by the
subtraction of the so-called “double-counting” (dc) term Edc that models the contribution to
the DFT energy from correlated electrons as a mean-field approximation to EHub. Due to the
lack of a precise diagrammatic expansion of the DFT total energy, the dc term is not uniquely
defined, and different possible formulations and implementations will be discussed in section
2.1 It is important to stress that the Hubbard correction is only applied to the localized states of
the system (typically the ones most affected by correlation effects). In fact, it is a functional of
occupation numbers that are often defined as projections of occupied Kohn-Sham orbitals (ψσkv)
on the states of a localized basis set (φIm):

nIσm,m′ =
∑
k,v

fσkv〈ψσkv|φIm′〉〈φIm|ψσkv〉 (3)
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where fσkv are the Fermi-Dirac occupations of the Kohn-Sham (KS) states (k and v being,
respectively, the k-point and band indexes). Using the occupations defined in Eq. (3) in the
functional of Eq. (2) corresponds to substituting the number operators appearing in Eq. (1)
with their (mean-field) average on the occupied manifold of the system. While this operation
is necessary to use the Hubbard model in current implementations of DFT, the choice of the
localized basis set is not unique. Some of the most popular choices, as atomic orbitals or
maximally localized Wannier functions, are briefly discussed in section 2.3.
The reminder of this chapter is organized as follows. In section 1 I will review the historical
formulation of LDA+U and the most widely used implementations, discussing the theoretical
background of the method in the framework of DFT. In section 2 I will compare different
flavors of LDA+U obtained from different choices of the corrective functional, of the set of
interactions, of the localized basis set to define atomic occupations. In section 3 I will review
different methods to compute the necessary interaction parameters, particularly focusing on one
based on linear-response. Section 4 will illustrate the calculation of energy derivatives (forces,
stress, dynamical matrix) in LDA+U . In section 5 I will present a recently introduced extension
to the LDA+U that contains both on-site and inter-site effective interactions. Finally, in section
6 I will offer some conclusions and an outlook on the future of this method.

1 Basic formulations and approximations

1.1 General formulation

In Eq. (2) the general structure of the LDA+U energy functional was introduced. I will now
discuss the most common implementations of this corrective approach starting from the simplest
and most general one. The LDA+U approach was first introduced in Refs. [14–16] and consisted
of an energy functional that, when specialized to on-site interactions, can be written as follows:

E = ELDA +
∑
I

[
U I

2

∑
m,σ 6=m′,σ′

nIσm n
Iσ′

m′ −
U I

2
nI(nI − 1)

]
. (4)

In Eq. (4) nIσm = nIσmm, and nI =
∑

m,σ n
Iσ
m , and the index m labels the localized states of the

same atomic site I . The second and the third terms of the right-hand side of this equation repre-
sent, respectively, the Hubbard and the double-counting terms of Eq. (2). Using the definition
of atomic orbital occupations given in Eq. (3), one can easily define the action of the Hubbard
corrective potential on the Kohn-Sham wave functions needed for the minimization process:

V |ψσk,v〉 = VLDA|ψσk,v〉+
∑
I,m

U I

(
1

2
− nIσm

)
|φIm〉〈φIm|ψσk,v〉. (5)

It is important to notice that, because the definition of the atomic occupations (Eq. (3)), the
Hubbard potential is non-local. Therefore, the LDA+U energy functional (Eq. (4)) is out of
the validity domain of the Hohenberg-Kohn theorem [1]. It respects, however, the conditions
of the Gilbert theorem [18]; the Kohn-Sham equations obtained from Eq. (4) will thus yield
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the ground state one-body density matrix of the system. As evident from Eq. (5), the Hubbard
potential is repulsive for less than half-filled orbitals (nIσm < 1/2), attractive for the others. This
is the mechanism through which the Hubbard correction discourages fractional occupations of
localized orbitals (often indicating significant hybridization with neighbor atoms) and favors
the Mott localization of electrons (nIσm → 1). The difference between the potential acting on
occupied and unoccupied states (whose size is of the order of U ) also gives a measure of the
energy gap opening between their eigenvalues. Thus, consistently with the predictions of the
Hubbard model, the explicit account of on-site electron-electron interactions favors electronic
localization and may lead to a band gap in the KS spectrum of the system, provided the on-site
Coulomb repulsion prevails on the kinetic term of the energy, minimized through delocaliza-
tion. Although this appears as a significant improvement over the result of approximate DFT,
it is important to remark that a gap only appears in the band structure if possible degenera-
cies between the (localized) states around the Fermi level are lifted. To achieve this result it is
sometimes necessary to artificially impose the symmetry of the electronic system to be lower
than the point group of the crystal as, for example, in the case of FeO [19] and CuO [20]. This
operation corresponds to “preparing” the system in one of the possibly degenerate insulating
states (having electrons localized on different subsets of orbitals), characterized by a finite gap
in the band structure of the corresponding KS spectrum. As will be discussed in sections 1.4
and 3.3, this result highlights that the LDA+U is out of the realm of DFT, as the Kohn-Sham
spectrum of the exact functional is not constrained to reflect any physical property (while the
charge density should maintain the whole symmetry of the crystal).

1.2 Rotationally-invariant formulation

While able to capture the main essence of the LDA+U approach, the formulation presented in
Eq. (4) is not invariant under rotation of the atomic orbital basis set used to define the occupa-
tion of d states nImσ, which produces an undesirable dependence of the results on the specific
choice of the localized basis set. To solve these problems, A. Liechtenstein and coworkers [21]
introduced a basis set independent formulation of LDA+U in which EHub and Edc are given a
more general expression borrowed from the HF method:

EHub[{nImm′}] =
1

2

∑
{m},σ,I

{
〈m,m′′|Vee|m′,m′′′〉nIσmm′nI−σm′′m′′′+

(〈m,m′′|Vee|m′,m′′′〉 − 〈m,m′′|Vee|m′′′,m′〉)nIσmm′nIσm′′m′′′
}

(6)

Edc[{nImm′}] =
∑
I

{U
I

2
nI(nI − 1)− J I

2
[nI↑(nI↑ − 1) + nI↓(nI↓ − 1)]}. (7)

The invariance of the “Hubbard” term (Eq. (6)) stems from the fact that the interaction param-
eters transform as quadruplets of localized wavefunctions, thus compensating the variation of
the (product of) occupations associated with them. In Eq. (7), instead, the invariance stems
from the dependence of the functional on the trace of the occupation matrices. In Eq. (6) the
Vee integrals represents the electron-electron interactions computed on the wave functions of
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the localized basis set (e.g., d atomic states) that are labeled by the index m. Assuming that
atomic (e.g., d or f ) states are chosen as the localized basis, these quantities can be computed
from the expansion of the e2/|r− r′| Coulomb kernel in terms of spherical harmonics (see [21]
and references quoted therein):

〈m,m′′|Vee|m′,m′′′〉 =
∑
k

ak(m,m
′,m′′,m′′′)F k (8)

where 0 ≤ k ≤ 2l (l is the angular moment of the localized manifold; −l ≤ m ≤ l) and the ak
factors can be obtained as products of Clebsh-Gordan coefficients:

ak(m,m
′,m′′,m′′′) =

4π

2k + 1

k∑
q=−k

〈lm|Ykq|lm′〉〈lm′′|Y ∗kq|lm′′′〉. (9)

In Eq. (8) the F k coefficients are the radial Slater integrals computed on the Coulomb kernel
[21]. For d electrons only F 0, F 2, and F 4 are needed to compute the Vee matrix elements
(for higher k values the corresponding ak would vanish) while f electrons also require F 6.
Consistently with the definition of the dc term (Eq. (7)) as the mean-field approximation of the
Hubbard correction (Eq. (6)), the effective Coulomb and exchange interactions, U and J , can
be computed as atomic averages of the corresponding Coulomb integrals over the states of the
localized manifold (in this example, atomic orbitals of fixed l):

U =
1

(2l + 1)2

∑
m,m′

〈m,m′|Vee|m,m′〉 = F 0, (10)

J =
1

2l(2l + 1)

∑
m 6=m′,m′

〈m,m′|Vee|m′,m〉 =
F 2 + F 4

14
. (11)

These equations have often been used (assuming that F 2/F 4 has the same value as in isolated
atoms) to evaluate screened Slater integrals F k from the values of U and J , computed from
the ground state of the system of interest (some methods to calculate these quantities will be
illustrated in section 3). The screened Vee integrals, to be used in the corrective functional of
Eq. (6), can then be easily obtained from the computed F k using Eqs. (8) and (9). Although
Eqs. (8)-(11) are strictly valid for atomic states and unscreened Coulomb kernels, this procedure
can be assumed quite accurate for solids if the localized orbitals retain their atomic character.

1.3 A simpler formulation

The one presented in section 1.2 is the most complete formulation of the LDA+U , based
on a multi-band Hubbard model. However, in many occasions, a much simpler expression
of the Hubbard correction (EHub), introduced in Ref. [22], is actually adopted and imple-
mented. This simplified functional can be obtained from the full formulation discussed in
section 1.2 by retaining only the lower order Slater integrals F 0 and throwing away the oth-
ers: F 2 = F 4 = J = 0. This simplification corresponds to neglecting the non-sphericity of
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the electronic interactions (a0(m,m′,m′′,m′′′) = δm,m′δm′′,m′′′) and the differences among the
couplings between parallel spin and anti-parallel spin electrons (i.e., the exchange interaction
J). The energy functional can be recalculated from Eqs. (6) and (7) and one easily obtains:

EU [{nIσmm′}] = EHub[{nImm′}]− Edc[{nI}]

=
∑
I

U I

2

[(
nI
)2 −∑

σ

Tr [(nIσ)2]

]
−
∑
I

U I

2
nI(nI − 1)

=
∑
I,σ

U I

2
Tr [nIσ(1− nIσ)]. (12)

It is important to stress that the simplified functional in Eq. (12) still preserves the rotational
invariance of the one in Eqs. (6) and (7), that is guaranteed by the dependence of the “+U”
functional on the trace of occupation matrices and of their products. On the other hand, the
formal resemblance to the HF energy functional is lost and only one interaction parameter (U I)
is needed to specify the corrective functional. This simplified version of the Hubbard correction
has been successfully used in several studies and for most materials it shows similar results
as the fully rotationally invariant one (Eqs. (6) and (7)). Some recent literature has shown,
however, that the Hund’s rule coupling J is crucial to describe the ground state of systems
characterized by non-collinear magnetism [23, 24], to capture correlation effects in multiband
metals [25, 26], or to study heavy-fermion systems, typically characterized by f valence elec-
trons and subject to strong spin-orbit couplings [23, 24, 27]. A recent study [28] also showed
that in some Fe-based superconductors a sizeable J (actually exceeding the value of U and re-
sulting in negative Ueff = U − J) is needed to reproduce (with LDA+U ) the magnetic moment
of Fe atoms measured experimentally. Several different flavors of corrective functionals with
exchange interactions were also discussed in Ref. [29]. Due to the spin-diagonal form of the
simplified LDA+U approach in Eq. (12), it is customary to attribute the Coulomb interaction U
an effective value that accounts for the exchange correction: Ueff = U − J . As discussed in
section 2.2, this assumption is actually not completely justifiable as the resulting functional is
missing other terms of the same order in J as the one included.

1.4 Conceptual and practical remarks

After introducing the general formulation of the LDA+U approach I think it is appropriate to
clarify in a more detailed way its theoretical foundation (possibly in comparison with other
corrective methods) and to discuss the range of systems it can be applied to, its strengths and its
limitations.
The formal resemblance of the full rotationally invariant Hubbard functional (Eqs. (6)) with
the HF interaction energy could be misleading: how can a corrective approach provide a better
description of electronic correlation if it is based on a functional that, by definition, can not
capture correlation? Some differences are, of course, to be stressed: i) the effective interactions
in the LDA+U functional are screened rather than based on the bare Coulomb kernel (as in HF);
ii) the LDA+U functional only acts on a subset of states (e.g., localized atomic orbitals of d or
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f kind) rather than on all the states in the system; iii) the effective interactions have an orbital-
independent value and correspond to atomically averaged quantities. These differences between
LDA+U and HF, while making the first approach more computationally efficient than the latter
(and related ones as exact-exchange - EXX - and hybrid functionals), do not dissolve the doubts
raised above, and actually make HF appear more accurate and general. In order to clarify this
point one needs to keep in mind that LDA+U is designed to capture the effects of electronic cor-
relation (more precisely, of the static correlation, descending from the multi-determinant nature
of the electronic wave function) into an effective one-electron (KS) description of the ground
state. From this point of view significant improvements in the description of a correlated system
may result from the application of an HF-like correction to KS states. In other words, the main
difference between LDA+U and HF is that the first approach applies a corrective functional (re-
sembling a screened HF) to a sub-group of single-particle (KS) wave functions that do not have
any physical meaning (except being constrained to produce the ground state density), in the
assumption that this correction can help a better description of the properties of the correlated
system they represent through the effects it has on the exchange-correlation functional. In real
HF calculations, instead, no xc energy exist and the optimized single particle wave functions
are associated with a physical meaning. In Mott insulators, for example, a more precise evalua-
tion of the structural and the vibrational properties can be obtained using the LDA+U approach
through improving the size of the fundamental gap (possibly after lowering the symmetry of
their electronic system) that can be computed from total energy finite differences when varying
the number of electrons in the system around a reference value (in a molecule this quantity
corresponds to the difference between the first ionization potential and the electron affinity).

An equivalent way to look at this problem is to study the dependence of the total energy of
a system on the number of electrons in its orbitals. As explained in Ref. [30], for example,
the energy of a system exchanging electrons with a “bath” (a reservoir of charge), should be
linear with the number of electrons (in either part) and the finite discontinuity in its derivative
at integer values of this number, represents the fundamental gap. Approximate DFT function-
als do not satisfy this condition and result in upward convex energy profiles (this flaw can be
seen as caused by a residual self-interaction). The linearization of the total energy imposed by
the Hubbard correction is more transparent from its simpler formulation (Eq. (12)) where it
is evident that the corrective functional subtracts from the DFT energy the spurious quadratic
term and substitutes it with a linear one. This topic will be discussed with more details in
section 3 that describes a linear-response approach to the calculation of the Hubbard U . Self-
interaction corrected (SIC) functionals [4] are specifically designed to eliminate the residual
self-interaction that manifests itself with the lack of linearity of the energy profile. In HF, the
exchange functional exactly cancels the self-Coulomb interaction contained in the Hartree term,
but usually produces a downward convex energy profile. Therefore, in HF-related methods as
hybrid functionals, the strength of the exchange interaction must be properly tuned by a scaling
factor (see, for example, [31]). However, the value of the scaling factor (generally in the 0.2
- 0.3 range) is usually determined semi-empirically and has no immediate physical meaning.
LDA+U performs a linearization of the energy only with respect to the electronic degrees of
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freedom for which self-interaction is expected to be stronger (localized atomic states) and with
an effective coupling that, although orbital-independent (indeed corresponding to an atomically
averaged quantity), can be evaluated ab-initio. Thus it results, at the same time, more computa-
tionally efficient and (arguably) more physically transparent than EXX and hybrid functionals
as a corrective scheme to DFT. The formal similarity with SIC and EXX approaches suggests
that LDA+U should be also effective in correcting the underestimated band gap of covalent
insulators (e.g., Si, Ge, or GaAs), for which a more precise account of the exchange interaction
proves to be useful. Indeed, while the “standard” “+U” functional is not effective on these sys-
tems, this result is actually achievable through a generalized formulation of the “+U” functional
(with inter-site couplings) that will be discussed in section 5.

It is important to notice that the orbital independence of the effective electronic interaction,
makes the simpler version of the “+U” correction, Eq. (12), effectively equivalent to a penalty
functional that forces the on-site occupation matrix to be idempotent. This action corresponds
to enforcing a ground state described by a set of KS states with integer occupations (either
0 or 1) and thus with a gap in its band structure. While this is another way to see how the
“+U” correction helps improving the description of insulators, it should be kept in mind that the
linearization of the energy as a function of (localized) orbital occupations is a more general and
important effect to be obtained. In fact, in case of degenerate ground states, charge densities
with fractional occupations (corresponding to a metallic Kohn-Sham system) can, in principle,
represent linear combinations of insulating states (with different subgroups of occupied single
particle states), as long as the total energy is equal to the corresponding linear combination of
the energies of the single configurations. Thus, the insulating character of the KS system should
not be expected/pursued unless the symmetry of the electronic state is broken. An example of
a degenerate ground state is provided by FeO. In fact, the energy of this system is minimized
when the minority-spin d electron of Fe is described by a combination of states on the (111)
plane of the crystal (lower left panel of Fig. 1) rather than by the z2 state along the [111] (upper
left panel of Fig. 1). This combination can only be obtained through lowering the symmetry of
the lattice and breaking the equivalence between d states on the same (111) plane as explained
in Ref. [19]. The right panel in Fig. 1 shows that the orbital-ordered broken symmetry phase
not only gives a good estimate of the band gap but also reproduces the rhombohedral distortion
of the crystal under pressure. The real material has to be understood as resulting from the
superposition of equivalent orbital-ordered phases that re-establish the symmetry of the crystal.

In spite of the appealing characteristics described above, LDA+U provides a quite approximate
description of correlated ground states. Being a correction for atomically localized states, their
possible dispersion is totally ignored and so is the k-point dependence of the effective interac-
tion (the Hubbard U ). This limit can be alleviated, in part, by taking into account inter-site elec-
tronic interactions as explained in Ref. [34]. LDA+U also completely neglects the frequency
dependence of the electronic interaction and, in fact, it has been shown [17] to correspond to
the static limit of GW [35–44]. This particular aspect implies that LDA+U completely misses
the role of fluctuations around the ground state which also corresponds to neglecting its pos-
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Fig. 1: (From [19]). Projected density of states (left) and highest energy occupied orbital of FeO
(center) in the unbroken symmetry (upper panels) and broken symmetry states (lower panels).
In the graph on the right the rhombohedral angle is plotted as a function of pressure. The solid
line describes DFT+U results in the broken-symmetry phase (from [19]). Diamonds represent
the experimental data from [32, 33].

sible multi-configurational character. In order to account for these dynamical effects higher
order corrections are needed as, for example, the one provided by DMFT [45–50]. However,
DFT+DMFT also solves a Hubbard model on each atom (treated as an impurity in contact with
a “bath” represented by the rest of the crystal) and the final result depends quite strongly on the
choice of the interaction parameter U . Recently, LDA+U has also been successfully used in
conjunction with GW [51] and TDDFT [52] to compute the photo-emission spectra and quasi-
particle energies of systems from their correlated ground states. Thus, in spite of its limits,
LDA+U still plays an important role in the description of these materials (besides being one
of the most inexpensive approaches to provide their ground state, at least) and improving its
accuracy and its descriptive and predictive capabilities is very important.

2 Functionals and implementations

In this section I will discuss some particular aspects of the formulation and the implementation
of LDA+U that can influence its effectiveness and accuracy.

2.1 Which double counting?

The lack of a diagrammatic expansion of the DFT total energy makes it quite difficult to model
the electronic correlation already contained in semilocal xc functionals through simple dc terms
(Eqs. (7) and (12)) that are general and flexible enough to work for many different classes of
systems. As a result, the choice of Edc is not univocal and different formulations have been
proposed in literature for different kinds of materials.
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The first one to be introduced was the one given in Eq. (7). that was obtained as a mean-field ap-
proximation to the Hubbard correction (Eq. 6) in the so-called “fully-localized” limit (FLL), in
which each localized (e.g., atomic) orbital is either full or completely empty. This formulation
of the dc term is consistent with the idea behind the Hubbard model as an expansion of the elec-
tronic energy around the strongly localized limit and thus tends to work quite well for strongly
correlated materials with very localized orbitals. For other systems such as, for example, metals
or “weakly correlated” materials in general, the excessive stabilization of occupied states due
to the “+U” corrective potential (see Eq. 5) can lead to a description of the ground state incon-
sistent with experimental data and to quite unphysical results (such as, e.g., the enhancement
of the Stoner factor [53]) that seriously question its applicability in these cases. In order to
alleviate these difficulties a different Hubbard corrective functional, called “around mean-field”
(AMF), was introduced in Ref. [54] and further developed in Ref. [53]. This functional can be
expressed as follows:

EDFT+U = EDFT −
∑
I

U I

2
Tr
(
nI − 〈nI〉

)2
(13)

where nI = Tr nI and 〈nI〉 is the average diagonal element of the occupation matrix nI (multi-
plied by the unit matrix). As evident from Eq. (13), this functional encourages deviations from
a state with uniform occupations (i.e., with all the localized states equally occupied) represent-
ing the approximate DFT ground state. Its expression can be obtained from the combination of
the EHub term of Eq. (12) and a modified dc that reads:

EAMF
dc =

∑
I

U I

2
nI(nI − 〈nI〉) . (14)

In Ref. [53] a linear combination of the AMF and the FLL flavors of LDA+U is proposed, also
used in [27]. The mixing parameter has to be determined for each material and is a function
of various quantities related to its electronic structure. In spite of this connection between the
two schemes, the AMF one has had limited success and diffusion, except for relatively few
works [27, 29]. Because of its derivation from the Hubbard model, the LDA+U approach is
generally viewed as a corrective scheme for systems with localized orbitals and the FLL limit
is usually adopted. In cases where these are embedded in a “background” of more delocalized
or hybridized states the use of the FLL flavor is still justifiable with a corrective functional that
selectively correct only the most localized orbitals. This approach has recently shown promising
results (to be published elsewhere) for bulk Fe with a FLL LDA+U applied on eg states only.

2.2 Which corrective functional?

Another source of uncertainty when using LDA+U derives from the level of approximation in
the corrective Hamiltonian. While rotational invariance is widely recognized as a necessary
feature of the functional, whether to use the full rotationally invariant correction, Eqs. (6) and
(7), or the simpler version of it, Eq. (12), seems more a question of taste or of availability in
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current implementations. In fact, the two corrective schemes give very similar results for a large
number of systems in which electronic localization is not critically dependent on Hund’s rule
magnetism. However, as mentioned in section 1.3, in some materials that have recently attracted
considerable interest, this equivalence does not hold anymore and the explicit inclusion of the
exchange interaction (J) in the corrective functional appears to be necessary. Examples of
systems in this group include recently discovered Fe-pnictides superconductors [28], heavy-
fermion [27, 24], non-collinear spin materials [23], or multiband metals for which the Hund’s
rule coupling, promotes, depending on the filling, metallic or insulating behavior [25, 26]. In
our recent work on CuO [20] the necessity to explicitly include the Hund’s coupling J in the
corrective functional was determined by a competition (likely to exist in other Cu compounds as
well, such as high Tc superconductors), between the tendency to complete the external 3d shell
and the one towards a magnetic ground state (dictated by Hund’s rule) with 9 electrons on the d
manifold. The precise account of exchange interactions between localized d electrons beyond
the simple approach of Eq. (12) (with Ueff = U − J) turned out to be crucial to predict the
electronic and structural properties of this material. In this work we used a simpler J-dependent
corrective functional than the full rotationally invariant one to reach this aim. The expression
of the functional was obtained from the full second-quantization formulation of the electronic
interaction potential,

V̂int =
1

2

∑
I, J,K,L

∑
i, j, k, l

∑
σ, σ′

〈φIiφJj |Vee|φKk φLl 〉 ĉ
†
I i σ ĉ

†
J j σ′ ĉK k σ′ ĉL l σ (15)

(where Vee represent the kernel of the effective interaction, upper- and lower-case indexes la-
bel atomic sites and orbitals respectively) keeping only on-site terms describing the interac-
tion between up to two orbitals. Approximating on-site effective interactions with the (orbital-
independent) atomic averages of Coulomb and exchange terms,

U I =
1

(2l + 1)2

∑
i,j

〈φIiφIj |Vee|φIjφIi 〉,

and
J I =

1

(2l + 1)2

∑
i,j

〈φIiφIj |Vee|φIiφIj〉,

and substituting the product of creation and destruction operators with their averages, associated
to the occupation matrices defined in Eq. 3, nI σi j = 〈ĉ†I i σ ĉI j σ〉, one arrives at the following
expression:

EHub − Edc =
∑
I, σ

U I − J I

2
Tr[nI σ (1− nI σ)] +

∑
I, σ

J I

2
Tr[nI σ nI −σ]. (16)

Comparing Eqs. (12) and (16), one can see that the on-site Coulomb repulsion parameter
(U I) is effectively reduced by J I for interactions between electrons of parallel spin and a
positive J term further discourages anti-aligned spins on the same site stabilizing magnetic
ground states. The second term on the right-hand side of equation (16) can be explicated as
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∑
I, σ (J

I/2)nI σmm′ n
I −σ
m′m which shows how it corresponds to an “orbital exchange” between

electrons of opposite spins (e.g. up spin electron from m′ to m and down spin electron from m

tom′). It is important to notice that this term is genuinely beyond Hartree-Fock. In fact, a single
Slater determinant containing the four states m ↑ , m ↓, m′ ↑ , m′ ↓ would produce no interac-
tion term like the one above. Thus, the expression of the J term given in equation (16), based on
a product of nI σ and nI −σ is an approximation of a functional that would require the calculation
of the 2-body density matrix to be properly included. However, in the spirit of the elimination
of the spurious quadratic behavior of the total energy, one can assume that the J term in Eq. (16)
is a fair representation of the exchange energy contained in the approximate DFT functionals.
Therefore its formulation and use in corrective functionals are legitimate. Similar terms in the
corrective functional have already been proposed in literature [25, 26, 55–57] although with
slightly different formulation than in Eq. (16) when used in model Hamiltonians.
Eq. (16) represents a significant simplification with respect to Eqs. (6) and (7) and proved effec-
tive to predict the insulating character of the cubic phase of CuO and to describe its tetragonal
distortion [20]. The simplicity of its formulation greatly facilitates its use and the implementa-
tion of other algorithms (such as, for example, the calculation of forces, stresses or phonons that
will be discussed below). It is also important to report that the LDA+U scheme has recently
been implemented with a non-collinear formalism (see, e.g., Ref. [23]). to study correlated
systems characterized by canted magnetic moments, magnetic anisotropy or strong spin-orbit
interactions (as common in rare earth compounds) [24]. This extension will not be further
discussed in this chapter.

2.3 Which localized basis set?

The formulation of the corrective LDA+U functional discussed so far is valid independently
from the particular choice of the localized set used to define the occupation matrices that enter
the expression of the same functional. Many different choices are indeed possible. The first
formulations of LDA+U [14–16] were based on a linear muffin-tin orbital (LMTO) implemen-
tation and thus had muffin-tin-orbitals (MTOs - constructed using Bessel, Neumann and Henkel
spherical functions and spherical harmonics) as a natural choice to define on-site occupations.
In plane-wave - pseudo-potential implementations of DFT, the atomic wave functions used to
construct the pseudopotentials probably represent the easiest basis to use. In this case, it is use-
ful to keep in mind that, since the valence electrons wave functions are defined at every point
in the unit cell and are expanded on a plane-wave basis set, the definition of the occupation
of atomic orbitals requires a projection of valence states on the atomic one. This is reflected
in the expression in Eq. (3) and obviously determines the way the Hubbard potential acts on
the Kohn-Sham states (Eq. (5)). Other choices are also possible as, for example, atomically
centered gaussians or maximally localized Wannier functions [58].
In principles, the final result (the description of the properties of a system obtained from the
LDA+U ) should not depend on the choice of the localized basis set, provided the effective in-
teraction parameters appearing in the functional (U and possibly J) are computed consistently,
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as described in section 3. However, the approximations operated in the Hubbard functional (and
the consequent lack of flexibility) may introduce some basis set dependence. Another source of
(undesirable) dependence on the basis set is represented by the lack of invariance of the correc-
tive functional with respect to possible rotations of its wave function. In sections 1.2 and 1.3 I
highlighted the rotational invariance of the LDA+U formulated in Eqs. (6) and (7). However,
it is important to stress that this formulation is only invariant for rotations of localized wave
functions belonging to the same atomic site. In other words, if one mixes orbitals centered on
different atoms the corrective energy changes. In these conditions different basis sets may show
different ability to capture the localization of electrons and yield results somewhat different
from each other. A particularly good choice in this context seems to be represented by Wannier
functions [59, 60]. This choice may lead, however, to some additional computational cost re-
lated to the necessity to optimize the localized basis set and to adapt it to the system for optimal
performance [60]. An alternative solution to the problem is represented by the extension of the
corrective functional to include inter-site interactions (and, ideally higher order terms) that will
be discussed in section 5.

3 Computing U (and J?)

3.1 The necessity to compute U

As evident from the expression of the Hubbard functionals discussed in previous sections, the
“strength” of the correction to approximate DFT total energy functionals is controlled by the
effective on-site electronic interaction - the Hubbard U - whose value is not known a-priori.
Consistently with a wide-spread use of this approach as a means to roughly assess the role of
electronic correlation, it has become common practice to tune the Hubbard U in a semiem-
pirical way, through seeking agreement with available experimental measurements of certain
properties and using the so determined value to make predictions on other aspects of the system
behavior. Besides being not satisfactory from a conceptual point of view, this practice does not
allow to appreciate the variations of the on-site electronic interaction U , e.g., during chemi-
cal reactions, structural transitions or under changing physical conditions. Therefore, in order
to obtain quantitatively predictive results, it is crucial to have a method to compute the Hub-
bard U (and possibly J) in a consistent and reliable way. The interaction parameters should be
calculated, in particular, for every atom the Hubbard correction is to be used on, for the crys-
tal structural and the magnetic phase of interest. The obtained value depends not only on the
atom, its crystallographic position in the lattice, the structural and magnetic properties of the
crystal, but also on the localized basis set used to define the on-site occupation (the same as in
the LDA+U calculation). Therefore, contrary to another practice quite common in literature,
these values have limited portability, from one crystal to another, or from one implementation
of LDA+U to another.
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3.2 Other approaches: a quick overview

In the first implementations of LDA+U , based on the use of localized basis sets (e.g., in the
LMTO approximation), the Hubbard U was calculated (consistently with its definition as the
energy cost of the reaction 2dn → dn+1 + dn−1) from finite differences between Kohn-Sham
energy eigenvalues computed (within the atomic sphere approximation) with one more or one
less electron on the d states. [13]. This approach allows to obtain a value that is automatically
screened by electrons of other kinds on the same atom (e.g., on 4s and 4p orbitals for a 3d
transition metal). The use of the LMTO basis set also makes it possible to change the occu-
pation of 3d states and to eliminate hopping terms between these atomic orbitals (for which U
is calculated) and the rest of the crystal so that single-particle terms of the energy, accounted
for explicitly in the Hubbard model, are not included in the calculation. These latter features
are quite specific to implementations that use localized basis sets (e.g., LMTO); other imple-
mentations (based, e.g., on plane waves) require different procedures to compute the effective
interaction parameters [61].
One of the latest methods to compute the effective (screened) Hubbard U is based on con-
strained RPA (cRPA) calculations and yields a screened, fully frequency dependent interaction
parameter that can be used, e.g., in DFT+DMFT calculations [62]. This approach has been
extensively described in one of the chapter of the 2011 volume of this same series [57] and will
not be discussed here.

3.3 Computing U from linear-response

In the following I will describe a linear response approach to the calculation of the effective
Hubbard U [19] that allows to use atomic occupations defined as projections of Kohn-Sham
states on a generic localized basis set, as shown in Eq. (3). The one described below is the
method implemented in the plane-wave pseudopotential total-energy code of the Quantum-
ESPRESSO package [63]. The basic idea of this approach is the observation that the (ap-
proximate) DFT total energy is a quadratic function of on-site occupations (as also suggested in
Ref. [64]). This is consistent with the definition of the dc term (Eq. (7)). In fact, if one considers
a system able to exchange electrons with a reservoir (e.g., an atom exchanging electrons with
a metallic surface or another atom) the approximate DFT energy is an analytic function of the
number of electrons on the orbitals of the system. As demonstrated by quite abundant litera-
ture [65, 30, 66], it should consist, instead, of a series of straight segments joining the energies
corresponding to integer occupations. Examining Fig. 2, that compares the DFT total energy
with the piece-wise linear behavior of the exact energy (it should be noted that they represent
cartoons as the energy of the system does not increase for larger N), it is easy to understand
that, if the DFT energy profile is represented by a parabola (actually a very good approxima-
tion within single intervals between integer occupations [67]), the correction needed to recover
the physical piece-wise linear behavior (blue curve) has the expression of the Hubbard func-
tional of Eq. (12), provided that U represents the (spurious) curvature of the approximate total
energy profile one aims to eliminate. It is important to notice that recovering the linear behav-
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Fig. 2: (From [19]) Sketch of the total energy profile as a function of the number of electrons in
a generic atomic system in contact with a reservoir. The black line represents the DFT energy,
the red the exact limit, the blue the difference between the two. The discontinuity in the slope of
the red line for integer occupations, corresponds to the difference between ionization potential
and electron affinity and thus measures the fundamental gap of the system.

ior corresponds to reintroducing the discontinuity in the first derivative of the energy (i.e., the
single-particle eigenvalue) when the number of electrons increases by one, from N to N + 1.
This discontinuity, also proportional to U , represents the fundamental gap of the system (i.e.,
the difference between ionization potential and electron affinity in molecules). Thus, the Hub-
bard U is associated to important physical quantities if calculated as the second derivative of
the (approximate) DFT energy.
Unfortunately, when using plane waves (and, typically, pseudopotentials) the on-site occupa-
tions cannot be controlled or changed “by hand” because they are obtained as an outcome from
the calculation after projecting Kohn-Sham states on the wave function of the localized basis
set (Eq. (3)). Therefore, to obtain the second derivative of the total energy with respect to occu-
pations we adopted a different approach that is based on a Legendre transform [19]. In practice,
we add a perturbation to the Kohn-Sham potential that is proportional to the projector on the
localized states φIm of a certain atom I ,

Vtot|ψσkv〉 = VKS|ψσkv〉+ αI
∑
m

|φIm〉〈φIm|ψσkv.〉 (17)
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In this equation αI represents the “strength” of the perturbation (usually chosen small enough to
maintain a linear response regime). The potential in Eq. 17 is the one entering the Kohn-Sham
equations of a modified energy functional that yields a α-dependent ground state:

E(αI) = min
γ

{
EDFT [γ] + αInI

}
(18)

where γ is the one-body density matrix. If one defines E[{nI}] = E(αI) − αInI (where
nI indicates the value of the on-site occupation computed when the minimum in Eq. (18)
is achieved), the second derivative d2E/d(nI)2 can be computed as −dαI/d(nI). In actual
calculations, we change αI on each “Hubbard” atom and, solving the minimization problem
of Eq. (18) through modified Kohn-Sham equations, we collect the response of the system in
terms of variation in all the nJ . Thus, the quantity that we can directly measure is the response
function χIJ = d(nI)/dαJ , where I and J are site indexes that label all the Hubbard atoms. The
Hubbard U is obtained from the inverse of the response matrix: U I = −χ−1. This definition
is actually not complete. In fact, a term to the energy second derivative, coming from the
reorganization (rehybridization) of the electronic wave functions in response to the perturbation
of the potential, Eq. (17), would be present even for independent electron systems and is not
related to electron-electron interactions. Thus, it must be subtracted out. The final expression
of the Hubbard U then results:

U I = (χ−10 − χ−1)II (19)

where χ0 measures the response of the system that accounts for the rehybridization of the elec-
tronic states upon perturbation. Subtracting this term corresponds to eliminate the hopping
between the localized “Hubbard” states and the rest of the system, or to kill the kinetic con-
tribution to the second derivative of the energy as suggested in Ref. [61]. The necessity to
compute χ0 (besides χ) actually dictates the the way these calculations are performed. The
first step is a well converged self-consistent calculation of the system of interest with the ap-
proximate xc functional of choice. Starting from the ground-state potential and wave functions
we then switch the perturbation on and run separate DFT calculations (solving the problem in
Eq. (18)) for each Hubbard atom and for each alpha in an interval of values typically centered
around 0. The variation of on-site occupation at the first iteration of the perturbed run defines
χ0. In fact, at this stage electron-electron interactions have not yet come into play to screen
the perturbation, and the response one obtains is that of a system that has the same electronic
density of the ground state but the potential frozen to its self-consistent value. Thus it is en-
tirely due to the re-hybridization of the orbitals. The response measured at self-consistency will
give, instead, χ. More details about the theoretical aspects of this calculation can be found in
Ref [19], and a useful hands-on tutorial with examples on these calculations is linked from the
web-page of the Quantum-ESPRESSO package (http://wwww.quantumespresso.org).
The Hubbard U , calculated as in Eq. (19), is screened by other orbitals and atoms: in fact, when
perturbing the system the “non-Hubbard” degrees of freedom silently participate to the redistri-
bution of electrons and to the response of “Hubbard” orbitals. To account for this contribution
more explicitly an extra row and column are added to the response matrices χ and χ0 to con-
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tain the collective response (computed with a simultaneous perturbation) of these “background”
states.

The calculation of J could, in principles, be performed along similar lines, adding a pertur-
bation that effectively couples with the on-site magnetization mI = nI↑ − nI↓. However, the
energy of a magnetic ground state is not generally quadratic in the magnetization as it is mini-
mized on the domain-border. In other words, the magnetization is often the maximum it could
be compatibly with the number of electronic localized states. In these circumstances nI and mI

are not independent variables and one can only obtain linear combinations of U and J but not
solve them separately. A possible way around this problem could be to perturb a state corre-
sponding to a magnetization slightly decreased with respect to its ground state value (e.g., with
a penalty functional) in order to allow for the independent variation of nI andmI . However, this
calculation has not been actually attempted yet and it is impossible to comment on its reliability.

The approach described above renders the LDA+U ab-initio, eliminating any need of semi-
empirical evaluations of the interaction parameters in the corrective functional. It also in-
troduces the possibility to re-compute the values of these interactions in dependence of the
crystal structure, the magnetic phase, the crystallographic position of atoms, etc. This ability
proved critical to improve the predictive capability of LDA+U and the agreement of its results
with available experimental data for a broad range of different materials and different condi-
tions. The ability to consistently recompute the interaction parameters significantly improved
the description of the structural, electronic and magnetic properties of a variety of transition-
metal-containing crystals and was particularly useful in presence of structural [19, 68], mag-
netic [69] and chemical transformations [70, 71]. In Ref. [69] the use of the “self-consistent”
Hubbard U (recomputed for different spin configurations) allowed to predict a ground state
for the (Mg,Fe)(Si,Fe)O3 perovskite with high-spin Fe atoms on both A and B sites, and a
pressure-induced spin-state crossover of Fe atoms on the B sites that couples with a noticeable
volume reduction, an increase in the quadrupole splitting (consistent with recent x-ray diffrac-
tion and Mössbauer spectroscopy measurements) and a marked anomaly in the bulk modulus of
the material. These results have far-reaching consequences for understanding the physical be-
havior of the Earth’s lower mantle where this mineral is particularly abundant. The calculation
of the Hubbard U also improved the energetics of chemical reactions [72, 73], and electron-
transfer processes [74]. Thanks to this calculation, LDA+U has become significantly more
versatile, flexible and accurate. A recent extension to the linear response approach has further
improved its reliability through the self-consistent calculation of the U from an LDA+U ground
state [34, 72]. This improved method, that is mostly useful for systems where the LDA and
LDA+U ground states are qualitatively different, is based on a similar calculation to the one
described above with a perturbed run performed on a LDA+U ground state for which the “+U”
corrective potential is frozen to its self-consistent unperturbed value. This guarantees that the
+U part does not contribute to the response and, consistently to its definition, the Hubbard U
is measured as the curvature of the LDA energy in correspondence of the LDA+U ground state
charge density.
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4 Energy derivatives

One of the most important advantages brought about by the simple formulation of the LDA+U
corrective functional consists in the possibility to easily compute energy derivatives, as forces,
stresses, dynamical matrices, etc. These are crucial quantities to identify and characterize the
equilibrium structure of materials in different conditions, and to compute various other prop-
erties (as, e.g., vibrational spectra) or to account for finite temperature effects in insulators. In
this section I will review the calculation of LDA+U forces, stresses, and second derivatives (see
Refs. [75,76] for details), that are contained in the total energy, Car-Parrinello MD, and phonon
codes of the QUANTUM-ESPRESSO package [63]. In the last subsection I will also offer some
comments on the importance of the derivative of the Hubbard interaction. In the remainder of
this section I will present the implementation of energy derivatives in a code using a localized
basis set of atomic orbitals taken from norm-conserving pseudo-potential. Mathematical com-
plications deriving from the use of other kinds of pseudo-potentials (e.g., ultra-soft [77]) will
not be addressed here.

4.1 The Hubbard forces

The Hubbard forces are defined as the derivative of the Hubbard energy with respect to the
displacement of atoms. The force acting on the atom α in the direction i is defined as:

FU
α,i = −

∂EU
∂ταi

= −
∑

I,m,m′,σ

∂EU
∂nIσm,m′

∂nIσm,m′

∂ταi
= −U

2

∑
I,m,m′,σ

(δmm′ − 2nIσm′m)
∂nIσm,m′

∂ταi
(20)

where ταi is the component i of the position of atom α in the unit cell, EU and nIσm,m′ are the
Hubbard energy and the elements of the occupation matrix as defined in Eq. (3). Based on that
definition it is easy to derive the following formula:

∂nIσm,m′

∂ταi
=
∑
k,v

fkv[
∂

∂ταi

(
〈ϕImk|ψσkv〉

)
〈ψσkv|ϕIm′k〉+ 〈ϕImk|ψσkv〉

∂

∂ταi
〈ψσkv|ϕIm′k〉] (21)

(k and v being the k-point and band indexes, respectively) so that the problem is reduced to
determine the quantities

∂

∂ταi
〈ϕImk|ψσkv〉 (22)

for each I , m, m′, σ, k and v. Since the Hellmann-Feynman theorem applies, no response of
the electronic wave function has to be taken into consideration for first derivatives of the energy.
The quantities in Eq. (22) can thus be calculated considering only the derivative of the atomic
wave functions:

∂

∂ταi

〈
ϕImk|ψσkv

〉
=

〈
∂ϕImk
∂ταi

|ψσkv
〉
. (23)

Although the atomic occupations are defined on localized atomic orbitals, the product with
Kohn-Sham wavefunctions of a given k-vector (Eq. (3)) selects the Fourier component of the
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atomic wavefunction at the same k-point. This component can be constructed as a Bloch sum
of localized atomic orbitals:

ϕati,k,I(r) =
1√
N

∑
R

e−ik·Rϕati,I(r−R− τI) = e−ik·r
1√
N

∑
R

eik·(r−R)ϕati,I(r−R− τI). (24)

In this equation i is the cumulative index for all the quantum numbers {n, l,m} defining the
atomic state, τI is the position of atom I inside the unit cell, N is the total number of k-points
and the sum runs over all theN direct lattice vectors R. The second factor in the right hand side
of Eq. (24) is a function with the periodicity of the lattice. Its Fourier spectrum thus contains
only reciprocal lattice vectors:

ϕati,k,I(r) =
1√
Ω

∑
G

e−i(k+G)·rci,I(k+G). (25)

In this equation G are reciprocal lattice vector (G ·R = 2πn), and V is the total volume of N
unit cells: V = NΩ). The response to the ionic displacement thus results:

∂ϕati,k,I
∂ταj

= δI,α
i√
Ω

∑
G

e−i(k+G)·rci,α(k+G)(k+G)j (26)

where (k + G)j is the component of the vector along direction j and i is the imaginary unit.
Due to the presence of the Kronecker δ in front of its expression, the derivative of the atomic
wave function is different from zero only in the case it is centered on the atom which is being
displaced. Thus, the derivative in Eq. (23) only contributes to forces on atoms subject to
the Hubbard correction. Finite off-site terms in the expression of the forces arise when using
ultrasoft pseudopotentials. However this case is not explicitly treated in this chapter.

4.2 The Hubbard stresses

Starting from the the expression for the Hubbard energy functional, given in Eq. (12), we can
compute the contribution to the stress tensor as:

σUαβ = − 1

Ω

∂EU
∂εαβ

(27)

where Ω is the volume of the unit cell (the energy is also given per unit cell), εαβ is the strain
tensor that describes the deformation of the crystal:

rα → r′α =
∑
β

(δαβ + εαβ)rβ (28)

where r is the space coordinate internal to the unit cell. The procedure, already developed for
the forces (see Eqs. (20), (21)), can be applied to the case of stresses as well. The problem thus
reduces to evaluating the derivative

∂

∂εαβ
〈ϕImk|ψσkv〉. (29)
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In order to determine the functional dependence of atomic and KS wavefunctions on the strain
we deform the lattice accordingly to Eq. (28) and study how these functions are modified by
the distortion. Distortions will be assumed small enough to justify first order expansions of
physical quantities around the values they have in the undeformed crystal. To linear order, the
distortion of the reciprocal lattice is opposite to that of real space coordinates:

kα → k′α =
∑
β

(δαβ − εαβ)kβ. (30)

Thus, the products (k +G) · r appearing in the plane wave (PW) expansion of the wave func-
tions (see, for example, Eq. (25)) remain unchanged.
Let’s first study the modification of the atomic wavefunctions taking in consideration the ex-
pression given in Eq. (25). The volume appearing in the normalization factor transforms as
follows:

V → V ′ = |1 + ε|V (31)

where |1 + ε| is the determinant of the matrix δαβ + εαβ that describes the deformation of
the crystal. Applying the strain defined in Eq. (28), to the expression of the k + G Fourier
component of the atomic wave function one obtains:

c′i,I(k
′ +G′) =

1√
|1 + ε|

√
NΩ

ei(k
′+G′)·τ ′I

∫
V ′
dr′ei(k

′+G′)·r′ϕati,k,I(r
′)

=
1√
|1 + ε|

1√
NΩ

ei(k+G)·τI
∫
V ′
drei(k

′+G′)·rϕati,k,I(r). (32)

Since the integral appearing in this expression does not change upon distorting the integration
volume, defining

c̃i,I(k+G) = ci,I(k+G)e−i(k+G)·τI (33)

one obtains:

c̃′i,I(k
′ +G′) =

1√
|1 + ε|

c̃i,I(k
′ +G′) =

1√
|1 + ε|

c̃i,I((1− ε)(k+G)). (34)

Thus, the “deformed” atomic wave function results:

ϕati,k,I(r) =
1√
Ω

∑
G

e−i(k+G)·rei(k+G)·τI c̃i,I(k+G)→

1√
Ω′

∑
G′

e−i(k
′+G′)·r′ei(k

′+G′)·τ ′I c̃′i,I(k
′ +G′)

=
1

|1 + ε|
1√
Ω

∑
G

e−i(k+G)·rei(k+G)·τI c̃i,I((1− ε)(k+G)). (35)

According to the Bloch theorem Kohn-Sham (KS) wavefunctions can be expressed as follows:

ψσkv(r) =
1√
V

∑
G

e−i(k+G)·raσkv(G) (36)
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where
aσkv(G) =

1√
V

∫
V

drei(k+G)·rψσkv(r). (37)

Upon distorting the lattice as described in Eq. (28) the electronic charge density is expected to
rescale accordingly. One can thus imagine the electronic wave function in a point of the strained
space to be proportional to its value in the corresponding point of the undistorted lattice:

ψσkv(r)→ ψ′
σ
k′v(r

′) = αψσkv((1− ε)r′) (38)

where the proportionality constant α is to be determined by normalizing the wave function in
the strained crystal. By a simple change of the integration variable we obtain:

1 =

∫
V ′
dr′|ψ′σkv|2 = |1 + ε|

∫
V

dr|αψσkv|2 = |1 + ε|α2 (39)

from which, choosing α real, we have

α =
1√
|1 + ε|

. (40)

Using this result we can determine the variation of the k + G Fourier component of ψσkv (Eq.
(37)). We easily obtain:

aσk′v(G
′) =

1√
V ′

∫
V ′
dr′ei(k

′+G′)·r′ψ′
σ
k′v(r

′)

=
1√
|1 + ε|

1√
V

∫
V

|1 + ε|drei(k+G)·r 1√
|1 + ε|

ψσkv(r) = aσkv(G). (41)

We can now compute the first order variation of the scalar products between atomic and Kohn-
Sham wavefunctions:

〈ϕImk|ψσkv〉′ =
1√
|1 + ε|

∑
G

ei(k+G)·τI [cImk((1− ε)(k+G))]∗aσkv(G). (42)

The expression of the derivative follows immediately (for small strains |1 + ε| ∼ 1 + Tr(ε)):

∂

∂εαβ
〈ϕImk|ψσkv〉|ε=0 = −1

2
δαβ〈ϕImk|ψσkv〉 (43)

−
∑
G

ei(k+G)·τIaσkv(G)∂α[c
I
mk(k+G)]∗(k+G)β.

The explicit expression of the derivative of the Fourier components of the atomic wavefunctions
won’t be detailed here. In fact this quantity depends on the particular definition of the atomic
orbitals that can vary in different implementations.

4.3 Phonons and second energy derivatives

Many important properties of materials (such as, for example, their vibrational spectrum) are
related to the second derivatives of their total energy. It was therefore important to develop
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the capability to compute these quantities from first principles for correlated systems. The
main linear response technique to obtain second derivatives of the DFT energies is Density
Functional Perturbation Theory (DFPT). In this section I present the recent extension of DFPT
to the LDA+U energy functional to compute the vibrational spectrum (and other linear-response
properties) of materials from their correlated (LDA+U ) ground state [76].
DFPT is based on the application of first-order perturbation theory to the self-consistent DFT
ground state. I refer to Ref. [78] for an extensive description and for the definition of the notation
used here. The displacement of atom L in direction α from its equilibrium position induces a
(linear) response ∆λVSCF in the KS potential VSCF , leading to a variation ∆λn(r) of the charge
density (λ ≡ {Lα}). The Hubbard potential,

VHub =
∑

Iσm1m2

U I

[
δm1m2

2
− nIσm1m2

]
|φIm2
〉〈φIm1

|,

also responds to the shift of atomic positions and its variation, to be added to ∆λVSCF , reads:

∆VHub =
∑

Iσm1m2

U I

[
δm1m2

2
− nIσm1m2

] [
|∆φIm2

〉〈φIm1
|+ |φIm2

〉〈∆φIm1
|
]

−
∑

Iσm1m2

U I∆nIσm1m2
|φIm2
〉〈φIm1

| (44)

where ∆φIm is the variation of atomic wavefunctions due to the shift in the position of their
centers and

∆nIσm1m2
=

occ∑
i

{〈ψσi |∆φIm1
〉〈φIm2

|ψσi 〉+ 〈ψσi |φIm1
〉〈∆φIm2

|ψσi 〉}

+
occ∑
i

{〈∆ψσi |φIm1
〉〈φIm2

|ψσi 〉+ 〈ψσi |φIm1
〉〈φIm2

|∆ψσi 〉}. (45)

In Eq. (45) |∆ψσi 〉 is the linear response of the KS state |ψσi 〉 to the atomic displacement and is
to be computed solving the DFPT equations [78].
It is important to note that, in the approach discussed in this section, the derivative of the Hub-
bard U is assumed to be small and neglected.
Once the self-consistent density response∆n(r) is obtained, the dynamical matrix of the system
can be computed to calculate the phonon spectrum and the vibrational modes of the crystal. The
Hubbard energy contributes to the dynamical matrix with the following term

∆µ(∂λEHub) =
∑
Iσmm′

U I

[
δmm′

2
− nIσmm′

]
∆µ
(
∂λnIσmm′

)
−
∑
Iσmm′

U I∆µnIσmm′∂
λnIσmm′ (46)

which represents the total derivative of the Hellmann-Feynman Hubbard forces (Eq. (20)). In
Eq. 46, the symbol ∂λ indicates an explicit derivative (usually called “bare”) with respect to
atomic positions that does not involve linear-response terms (i.e., the variation of the Kohn-
Sham wave functions).
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When computing phonons in ionic insulators and semiconductor materials a non-analytical term
Cna
Iα,Jβ must be added to the dynamical matrix to account for the coupling of longitudinal vi-

brations with a macroscopic electric field generated by ion displacement [79, 80]. This term,
responsible for the LO-TO splitting at q = Γ , depends on the Born effective charge tensor
Z∗ and the high-frequency dielectric tensors ε∞: Cna

Iα,Jβ = 4πe2

Ω

(q·Z∗I )α(q·Z
∗
J )β

q·←→ε ∞·q . The calculation
of Z∗I,αβ and ε∞αβ is based on the response of the electronic system to a macroscopic electric
field and requires the evaluation of the transition amplitudes between valence and conduction
KS states, promoted by the commutator of the KS Hamiltonian with the position operator r,
〈ψc,k|[HSCF , r]|ψv,k〉 [81]. A contribution to this quantity from the Hubbard potential must be
also included:

〈ψc,k|[V σ
Hub, rα]|ψv,k〉 =

∑
Imm′

U I

[
δmm′

2
− nIσmm′

] [
−i〈ψc,k|

d

dkα

(
|φIm,k〉〈φIm′,k|

)
|ψv,k〉

]
(47)

where φIm,k are Bloch sums of atomic wave functions and kα represents one of the components
of the Bloch vector k.
To summarize, the extension of DFPT to the DFT+U functional requires three terms: the varia-
tion of the Hubbard potential∆λVHub to be added to∆λVSCF; the second derivative∆µ(∂λEHub)

to be added to the analytical part of the dynamical matrix; and the commutator of the Hubbard
potential with the position operator to contribute to the non analytical part of the dynamical ma-
trix. This extension of DFPT, called DFPT+U , was introduced in Ref. [76] and implemented in
the PHONON code of the QUANTUM ESPRESSO package [63]. As an example of application
I present below the results obtained from the DFPT+U calculation of the vibrational spectrum
of MnO and NiO, also discussed in Ref. [76]. The Hubbard U for both systems was computed
using the linear-response method discussed in one of the previous sections and resulted 5.25 eV
for Mn and 5.77 eV for Ni.
As other transition metal mono-oxides, MnO and NiO crystallize in the cubic rock-salt structure
but acquire a rhombohedral symmetry due to their antiferromagnetic order (called AFII) con-
sisting of ferromagnetic planes of cations alternating with opposite spin. Because of the lower
symmetry, the directions corresponding to the cubic diagonals lose their equivalence which
leads to the splitting of the transverse optical modes (with oxygen and metal sublattices vibrat-
ing against each other) around the zone center [82]. Figure 3 compares the phonon dispersions
of MnO and NiO obtained from the GGA+U ground state with those resulting from GGA. As
it can be observed, the Hubbard correction determines an overall increase in the phonon fre-
quencies for both materials, significantly improving the agreement with available experimental
results [83–86]. Moreover, the phonon frequencies computed from the GGA+U ground state
lead to a decreased splitting between transverse optical modes compared to GGA, which also
is in better agreement with experimental data (although for NiO the sign of the splitting is still
controversial [83, 87, 88]).
These results demonstrate that, on the contrary to what is sometimes expected or assumed,
electronic correlations have significant effects on the structural and vibrational properties of
materials and a corrected functional should be used when calculating properties related to the
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Fig. 3: (From [76]) The phonon dispersion and the vibrational DOS of MnO (upper panel) and
NiO (lower panel), calculated with GGA (dashed lines) and GGA+U (solid thick lines). Blue
(black) arrows mark the GGA+U (GGA) magnetic splittings and their sign. Filled symbols:
Experimental data [83–86]. Open symbols: Results of other calculations (at zone center) [82].

vibrational spectrum, such as, e.g., Raman spectroscopy, or when integrating over the Brillouin
zone to calculate thermodynamic quantities.

4.4 Derivatives of U

In all the preceding sections discussing the contribution of the Hubbard corrective functional
to the first and second derivatives of the energy (forces, stresses, force-constant/dynamical ma-
trices) the effective Hubbard U was held fixed. In fact, its dependence on the atomic positions
and/or the cell parameters is usually assumed to be small and neglected. This is, of course, an
approximation as the Hubbard U should be thought of as a functional of the charge density as
well and thus depends on any factor able to change the electronic structure of the ground state.
The validity of this approximation should be tested carefully, case by case. In fact, some recent
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works have shown that accounting for the variation of the interaction parameter with the ionic
positions and the lattice parameter can be quite important to obtain quantitatively predictive
results. In Ref. [68], focused on the properties of the low-spin ground state of LaCoO3 under
pressure, the Hubbard U (necessary to reproduce the insulating character of this material and for
a better description of its electronic and bonding structure) was recalculated for every volume
explored. The structurally-consistent U proved crucial to predict the variation of the structural
parameters of the material (lattice spacing, rhombohedral angle, Co-O distance and bond an-
gles) with pressure in good agreement with experimental data. In Ref. [89] the linear-response
calculation of the U as a function of the unit cell volume (or the applied pressure) allowed for
a precise evaluation of the pressure-induced high-spin to low-spin transition in (Mg1−xFex)O
Magnesiowüstite for different Fe concentrations.
The lack of an analytic expression for the Hubbard U makes it very difficult to account for its
variation with the atomic position and lattice parameters. However, a recent article [90] has
introduced a method to efficiently compute the derivative dU I/dRJ that allows to capture (at
least at first order) the variation of U with the ionic position. This extension is based on the
linear-response approach to compute U [19] that was discussed in section 3 and, in particular,
on the calculation of the linear-response of the ionic forces to the external perturbation α (see
Eq. 17). The same method could be easily generalized to stress and used to evaluate dU I/dεαβ .
In Ref. [90] this approach is used to account for the variation of U with atomic positions during
chemical interactions involving bi-atomic molecules. It is demonstrated that a configuration-
dependent effective interaction parameter significantly improves the quantitative description of
the potential energy surfaces that the system explores during these processes and eliminates the
inaccuracies related to the use of the same (average) value of U for all the configurations, that
has become quite common practice in literature. The promising results obtained in this work
give hope that analogous implementations could actually be completed for the calculation of
stresses and second derivatives and to improve the accuracy of molecular dynamics simulations
based on LDA+U [74, 91].

5 The LDA+U+V approach: when covalency is important

5.1 Extended Hubbard model and formulation of LDA+U+V functional

In this section I would like to introduce and briefly discuss one of the latest extensions to the
LDA+U functional: the LDA+U+V [34]. This modification is shaped on the “extended” Hub-
bard model and includes both on-site and inter-site electronic interactions. The extended for-
mulation of the Hubbard Hamiltonian (Eq. (1)) has been considered since the early days of this
model [10, 11] and can be expressed as follows:

HHub = t
∑
〈i,j〉,σ

(c†i,σcj,σ + h.c.) + U
∑
i

ni,↑ni,↓ + V
∑
〈i,j〉

ninj (48)

where V represents the strength of the interaction between electrons on neighbor atomic sites.
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The interest on the extended Hubbard model has been revamped in the last decades by the
discovery of high Tc superconductors and the intense research activity focusing around them.
Whether the inter-site coupling V has a determinant role in inducing superconductivity is, how-
ever, still matter of debate. Although the “resonating valence bond” model [92] predicts a
superconducting state (at least within mean-field theory) for a doped Mott insulator with only
on-site couplings [93], several numerical studies suggest that the inter-site interaction plays in-
deed an important role [94, 95] and superconductivity is predicted in a regime with repulsive
on-site (U > 0) and attractive inter-site (V < 0) couplings [96–99]. Several studies have also
demonstrated that the relative strength of U and V controls many properties of the ground state
of correlated materials, as, for example, the occurrence of possible phase separations [100], the
magnetic order [101, 102], the onset of charge-density and spin-density-wave regimes [103].
In Refs. [17, 104] the inter-site coupling (between d states) was recognized to be important to
determine a charge-ordered ground state in mixed-valence systems, while in Ref. [105] the ex-
tended Hubbard model was used to calculate the Green’s function of two particles on a lattice
and to refine the Auger core-valence-valence line shapes of solids. More recently, the extended
Hubbard model has been used to study the conduction and the structural properties of poly-
mers and carbon nano-structures and the interplay between U and V was shown to control, for
example, the dimerization of graphene nanoribbons [106].
Our motivation to include inter-site interactions in the formulation of the corrective Hubbard
Hamiltonian was the attempt to define a more flexible and general computational scheme able
to account for (rather than just suppress) the possible hybridization of atomic states on different
atoms. In order to understand the implementation of the LDA+U+V [34] it is useful to start from
the second-quantization expression of the site- and orbital- dependent electronic interaction
energy:

Eint =
1

2

∑
I,J,K,L

∑
i,j,k,l

∑
σ

〈φIiφJj |Vee|φKk φLl 〉
(
nKIσki nLJσ

′

lj − δσσ′nKJσkj nLIσ
′

li

)
(49)

where nKIσki represent the average values of number operators (〈cIσi
†
cKσk 〉), to be associated to

occupations defined as in Eq. (3). Generalizing the approach described for the on-site case,
the EHub of the DFT+U+V can be obtained from Eq. (49) supposing that a significant con-
tribution to the corrective potential also comes from the interactions between orbitals on cou-
ples of distinct sites: 〈φIiφJj |Vee|φKk φLl 〉 → δIKδJLδikδjlV

IJ + δILδJKδilδjkK
IJ . Similarly

to the on-site case, the effective inter-site interactions are assumed to be all equal to their
atomic averages over the states of the two atoms: 〈φIiφJj |Vee|φKk φLl 〉 → δIKδJLδikδjlV

IJ =
δIKδJLδikδjl

(2lI+1)(2lJ+1)

∑
i′,j′〈φIi′φJj′ |Vee|φIi′φJj′〉. Within this hypothesis it is easy to derive the following

expression (V II = U I):

EHub =
∑
I

U I

2

[
(nI)2 −

∑
σ

Tr
[
(nIIσ)2

] ]
+

?∑
IJ

V IJ

2

[
nInJ −

∑
σ

Tr(nIJσnJIσ)

]
(50)

where the star in the sum operator reminds that for each atom I , index J covers all its neighbors
up to a given distance (or belonging to a given shell). Eq. (50) uses a generalized formulation of
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the occupation matrix (Eq. (3)) to allow for the possibility that the two atomic wave functions
involved in its definition belong to different atoms:

nIJσm,m′ =
∑
k,v

fσkv〈ψσkv|φJm′〉〈φIm|ψσkv〉 (51)

where fσkv are the occupations of the KS states. In Eq. (51) the indexes m and m′ run over the
angular momentum manifolds that are subjected to the Hubbard correction on atoms I and J
respectively. It is important to notice that the occupation matrix defined in Eq. (51) contains
information about all the atoms in the same unit cell and the on-site occupations defined in
Eq. (3) correspond to its diagonal blocks (nIσ = nIIσ). Generalizing the FLL expression of the
on-site double-counting term we arrive at the following expression:

Edc =
∑
I

U I

2
nI(nI − 1) +

?∑
I,J

V IJ

2
nInJ . (52)

Subtracting Eq. (52) from Eq. (50) one finally gets:

EUV = EHub − Edc =
∑
I,σ

U I

2
Tr
[
nIIσ

(
1− nIIσ

)]
−

∗∑
I,J,σ

V IJ

2
Tr
[
nIJσnJIσ

]
. (53)

To better understand the effect of the inter-site part of the energy functional it is convenient
to derive the contribution of the extended Hubbard correction to the KS potential (actually
corresponding to δEHub

δ(ψσkv)
∗ ):

VUV |ψσkv〉 =
∑
I,m,m′

U I

2

(
δmm′ − 2nIIσm′m

)
|φIm〉〈φIm′|ψσkv〉 −

∗∑
I,J,m,m′

V IJnJIσm′m|φIm〉〈φJm′ |ψσkv〉. (54)

From Eq. (54) it is evident that while the on-site term of the potential is attractive for occupied
states that are, at most, linear combinations of atomic orbitals of the same atom (resulting in
on-site blocks of the occupation matrix, nIIσ, dominant on others), the inter-site interaction sta-
bilizes states that are linear combinations of atomic orbitals belonging to different atoms (e.g.,
molecular orbitals, that lead to large off-site blocks, nJIσ, of the occupation matrix). Thus, the
two interactions are in competition with each other. The detailed balance between these quan-
tities, controlling the character of the resulting ground state (e.g., the degree of localization),
is guaranteed by the possibility to compute both parameters simultaneously through the linear-
response approach described in [19]. In fact, the inter-site interaction parameters correspond to
the off-diagonal terms of the interaction matrix defined in Eq. (19).
It is important to notice that the trace operator in the on-site functional guarantees the invariance
of the energy only with respect to rotations of atomic orbitals on the same atomic site. In fact,
the on-site corrective functional (Eq. (12)) is not invariant for general rotations of the atomic
orbital basis set that mixes states from different atoms. In the inter-site term (Eq. (53)), the
trace applied to the product of generalized occupation matrices is not sufficient to re-establish
this invariance due to the lack of higher order terms (e.g., involving more than two sites) and to
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Fig. 4: (From Ref. [34]) The density of states of NiO obtained with different approximations:
GGA (left); GGA+U (center); GGA+U+V (right). The energies were shifted for the top of the
valence band to correspond to the zero of the energy in all cases. The black line represents
majority spin d states, the red line minority d states, the blue line oxygen p states.

the use of site- and orbital- averaged interaction parameters. However, the inter-site extension
of the corrective functional represents, with respect to the on-site case, a significant step towards
general invariance as it contains, at least, some of the multiple-site terms that would be gener-
ated by the rotation of on-site ones. Site- and orbital-dependence of the corrective functional are
implicitly included in Wannier-function-based implementations of the DFT+U [59, 107, 108]
as it becomes evident by re-expressing Wannier functions on the basis of atomic orbitals. The
two approaches would thus lead to equivalent results if all the relevant multiple-center interac-
tions parameters are included in the corrective functionals and are computed consistently with
the choice of the orbital basis. While on the basis of Wannier-functions the number of relevant
electronic interactions to be computed is probably minimal (especially if maximally-localized
orbitals are used [58]), the atomic orbital representation, besides providing a more intuitive and
transparent scheme to select relevant interactions terms (e.g., based on inter-atomic distances),
is more convenient to compute derivatives of the energy as, for example, forces and stresses that
are crucial to evaluate the structural properties of systems.
In the implementation of Eq. (53) we have added the possibility for the corrective functional
to act on two l manifolds per atom as, for example, the 3s and 3p orbitals of Si, or the 4s and
3d orbitals of Ni. The motivation for this extension consists in the fact that different manifolds
of atomic states may require to be treated on the same theoretical ground in cases where hy-
bridization is relevant (as, e.g., for bulk Si whose bonding structure is based on the sp3 mixing
of s and p orbitals).

5.2 LDA+U+V case studies: NiO, Si, and GaAs

The new LDA+U+V was first employed to study the electronic and structural properties of
NiO, Si and GaAs [34], prototypical representatives of Mott or charge-transfer (NiO) and band
insulators (Si and GaAs). The choice of these systems was made to test the ability of the new
functional to bridge the description of Mott or charge-transfer insulators (NiO) with that of
band insulators (Si and GaAs). In fact, the fundamental gap of a system is the sum of the KS
gap and the discontinuity in the KS potential (usually missing in most approximate local or
semi-local xc functionals) [109]. Since the main effect of the Hubbard correction consists in
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a B Eg
GGA 7.93 188 0.6
GGA+U 8.069 181 3.2
GGA+U+V 7.99 197 3.2
Exp 7.89 166-208 3.1-4.3

Table 1: The equilibrium lattice parameter (a, in Bohr atomic radii), the bulk modulus (B, in
GPa), and the band gap (Eg, in eV) of NiO obtained with different computational approaches:
GGA, “traditional” GGA+U (with U only on the d states of Ni) and GGA+U+V with the
interaction parameters computed “self-consistently” from the GGA+U+V ground state (see
text). Comparison is made with experimental results on all the computed quantities.

re-introducing the discontinuity of the KS potential at integer occupations it should be able to
correct the description of the electronic properties for both classes of materials .

As mentioned in section 4.3, NiO has a cubic rock-salt structure with a rhombohedral symme-
try brought about by its AFII ground state. Because of the balance between crystal field and
exchange splittings of the d states of Ni, (nominally) occupied by 8 electrons, the material has
a finite KS gap with oxygen p states occupying the top of the valence band. This gap, how-
ever, severely underestimates the one obtained from photoemission experiments (of about 4.3
eV [110]). LDA+U has been used quite successfully on this material (the spread of results is
mostly due to the different values of U used) providing a band gap between 3.0 and 3.5 eV,
and quite accurate estimates for both the magnetic moments and the equilibrium lattice parame-
ter [111–113]. DFT+U has also been employed recently to compute the k-edge XAS spectrum
of NiO using a novel, parameter-free computational approach [114] that has produced results
consistent with experimental data. The use of GW on top of a LDA+U calculation has pro-
vided a better estimate of the energy gap compared to LDA+U , even though other details of the
density of states were almost unchanged [115].

Besides the on-site UNi, the LDA+U+V calculations we performed also included the interac-
tions between nearest neighbor Ni and O (VNi−O) and between second nearest neighbor Ni
atoms (VNi−Ni). The corrective functional included interactions between d states, between d
and p and between d and s (on-site). Other interactions were found to have a negligible effect
on the results and were neglected. The numerical values of the interaction parameters, all deter-
mined through the linear-response approach discussed above, can be found in Ref [34]. Fig. 4
compares the density of states (DOS) of NiO as obtained from GGA, GGA+U and GGA+U+V
calculations. It is easy to observe that the GGA+U+V obtains a band gap of the same width as
GGA+U , also maintaining the charge-transfer character of the material with O p states at the
top of the valence band, as observed in photoemission experiments. As anticipated, the GGA
band gap is far too small if compared with experiments and also has Ni d states at the top of the
valence band. As expected, the inter-site interactions between Ni and O electrons also results
in a more significant overlap in energy between d and p states. In table 1 a comparison is made
between experiments and calculations on the equilibrium lattice parameter, bulk modulus and
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Uss Usb Ubs Ubb Vss Vsb Vbs Vbb
Si-Si 2.82 3.18 3.18 3.65 1.34 1.36 1.36 1.40

Ga-Ga 3.14 3.56 3.56 4.17
As-As 4.24 4.38 4.38 4.63
Ga-As 1.72 1.68 1.76 1.75

Table 2: Interaction parameters U and V (eV) for Si and GaAs (Ga 3d electrons as valence
electrons). Inter-site terms are for first-neighbors and the listed values are for the equilibrium
lattice parameters found with GGA+U+V . Indexes s and b stand for “standard” (higher l) and
“background” (lower l) orbitals respectively.

energy gap. One can see that while GGA provides the better estimate of the experimental lattice
parameter, GGA+U+V improves on the result of GGA+U for the structural parameter and the
bulk modulus is also corrected towards the experimental value. Thus, accounting for inter-site
interactions does not destroy the quality of the LDA+U description of the ground state of corre-
lated materials and has the potential to improve problematic aspects (e.g., structural properties)
counter-balancing the effects of excessive electronic localization.
The application to Si and GaAs is, in some sense, the “proof of fire” for the LDA+U+V ap-
proach, as the insulating character of these materials is due to the hybridization of s and p

orbitals) from neighbor atoms which leads to the formation of fully occupied bonding states
and empty anti-bonding orbitals. The excessive stabilization of atomic orbitals induced by the
on-site U suppresses the overlap with neighbor atoms and tends to reduces the gap between va-
lence and conduction states [34]. While providing a quite good description of the ground state
properties of these materials, the LDA and GGA functionals drastically underestimate the ex-
perimental band gap. A better estimate of the band gap has been obtained using SIC and hybrid
functionals [116–118] or with the GW approach based on an LDA [119, 120] or a EXX [121]
ground state.
As mentioned above, for the LDA+U+V method to work on these systems both on-site and
inter-site interactions had to be computed for s and p states to account for the sp3 hybridization.
Table 2 collects all the interaction parameters computed for Si and GaAs. It is important to
notice how, in virtue of the hybridization between s and p states the value of these parameters
is almost constant both for on-site and inter-site interactions. In table 3, the equilibrium lat-
tice parameter, the bulk modulus and the band energy gap obtained from GGA, GGA+U and
GGA+U+V calculations on Si and GaAs can be directly compared with experimental measure-
ments of the same quantities (we refer to the data collected in the web-database, Ref. [122]).
As it can be observed from this table, the (on-site only) GGA+U predicts the equilibrium lattice
parameter in better agreement with the experimental value than GGA for GaAs while it over-
corrects GGA for Si; however, the bulk modulus is improved with respect to the GGA value
only in the case of Si. Due to the suppression of the interatomic hybridization, in both cases, the
energy band gap is lowered compared to GGA, further worsening the agreement with experi-
ments. The use of the inter-site correction results in a systematic improvement for the evaluation
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Si GaAs
a B Eg a B Eg

GGA 5.479 83.0 0.64 5.774 58.4 0.19
GGA+U 5.363 93.9 0.39 5.736 52.6 0.00
GGA+U+V 5.370 102.5 1.36 5.654 67.7 0.90
Exp. 5.431 98.0 1.12 5.653 75.3 1.42

Table 3: Comparative results for lattice parameter (a, in Å), bulk modulus (B, in GPa) and
energy gap (Eg, in eV).

of all these quantities. In fact, encouraging the occupations of hybrid states, the inter-site inter-
actions not only enlarge the splittings between populated and empty orbitals (which increases
the size of the band gap), but also make bonds shorter (so that hybridization is enhanced) and
stronger, thus tuning both the equilibrium lattice parameter and the bulk modulus of these ma-
terials to values closer to the experimental results. Calculations on GaAs explicitly included Ga
3d states in the valence manifold as this was reported to produce a Ga pseudopotential of better
quality [123].

Fig. 5 shows a comparison between the band structures of Si and GaAs obtained with GGA and
GGA+U+V . As it can be observed, the increase in the band gap obtained with the “+U+V ”
correction is the result of an almost uniform shift of electronic energies (downwards for valence,
upwards for conduction states) that maintains, however, the overall dispersion pattern.

These results confirm that the extended Hubbard correction is able to significantly improve
the description of band insulators and semiconductors with respect to GGA, providing a more
accurate estimate of structural and electronic properties. In view of the fact that these systems
are normally treated with hybrid functionals or SIC approaches, the good results obtained with
LDA+U+V are the demonstration that this approach has similar capabilities and the inaccuracy
of the LDA+U (with on-site interactions only) is not inherent to the reference model but rather
to the approximations used to obtain its final expression. These results also clarify that, within
the single particle KS representation of the N -electron problem, band and Mott insulators can
be treated within the same theoretical framework.

The fact that LDA+U+V can be equally accurate in the description of band and Mott insula-
tors opens to the possibility to use it in a broad range of intermediate situations where (Mott)
electronic localization coexists with or competes against the hybridization of atomic states from
neighbor atoms, (as, e.g., in magnetic impurities in semiconductors or metals, high Tc super-
conductors, etc), or in the description of processes (such as, e.g., electronic charge transfers
excitation [124]) involving a significant shift in the degree of electronic localization. In a re-
cent work [90] LDA+U+V was used to study transition-metal dioxide molecules (e.g., MnO2);
the inclusion of the inter-site interaction was found to be crucial to predict the electronic con-
figuration, the equilibrium structure and its deformations in agreement with experiments. The
extended corrective functional has also been used as the starting point of DFT+DMFT calcu-
lations [125] and it has been demonstrated that the inclusion of the inter-site interaction in the
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Fig. 5: (From Ref. [34]) The band structure of Si (left) and GaAs ( right). Continuous lines
represent GGA+U+V results and dashed lines represent standard GGA results. All energies
were shifted so that the top of valence bands are at zero energy.

local part of the functional (not updated in the inner DMFT calculation) produced results of the
same quality of cluster-DMFT but at the same computational cost of standard DMFT calcula-
tions.

6 Summary and outlook

Introduced as a simple correction to the DFT exchange-correlation functionals to improve the
description of systems with strongly localized electrons, the LDA+U has become one of the
most widely used numerical approaches to capture the effects of static electronic correlation.
Much of the success this method continues to have in the scientific community is certainly
related to the fact that it is quite easy to implement in existing DFT codes, it is very simple
to use, allows to easily compute energy derivatives and also carries very limited additional
computation costs. These characteristics, as also the availability of a single, easy-to-change
interaction parameter to tune the strength of the correction, have encouraged the use of this
scheme in a semiempirical way, as a first order, rough assessment of the (mostly qualitative)
effects of electronic correlation on the physical properties of a given system. As a consequence,
it has been regarded as a semiquantitative approach (as is the Hubbard model it is based on)
or, at most, as a first order correction upon which to build higher level, more sophisticated
approaches (as, for example, DMFT).
Notwithstanding the inherent limits of this approach (as, e.g., its static character and the con-
sequent inability to capture dynamical, frequency dependent effects), I think it is important to
stress the fact that it offers a unique possibility to compute properties related to energy deriva-
tives from the correlated ground state of a system and thus allows to study (albeit in an ap-
proximate way) the effects of electronic correlation on equilibrium structural properties, on
the dynamic evolution of systems, on phase stability and transitions, on the behavior at finite
temperature. It also represents a better starting point than (uncorrected) approximate DFT func-
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tionals for higher order corrections or to compute the excitation spectrum of materials (e.g.,
with TDDFT or GW) thanks to the corrections it introduces to the KS spectrum.
In the present chapter I have illustrated the theoretical foundation of the LDA+U corrective ap-
proach, its prerogatives and limits, its historical construction and recent refinements. Above all,
I hope I have provided a strong evidence of how this approach can represent a useful framework
to capture some effects of electronic correlation and of how relatively minor extensions to its
formulation can significantly improve its quantitative predictivity and the quality and numer-
ical efficiency of computational approaches that are based on this simple correction. There-
fore, further theoretical work on the “+U” functional (e.g., to include higher order many-body
terms or to automatize the calculation of effective interactions) is highly desirable and can have
far-reaching consequences for the definition of more accurate and efficient computational ap-
proaches able to capture the physics of correlated systems.



LDA+U for correlated materials 4.35

References

[1] P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964)

[2] W. Kohn and L.J. Sham, Phys. Rev. 140, A1133 (1965)

[3] I.G. Austin and N.F. Mott, Science 168, 71 (1970)

[4] J.P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981)

[5] D.M. Ceperley and B.J. Alder, Phys. Rev. Lett. 45, 566 (1980)

[6] J.P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981)

[7] J. Hubbard, Proc. Roy. Soc. Lond. A 276, 238 (1963)

[8] J. Hubbard, Proc. Roy. Soc. Lond. A 277, 237 (1964)

[9] J. Hubbard, Proc. Roy. Soc. Lond. A 281, 401 (1964)

[10] J. Hubbard, Proc. Roy. Soc. Lond. A 285, 542 (1965)

[11] J. Hubbard, Proc. Roy. Soc. Lond. A 296, 82 (1966)

[12] J. Hubbard, Proc. Roy. Soc. Lond. A 296, 100 (1966)

[13] V.I. Anisimov and O. Gunnarsson, Phys. Rev. B 43, 7570 (1991)

[14] V.I. Anisimov, J. Zaanen, and O.K. Andersen, Phys. Rev. B 44, 943 (1991)

[15] V.I. Anisimov, I.V. Solovyev, M.A. Korotin, M.T. Czyżyk, and G.A. Sawatzky,
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[119] M. Rohlfing, P. Krüger, and J. Pollmann, Phys. Rev. B 48, 17791 (1993)
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1 Introduction

1.1 The electronic many-particle problem

The fundamental Hamiltonian for the electrons in solid-state theory has, in atomic units, the

well-known form

Ĥel =
∑

s

∫

d3r ψ̂†
s(r)

(

−
1

2
∆r + V (r)

)

ψ̂s(r) (1)

+
1

2

∑

s,s′

∫

d3r

∫

d3r′ ψ̂†
s(r)ψ̂

†
s′(r

′)
1

|r − r′|
ψ̂s′(r

′)ψ̂s(r) .

In these lecture notes, we assume that the potential V (r), generated by the atomic nuclei, is

perfectly lattice periodic. The operators ψ̂
(†)
s (r) annihilate (create) an electron at the real-space

position r with spin s =↑, ↓. Despite the fact that the Hamiltonian (1) only describes the

electronic degrees of freedom, the calculation of the electrons’ properties poses a difficult many-

particle problem which cannot be solved in general. The strategies to deal with the many-body

problem (1) can be grouped into two main categories.

i) Model-system approaches:

In order to explain experiments, it is often sufficient to take into account only a limited

number of degrees of freedom in the Hamiltonian (1). Therefore, the full problem is

replaced by a simpler ‘model Hamiltonian’ which describes certain electronic properties

of a material. Celebrated examples are the Heisenberg model for magnetic insulators and

the BCS Hamiltonian for superconductors. In many-particle theory in general, and for

transition metals and their compounds in particular, multi-band Hubbard Hamiltonians

provide the standard models, see Sec. 1.3.

ii) Ab-initio approaches:

In order to cope with the full Hamiltonian (1), one has to resort to approximations which

are necessarily cruder than those designed for the investigation of much simpler model

systems. The most frequently used ab-initio approach is the Local-Density Approxima-

tion (LDA) to Density-Functional Theory (DFT), see Sec. 1.2.

1.2 Density-Functional Theory (DFT)

Density-Functional Theory (DFT) is based on a theorem by Hohenberg and Kohn [1]. It states

that there exists a universal functional W [n(r)] of the electronic density n(r) such that

E[n(r)] =

∫

d3r V (r)n(r) +W [n(r)] , (2)

has its minimum, E0 ≡ E[n0(r)], at the exact ground-state density n0(r) of the Hamilto-

nian (1) and E0 is the corresponding ground-state energy. Since it is impossible to determine
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the functional W [n(r)] for many-particle systems exactly, it is necessary to develop reasonable

approximations for it. Usually, one writes

W [n(r)] = T [n(r)] +
1

2

∫

d3r

∫

d3r′
n(r)n(r′)

|r − r′|
+ Exc[n(r)] , (3)

where T [n(r)] is the kinetic-energy functional and Exc[n(r)] is the exchange-correlation func-

tional, which contains all Coulomb-energy contributions apart from the Hartree term that was

separated in (3). Both functionals are unknown. Approximate expressions for T [n(r)] and

Exc[n(r)] are usually derived by considering a free electron gas. The kinetic energy of such

electrons in the Hartree-Fock approximation is ∼ n5/3 where n is the density of the homoge-

neous electron gas. Therefore, a common approximation for the kinetic-energy functional in (3)

is

T [n(r)] =
3

10m
(3π2)2/3

∫

d3r n(r)5/3 . (4)

In the same way, one may approximate the exchange-correlation potential in the form

Exc[n(r)] = −

∫

d3r
3e2

4π
(3π)1/3n(r)4/3 . (5)

To work with the energy functionals (4) and (5) is a simple example of a Local-Density Ap-

proximation (LDA) because only the local density appears in W [n(r)] and corrections, e.g.,

involving gradients ∇n(r), are absent.

The DFT in a LDA, as introduced so far, provides an approximate way to determine the ground-

state energy and the electronic density in the ground state. These quantities are of interest if one

aims, e.g., to determine the ground-state lattice structure or lattice parameters of a material.

Most practical applications of the DFT, however, rely on an additional concept, the Kohn-Sham

scheme. This scheme is based on the assumption that, for each system of interacting particles,

there exists an effective single-particle Hamiltonian

Ĥeff
0 =

∑

s

∫

d3r ψ̂†
s(r)

(

−
1

2
∆r + V (r)

)

ψ̂s(r) (6)

+
∑

s

∫

d3r ψ̂†
s(r)

(
∫

d3r′
n(r′)

|r − r′|
+ V KS

xc [n(r)]

)

ψ̂s(r) ,

which has the same ground-state density n0(r) as the original many-particle Hamiltonian (1).

In general, one cannot prove rigorously that such a single-particle Hamiltonian exists; this poses

the v-representability problem. If a system is v-representable, however, the Kohn-Sham poten-

tial in (6) is given by

V KS
xc [n(r)] =

∂

∂ñ(r)

(

T [ñ(r)]− T ′ [ñ(r)] + Exc [ñ(r)]

)
∣

∣

∣

∣

ñ(r)=n(r)

, (7)

where T ′[n(r)] is the minimum kinetic energy of free non-interacting particles with the density

distribution n(r). Usually one assumes T ′[n(r)] = T [n(r)] such that both terms cancel each

other in (7).
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For our formulation of a self-consistent Gutzwiller Density-Functional Theory (GDFT) in Sec. 5,

it will be convenient to introduce a basis of local (Wannier) orbitals φi,σ(r), which are centered

around the L lattice sites i and carry the spin-orbital index σ. With this basis, the Hamilto-

nian (6) can be written as

Ĥeff
0 =

∑

i,j

∑

σ,σ′

tσ,σ
′

i,j [n(r)] ĉ
†
i,σĉj,σ′ . (8)

Here, the electron transfer or hopping parameters

tσ,σ
′

i,j [n(r)] ≡

∫

d3rφ∗
i,σ(r)

(

−
1

2
∆r + V (r) +

∫

d3r′
n(r′)

|r − r′|
+ V KS

xc [n(r)]

)

φj,σ(r), (9)

depend on the particle density

n(r) =
∑

i,j

∑

σ,σ′

φ∗
i,σ(r)φj,σ′(r)〈ĉ†i,σĉj,σ′〉Ψ0

, (10)

where |Ψ0〉 is the ground state of (8),

Ĥeff
0 |Ψ0〉 = E0|Ψ0〉 . (11)

At least in principle, the self-consistent solution of the Kohn-Sham equations (8)-(11) is the

central part of most DFT applications in solid-state physics. Note, however, that actual numer-

ical implementations of the DFT usually do not work with Wannier functions, but use atomic

orbitals or plane waves as basis sets.

Despite the rather drastic approximations which have led to the Kohn-Sham equations, a com-

parison of theoretical and experimental results has revealed a remarkable agreement for a large

number of materials. Therefore, the LDA has become the most important tool for the investi-

gation of electronic properties in solid-state physics. There are, however, well-known problems

with certain classes of materials. For example, band gaps in insulators or semiconductors are

usually found to be significantly smaller in DFT than in experiment. Even bigger discrepancies

arise for materials with strong local Coulomb interactions. These are, in particular, transition

metals, lanthanides, and their respective compounds. Such systems have been investigated in

the past mostly based on model systems, which we discuss in the following section.

1.3 Multi-band Hubbard models

We distinguish localised orbitals, σ ∈ ℓ, and delocalised orbitals, σ ∈ d, where the localised

orbitals are those which require a more sophisticated treatment of the local Coulomb interac-

tion than provided by the LDA. The natural starting point for such a treatment is a multi-band

Hubbard model of the form

ĤH = Ĥ0 +
∑

i

Ĥi;c , (12)

Ĥ0 ≡
∑

i 6=j

∑

σ,σ′

tσ,σ
′

i,j ĉ
†
i,σĉj,σ′ +

∑

i

∑

σ,σ′∈d

ǫσ,σ
′

i ĉ†i,σ ĉi,σ′ , (13)

Ĥi;c ≡
∑

σ,σ′∈ℓ

ǫσ,σ
′

i ĉ†i,σĉi,σ′ +
∑

σ1,σ2,σ3,σ4∈ℓ

Uσ1,σ2,σ3,σ4

i ĉ†i,σ1
ĉ†i,σ2

ĉi,σ3
ĉi,σ4

. (14)
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# Atomic eigenstate |Γ 〉 Symmetry energy EΓ

1 | ↑, ↑〉 3A2 U ′ − J

2 (| ↑, ↓〉+ | ↓, ↑〉)/
√
2 3A2 U ′ − J

3 | ↓, ↓〉 3A2 U ′ − J

4 (| ↑, ↓〉 − | ↓, ↑〉)/
√
2 1E U ′ + J

5 (| ↑↓, 0〉 − |0, ↑↓〉)/
√
2 1E U − JC

6 (| ↑↓, 0〉+ |0, ↑↓〉)/
√
2 1A1 U + JC

Table 1: Two-particle eigenstates with symmetry specifications and energies.

This model contains a general two-particle interaction in the localised orbitals, and fixed hop-

ping parameters, tσ,σ
′

i,j , and orbital energies, ǫσ,σ
′

i = tσ,σ
′

i,i . Since the parameters tσ,σ
′

i,j are usually

derived from a DFT calculation, see Eq. (9), they already contain the Coulomb interaction on

a DFT level. For the localised orbitals this means that, through the on-site energies ǫσ,σ
′

i , the

Coulomb interaction appears twice in the Hamiltonian Ĥi;c. We will address this so-called

double-counting problem in Sec. 5.

In the context of the Gutzwiller variational theory we need the eigenstates |Γ 〉i and the eigen-

values Ei,Γ of the Hamiltonian Ĥi;c. They allow us to write Ĥi;c as

Ĥi;c =
∑

Γ

Ei,Γ m̂i,Γ , m̂i,Γ ≡ |Γ 〉i i〈Γ | . (15)

As a simple example, we consider a model with two degenerate eg-orbitals in a cubic environ-

ment. In this case we may set ǫσ,σ
′

i = 0, and the local Hamiltonian then has the form

Ĥi;c = U
∑

e

n̂e,↑n̂e,↓ + U ′
∑

s,s′

n̂1,sn̂2,s′ − J
∑

s

n̂1,sn̂2,s (16)

+J
∑

s

ĉ†1,sĉ
†
2,s̄ĉ1,s̄ĉ2,s + JC

(

ĉ†1,↑ĉ
†
1,↓ĉ2,↓ĉ2,↑ + ĉ†2,↑ĉ

†
2,↓ĉ1,↓ĉ1,↑

)

,

where e = 1, 2 labels the eg-orbitals, s =↑, ↓ is the spin index and we use the convention

↑̄ ≡↓, ↓̄ ≡↑. For eg-orbitals, only two of the three parameters in (16) are independent since

the symmetry relations U ′ = U − 2J and J = JC hold. In our model, we have four spin-

orbital states σ = (e, s) per atom, leading to a 24 = 16-dimensional atomic Hilbert space.

All eigenstates |Γ 〉i of Ĥi;c with particle numbers N 6= 2 are simple Slater determinants of

spin-orbital states |σ〉 and their energies are

EΓ = 0 (N = 0, 1) ,

EΓ = U + 2U ′ − J (N = 3) ,

EΓ = 2U + 4U ′ − 2J (N = 4) .

(17)

The two-particle eigenstates are slightly more complicated because some of them are linear

combinations of Slater determinants. We introduce the basis

|s, s′〉 ≡ ĉ†1,sĉ
†
2,s′|0〉 , |↑↓, 0〉 ≡ ĉ†1,↑ĉ

†
1,↓|0〉 , |0, ↑↓〉 ≡ ĉ†2,↑ĉ

†
2,↓|0〉 (18)
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of two-particle states, which are used to set up the eigenstates of Ĥi;c, see table 1. The states of

lowest energy are the three triplet states with spin S = 1, which belong to the representation A2

of the cubic point-symmetry group. Finding a high-spin ground state is a simple consequence

of Hund’s first rule. Higher in energy are the two degenerate singlet states of symmetry E and

the non-degenerate singlet state of symmetry A1.

The eigenstates of the local Hamiltonian Ĥi;c play an essential role in the formulation of the

multi-band Gutzwiller theory in Sec. 2. Since in most applications only a finite (and not too

large) number of localised orbitals is taken into account, these eigenstates can be readily calcu-

lated by standard numerical techniques. The special case of a 3d-shell in a cubic environment

has been discussed analytically in great detail in the textbook by Sugano, Ref. [2].

2 Gutzwiller wave functions

The single-band Hubbard model

To understand the main physical idea behind the Gutzwiller variational theory, it is instructive

to start with a consideration of the single-band Hubbard model

Ĥ1B =
∑

i,j

∑

s=↑,↓

ti,j ĉ
†
i,sĉj,s + U

∑

i

d̂i , d̂i ≡ n̂i,↑n̂i,↓ . (19)

In Hartree-Fock theory, one uses a variational wave function which is a one-particle product

state

|Ψ0〉 =
∏

γ

ĥ†γ |0〉 (20)

in order to investigate many-particle Hamiltonians such as (19). It is well known, however, that

such wave functions are insufficient for systems with medium to strong Coulomb interaction

effects, see, e.g, the discussion in Sec. 4. It is a particular problem of a Hartree-Fock treatment

that local charge fluctuations can only be suppressed in that approach by a spurious breaking of

symmetries. Therefore, it usually overestimates the stability of phases with a broken symmetry.

Hartree-Fock wave functions, however, can still be a reasonable starting point in order to set

up more sophisticated variational wave functions. This leads us to the general class of Jastrow

wave functions [3, 4], which are defined as

|ΨJ〉 = P̂J |Ψ0〉 . (21)

Here, |Ψ0〉 is again a one-particle product state and P̂J is a correlation operator, which can be

chosen in various ways in order to minimise the variational ground-state energy. The Gutz-

willer wave function (GWF) is a special Jastrow wave function with a particular choice of the

correlation operator P̂J. It was introduced by Gutzwiller [5–7] in the form

|Ψ ′
G〉 ≡ P̂ ′

G |Ψ0〉 =
∏

i

P̂ ′
i |Ψ0〉 , (22)
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and with the purpose to study ferromagnetism in a single-band Hubbard model. The (local)

Gutzwiller correlation operator

P̂ ′
i ≡ gd̂i = 1− (1− g)d̂i , (23)

for each lattice site i contains a variational parameter g (with 0 ≤ g ≤ 1), which allows one

to supress local double occupancies that are energetically unfavourable for a finite Hubbard

interaction U > 0.

The Hilbert space of the local Hamiltonian for the one-band Hubbard model is four-dimensional,

where a local basis |I〉 is given by the states |∅〉, |↑〉, |↓〉, and |d〉 for empty, singly-occupied

and doubly-occupied sites, respectively. By working with the occupation operator d̂i in (23),

Gutzwiller singled out the doubly-occupied state |d〉. A more symmetric definition of the local

Gutzwiller correlator (23) is given by

P̂i =
∏

I

λ
m̂i,I

I =
∑

I

λIm̂i,I (24)

where the operators m̂i,I = |I〉i i〈I| are the projectors onto the four atomic eigenstates |I〉. The

operator (24) contains four parameters λI instead of only one parameter g in Gutzwiller’s defini-

tion (23). It can be readily shown, however, that the operators (23) and (24) define the same sets

of variational wave functions as long as the respective one-particle states |Ψ0〉 are also treated

as variational objects. Therefore, the wave functions, defined by (24), contain more variational

parameters than are actually needed. This surplus of parameters will turn out to be quite useful

when we evaluate expectation values in the limit of infinite spatial dimensions. Moreover, for

the multi-band generalisation of Gutzwiller wave functions in the following section, Eq. (24) is

the most natural starting point.

Multi-band Hubbard models

It is pretty obvious [8, 9] how the Gutzwiller wave functions (22) can be generalised for the

investigation of the multi-band Hubbard models (12). The starting point is again a (normalised)

single-particle product state |Ψ0〉 to which we apply a Jastrow factor that is a product of local

correlation operators. Hence, the multi-band Gutzwiller wave functions are given as

|ΨG〉 = P̂G |Ψ0〉 =
∏

i

P̂i |Ψ0〉 , (25)

where, as in (24), we might work with a local correlation operator of the form

P̂i =
∑

Γi

λi;Γi
m̂i;Γi

, m̂i;Γi
= |Γ 〉i i〈Γ | . (26)

The variational parameters λi;Γi
allow us to optimise the occupation of each eigenstate |Γ 〉 of the

local Hamiltonian Ĥi;c. In multi-orbital systems, however, these states are usually degenerate

and not uniquely defined. Moreover, it is not clear whether, in a solid, the (atomic) eigenstates
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|Γ 〉i lead to the best variational ground state of the form (25). Instead of (26) it may therefore

be better to work with the general local correlation operator

P̂i =
∑

Γi,Γ ′
i

λi;Γi,Γ ′
i
|Γ 〉i i〈Γ

′| , (27)

which contains a matrix λi;Γi,Γ ′
i

of variational parameters. The analytical evaluation of expec-

tation values, which we discuss in the following section, can be carried out without additional

efforts for the general correlation operator (27). In numerical applications, however, we often

have to restrict ourself to the simpler operator (26) since the number of parameters λi;Γi,Γ ′
i

may

become prohibitively large. Alternatively, one can try to identify the relevant non-diagonal ele-

ments of λi;Γi,Γ ′
i

and take only these into account. Such strategies have been discussed in more

detail in Ref. [10].

For systems without superconductivity, the Gutzwiller wave function should be an eigenstate of

the total particle number operator

N̂ =
∑

i,σ

n̂i,σ . (28)

This requires that N̂ commutes with P̂G, which leads to

∑

Γ,Γ ′

λi;Γ,Γ ′(|Γ | − |Γ ′|) |Γ 〉i i〈Γ
′| = 0 (29)

where |Γ | is the number of particles in the state |Γ 〉i. From equation (29), we conclude that

λi;Γ,Γ ′ can only be finite for states |Γ 〉i , |Γ
′〉i with the same particle number. In a similar way,

one can show that these states have to belong to the same representation of the point symmetry

group. To study superconducting systems, one works with BCS-type one-particle wave func-

tions |Ψ0〉 for which the particle number is not conserved. In this case, the variational-parameter

matrix λi;Γ,Γ ′ has to be finite also for states |Γ 〉i , |Γ
′〉i with different particle numbers, see

Refs. [9, 11].

To keep the notation simple in this tutorial presentation, we will restrict ourselves to the case

of a diagonal and real variational-parameter matrix and do not consider superconducting states.

Consequently, the local correlation operators are Hermitian, P̂ †
i = P̂i. Moreover, we work with

a spin-orbital basis σ for which the non-interacting local density matrix

Ci;σ,σ′ ≡ 〈ĉ†i,σ ĉi,σ′〉Ψ0
(30)

is diagonal,

Ci;σ,σ′ = δσ,σ′n0
i,σ . (31)

This can always be achieved (i.e., for any |Ψ0〉) by a proper transformation of the local basis σ.

To simplify the notation further, we will frequently drop lattice-site indices in purely local

equations.
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3 Gutzwiller energy functional in infinite dimensions

The evaluation of expectation values for Gutzwiller wave functions remains a difficult many-

particle problem even in the simplest case of a single-band Hubbard model. It has been achieved

for this model in one dimension both for paramagnetic and for ferromagnetic states [12–16].

In the opposite limit of infinite spatial dimensions, expectation values can be evaluated for

the general class of wave-functions (25). In this section, we summarise the main technical

ideas behind this evaluation and discuss the resulting energy functional. An application of this

functional to finite-dimensional systems is usually denoted as the Gutzwiller approximation

because, for the single-band model, Gutzwiller has derived the very same functional [5–7] by

means of combinatorial techniques [17].

3.1 Diagrammatic expansion

In order to determine the expectation value

〈ĤH〉ΨG
=

〈ΨG|ĤH|ΨG〉

〈ΨG|ΨG〉
, (32)

of the Hamiltonian (12) we need to evaluate the following quantities (i 6= j)

〈ΨG|ĉ
†
i,σ ĉj,σ′|ΨG〉 =

〈

(P̂iĉ
†
i,σP̂i)(P̂j ĉj,σ′P̂j)

∏

l 6=(i,j))

P̂ 2
l

〉

Ψ0

, (33)

〈ΨG|m̂i;Γ |ΨG〉 =
〈

(P̂im̂i;Γ P̂i)
∏

l 6=i

P̂ 2
l

〉

Ψ0

, (34)

〈ΨG|ΨG〉 =
〈

∏

l

P̂ 2
l

〉

Ψ0

. (35)

The r.h.s. of all three equations (33)-(35) can be evaluated by means of Wick’s theorem because

the wave function |Ψ0〉 is a single-particle product state. In this way, we can represent all

contributions by diagrams with internal vertices l (from operators P̂ 2
l ), external vertices i in

Eq. (34), or i and j in Eq. (33), and lines

P σ,σ′

l,l′ ≡ 〈ĉ†l,σĉl′,σ′〉Ψ0
(36)

which connect these vertices. This diagrammatic expansion, however, is still very complicated

even in the limit of infinite spatial dimensions. As shown in more detail in Refs. [8,9], it is very

beneficial, in this limit, to introduce the (local) constraints

1 = 〈P̂ 2
l 〉Ψ0

, (37)

〈ĉ†l,σĉl,σ′〉Ψ0
= 〈ĉ†l,σP̂

2
l ĉl,σ′〉Ψ0

. (38)

These constraints do not restrict our total set of variational wave functions (25) because they

merely exploit the fact that we have introduced more variational parameters λΓ than are actually
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(I)

i l l

(II)

i

Fig. 1: Two examples of double-

occupancy diagrams (l 6= i). Dia-

gram (II) vanishes due to the con-

straints (37), (38). Diagram (I) vanishes

in the limit of infinite spatial dimensions.

needed; see the discussion on the single-band model in Sec. 2. Note that moving the operator

P̂ 2
l relative to ĉ†l,σ and ĉl,σ′ does not alter the whole set of constraints (37), (38).

The constraints (37), (38) have an important consequence: Each diagram that results from (33)-

(35) is non-zero only when all of its internal vertices l are connected to other vertices by at least

four lines. As a simple example, Fig. 1 shows two (first order) diagrams which result from (34).

While the constraints do not affect diagram (I), they ensure that diagram (II) vanishes.

In order to have a meaningful (i.e., finite) kinetic energy per lattice site our lines have to vanish

like

P σ,σ′

i,j ∼
1

√
2D

||i−j||
, (39)

on a hyper-cubic lattice in the limit of large spatial dimensions D. Here, we introduced the

Manhattan metric

||i− j|| ≡
D
∑

k=1

|Ri;k − Rj;k| , (40)

where Ri;k is the k-th component of the lattice site vector Ri. Note that the number of neigh-

bouring sites with distance ||i− j|| is given by

N ||i−j||
n.n. = 2D||i−j|| . (41)

The scaling behaviour (39) in infinite dimensions has significant consequences for our diagram-

matic expansion. As an example, we consider diagram (I) in Fig. 1. If we skip, for simplicity,

any spin-orbital dependence of lines, this diagram leads to the contribution

diagram (I) ∼
∑

l

P 4
i,l = O

(

1

D

)

D→∞
−→ 0 . (42)

where the scaling 1/D results from equations (39) and (41). In general, one can show that

in infinite dimensions a diagram vanishes if it contains an internal vertex that is connected to

other vertices by three or more lines. The constraints (37), (38) ensure that this is the case for

all diagrams which contain at least one internal vertex. Our arguments, so far, only apply to

diagrams in which all internal vertices are connected to the external vertices i (or i and j). Of

course, if we apply Wick’s theorem to equations (33)-(34) we also obtain diagrams with internal

vertices that are not connected to the external vertices. These diagrams, however, are exactly

cancelled by the norm diagrams from Eq. (35) as shown in Ref. [8]. In summary, we therefore

end up with the simple results

〈ĉ†i,σĉj,σ′〉ΨG
=

〈

(P̂iĉ
†
i,σP̂i)(P̂j ĉj,σ′P̂j)

〉

Ψ0

, (43)

〈m̂i;Γ 〉ΨG
=

〈

(P̂im̂i;Γ P̂i)
〉

Ψ0

, (44)
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for expectation values in the limit of infinite spatial dimensions. These expectation values and

the constraints (37), (38) will be further analysed in the following section and lead us to the

Gutzwiller energy functional in infinite dimensions.

3.2 Energy functional for multi-band systems

Notation

We assume that the 2N (localised) spin-orbital states σ are ordered in some arbitrary way,

σ = 1, . . . , 2N where N is the number of localised orbitals per lattice site. In order to set

up a proper basis of the local Hilbert space which belongs to Ĥi;c, we introduce the following

notation for the 22N possible electronic configurations (Slater determinants).

i) An atomic configuration I is characterised by the electron occupation of the orbitals,

I ∈ {∅; (1), . . . , (2N); (1, 2), . . . , (2, 3), . . . (2N − 1, 2N); . . . ; (1, . . . , 2N)} , (45)

where the elements in each set I = (σ1, σ2, . . .) are ordered, i.e., it is σ1 < σ2 < . . .. In

general, we interpret the indices I as sets in the usual mathematical sense. For example,

in the atomic configuration I\I ′ only those orbitals in I that are not in I ′ are occupied.

The ‘complement’ Ī is defined as

Ī ≡ (1, . . . , 2N)\I . (46)

where (1, . . . , 2N) is the state with the maximum number of 2N electrons.

ii) A state with a specific configuration I is given as

|I〉 = Ĉ†
I |0〉 ≡

∏

σ∈I

ĉ†σ |0〉 = ĉ†σ1
. . . ĉ†σ|I|

|0〉 , (47)

where the operators ĉ†σ are in ascending order, i.e., it is σ1 < σ2 . . . < σ|I| and |I| is the

number of particles in I . Products of annihilation operators, such as

ĈI ≡
∏

σ∈I

ĉσ = ĉσ1
. . . ĉσ|I|

, (48)

will be placed in descending order, i.e., with σ1 > σ2 . . . > σ|I|. Note that we have

introduced the operators Ĉ†
I and ĈI just as convenient abbreviations. They must not be

misinterpreted as fermionic creation or annihilation operators. The sign function

f(σ, I) ≡ 〈I ∪ σ|ĉ†σ|I〉 (49)

counts whether an odd or even number of commutations is required to place σ in its proper

position in I (f(σ, I) = ∓1). It vanishes if σ ∈ I .
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iii) The operator m̂I,I′ ≡ |I〉 〈I ′| describes the transfer between configurations I ′ and I . It

can be written as

m̂I,I′ = Ĉ†
I ĈI′

∏

σ′′∈J

(1− n̂σ′′) (50)

where J ≡ I ∪ I ′. A special case, which derives from (50), is the occupation operator

m̂I ≡ |I〉 〈I| =
∏

σ∈I

n̂σ

∏

σ′∈Ī

(1− n̂σ′) . (51)

The states |I〉 form a basis of the atomic Hamitonian’s Hilbert space. Therefore, we can write

the eigenstates of the local Hamiltonian (15) as

|Γ 〉 =
∑

I

TI,Γ |I〉 (52)

with coefficients TI,Γ . For a simple example, see the two-particle states in table 1.

Local energy

The evaluation of the r.h.s. of Eq. (44) is straightforward if we use

P̂ m̂Γ P̂ = λ2Γ m̂Γ . (53)

This equation gives us

〈m̂Γ 〉ΨG
= λ2Γm

0
Γ , (54)

where

m0
Γ = 〈m̂Γ 〉Ψ0

=
∑

I

|TI,Γ |
2m0

I , m0
I =

∏

σ∈I

n0
σ

∏

σ/∈I

(1− n0
σ) . (55)

Here we have used Eqs. (26), (31), and (51).

Hopping expectation values

For the evaluation of (43) we start with

P̂ ĉ†σP̂ =
∑

Γ,Γ ′

λΓλΓ ′

∑

I1,I′1,I2,I
′
2

〈I2|ĉ
†
σ|I

′
1〉 TI1,ΓT

∗
I2,ΓTI′1,Γ ′T ∗

I′
2
,Γ ′ m̂I1,I′2

(56)

which follows from Eqs. (26), (50), (52). Note that the second operator P̂ ĉσ′P̂ in (43) is just the

conjugate of (56) with σ replaced by σ′. Hence, the only remaining expectation values which

we need to evaluate in (43) have the form

E(I, I ′; J, J ′) ≡ 〈m̂i;I,I′m̂j;J,J ′〉Ψ0
. (57)

An application of Wick’s Theorem to (57) leads, in general, to a number of diagrams with

(potentially) several lines connecting the lattice sites i and j. At this point, however, we again

apply the infinite-dimensional rule that all diagrams with three or more lines connecting i and j
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can be discarded. Hence, the only remaining diagrams are those with exactly one line between

i and j. Together with Eq. (31), we therefore find

E(I, I ′; J, J ′) =
∑

γ

f(γ, I ′)δI,I′∪γ
m0

I′

1− n0
γ

∑

γ′

f(γ′, J)δJ∪γ′,J ′

m0
J

1− n0
γ′

〈ĉ†i,γ ĉj,γ′〉Ψ0
. (58)

Altogether, we obtain the following result for the hopping expectation value (43) in infinite

dimensions

〈ĉ†i,σ ĉj,σ′〉ΨG
=
∑

γ,γ′

qγσq
γ′

σ′〈ĉ
†
i,γ ĉj,γ′〉Ψ0

(59)

with the renormalisation matrix

qγσ =
1

1− n0
γ

∑

Γ,Γ ′

λΓλΓ ′

∑

I,I′

f(σ, I)f(γ, I ′)T ∗
I∪σ,ΓTI,Γ ′T ∗

I′,Γ ′TI′∪γ,Γm
0
I′ (60)

=
1

n0
γ

∑

Γ,Γ ′

λΓλΓ ′〈Γ |ĉ†σ|Γ
′〉
〈

(

|Γ 〉〈Γ ′|ĉγ
)

〉

Ψ0

. (61)

Constraints

The explicit form of the correlation operator (26), together with Eq. (31), gives us directly the

explicit form of the constraints (37), (38)

1 =
∑

Γ

λ2Γ
∑

I

TI,ΓT
∗
I,Γm

0
I , (62)

δσ,σ′n0
σ =

∑

Γ

λ2Γ
∑

I(σ,σ′∈I)

f(σ, I\σ)f(σ′, I\σ′)TI\σ,ΓT
∗
I\σ′,Γm

0
I . (63)

Summary: Structure of the energy functional

In summary, we obtain the following Gutzwiller energy functional for the multi-band Hubbard

models (12) in infinite dimensions

EGA =
∑

i 6=j

∑

σ,σ′,γ,γ

tγ,γ
′

i,j q
σ
γ

(

qσ
′

γ′

)∗

〈ĉ†i,σĉj,σ′〉Ψ0
+
∑

i

∑

σ,σ′∈d

ǫσ,σ
′

i 〈ĉ†i,σĉi,σ′〉Ψ0

+L
∑

Γ

EΓλ
2
Γm

0
Γ (64)

where, for the delocalised orbitals, the renormalisation factors are qσγ = δσ,γ . The single-particle

state |Ψ0〉 enters (64) solely through the non-interacting density matrix ρ̃ with the elements

ρ(iσ),(jσ′) ≡ 〈ĉ†j,σ′ ĉi,σ〉Ψ0
. (65)

Hence, the Gutzwiller energy functional simplifies to

EGA (ρ̃, λΓ ) =
∑

i 6=j

∑

σ,σ′,γ,γ

tγ,γ
′

i,j q
σ
γ

(

qσ
′

γ′

)∗

ρ(jσ′),(iσ) +
∑

i;σ,σ′∈d

ǫσ,σ
′

i ρ(iσ),(iσ) + L
∑

Γ

EΓλ
2
Γm

0
Γ .

(66)
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It has to be minimised with respect to all elements of ρ̃ and the variational parameters λΓ
obeying the constraints (62), (63) and

ρ̃2 = ρ̃ . (67)

The latter constraint ensures that ρ̃ belongs to a single-particle product state.

There are several ways, how the constraints (62), (63) may be implemented in numerical calcu-

lations [10]. In this tutorial introduction, we will simply assume that Eqs. (62), (63) are solved

by expressing some of the parameters λΓ by the remaining ‘independent’ parameters λiΓ . Equa-

tion (67) is then the only remaining constraint in the minimisation of the resulting energy func-

tion ĒGA
(

ρ̃, λiΓ
)

. If it is implemented by means of Lagrange parameters, see Appendix A, the

minimisation with respect to ρ̃ leads to the effective single-particle Hamiltonian

Ĥeff
0 =

∑

i 6=j

∑

σ,σ′,γ,γ

tγ,γ
′

i,j q
σ
γ

(

qσ
′

γ′

)∗

ĉ†i,σ ĉj,σ′ +
∑

i,σ∈d

ǫσ,σ
′

i ĉ†i,σ ĉi,σ +
∑

i,σ∈ℓ

ησ ĉ
†
i,σ ĉi,σ (68)

which gives us |Ψ0〉 as the ground state of (68),

Ĥeff
0 |Ψ0〉 = E0|Ψ0〉 . (69)

The ‘fields’ ησ for the localised orbitals in (68) are given as [18]

ησ =
∂

∂n0
σ

ĒGA
(

ρ̃, λiΓ
)

. (70)

The remaining numerical problem is the solution of Eqs. (68)-(70) together with the minimisa-

tion condition
∂

∂λiΓ
ĒGA

(

ρ̃, λiΓ
)

= 0 . (71)

Numerical strategies to solve these equations have been discussed in detail in Ref. [10] to which

we refer the interested reader.

Up to this point, the effective single-particle Hamiltonian (68),

Ĥeff
0 =

∑

k,τ

Ek,τ ĥ
†
k,τ ĥk,τ , (72)

and its eigenvalues (band-energies) Ek,τ in momentum space are just auxiliary objects which

determine |Ψ0〉. One can readily show, however, that the non-interacting Fermi-surfaces, defined

by the Fermi energy EF,

Ek,τ −EF = 0 , (73)

are equal to the correlated Fermi surfaces because the momentum distribution

nk,τ ≡ 〈ĥ†
k,τ ĥk,τ 〉ΨG

(74)

has step discontinuities exactly at the momenta given by Eq. (73). The Fermi surface de-

fined by (73) may therefore be compared to those, e.g., from de-Haas-van-Alphen experi-

ments. Moreover, within a Landau-Fermi-liquid theory, the eigenvalues Ek,τ turn out as the

quasi-particle excitation energies which can be measured, e.g., in ‘angle-resolved photoemis-

sion spectroscopy’ (ARPES) experiments, see Refs. [9, 19].
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3.3 Example: single-band Hubbard model

As a simple example we use the general results derived in Sec. 3.2, to recover the well-known

Gutzwiller energy functional for the single-band Hubbard model [5]. For this model, the (local)

Gutzwiller correlation operator (24) had the form

P̂ = λ∅m̂∅ + λ↑m̂↑ + λ↓m̂↓ + λdd̂ , (75)

where

m̂∅ = (1− n̂↑)(1− n̂↓) = 1− n̂↑ − n̂↓ + d̂ , (76)

m̂s = n̂s(1− n̂s̄) = n̂s − d̂ , (77)

↑̄ =↓, ↓̄ =↑, and d̂ has been defined in Eq. (19). Equation (54) gives us the expectation value

for the occupation of the four local eigenstates,

m∅ ≡ 〈m̂∅〉ΨG
= λ2∅(1− n0

↑)(1− n0
↓) , (78)

m̂s ≡ 〈m̂s〉ΨG
= λ2sn

0
s(1− n0

s̄) , (79)

d ≡ 〈d̂〉ΨG
= λ2dn

0
↑n

0
↓ . (80)

With these equations, we can replace the original variational parameters λ∅, λs, λd by their

corresponding expectation values m∅, ms, d. This simplifies the expressions for the con-

straints (62), (63) which then read

1 = m∅ +m↑ +m↓ + d , (81)

n0
s = ms + d . (82)

Note that the second constraint (82) simply ensures that the correlated and the uncorrelated

(spin-dependent) particle numbers are equal,

〈n̂s〉ΨG
= ms + d = n0

s = 〈n̂s〉Ψ0
. (83)

Equations (81), (82) can be readily solved, e.g., by expressing m∅, ms as functions of d,

m∅ = 1− n0
↑ − n0

↓ + d , (84)

ms = n0
s − d . (85)

In this way, the only remaining variational parameter is the average number of doubly-occupied

lattice sites d.

Finally, we can evaluate the hopping renormalisation factors (61),

qs
′

s (d) = δs,s′(λdλs̄n
0
s̄ + λsλ∅(1− n0

s̄)) (86)

= δs,s′
1

√

n0
s(1− n0

s)
(
√

ms̄d+
√
msm∅) , (87)

where, in the second line, we have used Eqs. (78)-(80). In summary, we obtain the variational

energy functional

ĒGA(d, Ψ0) =
∑

s=↑,↓

(qss(d))
2
∑

i,j

ti,j〈ĉ
†
i,sĉj,s〉Ψ0

+ LUd (88)

for the single-band Hubbard model (19) in the Gutzwiller approximation.
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4 Applications

4.1 Ferromagnetism in a two-band Hubbard model

Since Gutzwiller’s ground-breaking work we know that the single-band energy functional (88)

leads to ferromagnetic ground states only under very special circumstances, e.g., if the density

of states has a sharp peak at the Fermi level and the Coulomb interaction is much larger than

the band width. From this observation, we can already conclude that ferromagnetism, as it

naturally appears in transition metals, is most probably related to the orbital degeneracy of the

partially filled 3d-shell in these systems. Therefore, it is quite instructive to study ferromagnetic

instabilities in a system with two orbitals, as a first step from the simple one-band model towards

a realistic description of materials with partially filled 3d-shells.

A) Model specification

We consider a Hubbard model with two degenerate eg-orbitals per site on a simple three-

dimensional cubic lattice. The local (atomic) Hamiltonian for this system is given in equa-

tion (16). We include realistic hopping parameters for transition metal energy bands to the

nearest and second-nearest neighbours in (13). This choice avoids pathological features in the

energy bands, such as perfect nesting at half band filling. The single-particle part of the Hamil-

tonian (13) is easily diagonalised in momentum space and leads to a density of statesD0(ε) that

is shown as a function of the band filling in Fig. 2.

The case nσ = n0
σ = 0.29 corresponds to a maximum in the density of states at the Fermi

energy. For this band filling, we expect the strongest tendency towards ferromagnetism.

B) Variational energy functional

For a two-band model, it is still possible to give a manageable explicit expression of the energy

as a function of the variational parameters. The eigenstates of the two-particle spectrum all

belong to different representations of the point symmetry group, see table 1. Therefore, one

can safely assume that the variational-parameter matrix λΓ,Γ ′ = δΓ,Γ ′ is diagonal and we have

λΓ = λΓ ′ for all states |Γ 〉, |Γ ′〉 that are degenerate due to the cubic symmetry. Then, we are

left with 11 (independent) variational parameters mΓ = λ2Γm
0
Γ :

i) two parameters for an empty and a fully occupied site: m∅, f ;

ii) four parameters for singly and triply occupied sites: ms and ts with s =↑, ↓;

iii) five parameters for doubly-occupied sites: d↑,↑t , d↓,↓t , d0t (for the triplet 3A2), dE (for the

doublet 1E), and dA (for the singlet 1A1).

For our degenerate two-band model, the uncorrelated local density matrix (31) is automatically

diagonal and orbital independent,

〈

ĉ†i,(b,s)ĉi,(b′,s′)
〉

Ψ0

= δs,s′δb,b′n
0
s . (89)
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Fig. 2: Model density of states at the

Fermi energy as a function of the or-

bital filling nσ . The dashed lines indi-

cate the half-filled case (nσ = 0.5 and

the fillings used in this section (nσ =
0.29 and nσ = 0.35). The total band-

width is W = 6.8 eV.
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As in the single-band case, the constraint equations (62), (63) can be solved explicitly, e.g., by

considering the occupations

m∅ = 1− 2n0
↑ − 2n0

↓ + d↑↑t + d↓↓t + d0t + dA + 2dE + 4t↑ + 4t↓ + 3f , (90)

ms = n0
s −

[

dsst + ts̄ + 2ts̄ + f +
1

2

(

dA + 2dE + d0t
)

]

, (91)

as functions of the remaining nine independent parameters. The expectation value of the two-

band Hubbard Hamiltonian is then given by

E2b
atom =

∑

s

(qss)
2εs,0 + (U ′ − J)(d↑↑t + d↓↓t + d0t ) (92)

+2(U ′ + J)dE + (U + J)dA + (2U + 4U ′ − 2J)(t↑ + t↓ + f) ,

where we introduced the orbital-independent elements

qss =
1

√

n0
s(1− n0

s)

[

(√
ts +

√
ms̄

) 1

2

(

√

dA + 2
√

dE +
√

d0t

)

(93)

+
√
ms

(√
m∅ +

√

dsst

)

+
√
ts̄

(

√

ds̄s̄t +
√

f

)]

,

of the diagonal renormalisation matrix and the bare band energies

εs,0 =

∫ EF,s

−∞

dε εD0(ε) . (94)

For comparison, we will also consider the energy

E
(2b)
dens =

∑

s

(q̄ss)
2εs,0 + (U ′ − J)(d↑↑1 + d↓↓1 ) (95)

+2U ′d0 + 2Udc + (2U + 4U ′ − 2J)(t↑ + t↓ + f)

of a two-band model without the terms in the second line of the atomic Hamiltonian (16) since

this is an approximation that is often made in studies on multi-band models. In this case, there

are seven variational parameters d↑↑1 , d↓↓1 , d0, dc, t↑, t↓, and f , which represent the occupation of
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the configuration states |I〉. The probabilities for an empty site m∅ and a singly-occupied site

ms are related to the variational parameters by

ms = n0
s − [dss1 + ts̄ + 2ts + f + dc + d0] , (96)

m∅ = 1− 2n0
↑ − 2n0

↓ + d↑↑1 + d↓↓1 + 2d0 + 2dc + 4t↑ + 4t↓ + 3f . (97)

The renormalisation factors have the form

q̄ss =
1

√

n0
s(1− n0

s)

[

(√
ts +

√
ms̄

)

(

√

dc +
√

d0

)

(98)

+
√
ms

(√
m∅ +

√

dss1

)

+
√
ts̄

(

√

ds̄s̄1 +
√

f

)]

.

C) Ground-state properties

The energies (92) and (95) have to be minimised with respect to their respective (nine or seven)

independent variational parameters mΓ and the magnetisation

M ≡ (n0
↑ − n0

↓)/2 , (99)

for example, by means of the algorithm introduced in Ref. [10]. In Fig. 3 (left), the magnetisa-

tion M is shown as a function of U for fixed J/U = 0.2 (U ′/U = 0.6). The critical interaction

for the ferromagnetic transition, U atom
F , is about a factor two larger than its valueUHF

F as obtained

from the Hartree-Fock-Stoner theory. The corresponding values Udens
F always lie somewhat be-

low the values for the Gutzwiller wave function with full atomic correlations. In general, the

relation MHF(U) > Mdens(U) > Matom(U) holds, i.e., for all interaction strengths, the tendency

to ferromagnetism is the strongest within the Hartree-Fock theory and weakest for Gutzwiller

wave functions with atomic correlations. Furthermore, the slopes of M(U) are much steeper in

the Hartree-Fock results than in the presence of correlations.

The properties of the ferromagnetic phase strongly depend on the spectrum of the atomic two-

electron configurations. To further analyse this point, we have included the case of JC = 0,

which changes only the excited two-electron states. A shift of the curve M(U) results towards

smaller interaction strengths; for a given magnetisation density, a smaller interaction strength is

required as compared to the correct symmetry case J = JC, see Fig. 3 (left). The effect is more

pronounced when we go to the Gutzwiller wave function with pure density correlations. These

results indicate that itinerant ferromagnetism is strongly influenced by the atomic multiplet

spectra.

In Fig. 3 (left/a), we chose the particle density per band to be n0 = (n0
↑ + n0

↓)/2 = 0.29,

right at the maximum of the density of state curve, compare Fig. 2. In this case, there are

finite slopes of the M(U) curves at UF, and a ‘Stoner criterion’ for the onset of ferromagnetism

applies. In Fig. 3 (left/b), we chose the particle density per band as n0 = 0.35. In this case, the

density of states at the Fermi energy D0(EF,↑) + D0(EF,↓) first increases as a function of the

magnetisation density. Therefore, a discontinuous transition thus occurs from the paramagnet

to the ferromagnet.
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Fig. 3: Left: Magnetisation density per band as a function of U for the Hartree-Fock solution

(HF), the Gutzwiller wave function with pure density correlations (GWdens), and the Gutzwiller

wave function with atomic correlations (GWatom) for (a) ns = 0.29 and (b) ns = 0.35. The

dotted line indicates the results for GWatom with JC = 0. The local exchange interaction is

J = 0.2U in all curves. Right: Phase diagram as a function of U and J for the Hartree-Fock

solution (HF) and the two Gutzwiller wave functions (GWdens, GWatom) for (a) n0 = 0.29 and

(b) n0 = 0.35; PM: paramagnet, FM: ferromagnet.

In the case of pure density correlations, a second jump in the M(U) curve is observed that

is absent in the other two curves. As discussed in Ref. [20], this jump is related to another

feature of the density of states. In the Hartree-Fock theory, this feature is too weak to be of

any significance in comparison to the interaction energy. When the full atomic correlations are

taken into account, this first-order jump at a finite magnetisation density disappears due to the

enhanced flexibility of the variational wave function.

Another remarkable difference between the Hartree-Fock and the Gutzwiller method lies in the

approach to ferromagnetic saturation. In the Hartree-Fock theory, the magnetisation saturates

at U values about 20% to 40% above the onset of ferromagnetism at UHF
F . In contrast, in the

variational approach saturation is reached at about twice the onset value, Usat . 2UF. However,

even when the minority spin occupancies are zero and 〈Ŝat
z 〉 is constant, the majority spin occu-

pancies s↑ and d↑↑t vary with U since the limit of zero empty sites is reached only for U → ∞.

In Fig. 3 (right), we display the J-U phase diagram for both fillings. It shows that the Hartree-

Fock theory always predicts a ferromagnetic instability. In contrast, the correlated electron

approach strongly supports the idea that a substantial on-site Hund’s rule exchange is required

for the occurrence of ferromagnetism at realistic interaction strengths. For the case n0 = 0.29,

the differences between the phase diagrams for the two correlated electron wave functions are
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Fig. 4: Size of the local spin 〈
(

~̂Si

)2
〉 as a

function of the interaction strength for J =
0.2U and band filling n0 = 0.35 for the

Hartree-Fock theory (HF) and the Gutzwiller

wave functions (GWdens, GWatom).

minor. Due to the large density of states at the Fermi energy, the critical interaction strengths for

the ferromagnetic transition are comparably small, and the densities for the double occupancies

in both correlated wave functions do not differ much. For the larger band filling n0 = 0.35, i.e.,

away from the peak in the density of states, the values for UF are considerably larger and, in

the atomic correlation case, the Gutzwiller wave functions can generate local spin triplets more

easily while keeping the global paramagnetic phase.

The magnitude of the local spin as a function of U is shown in Fig. 4. For U → ∞, each

site is either singly occupied with probability 2 − 4n0 or doubly occupied (spin S = 1) with

probability 4n0 − 1. Hence,

〈(~Si)
2〉∞ = (3/4)(2− 4n0) + 2(4n0 − 1) = 5n0 − 1/2 . (100)

For the correlated wave functions, this limit is reached from above since, for U < ∞, charge

fluctuations first increase the number of spin-one sites at the expense of spin-1/2 sites, which

turn into empty sites. A further decrease of U will also activate the singlet double occupancies

and higher multiple occupancies. Thus, the local spin eventually reduces below 〈(~Si)
2〉∞. On

the contrary, the Hartree-Fock theory does not give the proper large-U limit for the local spin.

Instead, the Hartree-Fock limit is given by

〈(~Si)
2〉HF

∞ = n0(3 + 2n0) . (101)

The change of 〈(~Si)
2〉 at UF is only a minor effect within the correlated electron approach. In

particular, this holds true for the case of atomic correlations, where about 90% of the local spin

saturation value is already reached in the paramagnetic state. Again, the Hartree-Fock results

are completely different. There, the local spin sharply increases as a function of the interaction

strength since the absence of correlations fixes

〈(~Si)
2〉HF(U < UHF

F ) = 〈(~Si)
2〉(U = 0). (102)

Finally, in Fig. 5, we display the energy differences between the paramagnetic and ferromag-

netic ground states as a function of the interaction strength for J = 0.1U . For the correlated

electron case, this quantity is of the order of the Curie temperature, which is in the range of
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Fig. 5: Condensation energy as a function

of U for J = 0.2U for the Hartree-Fock

theory (HF) and the Gutzwiller wave func-

tion (GWatom) for n = 0.29 (full lines) and

n = 0.35 (dashed lines).
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100K − 1000K in real materials. On the other hand, the Hartree-Fock theory yields small con-

densation energies only in the range of U ≈ 4 eV; for larger U , the condensation energy is of

order U . Including the correlation effects within the Gutzwiller theory, we have relatively small

condensation energies even for interaction values as large as twice the bandwidth (U ≈ 10 eV).

4.2 Antiferromagnetic order in iron-pnictide models

Since their recent discovery, the iron-based high-Tc superconductors, e.g., LaOFeAs, have at-

tracted tremendous attention both in theory and experiment. From a theoretical point of view,

these systems are of particular interest because their conduction electrons are less correlated

than those of other high-Tc superconductors. In contrast to the cuprates, the pnictides’ undoped

parent compounds are antiferromagnetic metals at low temperatures, not insulators. However,

the electronic mass is enhanced by a factor of two which indicates that electronic correlations

are quite substantial in the pnictides, too.

The theoretical description of the pnictides’ normal phases already turned out to be a diffi-

cult problem. Standard density-functional theory (DFT) grossly overestimates the size of their

magnetic moment in the antiferromagnetic ground state. For example, in LaOFeAs experiment

finds a staggered moment of m = (0.4 . . . 0.8)µB [21–23] whereas DFT calculations predict

moments of m ≈ 1.8µB, or larger [24, 25]. For other pnictide compounds, the comparison is

equally unfavourable.

The electronic structure of LaOFeAs near the Fermi energy is fairly two-dimensional and the

bands are dominantly of iron d and (partially) of arsenic p character. A complete tight-binding

model for LaOFeAs should therefore consist of eight bands (i.e., five iron d- and three arsenic

p-bands) [26], see Fig. 6 (left). For many-particle approaches, however, the study of such an

eight-band model model is obviously quite challenging. Therefore, in many theoretical works

on iron pnictides various simpler models have been proposed to study particular aspects of these

materials. The fact that the bands near the Fermi energy are dominantly of iron d character

suggest the study of an effective five-band model of pure iron d-bands. Such a model has been

proposed, e.g., in Ref. [27], see Fig. 6 (middle). Even simpler models may be derived if one

only aims to reproduce the Fermi surfaces of LaOFeAs. This is achieved, e.g., by the three-band

model in Fig. 6 (right), which was investigated in Ref. [28].
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Fig. 6: Model band structures for LaOFeAs with eight bands [26] (left), five bands [27] (middle)

and three bands [28] (right).
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Fig. 7: Orbital densities in Gutzwiller theory

(full symbols) and in DMFT (open symbols) as a

function of U (with U/J = 4) for the simplified

local Hamiltonian Ĥc = Ĥ
(1)
c , see Eq. (103).

In cases where a simplified model reproduces certain properties of a material correctly, there

will often remain doubts whether this agreement is merely coincidental or an indication that

the model indeed captures the relevant physics of a system. A big advantage of the Gutzwiller

theory is its numerical simplicity that allows one to study even complicated multi-band models

with modest numerical efforts. In this way, it is possible to test the quality of simplified models

by comparing their properties with those of more realistic Hamiltonians. In this section, we

will compare the magnetic properties of all three models, displayed in Figs. 6. This comparison

provides an interesting example of the dangers that lie in the study of oversimplified model

systems. Based on a Gutzwiller theory calculation it has been argued in Ref. [28] that the three-

band model has a relatively small magnetic moment, in agreement with experiment. However,

as we have shown in Ref. [29] the magnetic properties of the five-band model are very different

from experiment and from those of the three-band model. One must therefore conclude that

both models are insufficient in describing the magnetic properties of LaOFeAs. In fact, it turns

out that an inclusion of the arsenic p-orbitals is essential, see below.
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In many theoretical studies, the following Hamiltonian for the Hubbard interaction Ĥi;c in (14)

is used,

Ĥ(1)
c = Ĥdens

c + Ĥsf
c , (103)

Ĥdens
c =

∑

b,s

U(b, b)n̂b,sn̂b′,s̄ +
∑

b(6=)b′

∑

s,s′

˜Us,s′(b, b
′)n̂b,sn̂b′,s′ ,

Ĥsf
c =

∑

b(6=)b′

J(b, b′)
(

ĉ†b,↑ĉ
†
b,↓ĉb′,↓ĉb′,↑ + h.c.

)

+
∑

b(6=)b′;s

J(b, b′)ĉ†b,sĉ
†
b′,s̄ĉb,s̄ĉb′,s .

Here, we introduced ˜Us,s′(b, b
′) = U(b, b′) − δs,s′J(b, b

′), where U(b, b′) and J(b, b′) are the

local Coulomb and exchange interactions. For a system of five correlated d-orbitals in a cubic

environment, however, the Hamiltonian (103) is incomplete [2]. The full Hamiltonian reads

Ĥc = Ĥ
(1)
c + Ĥ

(2)
c where

Ĥ(2)
c =

[

∑

t;s,s′

(T (t)− δs,s′A(t))n̂t,sĉ
†
u,s′ ĉv,s′ +

∑

t,s

A(t)
(

ĉ†t,sĉ
†
t,s̄ĉu,s̄ĉv,s + ĉ†t,sĉ

†
u,s̄ĉt,s̄ĉv,s

)

+
∑

t(6=)t′(6=)t′′

∑

e,s,s′

S(t, t′; t′′, e)ĉ†t,sĉ
†
t′,s′ ĉt′′,s′ ĉe,s

]

+ h.c. . (104)

Here, t and e are indices for the three t2g orbitals with symmetries xy, xz, and yz, and the two

eg orbitals with symmetries u = 3z2 − r2 and v = x2 − y2. The parameters in (104) are of the

same order of magnitude as the exchange interactions J(b, b′) and, hence, there is no a-priori

reason to neglect them. Of all the parameters U(b, b′), J(b, b′), A(t), T (t), S(t, t′; t′′, e) only ten

are independent in cubic symmetry. In a spherical approximation, i.e., assuming that all orbitals

have the same radial wave-function, all parameters are determined by, e.g., the three Racah

parameters A,B,C. We prefer to work with the orbital averages J ∝
∑

b6=b′ J(b, b
′), and U ′ ∝

∑

b6=b′ U(b, b
′) of the exchange and the inter-orbital Coulomb interaction. They are related to the

intra-orbital interaction U = U(b, b) via U ′ = U −2J . Due to this symmetry relation, the three

values of U, U ′, and J do not determine the Racah parameters A,B,C uniquely. Therefore, we

make use of the atomic relation C/B = 4 which is approximately satisfied in solids, too. In

this way, the three Racah parameters and, consequently, all parameters in Ĥc are functions of U

and J . This permits a meaningful comparison of our results for all three model Hamiltonians.

In order to test the reliability of our approach we first compare our results for the partial densities

of the five-band model with those from paramagnetic DMFT calculations. In Fig. 7 we show

the density of electrons in each orbital as a function of U for fixed ratio U/J = 4. The full

symbols give the Gutzwiller result for the simplified local Hamiltonian (103), Ĥ = Ĥ0 + Ĥ
(1)
c ;

open symbols give the DMFT results [30]. Obviously, the agreement between the Gutzwiller

theory and DMFT is very good. This comes not as a surprise because both methods are derived

in the limit of infinite spatial dimensions.

Figure 7 shows a common feature of multi-band model systems. The local Coulomb interaction

induces a substantial charge flow between the bands because, for the local Coulomb interaction,

it is energetically more favourable to distribute electrons equally among the bands. However,
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Fig. 8: Magnetic moment as a function of U for: left: model with eight bands [26]; mid-

dle: model with five bands [27] (Hartree-Fock and Gutzwiller theory); right: model with three

bands [28] and local Hamiltonians Ĥdens
c (dotted) and Ĥsf

c (dashed) .

the bands described by Ĥ0 are extracted from a DFT calculation whose predictions for the

Fermi surface reproduce experimental data reasonably well. Therefore, the artificial charge

flow as seen in Fig. 7 is clearly a consequence of the double counting of Coulomb interactions.

Since the (paramagnetic) Fermi surface found in DFT reproduces its experimentally determined

shape, we assume that the same holds for the paramagnetic orbital densities. For each value of

the interaction parameters we therefore choose orbital on-site energies ǫσ,σi which lead to a para-

magnetic ground state with the same orbital densities as in DFT. Note that a more sophisticated

calculation of orbital densities requires the self-consistent Gutzwiller DFT scheme which we

shall introduce in the following section.

In Figs. 8 we display the magnetic moment as a function of U for all three model systems.

As mentioned before, the three-band model shows relatively small magnetic moments over

a large range of Coulomb- and exchange-interaction parameters, see Fig. 8 (right). This is

in stark contrast to the results for the five-band model in Fig. 8 (middle). Here we find a

transition to an antiferromagnet with a large moment, m & 2µB which is as abrupt as in a

corresponding Hartree-Fock calculation. However, if one takes into account the arsenic p-bands,

the magnetic moment is significantly smaller and in the range of experiment, without the need

of fine-tuning the Coulomb- or exchange-interaction parameters, see Fig. 8 (left). In summary,

we can conclude that a proper understanding of the magnetic order in LaOFeAs requires the

study of an eight-band model of iron d- and arsenic p-bands. It it possible, of course, that other

properties of this compound, e.g., the superconducting order, may be correctly described by

simpler model Hamiltonians.

5 The Gutzwiller density-functional theory

5.1 The Gutzwiller DFT equations

The model-based Gutzwiller method, which we have used in the previous section, ignores the

fact that the hopping parameters (9) are actually functions of the density n(r). Taking this

functional dependence into account defines the Gutzwiller density functional theory (GDFT).

The explicit inclusion of the local Coulomb interaction within the Gutzwiller theory leads to
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changes of the particle density n(r) for three reasons:

i) The particle density n(r) in the Gutzwiller-correlated ground state

n(r) =
∑

i 6=j

∑

σ,σ′,γ,γ′

φ∗
i,γ(r)φj,γ′(r)qσγ

(

qσ
′

γ′

)∗

ρ(jσ′),(iσ) +
∑

i

∑

σ

|φi,σ(r)|
2ρ(iσ),(iσ) (105)

differs from the corresponding DFT expression (10).

ii) Due to the renormalisation factors in (66) there will be an energy gain from changes of

the hopping parameters tσ,σ
′

i,j = tσ,σ
′

i,j [n(r)], which requires the re-adjustment of n(r).

iii) The Coulomb interaction can lead to drastic changes of the occupation numbers n0
iσ =

ρ(iσ),(iσ) in the localised orbitals, e.g., when the ground state is magnetically ordered. This

also changes the non-local elements of the single-particle density matrix ρ̃ and the particle

density (105).

These correlation-induced changes of the particle density are taken into account in the self-

consistent GDFT by including the dependence of the hopping parameters on n(r). Equa-

tion (105) shows that n(r) and, consequently, tσ,σ
′

i,j are unique functions of ρ̃ and λΓ . Therefore,

the GDFT energy functional has the form

EGDFT (ρ̃, λΓ ) =
∑

σ,σ′,γ,γ′

qσγ

(

qσ
′

γ′

)∗∑

i 6=j

tγ,γ
′

i,j (ρ̃, λΓ )ρ(jσ′),(iσ)+
∑

i,σ∈d

ǫσ,σi ρ(iσ),(iσ)+L
∑

Γ

EΓλ
2
Γm

0
Γ .

(106)

We assume again that the constraints (62) and (63) are solved by expressing some of the pa-

rameters λΓ by the remaining independent parameters λiΓ . The resulting energy functional

ĒGDFT
(

ρ̃, λiΓ
)

has to be minimised with respect to the density matrix ρ̃ and the independent

variational parameters λiΓ ,

∂

∂ρ(iσ),(jσ′)

ĒGDFT
(

ρ̃, λiΓ
)

= 0 ,
∂

∂λiΓ
ĒGDFT

(

ρ̃, λiΓ
)

= 0 , (107)

with the usual constraint (67) for the non-interacting density matrix ρ̃. The minimisation with

respect to ρ̃ leads to renormalised Kohn-Sham equations of the form (8), (9), (11), and (105)

with Eq. (8) replaced by

Ĥ0 =
∑

i 6=j

∑

σ,σ′,γ,γ′

qσγ

(

qσ
′

γ′

)∗

tγ,γ
′

i,j (ρ̃, λΓ )ĉ
†
i,σ ĉj,σ′ +

∑

i,σ∈ℓ

ησ ĉ
†
i,σĉi,σ, (108)

and by [18]

ησ̃ ≡
1

L

∑

σ,σ′,γ,γ′

[ ∂

∂nσ̃

qσγ

(

qσ
′

γ′

)∗ ]∑

i 6=j

tγ,γ
′

i,j (ρ̃, λΓ )ρ(jσ′),(iσ) +
∂

∂nσ̃

∑

Γ

EΓλ
2
Γm

0
Γ , (109)

respectively. The set of Eqs. (9), (105), and (106)-(109), which have to be solved self-consistently,

constitute the GDFT. This approach was first proposed in Refs. [31–33] and has been applied
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to various systems in Refs. [32–36]. In all these works, the authors report a remarkably better

agreement with experiment than it could be obtained by a model-based Gutzwiller calculation

for the same materials.

One of the main advantages of the DFT is its ab-initio character, i.e., the absence of any ad-

justable parameters. Unfortunately, this benefit of the DFT cannot be fully maintained in the

GDFT because that would require the calculation of the two-particle interaction parameters

Uσ1,σ2,σ3,σ4

i in the localised orbitals from first principles. The straightforward ab-initio solu-

tion of this problem, namely to calculate these parameters from the Wannier orbitals φi,σ(r),

is known to yield values which are much too large. Apparently, screening effects decrease the

Coulomb-interaction parameters significantly. These effects, however, are not well understood

and a quantitatively reliable technique for the calculation of screened Coulomb parameters does

not exist. For this reason one usually applies the same strategy as in model-based calculations

where the matrix elements Uσ1,σ2,σ3,σ4

i are somehow parameterised, e.g., in spherical approxi-

mation by means of a few Racah parameters. These are chosen to obtain the best agreement

with experiment. In this context, it is a big advantage that the GDFT provides one with more

data, e.g., with structural properties, that can be compared to experiment, see Sec. 5.2.

As mentioned before, the local Coulomb interaction appears twice in the Hamiltonian (14)

because it also affects the on-site energies ǫσ,σ
′

i . There are several ways to overcome this double-

counting problem which have been proposed in the literature, see, e.g., Ref. [37]. According to

Refs. [32–36], the subtraction of the mean-field operator

Ĥdc = 2
∑

σ,σ′,γ∈ℓ

(Uσ,γ,γ,σ′

i − Uγ,σ,γ,σ′

i )n0
γ ĉ

†
i,σĉi,σ′ , (110)

from Ĥi;c leads to good results within the GDFT.

5.2 Application

As an example for the relevance of the GDFT we show results on the iron-pnictides LaOFeAs

and BaFe2As2 which have been presented in Ref. [35]. The failure to describe the magnetic

order is not the only problem the DFT faces in its calculations on iron-pnictides. There are

also substantial deviations between the experimental results and DFT predictions on lattice

parameters, in particular for the distance between Fe and As. Taking correlations into account

more properly, as it is done within the GDFT, changes these lattice parameters significantly.

Figure 9 shows the interlayer distance dzFeAs as a function of J for several values of U . In both

systems, the exchange interaction clearly plays an important role and needs to be included in

order to reproduce the experimental value for dzFeAs. As a consequence, other properties are also

changed significantly as a function of J , see Ref. [35]. It should be noted that the calculations

in Ref. [35] were carried out with the simplified local Hamiltonian Ĥdens
c in Eq. (103). Taking

the full atomic interaction into account may therefore change results, at least quantitatively.

Nevertheless, these results already illustrate how important it is, in studies on transition metal

compounds, to treat the local Coulomb interaction in a more sophisticated way than provided

by state-of-the-art DFT methods.
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Fig. 9: Interlayer distance dzFeAs in LaOFeAs and BaFe2As2 as a function of J for several values

of U .

6 Summary and Outlook

In this tutorial presentation, we have provided a comprehensive introduction into the Gutzwiller

variational approach and its merger with the density functional theory. Numerically, the Gutz-

willer method is rather cheap as compared to other many-particle approaches. It will therefore,

quite likely, emerge as an important tool for the improvement of existing ab-initio methods.

There are two more recent developments which we shall briefly mention as an outlook:

• The time-dependent Gutzwiller theory

The Gutzwiller theory, as introduced in this presentation, can be used for the calculation

of ground-state properties and of quasi-particle energies in the Fermi-liquid regime. For

the description of experiments one often needs to calculate two-particle response func-

tions such as the magnetic susceptibility or the optical conductivity. This is achieved by

the so-called time dependent Gutzwiller theory. This method is derived in a very similar

way, as the random-phase approximation can be introduced as a time-dependent gen-

eralisation of the Hartree-Fock theory. It was first developed for single-band Hubbard

models by Seibold et al. [38,39] and has been applied with astonishing success to quite a

number of such models and response functions [40–50]. Recently, the method has been

generalised for the study of multi-band models [51, 52].

• Beyond the Gutzwiller approximation

As we have demonstrated in this presentation, the energy-functional which we derived in

infinite dimensions (i.e., the Gutzwiller approximation), constitutes already a major im-

provement over, e.g., the Hartree-Fock theory. It is well-known, however, that the limit

of infinite spatial dimensions has some severe limitations. For example, if we consider

the Fermi surface of a single-band Hubbard model, it will be independent of U as long as
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no symmetry-broken phases are considered. This cannot be correct in finite dimensions

which becomes evident already from straightforward perturbation theory in U [53]. It is

also known from a numerical evaluation of Gutzwiller wave functions in two dimensions

that, for sufficiently large values of U , the variational ground states can be supercon-

ducting [54, 55]. This is also not reproduced within the Gutzwiller approximation. In a

recent work, we have therefore proposed an efficient diagrammatic method for the eval-

uation of Gutzwiller wave functions in finite dimensions [56]. It has enabled us to study

correlation-induced Fermi-surface deformations [56] as well as superconductivity (un-

published). The numerical effort of this method is still moderate and the investigation of

more complicated multi-band models will therefore be feasible in the near future.
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Appendix

A Minimisation of functions with respect to non-interacting

density matrices

We consider a general function E(ρ̃) of a non-interacting density matrix ρ̃ with the elements

ργ,γ′ = 〈ĉ†γ′ ĉγ〉Φ0
. (111)

The fact that ρ̃ is derived from a single-particle product wave function |Φ0〉 is equivalent to

the matrix equation ρ̃2 = ρ̃. Hence, the minimum of E(ρ̃) in the space of all non-interacting

density matrices is determined by the condition

∂

∂ργ′,γ
L(ρ̃) = 0 , (112)

where we introduced the Lagrange functional

L(ρ̃) ≡ E(ρ̃)−
∑

l,m

Ωl,m

[

ρ̃2 − ρ̃
]

m,l
(113)

= E(ρ̃)−
∑

l,m

Ωl,m

(

∑

p

ρm,pρp,l − ρm,l

)

(114)

and the matrix Ω̃ of Lagrange parameters Ωl,m. The minimisation of (113) leads to the matrix

equation

H̃ = ρ̃Ω̃ + Ω̃ρ̃− Ω̃ (115)

for the Hamilton matrix H̃ with the elements

Hγ,γ′ =
∂

∂ργ′,γ
E(ρ̃) . (116)

For density matrices which satisfy ρ̃2 = ρ̃, Eq. (115) leads to [H̃, ρ̃] = 0. Hence, H̃ and ρ̃ must

have the same basis of (single-particle) eigenvectors and, consequently, |Φ0〉 is the ground state

of

Ĥeff
0 =

∑

γ,γ′

Hγ,γ′ ĉ†γ ĉγ′ . (117)
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1 Introduction

The central equation of solid-state physics is the eigenvalue problem ĤΨ = EΨ , defined (in

the non-relativistic limit) by the many-body Hamiltonian

Ĥ = −
1

2

∑

i

∇2
i +

1

2

∑

i 6=i′

1

|ri − ri′|
−
∑

i,α

Zα

|ri −Rα|
−
∑

α

1

2Mα

∇2
α +

1

2

∑

α6=α′

ZαZα′

|Rα −Rα′ |
,

where {ri} are the coordinates of the Ne electrons, {Rα} those of the Nn nuclei, Zα the atomic

numbers, and Mα the nuclear masses.1 The Born-Oppenheimer Ansatz

Ψ ({ri}, {Rα}) = ψ({ri}; {Rα})Φ({Rα}), (1)

splits the Schrödinger equation ĤΨ = EΨ into the system











Ĥeψ({ri}; {Rα}) = ε({Rα})ψ({ri}; {Rα}),

ĤnΦ({Rα}) = EΦ({Rα}),

(2)

where the Hamilton operator for the electrons (Ĥe) and that for the lattice (Ĥn) are

Ĥe = −
1

2

∑

i

∇2
i +

1

2

∑

i 6=i′

1

|ri − ri′|
−
∑

i,α

Zα

|ri −Rα|
+

1

2

∑

α6=α′

ZαZα′

|Rα −Rα′ |

= T̂e + V̂ee + V̂en + V̂nn, (3)

Ĥn = −
∑

α

1

2Mα

∇2
α + ε({Rα})

= T̂n + Ûn, (4)

and where in (4) we neglect non-adiabatic corrections.2 The electronic eigenvalue ε({Rα}) acts

as potential for the nuclei and defines a Born-Oppenheimer energy surface. While (3) describes

the electronic structure, (4) yields the equilibrium crystal structure of the system and the phonon

modes. If the equilibrium structure {R0
α} is known, for example experimentally, we can focus

on (3). Because V̂ee is not separable, with increasing Ne, finding the eigenvalues and eigenvec-

tors of (3) becomes quickly an unfeasible task, even for a single atom. The modern approach to

such many-body problems consists in building, starting from (3), minimal but material specific

low-energy many-body models, which retain the essential physics of the phenomenon we want

to understand [1].

The first step in model building consists in performing density-functional theory (DFT) calcula-

tions. DFT is based on the Hohenberg-Kohn theorem, which states that the ground-state energy

of the many-body Hamiltonian (3) is a functional E[n] of the electron density, minimized by

1In this lecture we use atomic units (see Appendix A).
2The neglected term is Λ̂n = −

∑

α

1

Mα

[

1

2
〈ψ|∇2

α
ψ〉+ 〈ψ|∇αψ〉 · ∇α

]

.
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the ground-state density. In the Kohn-Sham DFT scheme, the ground-state energy of (3) can be

obtained by solving an auxiliary Schrödinger equation ĥeψ = εψ, with

ĥe =
∑

i

[

−
1

2
∇2

i + vR(ri)

]

=
∑

i

ĥe(ri). (5)

The auxiliary Hamiltonian describesNe non-interacting electrons in an external potential, vR(r),

chosen such that the ground-state electron density n0(r) of the auxiliary model equals n(r), the

ground-state electron density of the original interacting system. This potential can be written as

vR(r) = −
∑

α

Zα

|r −Rα|
+

∫

dr′ n(r
′)

|r − r′|
+
δExc[n]

δn
= ven(r) + vH(r) + vxc(r), (6)

where vH(r) is the long-range Hartree term and Exc[n] is the so-called exchange-correlation

functional. The main difficulty of DFT is that Exc[n] is not know, and it is therefore necessary

to find good approximations for it. Most common are the local-density approximation (LDA)

and its extensions; they work remarkably well for several classes of materials and properties,

as discussed in the lecture of David Singh. The class of systems at the center of this school,

however, is made of compounds for which many-body effects beyond the LDA play a crucial

role, leading to cooperative emergent phenomena; examples are transition-metal oxides with

partially filled d-shells, Mott insulators, Kondo systems, and heavy fermions. For such strongly

correlated materials simple approximations to Exc[n] fail, even qualitatively.

For strongly correlated systems, the second step consists in using DFT to construct a localized

one-electron basis; this is usually achieved building from the Bloch functions ψnkσ(r), obtained

by solving (5) for a given crystal, material-specific Wannier functions

ψinσ(r) =
1

√
N

∑

k

e−iRi·k ψnkσ(r).

Localized Wannier functions can be constructed using different procedures: the downfolding

approach, discussed in [2] and in the lecture of Ole Andersen, the maximally-localized Wannier

functions algorithm of Marzari and Vanderbilt [3], and the projectors technique, described in

the lecture of Sasha Lichtenstein.

The third step consists in writing the Hamiltonian (3) in second quantization using such local-

ized Wannier functions as one-electron basis. The resulting many-body Hamiltonian is the sum

of an LDA term ĤLDA, a Coulomb term Û , and a double-counting correction ĤDC

Ĥe = ĤLDA + Û − ĤDC. (7)

The LDA part of the Hamiltonian is given by

ĤLDA = −
∑

σ

∑

in,i′n′

ti,i
′

n,n′c
†
inσci′n′σ, (8)

where c†inσ (cinσ) creates (annihilates) an electron of spin σ in orbital n at site i, and

ti,i
′

n,n′ = −

∫

dr ψinσ(r)[−
1

2
∇2 + vR(r)]ψi′n′σ(r). (9)
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The i 6= i′ contributions are the hopping integrals, while the on-site (i = i′) term yields the

crystal-field matrix

εi,in,n′ = −ti,in,n′ =

∫

dr ψinσ(r)

[

−
1

2
∇2 + vR(r)

]

ψin′σ(r). (10)

The Coulomb interaction Û is given by

Û =
1

2

∑

ii′jj′

∑

σσ′

∑

nn′pp′

U ij i′j′

np n′p′c
†
inσc

†
jpσ′cj′p′σ′ci′n′σ,

with

U iji′j′

np n′p′ =

∫

dr1

∫

dr2
ψinσ(r1)ψjpσ′(r2)ψj′p′σ′(r2)ψi′n′σ(r1)

|r1 − r2|
. (11)

The Coulomb tensor (11) is discussed in [4] and in the lecture of Robert Eder. The double

counting term ĤDC cancels the part of the electron-electron interaction contained and already

well accounted for in ĤLDA, such as the mean-field part of the exchange-correlation interaction

and the long-range Hartree term; the difference Û − ĤDC is therefore a short-range many-body

correction to the LDA [4]. The Hamiltonian (7) still describes the full many-body problem and

further approximations are necessary to make progress. Typically electrons are divided into two

types, correlated or heavy electrons (e.g., d or f open shells) and uncorrelated or light electrons.

For the correlated electrons the LDA fails qualitatively, and Û−ĤDC has to be accounted for ex-

plicitly; for the light electrons we can instead assume that LDA is overall a good approximations

and no correction Û − ĤDC is needed. The main effect of the light electrons is assumed to be

a renormalization of the Coulomb parameters (screening), which, as a consequence, cannot be

calculated any more as in (11); since the exact screening is not known, approximated schemes

such as the constrained LDA or the constrained random-phase approximation are commonly

used. These schemes are discussed in the lecture of Olle Gunnarsson. The separation of elec-

tron in light and heavy is the most delicate aspect of model building, as only in few cases the

distinction is really clear cut. In most cases we can only make a reasonable guess, that has to

be tested a posteriori, e.g., comparing with experiments, or better, when doable, extending the

basis of heavy electrons to include, e.g., other states close to the Fermi level.

In the last step, the minimal material-specific many-body model is solved using many-body

methods. If we solve it with the dynamical mean-field theory (DMFT) approach, the procedure

described above defines the LDA+DMFT method [4].

While strong-correlation effects arise from the Coulomb matrix (11), chemistry enters mostly

through the hopping integrals (9) and the crystal-field matrix (10). The purpose of this lecture is

to explain the physical origin of these parameters, and the role they can play. To do this we will

use some basic results of group theory. For simplicity, in most derivations we will use atomic

hydrogen-like orbitals as a basis; the generalization to Wannier functions is straightforward.

The lecture is organized as follows. In section 2 we introduce group theory; we discuss the case

of a free atom and the covering operations of molecules and crystals. In section 3 we analyze
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how and why, in a crystal or a molecule, the atomic l-shells split, becoming the crystal-field

levels; we focus in particular on the splitting due to the electric field generated at a given site by

the surrounding ions. In section 4 we discuss covalency effects, which lead to the formations

of bonds and bands (hopping integrals), and contribute to the splitting of atomic levels. In the

last section we analyze the Jahn-Teller effect, a cooperative distortion driven by the coupling

between electrons and lattice, which leads to further crystal-field splitting.

2 Elements of group theory

A group3 G is a set of elements {gi} plus an operation, ⋆, which satisfy the following conditions

1. G is closed under group multiplication, i.e., gi ⋆ gj = gk ∈ G ∀gi, gj ∈ G

2. the associative law holds, i.e., gi ⋆ (gj ⋆ gk) = (gi ⋆ gj) ⋆ gk ∀gi, gj, gk ∈ G

3. there is an identity element e ∈ G, such that gi ⋆ e = e ⋆ gi = gi ∀gi ∈ G

4. there is an inverse element g−1
i ∈ G to each gi ∈ G, such that gi ⋆ g

−1
i = g−1

i ⋆ gi = e

If the operation ⋆ is commutative, so that gi ⋆ gj = gj ⋆ gi ∀gi, gj ∈ G, the group is called

Abelian. Groups with a finite number h of elements are called finite groups, and h is said to be

the order of the group. An element gi in group G is said to be conjugated to gj if

gi = gX ⋆ gj ⋆ g
−1
X ,

where gX is some element of G. The elements of G can be collected into classes Ck, each of

which is made of all Nk mutually conjugated elements. The identity forms a class by itself.

A subgroup of G is a set of elements of G which forms a group with the same multiplication

operation of G, ⋆. Every group has at least two trivial subgroups, the group itself and a group

formed by the identity only. A subgroup N of G is invariant if gNg−1 = N ∀g ∈ G.

Two groups G and G′ are homomorphic if there is a correspondence gi → gi
′ between the

elements of the two groups, so that

(gi ⋆ gj)
′ = g′i ⋆

′ g′j ∀gi, gj ∈ G,

where ⋆ and ⋆′ are the multiplication operations of G and G′, respectively. A homomorphism is

in general a many-to-one correspondence, {g1, g2, . . . } → g′i. The identity ofG, e, has as image

the identity of G′, e′; however in general there are several elements of G, {a1 = e, a2, . . . ae}

which have e′ as image in G′. Furthermore, if gj ∈ G has the image g′j ∈ G′, all elements

{gjai} have the same image g′j in G′. The set {a1, a2, . . . ae} forms an invariant subgroup of G.

If the correspondence between the elements of G′ and G is one-to-one, G and G′ are said to be

isomorphic. A finite group is specified by the multiplication table of its elements; two groups

with the same multiplication table are isomorphic.

3This section is a short summary of results relevant for the topics treated; it does not aim to be a rigorous

introduction to group theory. For the latter, we refer the interested reader to specialized books [5, 6].
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Fig. 1: The symmetry operations which transform the ammonia molecule NH3 into itself (viewed

from the top). The point group is C3v, the group of covering operations of a trigonal pyramid.

Some of the groups relevant in physics are:

• S(n), the group of permutations of n objects; ⋆ is the composition of permutations

• the group of vectors in three dimensions; ⋆ is the sum of vectors

• groups of matrices, with the matrix product as ⋆; in particular

– U(n), the group of unitary n× n matrices

– O(n), the group of orthogonal n× n matrices

– SU(n), the group of unitary n× n matrices with determinant 1

– SO(n), the group of orthogonal n× n matrices with determinant 1

– finite groups of matrices

The group of all proper rotations in three dimensions is isomorphic to SO(3). Every finite

group of order n is isomorphic to a subgroup of S(n). The set of all geometric symmetries that

leave at least one point fixed (the origin) forms the point group. The point groups of crystals

or molecules are isomorphic to finite subgroups of the orthogonal group O(3); they are also

the groups of covering operations of a given polyhedron. For example, the point group of the

ammonia molecule NH3 is the group of covering operations of a trigonal pyramid, and has six

elements, shown in Fig. 1: the identity E, two rotations, by 2π/3 and 4π/3 (operations C3 and

C2
3 = C3 ⊗ C3), and three reflections (σ, σ′, σ′′). This group, called C3v, has three classes,

C1 = {E}, C2 = {C3, C
2
3}, and C3 = {σ, σ′, σ′′}.
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A representation of an abstract groupG is any groupG′ homomorphic (or isomorphic) toG that

is composed of specific operators acting on a given linear space L. If G and G′ are isomorphic

the representation is said to be faithful. In this lecture we work with representations made of

square matrices, which we indicate as Γ (gi); the multiplication operation of the group, ⋆, is the

matrix product. As an example, we consider the group G of the rotations about the z axis. In

this example, G is the abstract group. We can associate to each counterclockwise rotation by an

angle θ (i.e., to each element g = R(θ) of G) a matrix M(θ)

g = R(θ) →M(θ) =

(

cos θ − sin θ

sin θ cos θ

)

.

The elements of the matrix are the coefficients of the transformation

x′ = x cos θ − y sin θ,

y′ = y sin θ + x cos θ.

The matrices M(θ) form a representation of G acting on the two-dimensional linear space

L of vectors in the xy plane. The number of rows and columns of the matrices yields the

dimensionality d of the representation; in the example just discussed d = 2.

A matrix representation Γ is called reducible if every matrix in the representation, Γ (gi), can

be written in the same block form through the same similarity transformation.4 If this cannot

be done, the representation is said to be irreducible. For example if

Γ (gi) =

(

Γ1(gi) 0

0 Γ2(gi)

)

∀gi ∈ G,

the representation Γ is said to be reducible. The number of irreducible representations is equal

to the number of the classes. If the group is Abelian, the number of irreducible representations

equals the number of elements and the irreducible representations are all one dimensional.

If the matrices of a representation are unitary, the representation is said to be unitary. A repre-

sentation of a finite group made of non-singular n × n matrices is equivalent, through a simi-

larity transformation, to a representation by unitary matrices. For finite groups, it is therefore

always possible to work with unitary representations. There is nevertheless an infinite number

of equivalent representations of a group G, and thus a large arbitrariness in the form of the

representation. However the trace of a matrix is invariant under a similarity transformation; it

is therefore useful to classify matrix representations through their characters, defined as

χ(gi) = Tr Γ (gi).

The matrix representations of all the elements gk in a given class, Ck, have the same character,

χ(gk) = χ(Ck), ∀gk ∈ Ck. Furthermore the following orthogonality relations hold for the

4A similarity transformation is the transformation of a n×nmatrix Γ into another n×nmatrix Γ ′ = B−1AB,

where B is an invertible n× n matrix.
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irreducible representations Γj of a given group

∑

i

[χj1(gi)]
∗χj2(gi) =

∑

k

Nk[χj1(Ck)]
∗χj2(Ck) = hδj1,j2, (12)

∑

j

[χj(Ck)]
∗χj(Cl) =

h

Nk

δl,k, (13)

where h =
∑

kNk is the order of the group, Nk the number of elements in the class, and where

for simplicity we have assumed that the irreducible representations are unitary matrices.

It is convenient to display the characters of irreducible representations in a character table. For

the point group C3v such character table is

C3v E 2C3 3σv

Γ1 1 1 1

Γ2 1 1 −1

Γ3 2 −1 0

where for each class a representative element and, in front of it, the number of elements in the

class, Nk, are given (here C1 → E, C2 → 2C3, C3 → 3σv). The orthogonality relations tell us

that different columns or different rows (the latter with weights Nk, see (12)) form orthogonal

vectors. The first column of the character table is the trace of the identity and therefore yields

the dimensionality of the irreducible representation. The first irreducible representation, Γ1,

has character 1 for every element of the group, and it is called trivial representation. The

trivial representation exists for any group and is one dimensional. If an object (a molecule

or a crystal) is invariant under all symmetry operations of a given group, we can say that it

transforms according to the trivial representation.

A reducible representation can be decomposed in irreducible ones using the orthogonality rela-

tions of characters. One can show that, if χ(gi) are the characters of the reducible representation,

they must be given by a linear combination of the characters of irreducible representations

χ(gi) =
∑

j

ajχj(gi),

where the coefficients are determined from the orthogonality relations

aj =
1

h

∑

k

Nk[χj(Ck)]
∗χ(Ck).

Hence

Γ = a1Γ1 ⊕ a2Γ2 ⊕ · · · =
⊕

j

ajΓj . (14)

In quantum mechanics we are interested in the group of symmetry operators O(g) which leave

the Hamiltonian invariant, the group of the Hamiltonian, and in their action on wavefunctions.

It is therefore important to know how a symmetry operator acts on a function f(r) and on an

operator Ĥ. A function f(r) is transformed by the symmetry operation O(g) into the function
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  O(C4)f(r)f(r)
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Fig. 2: Rotation of an x2 − y2 atomic orbital by an angle 2π/4 about the z axis (operation C4).

O(g)f(r) = f ′(r′), where r′ = gr are the transformed coordinates, i.e.,

f ′(r′) = O(g)f(r) = f(g−1r). (15)

This equation tells us how to construct an operator that corresponds to a given geometrical trans-

formation. Fig. 2 shows (15) for an atomic x2 − y2 function and a rotation by 2π/4 (operation

C4); the inverse operation is the rotation by −2π/4 (operation C−4 = C3
4 ).

The Hamiltonian, or any other operator Ĥ, transforms as follows

Ĥ ′ = O(g)ĤO(g−1). (16)

The group of the Hamiltonian is the group of h operators {O(g)} which leave Ĥ unchanged

(Ĥ = Ĥ ′), i.e., which commute with the Hamiltonian. If ψ(r) is an eigenvector of the Hamil-

tonian with eigenvalue εj , then for any operator in the group of the Hamiltonian

O(g)Ĥψ(r) = O(g)εjψ(r) = εjO(g)ψ(r) = ĤO(g)ψ(r).

Thus O(g)ψ(r) is an eigenvector of Ĥ with eigenvalue εj . The wavefunctions {O(g)ψ(r)},

where the O(g) are operators in the group of the Hamiltonian, are all degenerate eigenvectors

of Ĥ . They define a linear space Lj of functions f(x) =
∑

g cg O(g)ψ(r), where the coeffi-

cients cg are complex numbers. The space Lj is invariant under the action of the operators O(g)

in the group of the Hamiltonian, and has dimension dj ≤ h. If Lj includes all wavefunctions

with eigenvalue εj , the degeneracy is said to be essential. If there are degenerate wavefunctions

which are not in Lj , this additional degeneracy is said to be accidental; accidental degenera-

cies sometime occur because of hidden symmetries. The symmetry group of the Hamiltonian

is also the symmetry group of the solid or the molecule described by the Hamiltonian. The

Hamiltonian, as the physical system, is invariant under all symmetry operations in the group

and therefore transforms according to the trivial irreducible representation.

Let us assume that {ψi
j(r)} is a set of dj ≤ h linearly independent and essentially degenerate

wavefunctions with eigenvalue εj which span Lj . We can then construct a dj-dimensional
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irreducible matrix representation of the group of the Hamiltonian using the set {ψi
j(r)} as a

basis. The matrices of this representation, Γj(g), are defined formally by

O(g)ψi
j(r) =

∑

i′

Γ i′,i
j (g)ψi′

j (r).

The function ψi
j(r) is said to belong to the i-th row of the j-th irreducible representation. If a

function ψi
j(r) belongs to the i-th row of the j-th irreducible representation with dimensionality

dj , the remaining dj − 1 functions required to complete the basis for that irreducible represen-

tations are called partners functions of ψi
j(r). Two functions belonging to different irreducible

representations or to different rows of the same irreducibile representations are orthogonal

〈ψi
j |ψ

i′

j′〉 = δi,i′δj,j′
1

dj

∑

k

〈ψk
j |ψ

k
j 〉.

Any function f(r) in the space on which a groupG of operators {O(g)} acts can be decomposed

as

f(r) =

Nj
∑

j

dj
∑

i

f i
j(r),

where j = 1, . . . , Nj labels all distinct irreducible representations of G, and f i
j belongs to the

i-th row of the j-th irreducible representation. The components f i
j(r) can be obtained by means

of the projection operator P̂ ii
j

P̂ ii
j =

dj
h

∑

g

[

Γ ii
j (g)

]∗
O(g), (17)

f i
j(r) = P̂ ii

j f(r).

The symmetry group G of the Hamiltonian can be often written as a direct product of two

subgroups Ga and Gb, of dimension ha and hb. The direct product G = Ga ⊗ Gb is the group

G with elements {g}

{g} = {E = (ea, eb), g2 = (ea, g2b), . . . , gh = (gha
, ghb

)},

with group multiplication

g ⋆ g′ = (ga, gb) ⋆ (g
′
a, g

′
b) = (ga ⋆ g

′
a, gb ⋆ g

′
b).

The matrices of the irreducible representations ofG, Γj(g), can be constructed as direct products

of the matrices of the irreducible representations of Ga and Gb, Γja(ga) and Γja(gb)

[Γj(g)]
i ,i′ = [Γja(ga)]

ia,i
′
a ⊗ [Γjb(gb)]

i
b
,i′
b = [Γja(ga)⊗ Γjb(gb)]

iaib,i
′
ai

′
b.

The character of a direct product representation is the product of the characters

χj(g) = χja(ga)χjb(gb).
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Fig. 3: Stereographic projections illustrating the effect of some point symmetry operations. A

point P at position r in the northern hemisphere is joint to the south pole S; the intersection of

the line PS with the equatorial plane (+) is P ′, the stereographic projection of P . To treat the

two hemispheres symmetrically, a point in the southern hemisphere is projected from the north

pole N; the intersection with the equatorial plane is shown as an empty circle. Let us assume

that P is in the northern hemisphere. The identity operation leaves P untouched; this is shown

in the picture of the equatorial circle labeled with E. The operations g = I, C4, S4, σv, σh, σd
move P (grey +) to position r′ = gr (black circle or black +); this is shown in the pictures

labeled with g. For g = σd, the two-fold axes (labeled with a digon) are also shown. The

principal axis is perpendicular to the equatorial plane.

Let us now consider the geometrical symmetry operations and symmetry groups relevant for

atoms, molecules and solids. The symmetry group of an atom (central potential) is at least

O(3) = SO(3) ⊗ Ci, where SO(3) is the group of proper rotations in three dimensions and

Ci = {E, I} is the group of order two, which has the identity E and the inversion I as only

elements. The group O(3) includes proper rotations and improper rotations; the latter are com-

posed operations made of rotations and inversion. For molecules and crystals, only a subset of

the proper and improper rotations are covering operations. These point group operations can

include

• E, the identity

• Cn, a rotation by an angle 2π/n; in a crystal, n can only take the values n = 2, 3, 4, 6
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• σ reflection in a plane, classified as

– σh, reflection through a plane perpendicular to the axis of highest rotation symmetry,

called principal axis

– σv, reflection through a plane to which the principal axis belongs

– σd, reflection through a plane to which the principal axis belongs, and bisecting the

angle between the two-fold axes perpendicular to the principal axis.

• Sn = σh⊗Cn, improper rotation of an angle 2π/n; in a crystal, n can only take the values

n = 3, 4, 6.

• I = S2, the inversion.

Some of these operations are illustrated in Fig. 3 using stereographic projections.

In a crystal, additional covering operations are

• lattice translations T = n1a+ n2b+ n3c, where ni are integers and a, b, c the primitive

translations that define the unit cell.

• glide planes and screw axes, which are made by a point group operation R and a transla-

tion of a vector f which is a fraction of a lattice vector.

The lattice translations form the translation group. The complete set of covering operation of a

crystal is known as space group. In three dimensions, there are 32 crystallographic point groups

and 230 space groups. An operation in the space group is indicated as {τ |R}, where R is an

element of the point group, and τ a translation (τ = T or τ = f ). Space groups which do not

include glide planes or screw axes are said to be symmorphic; the remaining space groups are

said to be non symmorphic.

To understand solids and molecules, it is often useful to work in a basis of atomic orbitals.

Atomic functions can be used, e.g., as a starting point to construct orbitals for molecules and

crystals, as in the tight-binding method. These orbitals (see Appendix B) are defined as

ψnlm(ρ, θ, φ) = Rnl(ρ)Y
l
m(θ, φ),

where Rnl(ρ) is the radial function, Y l
m(θ, φ) a spherical harmonic, ρ = Zr, Z the atomic

number, and nlm the quantum numbers. In a hydrogen-like atom, the states with the same prin-

cipal quantum number n but different angular momentum l are degenerate. This “accidental”

degeneracy is caused by a hidden symmetry5 of the Hamiltonian of the hydrogen atom. The

(2l+1)-fold degeneracy of a given l shell is instead essential for any system withO(3) symme-

try. Thus we can construct irreducible representations of O(3) with dimensionality d = 2l + 1

5It can be shown that the degeneracy is associated with rotational symmetry in 4 dimensions and that the group

the Hamiltonian (1/r potential) is actually O(4). This additional symmetry is associated with the conservation

of the Laplace-Runge-Lenz (LRL) vector; a generalization of the LRL vector to the case of an arbitrary central

potential also exist.
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using as basis set hydrogen-like atomic functions with principal quantum number n and angular

momentum quantum number l.

Let us calculate the characters of such representations. The radial function is invariant under

proper and improper rotations; thus we have only to consider the effect of these operations on

the spherical harmonics. According to (15), the rotation of Y l
m(θ, φ) about the z axis by an angle

α (Cα) is equivalent to the rotation of the xy axes by −α. Thus

O(Cα)Y
l
m(θ, φ) = Y l

m(θ, φ− α) = e−imαY l
m(θ, φ).

Therefore the matrix Γ l(Cα) of the d-dimensional representation Γ l has elements

[Γ l(Cα)]m,m′ = δm,m′e−imα.

The character of the representation Γ l for a rotation Cα is then

χl(α) =
l
∑

m=−l

e−imα =
sin(l + 1

2
)α

sin α
2

.

This result is valid for any direction of the rotation axis, and for any d-dimensional basis set

obtained by making linear combinations of the Y l
m(θ, φ) functions, because the trace of a matrix

is invariant under basis transformation; in particular the result is valid for real combinations of

spherical harmonics (Appendix B), the basis usually adopted to study crystals and molecules,

and for a set of Wannier functions with the symmetry of spherical or a real harmonics in a given

l shell. The characters of the identity and the inversion are

χl(E) = 2l + 1,

χl(I) = (−1)l(2l + 1).

The reflection through an horizontal plane, σh, can be written as σh = I ⊗ C2; thus

χl(σh) = (−1)l.

This result is also valid for σv and σd, since it is alway possible to choose the quantization axis

perpendicular to the reflection plane. Finally, an improper rotation Sα = σh ⊗ Cα can be also

obtained as Sα = I ⊗ Cα+π; thus

χl(Sα) = (−1)l
sin(l + 1

2
)(α+ π)

sin α+π
2

.

In Tab. 1 we summarize the characters of Γ l. Since O(3) = SO(3) ⊗ Ci, the characters in

Tab. 1 can also be obtained as product of the characters of the same representation in SO(3),

Γ l
SO(3), and one of the irreducible representations of the group Ci, Ag (even) and Au (odd). The

characters of Γ l
SO(3) and the table of characters of Ci are shown below

SO(3) E Cα

Γ l
SO(3) 2l + 1 sin(l + 1

2
)α/sin α

2

Ci E I

Ag 1 1

Au 1 −1



6.14 Eva Pavarini

O(3) E Cα I Sα σ

Γ l 2l + 1 sin(l + 1
2
)α/sin α

2
(−1)l(2l + 1) (−1)lsin(l + 1

2
)(α + π)/sin α+π

2
(−1)l

Table 1: Characters of the irreducible representations Γ l of group O(3).

The direct product representation Γ l
SO(3) ⊗ Ag with l even yields Γ l with l = 0, 2, 4, . . . , while

Γ l
SO(3) ⊗ Au with l odd yields Γ l with l = 1, 3, 5, . . . .

The representation Γ l is reducible in crystallographic or molecular point groups; we can find

its decomposition in irreducible representations using the decomposition formula (14). Thus

Tab. 1 can be viewed as the starting point to go from atoms to molecules and crystals.

3 Crystal-field theory

In an atom, the potential vR(r) which determines the one-electron energies (10) is central and

has (at least) all the symmetries of O(3). In a molecule or a solid, vR(r) has in general lower

symmetry, the symmetry of a finite point group. Thus electronic states that are degenerate in an

atom can split in a solid or a molecule. The symmetry reduction arises from the crystal field;

the latter has two components, the Coulomb potential generated by the surrounding ions and the

ligand field due to the bonding neighbors. In this section we will analyze the first contribution;

the second effect will be discussed in the next section.

Let us assume that the crystal is ionic and the ions can be treated as point charges qα (point

charge model), and let us neglect vH(r) and vxc(r) in (6). Then, the one-electron potential can

be written as

vR(r) =
∑

α

qα
|Rα − r|

= v0(r) +
∑

α6=0

qα
|Rα − r|

= v0(r) + vc(r), (18)

where Rα are the positions of the ions and qα their charges. The term v0(r) is the ionic central

potential at site R0, and has spherical symmetry. The term vc(r) is the electric field generated

at a given site R0 by all the surrounding ions in the crystal and it is called crystal-field potential.

Let us consider a crystal with the perovskite structure ABC3, shown in Fig. 4. We want to

calculate the crystal-field potential at the site of the transition metal, B. Let us first assume that

only the contribution of nearest neighbors (the negative C ions, usually oxygens) is relevant. The

C ions are located at positions (±a, 0, 0), (0,±a, 0), (0, 0,±a), where a is the lattice constant,

and have all the same charge qC . Expanding around r = 0, we find that the first contribution to

vc(r) with less than spherical symmetry is

voct(r) =
35

4

qC
a5

(

x4 + y4 + z4 −
3

5
r4
)

= D

(

x4 + y4 + z4 −
3

5
r4
)

.

We can rewrite this potential as

voct(r) =
7

6

1
√
π

qC
a5
r4

[

Y 4
0 (θ, φ) +

√

5

14

(

Y 4
4 (θ, φ) + Y 4

−4(θ, φ)
)

]

, (19)
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4C4

2C2

3C3

C2C4 C3

Fig. 4: The unit cell of a cubic perovskite ABC3 and its symmetry axes; the lattice constant is

a. The transition metal B (red) is at (0, 0, 0); the ligands C (green) are located at (±a, 0, 0),
(0,±a, 0),(0, 0,±a), forming an octahedron; the cations A are located at (±a/2,±a/2,±a/2),
(±a/2,∓a/2,±a/2), (∓a/2,±a/2,±a/2), (±a/2,±a/2,∓a/2), forming a cube. The bottom

figures show different views illustrating the rotational symmetries of the cell.

where

Y 4
0 (θ, φ) =

3

16

1
√
π
(35 cos4 θ − 30 cos2 θ + 3),

Y 4
±4(θ, φ) =

3

16

35
√
2π

sin4 θe±4iφ.

Let us now calculate the crystal field due to the cubic cage of cations A (with charge qA), shown

in Fig. 4. One can show that

vcube(r) = −
8

9

qA
qC
voct(r),

i.e., vcube(r) has the same form as voct(r); this happens because a cube and an octahedron are

dual polyhedra6 and have therefore the same symmetry properties. If qA/qC > 0, vcube(r) has

opposite sign than voct(r); however, in the case of a perovskite, cations are positive ions; thus

the crystal field due to the A cage has the same sign of the field generated by the B octahedron.

6Every polyhedron has a dual which can be obtained by exchanging the location of faces and vertices.
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The crystal-field potential vc(r) can split the (2l + 1)-fold degeneracy of the atomic levels. To

calculate how the l manifold splits, we use group theory. We assume for simplicity that the

symmetry is only O (group of the proper rotations which leave a cube invariant); using the full

symmetry group of the cube, Oh = O ⊗ Ci, does not change the result, because the spherical

harmonics have fixed parity. The character table of group O is

O E 8C3 3C2 6C2 6C4

(x2 + y2 + z2) A1 1 1 1 1 1

A2 1 1 1 −1 −1

(x2 − y2, 3z2 − r2) E 2 −1 2 0 0

(x, y, z) T1 3 0 −1 −1 1

(xy, xz, yz) T2 3 0 −1 1 −1

(20)

We want to calculate the characters of the reducible matrix representation Γ l constructed using

spherical harmonics with quantum numbers lm as a basis. From Tab. 1

χl(C2) = (−1)l

χl(C3) =











1 l = 0, 3, . . .

0 l = 1, 4, . . .

−1 l = 2, 5, . . .

χl(C4) =

{

1 l = 0, 1, 4, 5, . . .

−1 l = 2, 3, 6, 7, . . .

For the s, p, d, f shells we can therefore write for representations Γ l

O E 8C3 3C2 6C2 6C4

Γ s 1 1 1 1 1

Γ p 3 0 −1 −1 1

Γ d 5 −1 1 1 −1

Γ f 7 1 −1 −1 −1

We can now determine how the reducible representations Γ l splits using the decomposition for-

mula Eq. (14). Hereafter for convenience the symmetry representations of electronic terms are

written in lower case to distinguish them from capital letters used for the nuclear displacements

and the general irreducible representations. We find

Γ s = a1

Γ p = t1

Γ d = e⊕ t2

Γ f = a2 ⊕ t1 ⊕ t2

Thus, the s- and the p-functions do not split, because the a1 irreducible representation is one-

dimensional and the t1 irreducible representation is 3-dimensional. However, d-functions split
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into a doublet and a triplet, while f -functions into a singlet and two triplets. To calculate

which functions belong to which representation we can, e.g., use the projector (17). For d-

electrons, relevant for the case of a transition-metal ion, we find that the d-shell splits into e

(x2 − y2, 3z2 − r2) and t2 (xy, xz, yz). The partner functions for the representations of group O

are given in the first column of the character table (20), on the left.

The full symmetry of the B site is Oh. The group Oh can be obtained as direct product, Oh =

O⊗Ci; with respect to O, the group Oh has twice the number of elements and classes, and thus

twice the number of irreducible representations. The latter split into even (a1g, a2g, eg, t1g, t2g)

and odd (a1u, a2u, eu, t1u, t2u) representations. The d-functions are even, and therefore x2 − y2

and 3z2 − r2 are partners functions for the eg irreducibile representation, while xy, xz, yz are

partner functions for the t2g irreducible representation. The p-orbitals are odd, and are partners

functions for the t1u representation.

Group theory tells us if the degenerate 2l + 1 levels split at a given site in a lattice, but not of

how much they do split, and which orbitals are higher in energy. We can however calculate

the crystal-field splitting approximately using (19). Let us consider first the case in which the

central atom B is a transition-metal ion in a 3d1 configuration (e.g., Ti3+ or V4+), which has

degeneracy 2l + 1 = 5. In the perovskite structure, the octahedral potential voct(r) yields the

following element of matrix between states in the d1 manifold

〈ψn20 |v̂oct|ψn20 〉 = +6Dq

〈ψn2±1|v̂oct|ψn2±1〉 = −4Dq

〈ψn2±2|v̂oct|ψn2±2〉 = + Dq

〈ψn2±2|v̂oct|ψn2∓2〉 = +5Dq

where Dq = −qC〈r
4〉/6a5. The crystal-field splitting between eg and t2g-states can be the

obtained by diagonalizing the crystal-field matrix

HCF =















Dq 0 0 0 5Dq

0 −4Dq 0 0 0

0 0 6Dq 0 0

0 0 0 −4Dq 0

5Dq 0 0 0 Dq















.

We find two degenerate eg eigenvectors with energy 6Dq

|ψn20〉 = |3z2 − r2〉,
1
√
2
[|ψn22〉+ |ψn2−2〉] = |x2 − y2〉,
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xyxz yz

x2-y2 3z2-r2

Fig. 5: The Cu eg and t2g Wannier orbitals for the cubic perovskite KCuF3, obtained from first

principles calculations, using a Wannier basis that spans all bands.

and three degenerate t2g eigenvectors with energy −4Dq

i
√
2
[|ψn22〉 − |ψn2−2〉] = |xy〉,

1
√
2
[|ψn21〉 − |ψn2−1〉] = |xz〉,

i
√
2
[|ψn21〉+ |ψn2−1〉] = |yz〉.

The splitting is

∆ = Eeg −Et2g = 10Dq.

Thus the eg-states are higher in energy than the t2g-states. This happens because eg electrons

point towards the negative C ions (see Fig. 5), and will therefore feel a larger Coulomb repulsion

than t2g electrons, which point between the negative C ions.

For a generic lattice, we can expand the crystal-field potential (18) in spherical harmonics using

1

|r1 − r2|
=

∞
∑

k=0

rk<
rk+1
>

4π

2k + 1

k
∑

q=−k

Y k
q (θ2, φ2)Y

k

q (θ1, φ1),

where r< ( r>) is the smaller (larger) of r1 and r2. The crystal-field potential can then be written
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as

vc(r) =
∞
∑

k=0

k
∑

q=−k

Bk
qY

k
q , (21)

where Bk
q = (−1)qB̄k

−q. Although the series in (21) is in principle infinite, one can terminate it

by specifying the wavefunctions, since

〈Y l
m|Y

k
q |Y

l
m′〉 = 0 if k > 2l.

For example, for p electrons k ≤ 2, for d-electrons, k ≤ 4, and f electrons k ≤ 6. Thus, for

d-electrons and Oh symmetry, the terms that appear in the potential (19) are actually also the

only ones to be taken into account.

The derivation of (19) and (21) presented here might let us think that the first nearest neighbors

are those that determine the crystal field. However, this is often not the case, because Coulomb

repulsion is a long-range interaction; for example, in some systems the first nearest neighbors

yield cubic symmetry at a given site but further neighbors lower the symmetry.7

The point charge model discussed in this section is useful to explain the relation between crystal

field and site symmetry, however yields unsatisfactory results for the crystal-field splitting in

real materials. Corrections beyond the point-charge approximation turn out to be important.

In addition, as we will see in the next section, in many systems the crystal field has a large,

sometimes dominant, covalent contribution, the ligand field. The modern approach to calculate

crystal-field splittings including the ligand-field contribution is based on material-specific DFT

potentials and DFT localized Wannier functions as one-electron basis. We will discuss this

approach at the end of the next section.

Let us now analyze the splitting of energy levels in a many-electron 3dn manifold. Apart from

the crystal field (21), in calculating the energies of states in such manifold, we have also to take

into account the electron-electron Coulomb repulsion. This will be treated in detail in the lecture

of Robert Eder. Here we briefly discuss some simple examples: 3d1, 3d9 and 3d2. We have seen

that for a d-electron surrounded by an octahedron of negative ions, ∆ = 10Dq; the energy

difference between the electronic configuration e1g and electronic configuration t12g is therefore

∆. In the case of a single hole in the d-shell (3d9 ion, e.g., Cu2+), the energy difference between

t62ge
3
g and t52ge

4
g, is then just −∆, because of electron-hole symmetry. The d crystal-field orbitals

(Wannier functions) for the 3d9 perovskite KCuF3 (cubic structure) are shown in Fig. 5. For a

generic 3dn configuration we can consider two limit cases, strong or weak crystal field. If the

crystal field is strong, one can treat Coulomb electron-electron interaction as a perturbation, and

classify the atomic states according to the crystal field. Let us consider the case of a perovskite

in which the central ion has electronic configuration 3t22g (e.g., V3+); if we neglect the electron-

electron repulsion, the excited states are t12ge
1
g, with energy ∆, and e2g, with energy 2∆. We

can obtain a representation of the group Oh in the basis of two-electron states from the direct

product of the representations in the basis of single-electron states. By using the decomposition

7This means that Oh is not the point group.
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formula (14), we can then show that

t2g ⊗ t2g = a1g ⊕ eg ⊕ t1g ⊕ t2g

eg ⊗ t2g = t1g ⊕ t2g

eg ⊗ eg = a1g ⊕ a2g ⊕ eg

The Coulomb repulsion acts as a perturbation and can split degenerate states belonging to dif-

ferent irreducible representations. In particular, the manifold t22g splits into 1a1g, 1eg,
1 t2g, and

3t1g (ground state), where (2S+1) indicates the spin degeneracy of the state.

If the crystal field is weak, the opposite approach can be used; the crystal field is treated as a

perturbation of the atomic Coulomb multiplets, labeled as 2S+1L. In this case the two-electron

ground state is the triplet 3F and the Oh crystal field splits it into 3t1g,
3 t2g, and 3a2g.

Up to here we have neglected the spin-orbit interaction. The latter plays an important role, e.g.,

in 5d- or f -systems. In the case in which the crystal field is weak with respect to the spin-orbit

coupling, as it happens in many f -electron compounds, the total angular momentum J is a

good quantum number. It is therefore useful to construct a reducible representation of the point

group, Γ J , in the basis of the eigenvectors of total angular momentum. The character of Γ J for

a rotation is

χJ(α) =
sin(J + 1

2
)α

sin α
2

,

For half-integral values of J (odd number of electrons), χJ(α) has the property

χJ(α+ 2π) = −χJ (α).

We therefore expand the original point group to include a new element, R, which represents the

rotation by 2π. The new group has twice the number of elements of the original group and is

known as double group. In the case of the group O the double group is labeled with O′ and its

character table is

O′ E 8C3 3C2 + 3RC2 6C2 + 6RC2 6C4 R 8RC3 6RC4

Γ1 1 1 1 1 1 1 1 1

Γ2 1 1 1 −1 −1 1 1 −1

Γ3 2 −1 2 0 0 2 −1 0

Γ4 3 0 −1 −1 1 3 0 1

Γ5 3 0 −1 1 −1 3 0 −1

Γ6 2 1 0 0
√
2 −2 −1 −

√
2

Γ7 2 1 0 0 −
√
2 −2 −1

√
2

Γ8 4 −1 0 0 0 −4 1 0

To determine if the atomic levels in a given J manifold split we use the same procedure adopted
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for the l-shell. First we calculate the characters of all elements in the group

χJ(E) = 2J + 1

χJ(R) = −(2J + 1)

χJ(C2) = 0

χJ(RC2) = 0

χJ(C3) =











1 J = 1/2, 7/2, . . .

−1 J = 3/2, 9/2, . . .

0 J = 5/2, 11/2 . . .

χJ(RC3) =











−1 J = 1/2, 7/2, . . .

1 J = 3/2, 9/2, . . .

0 J = 5/2, 11/2 . . .

χJ(C4) =











√
2 J = 1/2, 9/2 . . .

0 J = 3/2, 7/2, . . .

−
√
2 J = 5/2, 13/2, . . .

χJ(RC4) =











−
√
2 J = 1/2, 9/2 . . .

0 J = 3/2, 7/2, . . .

+
√
2 J = 5/2, 13/2, . . .

Next we use the decomposition formula (14) to find how the reducible representation Γ J is

decomposed in irreducible ones. One can show that

Γ
1

2 = Γ6

Γ
3

2 = Γ8

Γ
5

2 = Γ7 ⊕ Γ8

Γ
7

2 = Γ6 ⊕ Γ7 ⊕ Γ8

Γ
9

2 = Γ6 ⊕ 2Γ8

Since Γ6, Γ7, Γ8 have dimensionality d ≥ 2, all levels remain at least two-fold degenerate. This

is an example of Kramers degeneracy. Kramers theorem states that, in the presence of (only)

electric fields, the energy levels of a system with odd number of fermions are at least two-fold

degenerate. Kramers degeneracy is a consequence of time-reversal symmetry.

4 Tight-binding method

In solids, electrons delocalize to form bonds and bands. In the Hamiltonian (8), these arise

from the elements of matrix (9), the hopping integrals. But what is the specific form of the

Hamiltonian (8) for a given system? Which parameters are large? Which are zero? The simplest

way to answer these questions is to use the tight-binding method, which consists in expanding

the crystal wavefunctions in the basis of functions centered at each atomic site; here we use
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as a basis atomic orbitals,8 {ψnlm(r)}. Let us first consider a simple example, a homonuclear

molecular ion formed by two hydrogen nuclei, located at R1 and R2, and one electron. The

electronic Hamiltonian for such an H+
2 molecular ion is

ĥe(r) = −
1

2
∇2−

1

|r −R1|
−

1

|r −R2|
= −

1

2
∇2+v(r−R1)+v(r−R2) = −

1

2
∇2+vR(r).

We take as atomic basis the ground state 1s atomic orbitals, ψ1s(r − R1) and ψ1s(r − R2);

in the free hydrogen atom they have energy ε01s. In this basis, the Hamiltonian and the overlap

matrix have the form

H = ε01s O +

(

∆ε1s Vssσ
Vssσ ∆ε1s

)

O =

(

1 S

S 1

)

where

∆ε1s =

∫

dr ψ1s(r −Rα) [vR(r)− v(r −Rα)]ψ1s(r −Rα), α = 1, 2

Vssσ =

∫

dr ψ1s(r −Rα)v(r −Rα)ψ1s(r −Rα′), α 6= α′

S =

∫

dr ψ1s(r −Rα)ψ1s(r −Rα′), α 6= α′.

The hopping integral t = −Vssσ > 0 is a Slater-Koster two-center integral (Appendix B).

The ground state of the molecular ion is the bonding linear combination

φB
1s(r) = [ψ1s(r −R1) + ψ1s(r −R2)] /

√

2(1 + S),

and has energy

EB = ε01s +
∆ε1s + Vssσ

1 + S
.

The label σ in Vssσ indicates that the bonding state is symmetrical with respect to rotations about

the bond axis (see Fig. 6). The excited state is the antibonding state

φA
1s(r) = [ψ1s(r −R1)− ψ1s(r −R2)] /

√

2(1− S),

and has energy

EA = ε01s +
∆ε1s − Vssσ

1− S
.

Let us now consider a crystal. If we neglect vH(r) and vxc(r) in (6), the one-electron Hamilto-

nian ĥe(r) in (5) becomes

ĥe(r) = −
1

2
∇2 −

∑

i,α

Zi,α

|r − Ti −Rα|
= −

1

2
∇2 +

∑

i,α

v(r − Ti −Rα) = −
1

2
∇2 + vR(r),

8Linear Combination of Atomic Orbitals (LCAO) approach.
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Fig. 6: Pictorial view of the antibonding (top) and bonding (bonding) state of H+
2 .

where Rα are the positions of the basis {α} atoms in the unit cell and Ti lattice vectors. For

each atomic orbital with quantum numbers lm we construct a Bloch state

ψα
lm(k, r) =

1
√
N

∑

i

eiTi·k ψlm(r − Ti −Rα). (22)

In the Bloch basis (22), the Hamiltonian and the overlap matrix are given by

Hα,α′

lm,l′m′(k) = 〈ψα
lm(k)|ĥe|ψ

α′

l′m′(k)〉,

Oα,α′

lm,l′m′(k) = 〈ψα
lm(k)|ψ

α′

l′m′(k)〉.

They define a generalized eigenvalue problem, the solution of which yields the band structure.

The Hamiltonian matrix is given by

Hα,α′

lm,l′m′(k) = ε0l′α′O
α,α′

lm,l′m′(k) +∆εαlm,l′m′δα,α′ −
1

N

∑

iα6=i′α′

ei(Ti′−Ti)·k tiα,i
′α′

lm,l′m′ .

Here ε0lα are atomic levels, and ∆εαlm,l′m′ the crystal-field matrix

∆εαlm,l′m′ =

∫

dr ψlm(r −Rα)[vR(r)− v(r −Rα)]ψl′m′(r −Rα), (23)

which, as in the case of the H+
2 ion, is a two-center integral. Finally

tiα,i
′α′

lm,l′m′ = −

∫

dr ψlm(r −Rα − Ti)[vR(r)− v(r −Rα′ − Ti′)]ψl′m′(r −Rα′ − Ti′). (24)
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Fig. 7: Independent Slater-Koster two-center integrals for s, p and d atomic orbitals (Appendix

B). The label σ indicates that the bonding state is symmetrical with respect to rotations about

the bond axis; the label π that the bond axis lies in a nodal plane; the label δ that the bond axis

lies in two nodal planes.

The hopping integrals (24) contain two-center and three-center terms; if the basis is localized,

we can neglect the three-center contributions and assume that tiα,i
′α′

lm,l′m′ ∼ −V iα,i′α′

lm,l′m′ , where

V iα,i′α′

lm,l′m′ =

∫

dr ψlm(r −Rα − Ti)v(r −Rα − Ti)ψl′m′(r −Rα′ − Ti′)

is a two-center integral. A general Slater-Koster two-center integral can be expressed as a

function of few independent two-center integrals, shown in Fig. 7 for s, p, and d-functions. A

part from the σ bond, which is the strongest, other bonds are possible; the π bonds are made

of orbitals which share a nodal plane to which the bond axis belongs, and the δ bond, which

has two nodal planes which contain the bond axis and the two ions; furthermore, if the ions on

the two sites are different, the bond is polar. Fig. 8 shows how to obtain a generic two-center

integral involving p and s orbitals.

Let us now consider as an example the eg and t2g bands of KCuF3; we assume for simplicity

that the system is an ideal cubic perovskite (point group Oh), as in Fig. (4). Let us use as

a basis only Cu d and F p atomic orbitals, and as matrix elements only on-site terms and pd

hopping integrals. We label the p-orbitals on different F sites as µν , where ν = a, b, c identifies
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Fig. 8: Illustration of the decomposition of a general s-p two-center integral in terms of Vspσ.

the direction of the unit cell axis along which the F atom lies and µ = x, y, z the orbital; we

then construct the corresponding Bloch states |k µν〉, as well as the Cu eg Bloch states |k µ〉,

µ = 3z2 − r2, x2 − y2. We neglect the overlap matrix for simplicity.

The tight-binding Hamiltonian in this basis has then the form

HTB
eg |k zc〉 |k xa〉 |k yb〉 |k 3z2 − r2〉 |k x2 − y2〉

|k zc〉 εp 0 0 −2Vpdσsz 0

|k xa〉 0 εp 0 Vpdσsx −
√
3Vpdσsx

|k yb〉 0 0 εp Vpdσsy
√
3Vpdσsy

|k 3z2 − r2〉 −2Vpdσsz Vpdσsx Vpdσsy εd 0

|k x2 − y2〉 0 −
√
3Vpdσsx

√
3Vpdσsy 0 εd

where sα = ie−ikαa/2 sin kαa/2, α = x, y, z, εp < εd = εp +∆pd, and Vpdσ < 0. If |Vpdσ|/∆pd

is small, the occupied bonding-like bands have mostly F p character, while the partially filled

antibonding-like bands have mostly Cu eg character. The energies εd and εp include the crystal-

field term (23). We now calculate the eg-like bands along high-symmetry lines.9 Along the

Γ -X direction we find the dispersion relations for the eg-like bands

ε2(k) = εd

ε1(k) = εp +
∆pd

2
+

√

∆2
pd + 16V 2

pdσ|sx|
2

2
∼ εd + 2t− 2t cos kxa (25)

where t = V 2
pdσ/∆pd; in the last step (25) we have assumed that |Vpdσ|/∆pd is small. We can

repeat the calculation for the t2g bands. In this case the simplest tight-binding Hamiltonian is

HTB
t2g

|k ya〉 |k xb〉 |k xy〉

|k ya〉 εp 0 2Vpdπsx
|k xb〉 0 εp 2Vpdπsy
|k xy〉 2Vpdπsx 2Vpdπsy εd

9Special points: Γ = (0, 0, 0), Z= (0, 0, π/a), X= (π/a, 0, 0), M= (π/a, π/a, 0), R= (π/a, π/a, π/a).
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and cyclic permutations of x, y, z. In the Γ -X direction we find

ε2′(k) = εd

ε5(k) = εp +
∆pd

2
+

√

∆2
pd + 16V 2

pdπ|sx|
2

2
∼ εd + 2t− 2t cos kxa

where t = V 2
pdπ/∆pd. The tight-binding model we have used so far is oversimplified, but it

already qualitatively describes the eg and t2g bands in Fig. 9. A more accurate description can

be obtained including other Slater-Koster integrals, such as the hopping to apical F s states, or

between neighboring F p-states. With increasing number of parameters, it becomes progres-

sively harder to estimate them, e.g. from comparison with experiments; furthermore a large

number of fitting parameters makes it impossible to put a theory to a test. However, modern

techniques allow us to calculate hopping integrals and crystal-field splittings ab-initio, using

localized Wannier functions as basis instead of atomic orbitals, and the DFT potential vR(r)

as one electron potential; because Wannier functions are orthogonal, the corresponding over-

lap matrix is diagonal. This leads to the expression (8) for the Hamiltonian, with hopping and

crystal-field integrals defined as in (9) and (10).

In the simple model discussed above we could diagonalize the Hamiltonian analytically; this

is, in general, not doable for models describing the full band structure of a given material in a

large energy window. Group theory helps us in determining the degeneracy of states along high

symmetry directions. For simplicity we first restrict ourselves to symmorphic space groups,

which do not contain glide planes and screw axes; these groups are the direct product of the

translational subgroup and one of the crystallographic point groups.

To understand how symmetries affect bands, we have first to introduce some new concepts. The

group of the wavevector, Gk, is the set of space group operations which transform k into itself

or an equivalent vector k +G, where G is a reciprocal space lattice vector.

Rk = k +G.

The set of distinct non-equivalent vectors in {Rk} is instead called the star of the k point. The

group of the Γ point is the point group of the crystal, G, as every operation R transforms Γ

into itself. The group of a generic k point in the first Brillouin zone is a subgroup of G, and

might contain only the identity. Because the scalar product is a scalar, it is invariant under any

operation. Thus

r · Rk = R−1r · k.

The effect of a point group operation on a Bloch state ψk(r) = uk(r)e
ir·k is then

O(R)ψk(r) = O(R)uk(r)e
ir·k = uk(R

−1r)eir·Rk = u′Rk
(r)eir·Rk = ψRk(r).

If O(R) is in the group G of the Hamiltonian, the Bloch functions ψRk are degenerate. Under

an operation in Gk ⊆ G, the Bloch function ψk(r) = uk(r)e
ir·k might be transformed into
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Fig. 9: LDA band structure of cubic KCuF3. Labels along the direction X-Γ indicate the

corresponding irreducible representations for the eg bands.

a degenerate distinct function ψ′
k
(r) = u′

k
(r)eir·k with the same wavevector; the basis of the

linear space defined by the set {O(R)ψk(r)} builds an irreducible representation of Gk, called

the small representation. Thus, for symmorphic space groups, once we identified the group

of the wavevector, we can use directly the character table of the point group to classify energy

levels. For non-symmorphic space groups, the character table should be modified because some

point group operations {R|0} are replaced by {R|f}; one can however show that the character

for an operation {R|f} is eif ·k χ(R); at the Γ point the factor eif ·k is one.

Let us analyze band-degeneracy in the case of the cubic perovskite KCuF3. The space group

is symmorphic and the point group is Oh; the group of the Γ point is therefore Oh. We write

below the character table of Oh and the irreducible representations at the Γ point

Oh E 3C2
4 6C4 6C ′

2 8C3 I 3IC2
4 6IC4 6IC ′

2 8IC3

Γ1(g) 1 1 1 1 1 1 1 1 1 1

Γ2(g) 1 1 −1 −1 1 1 1 −1 −1 1

(x2 − y2, 3z2 − r2) Γ12(g) 2 2 0 0 −1 2 2 0 0 −1

(x, y, z) Γ15(u) 3 −1 1 −1 0 −3 1 −1 1 0

Γ25(u) 3 −1 −1 1 0 −3 1 1 −1 0

Γ ′
1(u) 1 1 1 1 1 −1 −1 −1 −1 −1

Γ ′
2(u) 1 1 −1 −1 1 −1 −1 1 1 −1

Γ ′
12(u) 2 2 0 0 −1 −2 −2 0 0 1

Γ ′
15(g) 3 −3 1 −1 0 3 −3 1 −1 0

(xy, xz, yz) Γ ′
25(g) 3 −3 −1 −1 0 3 −3 −1 −1 0

Here g are the even and u the odd representations. The eg-bands are in the Eg = Γ12 irreducible
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representation, and the t2g in the T2g = Γ ′
25 irreducible representation.

For a wavevector ∆ = 2π
a
(kx, 0, 0) the group is C4v, the symmetry group of a square. The

character table of point-group C4v is given below

C4v E C2
4 2C4 2IC2

4 2IC ′
2

1, x, 3x2 − r2 ∆1 1 1 1 1 1

y2 − z2 ∆2 1 1 −1 1 −1

yz ∆′
2 1 1 −1 −1 1

yz(y2 − z2) ∆′
1 1 1 1 −1 −1

y, z; xy, xz ∆5 2 −2 0 0 0

The representations of t2g-states (T2g = Γ ′
25) and that of eg-states (Eg = Γ12) in the Oh group

are reducible in C4v and split as follows

Γ12 → ∆1 ⊕∆2

Γ ′
25 → ∆′

2 ⊕∆5

Thus the eg-states split into 3x2 − r2 and y2 − z2, and the t2g into yz and into xy, xz.

To analyze the F p-bands at the Γ -point, we have first to construct all 9 F p-Bloch states |k µν〉,

and then construct the linear combinations which belong to specific irreducible representations

of Oh. The first step is to build a reducible 9× 9 odd representation, Γ F using the states |k µν〉

as a basis. We do not need, however, to construct the full matrices, because the characters are

the sum of the diagonal elements 〈k µν |O(g)|k µν 〉. By adding the non-zero terms, we find

E 3C2
4 6C4 6C ′

2 8C3 I 3IC2
4 6IC4 6IC ′

2 8IC3

Γ F 9 −3 1 −1 0 −9 3 −1 1 0

The Γ F representation can be decomposed in irreducible representations of the group Oh as

Γ F = 2Γ15 ⊕ Γ25. Along Γ -X the decomposition is 2∆1 ⊕∆2 ⊕ 3∆5.

Let us now return to the crystal-field splitting. In the point charge model discussed in the pre-

vious section, the neighboring sites are viewed as ions, and their nature and tendency towards

covalent bondings are ignored. In the tight-binding approach described in this section, this

corresponds to calculate the terms ∆εlm,l′m′ in a basis of atomic orbitals; in the simple tight-

binding model considered, this gives the splitting of eg and t2g bands at the Γ point. However,

the ligands do matter, because they can form bonding and antibonding states with the central

atom. In the case of a cubic perovskite, the t2g and eg bands are antibonding-like bands; be-

cause Vpdσ (σ bond), relevant for the eg bands, is larger than Vpdπ (π bond), relevant for the t2g
bands, the latter are lower in energy, in agreement with the results of the point-charge model.

This ligand field, differently from the crystal field in the point-charge model, is mostly deter-

mined by the first shells of neighbors, because the hopping integrals decay fast with distance

(Appendix B). We can understand better the effect of the ligands by considering the eg and

t2g tight-binding Hamiltonians HTB
eg and HTB

t2g
at the k = M = (π/a, π/a, 0) point. The d-like
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Fig. 10: Cooperative Jahn-Teller distortion and ordering of the eg hole orbitals in KCuF3.

Adapted from Ref. [7]. The Wannier function of the hole orbitals is obtained by downfolding all

states but the Cu eg; therefore, differently than the orbitals in Fig. 5, it has p-tails at F sites.

states that diagonalize the Hamiltonians are antibonding combinations of ligand p-functions and

transition-metal d-functions. Two of such states can be written as

|Mψx2−y2〉 = c1d|M x2 − y2〉+ c1p
[

|M xa〉 − |M yb〉
]

,

|Mψxy〉 = c2d|M xy〉 − c2p
[

|M ya〉+ |M xb〉
]

,

where cid, cip define the mixing, i = 1, 2 and c2id + c2ip = 1. If the atomic xy and x2 − y2

orbitals are degenerate, the difference in the energy of the two states depends only on the degree

of mixing and the Slater-Koster integrals Vpdσ and Vpdπ. For the simple tight-binding models

presented for KCuF3, the additional eg-t2g splitting due to the ligands can thus be estimated as

(Weg −Wt2g)/2, where Weg and Wt2g are the eg and t2g band width, respectively.

As previously discussed, the modern approach to tight-binding theory consists in using localized

Wannier functions, instead of atomic orbitals, as a basis. In this case, one can build Wannier

functions which span the eg and t2g bands only, and which have therefore the effects of the

ligands built-in. This can be seen, e.g., in Fig. 10 for the empty orbital of KCuF3; the Wannier

function, obtained by downfolding all states but eg, has p tails on the neighboring F sites. In the

basis of such Wannier functions, the crystal-field splitting, including ligand-field effects, can be

obtained directly from the on-site elements (10) of the Hamiltonian.
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5 Jahn-Teller effect

The Jahn-Teller theorem states that any electronically degenerate system can lower its energy

under some structural distortions, and therefore is unstable. The only exceptions are linear

molecules and Kramers degeneracy. To explain this effect we have to go back to the Born-

Oppenheimer Ansatz and the system of coupled Schrödinger equations for the electrons and the

lattice, (3) and (4). Let us consider a system in a high symmetry structure, {R0
α}, for which the

electronic ground state has energy ε({R0
α}) with degeneracy m; the corresponding degenerate

electronic wavefunctions are ψm({ri}; {R
0
α}). Thus there are m Born-Oppenheimer potential

energy surfaces Ûn = ε({Rα}) which are degenerate for {Rα} = {R0
α}. Let us consider one

of these surfaces, and expand the potential around {R0
α}. We find

Ĥn = T̂n + ε({R0
α}) +

∑

αµ

[

∂Ûn

∂uαµ

]

{R0
α}

uαµ +
1

2

∑

αµ,α′µ′

[

∂2Ûn

∂αµ∂α′µ′

]

{R0
α}

uαµuα′µ′ + . . . ,

where uα = Rα − R0
α are displacement vectors, and µ = x, y, z. If {R0

α} is an equilibrium

structure, the gradient is zero. In this case, the Hamiltonian can be written as

Ĥn ∼ T̂n +
1

2

∑

αµ,α′µ′

[

∂2Ûn

∂αµ∂α′µ′

]

{R0
α}

uαµuα′µ′ + · · · = T̂n + ÛPH
n ({R0

α}) + . . . , (26)

where we have defined ε({R0
α}) as the energy zero. It is convenient to rewrite (26) in normal

coordinates {Qβν} and associated canonically conjugated momenta {Pβν}. The normal coordi-

nates are the linear combination of displacements, Qβν =
∑

αµ aβν,αµuαµ, with β = 1, . . . Nn,

ν = x, y, z, which bring (26) in the diagonal form

Ĥn ∼
1

2

∑

βν

(P 2
βν + ω2

βνQ
2
βν). (27)

In a crystal, this Hamiltonian yields the phonon dispersions. In general, the high-symmetry

structure might or might not be a stationary point. The behavior of the energy surfaces close

to the high symmetry point in which they are degenerate allows us to separate them into

two classes, the first one in which {R0
α} is a stationary point for all m (Renner-Teller inter-

section), and the second in which the surface is not a stationary point at least for some of

the surfaces (Jahn-Teller intersection). The classical Jahn-Teller systems are those for which

∇Ûn({R
0
α}) 6= 0 at least in some direction (see, e.g., Fig. (11)). Let us now consider the first

order correction to the m degenerate eigenvalues due to a small distortion around {R0
α}. The

electronic Hamiltonian (3) has matrix elements

〈ψm|Ĥe({Rα})|ψm′〉 = ε({R0
α}) +

∑

αµ

〈ψm|

[

∂Ĥe

∂uαµ

]

{R0
α}

|ψm′〉uαµ + . . .

= ε({R0
α}) + ÛJT

m,m′ + . . . .
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Fig. 11: Born-Oppenheimer potential-energy surface exhibiting the form of a mexican hat. The

slope of the curve at small distortions q1, q2 yields the Jahn-Teller coupling constant λ.

Since the perturbation ÛJT couples the degenerate functions, we generalize the Born-Oppenheimer

Ansatz as follows

Ψ ({ri}, {Rα}) =
∑

m

ψm({ri}; {Rα})Φm({Rα}).

To find the equations for the functions {Φ̂m}, we write the Schödinger equation HΨ = EΨ ,

multiply on the left by ψm, and integrate over the coordinates of the electrons.10 We obtain

ĤnΦm({Rα}) = [T̂n + ÛPH
n ]Φm({Rα}) +

∑

m,m′

UJT
m,m′Φm′({Rα}) = EΦm({Rα}). (28)

The Jahn-Teller potential couples degenerate Born-Oppenheimer sheets, and the dynamic of the

system close to the degeneracy point is determined by all degenerate sheets. The ground state

of (28) yields a new structure {R̃0
α} in which the electronic states are not any more degenerate.

Let us consider a classical example of a Jahn-Teller material, KCuF3. In the high-symmetry

cubic perovskite structure shown in Fig. 12, the two Cu 3d9 configurations with a hole in one of

the eg orbitals (3t62ge
3
g states), are degenerate. The Jahn-Teller theorem tells us that there must

be a geometrical instability. Let us consider a single octahedron and the normal modes that

could lead to such an instability through coupling to the eg-states. These are the modes Q1 and

Q2 shown in Fig. 12. They are defined as

Q1 = [u1(q1)− u4(q1)− u2(q1) + u5(q1)],

Q2 = [u3(q2)− u6(q2)− u1(q2) + u4(q2)− u2(q2) + u5(q2)],

10We neglect non adiabatic corrections, i.e., the operator Λ̂n, with elements 〈m|Λ̂n|m
′〉 =

−
∑

α

1

Mα

[

1

2
〈ψm|∇2

α
ψm′〉+ 〈ψm|∇αψm′〉 · ∇α

]
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Fig. 12: Unit cell (left) and degenerate vibrational modes Q1 and Q2 of cubic KCuF3.

where the displacements are

u1(q1) = 1√
2
q1(1, 0, 0) u1(q2) = − 1√

6
q2(1, 0, 0)

u2(q1) = − 1√
2
q1(0, 1, 0) u2(q2) = − 1√

6
q2(0, 1, 0)

u3(q1) = (0, 0, 0) u3(q2) = 2√
6
q2(0, 0, 1)

u4(q1) = − 1√
2
q1(1, 0, 0) u4(q2) = 1√

6
q2(1, 0, 0)

u5(q1) = 1√
2
q1(0, 1, 0) u5(q2) = 1√

6
q2(0, 1, 0)

u6(q1) = (0, 0, 0) u6(q2) = − 2√
6
q2(0, 0, 1)

For the Q1 and Q2 modes, the quadratic potential has the form

ÛPH
n =

1

2
C(q21 + q22).

KCuF3 is thus an example of a e ⊗ E Jahn-Teller system, a system in which an electronic

doublet (e) interacts with a doublet of degenerate normal modes (E). The form11 of the Jahn-

Teller potential ÛJT can be obtained from the effect of the perturbation due to Q1 and Q2 on the

crystal-field matrix (23). The linear order correction is

∆εlm,l′m′(0,Rα + u)−∆εlm,l′m′(0,Rα) ∼ ∇∆εlm,l′m′(0,Rα) · u

For eg-states we use for simplicity the following approximations12

∆ε3z2−r2,3z2−r2 ∼

[

n2 −
1

2
(l2 +m2)

]2

Ṽddσ,

∆ε3z2−r2,x2−y2 ∼

√
3

2
(l2 −m2)

[

n2 −
1

2
(l2 +m2)

]

Ṽddσ,

∆εx2−y2,x2−y2 ∼
3

4
(l2 −m2)2Ṽddσ.

11The covalent contribution yields the same form of the potential.
12The crystal-field integrals are also two-center integrals; the table of Slater-Koster integrals in Appendix B is

thus still valid, provided that Vll′α are replaced by the corresponding crystal-field terms, which we indicate as Ṽll′α.
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By summing all relevant contributions, we obtain

ÛJT(q1, q2) = −λ

(

q2 q1
q1 −q2

)

= −λ (q1τ̂x + q2τ̂z) , λ ∝ |Ṽ ′
ddσ|

where λ is the Jahn-Teller coupling and τ̂z, τ̂x are pseudospin operators in orbital space, with

τ̂z|3z
2 − r2〉 = −|3z2 − r2〉, τ̂z|x

2 − y2〉 = |x2 − y2〉,

τ̂x|3z
2 − r2〉 = |x2 − y2〉, τ̂x|x

2 − y2〉 = |3z2 − r2〉.

In matrix form

τ̂z =

(

1 0

0 −1

)

τ̂x =

(

0 1

1 0

)

.

If we neglect the kinetic energy of the nuclei (limit Mα → ∞), the ground state of the system

can be obtained minimizing the potential energy

U(q1, q2) = ÛJT + ÛPH
n = −λ

(

q2 q1
q1 −q2

)

+
1

2
C(q21 + q22). (29)

To find the minimum of (29), it is convenient to introduce polar coordinates, which we define

as q2 = q cos θ, q1 = q sin θ. In these coordinates

UJT = −λq

(

cos θ sin θ

sin θ − cos θ

)

.

We find two eigenvalues; the lowest energy branch E(q) = −λq + 1
2
q2 takes the form of a

mexican hat, shown in Fig. 11. The minimum of E(q) is obtained for q = q0 = λ/C and has

value EJT = −λ2/2C; the quantity EJT is defined as the Jahn-Teller energy of the system. The

electronic ground state can be written as

|θ〉G = − sin
θ − π

2
|x2 − y2〉+ cos

θ − π

2
|3z2 − r2〉.

The excited state (hole orbital), with energy λq + 1
2
q2, is

|θ〉E = − sin
θ

2
|x2 − y2〉+ cos

θ

2
|3z2 − r2〉.

The states |θ〉E with different θ are shown in Fig. 13. In the simple model discussed so far,

all states |θ〉G have the same Jahn-Teller energy. Cubic symmetry however only requires that θ,

θ + 2π/3, and θ − 2π/3 yield degenerate states. The additional degeneracy is removed when

we take into account anharmonic terms, the lowest order of which has the form

Uanh(q1, q2) = −β(Q3
2 − 3Q2Q

2
1) ∝ cos 3θ,

and yields, for positive β, the tetragonal distortions (θ = 0,±2π/3) as ground state configura-

tion. Higher order terms or a negative β can reverse the sign of the potential, making the Q1

Jahn-Teller distortion (θ = 2π/4, 2π/4± 2π/3) more stable [8].
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Fig. 13: Linear combinations of eg-states, |θ〉 = − sin θ
2
|x2 − y2〉 + cos θ

2
|3z2 − r2〉. The

θ = 0o orbital is the excited state in the presence of a tetragonal compression along the z axis,

while θ = ±2π/3 are excited states for a tetragonal compression along x or y. This three-fold

degeneracy (rotation of ±2π/3) is due to cubic symmetry.

In the presence of Jahn-Teller distortions and/or many-body super-exchange effects, orbital-

order phenomena can take place. Super-exchange phenomena are discussed in the lecture of

Erik Koch. The order of orbitals in KCuF3, calculated using the LDA+DMFT approach, is

shown in Fig. 10. The origin of orbital order in KCuF3 and LaMnO3, and the related interplay

between Jahn-Teller effect and many-body super-exchange, are discussed in Refs. [7, 9].

Let us now analyze the different electronic configurations that can occur in perovskites. For

the electronic configuration 3d1 = 3t12g, the procedure is as the one illustrated above, except

that t2g-states are 3-fold degenerate and form π bonds, which are weaker, therefore the splitting

introduced by the Jahn-Teller effect is smaller than for eg-states. In the case of electronic con-

figurations 3dn with n > 1, to determine if the ion is Jahn-Teller active one has to consider the

degeneracies of the many-body state, including Coulomb repulsion. Weak Jahn-Teller states

are 3d1 (Ti3+ in LaTiO3) and 3d2 (V3+ in LaVO3), as also 3t42g, 3t52g, 3t42ge
2
g, 3t52ge

2
g; strong

Jahn-Teller configurations are, e.g., 3d9 (Cu2+ in KCuF3) and 3t32ge
1
g (Mn3+ in LaMnO3); the

configurations 3t32g and 3t32ge
2
g are not degenerate and therefore not Jahn-Teller active.
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6 Conclusions

The parameters of the one-electron Hamiltonian are essential ingredients of many-body models.

The crystal-field splittings and the hopping integrals carry the information on the lattice and the

covalency, and determine to a large extent what makes a system different from the others. The

color of a transition-metal complex is for example often determined by the eg-t2g crystal-field

splitting. For a given system, the hopping integrals determine the band structure and the shape

of the Fermi surface; the crystal-field splitting plays a crucial role for the local properties,

such as the local magnetic moments or spin states, competing with spin-orbit interaction and

Coulomb repulsion. In strongly correlated systems, the competition between hopping integrals

and Coulomb interaction decides if the system is a metal or a Mott insulator; the crystal-field

splitting can however help the formation of a Mott insulating state by reducing the degeneracy

of the relevant many-body states [2].

In this lecture we have discussed simple approaches to determine the one-electron parameters

for a given system. Such approaches are based on atomic orbitals and symmetries. They are

easier to use for high-symmetry systems, in which the number of parameters to determine are

small; once the model is constructed, the parameters can be obtained, e.g., by fitting to exper-

iment. In the age of massively parallel supercomputers and standard ab-initio codes, it might

seem anachronistic to study approximate methods to calculate one-electron parameters. How-

ever, these approaches are very useful for understanding qualitatively the behavior of a given

system, and the results of complex calculations. It is indeed astonishing how far we can often

go in understanding a system with these methods alone. One of the reasons of the successes

of tight-binding and crystal-field theory is that symmetries are fully accounted for. In devel-

oping approximations to describe numerically complex many-body effects, we should always

remember that symmetries are crucial, and taking them into account is essential to understand

the properties of a given material.

The modern approach to calculate one-electron parameters is based on ab-initio localized Wan-

nier functions; they are built from DFT calculations (e.g., in the LDA approximation), and used

as a one-electron basis to construct material-specific many-body models. The choice of LDA

Wannier functions as a basis relies on the success of the LDA in describing the properties of

weakly correlated systems. These successes let us hope that the long-range and the mean-field

part of the electron-electron interaction are already well accounted for by the LDA. Thanks to

ab-initio Wannier functions it is possible to build many-body models even for low-symmetry

materials, accounting, e.g., for the effects of small distortions that split the t2g levels [2], a very

hard task with semiempirical tight binding. When using Wannier functions as a one-electron

basis to build many-body models, we should however never forget what are the assumptions

behind; simple models and symmetry considerations remind us where all comes from.

Acknowledgment

Support of the Deutsche Forschungsgemeinschaft through FOR1346 is gratefully acknowledged.



6.36 Eva Pavarini

Appendices

A Constants and units

In this lecture, formulas are given in atomic units. The unit of mass m0 is the electron mass

(m0 = me), the unit of charge e0 is the electron charge (e0 = e), the unit of length a0 is the

Bohr radius (a0 = aB ∼ 0.52918 Å), and the unit of time is t0 = 4πε0~a0/e
2. In these units,

me, aB , e and 1/4πε0 have the numerical value 1, the speed of light is c = 1/α ∼ 137, and the

unit of energy is 1Ha = e2/4πε0a0 ∼ 27.211 eV.

B Atomic orbitals

B.1 Radial functions

The nlm hydrogen-like atomic orbital is given by

ψnlm(ρ, θ, φ) = Rnl(ρ)Y
m
l (θ, φ),

whereRnl(ρ) is the radial function and Y l
m(θ, φ) a spherical harmonic, ρ = Zr and Z the atomic

number. In atomic units, the radial functions are

Rnl(ρ) =

√

(

2Z

n

)3
(n− l − 1)!

2n[(n + l)!]3
e−ρ/n

(

2ρ

n

)l

L2l+1
n−l−1

(

2ρ

n

)

,

where L2l+1
n−l−1 are generalized Laguerre polynomials of degree n− l − 1.

The radial function for n = 1, 2, 3 are

R1s(ρ) = 2 Z3/2 e−ρ

R2s(ρ) =
1

2
√
2
Z3/2 (2− ρ) e−ρ/2

R2p(ρ) =
1

2
√
6
Z3/2 ρ e−ρ/2

R3s(ρ) =
2

3
√
3
Z3/2 (1− 2ρ/3 + 2ρ2/27) e−ρ/3

R3p(ρ) =
4
√
2

9
√
3
Z3/2 ρ(1− ρ/6) e−ρ/3

R3d(ρ) =
2
√
2

81
√
15
Z3/2 ρ2 e−ρ/3

where we used the standard notation s for l = 0, p for l = 1 and d for l = 2.

B.2 Real harmonics

To study solids, it is usually convenient to work in the basis of real harmonics. The latter are

defined in terms of the spherical harmonics as follows:

yl0 = Y l
0 , ylm =

1
√
2
(Y l

−m + (−1)mY l
m), yl−m =

i
√
2
(Y l

−m − (−1)mY l
m), m > 0.
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Fig. 14: The s (first row), py, pz, px (second row), and dxy, dyz, d3z2−r2 , dxz, dx2−y2 (last row)

real harmonics.

Using the definitions x = r sin θ cosφ, y = r sin θ sin φ, z = r cos θ, we can express the

l = 0, 1, 2 real harmonics (Fig. 14) as

s = y00 = Y 0
0 =

√

1
4π

py = y1−1 =
i√
2
(Y 1

1 + Y 1
−1) =

√

3
4π

y/r

pz = y10 = Y 0
2 =

√

3
4π

z/r

px = y11 = 1√
2
(Y 1

1 − Y 1
−1) =

√

3
4π

x/r

dxy = y2−2 =
i√
2
(Y 2

2 − Y 2
−2) =

√

15
4π

xy/r2

dyz = y2−1 =
i√
2
(Y 2

1 + Y 2
−1) =

√

15
4π

yz/r2

d3z2−r2 = y20 = Y 0
2 =

√

15
4π

1
2
√
3
(3z2 − r2)/r2

dxz = y21 = 1√
2
(Y 2

1 − Y 2
−1) =

√

15
4π

xz/r2

dx2−y2 = y22 = 1√
2
(Y 2

2 + Y 2
−2) =

√

15
4π

1
2

(x2 − y2)/r2
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B.3 Slater-Koster integrals

The interatomic Slater-Koster two-center integrals are defined as

Elm,l′m′ =

∫

dr ψlm(r − d)V (r − d)ψl′m′(r).

They can be expressed as a function of radial integrals Vll′α, which scale with the distance d

roughly as d−(l+l′+1) [10], and direction cosines, defined as

l = d · x̂/d, m = d · ŷ/d, n = d · ẑ/d.

The Slater-Koster integrals for s-, p-, and d-orbitals [10] are listed below.

Es,s = Vssσ

Es,x = lVspσ

Ex,x = l2Vppσ +(1− l2)Vppπ

Ex,y = lmVppσ −lmVppπ

Ex,z = lnVppσ −lnVppπ

Es,xy =
√
3lmVsdσ

Es,x2−y2 = 1
2

√
3(l2 −m2)Vsdσ

Es,3z2−r2 = [n2 − 1
2(l

2 +m2)]Vsdσ

Ex,xy =
√
3l2mVpdσ +m(1− 2l2)Vpdπ

Ex,yz =
√
3lmnVpdσ −2lmnVpdπ

Ex,zx =
√
3l2nVpdσ +n(1− 2l2)Vpdπ

Ex,x2−y2 =
√
3
2 l[(l

2 −m2)]Vpdσ +l(1− l2 +m2)Vpdπ

Ey,x2−y2 =
√
3
2 m[(l2 −m2)]Vpdσ −m(1 + l2 −m2)Vpdπ

Ez,x2−y2 =
√
3
2 n[(l

2 −m2)]Vpdσ −n(l2 −m2)Vpdπ

Ex,3z2−r2 = l[n2 − 1
2(l

2 +m2)]Vpdσ −
√
3ln2Vpdπ

Ey,3z2−r2 = m[n2 − 1
2(l

2 +m2)]Vpdσ −
√
3mn2Vpdπ

Ez,3z2−r2 = n[n2 − 1
2(l

2 +m2)]Vpdσ +
√
3n(l2 +m2)Vpdπ

Exy,xy = 3l2m2Vddσ +(l2 +m2 − 4l2m2)Vddπ +(n2 + l2m2)Vddδ

Exy,yz = 3lm2nVddσ +ln(1− 4m2)Vddπ +ln(m2 − 1)Vddδ

Exy,zx = 3l2mnVddσ +mn(1− 4l2)Vddπ +mn(l2 − 1)Vddδ

Exy,x2−y2 = 3
2 lm(l2 −m2)Vddσ 2lm(m2 − l2)Vddπ

1
2 lm(l2 −m2)Vddδ

Eyz,x2−y2 = 3
2mn(l

2 −m2)Vddσ −mn[1 + 2(l2 −m2)]Vddπ +mn[1 + 1
2(l

2 −m2)]Vddδ

Ezx,x2−y2 = 3
2nl(l

2 −m2)Vddσ +nl[1− 2(l2 −m2)]Vddπ −nl[1− 1
2(l

2 −m2)]Vddδ

Exy,3z2−r2 =
√
3lm[n2 − 1

2 (l
2 +m2)]Vddσ −2

√
3lmn2Vddπ

√
3
2 lm(1 + n2)Vddδ

Eyz,3z2−r2 =
√
3mn[n2 − 1

2 (l
2 +m2)]Vddσ +

√
3mn(l2 +m2 − n2)Vddπ −

√
3
2 mn(l

2 +m2)Vddδ

Ezx,3z2−r2 =
√
3ln[n2 − 1

2 (l
2 +m2)]Vddσ +

√
3ln(l2 +m2 − n2)Vddπ −

√
3
2 ln(l

2 +m2)Vddδ

Ex2−y2,x2−y2 = 3
4(l

2 −m2)2Vddσ +[l2 +m2 − (l2 −m2)2]Vddπ +[n2 + 1
4(l

2 −m2)2]Vddδ

Ex2−y2,3z2−r2 =
√
3
2 (l2 −m2)[n2 − 1

2 (l
2 +m2)]Vddσ +

√
3n2(m2 − l2)Vddπ +1

4

√
3(1 + n2)(l2 −m2)Vddδ

E3z2−r2,3z2−r2= [n2 − 1
2(l

2 +m2)]2Vddσ +3n2(l2 +m2)Vddπ
3
4 (l

2 +m2)2Vddδ
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7.2 Erik Koch

1 Introduction

One of the profound Surprises in Theoretical Physics [1] is that magnetism is an inherently
quantum mechanical effect. Classically, magnetic moments originate from electric currents: A
current density ~j(~r ) generates a magnetic moment

~µ =
1

2

∫
~r ×~j d3r . (1)

These moments interact via the dipole-dipole interaction. The magnetostatic interaction energy
between two dipoles at a distance R, R̂ being the unit-vector from the position of the first to
that of the second dipole,

∆E =
µ0

4π

~µ1 · ~µ2 − 3(R̂ · ~µ1)(R̂ · ~µ2)

R3
=
~µ1 · ~µ2 − 3(R̂ · ~µ1)(R̂ · ~µ2)

4πε0c2 R3
(2)

depends on their distance and relative orientation. This can, however, not be the origin of the
magnetism found in actual materials: In a classical system charges cannot flow in thermody-
namic equilibrium, the celebrated Bohr-van Leuween theorem, and hence there are no magnetic
moments to begin with [2].
In quantum mechanics, however, non-vanishing charge currents in the ground state are not
uncommon: An electron in state Ψ(~r ) corresponds to a current density

~j(~r ) = − e~
2ime

(
Ψ(~r )∇Ψ(~r )− Ψ(~r )∇Ψ(~r )

)
(3)

which, for complex wave function Ψ(~r ), is usually non-vanishing. According to (1) it produces
a magnetic moment proportional to the expectation value of the angular momentum

~µL = − e~
2me

〈~L 〉 = −µB 〈~L 〉 . (4)

The constant of proportionality is the Bohr magneton µB. In particular, an atomic orbital
|n, l,m〉 has a magnetic moment proportional to the magnetic quantum number ~µ = −µBm ẑ.
Also the electron spin ~S carries a magnetic moment

~µS = −geµB 〈~S 〉 . (5)

The constant of proportionality between spin and magnetic moment differs from that between
orbital momentum and moment by the gyromagnetic ratio g0. Dirac theory gives ge = 2, which
is changed to ge ≈ 2.0023 . . . by QED corrections.
Atomic moments are thus of the order of µB. For two such moments at a distance of 1 Å the
magnetostatic energy (2) is of the order of 0.05 meV, corresponding to a temperature of less
than 1 K. Therefore, magnetic ordering which, e.g., in magnetite (Fe3O4), persists till about
860 K, must originate from an interaction other that the magnetostatic interaction of dipoles.
Indeed, it is the interplay of electronic properties which are apparently unrelated to magnetism,
the Pauli principle in combination with the Coulomb repulsion (Coulomb exchange) as well
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as the hopping of electrons (kinetic exchange) that leads to an effective coupling between the
magnetic moments in a solid.
The basic mechanisms of the exchange coupling are quite simple: Since many-body wave func-
tions must change sign under the permutation of Fermions, electrons of the same spin cannot be
at the same position. Electrons of like spin thus tend to avoid each other, i.e., the probability of
finding them close to each other tends to be lower than for electrons of opposite spin (exchange
hole). In that sense the Coulomb energy between two electrons depends on their relative spins.
By this argument, aligning electron spins tends be energetically favorable. This Coulomb ex-
change is the basis of Hund’s first rule. When more than one atom is involved, electrons can
hop from one site to the neighbor. This kinetic term is, again, modified by the Pauli principle,
as the hopping to an orbital on the neighboring atom will only be possible, if there is not al-
ready an electron of the same spin occupying that orbital and by the Coulomb repulsion among
the electrons. This is the idea of kinetic exchange. When Coulomb exchange and kinetic terms
work together we speak of double exchange. In that case the electron-hopping serves to mediate
the spin-correlation created on an atom to its neighbors.
Exchange mechanisms are idealizations of characteristic situations found in real materials. As
such they are merely approximations, but they afford a simplification of the complicated realistic
description, which provides a good basis for thinking about the relevant effects in a real material.
We will start by discussing the effect of Coulomb exchange matrix elements (Sec. 2). To keep
things simple, we will discuss a two-orbital model and only mention atomic multiplets and
Hund’s rule, while the full Coulomb vertex is discussed in the lecture of R. Eder. Next we turn
to exchange mechanisms involving also hopping (Sec. 3). We start by looking at the a simple
two-site model with two electrons. Focussing on the limit of strong electronic correlations
(Coulomb repulsion dominating electron hopping), we introduce the method of downfolding
to derive an effective Hamiltonian in which an explicit coupling of the electron spins appears.
While conceptually simple, this direct exchange mechanism is rarely found in real materials.
There hopping between correlated orbitals is usually mediated by a weakly correlated orbital.
This is the superexchange mechanism. The derivation is very similar to that of kinetic exchange.
However, the number of states involved, makes explicit book-keeping tedious. To simplify our
work, we introduce second quantization as a simple notation of many-electron states. This
also enables us to easily discuss double exchange, which combines direct exchange on an atom
with coupling to the neighbors via electron hopping. Examples are the superexchange between
transition metal atoms bridged by an oxygen at a right angle, which arises from the Coulomb
exchange on the oxygen, as well as the exchange in mixed-valence compounds (Sec. 4). The
competition between kinetic and double exchange is described by the Goodenough-Kanamori
rules. Finally we show that exchange is not restricted to coupling spins, but can also produce
interactions between orbital occupations (Sec. 5).
How exchange gives rise to an effective coupling of momenta is most easily shown for single-
or two-site models. To see how these results carry over to solids, we consider the case of direct
exchange (Sec. 6). Starting from the Hubbard model we show how taking the limit of strong
correlations leads to the t-J-model, which, for half-filling, simplifies to the Heisenberg model.
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2 Coulomb exchange

The Coulomb repulsion between electrons,

HU =
∑
i<j

1

|~ri − ~rj|
, (6)

is manifestly spin-independent. Nevertheless, because of the antisymmetry of the many-electron
wave function, the eigenenergies of HU depend on the spin. This is the basis of the multiplet
structure in atoms and of Hund’s first two rules.
To understand the mechanism of this Coulomb exchange we consider a simple two-electron
model. In the spirit of tight-binding (see the lecture of E. Pavarini), we assume that we have
solved the two-electron Hamiltonian H0, replacing the interaction term HU , e.g. as a self-
consistent potential

∑
i U(~ri), obtaining an orthonormal set of one-electron eigenstates ϕα(~r )

with eigenvalues εα. We now ask for the effect of re-introducing the interactionHU−
∑

i U(~ri).
The largest effect we will find for states that are degenerate.
Let us consider two orbitals α = a, b. Then the two-electron Slater determinants with spins σ
and σ′

Ψa,σ; bσ′(~r1, s1; ~r2, s2) =
1√
2

∣∣∣∣∣ ϕa(~r1) σ(s1) ϕa(~r2) σ(s2)

ϕb(~r1)σ
′(s1) ϕb(~r2)σ

′(s2)

∣∣∣∣∣ (7)

=
1√
2

(
ϕa(~r1)ϕa(~r2) σ(s1)σ

′(s2)− ϕb(~r1)ϕa(~r2) σ
′(s1)σ(s2)

)
are degenerate eigenstates of H0 with eigenvalue εa + εb, independent of the spin orientations.
To see how this degeneracy is lifted, we calculate the matrix elements of HU in the basis of the
Slater determinants Ψa,σ; bσ′ .
When both electrons have the same spin (σ = σ′), we can factor out the spin functions

Ψa,σ; bσ =
1√
2

(
ϕa(~r1)ϕb(~r2)− ϕb(~r1)ϕa(~r2)

)
σ(s1)σ(s2) (8)

and obtain 〈
Ψa,σ; b,σ

∣∣∣∣ 1

|~r1 − ~r2|

∣∣∣∣Ψa,σ; b,σ

〉
=

1

2
(Uab − Jab − Jba + Uba) = Uab − Jab (9)

where the direct terms are the Coulomb integral

Uab =

∫
d3r1

∫
d3r2

|ϕa(~r1)|2 |ϕb(~r1)|2

|~r1 − ~r2|
(10)

while the cross terms give the exchange integral

Jab =

∫
d3r1

∫
d3r2

ϕa(~r1)ϕb(~r1) ϕb(~r2)ϕa(~r2)

|~r1 − ~r2|
. (11)

For the states where the electrons have opposite spin (σ′ = −σ)〈
Ψa,σ; b,−σ

∣∣∣∣ 1

|~r1 − ~r2|

∣∣∣∣Ψa,σ; b,−σ

〉
= Uab (12)
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the diagonal matrix element has no exchange contribution, as the overlap of the spin functions
for the cross terms vanish. There are however off-diagonal matrix elements〈

Ψa↑; b↓

∣∣∣∣ 1

|~r1 − ~r2|

∣∣∣∣Ψa↓; b↑〉 = −Jab . (13)

Since HU does not change the spins, these are the only non-zero matrix elements. In the basis
of the states Ψ↑↑, Ψ↑↓, Ψ↓↑ and Ψ↓↓ the Coulomb term is thus given by

HU =


Uab − Jab 0 0 0

0 Uab −Jab 0

0 −Jab Uab 0

0 0 0 Uab − Jab

 . (14)

The triplet states Ψ↑↑ and Ψ↓↓ are obviously eigenstates of HU with eigenenergy

∆εtriplet = Uab − Jab . (15)

Diagonalizing the 2 × 2 submatrix, we obtain the third triplet state (Ψ↑↓ + Ψ↓↑)/
√
2 and the

singlet state (Ψ↑↓ − Ψ↓↑)/
√
2

1√
2
(Ψ↑↓ − Ψ↓↑) =

1√
2

(
ϕa(~r1)ϕb(~r2) + ϕb(~r1)ϕa(~r2)

) 1√
2

(
|↓↑〉 − |↑↓〉

)
(16)

with energy
∆εsinglet = Uab + Jab . (17)

To see whether the triplet or the singlet is lower in energy, we need to know the sign of the
exchange matrix element. While the Coulomb integral Uab, having a positive integrand, is
obviously positive, it is less obvious that also Jab > 0. Introducing Φ(~r ) = ϕa(~r )ϕb(~r ) and
rewriting the integral using the convolution theorem as well as the Fourier transform of 1/r, we
obtain [3, 4]:

Jab =

∫
d3r1 Φ(~r1)

∫
d3r2

1

|~r1 − ~r2|
Φ(~r2)︸ ︷︷ ︸

=
∫
dk eikr14π/k2Φ(k) /(2π)3

(18)

=
1

(2π)3

∫
d3k

∫
d3r1 e

i~k·~r1Φ(~r1)︸ ︷︷ ︸
=Φ(−k)

Φ(~k )
4π

k2
(19)

=
1

(2π)3

∫
d3k |Φ(~k )|2 4π

k2
> 0 (20)

Thus the triplet states are below the singlet state by an energy 2Jab. If the ϕα are degenerate
atomic orbitals, this is an example of Hund’s first rule: For an atomic shell, the lowest state will
have maximum spin.
Since HU only contains interactions within the system of electrons, it commutes with the total
orbital momentum [HU , ~Ltot] = 0. Obviously it also commutes with the total spin ~Stot. The
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Fig. 1: Angular momenta of the Hund’s rules ground state 2S+1LJ for d-shells.

eigenstates of H0 + HU can thus be classified by their quantum numbers L and S. These
terms are written as 2S+1L. For p- and d-shells they are listed in table 1. Hund’s rules give
the multiplet term with the lowest energy: For a given shell, this lowest state has the largest
possible spin (Hund’s first rule). If there are several terms of maximum multiplicity, the one
with lowest energy has the largest total orbital momentum (Hund’s second rule). There is a
third Hund’s rule, which, however, is not related with the electron-electron repulsion but with
spin-orbit coupling: Within L-S coupling HSO splits the atomic orbitals into eigenstates of
the total angular momentum ~J = ~Ltot + ~Stot. The multiplets 2S+1L thus split into 2S+1LJ .
The term with the lowest energy is the one with smallest J if the shell is less than half-filled
and largest J if it is more than half-filled (Hund’s third rule). These rules are illustrated for
d-shells in Fig. 2. A more detailed discussion of multiplet effects and the Coulomb interaction
in atomic-like systems is given in the lecture of R. Eder and in [5, 6]

s 2S

p1 or p5 2P

p2 or p4 1S 1D 3P

p3 2P 2D 4S

d1 or d9 2D

d2 or d8 1S 1D 1G 3P 3F

d3 or d7 2P
2×
2D 2F 2G 2H 4P 4F

d4 or d6
2×
1S

2×
1D 1F

2×
1G 1I

2×
3P 3D

2×
3F 3G 3H 5D

d5 2S 2P
3×
2D

2×
2F

2×
2G 2H 2I 4P 4D 4F 4G 6S

Table 1: Atomic multiplets for open s-, p-, and d-shells. For terms that appear multiple times
the number of distinct terms is indicated. The Hund’s rules ground state is indicated in bold.
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3 Kinetic exchange

When electron-hopping plays the main role in the exchange mechanism, we speak of kinetic
exchange. In contrast to Coulomb exchange the resulting interactions are usually antiferro-
magnetic, i.e., they prefer antiparallel spins. The physical principle of kinetic exchange can be
understood in a simple two-site system. We discuss this problem in some detail and introduce
two key concept along the way: downfolding and second quantization. More realistic exchange
mechanisms are then natural generalizations of this simple mechanism [7–9].

3.1 A toy model

As a toy model, we consider the minimal model of an H2 molecule. We restrict ourselves to
two (orthogonal) orbitals, ϕ1 and ϕ2, separated by some distance. If we add an electron to the
system, that electron will be able to move between the two orbitals, with a matrix element −t.
Because we allow the electron to only occupy two s-orbitals, the Hamiltonian is a 2× 2 matrix

H =

(
0 −t
−t 0

)
. (21)

This tight-binding Hamiltonian is easily diagonalized giving the linear combinations

ϕ± =
1√
2

(
ϕ1 ± ϕ2

)
(22)

as eigenstates with eigenenergies ε± = ∓t. We have written the hopping matrix element as −t,
so that for t > 0 the state without a node, ϕ+, is the ground state.
Pictorially we can write the basis states by specifying which orbital the electron occupies. For
a spin-up electron we then write

ϕ1 = |↑ , · 〉 and ϕ2 = | · , ↑ 〉 (23)

where we now represent the basis states by where the electron is located.
If there are two electrons in the system, i.e., one electron per orbital, we can again use basis
states which just specify, which orbitals the electrons occupy. For two electrons of opposite
spin we then find two states where the electrons are in different orbitals

|↑ , ↓ 〉 |↓ , ↑ 〉 “covalent states”

and two states where the electrons are in the same orbital

|↑↓ , · 〉 | · , ↑↓〉 “ionic states”.

In this basis the Hamiltonian matrix for our simple model of the H2 molecule has the form

H =


0 0 −t −t
0 0 +t +t

−t +t U 0

−t +t 0 U


|↑ , ↓ 〉
|↓ , ↑ 〉
|↑↓ , · 〉
| · , ↑↓〉

(24)
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Fig. 2: Spectrum of the two-site Hubbard model as a function of U . For large U there are two
levels with energy close to zero. Their energy difference corresponds to the exchange energy.
The remaining two states with ionic character have an energy roughly proportional to U .

As before, moving an electron to a neighboring orbital gives a matrix element −t, with an
additional sign when the order of the electrons is changed (Fermi statistics!). For the ionic states,
where both electrons are in the same orbital, we have the Coulomb matrix element U . Coulomb
matrix elements involving electrons on different sites are, for reasonably large distance between
the sites, negligible. So there is no Coulomb exchange, just the local Coulomb repulsion in our
model. Diagonalizing H we find the energy spectrum and the corresponding eigenstates:

ε± =
U

2
±
√
U2 + 16 t2

2
, Ψ± =

(
|↑ , ↓ 〉 − |↓ , ↑ 〉 − ε±

2t

[
|↑↓ , · 〉+ | · , ↑↓〉

])√
2 + ε2

±/(2t
2)

εcov = 0 , Ψcov =
1√
2

(
|↑ , ↓ 〉+ |↓ , ↑ 〉

)
εion = U , Ψion =

1√
2

(
|↑↓ , · 〉 − | · , ↑↓〉

)
The eigenenergies as a function of U are shown in figure 2.

3.2 Direct exchange

Again, we have found that the energy of two-electron states depends on the relative spin of the
electrons. To understand this more clearly we analyze the limit when U is much larger than t.
From Fig. 2 we see that there are two states with energies that increase with U . They are the
states Ψion and Ψ+ that have considerable contributions of the ionic states. Then there are two
states whose energy is close to zero. They are the states that have mainly covalent character.
To find the energy and the character of these levels in the limit U → ∞ we can just expand
ε− → −4t2/U and ε+ → U + 4t2/U . We thus see that while the purely covalent state, the
spin-triplet state Ψcov, is independent of U , Ψ− has a slightly lower energy due to some small
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direct exchange

Fig. 3: Simple picture of direct exchange: The antiparallel alignment of the spins (left) is
favored, since it allows the electrons to hop to the neighboring site. For parallel spins (right)
hopping is suppressed by the Pauli principle.

admixture of the ionic states. In the limit U → ∞ it becomes the maximally entangled state
(| ↑ , ↓ 〉 − |↓ , ↑ 〉)/

√
2. We see that for large U , Ψ− cannot be expressed, even approximately,

as a Slater determinant, see also Sec. 3.4. This is the reason why strongly correlated systems
are so difficult to describe.
A more instructive method to analyze the large-U limit, which can readily be generalized to
more complex situations, where we can no longer diagonalize the full Hamiltonian, is the down-
folding technique. The mathematical background is explained in the appendix. The idea of
downfolding is to partition the Hilbert space into parts that are of interest, here the low-energy
convalent type states, and states that should be projected out, here the high-energy ionic states.
With this partitioning we can view the Hamitonian matrix (24) as built of 2 × 2 submatrices.
Calculating the inverse on the space of covalent states (see Eqn. (84) in the appendix) we find
an effective Hamiltonian which now operates on the covalent states only:

Heff(ε) =

(
−t −t
+t +t

)(
ε− U 0

0 ε− U

)−1(
−t +t

−t +t

)
≈ −2t2

U

(
1 −1
−1 1

)
. (25)

In the last step we have made an approximation by setting ε to zero, which is roughly the energy
of the states with covalent character.
The process of eliminating the ionic states thus gives rise to an effective interaction between
the covalent states, which was not present in the original Hamiltonian (24). Diagonalizing the
effective Hamiltonian, we find

εs = −
4t2

U
, Ψs =

1√
2

(
|↑ , ↓ 〉 − |↓ , ↑ 〉

)
εt = 0 , Ψt =

1√
2

(
|↑ , ↓ 〉+ |↓ , ↑ 〉

)
These states correspond to the singlet and triplet states in the hydrogen molecule. Here the
singlet-triplett splitting is J = −4t2/U . The other states in the triplet are those with two
electrons of parallel spin: | ↑ , ↑ 〉 and | ↓ , ↓ 〉. They, of course, also have energy zero, as
hopping is impossible due to the Pauli principle.
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To understand the nature of the effective interaction in the low-energy Hamiltonian we observe
that the off-diagonal matrix elements in (25) correspond to flipping the spin of both electrons
(“exchange”). Remembering that

~S1 · ~S2 = Sz1S
z
2 +

1

2

(
S+

1 S
−
2 + S−1 S

+
2

)
(26)

we see that the effective interaction will contain a spin-spin coupling term.

3.3 Second quantization for pedestrians

A more systematic way for obtaining the form of the effective interaction is by using second
quantization, which will also help us simplify our notation. In second quantization we use
operators to specify in which orbital an electron is located. As an example, c†1,↑ puts a spin-up
electron in orbital ϕ1. Denoting the system with no electrons by |0〉, the basis states that we
have considered so far are written as

|↑ , · 〉 = c†1↑|0〉
| · , ↑ 〉 = c†2↑|0〉

for the single-electron states, and

|↑ , ↓ 〉 = c†2↓c
†
1↑|0〉

|↓ , ↑ 〉 = c†2↑c
†
1↓|0〉 (27)

|↑↓ , · 〉 = c†1↓c
†
1↑|0〉

| · , ↑↓〉 = c†2↓c
†
2↑|0〉

for the two-electron states. In order to describe the hopping of an electron from one orbital to
another, we introduce operators that annihilate an electron. For example c1↑ removes a spin-up
electron from orbital ϕ1. The hopping of an up electron from ϕ1 to ϕ2 is thus described by the
operator c†2↑c1↑ that first takes an electron out of orbital 1 and then creates one in orbital 2. The
Hamiltonian for a spin-up electron hopping between two orbitals can thus be written as

H = −t
(
c†1↑c2↑ + c†2↑c1↑

)
. (28)

Calculating the matrix elements with the single-electron basis states, we recover the matrix (21).
For the calculation we need to know that the operators that describe the electrons anticommute.
This reflects the fact that a many-electron wave function changes sign when two electrons are
exchanged. Using the notation {a, b} = ab+ ba we have{

ciσ, cjσ′
}
= 0

{
c†iσ, c

†
jσ′

}
= 0

{
ciσ, c

†
jσ′

}
= δi,jδσ,σ′

Moreover, trying to annihilate an electron in a state where there is no electron, results in zero:
ciσ|0〉 = 0. Finally, as the notation implies, c†iσ is the adjoint of ciσ and 〈0|0〉 = 1.
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To describe the Coulomb repulsion between two electrons in the same orbital we use that
niσ = c†iσciσ returns 0 when operating on a basis state with no spin-σ electron in orbital ϕi,
and has eigenvalue 1 for a basis state with a spin-σ electron in orbital ϕi. It is thus called the
occupation-number operator. The Coulomb repulsion in orbital ϕ1 is then described by the op-
erator Un1↑n1↓, which is non-zero only when there is a spin-up and a spin-down electron in ϕ1.
The Hamiltonian for our two-orbital model, where both up- and down-spin electrons can hop,
and including the Coulomb repulsion for two electrons in the same orbital, is thus given by

H = −t
(
c†1↑c2↑ + c†2↑c1↑ + c†1↓c2↓ + c†2↓c1↓

)
+ U

(
n1↑n1↓ + n2↑n2↓

)
= −t

∑
i,j,σ

c†jσciσ + U
∑
i

ni↑ni↓ . (29)

You should convince yourself that when you calculate the matrix elements for the two-electron
states, you recover the matrix (24). The great advantage of writing the Hamiltonian in second-
quantized form is that it is valid for any number of electrons, while the matrix form is restricted
to a particular number of electrons.
Coming back to the effective Hamiltonian (25), we can rewrite Heff in second quantized form:

Heff = −2t2

U

(
c†2↑c

†
1↓c1↓c2↑ − c

†
2↓c
†
1↑c1↓c2↑ − c

†
2↑c
†
1↓c1↑c2↓ + c†2↓c

†
1↑c1↑c2↓

)
(30)

= −2t2

U

(
c†1↓c1↓c

†
2↑c2↑ − c

†
1↑c1↓c

†
2↓c2↑ − c

†
1↓c1↑c

†
2↑c2↓ + c†1↑c1↑c

†
2↓c2↓

)
Looking at equation (89) in the appendix we see that the spin operators are given in second
quantization by

Sxi =
1

2

(
c†i↑ci↓ + c†i↓ci↑

)
Syi = − i

2

(
c†i↑ci↓ − c

†
i↓ci↑

)
Szi =

1

2

(
ni↑ − ni↓

)
. (31)

From this we find (after some calculation) that the effective Hamiltonian can be written in terms
of the spin operators

Heff =
4t2

U

(
~S1 · ~S2 −

n1 n2

4

)
. (32)

To conclude, we again find that the completely spin-independent Hamiltonian (29), in the limit
of large U , gives rise to a spin-spin interaction. Since the exchange coupling J = 4t2/U

is positive, states with antiparallel spins have lower energy. Thus direct exchange leads to
antiferromagnetism.
It is important to realize that the singlet-triplet splitting for the effective Hamiltonian really
arises from the admixture of ionic states into the singlet. By downfolding we eliminate the
high-energy ionic states, i.e., charge fluctuations, from our Hilbert space. The eliminated states
then give rise to an effective spin-spin interaction on the new reduced low-energy Hilbert space.
We must therefore keep in mind that, when working with the effective Hamiltonian (32), we are
considering slightly different states than when working with the original Hamiltonian (29).
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3.4 Mean-field treatment

To conclude our discussion of the simplest kinetic exchange mechanism, it is instructive to
consider the results of a mean-field treatment. For the two-electron Hamiltonian (24) it is
straightforward to find the Hartree-Fock solution by directly minimizing the energy expec-
tation value for a two-electron Slater determinant. The most general ansatz is a Slater de-
terminant constructed from an orbital ϕ(θ↑) = sin(θ↑)ϕ1 + cos(θ↑)ϕ2 for the spin-up, and
ϕ(θ↓) = sin(θ↓)ϕ1 + cos(θ↓)ϕ2 for the spin-down electron:

|Ψ(θ↑, θ↓)〉 =
(
sin(θ↓) c

†
1↓ + cos(θ↓) c

†
2↓

) (
sin(θ↑) c

†
1↑ + cos(θ↑) c

†
2↑

)
|0〉 . (33)

Translating the second quantized states via (27) into the basis used for writing the Hamiltonian
matrix (24), we find the expectation value

〈Ψ(θ↑, θ↓)|H|Ψ(θ↑, θ↓)〉 = −2t (sin θ↑ sin θ↓ + cos θ↑ cos θ↓) (cos θ↑ sin θ↓ + sin θ↑ cos θ↓)

+U
(
sin2 θ↑ sin

2 θ↓ + cos2 θ↑ cos
2 θ↓
)
. (34)

If the Slater determinant respects the symmetry of the molecule under the exchange of sites
(mirror symmetry of the H2 molecule), it follows that the Hartree-Fock orbitals for both spins
are the bonding state ϕ+ (θ = π/4). This is the restricted Hartree-Fock solution. The corre-
sponding energy is E(π/4, π/4) = −2t + U/2. The excited states are obtained by replacing
occupied orbitals ϕ+ with ϕ−. Alltogether we obtain the restricted Hartree-Fock spectrum

E( π/4, π/4) = −2t+ U/2

E( π/4,−π/4) = U/2

E(−π/4, π/4) = U/2

E(−π/4,−π/4) = 2t+ U/2

(35)

Comparing to the energy for a state with both electrons of the same spin (E = 0), we see that
there is no spin-triplet, i.e., Hartree-Fock breaks the spin symmetry. The states (35) are spin-
contaminated [10]. Even worse, the Hartree-Fock ground state, and consequently all the states,
are independent of U . The weight of the ionic states is always 1/2, leading to an increase of the
energy with U/2.
To avoid this, we can allow the Hartree-Fock solution to break the symmetry of the molecule
(unrestricted Hartree-Fock), putting, e.g., more of the up-spin electron in the orbital on site 1
and more of the down-spin electron in orbital 2. For U < 2t this does not lead to a state of
lower energy. For larger U there is a symmetry-broken ground state

ΨUHF = Ψ(θ, π/2− θ) with θ(U) =
π

4
± 1

2
arccos

(
2t

U

)
. (36)

Its energy is EUHF = −2t2/U . This looks similar to the singlet energy εs, however, with a
different prefactor. Still there is no triplet state (spin contamination) and, for U → ∞, the
overlap with the true singlet ground state goes to |〈ΨUHF |Ψ−〉|2 = 1/2. In an extended system
the breaking of the symmetry implies long-range order.
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Fig. 4: Energy expectation value for a Slater determinant Ψ(θ, π/2−θ) forU=0, t, 2t, . . . , 6t.
When U ≤ 2t the minimum is at θ = π/4. This is the Hartree-Fock solution with the bonding
orbitals ϕ+ occupied. For U ≥ 2t, θ = π/4 is still an extremal point (restricted Hartree-Fock
solution), but an energy minimum is only attained when the symmetry is broken (unrestricted
Hartree-Fock solution).

3.5 Superexchange

For the direct exchange mechanism discussed above, it is crucial that there is hopping between
the orbitals. These orbitals are typically localized d-orbitals of transition-metals. However,
direct exchange cannot explain the antiferromagnetism of most transition-metal compounds:
Since the d-orbitals are so localized, hopping can only occur between orbitals on different atoms
that are very close to each other. But most antiferromagnetic insulators are transition-metal
oxides, so that the transition-metal cations are separated by large oxygen anions. In such a
situation, shown in figure 5, direct hopping between the d-orbitals is very unlikely. The concept
of direct exchange can, however, be extended to these cases by taking into account hopping via
the intermediate p-orbital. This mechanism is called superexchange.
To understand superexchange, we consider two d-orbitals with an oxygen p-orbital in between.
We introduce the operator c†iσ, which creates a spin-σ electron in the d-orbital at site i, where
i = 1 denotes the d-orbital on the left and i = 2 the one on the right (see figure 5). Likewise
c†pσ creates an electron in the p-orbital. The energy of an electron in a d- or p-orbital is εd and
εp, respectively. The Coulomb repulsion between two electrons in a d-orbital is Ud, while we
neglect the repulsion between electrons in the p-orbital. Finally, −tpd is the hopping between p
and d orbitals. The Hamiltonian for the system of figure 5 is then given by

H =
∑
σ

(
εd
∑
i

niσ + εp npσ − tpd
∑
i

(
c†iσcpσ + c†pσciσ

))
+ Ud

∑
i

ni↑ni↓ . (37)

In the absence of hopping, the ground state will have singly occupied d-orbitals, corresponding
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Fig. 5: In superexchange an oxygen p-orbital mediates the exchange interaction between two
transition-metal d-orbitals.

to a positively charged transition-metal ion, and a doubly occupied p-orbital, corresponding to
an O2− ion. To study a possible coupling between the spins on the d-orbitals, we first look at
the case where both d-spins point upwards (see the far right of Fig. 6). The Hamiltonian matrix
in the corresponding Hilbert space is then given by

H =

 0 tpd tpd

tpd Ud +∆pd 0

tpd 0 Ud +∆pd

 c†2↑c
†
p↓c
†
p↑c
†
1↑|0〉

c†2↑c
†
p↑c
†
1↓c
†
1↑|0〉

c†2↓c
†
2↑c
†
p↑c
†
1↑|0〉

(38)

where we have chosen 2(εp + εd) as the zero of our energy scale and defined ∆pd = εd − εp.
The basis states of the Hilbert space are given on the right and the lines indicate the partitioning
of the Hilbert space for downfolding. The effective Hamiltonian for parallel spins on d-orbitals
is then

Heff = (tpd, tpd)

(
ε− (Ud +∆pd) 0

0 ε− (Ud +∆pd)

)(
tpd
tpd

)
≈ −

2t2pd
Ud +∆pd

(39)

where in the last step we have set ε to zero.
For antiparallel spins the Hilbert space is nine-dimensional. We sort the basis states into groups
that are connected by the hopping of one electron. Starting from the two states with singly
occupied d-orbitals, the second group has one of the p-electrons transfered to a d-orbital, leading
to one doubly occupied d, while the last group has a second electron hopped, leading to either
an empty p- or an empty d-orbital. The corresponding Hamiltonian matrix is

0 0 +tpd +tpd 0 0 0 0 0

0 0 0 0 +tpd +tpd 0 0 0

+tpd 0 Ud +∆pd 0 0 0 −tpd 0 −tpd
+tpd 0 0 Ud +∆pd 0 0 0 −tpd −tpd
0 +tpd 0 0 Ud +∆pd 0 +tpd 0 +tpd
0 +tpd 0 0 0 Ud +∆pd 0 +tpd +tpd

0 0 −tpd 0 +tpd 0 Ud 0 0

0 0 0 −tpd 0 +tpd 0 Ud 0

0 0 −tpd −tpd +tpd +tpd 0 0 2(Ud +∆pd)



c†2↓c
†
p↓c
†
p↑c
†
1↑|0〉

c†2↑c
†
p↓c
†
p↑c
†
1↓|0〉

c†2↓c
†
p↑c
†
1↓c
†
1↑|0〉

c†2↓c
†
2↑c
†
p↓c
†
1↑|0〉

c†2↑c
†
p↓c
†
1↓c
†
1↑|0〉

c†2↓c
†
2↑c
†
p↑c
†
1↓|0〉

c†p↓c
†
p↑c
†
1↓c
†
1↑|0〉

c†2↓c
†
2↑c
†
p↓c
†
p↑|0〉

c†2↓c
†
2↑c
†
1↓c
†
1↑|0〉
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superexchange

Fig. 6: Simple picture of superexchange. Here the orbital on the central site is different from
the orbitals on the sides. Typically, in the center there is a oxygen p-orbital coupling two d-
orbitals. This situation is illustrated in Fig. 5. For antiparallel spins on the d-orbitals there
are two ways that two consecutive hopping processes are possible. For parallel spins the Pauli
principle suppresses the second hopping process.

Downfolding the high energy states with at least one doubly occupied d-orbital, setting ε = 0

and expanding in 1/Ud (remembering (A + ∆)−1 ≈ A−1(1 − ∆A−1)), which is equivalent to
second-order perturbation theory, leads to

Heff = H00 + T01

(
ε−

(
H11 + T12 (ε−H22)

−1 T21

))−1
T10

≈ H00 − T01H
−1
11 T10 − T01H

−1
11 T12H

−1
22 T21H

−1
11 T10 (40)

= −
2t2pd

Ud +∆pd

(
1 0

0 1

)
−

2t4pd
(Ud +∆pd)2

(
1

Ud
+

1

Ud +∆pd

)(
1 −1
−1 1

)
. (41)

The first term is the same as for parallel spins (39). The additional term is of the same type
as that found for the direct exchange mechanism. Again, it can be written in terms of spin
operators. In the present case they are the spin operators for the d-orbitals, while the p-orbital
does no longer appear in the spin Hamiltonian. The spin coupling is now given by

J =
4t4pd

(Ud +∆pd)2

(
1

Ud
+

1

Ud +∆pd

)
, (42)

which reflects that the superexchange mechanism involves four hopping processes (see Fig. 6),
while direct exchange only involves two hoppings (see Fig. 3). The hopping process involving
only a single doubly occupied d-orbital (middle of Fig. 6) is a generalization of the simple direct
exchange with an effective hopping teff = t2pd/(Ud +∆pd) between the d-orbitals and gives the
first term, 4t2eff/Ud, in (42), while the hopping process involving two occupied d-orbitals (left in
Fig. 6) gives the second term 4t4pd/(Ud +∆pd)

3.
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3.6 Ferromagnetic superexchange

In the discussion of superexchange we have, so far, assumed that the oxygen ion lies between
the two d-orbitals. This 180o geometry is shown on the left of Fig. 7. The situation is quite
different, when the oxygen forms a 90o bridge between the two d-orbitals, see the right of
Fig. 7. By symmetry, there is only hopping between the d- and the p-orbital that point towards
each other (see, e.g., the discussion of the Slater-Koster integrals in the lecture of E. Pavarini).
As there is also no hopping between the p-orbitals on the same site, the Hamiltonian for the
system separates into two parts, one involving only the d orbital on site 1 and the px orbital and
the other only involving d on site 2 and py, e.g.:

H1 =

(
0 +tpd

+tpd Ud +∆pd

)
c†x↓c

†
x↑c
†
1↓|0〉

c†x↓c
†
1↓c
†
1↑|0〉

(43)

Since it is not possible for an electron on site 1 to reach site 2, none of the superexchange
processes discussed above are operational. Nevertheless, the energy for the system depends
on the relative orientation of the electron spins in the two d-orbitals. To see this, we have to
remember that Coulomb exchange prefers a triplet for two electrons in different orbitals on the
same site (Hund’s first rule). Including Jxy on the oxygen (but neglecting Up for simplicity), we
get, for the triplet state with two up-electrons, the Hamiltonian

0 tpd tpd 0

tpd Ud +∆pd 0 tpd
tpd 0 Ud +∆pd tpd

0 tpd tpd 2(Ud +∆pd)− Jxy


c†1↑c

†
x↓c
†
x↑c
†
y↓c
†
y↑c
†
2↑|0〉

c†1↓c
†
1↑c
†
x↑c
†
y↓c
†
y↑c
†
2↑|0〉

c†1↑c
†
x↓c
†
x↑c
†
y↑c
†
2↓c
†
2↑|0〉

c†1↓c
†
1↑c
†
x↑c
†
y↑c
†
2↓c
†
2↓|0〉

. (44)

The first state has the two up-electrons on the d-orbitals. The second group of states has one
d-orbital doubly occupied, while the last state has both d doubly occupied, i.e., two electrons
on the two p-orbitals – the situation discussed in Sec. 2. Calculating the effective Hamiltonian
as in (40) gives the energy of the triplet state

Heff = −
2t2pd

Ud +∆pd

−
4t4pd

(Ud +∆pd)2

1

2(Ud +∆pd)− Jxy
. (45)

Starting from singly occupied d orbitals with opposite spin, we obtain

0 0 tpd 0 tpd 0 0 0

0 0 0 tpd 0 tpd 0 0

tpd 0 Ud +∆pd 0 0 0 tpd 0

0 tpd 0 Ud +∆pd 0 0 0 tpd
tpd 0 0 0 Ud +∆pd 0 tpd 0

0 tpd 0 0 0 Ud +∆pd 0 tpd

0 0 tpd 0 tpd 0 2(Ud +∆pd) −Jxy
0 0 0 tpd 0 tpd −Jxy 2(Ud +∆pd)



c†1↑c
†
x↓c
†
x↑c
†
y↓c
†
y↑c
†
2↓|0〉

c†1↓c
†
x↓c
†
x↑c
†
y↓c
†
y↑c
†
2↑|0〉

c†1↓c
†
1↑c
†
x↑c
†
y↓c
†
y↑c
†
2↓|0〉

c†1↓c
†
1↑c
†
x↓c
†
y↓c
†
y↑c
†
2↑|0〉

c†1↑c
†
x↓c
†
x↑c
†
y↓c
†
2↓c
†
2↑|0〉

c†1↓c
†
x↓c
†
x↑c
†
y↑c
†
2↓c
†
2↑|0〉

c†1↓c
†
1↑c
†
x↑c
†
y↓c
†
2↓c
†
2↑|0〉

c†1↓c
†
1↑c
†
x↓c
†
y↑c
†
2↓c
†
2↑|0〉
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Fig. 7: Dependence of superexchange on geometry: When the d-orbitals interact via an oxygen
in-between (the 180o geometry shown on the left), both d-orbitals couple to the same p-orbital,
while the hopping to the two other p-orbitals vanishes by symmetry. The result is antiferromag-
netic superexchange. When the angle of the M-O-M group is 90o (right), the d-orbitals couple
to orthogonal p-orbitals, making it impossible for an electron on one d-orbital to reach the d-
orbital on the other site. In this case, superexchange is mediated via the Coulomb exchange on
the connecting oxygen.

giving the effective Hamiltonian

Heff = −
2t2pd

Ud +∆pd

(
1 0
0 1

)
−

4t4pd
(Ud +∆pd)2

1

4(Ud +∆pd)2 − J2
xy

(
2(Ud +∆pd) +Jxy

+Jxy 2(Ud +∆pd)

)
.

Rearranging the matrices, we can bring this to the canonical form

Heff =−
(

2t2pd
Ud +∆pd

+
4t4pd

(Ud +∆pd)2

1

2(Ud +∆pd)− Jxy

)
+++

4t4pd
(Ud +∆pd)2

Jxy
4(Ud +∆pd)2 − J2

xy

(
1 −1
−1 1

)
. (46)

The first term is just the energy of the triplet state (45). The second gives the difference in
energy to the singlet. Despite the fact that the electrons cannot be transferred between the d
orbitals we thus get a singlet-triplet splitting. This coupling of the spins originates from the
states with both d-orbitals doubly occupied: the two remaining electrons, one each on the px-
and py-orbital, respectively, form a triplet of energy 2Jxy lower than that of the singlet (see
Eqn. (15)). When the electrons hop back from the d-orbital, the entanglement of the spins is
transferred to the remaining electron on the d. Originating from the Coulomb exchange on the
oxygen, the exchange coupling is ferromagnetic

J = −
4t4pd

(Ud +∆pd)2

2Jxy
4(Ud +∆pd)2 − J2

xy

. (47)

It tends to be significantly weaker than the antiferromagnetic 180o superexchange coupling (42).
When the angle of the M-O-M group is larger than 90o, hopping to both p-orbitals becomes
possible according to the Slater-Koster rules and the antiferromagnetic superexchange processes
of Fig. 6 start to compete with the ferromagnetic superexchange mediated by the Coulomb
exchange on the oxygen. This is one basis of the Goodenough-Kanamori rules [7, 11].
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4 Double exchange

Double exchange takes its name from the fact that it results from a combination of Coulomb-
and kinetic-exchange. In that sense the 90o superexchange mechanism discussed above is a
double exchange mechanism. More commonly, double exchange is encountered in mixed-
valence compounds. So far we have considered systems with an integer number of electrons
per site. When correlations are strong the lowest energy state will essentially have the same
number of electrons on every site and hopping will be strongly suppressed by the Coulomb
repulsion energy U as we have seen for the simple two-site model of kinetic exchange. In a
mixed valence system the number of electrons per site is non-integer, so even for large U some
site will have more electrons than others. Thus electrons can hop between such sites without
incurring a cost U . Hence these compounds are usually metallic.
As a simple example we consider two sites with two orbitals of the type discussed in Sec. 2.
We assume that each site has one electron in orbital a, and that there is only a single electron
in the b-orbitals. This electron can hop between the sites via a hopping matrix element tbb. The
situation is illustrated in Fig. 8.
When all three spins are up, Sztot = 3/2, we have a simple 2× 2 Hamiltonian, taking Uab as our
zero of energy

H =

(
−Jab −tbb
−tbb −Jab

)
. (48)

The eigenstates are the bonding/antibonding linear combinations of the Hund’s rule triplets.
Their dispersion is ±t:

ε± = −Jab ± tbb . (49)

We see that the hopping couples the two sites into a state with the electrons in the a-orbital in a
triplet state:

Ψ± =
1√
2

(
| ↑, ↑〉1 | · , ↑〉2 ± | · , ↑〉1 | ↑, ↑〉2

)
=

1√
2

(
| ↑, · 〉b ± | · , ↑〉b

)
| ↑, ↑〉a (50)

In the language of quantum information (see the lecture of D. DiVincenzo), the hopping electron
teleports the local triplet from the sites to the a-orbitals.
To obtain the Hamiltonian for the Sztot = 1/2 states, we arrange the basis states in the order they
are connected by matrix elements, see Fig. 8. We obtain the tridiagonal Hamiltonian

H =



−Jab −tbb 0 0 0 0

−tbb 0 −Jab 0 0 0

0 −Jab 0 −tbb 0 0

0 0 −tbb 0 −Jab 0

0 0 0 −Jab 0 −tbb
0 0 0 0 −tbb −Jab


(51)

The ground-state is the equally weighted linear combination of all basis states. It has energy
ε = −Jab− tbb and belongs to the sector with Stot = 3/2. Again, the hopping electron teleports



Exchange Mechanisms 7.19

tbb

Jab

Fig. 8: Matrix elements entering the double-exchange Hamiltonian. Hopping matrix elements
tbb are indicated as double arrows, Coulomb-exchange matrix elements Jab as double lines.
Note that the right half of the states are obtained from the left by flipping all spins.

the triplets from the sites into a triplet state of the spins in the a-orbitals:

1√
6

(
|↑, ↑〉1|· , ↓〉2+|· , ↑〉1|↑, ↓〉2+|· , ↑〉1|↓, ↑〉2+|↓, ↑〉1|· , ↑〉2+|↑, ↓〉1|· , ↑〉2+|· , ↓〉1|↑, ↑〉2

)
=

1√
2

(
|↑, · 〉b + |· , ↑〉b

) 1√
2

(
|↑, ↓〉a + |↓, ↑〉a

)
+

1√
2

(
|↓, · 〉b + |· , ↓〉b

)
|↑, ↑〉a

As in the Sztot = 3/2-sector, there is a corresponding eigenstate of energy ε = −Jab + tbb
with the b-electron antibonding. Again, we find that the triplet state is centered at −Jab with
dispersion ±tbb. Thus the hopping electron in orbital b tends to align the spins in orbital a.
While the total spin is conserved, this is not true for the spin on site i, ~Si,a + ~Si,b or for the
spin in the a-orbitals ~S1a + ~S2a. Consequently the hopping mixes the Hund’s rule singlets and
triplets and therefore does not produce a singlet state of the a electrons. Instead, for tbb � Jab,
we find in first order perturbation theory

−Jab − tbb
(

1, 1, 1, 1, 1, 1
)T
/
√
6

−Jab − tbb/2
(

2, 1, 1, −1, −1, −2
)T
/
√
12

−Jab + tbb/2
(

2, −1, −1, −1, −1, 2
)T
/
√
12

−Jab + tbb
(

1, −1, −1, 1, 1, −1
)T
/
√
6

+Jab − tbb/2
(

0, 1, −1, −1, 1, 0
)T
/2

+Jab + tbb/2
(

0, 1, −1, 1, −1, 0
)T
/2

(52)

While the triplet states, Stot = 3/2, are centered around −Jab with dispersion ±tbb, states with
singlet character are centered at the same energy, but have smaller dispersion, ±tbb/2.
We can look at the situation from a different perspective, focusing on the effect of the spins
in the a-orbitals on the hopping electron. This is another source of Goodenough-Kanamori
rules [11]. We choose the quantization-axis on site 2 rotated relative to that on site 1 by an
angle ϑ. Taking the original quantization axis as ẑ and the direction from site 1 to site 2 as x̂,
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Fig. 9: With quantization axes tilted between the sites, all states couple. Matrix elements are
indicated by arrows: Hopping only couples sites with the same occupation of the a-orbitals.
Full lines stand for tbb cos(ϑ/2), dotted lines for matrix elements proportional to tbb sin(ϑ/2).
These states are coupled by off-diagonal Coulomb exchange matrix elements Jab, shown as
double lines.

the rotation in spin space is given by exp(−iσy ϑ/2) (see appendix C). Introducing operators
d2bσ in the rotated basis, we have, in terms of the original operators,

d2b↑ = cos(ϑ/2) c2b↑ − sin(ϑ/2) c2b↓ (53)

d2b↓ = sin(ϑ/2) c2b↑ + cos(ϑ/2) c2b↓ (54)

so the hopping becomes

− tbb c†2b↑c1b↑ = −tbb
(
+cos(ϑ/2) d†2b↑ + sin(ϑ/2) d†2b↓

)
c1b↑ (55)

−tbb c†2b↓c1b↓ = −tbb
(
− sin(ϑ/2) d†2b↑ + cos(ϑ/2) d†2b↓

)
c1b↓ . (56)

Obviously, such a change of basis does not change the spectrum of the resulting Hamiltonian.
We do get a new situation, however, when we assume that the spin on orbital a is fixed. This
is, e.g., a good approximation when the spin in the a-orbital arises actually not a from a single
electron, but from many electrons coupled by Hund’s rule, e.g., in a half-filled t2g-level, like in
the manganites. Then there are no off-diagonal exchange terms (double lines in Fig. 9) and the
Hamiltonian splits into 4 × 4 blocks with only hopping (solid and dotted lines in Fig. 9) and
on-site Coulomb exchange Jab. The Hamiltonian then becomes

H =


−Jab +tbb cos(ϑ/2) +tbb sin(ϑ/2) 0

+tbb cos(ϑ/2) −Jab 0 −tbb sin(ϑ/2)
+tbb sin(ϑ/2) 0 0 +tbb cos(ϑ/2)

0 −tbb sin(ϑ/2) +tbb cos(ϑ/2) 0

 , (57)

where the a-spin simply produces a Zeeman splitting of orbital b, proportional to the exchange
coupling Jab. In the limit tbb � Jab we can neglect the states with misaligned spins and obtain

ε = −Jab ± tbb cos(ϑ/2) , (58)

i.e., for parallel spins, ϑ = 0, the gain in kinetic energy is maximized, giving the ground-state
energy of the full Hamiltonian, while for anti-parallel spins, ϑ = π the dispersion vanishes.
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5 Orbital-ordering

Exchange mechanisms are not restricted to the coupling of spins. As pointed out by Kugel and
Khomskii [12], also orbital occupations can interact. Such a coupling leads, besides an ordering
of the spins, to an ordering of the orbitals.
To understand the mechanism of orbital-ordering, we consider an eg-molecule, i.e., two sites
with two orbitals a and b, as discussed in Sec. 2. The Hamiltonian on the sites is thus given by
(14). In addition, the two sites are coupled by hopping matrix elements taa and tbb, i.e., hopping
does not change the type, a or b, of the occupied orbital. We now consider the case of one
electron in orbital a and the other in orbital b.
First, we consider the situation when both electrons have the same spin, e.g., spin-up. The basis
states are shown in Fig. 10. Setting up the Hamiltonian is analogous to setting up (24)

H =


0 0 −tbb −taa
0 0 +taa +tbb

−tbb +taa Uab − Jab 0

−taa +tbb 0 Uab − Jab

 . (59)

Downfolding to the states without doubly occupied sites, we obtain

Heff ≈ −
1

Uab − Jab

(
t2aa + t2bb −2taatbb
−2taatbb t2aa + t2bb

)
= −(taa − tbb)2

Uab − Jab
− 2taatbb
Uab − Jab

(
1 −1
−1 1

)
. (60)

Thus we find that there is an interaction between the states with exchanged orbital-occupation,
i.e., an orbital-exchange. For the present case of ferromagnetically aligned spins, the exchange
coupling favors the orbital singlet, when the hopping matrix elements are of the same sign.
In analogy with the situation in kinetic exchange, this is called antiferro orbital exchange. To
make the relation with kinetic exchange even more explicit, we can introduce, in analogy to
(31), pseudo-spin operators ~Tiσ

T xiσ =
1

2

(
c†aiσcbiσ + c†biσcaiσ

)
, T yiσ = − i

2

(
c†aiσcbiσ − c

†
biσcaiσ

)
, T ziσ =

1

2
(naiσ − nbiσ) (61)

so that we can write

Heff = −(taa − tbb)2

Uab − Jab
+

4taatbb
Uab − Jab

(
~T1↑ · ~T2↑ −

1

4

)
. (62)

Fig. 10: Basis states for an up-electron in orbital a and another up-electron in orbital b. Note
that the states are ordered as in Eqn. (24).
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1 2

3 4

5 6

7 8

Fig. 11: Basis states for electrons of opposite spin. The numbering used for the matrix (63)
is indicated. Spin exchange is indicated by the full, orbital exchange by the dotted arrow. The
states with both electrons on the same site are coupled via Coulomb exchange (double arrows).

When the two electrons have opposite spin, we can study the interplay of spin- and orbital-
exchange. The basis states shown in Fig. 11. We expect orbital exchange to operate between
the first two states in each row and spin exchange between the states between the rows. The
Hamiltonian is

H =



0 0 0 0 −tbb −taa 0 0

0 0 0 0 +taa +tbb 0 0

0 0 0 0 0 0 −tbb −taa
0 0 0 0 0 0 +taa +tbb
−tbb +taa 0 0 Uab 0 −Jab 0

−taa +tbb 0 0 0 Uab 0 −Jab
0 0 −tbb +taa −Jab 0 Uab 0

0 0 −taa +tbb 0 −Jab 0 Uab


(63)

from which we obtain

Heff ≈ − 1

U2
ab − J2

ab


(t2aa + t2bb)Uab −2taatbb Uab (t2aa + t2bb)Jab −2taatbb Jab
−2taatbb Uab (t2aa + t2bb)Uab −2taatbb Jab (t2aa + t2bb)Jab
(t2aa + t2bb)Jab −2taatbb Jab (t2aa + t2bb)Uab −2taatbb Uab
−2taatbb Jab (t2aa + t2bb)Jab −2taatbb Uab (t2aa + t2bb)Jab


= − 1

U2
ab − J2

ab

(
Uab Jab
Jab Uab

)
⊗

(
t2aa + t2bb −2taatbb
−2taatbb t2aa + t2bb

)
(64)

= − 1

U2
ab − J2

ab

[
Uab + Jab − Jab

(
1 −1
−1 1

)]
⊗
[
(taa − tbb)2 + 2taatbb

(
1 −1
−1 1

)]
.

I.e., we get a simultaneous coupling of the spin- and orbital degrees of freedom. The first
term describes the coupling of the spins, which is antiferromagnetic, while the coupling of the
orbitals is, for hopping matrix elements of the same sign, ferro, i.e., orbital triplet. In terms of
the spin and pseudo-spin operators we can write, with ~Ti =

∑
σ
~Tiσ and ~Si =

∑
α∈{a,b}

~Sα,i

Heff = − 1

U2
ab − J2

ab

[
(Uab + Jab) + 2Jab

(
~S1 ·~S2 −

1

4

)][
(taa − tbb)2 − 4taatbb

(
~T1 · ~T2 −

1

4

)]
.

There will be additional terms when we allow states with both electrons in the same orbital.
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6 Extended systems

6.1 Hubbard model

We now turn to extended systems. For this we consider the Hubbard model [13] on an infinite
lattice. Note that now the Hilbert space is infinitely dimensional, so we can no longer write
down the Hamiltonian in its matrix form but have to rely on the second quantized form (29)

H = −t
∑
i,j,σ

c†jσciσ + U
∑
i

ni↑ni↓ . (65)

As in our toy model we still assume that each atom has only a single relevant orbital. There
are links between the neighboring atoms with matrix elements t, which can be intuitively in-
terpreted as hopping from site to site. In the absence of other terms the hopping gives rise to
a band. A second energy scale is given by the Coulomb repulsion U between two electrons
on the same atom. If this on-site Coulomb repulsion is comparable to or even larger than the
band width, the electrons can no longer be considered independent; since the double occupa-
tion of an atom is energetically very costly, the movement of an electron will be hindered by
the Coulomb repulsion. One says that the electrons move in a correlated way. We should note
that also the Pauli principle hinders the movement of an electron. This effect can, however, be
efficiently described by constructing a Slater determinant of independent-electron wave func-
tions. Correlations, on the other hand, are notoriously difficult to describe since no simple wave
functions for such systems are available. In the case of strong correlations, i.e., for U � t, we
will treat the hopping as a perturbation. This is called the atomic limit, since the sites are almost
independent atoms. Thus it is most appropriate to describe strongly correlated electrons in a
local picture, i.e., in terms of electron configurations, which are the states that diagonalize the
Coulomb term.

6.2 Mott transition

The physics described by the Hubbard model is the interplay between kinetic energy and
Coulomb repulsion. Writing the Hubbard-Hamiltonian either in real or in k-space

H = −t
∑
i,j,σ

c†jσciσ + U
∑
i

ni↑ni↓

=
∑
kσ

εk c
†
kσckσ +

U

M

∑
k,k′,q

c†k↑ck−q↑c
†
k′↓ck′+q↓ ,

where M is the number of lattice sites, we see that there are obviously two limiting cases:
There is the non-interacting- or band-limit, when t � U . In that case, only the hopping term
survives, i.e., there are no interactions, and the Hamiltonian can be solved easily in k-space. The
energy levels then form a band and the system is metallic, except when the band is completely
filled. In the opposite case, the atomic limit, the interaction term dominates. In that limit, to
minimize the Coulomb energy, the electrons will be distributed over the lattice sites as uniformly
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parameter range physical picture behavior

t�U: band-limit
k

ε
filling of a band
⇒ metal

t�U: atomic limit
no hopping for
integer filling
⇒ insulator

Fig. 12: Metal-insulator transition for half-filling, i.e., one electron per site.

as possible. For a non-degenerate, half-filled system this means, that every site carries exactly
one electron, and hopping is suppressed, because it would create a doubly occupied site, which
would increase the energy by U � t. Thus in the atomic limit the half-filled system will be an
insulator. Clearly, in-between these two limiting cases there must be, at some value Uc, the so-
called critical U , a transition from a metallic to an insulating state — the Mott transition [14].
Usually this transition is expected when U becomes of the order of the (non-interacting) band
width W .
As the criterion for determining the metal-insulator transition we can use the opening of the gap
for charge-carrying single-electron excitations

Eg = E(N + 1)− 2E(N) + E(N − 1) , (66)

where E(N) denotes the total energy of a cluster of M atoms with N electrons. For the half-
filled system we have N = M . It is instructive to again consider the two limiting cases. In the
non-interacting limit the total energy is given by the sum over the eigenvalues of the hopping
Hamiltonian

∑
n:occ εn. Thus, in the non-interacting limit Eband

g = εN+1 − εN , which, for a
partly filled band, will vanish in the limit of infinite system size. On the other hand, in the
atomic limit, the Coulomb energy for a single site with n electrons is Un(n − 1)/2. Thus, for
half-filling of we have

Eatml
g = U , (67)

i.e., the insulating state in the atomic limit is characterized by a finite gap.
For an infinite system the gap Eg can be rewritten in terms of the chemical potential. In the
thermodynamic limit (M → ∞ with N/M constant) we have to distinguish two types: the
energy needed to add an electron to the system (electron affinity)

µ+ = lim(E(N + 1)− E(N)) =
dε(n)

dn

∣∣∣∣
n↘1

, (68)

and the energy required to extract an electron from the system (ionization energy)

µ− = lim(E(N)− E(N − 1)) =
dε(n)

dn

∣∣∣∣
n↗1

. (69)

The gap is then given by the discontinuity in the left- and right-derivative of the energy per site
ε(n) = limE(N)/M : Eg = µ+ − µ−.
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6.3 Heisenberg model

We now consider the Hubbard model in the limit of large U . This is the generalization of the dis-
cussion of direct kinetic exchange in Sec. 3.2 to an extended system. For large U we work with
the electron configurations, in which the interaction term is diagonal. Configurations with dou-
bly occupied sites will have energies of the order of U or larger, so these are the configurations
that we would like to project out. For downfolding we thus partition the configuration basis,
and hence the Hilbert space, into the set of low-energy states which have no doubly occupied
sites

S =
{
|n1↑, n1↓, n2↑, n2↓, . . .〉

∣∣∣ ∀i : ni↑ + ni↓ ≤ 1
}

(70)

and the set of high-energy states with one or more doubly occupied sites

D =
{
|n1↑, n1↓, n2↑, n2↓, . . .〉

∣∣∣ ∃i : ni↑ + ni↓ = 2
}
. (71)

The hopping term T , which for large U is a perturbation to the interaction term I , couples
the subspaces by hopping an electron into or out of a doubly occupied site. In addition it lifts
the degeneracies within the subspaces. Hence the Hamiltonian can be partitioned as (note that
I ≡ 0 on subspace S)

Ĥ =

(
PS T PS PS T PD
PD T PS PD (T + I)PD

)
, (72)

Since we are dealing with an extended system, the subspaces are infinite, so we cannot write the
Hamiltonian on the subspaces as matrices. Instead we restrict the operators to the appropriate
subspace by using projection operators, PS projecting on the low-energy configurations S, PD
projecting on D. Just like in 3.2 we can then write down an effective Hamiltonian operating on
the low-energy configurations only:

Heff = PS T PS + PS T PD [PD (ε− (I + T )) PD]
−1 PD T PS , (73)

Unlike in the derivation of direct exchange, for the extended system we have no way of cal-
culating the inverse in the second term explicitly. We can, however, expand in powers of t/U .
This is Kato’s method for perturbation theory (see, e.g., section 16.3 of [15]). Essentially we
only need to consider configurations with a single double-occupancy – these correspond to the
states of lowest energy in D. On this subspace the interaction term is diagonal with eigenvalue
U and can thus be easily inverted. We then obtain the Hamiltonian

Ht−J = PS

T − t2

U

∑
〈ij〉〈jk〉σσ′

c†kσ′cjσ′ nj↑nj↓ c
†
jσciσ

 PS , (74)

which is called the t-J Hamiltonian. The first term describes the hopping, constrained to con-
figurations with no doubly occupied sites. Thus it essentially describes the hopping of empty
sites (holes). To understand what the second term does, we observe that, because of the oper-
ators nj↑nj↓, there are only contributions for states with a singly occupied site j: njσ = 0 and
nj,−σ = 1. After applying the second term, site j will again be singly occupied with njσ′ = 0
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Fig. 13: Processes contained in the three-site term T ′: indirect hopping processes to a second-
nearest neighbor site with an intermediate (virtual) doubly occupied state. In the first process
the two hopping processes are performed by the same electron, in the second process each
electron hops once and thus the spin on the intermediate site is flipped.

and nj,−σ′ = 1. Hence, for σ 6= σ′ the spin on site j will be flipped. Moreover, we distinguish
the contributions where only two different sites are involved (k = i) from the three-site terms
(k 6= i). The terms for k = i are just the ones we already know from the kinetic exchange
mechanism. The three-site terms describe a second-nearest neighbor hopping of an electron
from site i to site k via a singly occupied intermediate site j. For σ = σ′ the spin of the hopping
electron is opposite to that on the intermediate site. For σ 6= σ′ the spin of the intermediate site
is flipped – as is that of the hopping electron. This is shown in Fig. 13. The t-J Hamiltonian is

Ht−J = PS [T +HH + T ′] PS (75)

with

T = −t
∑
〈ij〉,σ

c†jσciσ (76)

HH =
4t2

U

∑
〈ij〉

(
~Sj · ~Si −

ninj
4

)
(77)

T ′ = − t
2

U

∑
〈ij〉〈jk〉

i 6=k

∑
σ

(
c†kσ(1− njσ)ciσ − c

†
k,−σc

†
jσcj,−σciσ

)
nj,−σ (78)

In the case of half-filling, when ni = 1, all hopping processes are suppressed, i.e., the projection
PS annihilates T and T ′. Thus for a Mott insulator the t-J model reduces to the spin 1/2

Heisenberg model
HH = J

∑
〈ij〉

~Sj · ~Si + const. (79)

with the exchange coupling J = 4t2/U given by the direct kinetic exchange mechanism. We
again stress that the spin-spin interaction is a result of projecting out the states with double
occupancies.
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7 Conclusion

We have seen that magnetic interactions in matter arise from the interplay of the Pauli principle
and Coulomb interaction, kinetic energy, or both. The resulting effective couplings between
magnetic moments are thus not fundamental interactions and, usually, take quite complex forms.
However, in limiting cases they can become quite simple and transparent. These scenarios are
called exchange mechanisms, of which we have discussed here a small selection. They give
an idea of what magnetic interactions can be expected in real materials. Thus, despite their
simplicity, exchange mechanisms provide vital guides for understanding the physics of complex
ordering phenomena, of spins and orbital-occupations, from simple concepts.
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Appendices

A Atomic units

Practical electronic structure calculations are usually done in atomic units, a. u. for short. While
the idea behind the atomic units is remarkably simple, in practice there is often some confusion
when trying to convert to SI units. We therefore give a brief explanation.
The motivation for introducing atomic units is to simplify the equations. For example, in SI
units the Hamiltonian of a hydrogen atom is

H = − ~2

2me

∇2 − e2

4πε0 r
. (80)

To avoid having to keep track of the constants, we would like to simplify this to

H = −1

2
∇2 − 1

r
. (81)

To this end we invent units in which the numerical values of the electron mass me, the elemen-
tary charge e, the Planck-constant ~, and the dielectric constant 4πε0 are all equal to one. This
immediately tells us: 1 a.u. mass = me and 1 a.u. charge = e. To complete the set of basis units
we still need the atomic unit of length, which we call a0, and of time, t0. To find the values of a0

and t0 we write ~ and 4πε0 (using simple dimensional analysis) in atomic units: ~ = 1mea
2
0/t0

and 4πε0 = 1 t20e
2/(mea

3
0). Solving this system of equations, we find

1 a.u. length = a0 = 4πε0~2/mee
2 ≈ 5.2918 · 10−11 m

1 a.u. mass = me = ≈ 9.1095 · 10−31 kg
1 a.u. time = t0 = (4πε0)

2~3/mee
4 ≈ 2.4189 · 10−17 s

1 a.u. charge = e = ≈ 1.6022 · 10−19 C

The atomic unit of length, a0, is the Bohr radius. As the dimension of energy is mass times
length squared divided by time squared, its atomic unit ismea

2
0/t

2
0 = mee

4/(4πε0)
2~2. Because

of its importance the atomic unit of energy has a name, the Hartree. One Hartree is minus twice
the ground-state energy of the hydrogen atom (80), about 27.211 eV. The speed of light c in
atomic units is given by c t0/a0 = 4πε0~c/e2 = 1/α, where α is the fine structure constant.
Thus c = α−1 a.u. ≈ 137 a.u. The Bohr magneton is µB = 1/2 a.u.
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B Downfolding

To integrate-out high-energy degrees of freedom, we partition the Hilbert space of the full sys-
tem into states of interest (low-energy states) and ‘other’ states, which will be integrated out.
The Hamiltonian is then written in blocks

H =

(
H00 T01

T10 H11

)
, (82)

where H00 is the Hamiltonian restricted to the states of interest (reduced Hilbert space), H11

the Hamiltonian for the ‘other’ states, and the T matrices describe transitions between the two
subspaces. The resolvent is partitioned likewise

G(ε) = (ε−H)−1 =

(
ε−H00 T01

T10 ε−H11

)−1

. (83)

Calculating the inverse of the 2 × 2 matrix, taking into account that the entries are matrices
themselves and thus do not commute, we obtain

G00(ε) =

ε− [H00 + T01(ε−H11)
−1 T10︸ ︷︷ ︸

=Heff

]

−1

. (84)

This expression looks just like the resolvent for a Hamiltonian

Heff = H00 + T01(ε −H11)
−1 T10 (85)

≈ H00 + T01(ε0 −H11)
−1 T10 (86)

on the reduced Hilbert space. This effective Hamiltonian describes the physics of the full sys-
tem, but operates only on the small reduced Hilbert space. Of course, this drastic simplification
comes at a price: the effective Hamiltonian is energy dependent. If the hopping matrix elements
in T01 are small, and/or if the states in the part of the Hilbert space that has been integrated out
are energetically well-separated from the states that are explicitly considered, this energy depen-
dence can, to a good approximation, be neglected. We can then replace ε by a typical energy ε0

for the states in the reduced Hilbert space to obtain an energy-independent HamiltonianHeff(ε0)

that gives a good description of the electrons in the reduced Hilbert space, i.e., the states with
an energy close to ε0.
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C Pauli matrices

Here we collect the most important properties of the Pauli matrices. The Pauli or spin matrices
are defined as

σx =

(
0 1

1 0

)
σy =

(
0 −i
i 0

)
σz =

(
1 0

0 −1

)
(87)

They are hermitean, i.e. σ†i = σi , and σ2
i = 1. Therefore their eigenvalues are ±1. The

eigenvectors of σz are |mz〉, mz = ±1:

|+ 1〉 =

(
1

0

)
and | − 1〉 =

(
0

1

)
. (88)

For these vectors we find

σx|mz〉 = | −mz〉 σy|mz〉 = imz| −mz〉 σz|mz〉 = mz|mz〉 (89)

The products of the Pauli matrices are σx σy = iσz, where the indices can be permuted cycli-
cally. From this follows for the commutator

[σx, σy] = 2iσz (90)

while the anticommutator vanishes:
{σx, σy} = 0 (91)

Finally a rotation by an angle ϕ about the axis n̂ changes the spin matrices

Rn̂(ϕ) = e−in̂·~σ ϕ/2 = cos(ϕ/2)− i sin(ϕ/2) n̂ · ~σ (92)
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8.2 Robert Eder

1 Introduction

Compounds containing 3d transition metal – or iron group – ions have been intriguing solid state

physicists ever since the emergence of solid state physics as a field of research. In fact, already

in the 1930’s NiO became the first known example of a correlated insulator in that it was cited

by deBoer and Verwey as a counterexample to the then newly invented Bloch theory of electron

bands in solids [1]. During the last 25 years 3d transition metal compounds have become one of

the central fields of solid state physics, following the discovery of the cuprate superconductors,

the colossal magnetoresistance phenomenon in the manganites and, most recently, the iron-

pnictide superconductors.

It was conjectured early on that the reason for the special behaviour of these compounds is the

strong Coulomb interaction between electrons in the partially filled 3d shells of the iron group

elements. These 3d wave functions are orthogonal to those of the inner-shells – 1s, 2s and 2p

– solely due to their angular part Y2,m(Θ, φ). Their radial part R3,2(r) thus is not pushed out

to regions far from the nucleus by the requirement to be orthogonal to the inner shell wave

functions and therefore is concentrated close to the nucleus (the situation is exactly the same

for the 4f wave functions in the Rare Earth elements). Any two electrons in the 3d shell thus

are forced to be close to each other on average so that their mutual Coulomb repulsion is strong

(the Coulomb repulsion between two 3d electrons is weak, however, when compared to the

Coulomb force due to the nucleus and the inner shells so that the electrons have to stay close to

one another!). For clarity we also mention that the Coulomb repulsion between two electrons

in the inner shells of most heavier elements is of course much stronger than between the 3d

electrons of the iron group elements. This, however, is irrelevant because these inner shells are

several 100 - 1000 eV below the Fermi energy so that they are simply completely filled. The

3d-orbitals in the iron group elements or the 4f -orbitals in the Rare Earths on the other hand

participate in the bands at the Fermi level so that the strong Coulomb interaction in these orbitals

directly influences the conduction electrons. This is why the Coulomb repulsion in these shells

dominates the physical properties of these compounds and gives rise to such a wide variety of

interesting phenomena. Let us therefore discuss the Coulomb interaction in a partially filled

atomic shell in more detail.

2 Multiplets of a free ion

2.1 General considerations

For definiteness we consider NiO. The atomic electron configurations are [Ar]3d84s2 for Nickel

and [He]2s22p4 for Oxygen. In a purely ionic picture the oxgen atom will want to fill its 2p shell

and become O2−, rendering Ni to be Ni2+ with electron configuration [Ar]3d8. Accordingly let

us first consider a Ni2+ ion in vacuum. It is a standard exercise in textbooks of atomic physics to

show that the d8 configuration, which is equivalent to d2, has the following multiplets: 3F , 3P ,
1G, 1D and 1S. The energies of these multiplets differ and can be observed experimentally, e.g.,
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in the spectrum of Ni vapor. The first two Hund’s rules state that the multiplet with the lowest

energy, i.e., the ground state of the Ni2+ ion, is 3F . Then we may ask: what is the physical

mechanism that leads to the multiplet splitting and makes 3F the ground state? The answer is

that it is the Coulomb repulsion between 3d electrons which splits the multiplets energetically

and enforces the first two Hund’s rules. When being asked for the energy of the dn configuration

one might give be tempted to give the following answer:

E[dn] ≈ n · ǫd + U ·
n(n− 1)

2
.

The first term, where ǫd is the energy of the d-orbital, is the single-particle energy. The sec-

ond term obviously counts the number of electron pairs and multiplies them by the parameter

U which accordingly has the meaning of an average Coulomb repulsion energy between two

electrons. For a non-degenerate orbital, instead of the five-fold degenerate d-orbital, n can take

only the values 0, 1 and 2, with corresponding Coulomb energies 0, 0 and U . In this case the

second term therefore reduces to the expression Un↑n↓ familiar from the Hubbard or Anderson

model.

In a degenerate situation, however, the Coulomb interaction between electrons has additional

aspects. Let us first consider a classical picture where the electrons are taken as charged mass

points orbiting around the nucleus. In this case the Colomb force Fij acting on electron i due

to electron j in general is not parallel to the position vector ri of electron i and thus exerts

a nonvanishing torque τij = ri × Fij . This means that the angular momentum of any given

electron changes constantly but since Fij = −Fji = f(|ri − rj|) (ri − rj) it is easy to see

that τij = −τji so that the two electrons i and j merely ‘exchange angular momentum’ and the

total angular momentum is conserved. The quantum mechanical version of this exchange of

angular momentum is shown in Fig. 1: The 8 d-electrons are initially distributed over the 5 d-

orbitals which are labeled by them-value in the angular part of their wave functions, Y2,m(Θ, φ).

Then, two electrons scatter from each other due to their Coulomb interaction and after the

scattering find themselves in orbitals with a different m-value. The sum over the m-values of

the occupied orbitals, which gives the z-component of the total orbital angular momentum Lz,

must remain constant during the scattering process so that the two scattering electrons move

!" # !" $ !"% !"$ !"#

Fig. 1: A scattering process between two electrons in a partly filled d-shell.
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along the ‘m-ladder’ in opposite direction and by an equal number of steps. The single particle

energy of the electrons, which is 8ǫd in Fig. 1, is unchanged by the scattering. This means that

scattering processes of the type shown in Fig. 1 connect all states with a given z-component

of the total spin and orbital angular momentum and all of these states are degenerate with

respect to their single particle energy. If we think of an unperturbed Hamiltonian H0 which

consists of the single particle energies of the various levels and consider the Coulomb interaction

between the 3d electrons as perturbation H1 we have exactly the situation of degenerate first

order perturbation theory. The textbook procedure then is to set up the secular determinant, i.e.,

the matrix 〈µ|H1|ν〉 where |µ〉 and |ν〉 run over the set of degenerate eigenstates of H0, and

diagonalize this.

To formulate this in a more quantitative fashion we first introduce Fermionic creation (and an-

nihilation) operators c†n,l,m,σ which create an electron with z-component of spin σ in the orbital

with principal quantum number n, orbital angular momentum l, and z-component of orbital

angular momentum m. In the following we will often contract (n, l,m, σ) to the ‘compound

index’ ν for brevity, so that e.g. c†νi = c†ni,li,mi,σi
. In our case the degenerate states |ν〉 can be

written as

|ν〉 = |ν1, ν2 . . . νn〉 = c†ν1c
†
ν2 . . . c

†
νn |0〉. (1)

In the case of a partly filled 3d-shell all ni = 3 and all li = 2 identically, so that these two indices

could be omitted, but we will keep them for the sake of later generalizations. In writing the basis

states as in (1) we need to specify an ordering convention for the creation operators on the right

hand side. For example, only states are taken into account where m1 ≤ m2 ≤ m3 · · · ≤ mn.

Moreover, if two mi are equal the c†mi↓
-operator is assumed to be to the left of the c†mi↑

-operator.

If we adopt this convention, every possible state obtained by distributing the n electrons over

the 2(2l + 1) spin-orbitals is included exactly once in the basis. If the ni and li were to take

different values we could generalize this by demanding that the (ni, li, mi)-triples be ordered

lexicographically. As will be seen below, strict application of an ordering convention for the

Fermi operators is necessary to determine the correct Fermi signs for the matrix elements. In

second quantization the Coulomb Hamiltonian H1 then reads (in atomic units)

H1 =
1

2

∑

i,j,k,l

V (νi, νj , νk, νl) c
†
νi
c†νjcνkcνl,

V (ν1, ν2, ν3, ν4) =

∫

dx

∫

dx′ ψ∗
ν1
(x) ψ∗

ν2
(x′) Vc(x, x

′) ψν4
(x) ψν3

(x′),

Vc(x, x
′) =

1

|r − r′|
. (2)

Here x = (r, σ) is the combined position and spin coordinate and Vc is the Coulomb interaction

between electrons. Note the factor of 1/2 in front of H1 and the correspondence of indices and

integration variables ν4 ↔ x and ν3 ↔ x′ in the Coulomb matrix element, see textbooks of

many-particle physics such as Fetter-Walecka [2]. In the next paragraph we will calculate the

matrix elements V (ν1, ν2, ν3, ν4).
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2.2 Calculation of the Coulomb matrix elements

First, we use the fact that the single-particle basis we are using consists of atomic spin-orbitals

so if we parameterize the vector r by its polar coordinates (r, Θ, φ) we have

ψνi(x) = Rni,li(r) Yli,mi
(Θ, φ) δσ,σi

. (3)

The radial wave functions Rni,li are assumed to be real, as is the case for the true radial wave

function of bound states in a central potential. Apart from this we do not really specify them.

In fact, it would be rather difficult to give a rigorous prescription for their determination. It will

turn out, however, that these radial wave functions enter the matrix elements only via a discrete

and rather limited set of numbers which are very often obtained by fit to experiment.

In addition to (3), we use the familiar multipole expansion of the Coulomb interaction

1

|r − r′|
=

∞
∑

k=0

k
∑

m=−k

Y ∗
k,m(Θ

′, φ′)
4π

2k + 1

rk<
rk+1
>

Yk,m(Θ, φ). (4)

We now evaluate the matrix element V (ν1, ν2, ν3, ν4) and first note that the sum over spin vari-

ables simply gives the prefactor δσ1,σ4
δσ2,σ3

. Next we pick one term with given k and m from

the multipole expansion (4) and proceed to the integration over the spatial variables (r, Θ, φ)

and (r′, Θ′, φ′). Let us first consider the angular variables (Θ, φ). Obviously these always come

as arguments of spherical harmonics and there is one from ψ∗
ν1(x), i.e., the bra, one from the

multipole expansion (4), i.e., H1, and one from ψν4(x), i.e., the ket. We thus find a factor of

∫ 2π

0

dφ

∫ 1

−1

dcos(Θ) Y ∗
l1,m1

(Θ, φ) Yk,m(Θ, φ) Yl4,m4
(Θ, φ) (5)

Such a dimensionless integral over three spherical harmonics is called a Gaunt coefficient and

can be shown to be proportional to a Clebsch-Gordan coefficient [3,4]. An interesting property

can be seen if we note the φ-dependence of Yl,m(Θ, φ) = Pl,m(Θ) e
imφ whence we find that the

Gaunt coefficient (5) is different from zero only if m1 = m4 +m. Moreover, the Θ-dependent

factors Pl,m(Θ) are all real [3,4], so that all nonvanishing Gaunt coefficients are real. In exactly

the same way the integration over (Θ′, φ′) gives

∫ 2π

0

dφ′

∫ 1

−1

dcos(Θ′) Y ∗
l2,m2

(Θ′, φ′) Y ∗
k,m(Θ

′, φ′) Yl3,m3
(Θ′, φ′), (6)

which by similar arguments is different from zero only if m2 + m = m3. Since (5) and (6)

must be different from zero for the same m in order to obtain a nonvanishing contribution we

must have m1 +m2 = m3 +m4. This is simply the condition, stated already above, that Lz be

conserved.

It remains to do the integral over the two radial variables r and r′. These two integrations cannot

be disentangled and we find a last factor

Rk(n1l1, n2l2, n3l3, n4l4) =

∫ ∞

0

dr r2
∫ ∞

0

dr′r′2Rn1l1(r)Rn2l2(r
′)

rk<
rk+1
>

Rn4l4(r)R
l
n3l3(r

′). (7)
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These integrals, which have the dimension of energy, are labeled by the multipole index k and

in the present case of Coulomb scattering within a d-shell the number of relevant multipole

orders is severely limited by the properties of the Gaunt coefficients. First, since the latter are

proportional to Clebsch-Gordan coefficients the three l-values appearing in them have to obey

the so-called triangular condition [5] whence k ≤ min(|l1 + l4|, |l2 + l3|). For a d-shell where

li = 2 it follows that k ≤ 4. Second, the parity of the spherical harmonic Ylm is (−1)l, i.e.,

even for the case li = 2. For integrals such as (5) or (6) to be different from zero the spherical

hamonic Ykm from the multipole expansion must have even parity, too, so that for Coulomb

scattering within a d-shell onlyR0,R2 andR4 are relevant. This shows that the sloppy definition

of the wave function Rni,l(r) is not a real problem – details of this wave function are irrelevant

anyway. In a way, these three parameters may be viewed as a generalization of the Hubbard-U

in that Rk is something like the ‘the Hubbard-U for k-pole interaction’.

Next, we introduce the following short notation for nonvanishing Gaunt coefficients

ck(lm; l′m′) =

√

4π

2k + 1

∫ 2π

0

dφ

∫ 1

−1

dcos(Θ) Y ∗
lm(Θ, φ) Yk,m−m′(Θ, φ) Yl′,m′(Θ, φ).

(8)

These coefficients are tabulated in Appendix 20a of the textbook by Slater [3] or Table 4.4 of

the textbook by Griffith [4], see also the Appendix of the present note. Using this notation we

can write the complete Coulomb matrix element as

V (ν1, ν2, ν3, ν4) = δσ1,σ4
δσ2,σ3

δm1+m2,m3+m4

∞
∑

k=0

ck(l1m1; l4m4) c
k(l3m3; l2m2)

Rk(n1l1, n2l2, n3l3, n4l4). (9)

To conclude this paragraph we discuss particle-hole symmetry. This phrase expresses the fact

that in a shell with angular momentum l the configurations with n electrons and 2(2l + 1)− n

electrons, i.e., n holes, have the same multiplets and that the energies of the multiplets are the

same up to an overall additive constant. We consider the following transformation:

|0〉 → |0′〉 = c†l,−l,↓c
†
l,−l,↑c

†
l,−l+1,↓c

†
l,−l+1,↑ . . . c

†
l,l,↓c

†
l,l,↑|0〉

c†ν → hν ,

cν → h†ν . (10)

This transformation replaces the empty state |0〉 by the filled shell |0′〉 and the electron cre-

ation/annihilation operators c†/c by hole annihilation/creation operators h/h†. We will now

show that the Hamiltonian H1, when expressed in terms of the hole operators, up to a constant,

has the same form as the original Hamiltonian. Once this is shown, we can define basis states

h†ν1 . . . h
†
νn|0

′〉 which have n holes in the filled shell but have exactly the same matrix elements

between them as states of n electrons.

To show the equivalence we assume that in the Coulomb Hamiltonian (2) all Fermion c-operators

are replaced by h-operators according (10). Then, in each term we can permute the Fermion
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operators according to

hν1hν2h
†
ν3
h†ν4 = h†ν4h

†
ν3
hν2hν1 + δν2ν3hν1h

†
ν4
− δν1ν3hν2h

†
ν4
+ δν2ν4h

†
ν3
hν1 − δν1ν4h

†
ν3
hν2

where the terms quadratic in h-operators originate from anticommutations. The quartic terms

now have the original form, but with the replacement c→ h and

V (ν4, ν3, ν2, ν1) → V (ν1, ν2, ν3, ν4).

As can be seen from (2), however, this replacement is equivalent to complex conjugation of

the matrix elements, and since the matrix elements V are real – see (9) – the quartic terms of

the Hamiltonian expressed in terms of the hole-operators have the same form as the original

Hamiltonian in terms of electron operators.

As for the quadratic terms it can be shown by a somewhat lengthy calculation, see for example

Chapter 14 of Slaters textbook [3], that they can be brought to the form C1n + C2 with real

constants C1 and C2 and n the number of holes. For fixed n this is just a constant shift.

This theorem shows that the energies of the d8 multiplets are, up to an additive constant, iden-

tical to those of the d2 multiplets. Some terms in the Hamiltonian which will be discussed later

do not remain invariant under the particle-hole transformation but change sign.

2.3 Solution of the Coulomb problem by exact diagonalization

We now describe how the problem of the partly filled 3d-shell can be solved numerically, us-

ing the method of exact diagonalization. As already noted this may also be viewed as first

order degenerate perturbation theory with respect to the Coulomb interaction between the elec-

trons within a given shell. Our basis states (1) obviously correspond to all possible ways of

distributing n electrons over the 10 spin-orbitals of the 3d-shell (two spin directions for each

m ∈ {−2,−1 . . . 2}). As shown in Fig. 2 we can code each of these basis states by an in-

teger 0 ≤ i ≤ 210. If we really use all these integers we are actually treating all states with

 !"  #" $ # !%&

'()"&" $"#"#"#"$"$"#"$"#"#

$"#"#"#"$"$"#"$"#"#

 !"  #" $ # !%&

$ $ # # # # # $ # $ &"!($

Fig. 2: The coding of basis states by integers and a scattering process.



8.8 Robert Eder

0 ≤ n ≤ 10 simultaneously but this will be convenient for latter generalizations. Next, for a

given initial state |ν1, ν2, . . . νn〉 we can let the computer search for all possible transitions of

the type shown in Fig. 2 and compute the corresponding matrix elements from (9) using, say,

the ck(lm; l′m′) copied from Slater’s textbook and some given R0, R2 and R4. Let us consider

the following matrix element

〈0|cµn
. . . cµ1

V (λ1, λ2, λ3, λ4) c
†
λ1
c†λ2
cλ3
cλ4

c†ν1c
†
ν2
. . . c†νn|0〉.

For this to be nonzero, the operators c†λ3
and c†λ4

must be amongst the c†νi , otherwise the annihi-

lation operators in the Hamiltonian could be commuted to the right where they annihilate |0〉. In

order for these pairs of operators to cancel each other, cλ4
must first be commuted to the position

right in front of c†λ4
. If this takes n4 interachanges of Fermion operators we get a Fermi sign of

(−1)n4 . Bringing next cλ3
right in front of c†λ3

by n3 interchanges of Fermion operators gives

a sign of (−1)n3 . Next, the creation operators c†λ1
and c†λ2

have to be commuted to the right to

stand at their proper position as required by the ordering convention – see the discussion after

(1). If this requires an additional number of Fermion interchanges n2 for c†λ2
and and n1 for c†λ1

there is an additional Fermi sign of (−1)n1+n2 . The total matrix element for this transition then

is (−1)n1+n2+n3+n4V (λ1, λ2, λ3, λ4). The correct Fermi sign thereby is crucial for obtaining

correct results and must be computed by keeping track of all necessary interchanges of Fermion

operators. This is perhaps the trickiest part in implementing the generation of the Hamilton

matrix or any other operator as a computer program.

Once the matrix has been set up it can be diagonalized numerically. Thereby it is a good check

to evaluate the expectation values of the square of the orbital angular momentum and spin, L2

and S2, which also allow to assign the standard term symbols. The operator of orbital angular

momentum can be written down by noting that the only nonvanishing matrix elements of the

spin raising/lowering operator are 〈l, m± 1|L±|l, m〉 =
√

(l ∓m)(l ±m+ 1) [5] whence

Lz =

l
∑

m=−l

∑

σ

m c†l,m,σcl,m,σ,

L+ =
l−1
∑

m=−l

∑

σ

√

(l −m)(l +m+ 1) c†l,m+1,σcl,m,σ,

and similar for L− = (L+)+. If |Ψ〉 then is a normalized eigenstate, that means a linear combi-

nation of basis states like (1), we define |Ψ1〉 = Lz|Ψ〉, |Ψ2〉 = L+|Ψ〉 and |Ψ3〉 = L−|Ψ〉 whence

〈Ψ |L2|Ψ〉 = 〈Ψ1|Ψ1〉+
1
2
(〈Ψ2|Ψ2〉+ 〈Ψ3|Ψ3〉). The procedure for S2 is completely analogous.

The resulting expectation values 〈L2〉 and 〈S2〉 first have to assume the proper quantized values

L(L+ 1) and S(S + 1) with integer L and half-integer S and secondly have to be the same for

all eigenfunctions belonging to a given degenerate eigenvalue. This – and the proper level of

degeneracy of each eigenvalue – provides a stringent test for the correctness of the program.

Table 1 gives the resulting multiplet energies for d8 and d7, the resulting L and S for each

multiplet, as well as the degeneracy n. The values of the Rk parameters have been calculated

by using Hartree-Fock wave functions for Ni2+ and Co2+ in (7). The energy of the lowest
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E S L n Term E S L n Term

0.0000 1 3 21 3F 0.0000 3/2 3 28 4F
1.8420 0 2 5 1D 1.8000 3/2 1 12 4P
1.9200 1 1 9 3P 2.1540 1/2 4 18 2G
2.7380 0 4 9 1G 2.7540 1/2 5 22 2H

13.2440 0 0 1 1S 2.7540 1/2 1 8 2P
3.0545 1/2 2 10 2D
4.5540 1/2 3 14 2F
9.9774 1/2 2 10 2D

Table 1: Energies of the d8 multiplets calculated with R2 = 10.479 eV , R4 = 7.5726 eV
(Left), and energies of the d7 multiplets calculated with R2 = 9.7860 eV , R4 = 7.0308 eV
(Right).

multiplet is taken as the zero of energy and it turns out that all energy differences depend only

on R2 and R4. Note the increasing complexity of the level schemes with increasing number

of holes in the d-shell. Moreover, the multiplets do span a range of several eV. Finally, the

Table shows that the ground states indeed comply with the first two of Hund’s rules: they have

maximum spin and maximum orbital angular momentum for this spin. It can be shown this is

indeed always the case as long as one uses Coulomb and exchange integrals with the correct,

i.e. positive, sign [3, 4].

2.4 Special case: Diagonal matrix elements

As will become apparent later, the diagonal elements 〈ν|H1|ν〉 are of particular importance,

so we give explicit expressions for them. We have seen that in a matrix element of H1 n − 2

creation operators in the ket |ν〉 = |ν1, ν2, . . . νn〉 must be simply cancelled by their Hermitean

conjugate in the bra 〈ν| without ever ‘touching’ the Hamiltonian. We may then think of the

remaining two Fermion operators, which are the ones which are paired with Fermion operators

in the Hamiltonian, as having been commuted to the first and second position in the ket. This

will give uns a Fermi sign, but in a diagonal matrix element this Fermi sign is the same for the

ket and for the bra and cancels. Accordingly the n − 2 creation and annihilation operators in

the ket and bra which are paired with their own Hermitean conjugate can be simply ignored. It

follows, that it is sufficient to compute the diagonal matrix element of H1 between products of

only two Fermion operators. Using (2) one finds

〈0|cν2cν1 H1 c
†
ν1
c†ν2|0〉 =

1

2
[V (ν1, ν2, ν2, ν1) + V (ν2, ν1, ν1, ν2)

−V (ν1, ν2, ν1, ν2)− V (ν2, ν1, ν2, ν1)]

= V (ν1, ν2, ν2, ν1)− V (ν1, ν2, ν1, ν2).

Here the identity V (ν1, ν2, ν3, ν4) = V (ν2, ν1, ν4, ν3), which follows from exchanging the inte-

gration variables x ↔ x′ in (2), has been used. The second term in the last line is called the
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exchange integral and is different from zero only if σ1 = σ2. From (9) we have

V (ν1, ν2, ν2, ν1) =

∞
∑

k=0

ck(l1m1; l1, m1) c
k(l2m2; l2, m2) R

k(n1l1, n2l2, n2l2, n1l1),

V (ν1, ν2, ν1, ν2) = δσ1σ2

∞
∑

k=0

ck(l1m1; l2, m2) c
k(l1m1; l2, m2) R

k(n1l1, n2l2, n1l1, n2l2).

It is customary to introduce the following abbreviations

ak(lm; l′m′) = ck(lm; lm) ck(l′m′; l′m′)

bk(lm; l′m′) = ck(lm; l′m′) ck(lm; l′m′)

F k(nl;n′l′) = Rk(nl, n′l′, n′l′, nl)

Gk(nl;n′l′) = Rk(nl, n′l′, nl, n′l′)

The F k and Gk are called Slater-Condon parameters. It can be easily verified using (7) that F k

is a Coulomb-integral whereas Gk is an exchange integral. For the case of a partly filled d-shell

all ni and li are equal so for each k there is only one F k and one Gk and, in fact, Gk = F k. The

ak and bk are listed for example in Appendix 20a of Slater’s textbook [3] or in Appendix B of

the lecture notes [6].

Finally, since ν1 and ν2 can be any two out of the n Fermion operators in the ket, the total

diagonal matrix element of H1 is obtained by summing over all
n(n−1)

2
pairs:

〈ν|H1|ν〉 =
∑

i<j

∞
∑

k=0

(

ak(limi; ljmj) F
k − δσiσj

bk(limi; ljmj) G
k
)

(11)

As will be seen in the next paragraph, this formula is sufficient for the analytical calculation of

multiplet energies.

2.5 Analytical calculation of multiplet energies by diagonal sum-rule

The exact diagonalization procedure outlined above can be used to obtain all eigenenergies and

the corresponding eigenstates of the Coulomb problem. It is a flexible numerical method of

solution into which crystalline electric field, hybridization with ligand orbitals, spin-orbit cou-

pling, and Coulomb interaction with holes in core shells, which is important for the discussion

of X-ray absorption spectra, can be incorporated easily. On the other hand, multiplet theory

was invented during the 1920’s to explain the spectra of free atoms or ions, and at that time

computers were not available. It turns out, however, that despite the apparent complexity of the

problem the energies of the multiplets can be obtained analytically and this will be explained in

the following.

The first ingredient is the so-called diagonal sum-rule. This is simply the well-known theorem

that the sum of the eigenvalues of a Hermitean matrix H is equal to its trace tr(H) =
∑

iHii.

This follows immediately by noting that the trace of a matrix is invariant under basis transfor-

mations, i.e., tr(H) = tr(UHU−1) for any unitary matrix U . By choosing U to be the matrix

which transforms to the basis of eigenvectors of H the diagonal sum-rule follows.
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Next, one uses the fact that the Hamilton matrix is block-diagonal, with blocks defined by

their values of Lz and Sz. The diagonal sum-rule then can be applied for each of the blocks

separately. In addition, the dimension of these blocks decreases as Lz and Sz approach their

maximum values so that the number of multiplets contained in a given block decreases.

As an example for the procedure let us consider a p2 configuration (by particle-hole symmetry

this is equivalent to a p4 configuration). We write the Fermion operators in the form cl,m,σ,

i.e., we suppress the principal quantum number n. Since we have 6 possible states for a single

p-electron – three m-values with two spin directions per m-value – we have 15 states for two

electrons. The triangular condition implicit in the Gaunt coefficients now restricts the multipole

order k to be ≤ 2. Again, only even k contribute, so that we have two Slater-Condon parameters,

F 0 and F 2. The following Table which is taken from Slater’s textbook [3] gives the values of

the coefficients ak(1, m; 1, m′) and bk(1, m; 1, m′): We first consider the sector with Sz = 1.

m m′ a0 25a2 b0 25b2

±1 ±1 1 1 1 1
±1 0 1 −2 0 3
0 0 1 4 1 4

±1 ∓1 1 1 0 6

Table 2: The coefficients ak and bk for two p-electrons.

The highest possible Lz is Lz = 1 which is obtained for a single state, |1〉 = c†1,0,↑c
†
1,1,↑|0〉.

We can conclude that one of the multiplets is 3P and its energy is equal to the diagonal matrix

element of |1〉 which by (11) is

E(3P ) =
∑

k∈{0,2}

(ak(1, 1; 1, 0)− bk(1, 1; 1, 0)) F k = F 0 −
5

25
F 2.

We proceed to the sector Sz = 0. Here the highest possible Lz is Lz = 2 again obtained for

only single state namely c†1,1,↓c
†
1,1,↑|0〉. We conclude that we also have 1D with energy

E(1D) =
∑

k∈{0,2}

ak(1, 1; 1, 1) F k = F 0 +
1

25
F 2.

The two multiplets that we found so far, 1D and 3P , comprise 5 + 9 = 14 states - we thus

have just one state missing, which can only be 1S. To find its energy, we need to consider the

sector Sz = 0 and Lz = 0. There are three states in this sector: c†1,0,↓c
†
1,0,↑|0〉, c

†
1,−1,↑c

†
1,1,↓|0〉 and

c†1,−1,↓c
†
1,1,↑|0〉. Two out of the three eigenvalues of the 3 × 3 Hamiltonian in the basis spanned

by these states must be E(3P ) and E(1D), because these multiplets also have members with

Sz = 0 and Lz = 0. To obtainE(1S) we accordingly compute the sum of the diagonal elements

of the 3× 3 matrix and set

E(3P ) + E(1D) + E(1S) =
∑

k∈{0,2}

(ak(1, 0; 1, 0) + 2 ak(1,−1; 1, 1)) F k

→ E(1S) = F 0 +
10

25
F 2.
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This example shows the way of approach for multiplet calculations using the diagonal sum-

rule: one starts out with a state with maximum Lz or Sz for which there is usually only a single

basis state. This basis state belongs to some multiplet whose energy simply equals the ‘diagonal

element’ of the 1 × 1 Hamiltonmatrix. Then one proceeds to lower Sz and/or Lz and obtains

energies of additional multiplets by calculating the trace of the respective block of the Hamilton

matrix and using the known energies of multiplets with higher Lz or Sz. It turns out that in this

way the energies of all multiplets involving s, p, d, or f electrons can be expressed in terms of

the Slater-Condon parameters by analytical formulas. A rather complete list can be found for

example in the Appendices 21a and 21b of the textbook by Slater [3].

One point which may be helpful when reading the literature is the following: for the special

case of a partly filled d-shell many authors use the so-called Racah parameters A, B and C

instead of the 3 Slater-Condon parameters F 0, F 2 and F4. The rule for conversion is simple:

A = F 0 −
49

441
F 4 B =

1

49
F 2 −

5

441
F 4 C =

35

441
F 4.

The Racah-parameters have been introduced because the analytical formulas for the energies

of the multiplets of dn as derived by the diagonal sum-rule look nicer when they are expressed

in terms of them. For example Griffith [4] gives multiplet energies in terms of the Racah-

parameters in his Table 4.6.

As stated above, multiplet theory was originally developed to discuss the spectra of atoms or

ions in the gas phase. The question then arises, as to what are the values of the Slater-Condon

parameters. Of course one might attempt to compute these parameters using, e.g., Hartree-Fock

wave functions in the expression (7). It turns out, however, that very frequently the number of

multiplets considerably exceeds the number of relevant Slater-Condon parameters. In the case

of the p2 configuration we had three multiplets, 3P , 1D and 1S, but only two Slater-Condon

parameters F 0 and F 2. This would suggest to obtain the values of the Slater-Condon parameters

by fit to the spectroscopic data and the textbook by Slater [3] contains a vast amount of data

which are analyzed in this way. For the p2 configuration we restrict ourselves to a simple cross

check. Using the above formulae and eliminating the F ’s we find:

r =
E(1S)−E(1D)

E(1D)− E(3P )
=

3

2
. (12)

This relation should be obeyed by all ions with two p-electrons outside filled shells, e.g., the

series C, N1+ and O2+ or two holes in a filled p-shell such as the series O and F+. The energies

of these multiplets have been measured with high precision and are available in databases [7]

and Table 3 shows the resulting values of r. For the first row elements the deviation is about

25%, for the second row only about 5%. We recall that multiplet theory in its simplest form

corresponds to first order degenerate perturbation theory, whereH0 contains the orbital energies

and H1 the Coulomb interaction between electrons in one shell. It therefore ignores various

scattering processes which may lead to inaccuracies.
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p2 C N+ O2+ Si P+ S2+

1.124 1.134 1.130 1.444 1.430 1.399

p4 O F+ S Cl+

1.130 1.152 1.401 1.392

Table 3: The ratio (12) for various Atoms and Ions with p2 and p4 configurations ouside a

closed shell.

2.6 Spin-orbit coupling

As the last problem in this section on free atoms or ions we briefly discuss spin-orbit coupling.

The corresponding Hamiltonian is

HSO = λSO

n
∑

i=1

Li · Si = λSO

n
∑

i=1

(

Lz
iS

z
i +

1

2
(L+

i S
−
i + L−

i S
+
i )

)

.

where Li (Si) are the operator of orbital (spin) angular momentum of the ith electron. The first

term on the right hand side can be translated into second quantized form easily:

H
‖

SO =
λSO
2

l
∑

m=−l

m (c†l,m,↑cl,m,↑ − c†l,m,↓cl,m,↓). (13)

As regards the transverse part, we note [5] that the only nonvanishing matrix elements of the or-

bital angular momentum raising/lowering operator are 〈l, m±1|l±|l, m〉 =
√

(l ∓m)(l ±m+ 1)

whence

H⊥
SO =

λSO
2

l−1
∑

m=−l

√

(l −m)(l +m+ 1) (c†l,m+1,↓cl,m,↑ + c†l,m,↑cl,m+1,↓). (14)

It is easy to see that HSO changes sign under the particle-hole transformation (10). This means

that, e.g., the multiplets of dn and d10−n have the same Coulomb energies, but the splitting due

to spin-orbit coupling is opposite. Since the value of λSO is positive [5], this means that for less

than half-filled shells the ground state has the minimum value of J possible, whereas for more

than half-filled shells the ground state has the maximum possible value of J , i.e., Hund’s third

rule.

Spin-orbit coupling can be implemented rather easily into the numerical procedure, the main

difficulty again is keeping track of the Fermi sign. Due to the fact that neither Lz nor Sz are

conserved anymore the corresponding reduction of the Hilbert space is no longer possible. In

transition metal compounds the spin-orbit coupling constant λSO for the 3d shell is rather small,

of order λSO ≈ 0.05 eV. Still, if the ground state of a given ion has a nonvanishing spin, spin

orbit coupling will determine how this spin orients itself in an ordered phase, i.e., magnetic

anisotropy. In the rare earth elements spin-orbit coupling in the 4f shell is of comparable mag-

nitude as the Coulomb repulsion. There, taking spin-orbit coupling into account is mandatory.
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3 Effects of the environment in the crystal

So far we have considered a single ion in vacuum. Clearly, one might ask if the results obtained

in this limit retain any relevance once the ion is embedded into a solid and this will be discussed

in the following. It will become apparent that the small spatial extent of the 3d radial wave

function R3,2(r) strongly suppresses any effect of the environment in a solid, so that in many

cases the main effect of embedding the ion into a solid is the partial splitting of the multiplets

of the free ion.

In many transition metal compounds the 3d ions are surrounded by an approximately octahedral

or tetrahedral ‘cage’ of nonmetal ions such as Oxygen, Sulphur, Arsenic. An example for

octahedral coordination is provided by the perovskite structure. These nearest neighbor ions,

which will be called ‘ligands’ in the following, have a twofold effect: first, they produce a static

electric field – the so-called crystalline electric field or CEF – and second there may be charge

transfer that means electrons from a filled ligand orbital may tunnel into a 3d-orbital of the

transition metal ion due to the overlap of the respective wave functions.

3.1 Crystalline electric field

Let us first consider the crystalline electric field, whereby we model the ligands simply by nc

point charges Zie at the positions Ri. We denote the electrostatic potential due to these point

charges by VCEF(r) and find for the respective Hamiltonian [2]

HCEF =
∑

i,j

VCEF(νi, νj) c
†
νi
cνj ,

VCEF(ν1, ν2) =

∫

dx ψ∗
ν1
(x) VCEF(r) ψν2

(x). (15)

The radial dependence of the 3d wave functions ψν(x) is given by R3,2(r) which differs appre-

ciably from zero only in a narrow range r ≤ r3d. Assuming that r3d < Ri for all i we obtain

VCEF(r) from the multipole expansion (4)

VCEF(r) = −
Zave

2

Rav

∞
∑

k=0

k
∑

m=−k

γk,m

(

r

Rav

)k
√

4π

2k + 1
Yk,m(Θ, φ),

γk,m =

√

4π

2k + 1

nc
∑

i=1

Zi

Zav

(

Rav

Ri

)k+1

Y ∗
k,m(Θi, φi). (16)

Here we have introduced the avergage distance and charge of the ligands, Rav and Zav . In

calculating the matrix elements VCEF(ν1, ν2) the integral over the polar angles (Θ, φ) again

gives a Gaunt coefficient. For a d-shell it again follows from the triangular condition that k ≤ 4

and from parity that k be even. The term with k = 0 gives only a constant shift and can be
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omitted so that

VCEF(ν1, ν2) =
∑

k∈{2,4}

γk,m1−m2
ck(2, m1; 2, m2) Ik,

Ik = −
Zave

2

Rav

(

r3d
Rav

)k ∫ ∞

0

dρ ρk+2 R̃2
nl(ρ),

with the rescaled and normalized radial wave function R̃nl(ρ) = r
3/2
3d Rnl(ρr3d). Note that Ik has

the correct dimension of energy and that the integral is dimensionless and of order unity. For

r3d/Rav ≪ 1, which we expect to hold due to the small extent of the 3d radial wave function,

the sum can be terminated after the lowest k > 0 for which there is a nonvanishing contribution,

i.e., where γk,m does not vanish. As was the case for the Coulomb interaction, the CEF can be

described by very few – in fact only one if only the lowest order in r3d/Rav is kept – parameters

which depend on the radial wave function R3,2(r). These parameters again are frequently fitted

to experiment.

The actual form of the matrix elements depends on the geometry of the cage of ligands via the

sum in γk,m. For the frequently considered case of an ideal octahedron of identical charges

where Ri = R = Rav and Zi = Z = Zav one finds γk,m = 0 for 0 < k < 4 and

γ4,4 =

√

35

8

γ4,0 =

√

49

4
(17)

as well as γ4,−4 = γ4,4. Using the tabulated values of the c4(2, m; 2, m′) (see Appendix),

VCEF(ν1, ν2) can be written down as a matrix in the indices m1 and m2:

VCEF(ν1, ν2) =
I4
6















1 0 0 0 5

0 −4 0 0 0

0 0 6 0 0

0 0 0 −4 0

5 0 0 0 1















. (18)

This matrix has the eigenvalues I4 (twofold degenerate) and −2I4/3 (threefold degenerate). If

the ligands are O2− ions, Z = −2 and I4 > 0. For historical reasons the splitting between the

eigenvalues is frequently called 10Dq so that in our point charge model Dq = I4/6. The two

eigenfunctions belonging to the eigenvalue 6Dq are the real valued eg-type spherical harmonics,

the three eigenvalues belonging to the eigenvalue −4Dq are the real valued t2g-type spherical

harmonics, see the lecture by E. Pavarini. Lastly, we note that HCEF changes sign under the

particle-hole transformation (10). In a solid the multiplets of dn and d10−n thus are split in

opposite ways.

The implementation of the CEF in an exact diagonalization program is rather obvious. As an

example Fig. 3 shows the eigenenergies of the d8 and d7 configuration with Coulomb interaction

and octahedral CEF as 10Dq is increasing. Such plots of crystal field levels versus 10Dq are
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Fig. 3: Examples for Tanabe-Sugano diagrams: the splitting of multiplets of d8 (left) and d7

(right) for increasing 10Dq. The Slater-Condon parameters have the values given in Table

2. The symbols in the diagram for d8 give the energies calculated analytically by use of the

Wigner-Eckart theorem.

called Tanabe-Sugano diagrams after the authors who first derived them [8]. One realizes that

the highly degenerate multiplets of the free ion are split into several levels of lower degeneracy

by the CEF, which is to be expected for a perturbation which lowers the symmetry. Note that

the components into which a given multiplets splits up all have the same spin as the multiplet

itself. This is because the spin of an electron does not ‘feel’ an electrostatic potential – or, more

precisely, because the operator of total spin commutes with any operator which acts only on

the real-space coordinates ri of the electrons. Only the introduction of spin-orbit coupling, as

discussed in the preceding section, leads to a coupling between spin and environment of a given

ion and thus may lead to magnetic anisotropy.

3.2 Analytical results by application of the Wigner-Eckart theorem

In addition to the purely numerical approach, many results can be obtained by invoking the

Wigner-Eckart theorem. To formulate this theorem we first need to define a tensor opera-

tor. Let J be some angular momentum operator with eigenfunctions |j,m〉. This means

that the three components of J have to obey the commutation relations [Jα, Jβ] = iǫαβγJγ .

It follows [5] that the kets |j,m〉 obey J2|j,m〉 = j(j + 1)|j,m〉, Jz|j,m〉 = m|j,m〉 and

J±|j,m〉 =
√

(j ∓m)(j ±m+ 1)|j,m± 1〉.

A rank-j tensor operator then is a set of 2j + 1 operators Oj,m which obey [Jz, Oj,m] = mOj,m

and [J±, Oj,m] =
√

(j ∓m)(j ±m+ 1)Oj,m±1. This means that these operators transform

amongst themselves like eigenfunctions of angular momentum. Note that a tensor operator al-

ways needs to refer to some angular momentum operator. As an example we choose J to be

the orbital angular momentum of a single particle. Then, the set of 2l + 1 spherical harmon-

ics Yl,m(Θ, φ) forms a rank-l tensor operator. Namely by acting with a component of J onto
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the product Yl,m(Θ, φ)|Ψ (r, Θ, φ)〉 with an arbitrary wave function Ψ , the differential opera-

tors included in J will always produce two terms JYl,m|Ψ〉 = (JYl,m)|Ψ〉 + Yl,mJ |Ψ〉 so that

[J, Yl,m]|Ψ〉 = (JYl,m)|Ψ〉 and since |Ψ〉 is arbitrary the tensor operator property of Yl,m follows.

In exactly the same way, if J is the total angular momentum of n electrons the 2l+ 1 functions
∑n

i=1 Yl,m(Θi, φi) form a rank-l tensor operator as well. For a 3d shell with n electrons the

operator describing the CEF is HCEF =
∑n

i=1 VCEF(ri) with VCEF(r) given by (16). HCEF

therefore is a sum of components of a tensor operator and this property makes the Wigner-

Eckart theorem useful in the present case.

The theorem itself states that the matrix elements of any two rank-j tensor operators between

eigenstates of their respective angular momentum operator are proportional to one another,

whereby the constant of proportionality is independent of the values of m

〈α, j′, m′|OJ,M |α, j,m〉 = C(α, β, j′, j, J)〈β, j′, m′|ŌJ,M |β, j,m〉.

The symbols α and β stand for some unspecified ‘additional’ quantum numbers. Note that

neither m′, nor M , nor m appear in the constant of proportionality C. The deeper reason for

this theorem is that the dependence of the matrix elements on m′, M and m is given solely by

Clebsch-Gordan coefficients. More precisely, an alternative way of stating the theorem [5] is

that

〈α, j′, m′|OJ,M |α, j,m〉 = A(α, j, j′, J)〈j′m′Jj|JMjm〉

where 〈j′m′Jj|JMjm〉 is a Clebsch-Gordan coefficient. The above version then follows with

C(α, β, j, j′, J) = A(β, j, j′, J)/A(α, j, j′, J). The quantity A(α, j, j′, J) is known as the re-

duced matrix element.

To illustrate the application of the theorem we now use it to calculate the splitting of the 3F

ground state multiplet of d8, which is equivalent to d2, in ideal octahedral coordination. On the

left hand side we accordingly choose |α, j,m〉 = |3F,m〉 where |3F,m〉 is the member of the
3F multiplet with Lz = m and Sz = 1 (the value of Sz is arbitrary and the final results of course

must not depend on this choice). The |3F,m〉 are eigenfunctions of the total orbital momentum

operator. For OJM we choose
∑n

i=1 VCEF(ri), where VCEF(r) is the CEF potential (16) and the

sum is over all n electrons. For ideal octahedral coordination this is a linear combination of

components of a tensor operator of rank 4, see (16) and (17).

On the right hand side we choose |β, j,m〉 = Y3,m(Θ, φ) and for the tensor operator ŌJ,M the

expression

ṼCEF(Θ, φ) =

4
∑

m=−4

γ4,mY4,m(Θ, φ),

i.e., the dimensionless version of the CEF potential (16) but now for a single particle. The

Wigner-Eckart theorem then tells us that the secular determinant of the CEF potential between

the |3F,m〉 is, up to a constant factor C, the same as the matrix 〈Y3,m′|ṼCEF|Y3,m〉. Above

we found that the matrix elements of ṼCEF are γ4,m′−m c4(3, m′; 3, m) and using the tabulated
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c4(3m; 3m′) (see Appendix) this becomes

ṼCEF =
7

66

























3 0 0 0
√
15 0 0

0 −7 0 0 0 5 0

0 0 1 0 0 0
√
15

0 0 0 6 0 0 0
√
15 0 0 0 1 0 0

0 5 0 0 0 −7 0

0 0
√
15 0 0 0 3

























. (19)

Since we are not interested in constant factors we drop the factor of 7/66. The matrix on the

right hand side then can be decomposed into 2 × 2 blocks and we obtain the eigenvalues −12

(once), −2 (three times) and +6 (three times). The Wigner-Eckart theorem now tells us that

the 3F ground state multiplet of both d2 and of d8 splits up in the same way, namely into three

levels, with degeneracies 1, 3 and 3 and energies −12C,−2C and 6C.

To ‘gauge’ the calculation and determine the constant C we now need to evaluate the CEF en-

ergy of one particular state of the true 3F multiplet. To that end we note that the CEF eigenstates

originating from the 3F multiplet are expressed in terms of the |3F,m〉 in exactly the same way

as the eigenstates of the matrix (19). By inspection of the matrix (19) we see, however, that the

eigenvalue +6 has one particularly simple eigenvector, namely (0, 0, 0, 1, 0, 0, 0). This corre-

sponds to the state |3F,m = 0〉. This special state now can be calculated as follows: by starting

with the member of 3F with maximum m, namely |3F, 3〉 = c†2,1,↑c
†
2,2,↑|0〉, acting repeatedly

with L− and normalizing we can work ourselves down to m = 0:

|3F, 3〉 = c†2,1,↑c
†
2,2,↑|0〉,

|3F, 2〉 = c†2,0,↑c
†
2,2,↑|0〉,

|3F, 1〉 =

(

√

2

5
c†2,0,↑c

†
2,1,↑ +

√

3

5
c†2,−1,↑c

†
2,2,↑

)

|0〉,

|3F, 0〉 =

(

√

4

5
c†2,−1,↑c

†
2,1,↑ +

√

1

5
c†2,−2,↑c

†
2,2,↑

)

|0〉.

From the Wigner-Eckart theorem we now know that the last state, |3F, 0〉, is an eigenstate of

the Coulomb energy plus CEF. Accordingly, its CEF-energy is simply the expectation value

〈3F, 0|HCEF|
3F, 0〉 with HCEF given by (15) with (18). This is easily calculated and we obtain

the constant C as:

6C =
I4
6

(

4

5
(−8) +

1

5
2

)

= −I4,

so that C = −I4/6 = −Dq. We thus find that in octahedral coordination 3F of d2 splits into

three levels with E = −6Dq (3-fold degenerate), E = 2Dq (3-fold) and E = 12Dq (1-fold).

For d8 particle-hole symmetry tells us that the sign of the CEF splitting has to be inverted

whence we find the energies and degeneracies E = −12Dq (1-fold), E = −2Dq (3-fold) and

E = 6Dq (3-fold). This splitting of the lowest multiplet can be nicely seen in Fig. 3. In the
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result obtained by exact diagonalization the upper level with E = 6Dq ‘bends downward’ for

larger 10Dq. The reason is that the CEF mixes the 3F and 3P multiplets and the resulting level

repulsion for large 10Dq leads to the deviation from the linear behaviour, which gives only

the asymptotic behaviour for 10Dq → 0. Note the tremendous simplification which occurs

in this way, because the |3F,m〉 actually are linear combinations of Slater-determinants (1)

with coefficients which have to be obtained from diagonalizing the full Coulomb-Hamiltonian!

Historically, by using the Wigner-Eckart theorem together with skilfull application of group

theory, the energies and wave functions of transition metal ions in various coordinations in fact

were calculated analytically and without the use of a computer. This is how the Tanabe-Sugano

diagrams were obtained originally.

3.3 Charge transfer

We proceed to a discussion of charge transfer. This means that electrons can tunnel from lig-

and orbitals into 3d orbitals, so that the number of electrons in the d-shell fluctuates. To deal

with this we need to enlarge our set of Fermion operators c†ν/cν by operators l†µ/lµ which cre-

ate/annihilate electrons in orbitals centered on ligands. The compound index µ for the ligand

operators also must include the index i of the ligand: µ = (i, n, l,m, σ). The Hamiltonian then

would read

H =
∑

i,j

(

tνi,µj
c†νilµj

+H.c.
)

+
∑

j

ǫµj
l†µj
lµj

+
∑

i

ǫνic
†
νi
cνi. (20)

The hybridization integrals tνi,µj
may be expressed in terms of relatively few parameters by

using the famous Slater-Koster tables, see the lecture by E. Pavarini. For example, if only the

p-orbitals of the ligands are taken into account, which applies to oxides of transition metals

such as perovskites, there are just two relevant parameters, Vpdσ and Vpdπ. Estimates for these

may be obtained from fits to LDA band structures. If electrons are allowed to tunnel between

d-shell and ligand orbitals the site energies ǫµj
become relevant as well. Estimating the d-shell

site energies from LDA calculations is tricky due to the double counting problem: the energies

of the d-orbitals extracted from band structure calculations involve the Hartree-potential, which

is also included in the diagonal matrix elements of the multiplet Hamiltonian and thus must be

subtracted in some way. Recently, considerable interest has emerged in the determination of

such parameters.

The use of the Slater-Koster tables brings about a slight complication in that these are formu-

lated in terms of the real-valued spherical harmonics Yα(Θ, φ) which are linear combinations of

the original Y2,m(Θ, φ). However, these sets of functions are related by a simple unitary trans-

formation. We again specialize to the case where the ligands are oxygen ions which form an

ideal octahedron with the transition metal ion in the center of gravity of the octahedron. In this

case the number of relevant ligand orbitals can be reduced considerably. Namely, for each of

the real-valued transition metal 3d orbitals Yα(Θ, φ) there is precisely one linear combination of

O 2p orbitals on the ligands, Lα, which hybridizes with them. The Hamiltonian then simplifies
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to

Hhyb = 2 Vpdπ
∑

α∈t2g

∑

σ

(

c†α,σlασ +H.c.
)

+
√
3 Vpdσ

∑

α∈eg

∑

σ

(

c†α,σlασ +H.c.
)

.

By inserting the unitary transformation c†α =
∑2

m=−2 Uα,mc
†
m,σ to transform to the original

complex spherical harmonics this is easily included into the formalism. In the exact diagonal-

ization program this means that the number of orbitals has to be doubled, because we have the

five combinations Lα, each of which can accomodate an electron of either spin direction. This

leads to a quite drastic increase in the dimension of the Hilbert space but using, e.g., the Lanc-

zos algorithm, see the lecture by E. Koch [9], the problem still is tractable. Hhyb then simply

transfers electrons from ligand orbitals to d-orbitals and vice versa and is easy to implement.

4 Cluster calculation of photoemission and X-ray absorption

spectra

In the preceding section we have discussed the general formalism for exact diagonalization of a

cluster consisting of a transition metal ion and its nearest neighbor ions (‘ligands’). Thereby the

following terms were included into the Hamiltonian: the Coulomb repulsion between the elec-

trons in the 3d shell, the electrostatic field produced by the ligands, charge transfer between the

ligands and the transition metal d orbitals and, possibly, the spin orbit coupling in the 3d shell.

By diagonalizing the resulting Hamilton matrix we can obtain the eigenfunctions |Ψν〉 and their

energies Eν and these can be used to simulate various experiments on transition metal com-

pounds such as electron spectroscopy, optical spectroscopy, electron spin resonance or inelastic

neutron scattering. It has turned out that these simulations are in fact spectacularly successful.

In many cases calculated spectra can be overlayed with experimental ones and agree peak by

peak. Nowadays complete packages for such cluster simulations are available, and these are

used routinely for the interpretation of, e.g., electron spectroscopy [10]. This shows in partic-

ular that the multiplets of the free ion – suitably modified by the effects of crystalline electric

field and charge transfer – persist in the solid and thus are essential for a correct description

of transition metal compounds. In the following, we want to explain this in more detail and

consider photoelectron spectroscopy. In this lecture only a very cursory introduction can be

given, there are however several excellent reviews on the application of multiplet theory to the

simulation of photoelectron spectroscopy [11–13].

In a valence-band photoemission experiment electromagnetic radiation impinges on the sample

which then emits electrons – this is nothing but the well-known photo-electric effect. ‘Valence

band photoemission’ means that the photoelectrons are ejected from states near the Fermi level

so that, to simplest approximation, an ion in the solid undergoes the transition dn → dn−1 (note

that this ignores charge transfer, which in fact is quite essential!). What is measured is the cur-

rent I of photoelectrons as a function of their kinetic energy Ekin and possibly the polar angles

(Θ, φ) relative to the crystallographic axes of the sample. Frequently one measures the angle-

integrated spectrum, obtained by averaging over (Θ, φ), or rather: measuring a polycrystalline
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sample. A further parameter which strongly influences the shape of the spectrum I(Ekin) is

the energy hν of the incident photons. At sufficiently high hν the photoionization cross-section

for the transition metal 3d-orbitals is significantly larger than for the other orbitals in the solid

so that the photoelectrons in fact are emitted almost exclusively the 3d-orbitals. This is often

called XPS – for X-ray photoemission spectroscopy.

The theory of the photoemission process is complicated [14, 15] but with a number of simpli-

fying assumptions one can show that the photocurrent I(Ekin) measured in an angle-integrated

photoemission at high photon energy is proportional to the so-called single-particle spectral

function

A(ω) = −
1

πZ
ℑ

2
∑

m=−2

∑

µ

e−βEµ

〈

Ψµ

∣

∣

∣

∣

c†3,2,m,σ

1

ω + (H −Eµ) + i0+
c3,2,m,σ

∣

∣

∣

∣

Ψµ

〉

=
1

Z

2
∑

m=−2

∑

µ,ν

e−βEµ |〈Ψν|c3,2,m,σ|Ψµ〉|
2δ(ω + (Eν −Eµ)). (21)

Here H is the Hamiltonian describing the solid, |Ψµ〉 and Eµ denote the eigenstates of H with

a fixed electron number Ne. Moreover β = (kBT )
−1 where kB is the Boltzmann constant, T

the temperature, and Z =
∑

µ exp(−βEµ). The operator c3,2,m,σ removes an electron from a

3d-orbital. In the thermodynamical limit the results will not depend on the position of the ion

in the sample and accordingly we have suppressed the site index on c3,2,m,σ. After removal of

the electron the sample then remains in an eigenstate |Ψν〉 with Ne−1 electrons and energy Eν .

The relation between Ekin and ω follows from energy conservation:

hν + Eµ = Ekin + Φ+ Eν

The left and right hand sides of this equation are the energies of the system before (solid+photon)

and after (solid + photo-electron) the photoemission process. Here Φ is the so-called work

function, i.e., the energy needed to transverse the potential barrier at the surface of the solid

(this needs to be introduced because the measured kinetic energy Ekin is the one in vac-

uum). It follows from the δ function in the second line of (21) that we have to put I(Ekin) ∝

A(Ekin + Φ− hν).

We now make the approximation, introduced by Fujimori and Minami [16], and evaluate A(ω)

by replacing the energies and wave functions of the solid by those of the octahedral cluster.

If we moreover let T → 0 the sum over µ becomes a sum over the m denerate gound states

of the cluster and e−βEµ/Z → 1/m. The underlying assumption is that the coupling of the

clusters to a solid will predominantly broaden the ionization states of the cluster to ‘bands’ of

not too large bandwidth. This broadening is usually simulated by replacing the δ-functions by

Lorentzians. To compare to a measured spectrum the calculated spectrum often is convoluted

with a Gaussian to simulate the finite energy resolution of the photoelectron detector. The upper

version of the equation (21) is suitable for using the Lanczos algorithm whereas the lower one

is better suited if the eigenstates and energies have been obtained by full diagonalization of the

eigenvalue problem.
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Fig. 4: Comparison of experimental valence band photoemission spectra and results from clus-

ter calculations: NiO (left), CoO(center), MnO(right). Reprinted with permission from [16],

Copyright 1984, from [17], Copyright 1991, and from [18], Copyright 1990 by the American

Physical Society.

Fig. 4 shows various examples from the literature where measured XPS-spectra are compared to

spectra calculated by the procedure outlined above. The sticks in some of the theoretical spectra

mark the final state energies Eν and are labeled by the symbols of the irreducible representation

of the octahedral group, see the lecture by E. Pavarini, to which the corresponding final state

wave function |Ψν〉 belongs. The figure shows that the agreement between the theoretical spec-

tra and experiment is usually rather good. It is interesting to note that the three oxides shown in

the figure all have the same crystal structure, namely the rock-salt structure. Since, moreover,

Ni, Co and Mn are close neighbors in the periodic table, LDA predicts almost identical band

structures, the main difference being an upward shift of the chemical potential with increasing

nuclear charge of the transition metal. Despite this, the XPS spectra differ considerably and

this change is reproduced very well by the theoretical spectra. This is clear evidence that the

shape of the spectra is determined not so much by the single particle band structure, but by the

multiplet structure of the transition metal ion, which in turn depends on its valence and spin

state.

Next, we discuss X-ray absorption. In an X-ray absorption experiment an electron from either

the 2p or the 3p shell absorbs an incoming X-ray photon and is promoted to the 3d-shell via a

dipole transition. In terms of electron configurations, the transition thus is 2p63dn → 2p53dn+1

(for definiteness we will always talk about the 2p shell from now on). Of particular interest

here is the range of photon energies just above the threshold where the energy of the photon is

sufficient to lift the core electron to an unoccupied state. Above this threshold the X-ray absorp-

tion coefficient κ(ω) rises sharply, which is called an absorption edge. The energy of the edge

thereby is characteristic for a given element so that one can determine unambiguously which

atom in a complex solid or molecule is probed. The ω-dependence of κ(ω) in an energy range

of a few eV above the absorption edge – called NEXAFS for ‘Near Edge X-ray Absorption Fine



Multiplets 8.23

Struture’ – contains information about the initial state of the 3d shell, that means its valence and

spin state, and this information can be extracted by using cluster calculations. The measured

quantity in this case is

κ(ω) = −
1

πZ
ℑ

2
∑

m=−2

∑

µ

e−βEµ

〈

Ψµ

∣

∣

∣

∣

D(n)
1

ω − (H − Eµ) + i0+
D(n)

∣

∣

∣

∣

Ψµ

〉

=
1

Z

2
∑

m=−2

∑

µ,ν

e−βEµ|〈Ψν|D(n)|Ψµ〉|
2δ(ω − (Eν − Eµ)). (22)

This is very similar to the single-particle spectral function (21), the only difference is that now

the dipole operator D(n) (which will be defined later on) appears in place of the electron anni-

hilation operator c3,2,m,σ. This also implies that the number of electrons in the final states |Ψν〉

now is equal to that in the initial states |Ψµ〉.

We again make the approximation to use the octahedral cluster to simulate this experiment. The

initial state for this experiment – 2p63dn – is simply the ground state of the cluster. More diffi-

cult is the final state, 2p53dn+1. This has a hole in the 2p shell so that the single-particle basis

has to be enlarged once more to comprise also the 6 spin-orbitals available for 2p electrons. We

may restrict the basis, however, to include only states with 5 electrons in these 6 spin-orbitals,

so that the dimension of the Hilbert space increases only by a moderate factor of 6. The spin-

orbit coupling constant JSO,2p in the 2p shell of 3d transition metals is of order 10 eV so we

definitely need to include spin orbit coupling in the 2p-shell. Here the forms (13) and (14) with

l = 1 can be used. The orbital angular momentum l = 1 and the spin of 1
2

can be coupled to a

total angular momentum of either J = 3
2

or J = 1
2
. Using the identity

〈L · S〉 =
1

2
(J(J + 1)− L(L+ 1)− S(S + 1))

we expect a splitting of E 3

2

−E 1

2

= λSO

2
(15
4
− 3

4
) = 3λSO

2
. This means that we actually have two

edges, separated by 3λSO

2
≈ 10 − 15 eV for 2p core levels. The one for lower photon energy –

called the L3 edge – is due to electrons coming from 2P3/2, the one for higher photon energy

(L2-edge) due to electrons from 2P1/2. Since there are 4 2P3/2 states but only 2 2P1/2 states the

L3 edge has roughly twice the intensity of the L2 edge.

Next, there is the Coulomb interaction between the core-hole and the electrons in the d-shell.

For example, there may now be Coulomb scattering between a 2p and a 3d electron as shown in

Fig. 5. Let us consider the expression for the corresponding Coulomb matrix element (9). Here

one of the indices ν1 and ν2 and one of the indices ν3 and ν4 must now refer to the 2p orbital

and there are two possible combinations. If ν2 and ν3 refer to the 2p orbital we have

ck(2, m1; 2, m4) c
k(1, m3; 1, m2)F

k(3, 2; 2, 1).

The triangular condition for ck(1, m3; 1, m2) requires k ≤ 2. Since only Ylm with equal l and

hence with equal parity are combined in one ck only even k give non-vanishing contributions

and we have two Coulomb integrals, F 0(3, 2; 2, 1) and F 2(3, 2; 2, 1).
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Fig. 5: An electron in the 3d shell and an electron in the 2p shell scatter from one another.

If ν2 and ν4 refer to the 2p orbital we have

ck(2, m1; 1, m4) c
k(2, m3; 1, m2)G

k(3, 2; 2, 1).

The triangular condition for both ck requires k ≤ 3. Since now Y1m and Y2m are combined in

one Gaunt coefficient only odd k contribute, so that we have two relevant exchange integrals,

G1(3, 2; 2, 1) and G3(3, 2; 2, 1). Apart from these minor changes, the implementation of the d-p

Coulomb interaction is exactly the same as the d-d interaction.

The Coulomb interaction between electrons in the 2p shell is definitely very strong – but it is

irrelevant because we are considering only states with a single hole in this shell. Since this hole

has no second hole to scatter from, the only effect of the Coulomb repulsion between electrons

in the 2p shell is via the diagonal matrix elements which give a shift of the orbitals energy

ǫ2p. On the other hand ǫ2p merely enters the position of the absorption edge, which would be

≈ ǫ3d − ǫ2p but not its spectral shape. Since we are not really interested in computing the onset

of the edge, the precise value of ǫ2p and hence the Coulomb interaction between 2p electrons

is not important. Lastly we mention that the CEF effect on the inner-shell electrons is usually

neglected.

Lastly, we discuss the dipole operator D(n). This involves the matrix element of n · r, where

n is the vector which gives the polarization of the X-rays. This can be rewritten as

n · r = r

√

4π

3

1
∑

m=−1

ñm Y1,m(Θ, φ)

where ñ1 = (−nx + iny)/
√
2, ñ0 = nz and ñ−1 = (nx + iny)/

√
2. It follows that

D(n) =
∑

m,m′

∑

σ

dm,m′ c†3,2,m,σc2,1,m′,σ

dm,m′(n) = d ñm−m′ c1(2, m; 1, m′)

d =

∫ ∞

0

dr r3 R3,2(r)R2,1(r).

The factor of d merely scales the overall intensity of the spectrum and is largely irrelevant.

Combining all of the above one can compute X-ray absorption spectra. Fig. 6 shows examples
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Fig. 6: Comparison of experimental 2p XAS-spectra and results from cluster calculations: NiO

(left) and LiVO2 (right). The bottom part of the right-hand figure shows theoretical spectra

calculated with different values of the CEF-strength ∆t. Reprinted with permission from [19],

Copyright 1999 and from [20], Copyright 1997 by the American Physical Society.

from the literature where experimental 2p-XAS spectra for NiO and LiVO2 are compared to

spectra obtained from multiplet theory. In both cases one can see the splitting of approximately

10-15 eV between the L3 and L2 edges. The edges do have an appreciable fine structure, how-

ever, and this is reproduced well by theory. The figure also illustrates the amount of information

contained in XAS-spectra: the lower panel on the right hand side shows theoretical spectra cal-

culated with different values of the CEF parameter, ∆t. The strong difference between the

spectra for ∆t = 1.7 and ∆t = 1.8 is due to a level crossing from a high-spin ground state

of the Vanadium ion for ∆t = 1.7 to a low-spin ground state for ∆t = 1.8. In fact, LiVO2

undergoes a phase transition at a temperature of ≈ 500 K whereby the magnetic susceptiblity

drops almost to zero in the low temperature phase. A low-spin to high-spin transition of the

Vanadium ion – for example caused by a change of the CEF due to thermal expansion – could

be a possible explanation. It is obvious, however, that the spectrum for the low-spin ground

state has no similarity whatsoever to the experimental spectrum at either 473 K or 523 K, rather

these spectra a very similar to the spectrum of the high-spin ground state with ∆t ≈ 0. A

high-spin to low-spin transition therefore can be ruled out as the origin of the drop in magnetic

susceptibility. This is one example how XAS can be used to determine the valence and spin of

a given transition metal ion.

Let us discuss this in more detail. Photoelectron spectroscopies are often performed because for

example the valence or the spin state of the transition metal ion in a given solid or molecule is

unknown. Let us assume that we have two possible states of the ion, |Ψ0〉 and |Ψ ′
0〉, with energies

E0 andE ′
0 (for simplicity we assume that these are nondegenerate). Then we may ask: how will

the spectrum change if we go from one ground state to the another? We note first that the final

states |Ψν〉 and their energies Eν in (21) and (22) are unchanged. What differs is first the energy
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Fig. 7: Left: Experimental Co 2p-XAS-Spectra for different Cobalt compounds with Perovskite

structure. Right: The bottom part shows theoretical spectra calculated for different valence

and spin states of Cobalt. By combining these spectra the actual experimental spectra can be

reproduced almost quantitatively, see the four spectra at the top. Reprinted with permission

from [21], Copyright 2011 by the American Physical Society.

differences Eν − E0. However, since we do not know E0 and E ′
0 – otherwise we would know

which one of them is lower in energy and hence the ground state – the absolute position of the

peaks in the spectrum is of no significance. What is really relevant, however, is the intensity

of the peaks which involves the matrix elements |〈Ψν|c|Ψ0〉|
2 or |〈Ψν|D(n)|Ψ0〉|

2. These matrix

elements may change drastically when the ground state wave function |Ψ0〉 changes and by

comparing with cluster simulations the shape of the spectrum can give information about the

valence and spin state of the transition metal ion. This is illustrated in Fig. 7, which shows

experimental Cobalt 2p XAS-spectra of various Co-compounds with perovskite structure as

well as theoretical spectra calculated by using the CTM4XAS package [10] for different valence

and spin states of the Cobalt-ion. The experimental spectra obviously can be reproduced quite

well by a superposition of such spectra for ‘pure’ valence and spin states of the Cobalt-ion.

This implies that different Cobalt ions in the sample are in different valence and spin states

whereby the percentages are simply given by the weight of the corresponding spectrum in the

superposition.

To summarize this section: multiplet theory is of considerable importance in the interpretation

of photoelectron spectroscopy. The simulated spectra usually show very good agreement with

experimental ones. All of this shows that the multiplets of the free ion persist in the solid and

that the proper desciption of the Coulomb interaction is crucial for the description of these

compounds.
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5 Conclusion

We have seen that the Coulomb repulsion between electrons in partially filled atomic shells

leads to multiplet splitting. The simple estimate

E[dn] ≈ n · ǫd + U ·
n(n− 1)

2
.

given in the introduction describes only the center of gravity of the energies of the dn-derived

states, and superimposed over this the Coulomb repulsion creates a multiplet spectrum with a

width of several eV. While multiplet theory was derived originally for the discussion of spec-

troscopic data of atoms and ions in the gas phase, it has turned out that it is essential also for

the understanding of many experiments on transition-metal compounds. Photoelectron spec-

troscopy, optical spectroscopy, electron spin resonance and inelastic neutron scattering all can

be interpreted in terms of multiplets. The often excellent agreement between theory and ex-

periment which can be obtained thereby is clear evidence that the multiplets of the free ion are

a reality also in solids, with the only modification being some additional splitting due to CEF

and modification of spectral intensities due to charge transfer. Any realistic description of 3d

transition metal compounds therefore must take multiplet splitting into account.
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Appendix

m m′ c0 7 c2 21 c4 a0 49 a2 441 a4 b0 49 b2 441 b4

±2 ±2 1 −2 1 1 4 1 1 4 1

±2 ±1 0
√
6 −

√
5 1 −2 −4 0 6 5

±2 0 0 −2
√
15 1 −4 6 0 4 15

±1 ±1 1 1 −4 1 1 16 1 1 16

±1 0 0 1
√
30 1 2 −24 0 1 30

0 0 1 2 6 1 4 26 1 4 36

±2 ∓2 0 0
√
70 1 4 1 0 0 70

±2 ∓1 0 0 −
√
35 1 −2 −4 0 0 35

±1 ∓1 0 −
√
6 −

√
40 1 1 16 0 6 40

Table 4: The Gaunt coeficients ck(2, m; 2, m′), the coefficients ak(2, m; 2, m′) and

bk(2, m; 2, m′)

m m′ c0 15 c2 33 c4 429
5
c6

±3 ±3 1 −5 3 −1

±3 ±2 0 5 −
√
30

√
7

±3 ±1 0
√
10

√
54 −

√
28

±3 0 0 0 −
√
63

√
84

±2 ±2 1 0 −7 6

±2 ±1 0
√
15

√
32 −

√
105

±2 0 0 −
√
20 −

√
3 4

√
14

±1 ±1 1 3 1 −15

±1 0 0
√
2

√
15 5

√
14

0 0 1 4 6 20

±3 ∓3 0 0 0 −
√
924

±3 ∓2 0 0 0
√
462

±3 ∓1 0 0
√
42 −

√
210

±2 ∓2 0 0
√
70

√
504

±2 ∓1 0 0 −
√
14 −

√
378

±1 ∓1 0 −
√
24 −

√
40 −

√
420

Table 5: The Gaunt coeficients ck(3, m; 3, m′)
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1 Introduction

For weakly or moderately correlated systems ab initio methods, such as the density functional

formalism [1, 2] or the GW method [3, 4], are often quite successful. For strongly correlated

systems, however, these methods are often not sufficient. It is then necessary to treat correlation

effects in a more accurate way. Such systems are often quite complicated with large unit cells.

It is then very hard to treat correlation effects within an ab initio approach, and one often

turns to model Hamiltonians. The idea is then to focus on states and interactions believed to

be particularly important for the physics of interest. This has the additional advantage that it

may then be easier to understand the physics, since less important effects do not confuse the

interpretation. On the other hand, there is a risk of oversimplifying the model and thereby

missing the correct physics. The purpose of this lecture is to discuss this approach.

In principle it is straightforward to construct a model. We can produce a complete basis set and

then calculate matrix elements of the real space Hamiltonian (in atomic units)

H =
∑

i

(

−
1

2
▽2

i +Vext(ri)

)

+
∑

i<j

1

|ri − rj|
. (1)

For atoms or small molecules, this Hamiltonian may then be solved using various many-body

methods, e.g., configuration interaction (CI), where the many-body wave function is written as

a linear combination of determinants. For strongly correlated solids, however, a Hamiltonian

obtained in this way is often too complicated to allow reasonably accurate calculations. We are

then forced to use substantially simpler models. This usually involves a drastic reduction of

the basis set and the neglect of many interactions. Typical examples are the Anderson [5], the

Hubbard [6] and the t-J [7] models.

This approach involves the neglect of interactions which are large. For instance, the Anderson

impurity model is often used for a 3d impurity in a weakly correlated host. We define a direct

Coulomb integral

Fij =

∫

d3r

∫

d3r
′ |Φi(r)|

2|Φj(r
′

)|2

|r− r
′|

, (2)

where Φi(r) is the wave function of a state i. Then the Coulomb integral F3d,3d between 3d

electrons is kept, while, for instance, the integral F3d,4s between a 3d and a 4s electron is

neglected. For a free Mn atom F3d,3d = 21 eV and F3d,4s = 10 eV. Such an approximation is

clearly highly questionable. An essential task is then to try to include the explicitly neglected

interactions or states implicitly as a renormalization of parameters in the model. As we show

later, this leads to an effective Coulomb interaction between the 3d electrons which is much

smaller than the calculated value for a free atom. A basic assumption of such simple models is

then that all the neglected interactions can, with a reasonable accuracy, be included implicitly as

a renormalization of various model parameters. In this approach it is important to keep track of

what effects are explicitly included in the model. These should not be included in the calculation

of renormalized parameters, since this would involve double-counting.

There are various ways of obtaining parameters. One approach has been indicated above. We

use ab initio calculations to calculate parameters and then we try to estimate how these are
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Fig. 1: Schematic density of state for a Ce compound according to the promotional model.

renormalized by neglected interactions. Another is to calculate certain properties of the model,

compare with experiment and then adjust parameters until the experimental value is obtained.

This approach then automatically gives renormalized parameters. It is important to try to obtain

as much independent information as possible about the parameters, both from calculations and

from different experiments, and to check if the various pieces of information are consistent.

The importance of obtaining theoretical information about parameters can be illustrated by the

historical development of the theory of Ce compounds. Traditionally, Ce compounds were de-

scribed in the so called promotional model [8]. It was assumed that the Ce 4f level was located

very close to the Fermi level, EF , and that it had a very weak interaction with other states. A

mean-field theory was then used to show that this leads to a very narrow resonance, as indicated

in Fig. 1. The narrowness of the resonance could explain the large susceptibility and specific

heat of Ce compounds, and the closeness of the 4f level to EF the change of apparent va-

lence when the pressure or temperature are changed. Thermodynamic considerations, however,

showed that the 4f level ought to be about 2 eV below EF [9], in strong disagreement with

the model. This result was later reconciled with experiment in a many-body approach [10, 11],

showing that even if the 4f level is far belowEF it can form a Kondo-like many-body resonance

atEF leading to very large values of the susceptibility and the specific heat. This illustrates how

an oversimplified (mean-field) method can nevertheless lead to reasonable results if it is com-

bined with a bad choice of parameters. Correcting the parameters then forces us to use a better

method and to find out more about the correct physics.
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2 Projecting out states

2.1 One-particle Hamiltonian

One approach to the construction of models is to project out stateswhich are believed not to be

essential for the physics. We can illustrate this for a one-particle Hamiltonian

H =
∑

i

εini +
∑

i 6=j

tijψ
†
iψj (3)

We introduce a projection operator

P =
∑

ν∈P

|ν〉〈ν|, (4)

where |ν〉 are states we want to keep. We introduce the resolvent operator

(z −H)−1 =
∑

ν

|ν〉〈ν|(z −H)−1
∑

µ

|µ〉〈µ| =
∑

n

|n〉
1

z −En
〈n|, (5)

which has poles for z = En at the eigenvalues, where H|n〉 = En|n〉. Introducing the comple-

ment Q = (1− P ), we can write the Hamiltonian as [12, 13]

(

HPP HPQ

HQP HQQ

)

, (6)

where, e.g., HPP = PHP . Then we can derive the exact result (Löwdin downfolding)

P (z −H)−1P = [z −HPP −HPQ(z −HQQ)
−1HQP ]

−1. (7)

The operator P (z − H)−1P has the same poles as the original operator (z − H)−1, if the

corresponding eigenstates have weight inside the space P . The new operator has a smaller

dimension, but because of the z dependence it is not simpler. To simplify the expression, we

put z equal to an energy (ε0) in the range of interest. The operator is then energy independent.

As an additional simplification, we may assume that the off-diagonal elements of HQQ can be

neglected. Then the matrix elements of the new operator become

tij → tij −
∑

µ∈Q

tiµtµj
ε0 −Eµ

. (8)

This latter approximation is accurate if the states being projected out are much higher in en-

ergy than the states of interest and if the off-diagonal elements are small compared with the

energy difference ε0−Eµ. The assumption about HQQ being diagonal can also be relaxed. This

approach reduces the size of the Hamiltonian matrix, i.e., the number of states, at the cost of ob-

taining more long-range hopping. For a one-particle Hamiltonian, this approach is a controlled

and systematic procedure for reducing the size of the Hamiltonian.
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Fig. 2: Schematic picture of a very simple model of a transition metal compound, with a 3d
atom (levels 2 and 4) coupling to a ligand (with levels 1 and 3).

2.2 Many-body Hamiltonian

We now consider a many-body Hamiltonian, with a two-body interaction in the form of a

Coulomb interaction. We then define P as projecting out states that have no electron in cer-

tain (high-lying) one-particle states |µ〉, and Q = 1 − P . We consider a Coulomb interaction

with four (creation and annihilation) operators and project out a state with one electron in |µ〉.

Then HQP contains an operator c†µσ and HPQ an operator cµσ . Even if we assume HQQ to be

diagonal, we are left with an operator HPQHQP acting on a state without electrons in |µ〉. Then

cµσc
†
µσ ≡ 1, and two operators drop out. But we are still left with six other operators, which

in the general case are all different. We have then generated a three-body operator. This is too

complicated, and all such operators need to be neglected. Unless it can be shown that these

terms are small, this means that there is not a controlled systematic procedure for reducing the

number of states. We then have to rely on more intuitive approaches.

As an example we consider a very simple model which is relevant for 3d impurities. The model

is constructed so that an exact solution can be found. We want to illustrate how this model

can be projected down to a simpler model with renormalized parameters. We introduce the

Hamiltonian [14]

H =
∑

σ

(

4
∑

i=1

εiniσ + (tψ†
1σψ2σ + V ψ†

3σψ4σ +H.c.)

)

+ Uddn2↑n2↓ + Usd

∑

σσ′

n2σ n4σ′ (9)

where level 2 corresponds to a 3d level and level 4 to a 4s level on a transition metal atom. Level

1 and 3 correspond to a ligand coupling to the transition metal atom via the hopping integrals t

and V . On the transition metal atom there is a large Coulomb interaction Udd between electrons

in the 3d level and a weaker Usd interaction between the 3d and 4s levels. We assume that

orbital 2 is quite localized, so that t is small, but that levels 3 and 4 are delocalized, so that V is

large. The level structure is shown schematically in Fig. 2.

We first consider the spinless case, and put one electron in each of the spaces 1+2 and 3+4.

We derive parameters in an intuitive approach, and then compare with a controlled projection

approach, possible in this case. We introduce the eigenstates of the space 3+4 with the electron

in space 1+2 on site 1 or 2. With the electron on level 1 the bonding and antibonding eigenstates
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in the 3+4 space are

ψb1 = a3ψ3 + a4ψ4 (10)

ψa1 = a4ψ3 − a3ψ4,

with the energies εb1 and εa1. With the electron in 1+2 on level 2 the states are

ψb2 = cosφψb1 + sinφψa1 (11)

ψa2 = sinφψb1 − cosφψa1, (12)

(13)

with the energies εb2 and εa2. Here φ is of the order Usd/V which is small in the limit we

consider below. We assume that the electron in the space 3+4 can adjust completely to the

movement of the electron in space 1+2 due to |V | ≫ |t|. We then replace the four-level model

in Eq. (9) by a two-level model with the effective level positions

εeff1 = ε1 + εb1; εeff2 = ε2 + εb2 (14)

To test this, we now solve the full model exactly. We introduce a complete basis set

|1̃〉 = ψ†
1ψ

†
b1|0〉

|2̃〉 = ψ†
2ψ

†
b2|0〉 (15)

|3̃〉 = ψ†
1ψ

†
a1|0〉

|4̃〉 = ψ†
2ψ

†
a2|0〉,

where we have chosen the basis set so that only the first two states are relevant if the assumptions

above are correct. We now calculate the resolvent operator [14]

(z −H)−1 =











z − ε1 − εb1 −t cosφ 0 t sinφ

−t cosφ z − ε2 − εb2 −t sinφ 0

0 −t sinφ z − ε1 − εa1 −t cosφ

t sinφ 0 −t cosφ z − ε2 − εa2











−1

. (16)

We now focus on the upper left 2× 2 corner and use Löwdin folding [12] to project out the two

high-lying states. For instance, the 11 element takes the form

H̃11 = ε1 + εb1 +
t2 (z − ε1 − εa1) sin

2φ

(z − ε1 − εa1)(z − ε2 − εa2)− t2cos2φ
. (17)

For simplicity, we put ε1 = ε2 and assume that the term t2cos2φ in the denominator can be

neglected. Putting z ≈ ε1 + εb1, we then find that the correction term in Eq. (17) is of the order

t(t/V )(Usd/V )
2. If |V | ≫ |t| and |V | ≫ Usd, it is indeed justified to neglect the correction

term. We then find that the level positions difference, εeff1 −εeff2 , have corrections to zeroth order

in (1/V ), due to εb1 and εb2. These corrections are included in our intuitive approach above.
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V εeff2 -εeff1 U eff E0 + 2V n2 χ
Renorm. Exact Renorm. Exact Renorm. Exact

1.0 1.17 3.18 -1.05 -0.95 0.380 0.364 0.314 0.312

1.5 1.39 3.21 -0.97 -0.90 0.339 0.326 0.266 0.262

2.0 1.53 3.29 -0.92 -0.88 0.317 0.307 0.240 0.237

3.0 1.68 3.44 -0.87 -0.85 0.292 0.287 0.214 0.213

4.0 1.75 3.55 -0.85 -0.84 0.280 0.277 0.202 0.201

6.0 1.83 3.68 -0.83 -0.82 0.268 0.267 0.190 0.190

10.0 1.90 3.80 -0.81 -0.81 0.259 0.258 0.181 0.181

20.0 1.95 3.90 -0.80 -0.80 0.252 0.252 0.174 0.174

Table 1: Ground-state energy E0, occupancy n2 of level 2 and susceptibility χ of the spin-

degenerate model (9). The parameters are ε1 = ε2 = ε3 = ε4 = 0, t = 1, Udd = 4 and

Usd = 2.

Then there is a second order correction to the hopping integral due to cosφ. This correction is

due to the fact that the electron in the space 3+4 cannot completely follow the electron in space

1+2 in the optimum way. This correction is usually neglected.

We now turn to the same model with spin degeneracy. The exact solution can then be obtained

from a 16× 16 matrix. In this case the analytical calculation is to complicated to illustrate what

happens, and we focus on a numerical calculation. We first calculate the energy E(n2) of the

3+4 space as a function of the occupancy of level 2. We then obtain

εeff1 = ε1 + E(0)

εeff2 = ε2 + E(1) (18)

U eff = E(2) + E(0)− 2E(1)

in analogy with the spinless case. We then calculate the ground-state energy, E0, the occupancy

n2 of level 2 and the spin susceptibility χ = −∂2E0(H)/∂H2, where the model couples to an

external magnetic field via the term −H(n2↑ − n2↓). The results are shown in Table 1. We have

added a contribution 2V to the total energyE0, since there would have been a trivial contribution

−2V if there had been no interaction between spaces 1+2 and 3+4. As expected, the agreement

between the approximate (Renorm.) and exact results improves as |V | is increased. However,

the agreement is surprisingly good even for V = t.

3 Effective Coulomb interaction

The essential point of the model from the previous section is that we can distinguish between

two types of electrons, “slow” electrons (space 1+2) and ”fast” electrons (space 3+4), in the

following referred to as “localized” and “delocalized”. The idea is that the delocalized electrons

are assumed to adjust in an optimum way to the movements of the localized electrons. We can

then estimate effective parameters in a similar way as in the previous section. For each system

we then have to decide which electrons we consider localized and include explicitly in the model
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System Localized Delocalized

4f compounds 4f 5d
3d compounds 3d 4s, 4p

Table 2: ”Slow” (“localized”) and ”fast” (“delocalized”) electrons for 3d and 4f compounds.

and which are delocalized and only included implicitly as a renormalization of the parameters.

This is illustrated in Table 2. For 4f compounds the 4f DFT band width is about 1/10 of the 5d

band-width, and we may reasonably talk about two types of electrons. For 3d compounds this

distinction is much less clear cut.

3.1 Perfect screening

We now focus on the calculation of an effective Coulomb integral U eff as an essential model

parameter. We apply the approach of the previous section to a real system. For that reason, we

need to know how the energy of the system varies with the occupancy of, e.g., a 3d or 4f level,

Eq. (18). Herring [15] estimated these energies using atomic data, assuming that any change

in the number of localized electrons on an atom is compensated by the opposite change in the

number of delocalized electrons on the same atom. For a 3d metal this can be written as

U = E(3dn+14s0) + E(3dn−14s2)− 2E(3dn4s1), (19)

where E(3dn4sm) is the energy of an atom (ion) with n 3d electrons and m 4s electrons. In this

approach it is assumed that the variation in the number of 3d electrons is perfectly screened by

a change in the number of 4s electrons. We refer to this as “perfect screening”.

A similar method was used by Cox et al. [16] who studied transition metals and Herbst et al. [17]

who studied the rare earths. They performed Hartree-Fock calculations for renormalized atoms

with Wigner-Seitz boundary conditions.

3.2 Constrained density functional formalism

Dederichs et al. [18] calculated U using a constrained density functional formalism. The func-

tional for a 3d compound is written as

E[ni
3d] = F [n]+

∫

d3r Vext(r)n(r)+µ

(
∫

d3r n(r)−N

)

+µi
3d

(
∫

d3r ni
3d(r)− ni

3d

)

. (20)

Here F [n] describes the kinetic and potential energy of the system, Vext(r) is an external poten-

tial, µ is the chemical potential and µi
3d is a Lagrange parameter. ni

3d is the number of localized

electrons on site i, referred to as the central site in the following. A stationary point of the

energy functional to density variations is searched

0 =
∂F

∂n
+ Vext(r) + µ+ µi

3dP
i
3d, (21)
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where P i
3d is a projection operator acting on the localized electrons. From this a new Kohn-

Sham equation can be derived, where µi
3d enters as an additional nonlocal potential acting only

on the localized electrons. µi
3d is varied until the prescribed number of 3d electrons is obtained.

This requires a definition of localized electrons. For instance, in methods based on an expansion

in spherical waves in a region around each nucleus a natural definition can be introduced. This

way an effective U eff is calculated, using a formula equivalent to Eq. (18).

In the approach above, U eff contains a change of the kinetic energy of the electrons included

explicitly in the model. This contribution needs to be subtracted. Hybertson et al. [19] did this

by considering the model Hamiltonian in which U eff will be used, e.g.,

H =
∑

ijσ

tijψ
†
iσψjσ +

∑

i

U effni↑ni↓, (22)

where tij are hopping integrals. This model is then solved in a constrained mean-field the-

ory to simulate the constrained density functional approach. The energy as a function of the

constrained occupancies is calculated, and U eff is varied until the constrained DFT result is re-

produced. We refer to this as cLDA. Cococcioni and Giroconcoli [20] used a similar approach.

An alternative approach was used by McMahan et al. [21] and by Gunnarsson et al. [22]. They

performed a band structure calculation with a large unit cell [21–23]. Then the hopping integrals

from the orbital with localized electrons is cut off for the central atom in the unit cell. Then

the occupation of the orbital can be trivially varied without a variation of the kinetic energy for

hopping in and out of the orbital, since this energy is zero. Double-counting is also explicitly

avoided, contrary to claims elsewhere [24]. This method is referred to as “cut off’ LDA. In a

different method, the hopping between the localized orbitals and the delocalized orbitals was

cut on all sites, not only on the central site [28].

3.3 Constrained RPA

A different approach was taken by Aryasetiawan et al. [25]. They calculated the Coulomb

interaction using a constrained random phase screening. In the random phase approximation

(RPA) the polarizability is written as

P (r, r′;ω) =

occ
∑

i

unocc
∑

j

ψi(r)ψ
∗
i (r

′)ψ∗
j (r)ψj(r

′)

(

1

ω − εj + εi + i0+
−

1

ω + εj − εi − i0+

)

,

where ψi(r) and εi are one-particle eigenfunctions and eigenvalues. Calculating the effective

Coulomb interaction by using this screening would be incorrect, since it would involve double-

counting. The Hubbard model explicitly allows localized electrons to screen the interaction be-

tween localized electrons, and the use of Eq. (23) would then lead to double counting. Aryaseti-

awan et al. [25] therefore excluded contributions to Eq. (23) where both i and j stand for Bloch

states containing mainly localized states. For a transition metal compound they then excluded

states within an energy window where the states are mainly of 3d character and for a rare earth

compound a window where the states are mainly of 4f character. The definition of the energy

window involves uncertainties [25]. This method is referred to as cRPA.
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Unrenormalized (F 0) 21.4 eV

Relaxation of 3d orbital -5.2 eV

Relaxation of 4s, 4p orbitals -2.2 eV

Relaxation core, XC effects -1.2 eV

Atomic U 12.8 eV

Table 3: Contribution to U for a free Mn atom with the configuration 3d5.14s0.644p0.70. This

corresponds to the configuration for Mn in CdTe.

On-site relaxation 15.4 eV

Charge transfer to Mn -7.6 eV

Charge transfer to n.n. ligand -0.4 eV

Solid state U 7.4 eV

Table 4: Contribution to U for a Mn impurity in CdTe.

3.4 Screening and breathing

The definition of U can be approximately rewritten as

U = E(n + 1) + E(n− 1)− 2E(n) ≈
δε

δn
, (23)

where E(n) is the energy of the system with n localized electrons and ε is the energy eigenvalue

of the localized orbital and n is the occupancy. If the system were not allowed to relax, this

would lead to U = F , where F , given in Eq. (2), is the direct Coulomb integral of the orbital. In

reality, the charge density relaxes and the corresponding change in the electrostatic potential acts

back on the orbital eigenvalue, reducing the shift as n is varied and leading to a renormalized

U . We can illustrate this for the case of a Mn impurity in CdTe [26]. First a free Mn atom is

studied (Table 3). The spherical part F 0
3d,3d of the direct Coulomb integral is large, 21 eV. The

main renormalizing process is a breathing of the 3d orbital, where the orbital expands as the 3d

occupancy is increased [26,29]. This reduces U by about 5 eV. Breathing of the 4s, 4p and core

orbitals contribute less. The net result is a reduction of U from about 21 eV to about 13 eV. In

the solid there are similar breathing effects, reducing U to about 15 eV (see Table 4). However,

now there is additional charge transfer from the surrounding to the Mn atom, reducing the U by

almost 8 eV. Charge transfer to near neighbors (n.n.) plays a smaller role. The result is reduction

of U to about 7 eV according to this calculation.

The breathing effect can also be understood from Slater’s rules [30]. According to these rules,

the effective nuclear charge for a 3d orbital is Z∗ = Z−18−0.35(n3d−1), where Z is the true

nuclear charge and n3d is the 3d occupancy. This illustrates how the effective nuclear charge is

reduced and the orbital expands as n3d is increased. According to Slater’s rules, the occupancy

of the 4s and 4p orbitals do not influence Z∗ for the 3d orbital. This then suggests that the

charge transfer in the solid to 4s and 4p should not influence breathing very much. This is also

supported by a comparison of Tables 3 and 4.
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System cLDA “cut-off” cRPA “perfect screening” Exp

Fe 2.2 [20] 6 [23] 4 [25] 2.7 [16] 2 [31, 32]

Ce 4.5 [20] 6 [23] 3.2-3.3 [25] 5 [17] 5-7 [35]

Table 5: Results for U for Fe as an example of a 3d metal and Ce illustrating a 4f metal.

3.5 Results

We now consider results obtained using the methods above for 3d and 4f metals. Specifically,

we consider Fe and Ce as examples of 3d and 4f metals. The results are shown in Table 5.

“Perfect screening” provides a rather good estimate for both Fe and Ce. The ”cut-off” method

gives a substantially too large U for Fe. It was found [23] that only about half the screening

charge is on the Fe atom, as one would expect from the energetics of the screening process [23].

It is then to be expected that U is substantially larger than the “perfect screening” result. cLDA

gives a very good result compared with experiment, and actually somewhat smaller than “per-

fect screening”. It is not clear why this result is so different from the ”cut-off” method, and it

would be interesting to study the screening in cLDA. The U in cRPA is a bit too large. Inter-

estingly, the ”cut-off” method gives a good estimate of U towards the end of the 3d series, e.g.,

for the cuprates [34].

For Ce “perfect screening” provides a fairly accurate estimate of U . The “cut off” method

gives only a slightly larger U , in good agreement with experiment. In this case it is found

that the screening charge on Ce is approximately unity [23], so it is not surprising that there is

rather good agreement with “perfect screening”. cLDA gives a U slightly smaller than “perfect

screening” and U in cRPA is substantially smaller. It is not clear why cRPA implies such an

effective screening and gives a U that is only roughly half the experimental estimate.

4 Neglected renormalizations

In this section we discuss two renormalizations of parameters, which are usually neglected. The

purpose is not to argue that these effects should be included. This could be done, but it would

result in more parameters and the results would probably be less transparent. The purpose is

rather to illustrate that the parameters of effective models contain complicated renormalizations,

and that ab initio estimates of such parameters may neglect several such effects. The purpose

is also to show that if we insist on a rather simple model, which is advocated here, the effective

parameters may actually be different for different properties.

4.1 Configuration dependence of hopping integrals

We already discussed in Sec. 3.4 that there is a substantial breathing of the localized orbital

when the occupancy is changed. This changes the hopping integral into this orbital. In the

LMTO method [36], used here, the hopping integral V is related to a potential parameter ∆̃,

V 2 ∼ ∆̃ ≈
s

2
[φl(C, s)]

2, (24)
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nl nc Mn Ce U

n0
l − 1 n0

c 51 8 72

n0
l n0

c 85 19 91

n0
l + 1 n0

c 129 38 112

n0
l n0

c − 1 40 5 53

n0
l + 1 n0

c − 1 67 11 69

Table 6: Potential parameter ∆̃ for different configurations of Mn, Ce and U in non-spin-

polarized calculations. The localized orbital is 3d (Mn), 4f (Ce) and 5f (U), and we consider

a core hole in the 1s (Mn), 3d (Ce) and 4f (U) orbital. The occupancy of the localized and core

orbital is nl and nc, respectively. We introduce n0
l , which is 5 (Mn), 1 (Ce) and 3 (U) and n0

c

which is 2 (Mn), 10 (Ce) and 14 (U). All energies are in mRy.

where φl(C, s) is the value of the localized orbital at the Wigner-Seitz radius s. The localized

orbital with the angular momentum l is solved for an energy C, which gives the logarithmic

derivative −l − 1 at s. The value of ∆̃ is shown in Table 6 for a few metals with and without a

core hole [27]. The table illustrates the strong dependence of the hopping on the configuration

used to calculate ∆̃. For instance, if we want to describe how a host electron hops into a Ce

atom, should we then use the initial configuration or the final configuration to calculate ∆̃ or

should we use an average? Table 6 shows that the difference could be even as much as a factor

of two.

To address this issue, we temporarily introduce an impurity model with two orbitals [27]

ϕ0
l ≡ ϕl(r, n

0
l ) (25)

ϕ1
l ≡ A

∂

∂nl

ϕl(r, nl)|nl=n0

l
,

where A is chosen so that φ1
l is normalized. By forming linear combinations of ϕ0

l and ϕ1
l , we

can obtain an appropriate orbital for different occupancies, i.e., describing breathing. In, for

instance, an Anderson impurity model we then introduce a term leading to transitions between

these two orbitals

Ũ
∑

mσ

(ψ†
1mσψ0mσ +H.c.)(n0 + n1 − n0

l ), (26)

where ni =
∑

mσ nimσ . If the occupancy of the two levels adds up to n0
l , the orbital ϕ0

l is

appropriate and there is no mixing of the orbital ϕ1
l . For any other occupancy, transitions to ϕ1

l

are induced and the system has the freedom to adjust to the occupancy. For Mn in CdTe we

find that Ũ = 0.16 Ry. The energies of the two orbitals are quite different, ε0 = −0.45 Ry

and ε1 = 1.68 Ry. The model then tends to have two sets of states, one set at ε0 and one set at

ε1. We can then project out all high-lying states, having a substantial weight in ϕ1
l . The result

is then that we recover the normal Anderson impurity model, with just one localized orbital.

But in this process the hopping matrix elements are modified. Since the mixing matrix element

Ũ/(ε1 − ε0) = 0.08 ≪ 1, this approach should be rather accurate.

We can then answer the question of how to calculate these elements. Let us consider a host

electron hopping into a configuration with nl localized electrons, resulting in a configuration
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with nl + 1 localized electrons. The projection procedure then shows that the matrix element

should be calculated using nl + 1 electrons, i.e., the end configuration [27]. For nl = 0 this

is easy to understand. In the initial state there is no localized electron and the extent of the

localized wave function then plays no role. It is then natural that it is the wave function in the

final configuration that matters. In a similar way it is the initial configuration that matters when

an electron hops out of the localized orbital.

We then should be using different hopping integrals for different experiments. For Ce com-

pounds, for instance, f 0 − f 1-hopping is particularly important for valence photoemission, and

we would use nl = 1 for calculating these hopping matrix elements. For inverse photoemis-

sion, we are often interested in the relative weights of the f 1 and f 2 peaks. We then need to

distinguish between the calculation of the ground-state and the calculation of the final states,

resulting from the inverse photoemission process. In the ground-state calculation the important

matrix elements would be calculated for nl = 1 and in the final state for nl = 2. For core level

spectroscopies we should in addition include a core hole for the calculation of matrix elements

for the final states but not for the ground-state.

As argued above, this would lead to a complicated model. It seems questionable if the possible

additional gain in physics would justify such a complicated model with additional parameters.

However, the example illustrates one source of uncertainty in models with configuration inde-

pendent hopping parameters. It also illustrates how parameters can be different for different

experiments.

4.2 Many-body renormalization of hopping integrals

In Secs. 2.2 and 3 we discussed how the effective level energies and Coulomb integrals can be

obtained by letting delocalized electrons adjust to the movements of localized electrons. This

approach, however, raises questions about other many-body effects. One issue is the Anderson

orthogonality catastrophe [37]. Consider the case when delocalized electrons interact with a

(truly) localized electron via the Coulomb interaction. Let us then change the occupancy of

the localized level by one and let |0〉 and |1〉 be the lowest states of the delocalized electrons

in the presence of 0 or 1 localized electrons, respectively. Then 〈0|1〉 = 0 for an infinite

system [37]. One might then think that the hopping integrals should be reduced by such effects.

When a delocalized electron hops into a localized level, all the other electrons would adjust their

wave functions to the new potential. Then one might expect that the overlap 〈0|1〉 = 0 enters

the effective hopping integral. This is, however, not the appropriate comparison. Anderson’s

orthogonality catastrophe refers to the case when the localized electron is removed from the

system. Here it hops into or out of delocalized states. The appropriate comparison is then X-ray

absorption (XAS) or X-ray emission (XES). In addition to the Anderson effect there is then an

exciton like effect, transferring spectral weight towards the Fermi energy. For instance, the XES

spectrum looks like

S(ω) ∼

(

ω̃

ω − ω0

)α

Θ(ω − ω0), (27)
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−∆E nd

εd Usd Ex. Ren. Unre. Fit XAS Ex. Ren. Unre. Fit XAS εcalcd εfitd tfiteff
-1.5 1 1.33 1.28 1.66 1.33 1.31 0.89 0.91 0.94 0.89 0.89 -1.09 -1.09 1.12

-1.5 2 1.12 1.02 1.66 1.12 1.08 0.82 0.87 0.94 0.83 0.81 -0.79 -0.81 1.18

-1.5 3 0.98 0.83 1.66 0.99 0.94 0.76 0.81 0.94 0.78 0.74 -0.57 -0.64 1.21

-1.5 5 0.83 0.62 1.66 0.88 0.78 0.66 0.70 0.94 0.69 0.62 -0.29 -0.41 1.30

-1.0 3 0.64 0.48 1.20 0.69 0.62 0.57 0.55 0.90 0.55 0.53 -0.07 -0.09 1.31

-0.5 3 0.42 0.29 0.78 0.44 0.41 0.33 0.24 0.79 0.31 0.31 0.43 0.36 1.22

0.0 3 0.29 0.21 0.44 0.30 0.29 0.18 0.11 0.50 0.17 0.17 0.93 0.76 1.15

10 3 .043 .040 .043 .044 .043 .004 .003 .004 .004 .004 10.9 10.1 1.00

Table 7: Energy lowering ∆E and occupancy of the d level nd in the exact calculation (“Ex.”)

compared with results of calculations for the model (28) with Usd = 0. The unrenormalized d
level position was used for “Unre.” and the calculated renormalized position for “Ren.” and

“XAS”. For “XAS” the effective hopping integral was renormalized [Eq. (29)] and for “Fit”

both the level position and the hopping were adjusted to obtain the best agreement with the

exact results. The parameters are t = 1, B = 5 N = 17 and Nel = 9.

where ω̃ is a typical energy and ω0 is the threshold energy. The exponent α is positive and

determined by the phase shift due to the Coulomb interaction between localized and delocalized

electrons. From Eq. (27) we might then expect hopping integrals for states close to the Fermi

energy to be enhanced. This would then in particular influence thermodynamic properties.

To check these ideas we have considered the spinless model [38]

H =

N
∑

k=1

εknk + εdnd +
t

√
N

N
∑

k=1

(ψ†
kψd +H.c.) +

Usd

N

N
∑

k=1

N
∑

l=1

ψ†
kψl nd, (28)

where we have introduced N delocalized states with the energies εk and a localized state with

the energy εd. There is a hopping integral t, connecting the localized and delocalized states.

When the localized level is occupied the delocalized electrons feel a scattering potential Usd.

The delocalized levels are equally spaced over an energy 2B.

This model can be solved using exact diagonalization for finite N [38]. We have used N = 17

and the number of electrons Nel = 9. Although this is far from an infinite system, Anderson’s

orthogonality catastrophe already has an effect. ForB = 5, εd = −1.5 and Usd = 5, the overlap

between the lowest states of delocalized electrons in the presence or absence of a localized

electron is 0.85 < 1. We then calculate the energy lowering ∆E = E0 −
∑′

k εk, where E0 is

the ground-state energy and the sum goes over the Nel lowest states. We have also calculated

the 3d occupancy, nd and the charge susceptibility χc = −∂nd/∂εd. The results are shown in

Table 7 and 8.

We compare the exact results with several approximations [38]. In all these calculations Usd

was put to zero and its effects were approximately included via renormalized parameters. The

column “Ren.” shows results where εd was replaced by εcalcd = Ẽ0(1)− Ẽ0(0). Here Ẽ0(nd) is

the energy of the model as a function of the occupancy nd. In this calculation the hopping to the
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χc

εd Usd Ex. Ren. Unre. Fit XAS εcalcd εfitd tfiteff
-1.5 1 0.12 0.10 0.05 0.12 0.13 -1.09 -1.09 1.12

-1.5 2 0.20 0.19 0.05 0.20 0.23 -0.79 -0.81 1.18

-1.5 3 0.27 0.30 0.05 0.28 0.32 -0.57 -0.64 1.21

-1.5 5 0.36 0.55 0.05 0.38 0.40 -0.29 -0.41 1.30

-1.0 3 0.47 0.74 0.12 0.50 0.47 -0.07 -0.09 1.31

-0.5 3 0.41 0.41 0.35 0.43 0.37 0.43 0.36 1.22

0.0 3 0.21 0.14 0.75 0.22 0.19 0.93 0.76 1.15

10 3 .0006 .0005 .0006 .0006 .0006 10.9 10.1 1.00

Table 8: Same as Table 7 but for calculating χ.

localized level was cut to avoid double-counting. The Table also shows results for unrenormal-

ized parameters (“Unre.”). We then treated the εfitd and tfiteff as fitting parameters, and adjusted

these parameters to obtain the best possible agreement (“Fit”) with the exact results. Finally we

have performed calculations where the hopping matrix element to a level εk

(

teff(εk)
)2

= t2S(|εk − εF + ω0|), (29)

was related to the X-ray absorption or emission spectra. teff(εk)
2, summed over all states, is un-

renormalized, but the hopping parameters to states close to the Fermi energy, εF , are enhanced

at the cost of hopping to the band edges. In calculations with teff(εk) we used the renormalized

level position εcalcd .

We first compare the exact results with the unrenormalized and renormalized results. The renor-

malization improves the agreement with the exact results substantially. For most parameter sets

the agreement is relatively good. For Usd large and for |εd| rather small, there are still substantial

deviations. “XAS” shows the results when the hopping is renormalized as well, using Eq. (29).

There is then a substantial additional improvement, and the agreement is now generally rather

good. Finally, we have treated both the hopping and the level position as adjustable parameters.

This gives only a marginal improvement and sometimes the results are even worse. This is

remarkable, since the d-level position is now also a fit parameter and εcalcd is sometimes rather

different from εfitd . On the other hand, hopping is energy-dependent, and “XAS” presumably

describes this better than “Fit”. This suggests that Eq. (29) gives a quite good renormalization.

In the case of Ce the delocalized states are primarily of 5d character. According to the Friedel

sum rule we can then estimate the phase shift as δ ∼ π/10. This then gives a singularity index

of the order α ∼ 0.1. For thermodynamic properties we may then expect an enhancement of the

order of (ω̃/TK)
0.1, where TK is the Kondo temperature. For, e.g., CeCu2Si2 TK = 0.001 eV,

and t2 may then be enhanced by a factor of two, if we assume ω̃ ∼ 1 eV. As discussed above,

we do not advocate including these effects explicitly in a model. However, one should be aware

that thermodynamic and spectroscopic properties may be renormalized differently.
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Fig. 3: Levels of the C60 molecule. The left-hand part shows the levels obtained by using a basis

of one 2s and three 2p orbitals per carbon atom (sp3). The right-hand part shows the levels

obtained by using just one radial 2p orbital per atom (2pr). The numbers give the amount of

radial 2p character (2pr) in the full calculation (after Ref. [39]).

5 Fullerenes

In this section we discuss the parameters for a molecular solid. As an example we use fullerenes

[39]. Similar work has been done for TTF-TCNQ [40].

5.1 Hopping

The important levels in a C60 molecule can be described in a tight-binding picture including

a 2s and three 2p orbitals on each of the 60 C atoms. The corresponding molecular levels

are shown in Fig. 3. The molecule forms approximate sp2 hybrids on each C atom which point

towards the neighboring C atoms and radial orbitals pr pointing out of the molecule. The former

orbitals interact strongly and form bonding and antibonding molecular orbitals at the lower and

upper end of the spectrum, respectively. The pr orbitals interact much less and form molecular

orbitals in the middle of the spectrum. The figure illustrates that these molecular orbitals can

be described rather well using only the pr orbitals. In the neutral molecule all orbitals up to and

including the hu orbital are filled.

C60 molecules condense to a solid of rather weakly bound molecules. Thus the distance (∼3 Å)

between the closest C atoms on two neighboring molecules is much larger than the distance

(∼1.4 Å) between two C atoms on the same C60 molecule. The molecular levels then essentially
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Fig. 4: Band structure for a C60 solid in the Fm3̄ structure (a) according to an ab initio LDA

and (b) according to a TB calculation (after Gunnarsson et al. [43]).

preserve their identity in the solid, but the discrete molecular levels are broadened to narrow,

essentially non-overlapping bands. The alkali-doped fullerenes are of particular interest. In

these systems the t1u band is partly filled. Therefore the three-fold degenerate t1u molecular

level is particularly interesting.

The band structure can be described in a tight-binding (TB) scheme. We first form a molecu-

lar orbital corresponding to the t1u level. The hopping between the molecules is described by

hopping integrals Vppσ and Vppπ corresponding to hopping between orbitals pointing directly

towards each other or orbitals pointing perpendicular to the connecting line of the centers. Fol-

lowing Harrison [41], we assume that the ratio of the π− and σ-integrals is -1/4. Then

Vppσ = vσ
R

R0
e−λ(R−R0);

Vppπ
Vppσ

= −
1

4
R0 = 3.1 Å, (30)

whereR is the separation of the carbon atoms. The prefactorR has been included to simulate the

r-dependence of a 2p orbital as described by Slater’s rules [30]. The overall hopping strength,

determined by vσ, is adjusted to the band-width in a band structure calculation, and the decay

length λ is determined from the dependence of the band width on the lattice parameter. Here

we use the parameters [42, 43]

λ = 1.98 Å
−1
and vσ = 0.917 eV. (31)

The resulting TB band structure is compared with an ab initio band structure calculation in

Fig. 4. The agreement is quite good. The resulting band structure εk has a simple parameter-

ization [42, 44]. The dominating hopping between two molecules in this structure is given by

two equivalent hopping integrals, with all other hopping integrals being substantially smaller.

Effectively, we have therefore adjusted this parameter, requiring that the TB band width should

agree with the LDA band width. The shape of the band structure in Fig. 4 is therefore primarily

determined by the geometry of the C60 molecule and by the relative positions and orientations

of the C60 molecules in the Fm3̄ symmetry.
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5.2 Coulomb interaction

We first consider the Coulomb integral U0 between two t1u-electrons for a free C60 molecule.

A very simple estimate is obtained by assuming that the charge density of the t1u orbital forms

a thin shell of charge on a sphere with the radius of the C60 molecule R ∼ 3.5 Å. Then U0 =

1/R ≈ 4 eV. This neglects that the orbitals breath when the occupancy is changed. To obtain a

better estimate one can calculate how the t1u eigenvalue changes with occupancy, using Eq. (23)

and LDA. This leads to values of the order 2.7-3.0 eV [45–47]. U0 for a free molecule can also

be estimated from experimental results using

U0 = Ip(C
−
60)−A(C−

60) = E0(2) + E0(0)− 2E0(1), (32)

where E0(n) is the energy of a C60 molecule with n t1u electrons. This leads to U0 ∼ 2.7 eV, in

fairly good agreement with theory [39, 48].

We next consider U for a C60 solid, following Antropov et al. [47]. U is strongly screened by

the polarization of the surrounding molecules. To describe this, we put the C60 molecules on

an fcc lattice and assign a polarizability α to each molecule. An electron is added to the central

molecule, and the surrounding molecules are allowed to polarize in a self-consistent way. This

polarization acts back on the electron and reduces the energy-increase of the t1u level by an

amount δU . The summation over neighboring molecules is extended until it is converged. The

U for the solid is then

U = U0 − δU. (33)

The value of α can be determined from the experimental value, ε = 4.4, of the dielectric

function [51]. Using the Clausius-Mossotti relation and the lattice parameter a = 14.04 Å,

this leads to α = 90 Å3. Ab initio calculations using the density functional formalism give

α = 83 Å3 [46]. Using α = 90 Å3, Antropov et al. [47] found δU = 1.7 eV. Together with

U0 = 2.7 eV, this gives U = 1.0 eV. These values of U do not include the metallic screening

from the t1u electrons in A3C60 compounds, and they are appropriate for models where the

metallic screening is treated explicitly when solving the corresponding model.

We next consider the nearest neighbor interaction V , which is obtained by calculating the in-

crease of the energy of a t1u orbital on a molecule 1 when an electron is added to a neighboring

molecule 2. This leads to the result

V = 1/Rnn − δV, (34)

where Rnn is the nearest neighbor separation and −δV is the lowering of the t1u orbital on

molecule 1 due to the polarization of the surrounding molecules when an electron is added to

molecule 2. For a = 14.04 Å, Antropov et al. [47] estimated that δV =1.12 eV, resulting in

V = 0.3 eV for the polarizability α = 90 Å3. The same value V = 0.3 eV was also obtained

by Pederson and Quong [46]. We can see that U is indeed substantially larger than V , and that

it is justified to focus on the effects of U at first.

U can be estimated experimentally from Auger spectroscopy [49, 50]. A carbon 1s electron

is emitted in a photoemission process. This is followed by an Auger process, where a carbon
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Fig. 5: Schematic representation of various phonons in A3C60 compounds. The figure shows,

from left to right, (a) librations, (b) intermolecular C60-C60 phonons, (c) A-C60 phonons and

(d)-(e) intramolecular Hg modes. The figure indicates the radial and tangential character of the

low-lying and and high-lying Hg modes, respectively (After Hebard [52]).

2p electron falls down into the 1s hole and another 2p electron is emitted. For noninteracting

electrons, the Auger spectrum is just the self-convolution of the photoemission spectrum. For

the interacting system, the Auger spectrum is expected to be shifted due to the interaction of

the two holes in the final state. Indeed, Lof et al. [49] found good agreement with the self-

convoluted curve when this was shifted by 1.6 eV. The experimental estimate of the Coulomb

interaction is then U = 1.6 ± 0.2 eV [49] as an average over all orbitals and about 1.4 eV for

the highest occupied orbital. Since Auger is rather surface sensitive, this number may be more

representative for U at the surface. One can estimate that U at the surface is about 0.3 eV larger

than in the bulk, due to fewer neighbors and less efficient screening [47]. This suggests that the

bulk value of U for the t1u and hu orbitals may be on the order U = 1.1 eV, which is close to

the theoretical estimate. U has also been estimated for K6C60 in a similar way [50], giving a

similar value U = 1.5 eV.

5.3 Electron-phonon interaction

The electron-phonon interaction plays an important role for many properties of the alkali-doped

fullerides. For instance, superconductivity is believed to be due the electron-phonon interaction.

Fig. 5 indicates the different types of phonons in alkali-doped C60 compounds. The low-lying

modes are librations (4-5 meV) and intermolecular modes (energies up to about 17 meV) in-

volving alkali-C60 and C60-C60 modes. The high-lying modes (34-195 meV) are intramolecular

modes, where the molecules are deformed. All the low-lying modes have a rather weak cou-

pling to the t1u electrons, and the main coupling is to the intramolecular phonons. Here, we
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therefore focus on the the coupling to these phonons. These phonons couple primarily to the

level energies in contrast to the intermolecular phonons which couple to the hopping integrals.

The C60 molecule has 60×3−6 = 174 intramolecular modes. For symmetry reasons, however,

the t1u electrons only couple to modes with Ag or Hg symmetry. There are eight five-fold

degenerate Hg modes and two nondegenerate Ag modes. The coupling to the t1u-level takes the

form [53]

Hel−ph =

8
∑

ν=1

gν

5
∑

M=1

∑

σ

3
∑

m=1

3
∑

m′=1

(

V
(M)
Hg

)

mm′
ψ†
mσψm′σ

(

bνM + b†νM

)

+

10
∑

ν=9

gν
∑

σ

3
∑

m=1

3
∑

m′=1

(

VAg

)

mm′ ψ
†
mσψm′σ

(

bν + b†ν
)

, (35)

where ψ†
mσ creates a t1u electron with quantum number m and b†νM creates a phonon in mode ν

with quantum number M . The first eight modes are Hg Jahn-Teller phonons and the next two

are Ag phonons. The coupling constants are gν and the coupling to the Hg phonons is given by

the matrices

V
(1)
Hg

=
1

2







−1 0 0

0 −1 0

0 0 2






V

(2)
Hg

=

√
3

2







1 0 0

0 −1 0

0 0 0






V

(3)
Hg

=

√
3

2







0 1 0

1 0 0

0 0 0







V
(4)
Hg

=

√
3

2







0 0 1

0 0 0

1 0 0






V

(5)
Hg

=

√
3

2







0 0 0

0 0 1

0 1 0






(36)

and the coupling to the Ag phonons by

V
(1)
Ag

=







1 0 0

0 1 0

0 0 1






. (37)

The corresponding dimensionless electron-phonon coupling constant is [53]

λ =
5

3
N(0)

8
∑

ν=1

g2ν
~ων

+
2

3
N(0)

10
∑

ν=9

g2ν
~ων

, (38)

where N(0) is the density of states per spin and molecule and ων is the frequency of mode ν.

The theoretical calculation of the electron-phonon coupling for a solid is very complicated.

Lannoo et al. [54] showed that for intramolecular modes in fullerides, important simplifications

follow from the large difference between the intramolecular (EI) and intermolecular (W ) energy

scales. The coupling for a solid can then be obtained approximately from a calculation for a

free molecule and the density of states N(0) of the solid. Thus, it is sufficient to calculate the

shift ∆ενα of the t1u levels α for a free C60 molecule per unit displacement of the νth phonon

coordinate. One then finds that

λ ∼ N(0)
∑

να

∆ε2να
ω2
ν

. (39)
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λν/N(0)
Theory Photoemission Raman

Mode ων Antrop. [55] Faul. [56] Man. [57] Iwa. [60] Gun. [58] Iwa. [60] Kuz. [61]

Hg(8) 1575 .022 .009 .014 .018 .023 .011 .003

Hg(7) 1428 .020 .015 .015 .023 .017 .028 .004

Hg(6) 1250 .008 .002 .003 .002 .005 .007 .001

Hg(5) 1099 .003 .002 .004 .005 .012 .009 .001

Hg(4) 774 .003 .010 .004 .006 .018 .007 .003

Hg(3) 710 .003 .001 .009 .012 .013 .015 .003

Hg(2) 437 .006 .010 .011 .011 .040 .012 .020

Hg(1) 273 .003 .001 .005 .006 .019 .007 .048
∑

Hg .068 .049 .065 .083 .147 .096 .083

Table 9: Partial electron-phonon coupling constants λν/N(0) (in eV) according to different

theoretical calculations and derived from photoemission and Raman scattering. The energies

ων (in cm−1) of the modes for the undoped system are shown.

This gives a molecule-specific quantity which is multiplied by N(0). Table 9 shows results for

the electron-phonon coupling. The theoretical calculations by Antropov et al [55], Faulhaber et

al. [56] and Manini et al. [57] are based on ab initio LDA calculations. The work of Iwahara

et al. is based on the B3LYP functional with some Hartree-Fock exchange mixed in. There are

substantial deviations between the distribution of coupling strength to the different modes in

the different calculations. This distribution is very sensitive to the precise form of the phonon

eigenvectors. The deviations between the total coupling strengths are smaller. The work of Iwa-

hara et al. gives a stronger coupling than the other three calculations. This is not so surprising,

since this work is based on a rather different functional.

An experimental method for estimating the electron-phonon coupling is the use of photoemis-

sion data. Because of the relatively strong electron-phonon coupling, we expect to see satel-

lites due to the excitation of phonons. The weights of the satellites give information about the

strength of the coupling. This is essentially the Franck-Condon effect, but because of the Jahn-

Teller effect the calculation of the satellite structure is rather complicated. The photoemission

spectra of K3C60 and Rb3C60 have been analyzed along these lines [62]. Due to the broadening

effects in a solid and due to the complications in the theoretical treatment of bands with disper-

sion, however, it was not possible to derive reliable, quantitative values for the electron-phonon

coupling.

Photoemission spectra have also been measured for free C−
60 ions. In this case the theoretical

treatment is substantially simpler [58]. In these experiments, a beam of C−
60 ions was created

and a photoemission experiment was performed using a laser light source (~ω = 4.025 eV)

and a time of flight spectrometer. The spectrum resulting from emission from the t1u level

was measured. To analyze the results, we use the couplings in Eq. (35) of the t1u level to

the two Ag and the eight five-fold degenerate Hg modes. For this model the ground-state can

be calculated by numerical diagonalization to any desired accuracy [58]. Furthermore, within
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Fig. 6: Experimental (dots) and theoretical (full line) photoemission spectrum of C−
60. The

theoretical no-loss (dashed), single-loss (dotted) and double-loss (dashed-dotted) curves are

also shown. The contributions of the different modes to the single-loss curve are given by bars

(Hg: open, Ag: solid). The inset shows the experimental spectrum over a larger energy range

(after Gunnarsson et al. [58]).

the sudden approximation [63], the photoemission spectrum can easily be calculated. A set of

coupling constants is then assumed and the resulting spectrum is compared with experiment.

The coupling parameters are varied until good agreement with experiment is obtained, thereby

providing an estimate of the couplings. The resulting spectrum is compared with experiment in

Fig. 6 and the corresponding parameters are shown in Table 9. An uncertainty in this approach

is that with the available resolution, it is not possible to distinguish between the coupling to

Ag modes and Hg modes with similar energies. The couplings to the Ag modes were therefore

taken from a calculation [55]. With this assumption, the couplings to the Hg modes can then

be determined. An equally good fit can, however, be obtained using other couplings to the Ag

modes if the couplings to the Hg modes are changed correspondingly.

Substantially later the experiments in Ref. [58] were repeated by Wang et al. [59]. It was now

possible to obtain a better resolution. These data have been analyzed in a similar way as in

Ref. [58] by Iwahara et al. [60]. Their results are also shown in Table 9. The total coupling

is weaker than in Ref. [58], but still substantially larger than in the ab initio LDA calculations.

The agreement with the calculation using the B3LYP is better.

Raman scattering provides a different method of estimating the coupling strength. The electron-

phonon coupling allows phonons to decay into an electron-hole pair in the metallic fullerides.

This decay contributes to the width of the phonon and can be measured in Raman scattering.

Other factors may also contribute to the width, but one can try to eliminate these by subtracting

the width of the phonons for a nonmetallic system, where a decay in electron-hole pairs is not
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possible. This was done by Winter and Kuzmany [61], and Table 9 shows results adapted [39]

from the experiments [61]. The total weight does not differ much from what was obtained

from photoemission [60], but the distribution of weight between the different modes differs

dramatically. Theoretically, it is found that in the solid there is a transfer of weight to lower

modes, due to the coupling to electron-hole pairs [64]. This mechanism is operative for the

Raman data but not for the photoemission data (taken for a free molecule). This may explain

some of the discrepancy between the photoemission and Raman data.

6 Conclusions

For complicated systems with strong correlation effects it is often not possible to obtain accurate

ab initio solutions, but it is instead useful to turn to models. An important issue is then how to

obtain parameters and how to renormalize parameters to include as much physics as possible.

We have discussed how the basic principle is to try to include, implicitly as a renormalization

of parameters, all effects not explicitly included in the model. On the other hand, we should

not allow effects included explicitly in the model to renormalize parameters. For many-body

systems there is no general systematic and controlled way of doing this. The basic assumption is

often that the electrons can be put into two groups of “fast” (delocalized) and “slow” (localized)

electrons, where the ”fast” electrons are assumed to adjust to the “slow” electrons, and therefore

can be projected out. Such a division is, however, often not very clear cut. Nevertheless some

methods have been relatively successful in obtaining parameters for certain classes of systems.

We have, however, shown simple examples of many-body effects that are usually not included,

but can have an appreciable effect on the parameters. In particular, renormalization effects

may work differently for different experiments. We have also argued that it is important to

try to extract parameters from different sources, both theory and experiment, to obtain a better

understanding of the accuracy of the parameters.
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10.2 Rudolf Zeller

1 Introduction

If one wants to apply density functional theory (DFT) to study the electronic structure of mate-
rials locally perturbed by defect atoms or more generally of disordered dilute and concentrated
alloys, the standard approach is to use band structure methods developed for periodic systems.
The defect atoms are periodically repeated so that a periodic crystal with a large unit cell (su-
percell) is obtained. The supercell must be large to minimize spurious interactions between
the defect atoms in adjacent supercells. Supercells with a few hundred atoms can be treated
routinely today and sophisticated corrections for some of the unwanted interactions have been
developed. The situation was considerably different in the 1970s and 1980s when the comput-
ing power was orders of magnitude smaller than today. Then Green function methods were
mandatory to investigate the electronic structure of defect atoms more efficiently. The advan-
tage of Green function methods is that the potential must be determined self-consistently only
in the region where it noticeably differs from the one of the unperturbed host crystal. As a con-
sequence Green function methods correctly describe the embedding of the local environment of
the defect atoms in the otherwise unperturbed surrounding perfect crystal. It is the aim of this
chapter to give an introduction into the concept of Green function methods for studying locally
perturbed crystals. For illustration of the concept and its advantages some key results will be
presented. These results were mainly obtained by a Green function (GF) technique which is
based on the Korringa-Kohn-Rostoker (KKR) band structure method [1, 2] and which was de-
veloped in Jülich over the last decades. This technique, the KKR-GF method, is particularly
suited for metallic systems, but can be applied also for semiconductors and insulators.

2 Green function of the Kohn-Sham equation

The basic quantity in density functional theory [3, 4] is the electronic density. The density can
be determined, if the Kohn-Sham single-particle equations[

−∇2
r + veff(r)

]
ϕi(r) = εiϕi(r) (1)

are solved.1 The normalized Kohn-Sham wavefunctions ϕi(r) can then be used to calculate the
density by

n(r) = 2
∑
i

|ϕi(r)|2 (2)

where for a system with N electrons the sum is over the N/2 orbitals with the lowest values of
εi. The εi are the eigenvalues of the Hamiltonian H = −∇2

r + veff(r). The factor two accounts
for the assumed spin degeneracy. Alternatively to (2), the density can be calculated from the
Green function of the Kohn-Sham system. This Green function is defined as the solution of[

−∇2
r + veff(r)− ε

]
G(r, r′; ε) = −δ(r− r′) . (3)

1To simplify the notation, Rydberg atomic units ~2/2m = 1 are used throughout this chapter and usually the
equations are given only for non-spin-polarized systems. The generalization to spin-polarized (magnetic) systems
is straightforward.



DFT Green Function Approach 10.3

Here the boundary condition G(r, r′; ε) → 0 for |r − r′| → ∞ is assumed and the symbol ε
denotes a continuous complex variable in contrast to the real discrete variables εi. The result
for the density is

n(r) = − 2

π
Im

∫ EF

−∞
G(r, r; ε)dε (4)

where the integral is understood as an integral in the complex ε plane on a contour infinitesi-
mally above the real ε axis. The Fermi level EF is obtained by the condition that the density
n(r) integrated over all space gives the correct number of electrons. For instance, in neutral
systems, this number is determined by the sum of the nuclear charges. The result (4) can be
derived as follows. In operator notation (3) can be written as

[H− ε]G = −I (5)

whereH is the Hamiltonian and I the unity operator. In terms of eigenvalues εi and eigenfunc-
tions ϕi(r) the HamiltonianH can be expressed as

H =
∑
i

εiϕi(r)ϕ
?
i (r
′) . (6)

This is true because the right hand of this equation acting on ϕi(r) leads to εiϕi(r) which is the
required result forHϕi(r). This follows from∑

j

εjϕj(r)

∫
dr′ϕ?j(r

′)ϕi(r
′) =

∑
j

εjϕj(r)δij = εiϕi(r) (7)

where the orthonormality constraint
∫
dr′ϕ?j(r

′)ϕi(r
′) = δij for the eigenfunctions was used.

By using that G is the inverse operator of ε−H the so called spectral representation

G(r, r′; ε) =
∑
i

ϕi(r)ϕ
?
i (r
′)

ε− εi
(8)

for the Green function is obtained. If this representation is inserted in (4) and the identity

lim
y→0+

1

x+ iy
= P

1

x
− iπδ(x) (9)

is applied to evaluate the imaginary part of (8), a delta function δ(ε − εi) appears which then
can be used to perform the integration in (4). The upper integration limit EF restricts the sum
to eigenfunctions with εi ≤ EF and the equivalence of (2) and (4) is demonstrated.
Equation (8) shows that the Green function has poles on the real ε axis at discrete values εi.
These values represent the discrete part of the eigenvalue spectrum. In general, also a continu-
ous part of the eigenvalue spectrum is possible. For instance in free space, with veff(r) = 0, the
eigenfunctions are plane waves eikr with eigenvalues given by k2. These eigenvalues continu-
ously cover the non-negative part of the real ε axis. Then (8) must be generalized into

G(r, r′; ε) =
∑
i

ϕi(r)ϕ
?
i (r
′)

ε− εi
+

∫ ∞
−∞

ϕ(r; ε′)ϕ?(r′; ε′)

ε− ε′
dε′ (10)
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Fig. 1: Density of states for Ni (here only for majority electrons) and the corresponding quantity
along paths parallel to the real axis with distance 0.5, 1.8 and 4.7 eV. The picture is taken from
Ref. [8]. It illustrates the increasing smoothness of the integrand with increasing distance from
the real axis.

where the integral is over the continuous part of the spectrum. In periodic crystals the continu-
ous part of the spectrum is realized by bands, for instance by the valence and conduction bands
in semiconductors. For the numerical evaluation of (4) it is important that the Green function is
an analytical function2 of ε except for the singularities on the real axis. This means that the in-
tegration (4) can be performed on a contour in the complex ε plane where the integrand is much
smoother than just above the real axis as illustrated in Fig. 1. This procedure was suggested in a
number of papers [6–9] and leads to considerable savings of computing time. Usually 30 to 40
points in the complex ε plane are enough for accurate evaluations of (4) provided that the points
are chosen dense enough near EF , where the contour necessarily approaches the real axis.
An important quantity, which is often used to provide an understanding of the electronic struc-
ture of materials in a single-particle picture, is the local density of states within in a volume V.
It is defined as

nV (ε) = 2
∑
i

δ(εi − ε)
∫
V

dr |ϕi(r)|2 (11)

and gives the distribution of occupied and unoccupied electronic states within the volume V ,
for instance the local volume corresponding to one atom in the system. In terms of the Green
function the local density of states is given by

nV (ε) = −
2

π
Im

∫
V

drG(r, r; ε) (12)

as can be verified by using the spectral representation (8). The total density of states is obtained
if the integrals in (11) or (12) are done over all space.

2For an elementary introduction to classical Green functions and their analytical properties the textbook of
Economou [5] is a good source.
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3 Green function method for impurities

Historically the Green function method is attributed to Koster and Slater [10] who expanded the
Green function in terms of Wannier functions. Because of the difficult construction of Wannier
functions at that time the capabilities of this approach were rather limited. At the end of the
1970s Green function methods for the calculation of the electronic structure of impurities in
solids received new attention. Inspired by the success of DFT calculations for periodic solids,
several groups invested a considerable amount of work into the development of Green function
methods for impurity calculations. They used a number of different techniques to calculate the
the Green function of the periodic host crystal which is needed for the subsequent impurity
calculations. The LCAO-GF method [11,12] was based on an expansion in linear combinations
atomic orbitals, the LCGO-GF method [13] on an expansion in linear combination of Gaussian
orbitals, the LMTO-GF method [14,15] on the linear muffin-tin orbital method and the KKR-GF
method [16, 17] on the Korringa-Kohn-Rostoker band structure method.
In the beginning the Green functions were calculated mostly by using the spectral representa-
tion (8). This is easy for the imaginary part of the Green function because according to (9) the
imaginary part of the denominator ε−εi leads to a delta function so that only εi values contribute
which are in the ε range for which the Green function is needed. From the imaginary part the
real part was then obtained by the Kramers-Kronig relation

ReG(r, r′; ε) = − 1

π
P

∫ ∞
−∞

dε′
1

ε− ε′
ImG(r, r′; ε′) . (13)

Here in principle, the imaginary part is needed along the entire real ε axis. In practice, ap-
proximations were used, either the imaginary part in the integrand was neglected for higher ε
values or it was replaced by an analytical approximation [18]. Another possibility is to use basis
functions in a finite Hilbert space [15].
The problem that an infinite number of eigenstates contributes in (8) can be avoided if the host
Green function is directly calculated by Brillouin zone integrations. This technique, which di-
rectly calculates the Green function for a given energy, is used in the KKR coherent potential
approximation (KKR-CPA) [19, 20] and has been implemented also in the KKR-GF method.
This procedure is perhaps most easily understood in terms of reference Green functions. In-
stead of using the defining differential equation (3) or the spectral representation (8), the Green
function is calculated from the integral equation

G(r, r′; ε) = Gr(r, r′; ε) +

∫
dr′′Gr(r, r′′; ε)∆v(r′′)G(r′′, r′; ε) . (14)

Here Gr is the Green function of a suitably chosen reference system with reference potential
vr(r) and ∆v(r) = veff(r)− vr(r) is the perturbation of the potential given by the difference of
the Kohn-Sham potential and the reference potential. The Green function Gr is determined by[

−∇2
r + vr(r)− ε

]
Gr(r, r′; ε) = −δ(r− r′) . (15)

The calculation of Green functions by using reference systems is a powerful concept for the
calculation of the electronic structure for systems with a complicated geometric structure. An
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Fig. 2: Illustration for the geometry of one impurity atom in an atomic chain which consists of
other atoms than the otherwise periodically repeated chains at the step edges of a vicinal (711)
surface of an fcc crystal.

example for such a system, shown in Fig. 2, is a vicinal (711) surface of a face-centered-cubic
crystal decorated with adatoms at step edges and within step edges. The Green function for this
system can be constructed by the successive calculation of Green functions of simpler systems.
i) Starting from free space the Green function for the bulk crystal is calculated treating the full
bulk potential as perturbation using periodicity in three dimensions. ii) Several layers of the bulk
crystal are removed, the removed potential is treated as perturbation using the two-dimensional
surface periodicity. As a consequence of the fact the electrons cannot tunnel through several
empty layers one obtains a slab which is decoupled from the rest of the bulk crystal. iii) Atomic
chains are added at step edges. The potential perturbation is periodic in two dimension, but
locally restricted to the vicinity of the step edges. iv) A chain of different atoms is inserted,
only one-dimensional periodicity along the considered step edge is preserved, but the potential
perturbation is confined to the vicinity of the considered chain. v) Finally, an impurity atom is
inserted, periodicity is fully lost, but the potential perturbation is essentially confined to atoms
in the vicinity of the impurity.

During this successive construction, periodicity can be used in the dimensions where it exists
while in the remaining dimensions the potential perturbation is localized in the vicinity of the
replaced atoms. In each successive step the integral equation must be solved only within a
region of space where the potential differs non-negligibly from the one of the reference system.
Once the Green function has been obtained for r and r′ in this region, the Green function in all
space can be obtained simply by multiplications and integrations. This represents an enormous
advantage of Green function methods over supercell methods because the size of the region
for which the integral equation must be solved is determined by the extent of the potential
perturbation and not by the usually much larger extent of the perturbed wavefunctions or Green
functions.
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Fig. 3: Partitioning of space and illustration for the definition of Rn and Rn′
, which define the

positions of the cell centers, and r and r′, which are vectors within the cells.

An effective way to solve the integral equation (14) is provided by the KKR-GF method which
does not rely on the determination of eigenvalues and eigenfunctions with their orthonormality
constraints, but uses ideas of multiple-scattering theory. In this theory space is divided into
non-overlapping regions, for instance cells around each atom, and the calculation of the Green
function is broken up into two parts. First, single-scattering quantities, which depend only on
the potential in a single cell, are determined. Second, the multiple-scattering problem is solved
to obtain the correct combination of all single-scattering events.
The mathematical basis for the KKR-GF method is the fact that the Green function for free
space, which is given by

G0(r, r′; ε) = − 1

4π

exp(i
√
ε|r− r′|)

|r− r′|
, (16)

can be written in cell-centered coordinates as

G0(r+Rn, r′ +Rn′
; ε) = δnn′G0(r, r′; ε) +

∑
LL′

JL(r; ε)G
0,nn′

LL′ (ε)JL′(r′; ε) (17)

with analytically known Green function matrix elements G0,nn′

LL′ (ε) which do not depend on the
radial coordinates r or r′. Here Rn and Rn′ are the coordinates of the cell centers, usually the
atomic positions, and r and r′ are coordinates within the cells which originate at the cell centers.
An illustration for these coordinates is given in Fig. 3. The functions

JL(r; ε) = jl(r
√
ε)Ylm(r̂) (18)

are products of spherical harmonics Ylm with spherical Bessel functions. Angular variables are
denoted by r̂ = r/r and radial variables by r = |r|. The symbol L is used as compact notation
for the angular momentum indices l and m and sums over L denote double sums over l and
|m| ≤ l.
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If one proceeds as in [21], it is straightforward to show that the solution of (14) is given by

G(r+Rn, r′ +Rn′
; ε) = δnn′Gn

s (r, r
′; ε) +

∑
LL′

Rn
L(r; ε)G

nn′

LL′(ε)Rn′

L′(r′; ε) . (19)

Here Gn
s is the single-site Green function for cell n which satisfies the integral equation

Gn
s (r, r

′; ε) = Gr(r, r′; ε) +

∫
n

dr′′Gr(r, r′′; ε)∆vn(r′′)Gn
s (r
′′, r′; ε) (20)

and Rn
L are the single-site solutions which satisfy the integral equations

Rn
L(r; ε) = JL(r; ε) +

∫
n

dr′Gr(r, r′; ε)∆vn(r′)Rn
L(r
′; ε) . (21)

In (20-21) the integration is only over the volume of cell n and ∆vn(r) = ∆v(r + Rn) is the
potential perturbation in this cell n. The Green function matrix elements Gnn′

LL′ used in (19)
satisfy the matrix equation

Gnn′

LL′(ε) = Gr,nn′

LL′ (ε) +
∑
n′′

∑
L′′L′′′

Gr,nn′′

LL′′ (ε)∆t
n′′

L′′L′′′(ε)Gn′′n′

L′′′L′(ε) (22)

which computationally represents a linear algebra problem. The difference ∆tn of the so-called
single-site t matrices is given by

∆tnLL′(ε) =

∫
n

dr JL(r; ε)∆v
n(r)Rn

L′(r; ε) . (23)

Together (19-23) provide a computationally convenient solution of the integral equation (14)
without the need to determine eigenvalues and eigenfunctions. The only real approximation
which must be made is the truncation of the infinite sums over L to a finite number of terms.
This determines the angular momentum cutoff lmax used in the KKR-GF method. Usually
lmax = 3 or lmax = 4 is sufficient for accurate results.
If the density of states integrated over all space is needed, for instance for the total energy
calculations, it is important that the integration in (12) can be performed analytically if the
volume V extends over all space. This is the essence of Lloyd’s formula [22] which gives the
difference of the integrated density of states

∆N(ε) =

∫ ε

dε′∆n(ε′) (24)

of the perturbed and unperturbed systems by logarithms of determinants. The formula can be
written as

∆N(ε) =
1

π
Im
∑
n

∆ ln det |αnLL′(ε)| −
1

π
Im ln det |δnn′

LL′ −
∑
L′

Gr,nn′

LL′ (ε)∆t
n′

L′L(ε)| (25)

which is the KKR equivalent of the operator identity (61) derived in the appendix. The matrix
α in (25) is defined by [23]

αnLL′(ε) = δLL′ +

∫
n

drHL(r; ε)v
n(r)Rn

L′(r; ε) (26)

for the potential vn(r) and analogously for the reference potential, where the functions

HL(r; ε) = h
(1)
l (r
√
ε)Ylm(r̂) (27)

are products of spherical harmonics with spherical Hankel functions of the first kind.
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Fig. 4: Local density of states (within the impurity cell) for Mn impurities in Cu and Ag as
function of energy (in eV) relative to the Fermi level. The minority spin density of states is
plotted downwards so that it does not overlap with the majority one. The dotted curves show
the integrated density of states. The picture is taken from Ref. [25].

3.1 Density of states

Although the single-particle eigenvalues εi and the density of states n(ε) calculated in density
functional theory are only formal mathematical quantities, they often agree qualitatively with
experiment and even more often they are used to provide a single-particle understanding of the
chemical and physical mechanisms which lead to the observed behaviour of materials. Among
the first systems studied by the KKR-GF method were 3d transition metal impurity atoms in
noble metals which are the classical systems considered by Anderson in his famous paper on
the Anderson impurity model [24].
In Fig. 4 the local density of states calculated with the local density approximation (LDA) of
DFT is shown for Mn impurities in Cu and Ag. The differences for the two spin directions
are caused by the fact that transition metal atoms of the Fe series can gain magnetic exchange
energy by spin alignment. Anderson has discussed this behaviour in terms of Lorentzian type
virtual bound states. Fig. 4 shows that these virtual bound states are reproduced in LDA-DFT
calculations. In particular, the minority density of states shows almost Lorentzian type features
with peak positions just above the Fermi level. However, also distortions from the Lorentzian
form are clearly visible. They are caused by band structure effects arising from hybridization of
the 3d-states of the impurity atoms with the host d-states. Interestingly, in 1980 when Ref. [25]
was published, it was seriously doubted that the observed splitting of the peak positions was
the correct density functional answer, because conflicting results with much smaller splitting
existed [26]. One criticism was that the observed spin splitting could be an artifact of the fact
that only a potential perturbation in the impurity cell was used. Later calculations [27], where
potential perturbations were also used in neighboring cells, confirmed the results shown in
Fig. 4. Moreover, measurements [28,29] with various electron-spectroscopy techniques showed
similar spin splittings as calculated. Fully quantitative agreement between calculations and
experiment, of course, cannot be expected because states calculated with LDA are not to be
identified as measurable quantities.
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3.2 Defect formation energies

An important problem in the study of defects is the calculation of total energy differences which
are the basic quantities necessary for understanding the microscopic origin of the formation of
alloys and many other physical processes such as diffusion, short-range ordering, segregation.
This is particularly true for vacancy formation and migration energies, which are difficult to
measure, but important quantities to understand the thermodynamic and kinetic behaviour of
metals and semiconductors. In supercell methods these numbers are difficult to calculate as
expressed, for instance, in the following sentences taken from Puska et al. [30], who used su-
percells with up to 216 atoms. These authors write in the introduction The vacancy in Si can
be considered as the simplest example of a point defect in a semiconductor lattice and in the
conclusions The convergence of the results is shown to be very slow and If the supercell is not
large enough the long-range ionic relaxation pattern, especially in the [110] zigzag direction,
may not be properly described. Since then the vacancy in Si has been reinvestigated several
times by supercell calculations, where due to the ever increasing computer power the supercell
size has gradually increased. However, the convergence problem remains as stated in one of the
most recent articles by Corsetti and Mostofi [31]. These authors who used supercells with up to
1000 atoms write in the conclusions Our calculations confirm the slow finite size convergence
of defect formation energies and transition levels, ... They also argue that future increase of
supercell sizes can reduce the spurious interactions between the vacancies in different cells, but
that then another problem must be considered seriously. The problem is that total energy differ-
ences due to defect atoms are not calculated directly, but are obtained by numerical subtraction
of supercell energies with and without defect. With increasing supercell size the numbers to be
subtracted become larger which puts heavy demands on the numerical precision.

In contrast to supercell methods, Green function calculations are not plagued by these problems.
The formation energy is calculated directly, not by energy differences, spurious interactions
do not exist, and the region in space where the self-consistent calculations must be done is
determined by the range of the potential perturbation and not by the usually much larger range
of wavefunctions or Green function perturbations. Actually, the Si vacancy was considered
as one of the earliest systems in Green function impurity calculations [11, 12]. At that time,
however, it was not possible to calculate accurate total energies. Green function methods using
basis sets suffered from insufficiently accurate basis functions and the KKR-GF method from
the spherical approximation for the potential used in each cell. Only at the beginning of the
1990s accurate total energy calculations became possible, both due to the increased computing
power and even more so because of the development of advanced numerical techniques. Results
for some vacancy formation energies calculated by the KKR-GF method [32] are shown in
Table 1. Compared to the original publication [33] the values for Cu and Ni contain corrections
of about -0.04 and -0.08 eV which are energy gains obtained if the atoms relax to the correct
equilibrium positions.

For the calculation of defect formation energies it is very important that Lloyd’s formula is used
to obtain the single-particle contribution. Within density functional theory the total energy con-
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Table 1: Calculated and experimental values for the vacancy formation energy of selected
transition metals (in eV). The calculations for Cu and Ni include the effect of lattice relaxations.

Cu Ag Ni Pd
Theory 1.37 1.20 1.68 1.57
Experiment 1.28 1.11 1.79, 1.63 1.85, 1.54

Table 2: Solution energy (in eV) for a V impurity in Cu calculated using potential perturbations
in the vanadium cell and in different numbers of shells of surrounding Cu neighbors.

shells 0 1 2 3 4
cells 1 13 19 43 55
ELloyd 1.44 0.73 0.73 0.73 0.73
Elocal 1.60 1.93 1.38 0.75 0.52

sists of a sum of the kinetic energy T [n(r)], the electrostatic Hartree energy and the exchange
correlation energy. The kinetic energy is usually evaluated as

T [n(r)] =
∑
i

εi −
∫

drn(r)veff(r) =

∫ EF

dε ε n(ε)−
∫

drn(r)veff(r) (28)

= EFN(EF )−
∫ EF

dεN(ε)−
∫

drn(r)veff(r)

by using the single-particle energies εi, where the last result is obtained from integration by parts
over ε. If the density of states n(ε) or the integrated density of states N(ε) is calculated from
the Green function by (11) and (24), an explicit summation over all cells of the infinite crystal
is required. This problem is avoided if Lloyd’s formula (25) is used which already contains the
integration over all space.
The different behaviour of the shell convergence of energies calculated with and without Lloyd’s
formula is illustrated in Table 2 where results for the solution energy for a vanadium impurity
in copper are shown. While the use of Lloyd’s formula leads to a converged result already for
13 cells, the use of (11) with summation over cells only gives poor results. This behaviour
reflects the fact that wavefunction or Green function perturbations are much longer ranged than
the potential perturbation. Density changes, which contribute, for instance, in the last term of
(28) and in other parts of the energy functional, exist outside of the perturbed potential region,
but these changes are unimportant because of the variational properties of the energy functional.

3.3 Forces and lattice relaxations

Substitutional impurities, in general, have a different size than the host atoms. This causes dis-
placements of the neighboring atoms away from their ideal positions which they occupy in the
unperturbed host crystal. In metals, because of the high coordination number, the displacements
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are rather small and can be neglected in the calculations of many physical properties. However,
sometimes the displacements have significant effects and their size and direction should be
calculated. In electronic structure methods displacements are calculated usually from the con-
dition that the forces on the atoms should vanish and the forces are determined usually by the
Hellmann-Feynman theorem

Fn = − ∂E

∂Rn

∣∣∣∣
n(r;Rn)

−
∫

dr
δE

δn(r)

∂n(r;Rn)

∂Rn
(29)

which means that the force Fn on atom n is determined by the derivative of the total energy E
with respect to the coordinate Rn of atom n. Here the first term, evaluated at constant density
n(r;Rn), is the Hellmann-Feynman (HF) force and the second term is necessary if approxima-
tions are made in the solution of the Kohn-Sham equations. The second term vanishes in an
exact treatment, because then δE

δn(r)
= EF is constant and because the total number of electrons

Nel =
∫
drn(r;Rn) does not depend on the atomic positions. Within a full potential KKR

formalism, the Kohn-Sham equations for the valence electrons are solved rather accurately, the
only approximation is the lmax cutoff. This means that the second term usually contains a neg-
ligible contribution from the valence electrons. For the core electrons, however, this term gives
a considerable contribution if the core states are calculated as usual in an atomic fashion using
only the spherical part of the potential. With a spherical ansatz ncore for the core density, the
resulting expression for the force is

Fn = Zn ∂VM(r)

∂r

∣∣∣∣
r=Rn

−
∫
d3r ncore(|r−Rn|) ∂veff(r)

∂r
(30)

whereZn is the nuclear charge, VM(r) the Madelung potential and veff(r) the Kohn-Sham poten-
tial. Due to the vector character of the potential derivatives in (30), only the l = 1 components
of VM and veff are needed. Since these quantities are anyhow calculated in a full-potential KKR
treatment, the calculation of forces is easy. There are also no Pulay corrections [34] required
which arise in basis set methods if the basis functions depend on the atomic positions.
While force calculation are simple, calculations of atomic displacements, which occur if the
impurity atoms are smaller or larger than the host atoms, are more complicated in the KKR
method. The main reason is the site-centered angular momentum expansion used in the Green
function expression (19) which is needed around the displaced sites. While original undisplaced
and new displaced sites can be used together in the calculation of the Green function with appro-
priate artificial zero potentials on non-participating sites, it is numerically simpler to transform
the Green function matrix elements from undisplaced to displaced sites [35, 36]. The reference
Green function matrix elements are transformed by

G̃r,nn′

LL′ (ε) =
∑
L′′L′′′

ULL′′(sn; ε)Gr,nn′

L′′L′′′(ε)UL′L′′′(sn
′
; ε) (31)

where sn is the shift of atom at site Rn to the new site Rn + sn. The transformation matrix is
given by

UL′L(s
n; ε) = 4π

∑
L′′

il
′+l′′−lCLL′L′′jl′′(

√
εsn)YL′′ (̂sn) (32)
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Fig. 5: Displacements of the nearest Cu neighbors around impurities from Ti to Ge in Cu. The
displacements are given in percent of the nearest neighbor distance between the atoms in un-
perturbed Cu. Experimental results obtained by EXAFS measurements are shown by triangles
with error bars. The picture is taken from Ref. [37].

where CLL′L′′ =
∫

4π
dr̂YL(r̂)YL′(r̂)YL′′(r̂) are Gaunt coefficients, jl spherical Bessel functions

and YL spherical harmonics. Together with a similar transformation for the t matrix, the follow-
ing algebraic Dyson equation

G = G̃r + G̃r[t− t̃r]G (33)

must be solved. While the transformation (31) is exact, if the sums over L′′ and L′′′ are extended
over infinite angular momenta, in practical calculations these sums must be truncated. For large
displacements a relatively high lmax value is needed, but lmax = 4 is sufficient for displacements
up to 10 % of the nearest neighbor distance as they occur around the substitutional impurities
considered here.
Fig. 5 shows calculated displacements of nearest neighbor Cu atoms around impurities from
the 3rd series of the periodic table together with experimental data derived from extended x-ray
absorption fine structure (EXAFS) measurements. Most of the impurities lead to an outward
displacement of the Cu neighbors which means that these impurities are bigger than Cu. Only
Ni and Co are smaller with inward displacements. The displacements induced by Fe are very
small and for a Cu impurity they are, of course, zero.
In contrast to metals, lattice relaxations in semiconductors are usually considerably larger be-
cause of more open structures and lower coordination numbers. For the defect pairs shown in
Fig. 6 the displacements reach up to 10 % of the nearest neighbor distance which is about the
limit for the U transformations. The figure shows a comparison of displacements calculated for
donor-acceptor pairs in Si by the full-potential KKR-GF method and a pseudopotential ab-initio
molecular dynamics program applied to a supercell with 64 atoms [38]. The displaced positions
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Fig. 6: Calculated displacements for InSb, InP and InAs defect pairs in Si. The results are given
in percent of the nearest neighbor distance between the bulk Si atoms. Two sets of numbers are
given. The number in parentheses have been calculated by a pseudopotential method, the other
number by the KKR-GF method.

obtained by the two methods are essentially the same, but the KKR-GF method can give more
information, in particular for properties that are determined by the core electrons, like hyperfine
fields or electric field gradients.

The considered defect pairs are electrically and magnetically inactive and experimental infor-
mation about the structure is difficult to obtain. One of the few methods to investigate such
defects are perturbed angular correlation (PAC) experiments which measure the electric field
gradients. The calculated electric field gradients depend sensitively on the lattice relaxations of
the defect complex. While calculations without lattice relaxations give the wrong trend with re-
spect to the atomic numbers of the donor atoms, the agreement greatly improves, if the relaxed
configurations are considered [39], as for instance given in Fig. 6 for donor-acceptor pairs in
Si. Thus a reliable calculation of the relaxations is crucial for understanding the electric field
gradients.

Efficient and accurate force calculations open the possibility to study phonon dispersion rela-
tions. Within a Green function impurity method the calculations can be done in real space by
directly determining the Born-von Karman force constants according to their definition. One
atom is displaced by a finite amount and the induced forces on all atoms are calculated. Fourier
transformation gives the dynamical matrix and phonon frequencies and eigenstates in the Bril-
louin zone are easily obtained. For cubic crystals a single self-consistent calculation is enough
to determine the whole phonon spectrum. Fig. 7 shows the phonon dispersion curves of Al
calculated in this way by the KKR-GF method. As can be seen a calculation including 6th near-
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Fig. 7: Calculated phonon spectrum (continuous lines) of fcc Al and experimental results (full
dots). The central Al atom is shifted by 0.5% and the forces on six shells of neighboring atoms
are calculated self-consistently, yielding force constant parameters for six nearest neighbor
shells. The figure is taken from Ref. [37].

est neighbor interactions reproduces the experimental data quite well. A disadvantage of this
approach is that a relatively big cluster, including many atoms, must be used to account for long
range elastic interactions present for example in semiconductors.

3.4 Long range perturbations

Magnetic impurities in non-magnetic materials induce magnetic polarization oscillations on the
surrounding host atoms. Usually these oscillations are small effects. Typically a Cu atom as
nearest neighbor of an impurity from the 3d series carries an induced moment of about 10−2µB

and the size of the moments decreases with increasing distance from the impurity as the third
power of distance. Despite of this, as discussed in Ref. [40], very nice experimental information
about the magnetization oscillations in Cu exists due to measurements of Knight shift satellites
by the Slichter group. The measured Knight shift satellites can be related to calculated hyperfine
fields as detailed in Ref. [40]. Fig. 8 shows calculated hyperfine fields on twelve shells of
Cu neighbors around a Mn impurity, which means that potentials for 225 atoms have been
calculated self-consistently. The corresponding experimental results derived from the Knight
shift measurement are shown by red squares. Calculation and experiment nicely agree if the
correct assignment of the experimentally observed peaks to the different shells has been made.
While the assignment of calculated hyperfine fields to the different shells is unambiguous, the
assignment of experimental peaks is more difficult. It relies on the symmetry of the shells, on
the intensity of the peaks arising from the number of atoms in the shells and on the magnitude
of the derived hyperfine field according to the rapid decrease with distance.
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Fig. 8: Hyperfine fields of Cu atoms in different shells around a Mn impurity in Cu. The
calculated values (solid curve) were multiplied with (Rn/a)

3, where Rn is the distance from the
Mn nucleus and a the lattice constant of Cu. The numbers indicate the different shells and the
experimental values are shown as red squares. The picture is taken from Ref. [41].

3.5 Parameters for model Hamiltonians

Green function impurity calculations can be used to obtain parameters for model Hamiltoni-
ans if constraints are applied in density functional theory [42]. Constraints are already used
in the formal development of density functional theory, for instance the density is constrained
to give the correct number of electrons and the Kohn-Sham orbitals must be normalized as∑

α(ϕ
α
i , ϕ

α
i ) = 1. Another example is Levy’s [43] explicit definition of the energy by con-

strained minimization over all many-electron wavefunctions which give the same density. The
idea of constrained density-functional theory [42] is the extension to quite arbitrary constraints.
This idea is useful if one wants to calculate total energy differences which depend on a parame-
ter, for instance on NV , the number of electrons inside a volume V . The constraint can be taken
into account by modifying the energy functional E[n(r)] into

Ẽ[n(r)] = E[n(r)] + v

[
NV −

∫
V

n(r)dr

]
(34)

where the constraint is guaranteed by the Lagrange parameter v. The minimization of (34)
with respect to n(r) leads to an additional potential v in the Kohn-Sham equations, which is
constant and only acts in V and is zero elsewhere. This potential must be adjusted such that
the resulting density n(r) gives exactly NV electrons in volume V . Instead of calculating the
energy differences from the functional Ẽ[n(r)] by subtracting the energies for different values
of the parameter NV , it is computationally easier to calculate the difference directly by the
Hellmann-Feynman theorem

dẼ(NV )

dNV

= v ⇒ ∆Ẽ(NV ) =

∫ NV

N0

v(N ′) dN ′ (35)

which only requires the knowledge of the potential v(N ′). Physically, the potential v can be
viewed as the force necessary to constrain the system to the desired state and ∆E as the strain
energy of the system.
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Fig. 9: Constraining field (left) and energy difference (right) as function of the deviation of the
occupation number Nf from its ground state value N0

f . Pictures are taken from Ref. [42].

Instead of varying the total charge it is more interesting to vary partial charges, for instance
the number of d- or f -electrons in the impurity cell. Minimization then leads to a constant
projection potential v(Nd,f ) which acts only on states with l = 2 or l = 3 character in the
considered cell. The energy differences obtained in this way can be related to the screened
Coulomb parameters Ud and Uf (Hubbard U), for instance as

Uf = ∆E(N0
f + 1) +∆E(N0

f − 1) (36)

where N0
f is the number of f -electrons in equilibrium. In the calculation the screening is pro-

vided by the the s- and p-states which can adjust to the changed number of d- or f -electrons.
An early application of constrained density functional theory was the calculation of the Coulomb
parameter Uf for Ce impurities in Ag and Pd [42]. The number Nf of f -electrons was deter-
mined by integrating the local density of states (12) using only l = 3 angular momentum
components for n(ε). The ground state values of Nf were determined as N0

f = 1.18 for Ce in
Pd and as N0

f = 1.25 for Ce in Ag. A constraining projection potential vf was applied within
the muffin-tin sphere around the Ce impurity and the dependence of Nf on vf was determined.
Both the constraining potential and the energy difference are plotted in Fig. 9. The dependence
of vf on Nf is almost linear except for Pd near ∆Nf = −1, where it becomes increasingly
difficult to remove all f -states due to their strong hybridization with d-states of Pd. The en-
ergy differences depend almost quadratically on ∆Nf and the screened Coulomb parameters
according to (36) turned out be 6.6 eV for Ce in Ag and 8.1 eV in Pd.
Another early application of constrained density functional theory was the calculation of in-
teraction energy differences between the ferromagnetic and antiferromagnetic configuration of
impurity pairs in metals [44]. In these calculations the local magnetic moment of one of the
impurities is constrained to an arbitrary value M and the lowest energy compatible with the
constraint is determined by a modified functional

Ẽ[n(r),m(r)] = E[n(r),m(r)] +H

[
M −

∫
V

m(r)dr

]
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Fig. 10: Difference of the magnetic interaction energy difference ∆E(M) and the constraining
magnetic field H(M) as function of the prescribed local impurity moment. The results are for
pairs of Mn and Fe impurities on nearest neighbor sites in a Cu crystal (from Ref. [44]).

where the Lagrange parameterH is a constraining longitudinal magnetic field, which is constant
in the cell of one impurity with volume V and zero elsewhere. This field is chosen such that the
integral of the magnetization m(r) over the cell gives the desired value of the moment.
Similar to (35) the energy difference is given by

∆E(M) =

∫ M

M0

H(M ′)dM ′

where M0 is the value of M in the reference state. For instance in Fig. 10, the reference state is
the antiferromagnetic configuration, for which the moments for the two impurities have opposite
sign. This state corresponds to the left minima of the ∆E(M) curves in Fig. 10, while the right
minima correspond to the ferromagnetic configuration. Both configurations are stable as the
energy minima with vanishing constraining field H indicate. The energy differences between
different magnetic configurations determine exchange parameters Jij which may be used in a
Heisenberg model

Ĥ = −
∑
i,j

JijŜiŜj ,

which can be treated much faster for large and complex systems than fully self-consistent spin
density functional calculations.

4 Random Alloys and CPA

For real alloys the consideration of one or even two impurities is relevant only for the very di-
lute limit where interactions between impurity clusters can safely be neglected. For increasing
impurity concentration these interactions become more and more important. Instead of calcu-
lating the Green function for a single configuration realized in a particular system, one is then
interested in spatial or configurational averages 〈G〉 of the Green function over many different
possible configurations [45]. For the derivation of expressions for the averaged Green function
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〈G〉 it is convenient to consider first the single-site problem and then the interaction between
the different sites. The single-site problem can be written in operator notation as

Gα = g + gVαGα (37)

where all quantities are considered as integral operators3 and g and Vα are used as shorter
notations for Gr and ∆vn. In order to emphasize that in this section single-site quantities are
integral operators, the sites are labelled here by Greek letters. With the definition tαg = VαGα

the last equation can be solved as
Gα = g + gtαg . (38)

Multiplication with Vα from the left leads to

VαGα = tαg = Vαg + Vαgtαg . (39)

This is valid if tα is determined by

tα = Vα + Vαgtα . (40)

Using spatial variables the last equation can be written as

tα(r, r
′) = Vα(r)δ(r− r′) +

∫
dr′′ Vα(r)g(r, r

′′)tα(r
′′, r′) (41)

where the potential operator is local as characterized by the delta function. By iterating (40) as
tα = Vα + VαgVα + VαgVαgVα . . . one sees that tα is a single-site quantity. It is only needed in
cell α because all terms contain factors Vα on the left and right and Vα is restricted to cell α.
For the multiple-site problem, where the potential perturbation is given by V =

∑
α Vα, it is

convenient to introduce an operator F which connects G and its average 〈G〉 by

G = F 〈G〉 . (42)

If this is used in G = g + gV G, which is (14) in operator notation, the result is

F 〈G〉 = g + gV F 〈G〉 (43)

Averaging gives
〈G〉 = g + g〈V F 〉〈G〉 (44)

where 〈F 〉 = 1 was used which follows from (42). The last equation contains only averaged
quantities and could be solved easily if 〈V F 〉 is known.4

The task is now to derive an equation for 〈V F 〉. Subtraction of (43) and (44) and omitting the
common operator 〈G〉 on both sides of the resulting equation gives

F − 1 = g(V F − 〈V F 〉) . (45)

3Integral operators, for instance g, act on arbitrary functions f(r) as
∫
dr′g(r, r′)f(r′).

4 The quantity 〈V F 〉 is usually called self-energy and labelled by the letter Σ.
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which multiplied with V leads to

V F = V + V g(V F − 〈V F 〉) (46)

This is the basic result used for further considerations. Now the crucial point is that V F can be
written as a sum of single-site terms. For that purpose operators fα are defined by the equation
VαF = tαfα. With V =

∑
α Vα one obtains V F =

∑
α VαF =

∑
α tαfα and (46) can be

written as ∑
α

tαfα =
∑
α

Vα +
∑
α

∑
β

Vαgtβfβ −
∑
α

∑
β

Vαg〈tβfβ〉 . (47)

On the other hand, if (40) is multiplied with fα and summed over α, the result is∑
α

tαfα =
∑
α

Vαfα +
∑
α

Vαgtαfα . (48)

Subtraction of (47) and (48) gives

0 =
∑
α

Vα(fα − 1−
∑
β 6=α

gtβfβ +
∑
β

g〈tβfβ〉) (49)

where the restriction β 6= α arises from the subtraction of the last term of (48). The last equation
is satisfied if fα is determined by the implicit equation

fα = 1 +
∑
β 6=α

gtβfβ −
∑
β

g〈tβfβ〉 . (50)

In general, this equation cannot be solved exactly, but it can be used to obtain approximations.
Iteration of (50) starting with fα = 0 leads to

fα = 1 (51)

+
∑
β 6=α

gtβ −
∑
β

g〈tβ〉

+
∑
β 6=α

∑
γ 6=β

gtβgtγ −
∑
β 6=α

∑
γ

gtβg〈tγ〉 −
∑
β

∑
γ 6=β

g〈tβgtγ〉+
∑
β

∑
γ

g〈tβ〉g〈tγ〉

+ . . .

where terms containing three or more t operators are not shown. In order to obtain approxima-
tions for 〈V F 〉 the last equation is multiplied with tα, summed over α and averaged. This leads
to

〈V F 〉 =
∑
α

〈tα〉 (52)

+
∑
α

∑
β 6=α

〈tαgtβ〉 −
∑
α

∑
β

〈tα〉g〈tβ〉

+
∑
α

∑
β 6=α

∑
γ 6=β

〈tαgtβgtγ〉 −
∑
α

∑
β 6=α

∑
γ

〈tαgtβ〉g〈tγ〉

−
∑
α

∑
β

∑
γ 6=β

〈tα〉g〈tβgtγ〉+
∑
α

∑
β

∑
γ

〈tα〉g〈tβ〉g〈tγ〉+ . . . .
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Here it is important to note that this expression is still exact although only terms up to third
order in tα are written down.
Now approximations can be made. An important approximation, which leads to a considerable
simplification, is the neglect of correlations between different sites. While electronic structure
calculations for alloys nowadays do not necessarily need this approximation, for instance in the
non-local CPA of Rowlands et al. [46, 47], these advanced techniques are difficult to discuss
and will not be considered here. The neglect of correlations means that averages 〈tαgtβ〉 can be
factorized as 〈tα〉〈tβ〉 if the sites α and β are different. This leads to

〈V F 〉 =
∑
α

〈tα〉 −
∑
α

〈tα〉g〈tα〉 (53)

+
∑
α

〈tα〉g〈tα〉g〈tα〉+
∑
α

∑
β 6=α

〈tαg〈tβ〉gtα〉 −
∑
α

∑
β 6=α

〈tα〉g〈tβ〉g〈tα〉 − . . . .

From this expression a number of approximations can be derived which are far better than the
most simple approximation which replaces 〈V F 〉 by 〈V 〉 =

∑
α〈Vα〉. This approximation

which only uses the averaged potential is called the virtual crystal approximation (VCA). It is
easy to handle because it leads to a real potential, but has serious deficits for describing real dis-
ordered systems. A major improvement on the VCA is to use the first term of (53) or (52). This
approximation is called average tmatrix approximation (ATA) and takes into account all effects
up to first order in the t operator. The ATA has been extensively discussed in the literature, in
particular in connection with multiple-scattering theory [48, 49]. A simple way to go beyond
the ATA is to use all terms of (53) which contain only a single site α. The result can written
as
∑

α(1 + g〈tα〉)−1〈tα〉 and corresponds to the optical potential discussed by Goldberger and
Watson [51]. This method is correct to second order in the t operator, the third order terms not
treated are the last two ones shown in (53). An even better approximation is obtained by real-
izing that the above equations are valid for quite arbitrary Green functions g provided that the
corresponding reference system shows no disorder. In a self-consistent procedure the reference
Green function g is chosen in such a way that as many terms as possible vanish in (53). In prin-
ciple, one could demand 〈tα(r, r′)〉 = 0. In general this is, however, not possible because the
integral operator tα(r, r′) is a complicated function of r and r′. In the multiple-scattering KKR
method the situation is somewhat simpler because it relies on algebraic matrices tn instead of
integral operators tα. Then, as shown by Soven [50] self-consistency can be implemented by
choosing an effective reference medium with the requirement that the scattering of the electrons
averaged over the constituent atoms vanishes in the effective medium. The resulting approxi-
mation called KKR-CPA has been widely applied to study the electronic structure of disordered
alloys.
As an example for extensive KKR-CPA calculations Fig. 11 shows results [52] for the averaged
local magnetic moments in alloys of Fe, Co, and Ni and alloys of these elements with other
transition metals. The diagrams obtained on the left for the experimental results and on the
right for the calculated results are referred to as Slater-Pauling curves. The Slater-Pauling curve
has two main branches with slopes of 45o and -45o which meet in the middle where a maximal
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Fig. 11: Slater-Pauling curve for the averaged magnetic moment per atom as function of the
averaged number of electrons per atom. The picture is taken from Ref. [52].

moment of about 2.4 µB occurs. The left main branch consists of Fe alloys, whereas Co and Ni
alloys form the right main branch and the subbranches. The main reason for the two different
slopes is a different electronic screening behavior. Alloys on the main branch on the right have a
full majority spin band so that the screening of the valence difference introduced by the impurity
atoms is provided by minority spin electrons. This leads to a reduced number of minority d-
electrons which gives increased moments. Alloys on the other branches are characterized by the
occurrence of antiparallel moments of the impurities which lead to reduced averaged moments
with increasing concentration. Here the screening is mainly provided by the majority spin
electrons. Although the agreement between experiment and calculation is not perfect, Fig. 11
shows that spin density functional theory is a powerful tool to understand and explain magnetic
properties of materials.
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Appendix

A Useful Green function properties

The Green function G(ε) for a HamiltonianH is defined by the operator equation

G =
1

ε−H
. (54)

For real ε it is necessary to perform a limiting process. Then the real quantity ε is replaced by
a complex quantity ε + iγ and all equations are understood in the sense that the limit γ → 0+

must be performed in the end. The relation

lim
γ→0+

1

ε+ iγ −H
= P

1

ε−H
− iπδ(ε−H) (55)

where P denotes the principal value, establishes the connection between the imaginary part of
the Green function and the density of states n(ε) = δ(ε − H) and also the Kramers-Kronig
relation between the imaginary and the real part of the Green function

ImG(ε) = −πn(ε) , ReG(ε) = − 1

π
P

∫ ∞
−∞

1

ε− ε′
ImG(ε′) dε′ . (56)

where the last equation is a Hilbert transform.
While the above equations in this appendix are valid for real values of ε, complex values of ε
are considered below. Then the last equation can be generalized to

G(ε) = − 1

π

∫ ∞
−∞

1

ε− ε′
ImG(ε′) dε′ . (57)

Another useful relation for the Green function is given by

dG(ε)

dε
=

d

dε

1

ε−H
= − 1

ε−H
1

ε−H
= −G(ε)G(ε) . (58)

The electronic density of states can formally be expressed as

n(ε) = − 1

π
Im TrG (ε) . (59)

The difference between the density of states for two systems characterized by two Green-
function operators G(ε) and g(ε) is given by

∆n(ε) = − 1

π
ImTr[G(ε)−g(ε)] = − 1

π
ImTr[g(ε)V G(ε)] = − 1

π
ImTr

[
g(ε)V

1

1− g(ε)V
g(ε)

]
.

Here and below V denotes the difference between the two potentials. By use of (58) for g(ε)
this can be expressed as

∆n(ε) =
1

π
ImTr

[
dg(ε)

dε
V

1

1− g(ε)V

]
= − 1

π
ImTr

d

dε
ln(1− g(ε)V ) . (60)

The difference between the integrated densities of states is thus given by

∆N(ε) =

∫ ε

dε′∆n(ε′) = − 1

π
ImTr ln(1− g(ε)V ) (61)



10.24 Rudolf Zeller

References

[1] J. Korringa 1947 Physica 13, 392 (1947)

[2] W. Kohn and N. Rostoker, Phys. Rev. 94, 1111 (1954)

[3] P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964)

[4] W. Kohn and L.J. Sham, Phys. Rev. 140, A1133 (1965)

[5] E.N. Economou: Green’s Functions in Quantum Physics (Springer, Berlin, 2011)

[6] C. Koenig, J. Phys. F: Metal Phys. 3, 1497 (1973)

[7] H. Dreysse and R. Riedinger, J. Physique 42, 437 (1981)

[8] R. Zeller, J. Deutz and P.H. Dederichs, Solid State Commun. 44, 993 (1982)

[9] A.R. Williams, P.J. Feibelman and N.D. Lang, Phys. Rev. B 26, 5433 (1982)

[10] G.F. Koster and J.C. Slater, Phys. Rev. 94, 1392 (1954); Phys. Rev. 95, 1164 (1954)
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[30] M.J. Puska, S. Pöykkö, M. Pesola and R.M. Nieminen, Phys. Rev. B 58, 1318 (1998)

[31] F. Corsetti and A.A. Mostofi, Phys. Rev. B 84, 035209 (2011)

[32] P.H. Dederichs, B. Drittler and R. Zeller, in: Applications of Multiple Scattering Theory
to Materials Science, ed. by W.H. Butler, P.H. Dederichs, A. Gonis and R. Weaver, MRS
Symposia Proceedings No. 253, (Materials Research Society, Pittsburgh, 1992)

[33] B. Drittler, M. Weinert, R. Zeller and P.H. Dederichs, Solid State Commun. 79, 31 (1991)

[34] P. Pulay, Mol. Phys. 17, 153 (1969)

[35] N. Stefanou, P.J. Braspenning, R. Zeller and P.H. Dederichs, Phys. Rev. B 36, 6372 (1987)

[36] N. Papanikolaou, R. Zeller, P.H. Dederichs and N. Stefanou, Phys. Rev. B 55, 4157 (1997)

[37] N. Papanikolaou, R. Zeller and P.H. Dederichs, J. Phys Condens. Matter 14, 2799 (2002)

[38] A. Settels, K. Schroeder, T. Korhonen, N. Papanikolaou, M. Aretz, R. Zeller and
P.H. Dederichs, Solid State Commun. 113, 239 (2000)

[39] A. Settels, T. Korhonen, N. Papanikolaou, R. Zeller and P.H. Dederichs,
Phys. Rev. Lett 83, 4369 (1999)

[40] B. Drittler, H. Ebert, R. Zeller and P.H. Dederichs, Phys. Rev. B 39, 6334 (1989)

[41] P.H Dederichs, P. Lang, K. Willenborg, R. Zeller, N. Papanikolaou and N. Stefanou,
Hyperfine Interact. 78, 341 (1993)
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1 Introduction

Jun Kondo was intrigued [1, 2] by the puzzling experimental observation [3] that the resistance
in noble or divalent metals typically shows a minimum at low temperatures when containing
small concentrations of transition metals. It was expected that the inelastic scattering is reduced
with decreasing temperature and, therefore, the resistance should be a monotonic function of T ,
which reaches a finite temperature-independent value for T → 0 proportional to the remaining
lattice imperfections. It had been noted that the increase of the residual resistance is proportional
to the transition metal concentration [3,4] and only occurs when those impurities are magnetic.
In 1961, Anderson [5] proposed a simple model for the understanding of the formation of stable
magnetic moments in transition metals ions. Since the Coulomb interactions is only weakly
screened on atomic length scales, valence fluctuations on unfilled d and f shells are suppressed
at integer fillings, and a finite total angular momentum is formed according to Hund’s rules.
The Anderson model, which we will discuss in Sec. 1.2, provides a microscopic understanding
of the Friedel sum rule [6] which relates the phase shifts of the conduction electrons scattered
on the impurity to the number of displaced electrons.
The overwhelming experimental evidence hints towards the generic nature of this effect: the
details of the conduction bands actually do only enter into a single material-dependent low
energy scale TK , the so-called Kondo scale. Kondo realized that the position of the resistance
minimum remains unaltered when reducing the concentration of the magnetic impurities which
rules out interaction induced correlation effects between different localized spins. From the
first observation [3] in 1934, it took three decades until Kondo [1, 2] proposed his seminal
Hamiltonian, which provides a simple physical picture and explains the experimental data. In
the Kondo model,

H = Hb +HK , (1)

the conduction electrons are described by a non-interacting electron gas

Hb =
∑
~kσ

ε~kσc
†
~kσ
c~kσ (2)

and the interaction with a localized magnetic moment ~S is modelled by a simple Heisenberg
term

HK = J ~S~sb . (3)

c†~kσ (c~kσ) generates (destroys) a conduction electron with momentum ~k and spin σ, ~S represents
the impurity spin, ~sb

~sb =
1

2

1

N

∑
~k~k′

∑
αβ

c†~kα ~σαβ c~k′β (4)

is the spin of the conduction electrons at the impurity site and ~σ are the Pauli matrices. The
lattice has a finite size of N sites which are sent to N →∞ in the thermodynamic limit.
Over the period of the last 50 years we have learned that the Kondo problem is not restricted to
magnetically doped noble or divalent metals: it has turned out to be one of the most fundamental
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problems in solid state physics. It involves the change of ground states when going from high-
energy to low energy physics indicated by the infrared divergent perturbation theory.

1.1 Resistance minimum

Before we proceed to the Kondo problem itself, let us investigate the scattering of free con-
duction electrons on a finite number of impurities. The Nimp identical impurities are located
at positions {~Ri}, and each contributes a potential V (~r − ~Ri) to Hb generating the additional
potential scattering term

V =
∑
i

∑
~k~qσ

ei~q
~Ri V (~q) c†~k+~q,σ

c~kσ , (5)

where V (~q) is the Fourier transform of V (~r). For a given configuration of impurities, {~Ri}, the
single-particle Green function of the conduction electrons is determined by Dyson’s equation
[7],

G~k,~k′(z) =
δ~k,~k′

z − ε~kσ
+
∑
i

∑
~qσ

ei~q
~Ri V (~q)G0

~k
(z)G~k−~q,~k′(z) , (6)

where G0
~k
(z) = [z − ε~kσ]−1. After expanding this equation in powers of V (~q), we need to

average over the different configurations {~Ri} in order to obtain the configuration averaged
Green function 〈G~k,~k′(z)〉conf . In linear order, we obtain〈∑

i

ei~q
~RiV (~q)

〉
= NimpV (0) δ~q,0 , (7)

while in second order, two terms [4] arise〈∑
i

ei~q
~RiV (~q)

∑
j

ei
~q′ ~RjV (~q′)

〉
= NimpV (q)V (q′)δ~q+~q′,0 +Nimp(Nimp − 1)V 2(0)δ~q,0δ~q′,0 .

(8)
The first describes two scattering events on a single impurity and the other a single scattering
of two different impurities. Summing up all these zero momentum transfers V (0) produces a
uniform background which we absorb into the dispersion ε~kσ. In higher order, there are two
types of skeleton diagrams [8] generated: either the diagram describes multiple scattering on
a single impurity, or several impurities are involved. The latter include interference effects
which can be neglected if the mean free path is shorter than the average distance between two
impurities. In the following, we assume such a small concentration of cimp that the condition
cimp = Nimp/N � 1 is always fulfilled. Then G~k(z) = [z − ε~kσ − Σ~k(z)]−1 acquires a
self-energy

Σ~k(z) = cimpT~k(z), (9)

which is proportional to the impurity concentration. The scattering matrix T~k(z) accounts for
the sum of all multi-scattering processes on a single impurity.
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The imaginary part of the self-energy is related to the single-particle life-time τ~k:

=mΣ~k(εk − iδ) = 1/2τ(~k) ,

whose value close to the Fermi energy might be mistaken for a transport life-time entering the
simple Drude model for the conductance,

σ =
ne2τDrude

m
, (10)

where n is the concentration of electrons. According to Kubo’s transport theory [7], however,
the conductance is obtained from the current-current correlation function. A closer inspection
reveals immediately that this correspondence of single-particle and transport life-time is in-
correct in general: Clearly, forward scattering by the T -matrix contributes less to resistance
than backward scattering. Hence, the average over the momentum transfer directions is re-
quired to connect τDrude with Tk(z). However, we can employ the optical theorem to connect
the imaginary part of the forward scattering =mT~k(z) to the angular integrated matrix ele-
ments =mTk(z) ∝

∫
dΩ|〈~k|T̂ |~k′〉|2. Since we deal with isotropic s-wave scattering in the

Kondo problem, the T -matrix becomes angular independent and the angular averaging yields
τDrude = τkF .
Just taking the contribution linear in J , the spin-diagonal scattering of conduction electrons
reads JSz and the spin flip terms yields 〈~k↑|T̂ |~k′↓〉 = JS−, so that all three contributions from
the scalar product J ~S~sb add up to =mT = J2S(S + 1) + O(J3) using the optical theorem. In
second order in J , we just find a constant contribution similar to a residual potential scattering
term. Its magnitude, however, is proportional to the square of the effective moment.
In order to understand Kondo’s theory of the resistance minimum, the second order contribution
to the T -matrix [1]

〈~kσ|T̂ |~k′σ′〉|(2) =

〈
~kσ

∣∣∣∣HK
1

z − Ĥ0

HK

∣∣∣∣~k′σ′〉 (11)

is needed. Since the details of the calculation can be found in Hewson’s book [4], and a similar
calculation is presented in the Sec. 2.1 below, we will only state the final result for the resistivity
contribution of a single impurity:

ρimp =
3πmJ2S(S + 1)

2e2~εF

[
1− Jρ(εF ) ln

(
kBT

D

)
+O(J3)

]
, (12)

where m is the electron mass, ρ(εF ) the conduction band density of state at the Fermi energy
εF and D the band width. The infrared divergent logarithm arises from the integration of the
resolvent 1/(z−Ĥ0) ∝ 1/(z−ε) over all intermediate conduction electron states since the spin-
flipped local states are degenerate. In a magnetic field, however, the logarithmic divergency will
be cut off on the energy scale given by the Zeeman energy.
Typically, the bare coupling g = Jρ(εF ) � 1 is small. However, the logarithmic corrections
causes an increase in ρimp for decreasing temperatures and J > 0, which diverges for T → 0.
The effective scattering rate becomes of the order O(1) at temperatures of an exponentially
small energy scale TK

TK ∝ De−
1
ρJ , (13)
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which is non perturbative in the bare coupling constant ρJ . This scale indicates the breakdown
of the perturbation theory and is called the Kondo scale. At the heart of the problem are diver-
gent spin-flip contributions, which occur in quantum impurity problems with degenerate local
quantum states.

1.2 Anderson model

As mentioned already in the introduction, Anderson proposed a model [5] for the understanding
of local moment formation in 1961. Its simplest version comprises of a single localized spin-
degenerate level with energy εd and a Coulomb repulsion U when the level is filled with two
electrons of opposite spin. This local Hamiltonian

Himp =
∑
σ

εdd†σdσ + Un↑n↓ (14)

is then trivially diagonalized by the four atomic states |0〉, |σ〉, |2〉. For the single particle energy
we use the notation εd which is identical to εf in Bulla’s lecture. This different notation roots
historically in the modeling of either d-electron or f -electron systems.
Such an atomic orbital [5] is then coupled to a single conduction band

Hb =
∑
~kσ

ε~kσc
†
~kσ
c~kσ (15)

via a hybridization term

Hmix =
∑
~kσ

V~k

(
c†~kσdσ + d†σc~kσ

)
. (16)

The local dynamics of the single-impurity Anderson model (SIAM), defined by the Hamiltonian

HSIAM = Himp +Hb +Hmix (17)

is completely determined by the hybridization function

Γσ(ω) = π
∑
~k

|V~k|
2δ(ω − ε~kσ) . (18)

The SIAM and the Kondo model belong to the class of quantum impurity models (QIM) which
are defined by a finite number of local degrees of freedom, which are coupled to one or more
bath continua.
In the regime εd < 0 and εd + U > 0, the energies of the empty and double occupied state,
|0〉 and |2〉, lie above the |σ〉 states and can be neglected at low temperatures: a local mo-
ment represented by a spin 1/2 is formed. Although local charge fluctuations on the d-level
are suppressed at low temperatures and odd integer fillings, virtual exchange of electrons with
the conduction are still possible, leading to spin-flip processes. Using a unitary transformation,
Schrieffer and Wolff have derived [9] an effective energy dependent Kondo coupling Jeff be-
tween the local conduction electron and the two local moment states |σ〉. First, the Fock space
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is partitioned into a low energy sector, which contains |σ〉, projected out by P̂L and its comple-
ment P̂H = (1̂ − P̂L) which includes |0〉 and |2〉. The Hamiltonian can then be divided into a
diagonal part Hd = P̂LHP̂L + P̂HHP̂H and an off-diagonal part λV = P̂LHP̂H + P̂HHP̂L.
The subsequent unitary transformation U = exp(λS)

H ′ = eλSHe−λS = Hd +
λ2

2
[S, V̄ ] +

∑
n=2

λn+1 n

n+ 1!
[S, V̄ ]n , (19)

is defined by the requirement of eliminating V in first order. The generator S is determined by
the condition [S,Hd] = −V . Then, the effective Hamiltonian of the low energy subspace

H ′LL = P̂LH
′P̂L = P̂LHP̂L + PL

λ2

2
[S, V̄ ]PL +O(λ3) (20)

acquires renormalized parameters and additional interaction terms via virtual transitions be-
tween the low and the high energy sectors mediated by V up to second order in λ. By applying
this transformation to the HSIAM , HK = P̂L

λ2

2
[S, V̄ ]P̂L takes the form of the Kondo interac-

tion [9]

HK =
1

2

∑
~k,~k′

∑
αβ

J~k~k′c
†
~kα
~σαβc~k′β

~S

J~k~k′ = −V~kV~k′
(

1

ε~k − (εd + U)
+

1

ε~k′ − (εd + U)
− 1

ε~k − εd
− 1

ε~k′ − εd

)
(21)

since the local low energy sector is only comprised of the two singly occupied spin states |σ〉
while |0〉, |2〉 ∈ PH .
For a constant hybridization |V~k|2 = V 2 and conduction band energies close to the Fermi en-
ergy, ε~k can be neglected, and J~k~k′ → J = −2V 2U/[εd(εd + U)] > 0 for the local moment
regime where εd < 0 and εd + U > 0. At the particle-hole symmetric point εd = −U/2 the di-
mensionless Kondo coupling ρJ = 8Γ0/(πU) determines the charge fluctuation scale at, where
Γ0 = Γ (0).
We have demonstrated that the Schrieffer-Wolff transformation generates an effective Kondo
Hamiltonian for the low energy sector of the SIAM in second order in the hybridization. This
clearly reveals the connection between the SIAM, which includes all orbital and spin degrees
of freedom, and the Kondo model focusing solely on the local spin degrees of freedom. The
numerical renormalization group approach [10, 11], discussed in the lecture of R. Bulla, is able
to explicitly track the flow from a free-orbital fixed point for β = 1/T → 0 to the Kondo model
at intermediate temperatures T/Γ0 ≈ 0.1 and odd integer fillings of the orbital by iteratively
eliminating the high energy degrees of freedom, which involve charge fluctuations.
More realistic descriptions of 3d and 4f -shell dynamics requires more than one orbital. Himp is
easily generalized from a single to many orbitals:

Himp =
∑
iσ

εdin
d
iσ +

∑
σσ′
mnpq

Umnpqd
†
nσd
†
mσ′dpσ′dnσ . (22)
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The direct and exchange Coulomb matrix elements Umnpq will differ but are related by sym-
metry in the absence of relativistic effects, such as the spin-orbit interaction. This is discussed
in more detail in the lecture of R. Eder. The Coulomb interaction in Himp takes the rotational
invariant form

HU =
U

2

∑
iσ

ndiσn
d
i−σ +

2U ′ − J
4

∑
m6=m′

σσ′

ndmσn
d
m′σ′ − J

∑
m 6=m′

~Sm~Sm′

−J
2

∑
m6=m′
σ

d†mσd
†
m−σdm′−σdm′σ (23)

in spin-space by identifying Unnnn = U , Unmmn = U − 2J = U ′, Unmnm = J , Unnmm =

−J . Clearly, neglecting the orbital pair-transfer term d†mσdm−σdm′−σdm′σ breaks this rotational
invariance. Since J > 0, the ~Sm~Sm′ term is responsible for the Hund’s rules, which favor the
maximizing of the local spin and of the angular momentum by a ferromagnetic alignment.

2 Renormalization group

We have learned several important points in the previous sections: (i) The low energy physics
of the Kondo effect shows universality and is characterized by a single energy scale TK . (ii)
The universality suggests that the problem can be tackled by approaches which were developed
in the context of phase transitions: the renormalization group approach. (iii) The perturbative
analysis breaks down due to infrared divergencies.
These divergencies indicate that the ground state of the starting point, a free conduction band
coupled to a single spin, is orthogonal to the ground state of the strong-coupling fixed-point
which governs the low energy physics.

2.1 Anderson’s poor man’s scaling

This section covers the simplest perturbative renormalization group (RG) approach to the Kondo
model developed by Anderson [12] 1970. Although it does not solve the problem, it sets the
stage for the deeper understanding of the physics provided by Wilson’s numerical renormaliza-
tion group approach.
We begin with the definition of s-wave conduction band annihilation operators cεσ

cεσ =

√
1

Nρ(ε)

∑
~k

δ(ε− ε~k)c~kσ , (24)

which are obtained by angular integrating on a shell of constant energy ε. Starting from the
anti-commutator

{
c~kσ, c

†
~k′σ′

}
= δσσ′δ~k,~k′ of a discretized system, the prefactor [

√
Nρ(ε)]−1

ensures the proper normalization of{
cεσ, c

†
ε′σ′

}
= δσσ′δ(ε− ε′) (25)
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in the continuum limit since the density of state ρ(ε) is defined as

ρ(ε) =
1

N

∑
~k

δ(ε− ε~k) . (26)

By supplementing the δ-function with some suitable symmetry adapted form factorB(~k), δ(ε−
ε~k) → δ(ε − ε~k)B(~k), such as a spherical harmonics Ylm(Ω) or a Fermi surface harmonics
[13], we could generalize these operators to the appropriate symmetry beyond simple s-wave
scattering considered here. With those operators, the Hamiltonian (1) takes on the continuous
form

H =
∑
σ

∫ ∞
−∞

dε εc†εσcεσ +

∫ ∞
−∞

dε

∫ ∞
−∞

dε′J(ε, ε′)
∑
αβ

c†εα~σcε′β ~Simp (27)

where we have defined J(ε, ε′) = 1
2
J
√
ρ(ε)ρ(ε′).

This formulation is still very general. It turns out, however, that the occurrence of the infrared
divergence is linked to finite density of states at the Fermi energy. For simplicity, we assume
a constant density of states restricted to the interval ε ∈ [−D,D]. ρ0 = 1/(2D) on this en-
ergy interval, and the Fermionic operator cε has the dimension of 1/

√
E. After introducing the

dimensionless coupling constant g = ρ0J/2, the dimensionless energy x = ε/D and the dimen-
sionless operators cxσ =

√
Dcεσ, we obtain the dimensionless isotropic Kondo Hamiltonian

H̃ =
H

D
=
∑
σ

∫ 1

−1

dx xc†xσcxσ + g

∫ 1

−1

dx

∫ 1

−1

dx′
∑
αβ

c†xα~σcx′β
~Simp (28)

which will be subject to a perturbative renormalization group treatment. Since δ(ε − ε′) =

δ([x−x′]D) = δ(x−x′)(1/D), the rescaled operators also obey a normalized anti-commutator
relation

{cxσ, c†x′σ′} = (
√
D)2{cεσ, cε′σ′} = Dδσσ′δ(ε− ε′) = δσσ′δ(x− x′) . (29)

The key ingredients to any renormalization group (RG) transformation are

1. separation of energy scale

2. eliminating high energy contributions by renormalizing low energy coupling constants

3. rescaling of all parameters and quantum fields

In the first step we define the appropriate low and high energy sector P̂L and P̂H = 1 − P̂L by
partitioning the Fock-space appropriately. In the second step we perform the same transforma-
tions as outlined in Eq. (19). By eliminating the coupling between these sectors up to quadratic
order, the effective Hamiltonian of the low energy subspace

H ′LL = P̂LH
′P̂L = P̂LHP̂L + P̂L

λ2

2
[S, V̄ ]P̂L +O(λ3) = HLL +∆H

(2)
LL +O(λ3) (30)

acquires renormalized parameters via virtual transitions between the low and the high energy
sectors mediated by V up to the second order in λ.
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(b)

k’’

k
k k’

k’k’’

(a)
Fig. 1: The particle (a) and the hole (b) spin-flip processes in second order in J contributing to
the renormalization of J .

Since the procedure is rather trivial for the free electron gas, we illustrate the steps on this
part of the Hamiltonian. We introduce a dimensionless parameter s > 1 and split Hb into two
contributions:

Hb

D
=
∑
σ

∫ 1/s

−1/s

dx xc†xσcxσ +
∑
σ

(∫ −1/s

−1

dx+

∫ 1

1/s

dx

)
x c†xσcxσ . (31)

One contribution contains all low energy modes |x| < 1/s and the other all high energy modes
1/s < |x| < 1. Defining P̂L as the operator which projects onto all modes |x| < 1/s, the
Hamiltonian is written as Hb = P̂LHbP̂L + P̂HHbP̂H and, therefore, V = 0. Focusing on the
low energy part

H ′b = HLL = P̂LHbP̂L =
∑
σ

∫ 1/s

−1/s

dx x c†xσcxσ (32)

we have to rescale the energy modes x to x′ = sx in order to restore the original mode distribu-
tion |x′| < 1 and obtain

H ′b =
∑
σ

s−2

∫ 1

−1

dx′ x′c†x(x′)σcx(x′)σ . (33)

Since original Fermionic operators have the dimension 1/
√
E, they must also be scaled as

cx′ =
√
scx(x′)σ on expansion of the scale from 1/s→ 1, which leads to

H ′b =
1

s

∑
σ

∫ 1

−1

dx′ x′c†x′σcx′σ . (34)

This completes the third and last step of the RG procedure.
The dimensionful Hamiltonian Hb remains invariant under the mode elimination procedure if
Hb/D = H ′b/D

′. Comparing the rescaling of the integrals and fields after the mode elimination,
Eq. (34) yields the scaling equation of the band width: D′ = D/s. Such an invariance is called
a fixed point under the RG transformation, and the Hamiltonian of the free electron gas is
obviously such a fixed point Hamiltonian.



11.10 Frithjof B. Anders

Before we come back to the Kondo interaction, we briefly review the scaling of an additional
local Coulomb interaction HU ∝ c†x1σc

†
x2σ′cx3σ′cx4σ under the RG transformation. Performing

the same RG steps in linear order, we accumulate [s1/2]4 for the rescaling of the four fields and
[s−1]4 for the four integral transformation, s−2 in total. The Coulomb interaction is irrelevant
since it vanishes under the RG flow. As a consequence, we, therefore, expect a local Fermi-
liquid with vanishing scattering cross sections∝ ω2 at T → 0, described by the strong-coupling
fixed-point. Since we have understood the transformation of the free electron gas, we can add
the dimensionless Kondo interaction HK

HK =
1

2

∑
α,β

∑
i=x,y,z

∫ 1

−1

dx1

∫ 1

−1

dx2 c
†
x1α
cx2β g

iσi
αβ
τ i , (35)

to the Hb and investigate H = Hb + HK under this RG transformation. In this expression, the
local spin is represented by ~Sloc = ~τ/2 and g = ρ0J/2 is generalized to three components gi

which include the anisotropic Kondo models.
Performing the unitary transformation (20), the low energy sector of HK contributes to H in
linear order via ∆Hd = P̂LHintP̂L+ P̂HHintP̂H . Additionally it generates the off-diagonal part
V = P̂LHKP̂H + P̂HHKP̂L for the Schrieffer-Wolff type transformation. Since the term linear
in g, ∆Hd is invariant under the RG transformation, HK is called a marginal operator in the
vicinity of the local moment fixed point defined by HK = 0.
In order to decide whether it is a relevant or irrelevant marginal operator, we have to go to
second order in g. Using the eigenstates of Hd, |p〉 of the low-energy and |q〉 of the high-energy
sector of the Fock space, we derive with the condition, [S,Hd] = −V

∆H
(2)
LL =

∑
p,p′

|p〉〈p′|1
2

∑
q

VpqVqp′

(
1

Ep − Eq
+

1

Ep′ − Eq

)
. (36)

HK contains a spin-spin interaction bilinear in the conduction electron operators. Therefore,
one of the operators in c†x1αcx2β must contain a high-energy particle or hole excitation in V

which is connected with the same conduction electron mode to one conduction electron line
integrated out by mode elimination. Those matrix elements of ∆H(2)

LL can be calculated dia-
grammatically using the two diagrams depicted in Fig. 1(a) and (b). Again, we eliminate a
very thin shell of high energy excitations of width ∆l = 1 − 1/s = −∆D/D, and the two
diagrammatic contributions yield the quadratic corrections to gi

∆H
(2)
LL = ∆l

∑
αβ

∫ 1/s

−1/s

∫ 1/s

−1/s

dx1dx2 c
†
x1α
cx2β (gxgyτ zσz + gygzτxσx + gxgzτ yσy) . (37)

In the derivation of these equations, we have used the eigenstates of Hb and neglected the
correction generated byHK . This is a further approximation since the construction of S requires
eigenstates of Hd and not only of Hb. This clearly restricts the validity of the flow equations
derived below to small values of gi.
The flow of the effective band width dD/D = −dl is used to eliminate ∆l. The combination of
the infinitesimal change ∆H(2)

LL in the limit ∆l → dl with the linear contribution of HK to the
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zg

g

Fig. 2: Flow of the coupling constants gz and g⊥, which is given by a set of hyperbolic curve
as show in Eq. (39). For transverse coupling |g⊥| > gz, the Kondo coupling always flows to
the strong-coupling fixed-point gz, g⊥ → ∞. For a ferromagnetic gz < 0, g⊥ renormalized to
g⊥ = 0 where the RG-flow stops.

low-energy sector, PLHKPL, yields the three perturbative RG equations

dgx

d lnD
= −2gygz (38a)

dgy

d lnD
= −2gxgz (38b)

dgz

d lnD
= −2gxgy (38c)

for the parameter flow of the coupling constants. Fixed points of those flow equations are
defined by dgi/d lnD = 0 for all i = x, y, z. These equations are called poor man’s scaling in
the literature.
In the transversal Kondo model defined by two independent parameters gz and g⊥ = gx = gy

these equations reduce to

dg⊥
d lnD

= −2g⊥g
z ;

dgz

d lnD
= −2g2

⊥ , (39)

from which we obtain by integration [gz]2 − g2
⊥ = const. Therefore, the flow of the parameters

gz and g⊥ are located on a hyperbolic curve in the parameter space (gz, g⊥) which is depicted
in figure 2. Since the RG-flow in Eq. (39) alway stops when g⊥ vanishes, (gz, 0) defines a line
of fixed points for [gz]2 − g2

⊥ > 0 and gz < 0. If the transverse coupling is larger than the
ferromagnetic coupling gz, gz < 0, the transversal coupling g⊥ remains finite for gz = 0 and
induces a sign change of gz. The couplings flow to the strong-coupling fixed-point (g⊥, g

z) →
(∞,∞). These flow equations have one stable fixed point (gz, g⊥) = (∞,∞) and one line of
fixed points (gz, 0). The latter are stable for a ferromagnetic gz < 0 and unstable for gz > 0. For
a fully isotropic Kondo coupling, g = gz = g⊥, we only need to integrate the single differential
equation

dg

d lnD
= β(g) = −2g2 . (40)
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The function β(g) is called the β-function in the literature and determines how the coupling
constants flow while reducing the band width: a negative β-function is a signature of weak
interactions at high-energies and a growing interaction strength while reducing the band width.
With the initial values of the model D0, g0, we integrate this differential equation to

g(D′) =
g0

1 + 2g0 ln(D0/D′)
. (41)

This solution obviously breaks down at a low energy scale TK = D at which the denominator
diverges:

TK = D0e
−1/2g0 = D0e

−1/ρ0J . (42)

However, the poor-man scaling approach is only valid for small coupling constants g, since
higher order processes will modify the β-function. Nevertheless, we can use the new energy
scale to express the running coupling constant g(D′) as function of TK

g(D′) =
1

ln(D′/TK)
(43)

which removes all reference to the original parameters. The coupling constant became an uni-
versal function of the ratio between cutoff and the new characteristic low energy scale TK .
How can we understand the divergence of the effective coupling constant? If we let g →∞, we
can ignore the kinetic energy of the conduction electrons for a moment and focus on the local
Kondo interaction (35):

HK =
1

2

µ=x,y,z∑
α,β

c†0αc0βg
µσµ

αβ
τµ , (44)

where c0σ =
∫ 1

−1
dxcxσ. Since HK conserves spin and charge, a singlet and a triplet state is

formed for nc = 1, while the empty and doubly occupied conduction electron state does not
couple to the local spin. The singlet has the energy of −3/2g, the three triplet states lie at the
energy g/2 and the other two at E = 0. In the anti-ferromagnetic case g > 0, the ground
state is a singlet, which is energetically decoupled from the rest of the conduction electrons for
g → ∞. The ground state in this strong-coupling limit will be a free electron gas with one
electron removed and absorbed into this bound state. Hence, the ground state is orthogonal to
the ground state of the local moment fixed point we started with. That is the reason why these
ground states cannot be connected via perturbation theory. Since the scattering turns out to be
irrelevant in the vicinity of this so-called strong-coupling fixed-point, it is a stable fixed point
under the RG transformation.
Although the presented perturbative RG fails to solve the Kondo problem, it already proves
that the original Kondo Hamiltonian is unstable in second order of g and predicts the correct
crossover scale TK . However, the divergence of the coupling constant happens already at a finite
cutoff D = TK which must be an artifact of the approximation used since the model cannot
have any phase transition at finite temperature. The correct solution can only be obtained by the
numerical renormalization group [14, 15] or the Bethe ansatz [16].
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2.2 Wilson’s numerical renormalization group approach

Although Anderson’s perturbative RG has already provided some deeper physical insight, its
perturbative nature restricts its validity to a close range around its starting point: it cannot access
the crossover regime from high to low temperature.
The Hamiltonian of a quantum impurity system is generally given by

H = Hbath +Himp +Hmix , (45)

where Hbath models the continuous bath, Himp represents the decoupled impurity, and Hmix

accounts for the coupling between the two subsystems.
Such a system can be accurately solved using Wilson’s numerical renormalization group (NRG)
[14, 15]. At the heart of this approach is a logarithmic discretization of the continuous bath,
controlled by the discretization parameter Λ > 1. The continuum limit is recovered for Λ →
1. Using an appropriate unitary transformation, the Hamiltonian is then mapped onto a semi-
infinite chain, with the impurity coupled to the open end. The nth link along the chain represents
an exponentially decreasing energy scale: Dn ∼ Λ−n/2 for a fermionic bath [14] andDn ∼ Λ−n

for a bosonic bath [17]. Using this hierarchy of scales, the sequence of dimensionless finite-size
Hamiltonians

Λ−(N−1)/2HN =
2

D (1 + Λ−1)
(Himp +Hmix)

+
∑
α

N∑
n=0

Λ−(n−1)/2 ε̄nαf
†
nαfnα (46)

+
∑
α

N−1∑
n=0

Λ−n/2 t̄nα(f †nαfn+1α + f †n+1αfnα)

for the N -site chain is solved iteratively, discarding the high-energy states at the conclusion of
each step to maintain a manageable number of states. This reduced basis set of HN is expected
to faithfully describe the spectrum of the full Hamiltonian on a scale of DN , corresponding to a
temperature TN ∼ DN .
Note that the dimensionless energies ε̄nα and tight-binding parameters t̄nα are of the orderO(1).
In general, α labels all independent flavor and spin degrees of freedoms of the bath Hamiltonian.
In the case of the single-band Kondo model, α denotes only the two spin states of the conduction
electron band. The parameters ε̄nα and t̄nα encode all relevant details of a non-constant density
of states.
Therefore, the NRG can be applied to pseudo-gap systems and used as an impurity solver for the
dynamical mean field theory where in the self-consistently obtained coupling function Γ (ω) the
lattice information and the formation of a Mott-Hubbard insulator is encoded [15]. The details
on the connection between the coupling function Γ (ω) and the NRG parameters ε̄nα and t̄nα
will be connected in R. Bulla’s subsequence lecture.
We have followed the notation of Ref. [10, 11] where a mapped bath electron of flavor α is
created (annihilated) by f †nα(fnα) at chain link n while in Bulla’s lecture c†nσ(cnσ) is used for the
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same operators. We also defined the Hamiltonian HN in accordance with the original literature,
while Bulla kept the factor D/[2(1 + Λ−1)] in his definition of HN . We also emphasize the
energy hierarchy by making the exponential decay of the tight binding parameters explicitly.
The dimensionless parameters ε̄nα and t̄nα and those used in Bulla’s lecture are connected by

εn =
D (1 + Λ−1)

2
Λ−(n−1)/2 t̄nα (47a)

tn =
D (1 + Λ−1)

2
Λ−n/2 t̄nα (47b)

Due to the exponential form of the Boltzmann factors in the density operator, ρ̂ = exp(−βH)/Z,
the reduced NRG basis set of HN is sufficient for an accurate calculation of thermodynamic
quantities at temperature TN . The fixed points under the RG transformation

HN+1 =
√
ΛHN +

∑
α

(
ε̄N+1αf

†
N+1αfN+1α + t̄Nα(f †NαfN+1α + f †N+1αfNα)

)
(48)

determines the thermodynamics properties and allows deep insight into the physics of the sys-
tem. In SIAM, they have been explicitly stated in Refs. [10,11]. It has been shown [14] that the
Kondo temperature indeed determines the crossover scale from the local moment fixed point
to the strong-coupling fixed-point. TK is the only relevant energy scale at low temperatures
so that all physical properties can be obtained from universal scaling functions for T/TK and
ω/TK < 1.
More details on the NRG and its power can be found in the lecture by R. Bulla or the NRG
review [15] he co-authored.

2.3 Exotic Kondo effects in metals

In the previous section we have focused on the simplest case of a single spin-degenerate band
coupled anti-ferromagnetically to a single local spin S = 1/2. The Kondo temperature TK
defines the crossover scale below which a singlet ground state emerges and the local spin is
asymptotically screened.
How does the physics change if we couple a local spin with S > 1/2 to a single conduction
band, or a spin S = 1/2 to more than one spin-degenerate conduction electron band?
We have discussed above that a Kondo Hamiltonian can be derived as an effective low energy
Hamiltonian by applying a Schrieffer-Wolff (SW) transformation to the SIAM. If we consider
its multi-orbital extension, Eq. (22), a much richer variety of impurity ground states emerge
after freezing out the charge fluctuations. In Mn, Co, or other transition metal ions, Hund’s
rules generate a ground state spin S > 1/2, while point group symmetries in lattices or lig-
and symmetries in molecules [18] can suppress the hybridization to more than one conduction
band. After a SW-transformation we could end up with an under-compensated Kondo model,
schematically depicted in Fig. 3(c). The single conduction electron band will partially screen
the local spin S to an effective spin S ′ = S−1/2 which asymptotically decouples from the con-
duction band. It turns out that the RG fixed point is similar to the strong-coupling fixed-point,
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but with a degeneracy of 2S remaining. The remaining very weakly coupled magnetic scatterer
significantly modifies the universal functions describing the physical properties at temperatures
T < TK , and corrections to the T 2 behavior of a Fermi liquid are found. Hence, it is also called
a singular Fermi-liquid which is characterized by a residual impurity entropy Sloc = log(2S).
The impurity entropy Sloc is defined as the difference of the total entropy and the entropy of the
conduction band without impurity.
In the overcompensated Kondo model (M > 1)

HK =
M∑
α=1

Jα~S~sb,α , (49)

no Kondo singlet ground state can be formed by the local S = 1/2 impurity spin and the local
conduction electron spins ~sb,α, a consequence of the flavor conservation in such models. How-
ever, such flavor conservation is very hard to obtain from the SW transformation and might
only occur in very exotic systems due to symmetry restrictions. Such models are character-
ized by an additional unstable intermediate-coupling fixed-point which can be understood by a
simple argument: In very weak coupling gα = ρ0Jα/2 → 0, the poor man’s scaling is appli-
cable and gα increases as we have discussed in the previous section. However, in the opposite
limit, 1/gα → 0, we only need to consider one localized conduction electron in each channel
α coupled to the local spin and treat the kinetic energy as perturbation. The ground state for
anti-ferromagnetic g is formed by a composite S ′ = M − S spin, which remains coupled to the
rest of the conduction electrons by an effective matrix element of the order of the band width.
Hence, an effective Kondo model is generated in which the coupling has been reduced from
gα � 1 to geff ≈ 1. A detailed analysis proves [19] that the large coupling flows to smaller cou-
plings, and the small couplings increase. Hence, both must flow to a fixed point of intermediate
coupling strength. This requires the inclusion of the third order contributions to the β-function
in Eq. (40). In the case of the isotropic two-channel Kondo model, S = 1/2 and M = 2, it
takes the simple form β(g) = −g2 + g3 for a uniform Kondo coupling. In addition to the trivial
fixed-point, g = 0, it has an intermediate fixed-point β(gc = 1) = 0 [19]. It is interesting to
note that the intermediate-coupling fixed-point impurity entropy reaches (kB/2) log(2), indicat-
ing that a Majorana fermion decouples [20] from the system in the low energy limit. However,
this fixed point is unstable against breaking of channel and spin symmetry. Under channel
symmetry breaking, i.e. J1 6= J2, the RG flow renormalizes Jmax = max(J1, J2) → ∞ and
Jmin = min(J1, J2) → 0: the channel with the larger coupling forms a normal Kondo singlet
while the other channel decouples.
In Fig. 3(a), the temperature dependent local entropy Sloc for the three cases, the compensated
(black), the under-compensated (red) and the overcompensated (blue) model is depicted. For
the compensated Kondo model, Sloc ≈ kB log(2) at high temperature, which is reduced to
Sloc → 0 for T → 0 indicating the Kondo singlet formation. This corresponds to a vanishing
effective local moment on the temperature scale TK ≈ 10−5D.
The under-compensated model presented here comprises of a two-orbital Anderson model with
a ferromagnetic Hund’s rule coupling in Eq. (22), coupled to single conduction electron band.
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Fig. 3: (a) Impurity entropy of the S = 1/2 Kondo model (black line), the under-compensated
S = 1 model (red line) and the two-channel Kondo model (blue) line. (b) The local effective
moment µ2

eff defined as µ2
eff = 〈S2

z 〉H − 〈S2
z 〉Hb for the same three models as in (a). (c) the local

S > 1/2 coupled to one conduction spin is under-compensated, (d) a spin S = 1/2 is coupled
to two conduction bands which is described by the two-channel Kondo model.

For T → ∞, the free orbital fixed point is 24-fold degenerate resulting in Sloc(β = 0) =

4kB log(2). As depicted in Fig. 3(a), it approaches kB log(2) for T → 0, indicating an un-
screened decoupled S = 1/2 degree of freedom.

Sloc(T ) for the overcompensated two-channel Anderson model [21–23] is shown as a blue
curve. Starting from 4-fold degenerate local orbital fixed point, an effective two-channel Kondo
model is found in the interval 10−3 < T/D < 10−1, and approaches the intermediate-coupling
two-channel Kondo fixed point value of Sloc ≈ kB log(2)/2. By applying a weak external
magnetic field of H = 10−4Γ0, the two-channel symmetry is broken and a crossover to the
strong-couping fixed point is observed – blue dotted line in Fig. 3(a). The crossover is governed
by the scale T ∗ ∝ H2/TK . The effective magnetic moment µ2

eff tracks the H = 0 curve up T ∗

and approaches a finite value induced by the finite magnetic field.

This model has originally been proposed by Cox [21] for uranium-based Heavy Fermions in
which the U 5f -shell is doubly occupied. It predicts an orbital Kondo effect where the non-
magnetic Γ3 doublet is screened by a four-fold degenerate Γ8 conduction band. Experimentally,
however, there is still no evidence for the realization of such a two-channel Kondo fixed point.
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3 Kondo effect in lattice systems

3.1 Heavy Fermion materials

Heavy Fermions [24] are Ce and U based metallic compounds which show a strongly enhanced
γ-coefficient of the specific heat. Typically an enhancement over simple Cu of a factor of
300− 6000 is found. Since γ ∝ m∗ in a simple effective Fermi-liquid theory, the name Heavy
Fermions was coined for this material class. It has been noted that the additional magnetic
contribution to the specific heat scales with the number of magnetic ions upon substitution with
non-magnetic elements such as La [24]. Apparently the major contribution in such strongly
correlated materials stems from the electrons in the localized 4f or 5f -shells. Early on, local
approximations were proposed [25, 26] in which each Ce or U site is treated as an indepen-
dent Kondo scatterer interacting with an averaged conduction band. Coherence is recovered by
summing up all single particle scattering events on a periodic lattice [24].
The most simplified description starts from a singly occupied 4f -shell of Ce. Employing Hund’s
rules, spin-orbit coupling yields a J = 5/2 ground state multiplet which is quenched by the
lattice point group symmetry either to a quartet and doublet in cubic crystal, or three Kramers
doublets in a tetragonal environment. Taking into account only a single Kramers doublet on
each 4f -shell and hybridizing the orbital with one effective conduction band defines the periodic
extension of the Anderson model (PAM)

H =
∑
iσ

εfi f
†
iσfiσ + Uni↑ni↓ +

∑
~kσ

ε~kσc
†
~kσ
c~kσ +

∑
i,~k,σ

Vk

(
ei
~k ~Rif †iσc~kσ + e−i

~k ~Ric†~kσfiσ

)
, (50)

where fiσ annihilates an f -electron at lattice site i with spin σ. Although this model can already
explain some basic properties of HF materials [24], a more realistic description requires the
full J = 5/2 ground state multiplet structure, since experimentally the influence of crystal-field
effects are clearly seen in the specific heat or transport measurements [24].
As mentioned above, experimental evidence has indicated that the magnetic contribution to the
specific heat scales with number of magnetic Lanthanide ions, hinting towards locally generated
strong correlations. It was proposed that the single-particle dispersion can be calculated using
a local t-matrix which accounts for all local correlations, while different lattice [25] sites are
linked only by a free propagation of electrons. A physically intuitive picture emerges: at the
chemical potential, the electrons are mainly trapped in local Kondo-resonances and propagate
only rather rarely from site to site. On a larger length scale, a very slow coherent motion is
generated which is equivalent to a quasi-particle with a large effective mass.

3.2 Dynamical mean field theory (DMFT)

The combination of local-density approximation (LDA) and DMFT for realistic description
of material properties of a large variety of strongly correlated electron systems has been the
topic of the last year’s school [27] entitled The LDA+DMFT approach to strongly correlated
materials.
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In DMFT, the k-dependence of the lattice self-energy is neglected. The original idea for such
a local approximation dates back to the mid 1980s [25, 26, 28] and has been applied to Heavy
Fermion systems. In 1989, it was proven that such an approximation has an exact limit in
infinite spatial dimensions [29–31] which broaden the applicability of this approximation to a
much larger range of problems.
The basic idea of the DMFT [32, 33] can be summarized as follows: One picks out a single
lattice site or a unit-cell. Instead of solving the local dynamics embedded in the full lattice
exactly, which is usually not possible, the rest of the interacting lattice is replaced by a fictitious
tight-binding model. This implies that two-particle and higher order correlation functions are
treated as factorized, which imposes restrictions on the applicability of the theory to phase-
transitions. This is augmented by a self-consistency condition (SCC) which equates the local
lattice Green function Glat(z)

Glat(z) =
1

N

∑
~k

G~k(z) =
1

N

∑
~k

1

z − ε~k −Σ(z)
= Gloc(z) (51)

with the local Green function Gloc(z) of such an effective site. This effective site of the DMFT
is equivalent to an Anderson impurity model as defined in Sec. (1.2), and its local dynamics is
determined byGloc(z) = [z−εd−Σ(z)−∆̃(z)]−1. It requires the knowledge of the local orbital
energy εd, the local Coulomb repulsion U and the hybridization function Γ̃ (ω) = =m∆̃(ω−iδ).
In the subsequent lecture by Bulla, the notation ∆̄(z) will be used instead of ∆(z) (∆̃(z)) for
a single impurity problem (effective DMFT site). Since Γ (ω) can be interpreted as energy
dependent single orbital decay rate in the absence of any Coulomb interaction, we used the
letter Γ in this lecture while Bulla denotes the same quantity as ∆(ω). In the literature, both
notations are found for the same quantity.
For single band lattice models such as the PAM, Eq. (50), or the Hubbard model

H =
∑
iσ

εdi c
†
iσciσ −

∑
ij

tij(c
†
iσcjσ + c†jσciσ) + Uni↑ni↓ (52)

the effective site is given by Eq. (17) and can be easily extended to multi-orbital models [27]
required for realistic transition metal compounds with partially filled 3d-shells. In the latter
case, Eq. (51) acquires a matrix form and the multi-orbital SIAM introduced in Sec. (1.2) is
used to describe the effective site.
The self-consistent solution is obtained iteratively: after an initial guess of ∆(z), the dynamics
of effective SIAM is calculated. Then its local self-energy Σ(z) is used to obtain Glat(z) via
Eq. (51). Equating it with Gloc(z) yields a new ∆̃′(z) for the next step of the iteration. Usually
convergence can be achieved in 10-20 iterations.

3.3 Impurity solver

It turns out that the k-summation in Eq. (51) is the computationally least expensive part of
the DMFT iteration, even for multi-orbital problems. The calculation of local self-energy of a
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Fig. 4: (a) Impurity self-energy Σ(ω) and (b) spectral function for a symmetric single orbital
Anderson impurity model with εd = −5Γ, U = 10Γ and a symmetric featureless band of width
D = 30Γ calculated using the NRG [40] for T = 0. TK = 0.021Γ . The inset in (a) shows the
behavior of Σ(ω) for |ω/TK | < 1.

single or multi-orbital SIAM remains the major challenge since the Kondo problem lies at the
heart of these quantum impurity problems.

In the 1970s, it was shown that equation-of-motion techniques fail to describe the Kondo
physics of the Anderson model. The perturbation expansion in U [34] was successful in ac-
counting for the local Fermi liquid properties which develop adiabatically from the solution of
the resonant level model. However, such conserving approximations [35,36] are not able to gen-
erate the correct energy scale TK which is exponentially dependent on U ; they remain restricted
to the weakly correlated regime U/(πΓ ) ≤ 1. In the early 1980s, the non-crossing approxima-
tion [37–39] was developed. It starts out from the atomic limit and includes the local Coulomb
interaction exactly. The hybridization is then considered as small compared to other energy
scales, so it only included in the leading-order diagrams. Although this approach contains the
correct energy scale up to some small correction, it remains essentially a high-temperature ex-
pansion, since the local Fermi-liquid is not described correctly. Friedel’s sum rule is violated
and the extracted =mΣ(ω − iδ) becomes negative at low temperatures T � TK . Only for the
two-channel Anderson model, this approach yields remarkably good results [21,19] such as the
correct power law of the self-energy.

Huge progress was made with the advent of quantum Monte Carlo algorithms [41] which yield,
at least in principle, the correct dynamics. In practice, such approaches have two drawbacks:
(i) they rely on a Trotter decomposition which limits the lowest accessible temperature. For
typical parameters in high-temperature superconductors, this would often correspond to 500-
1000K. (ii) The results are obtained on the imaginary time axis leaving an ill-defined problem
of reconstructing the spectral function [42].

Nevertheless, new QMC approaches, based the expansion of the partition function Z rather
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than on a Trotter decomposition, the so-called continuous-time QMC algorithms (CT-QMC)
boosted the applicability range considerably and became standard within a few years (for a
detailed comprehensive review see [43] and P. Werner’s lecture in Ref. [27]). In the CT-QMC,
the partition functionZ is either expanded in the Coulomb-interaction, called the weak-coupling
CT-QMC, or, similarly to the NCA, in the hybridization, called the strong-coupling CT-QMC.
One of the big advantages of those solvers are that they scale very well with the number of
the local orbitals. However, the sign problem of the fermionic determinants often restricts the
applicability of QMC solvers to density-density type inter-orbital interactions, which breaks
rotational invariance in spin-space.
Wilson’s NRG has also been successfully employed as an impurity solver. While this approach
includes the correct solution of any Kondo problem, the numerical effort scales exponentially
with the number of conduction bands, which essentially limits the approach to two-band models,
far from the five-band multi-orbitial models required, e.g., for FeAs based superconductors. A
typical result for the dynamical properties of the single-orbital symmetric SIAM obtained using
the NRG is shown in Fig. 4. The spectral function exhibits reminiscences of the two charge
excitation peaks at ω ≈ εd and εd+U each carrying half of the spectral weight and are broadened
by 2Γ (0). Clearly visible is a narrow peak called Kondo or Abrikosov-Suhl resonance.
The peak height is pinned to approximately 1/(πΓ (0)) due to the Friedel sum rule [44]. We have
discussed already that the strong-coupling fixed-point is a Fermi-liquid, since asymptotically the
electron-electron scattering is freezing out for |ω| → 0. As a consequence, the imaginary self-
energy shows a quadratic behavior =mΣ(ω − iδ) ∝ (ω/TK)2 for frequencies (ω/TK)2 � 1

which is depicted in the inset of Fig. 4(a). Recovering a local Fermi-liquid on exponentially
small energy scales TK ∝ exp(−1/ρJeff) with a pinned resonance close to ω = 0 in accordance
with the Friedel sum rule remains the biggest challenge for any impurity solver. This low energy
spectral behavior converts immediately into the quasi-particle band formation in the DMFT as
can be seen from the analytic form of the lattice Green functionG~k(z) = [z−ε~k−Σ(z)]−1. For
a true lattice solution, the full energy dependence of the self-consistently obtained hybridization
function Γ (ω) plays a crucial role. This is neglected in Fig. 4 as it is beyond the scope of this
lecture.

4 Kondo effect in nano-devices

In this section, a brief introduction to the Kondo-effect in nano-devices such as single-electron
transistors (SET) is given. In the 1980s huge progress has been made in structuring semi-
conductors which opened new possibilities for designing nano-devices using semiconductor
hetero-junctions. In 1998, David Goldhaber-Gordon demonstrate in a seminal paper [45] that
the Kondo effect can also be observed in single-electron transistors [46]. We illustrate the con-
nection to the Anderson model and also discuss how in larger quantum boxes a two-channel
charge Kondo effect has been predicted by Matveev [47]. Combining a single-electron tran-
sistor with a quantum box might yield the first physical realization of a two-channel Kondo
model [48].
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Fig. 5: (a) Schematic picture of a quantum dot which is weakly coupled to two leads. The
filling of the confined region can be controlled by the gate voltage Vg. (b) Schematic picture of
a quantum dot coupled to a larger quantum box and to two leads. The filling in the quantum
box is controlled by Ng, the filling in the quantum dot is controlled by the gate voltage Vg.

4.1 Kondo effect in single-electron transistors

A typical realization of a single-electron transistor is schematically depicted in Fig. 5(a). It
consists of negatively charged gates which are added on top of an insulating layer covering a
GaAs hetero-junction. Those gates partition the underlying 2D electron gas and confine some
of the electron gas in smaller areas, forming the quantum dot. These confinement regions have
a diameter of d = 10− 100 nm, and their filling is controlled by a gate voltage. The tunneling
matrix elements between the leads can be individually tuned by a set of gates. Nowadays,
molecules and carbon nano-tubes are also used to form SETs, giving additional complexity due
to their internal degrees of freedom. The single-particle levels in the confined area are discrete
and randomly distributed. They can be characterized by a finite average level-spacing ∆ε. The
leading contribution from the Coulomb interaction is given by the classical charging energy of
a capacitor Echarge = (Q̂ − eNg)

2/(2C) = (e2/2C)(N̂ − Ng)
2, where Q̂ = eN̂ is the charge

operator of the quantum dot, C its classical capacitance, and Ng ∝ Vg controls the filling.Then,
the so-called constant interaction model for a quantum dot reads

Hdot =
∑
i

εin̂i +
1

2
Ec(N̂ −Ng)

2 , (53)

where ni is the number operator of the ith level with energy εi and the Coulomb interaction
enters only via the charging energy Ec = e2/C, ignoring the details of the individual single-
electron wave functions.
At high temperatures 〈Q̂〉 ∝ Vg, and we recover the classical limit. At low temperatures,
βEc � 1, the quantization of the charge becomes relevant. The transport through the quantum
dot can only occur by single-electron hopping processes, from which the name single-electron
transistor [46] was coined. At low temperatures, current-transport only occurs when the gate
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voltage Vg is tuned such that the charging energy Echarge become energetically degenerate for
states with N and N + 1 electrons.
The coupling to the leads generates the additional energy scale Γ = π

∑
α ρα(0)t2α, the charge

fluctuation scale. tα is the tunneling matrix element between the dot and the lead α. We can dis-
tinguish two different regimes: (i) the level spacing is large compared to the charge fluctuation
scale, i. e. ∆ε > Γ , or (ii) ∆ε� Γ which will be discussed in Sec. 4.2.
In the first case, all levels up to some level εi < εl are filled and all levels εi > εl are empty.
The charge fluctuations just involve the spin-degenerate level i = l, and the Hamiltonian is
identical to (14) after identifying U = Ec and εd = εl + (N0 − Ng + 1

2
)Ec, where N0 counts

the number of occupied levels εi < εl. The single particle level εd is tuned by the external gate
voltage Vg ∝ Ng; the tunneling matrix elements take the role of the hybridization in the SIAM.
In equilibrium, one can define a linear combination of both lead electrons

f0σ =
1√

t2L + t2R

∑
α

tαc0ασ (54)

which couples to the quantum-dot level,

HT = t0
∑
σ

(d†σf0σ + f †0σdσ) (55)

while the orthogonal linear combination can be eliminated; t0 =
√
t2L + t2R. Hence the local

dynamics is complete determined by the solution of the SIAM which contains the Kondo effect.
Meir and Wingreen have shown [49] that the transmission matrix T (z) governing the current
transport through such a quantum dot is proportional to the local Green function of the dot,
T (z) ∝ Gloc(z). At high temperatures, the transport is favored when εd ≈ 0 or εd + U ≈ 0.
At low temperatures and nl ≈ 1, the Kondo effect yields a pinned maximum of the spectral
function which opens up a new correlation induced transport channel: the conductance increases
in the Coulomb blockade valley when lowering the temperature, which is one of the hallmarks
of the Kondo-effect in SETs.
Although, this connection had been understood quite early on, the mesoscopic community be-
lieved for a long time that the exponentially smallness of the Kondo scale prevents this effect
from being observed. Realizing that the Kondo resonance is adiabatically connected to the
resonant-level model, David Goldhaber-Gordon was the first to see that the Kondo temperature
in nano-devices can be pushed into a reasonable regime by increasing the tunneling matrix el-
ements tα. In a seminal paper [45], he proved the existence of the Kondo effect in a quantum
dot, stimulating a huge amount of research in Kondo-related physics in nano-devices.

4.2 Charge Kondo effect

Now we discuss the opposite limit of very small level spacings, i. e. ∆ε � Γ . In this regime,
the levels on the quantum dot are treated as continuum, and the single-particle dynamics is
modeled by two electron gases, indexed by α = L(D) for the single lead (states on the dot)

H =
∑
kασ

εkασc
†
kασckασ +

t

N

∑
k,q

(c†kLσckDσ + c†kDσckLσ) + Echarge (56)
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which are coupled by a tunneling matrix element t. To distinguish this limit from the SET,
this type of quantum dot is called a quantum box since the small level spacing occurs only in
devices with much larger diameters. The filling of the dot remains controlled by the charging
energy Echarge. A fixed dot filling and, therefore, a fixed Echarge still enables many different
configurations which share approximately the same kinetic energy. Therefore, a mapping of the
electronic occupation number operator to a new charge operator N̂c =

∑
n n|n〉〈n| has been

introduced [50]. This new operator acts on a fictitious space of charge degrees of freedom,
and the mapped charging energy is given by Echarge = 1/2Ec(N̂c − Ng)

2. Since the number
of electrons in the quantum box can only change by the tunneling term, the latter requires a
modification

HT =
t

N

∑
k,q

(c†kLσckDσ + c†kDσckLσ) → t

N

∑
k,q

(c†kLσckDσN
−
c +N+

c c
†
kDσckLσ) , (57)

where N+
c is the charge raising operator N̂+

c =
∑

n |n + 1〉〈n| and N̂−c its adjoint operator.
Assigning the lead flavor up, the box flavor down, on can show that H conserves flavor, since it
commutes with the flavor operator

N̂f =
1

2
(N̂L − N̂D) + N̂c (58)

where N̂α =
∑

kσ nkασ account for the total number of fermions in the lead or the box.

Due to the quantization of the charge,Echarge can only take discrete values on a parabola with its
minimum at Ng. The two lowest charge states become energetically degenerate at half-integer
values ofNg. Therefore, charge fluctuations are restricted toN,N+1 close toNg = N+1/2+

∆ng and βEc � 1. With this restriction, the charging energy Echarge = Ec
2

(1
4
−∆ngσz +∆n2

g)

is converted to a Zeeman term −Ec/2∆ngσz, since ∆ng acts as a magnetic field in the iso-spin
space of the two charge states N,N + 1 [51]. The tunneling term HT translates to a transversal
Kondo interaction for the charge iso-spin and the physical spin, being a conserved number,
converts into the conserved channel of the two-channel Kondo Hamiltonian. The effective
capacitance C(Ng, T ) = −∂〈eN̂〉/∂Ng diverges logarithmically at Ng = N + 1/2 for T → 0

where the prefactor C(Ng, T ) ∝ −1/(TK) log(T/TK) is governed by the two-channel Kondo
scale TK . In turned out that the NRG is the optimal tool to investigate the crossover from the
classical high temperature regime to the two-channel Kondo model [52].

By coupling an additional small quantum dot to the larger quantum box as depicted in Fig. 5(b),
the charging energy of the quantum box can generate a dynamical channel conservation. It has
been conjectured [48] that this might be the way to experimentally realize a spin two-channel
Kondo model. Interestingly, it turned out that the two-channel charge Kondo effect discussed
above and the spin Kondo effect are adiabatically connected in such a complex nano-device by
the two gate voltages controlling the filling in the quantum dot and the quantum box.
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5 Conclusion

In this lecture, we have presented a chronological introduction to the Kondo problem. We have
started with Kondo’s explanation of the resistance minimum in metals weakly doped with mag-
netic scatterers. In the late 1960s, it was shown that Kondo’s model is related to a much more
general class of models, the Anderson models: Removing charge fluctuations on partially filled
3d and 4f -shells, effective Kondo models can be derived using the Schrieffer-Wolff transfor-
mation.
Major progress toward a deeper understanding of the Kondo problem and its inaccessibility
to perturbative approaches was made in the 1970s. In Sec. 2.1, we derived Anderson’s poor
man’s scaling using a perturbative renormalization group approach. The first accurate solu-
tion of the problem was given by Ken Wilson in 1975 [14]. He applied his newly developed
numerical renormalization group approach which elegantly circumvents the weaknesses of the
perturbative treatment by using a discretized many-body Fock space. In this discrete basis, any
arbitrarily complex Hamiltonian is simply defined by its matrix elements while perturbative RG
approaches rely on an a-priori known low-energy field theory. We also included a discussion
of exotic Kondo effects in metals where the local spin is over- or under-compensated by the
coupling to conduction electron channels.
In the 1980s and 1990s, it was realized that correlated electron systems such as Heavy Fermions,
High-Tc superconductors, or Mott-Hubbard are connected to the Kondo problem. In Sec. 3, we
briefly introduced the dynamical mean field theory. Within DMFT, the lattice self-energy is
approximated by a ~k-independent function. Then, the complex lattice problem is mapped onto
an effective impurity problem which is supplemented by the lattice self-consistency condition.
This effective impurity comprises of the unit cell which is embedded in a fictitious bath of non-
interaction conduction electron. Again, at the heart of its solution lies the Kondo problem: the
calculation of the local self-energy requires an adequate impurity solver which remains valid
for all temperature and parameter regimes of interest.
Sec. 4 has been devoted to a brief introduction of the Kondo-effect in nano-devices. We have
covered two extreme limits of nano-structured quantum dots: small dots with large level spacing
are used as single electron transistors. At odd fillings, the Kondo effect opens up a new transport
channel which lifts the Coulomb blockade. In large dots, the level spacing is treated as contin-
uous: the low energy physics should be governed by a two-channel Kondo model [19, 47, 48].
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1 Introduction

In the preceding lecture notes by F. Anders you find an introduction to the Kondo effect and
quantum impurity systems in general, along with the quantum mechanical models which are
supposed to explain the phenomena observed in these systems. Some intuition is required to
formulate these models, but the phenomena cannot be read off by just looking at the model
Hamiltonian. To actually see the screening of the impurity magnetic moment below the Kondo
temperature TK we need (more or less) sophisticated techniques, and in the context of quan-
tum impurity systems it is the Numerical Renormalization Group method (NRG, developed by
K.G. Wilson in the early 1970’s [1]) which helped a lot in understanding the Kondo and related
effects.1

The NRG method is special compared to other methods (such as Quantum Monte Carlo) as it
is designed exclusively for quantum impurity systems, with a small impurity – an object with a
small number of degrees of freedom with arbitrary interactions – coupled to a non-interacting
bath – usually a free conduction band, that is non-interacting fermions. Nevertheless, there is
an enormous range of physical phenomena which can be realized in such systems, and to which
the NRG has been applied. For an overview, see the review Ref. [4] and the hints for further
reading in the final section.
In these lecture notes, we will purely focus on the single-impurity Anderson model, to be intro-
duced in Sec. 2, for which all the technicalities of the NRG can be explained without the compli-
cations of multi-impurity or multi-channel systems. The single-impurity Anderson model has
also been used as a prototype model in Sec. II of the NRG-review [4], and I will use basically
the same notation here in the lecture notes.
Any introduction to the NRG method will go through the basic steps of logarithmic discretiza-
tion, mapping onto a semi-infinite chain, iterative diagonalization and so on, and, of course,
you will find precisely this structure in Sec. 2 (Figure 1 illustrates the initial steps of the NRG
procedure). These technical steps can be understood with a background in quantum mechanics,
in particular some experience in working with creation and annihilation operators for fermions
(c†iσ/ciσ, see below), but even if each single step is clear, beginners in the field very often find it
difficult to see the overall picture. I will try to convince the reader that there is indeed a general
strategy behind the NRG approach, and that each individual step has its purpose.
There is one issue which very often leads to confusion: that is the role of geometry and the
dimension of the bath in which the impurity is embedded. One frequently encounters correlated
electron systems in which the dimension is crucial for the physical properties, but for quantum
impurity systems you can find remarks in the literature saying that the impurity couples to
a single channel only, so it is effectively a one-dimensional problem, possibly like the semi-
infinite chain as depicted in Fig. 1c. So if the dimension does not play a role at all, you might
want to define the model directly on a semi-infinite chain – I hope these lecture notes will help
to clarify this issue.

1Of course, the NRG is not the only method which can be successfully applied to quantum impurity systems;
for an overview see the lecture notes from last year’s autumn school [2] and A.C. Hewson’s book [3]
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Fig. 1: Initial steps of the NRG illustrated for the single-impurity Anderson model in which an
impurity (filled circle) couples to a continuous conduction band via the hybridization function
∆(ω); a) a logarithmic set of intervals is introduced through the NRG discretization parameter
Λ; b) the continuous spectrum within each of these intervals is approximated by a single state; c)
the resulting discretized model is mapped onto a semi-infinite chain where the impurity couples
to the first conduction electron site via the hybridization V ; the parameters of the tight-binding
model (see Eq. (38)) are εn and tn. Figure taken from Ref. [4].

2 The single-impurity Anderson model

The Hamiltonian of a general quantum impurity model consists of three parts, the impurity
Himp, the bath Hbath, and the coupling between impurity and bath, Himp−bath:

H = Himp +Hbath +Himp−bath . (1)

In the single-impurity Anderson model (siAm, Ref. [5]), the impurity consists of a single level
with energy εf . The Coulomb repulsion between two electrons occupying this level (which then
must have opposite spin, σ = ↑ and σ = ↓) is given by U . All the Hamiltonians appearing in
these lecture notes are most conveniently written in second quantization, so we have

Himp =
∑
σ

εff
†
σfσ + Uf †↑f↑f

†
↓f↓ , (2)

with f (†)
σ annihilation (creation) operators for a fermion with spin σ on the impurity level.
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......

3 2 1 0 1 2 3

V

Fig. 2: One possible realization of the single-impurity Anderson model in which the impurity
couples to one site (site ‘0’) of a one-dimensional tight-binding chain.

Let us start with a specific geometry of the bath, that is a one-dimensional chain as shown in
Fig. 2, with hopping between nearest neighbours (matrix element tl) and on-site energies εl, so
we have

Hbath =
∑
σ

∞∑
l=−∞

εl c
†
lσclσ +

∑
σ

∞∑
l=−∞

tl

(
c†lσcl+1σ + c†l+1σclσ

)
. (3)

The operators for the states at site l of the chain are denoted as c(†)
lσ . Note that there is no

interaction term between the band states, which is first of all an assumption, but is actually
necessary to perform the transformations to be described below.
As indicated in Fig. 2, the impurity only couples to the bath state at site l = 0, and in the siAm
the form of this coupling is given by

Himp−bath = V
∑
σ

(
f †σc0σ + c†0σfσ

)
, (4)

corresponding to a hybridization of the respective states, with V the hybridization strength.
One might want to set the parameters εl and tl in Eq. (3) to a constant value, which simplifies
the calculation, but in general, εl and tl can be site-dependent and, for example, describe a
one-dimensional disordered system.
Let us now generalize the model to an arbitrary non-interacting bath. The operators Himp and
Himp−bath are still given by eqs. (2) and (4), respectively, and Hbath now has the form

Hbath =
∑
σ

∑
l

εlc
†
lσclσ +

∑
σ

∑
ij

tij

(
c†iσcjσ + c†jσciσ

)
. (5)

For later use we write Hbath in the form

Hbath =
∑
σ

~cσ
† T ~cσ , (6)

with
~cσ
† =

(
. . . , c†−1σ, c

†
0σ, c

†
1σ, . . .

)
, (7)

and the matrix elements of T built up by the εl and tij in Eq. (5).
The site index of the operators c(†)

lσ now runs over all sites of an arbitrary geometry, for example,
the two-dimensional lattice as shown in Fig. 3, and tij is the hopping between any pair (i, j) of
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Fig. 3: In this geometry, the impurity couples to one site of a two-dimensional lattice of con-
duction electrons.

the bath states. The bath might have a complicated structure, but as it is non-interacting, it can
always be written in a diagonal form:

Hbath =
∑
σk

εkb
†
kσbkσ , (8)

with the operators c(†)
iσ and b(†)

kσ related via a unitary transformation

ciσ =
∑
k

aikbkσ , c†iσ =
∑
k

a∗ikb
†
kσ . (9)

The aik are the matrix elements of the unitary matrix A which diagonalizes the matrix T as
defined above (

AtTA
)
kq

= εkδkq . (10)

The actual diagonalization of the matrix T is, of course, limited by the size of the matrices which
can be handled by the computer, but for now it is sufficient to assume that the diagonalization
can de done in principle.
Inserting Eq. (9) for i = 0 into Himp−bath from Eq. (4) gives the following form for the hy-
bridization term

Himp−bath =
∑
kσ

Vk

(
f †σbkσ + b†kσfσ

)
, (11)

with Vk = V a0k. Let us denote the Hamiltonian written with the operators b(†)
kσ , that is Himp

together with Hbath Eq. (8) and Himp−bath Eq. (11), as the k-representation of the siAm, in
contrast to the site-representation, eqs. (4,5).
We can now easily calculate the form of the hybridization function using equations of motion.
This is described in detail in Ref. [6] and shall not be repeated here. The essential point is that
the one-particle Green function Gσ(z) = 〈〈fσ, f †σ〉〉z can be written in the form

Gσ(z) =
1

z − εf − ∆̄(z)−ΣU(z)
, (z = ω + iδ) , (12)

with ΣU(z) the correlation part of the one-particle self energy and the hybridization function

∆̄(z) =
∑
k

V 2
k

1

z − εk
. (13)
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Usually it is the imaginary part of this quantity which is referred to as the hybridization function:

∆(ω) = − lim
δ→0

Im
[
∆̄(z = ω + iδ)

]
= π

∑
k

V 2
k δ(ω − εk) , (14)

with the second equality following from Eq. (13). In any case, it is this single frequency de-
pendent quantity in which all the details of the bath are encoded, or, in other words, all that the
impurity sees from the bath is the hybridization function ∆(ω). This can also be shown more
formally by starting from the functional integral for the k-representation of the siAm, and by
integrating out the conduction electron degrees of freedom (this can be done analytically, since
the conduction electrons are non-interacting). The effective action for the impurity degree of
freedom then contains the ∆(ω) as the only remnant of the bath.
We are now able – at least in principle – to calculate the hybridization function for any given
geometry, but can this be reversed? Is it possible to deduce the precise form of the siAm in the
site representation, that is all the εl and tij in Eq. (5) purely from the form of ∆(ω)? This is, in
fact, not the case, and to see this let us have a look at the siAm defined for a semi-infinite chain
as shown in Fig. 4, with

Hbath =
∑
σ

∞∑
l=0

εl c
†
lσclσ +

∑
σ

∞∑
l=0

tl

(
c†lσcl+1σ + c†l+1σclσ

)
, (15)

and Himp−bath given by Eq. (4).

0 1 2 3

...

4 5

Fig. 4: In this geometry, the impurity couples to the first site of a semi-infinite chain of conduc-
tion electrons.

There is a straightforward procedure (‘continued fraction expansion’) to calculate, for a given
∆(ω), the set of parameters {εl} and {tl} of this semi-infinite chain. This means that we
can start, for example, with a two-dimensional model as in Fig. 3, calculate the ∆(ω) for this
geometry, and then calculate the {εl} and {tl} for the semi-infinite chain via a continued fraction
expansion. The resulting model looks different, apparently, but for the impurity all that counts
is the hybridization function and this is the same for both models. In this sense the siAm is said
to be effectively a one-dimensional problem and we can view the chain in Fig. 4 as the single
channel the impurity is coupling to.
A side remark: the calculation of ∆(ω) for the siAm given in the form of a semi-infinite chain
is rather simple, as it can be cast in the form of a continued fraction

∆(z) =
V 2

z − ε0 − t20

z−ε1−
t21

z−ε2−
t22

z−ε3−...

. (16)



NRG 12.7

In the site representation, we have so far considered a coupling of the impurity to a single site,
as in Figs. 2 and 3. Let us now generalize this to

Himp−bath =
∑
σm

Vm
(
f †σcmσ + c†mσfσ

)
, (17)

that is a coupling to the sites m with hybridization strength Vm. Figure 5 shows a possible
realization.

... ...

...

...

Fig. 5: In this geometry, the impurity couples to one site plus the four nearest neighbours of
this site of a two-dimensional lattice of conduction electrons.

We can now insert Eq. (9) for i = m into this expression and arrive at the same form of
Himp−bath Eq. (11) as above, with Vk =

∑
m Vmamk. The structure of the Hamiltonian in the

k-representation is thus exactly the same as before.
Before we continue, let us summarize what we have learned so far. Whatever the geometry of
the siAm, one can always write the model in the k-representation eqs. (8,11) (from which the
form of ∆(ω) follows directly) or as a semi-infinite chain. The actual calculation of ∆(ω) can
be done in various ways – in the simplest case Hbath is translationally invariant and the diago-
nalization of Hbath can be done via Fourier transformation, but in the general case one cannot
avoid diagonalizing large matrices. Leaving aside these technical issues, we have obtained a
quantity which completely characterizes the impurity-bath coupling, so the next question is,
what ∆(ω) can tell us about Kondo physics. The important feature here is the behaviour of
∆(ω) for ω → 0. Standard Kondo physics requires ∆(ω → 0) 6= 0, whereas the situation is
more complex if ∆(ω) ∝ |ω|r for ω → 0, with an exponent r > −1 (see the discussion in
Sec. IV.C.2 of Ref. [4]).
We have now seen various ways to write the siAm, but the actual starting point for the NRG
procedure has not been introduced yet. This is the Hamiltonian in the ‘integral representation’

Hbath =
∑
σ

∫ 1

−1

dε g(ε)a†εσaεσ ,

Himp−bath =
∑
σ

∫ 1

−1

dε h(ε)
(
f †σaεσ + a†εσfσ

)
. (18)

The conduction band is now assumed to be continuous, with the band operators satisfying the
standard fermionic commutation relations:

[
a†εσ, aε′σ′

]
+

= δ(ε− ε′)δσσ′ . The dispersion of the
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band is given by g(ε), with the band cutoffs set to −1 and 1 (for simplicity). The hybridization
between the impurity and the band states is given by h(ε).
The calculation of the hybridization function for the model in this form works in the same way
as for the k-representation, Eq. (14). The result is

∆(ω) = π

∫ 1

−1

dε h(ε)2 δ(ω − g(ε)) = πh(g−1(ω))2 d

dω
g−1(ω) , (19)

with g−1(ω) the inverse function of g(ε), that is g−1(g(ε)) = ε. Now remember that the relevant
quantity is the hybridization function∆(ω), given by the specific geometries as discussed above.
For a given ∆(ω), there are obviously many ways to divide the ω-dependence between g−1(ω)

and h(g−1(ω)), corresponding to different ways of dividing the ε-dependence between g(ε) and
h(ε). This feature will be useful later.
With the siAm in the integral representation eqs. (18) we can now turn to the NRG treatment of
the model.

3 The numerical renormalization group

3.1 Logarithmic discretization

The Hamiltonian in the integral representation Eq. (18) is a convenient starting point for the
logarithmic discretization of the conduction band. As shown in Fig. 1a, the parameter Λ > 1

defines a set of intervals with discretization points

xn = ±Λ−n , n = 0, 1, 2, . . . . (20)

The width of the intervals is given by

dn = Λ−n(1− Λ−1) . (21)

Within each interval we introduce a complete set of orthonormal functions

ψ±np(ε) =

{
1√
dn
e±iωnpε for xn+1 < ±ε < xn

0 outside this interval .
(22)

The index p takes all integer values between −∞ and +∞, and the fundamental frequencies
for each interval are given by ωn = 2π/dn. The next step is to expand the conduction electron
operators aεσ in this basis, i.e.

aεσ =
∑
np

[
anpσψ

+
np(ε) + bnpσψ

−
np(ε)

]
, (23)

which corresponds to a Fourier expansion in each of the intervals. The inverse transformation
reads

anpσ =

∫ 1

−1

dε
[
ψ+
np(ε)

]∗
aεσ ,

bnpσ =

∫ 1

−1

dε
[
ψ−np(ε)

]∗
aεσ . (24)
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The operators a(†)
npσ and b(†)

npσ defined in this way fulfill the usual fermionic commutation rela-
tions. The Hamiltonian Eq. (18) is now expressed in terms of these discrete operators.
In particular, the transformed hybridization term (first part only) is∫ 1

−1

dε h(ε)f †σaεσ = f †σ
∑
np

[
anpσ

∫ +,n

dε h(ε)ψ+
np(ε) + bnpσ

∫ −,n
dε h(ε)ψ−np(ε)

]
, (25)

where we have defined ∫ +,n

dε ≡
∫ xn

xn+1

dε ,

∫ −,n
dε ≡

∫ −xn+1

−xn
dε . (26)

For a constant h(ε) = h, the integrals in Eq. (25) filter out the p = 0 component only∫ ±,n
dε hψ±np(ε) =

√
dnh δp,0 . (27)

In other words, the impurity couples only to the p = 0 components of the conduction band
states. It will become clear soon, that this point was essential in Wilson’s original line of
arguments, so we would like to maintain this feature (h(ε) being constant in each interval of
the logarithmic discretization) also for a general, non-constant ∆(ω). Note that this restriction
for the function h(ε) does not lead to additional approximations for a non-constant ∆(ω) as one
can shift all the remaining ε-dependence to the dispersion g(ε), see Eq. (19).
As discussed in [7] in the context of the soft-gap model, one can even set h(ε) = h for all ε.
Here we follow the proposal of [8], that is, we introduce a step function for h(ε)

h(ε) = h±n , xn+1 < ±ε < xn , (28)

with h±n given by the average of the hybridization function ∆(ω) within the respective intervals,

h±n
2

=
1

dn

∫ ±,n
dε

1

π
∆(ε) . (29)

This leads to the following form of the hybridization term∫ 1

−1

dε h(ε)f †σaεσ =
1√
π
f †σ
∑
n

[
γ+
n an0σ + γ−n bn0σ

]
, (30)

with γ±n
2

=
∫ ±,n

dε∆(ε).
Next, we turn to the conduction electron term, which transforms into∫ 1

−1

dε g(ε)a†εσaεσ =
∑
np

(
ξ+
n a
†
npσanpσ + ξ−n b

†
npσbnpσ

)
+
∑
n,p 6=p′

(
α+
n (p, p′)a†npσanp′σ − α−n (p, p′)b†npσbnp′σ

)
.

(31)
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The first term on the right hand side of Eq. (31) is diagonal in the index p. The discrete set of
energies ξ±n can be expressed as (see Ref. [8])

ξ±n =

∫ ±,n
dε∆(ε)ε∫ ±,n
dε∆(ε)

[
= ±1

2
Λ−n(1 + Λ−1)

]
, (32)

where we give the result for a constant ∆(ε) in brackets. The coupling of the conduction band
states with different p, p′ (the second term) recovers the continuum (no approximation has been
made so far, Eq. (31) is still exact). For the case of a linear dispersion, g(ε) = ε, the prefactors
α±n (p, p′) are the same for both sides of the discretization and take the following form

α±n (p, p′) =
1− Λ−1

2πi

Λ−n

p′ − p
exp

[
2πi(p′ − p)

1− Λ−1

]
. (33)

The actual discretization of the Hamiltonian is now achieved by dropping the terms with p 6= 0

in the expression for the conduction band Eq. (31). This is, of course, an approximation, the
quality of which is not clear from the outset. To motivate this step we can argue that (i) the p 6= 0

states couple only indirectly to the impurity (via their coupling to the p = 0 states in Eq. (31))
and (ii) the coupling between the p = 0 and p 6= 0 states has a prefactor (1 − Λ−1) which
vanishes in the limit Λ → 1. In this sense one can view the couplings to the states with p 6= 0

as small parameters and consider the restriction to p = 0 as zeroth order step in a perturbation
expansion with respect to the coefficients a±n (p, p′) [1]. As it turns out, the accuracy of the
results obtained from the p = 0 states only is surprisingly good even for values of Λ as large as
Λ = 2, so that in all NRG calculations the p 6= 0 states have never been considered so far.
Finally, after dropping the p 6= 0 terms and relabeling the operators an0σ ≡ anσ, etc., we arrive
at the discretized Hamiltonian as depicted by Fig. 1b:

H = Himp +
∑
nσ

[
ξ+
n a
†
nσanσ + ξ−n b

†
nσbnσ

]
(34)

+
1√
π

∑
σ

f †σ

[∑
n

(
γ+
n anσ + γ−n bnσ

)]
+

1√
π

∑
σ

[∑
n

(
γ+
n a
†
nσ + γ−n b

†
nσ

)]
fσ .

While the various steps leading to the discretized Hamiltonian, Eq. (34), are fairly straightfor-
ward from a mathematical point of view, the question may arise here, why are we performing
such a specific discretization at all?
Quite generally, a numerical diagonalization of Hamiltonian matrices allows to take into ac-
count the various impurity-related terms in the Hamiltonian, such as a local Coulomb repulsion,
non-perturbatively. Apparently, the actual implementation of such a numerical diagonalization
scheme requires some sort of discretization of the original model, which has a continuum of
bath states. There are, however, many ways to discretize such a system, so let me try to explain
why the logarithmic discretization is the most suitable one here. As it turns out, quantum impu-
rity models are very often characterized by energy scales orders of magnitudes smaller than the
bare energy scales of the model Hamiltonian. If the ratio of these energy scales is, for example,
of the order of 105, a linear discretization would require energy intervals of size at most 10−6 to
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properly resolve the lowest scale in the system. Since for a finite system the splitting of energies
is roughly inversely proportional to the system size, one would need of the order of 106 sites,
which renders an exact diagonalization impossible.
Apparently, the logarithmic discretization reduces this problem in that the low-energy resolution
now depends exponentially on the number of sites in the discretized model, so that energy scales
of the order of 105 (in units of the bandwidth) can be reached by performing calculations for
fairly small clusters, say with ≈ 20 sites.

3.2 Mapping on a semi-infinite chain

According to Fig. 1b and c, the next step is to transform the discretized Hamiltonian Eq. (34)
into a semi-infinite chain form with the first site of the chain (filled circle in Fig. 1c) repre-
senting the impurity degrees of freedom. You will notice, of course, that we have introduced a
representation of the siAm in the form of a semi-infinite chain already in Fig. 4, with the Hamil-
tonian given by Eq. (15). The structure of the Hamiltonian Eq. (15) and the one corresponding
to Fig. 1c (see Eq. (38) below) is exactly the same, so why should we distinguish these Hamil-
tonians at all? The essential point here is that the semi-infinite chain introduced in Sec. 2 is an
exact representation of the original model, that means it has the same hybridization function
as the model in the original site representation, for example, the model for a single impurity
coupled to a two-dimensional system as shown in Fig. 3.
In contrast, the semi-infinite chain to be introduced in this subsection corresponds to the dis-
cretized Hamiltonian Eq. (34), which is an approximation of the original, continuous model, so
the model corresponding to Fig. 1c – for which the expression ‘Wilson chain’ is often used – is
an approximation as well. As will be discussed in the following, the main feature of the Wilson
chain is that the tl are falling off exponentially with distance from the impurity.
In the Hamiltonian for the Wilson chain, the impurity directly couples only to one conduction
electron degree of freedom with operators c(†)

0σ , the form of which can be directly read off from
the second and third line in Eq. (34). With the definition

c0σ =
1√
ξ0

∑
n

[
γ+
n anσ + γ−n bnσ

]
, (35)

in which the normalization constant is given by

ξ0 =
∑
n

(
(γ+
n )2 + (γ−n )2

)
=

∫ 1

−1

dε∆(ε) , (36)

the hybridization term can be written as

1√
π
f †σ
∑
n

(
γ+
n anσ + γ−n bnσ

)
=

√
ξ0

π
f †σc0σ , (37)

(similarly for the Hermitian conjugate term). Note that for a coupling to a single site as in
Eq. (4), the coupling in Eq. (37) reduces to

√
ξ0/π = V .
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The operators c(†)
0σ are of course not orthogonal to the operators a(†)

nσ, b(†)
nσ. Constructing a new

set of mutually orthogonal operators c(†)
nσ from c

(†)
0σ and a(†)

nσ, b(†)
nσ by a standard Gram-Schmidt

procedure leads to the desired chain Hamiltonian, which takes the form

H = Himp+

√
ξ0

π

∑
σ

[
f †σc0σ + c†0σfσ

]
+

∞∑
σ,n=0

[
εnc
†
nσcnσ + tn

(
c†nσcn+1σ + c†n+1σcnσ

)]
, (38)

with the operators c(†)
nσ corresponding to the n-th site of the conduction electron part of the chain.

The parameters of the chain are the on-site energies εn and the hopping matrix elements tn. The
operators c(†)

nσ in Eq. (38) and the operators {a(†)
nσ, b

(†)
nσ} in Eq. (34) are related via an orthogonal

transformation

anσ =
∞∑
m=0

umncmσ , bnσ =
∞∑
m=0

vmncmσ ,

cnσ =
∞∑
m=0

[unmamσ + vnmbmσ] . (39)

From the definition of c0σ in Eq. (35) we can read off the coefficients u0m and v0m

u0m =
γ+
m√
ξ0

, v0m =
γ−m√
ξ0

. (40)

For the remaining coefficients unm, vnm, as well as for the parameters εn, tn, one can derive
recursion relations following the scheme described in detail in, for example, Appendix A of [9].
The starting point here is the equivalence of the free conduction electron parts∑

nσ

[
ξ+
n a
†
nσanσ + ξ−n b

†
nσbnσ

]
=

∞∑
σ,n=0

[
εnc
†
nσcnσ + tn

(
c†nσcn+1σ + c†n+1σcnσ

)]
. (41)

The recursion relations are initialized by the equations

ε0 =
1

ξ0

∫ 1

−1

dε∆(ε)ε ,

t20 =
1

ξ0

∑
m

[
(ξ+
m − ε0)2(γ+

m)2 + (ξ−m − ε0)2(γ−m)2
]
,

u1m =
1

t0
(ξ+
m − ε0)u0m ,

v1m =
1

t0
(ξ−m − ε0)v0m . (42)

For n ≥ 1, the recursion relations read

εn =
∑
m

(
ξ+
mu

2
nm + ξ−mv

2
nm

)
,

t2n =
∑
m

[
(ξ+
m)2u2

nm + (ξ−m)2v2
nm

]
− t2n−1 − ε2

n ,

un+1,m =
1

tn

[
(ξ+
m − εn)unm − tn−1un−1,m

]
,

vn+1,m =
1

tn

[
(ξ−m − εn)vnm − tn−1vn−1,m

]
. (43)
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Note that for a particle-hole symmetric hybridization function, ∆(ω) = ∆(−ω), the on-site
energies εn are zero for all n.
For a general hybridization function, the recursion relations have to be solved numerically.
Although these relations are fairly easy to implement, it turns out that the iterative solution
breaks down typically after about 20-30 steps. The source of this instability is the wide range
of values for the parameters entering the recursion relations (for instance for the discretized
energies ξ±m). In most cases this problem can be overcome by using arbitrary precision routines
for the numerical calculations. Furthermore, it is helpful to enforce the normalization of the
vectors unm and vnm after each step.
Analytical solutions for the recursion relations have so far been given only for few special cases.
Wilson derived a formula for the tn for a constant density of states of the conduction electrons
in the Kondo version of the impurity model [1]; this corresponds to a constant hybridization
function ∆(ω) in the interval [−1, 1]. Here we have εn = 0 for all n and the expression for the
tn reads

tn =
(1 + Λ−1) (1− Λ−n−1)

2
√

1− Λ−2n−1
√

1− Λ−2n−3
Λ−n/2 . (44)

Similar expressions have been given for the soft-gap model, see [8]. In the limit of large n this
reduces to

tn −→
1

2

(
1 + Λ−1

)
Λ−n/2 . (45)

The fact that the tn fall off exponentially with the distance from the impurity is essential for the
following discussion, so let me briefly explain where this n-dependence comes from. Consider
the discretized model Eq. (34) with a finite number 1 + M/2 (M even) of conduction electron
states for both positive and negative energies (the sum over n then goes from 0 to M/2). This
corresponds to 2+M degrees of freedom which result in 2+M sites of the conduction electron
part of the chain after the mapping to the Wilson chain. The lowest energies in the discretized
model Eq. (34) are the energies ξ±M/2 which, for a constant hybridization function, are given by
ξ±M/2 = ±1

2
Λ−M/2(1 + Λ−1), see Eq. (32). This energy shows up in the chain Hamiltonian as

the last hopping matrix element tM , so we have tM ∼ ξM/2 equivalent to Eq. (45).
Equation (38) is a specific one-dimensional representation of the siAm with the special feature
that the hopping matrix elements tn fall off exponentially. As mentioned above, this represen-
tation is not exact since in the course of its derivation, the p 6= 0 terms have been dropped.
Nevertheless, the conduction electron sites of the chain do have a physical meaning in the orig-
inal model as they can be viewed as a sequence of shells centered around the impurity. The
first site of the conduction electron chain corresponds to the shell with the maximum of its
wavefunction closest to the impurity [1,3]; this shell is coupled to a shell further away from the
impurity and so on.

3.3 Iterative diagonalization

The transformations described so far are necessary to map the problem onto a form (the Wilson
chain, Eq. (38)) for which an iterative renormalization group (RG) procedure can be defined.
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This is the point at which, finally, the RG character of the approach enters.
The chain Hamiltonian Eq. (38) can be viewed as a series of HamiltoniansHN (N = 0, 1, 2, . . .)
which approaches H in the limit N →∞.

H = lim
N→∞

Λ−(N−1)/2HN , (46)

with

HN = Λ(N−1)/2

[
Himp +

√
ξ0

π

∑
σ

(
f †σc0σ + c†0σfσ

)
+

N∑
σ,n=0

εnc
†
nσcnσ +

N−1∑
σ,n=0

tn

(
c†nσcn+1σ + c†n+1σcnσ

)]
. (47)

The factor Λ(N−1)/2 in Eq. (47) (and, consequently, the factor Λ−(N−1)/2 in Eq. (46)) has been
chosen to cancel the N -dependence of tN−1, the hopping matrix element between the last two
sites of HN . Such a scaling is useful for the discussion of fixed points, as described below.
For a different n-dependence of tn, as for the spin-boson model [9], the scaling factor has to
be changed accordingly. (The n-dependence of εn is, in most cases, irrelevant for the overall
scaling of the many-particle spectra.)
Two successive Hamiltonians are related by

HN+1 =
√
ΛHN + ΛN/2

[∑
σ

εN+1c
†
N+1σcN+1σ +

∑
σ

tN

(
c†NσcN+1σ + c†N+1σcNσ

)]
, (48)

and the starting point of the sequence of Hamiltonians is given by

H0 = Λ−1/2

[
Himp +

∑
σ

ε0c
†
0σc0σ +

√
ξ0

π

∑
σ

(
f †σc0σ + c†0σfσ

)]
.

This Hamiltonian corresponds to a two-site cluster formed by the impurity and the first conduc-
tion electron site. Note that in the special case of the siAm, one can also chooseH−1 = Λ−1Himp

as the starting point (with a proper renaming of parameters and operators) since the hybridiza-
tion term has the same structure as the hopping term between the conduction electron sites.
The recursion relation Eq. (48) can now be understood in terms of a renormalization group
transformation R:

HN+1 = R (HN) . (49)

In a standard RG transformation, the Hamiltonians are specified by a set of parameters ~K and
the mapping R transforms the Hamiltonian H( ~K) into another Hamiltonian of the same form,
H( ~K ′), with a new set of parameters ~K ′. Such a representation does not exist, in general,
for the HN which are obtained in the course of the iterative diagonalization to be described
below. Instead, we characterizeHN , and thereby also the RG flow, directly by the many-particle
energies EN(r)

HN |r〉N = EN(r)|r〉N , r = 1, . . . , Ns , (50)
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Fig. 6: In each step of the iterative diagonalization scheme one site of the chain (with operators
c

(†)
N+1 and on-site energy εN+1) is added to the Hamiltonian HN . A basis |r; s〉N+1 for the

resulting Hamiltonian, HN+1, is formed by the eigenstates of HN , |r〉N , and a basis of the
added site, |s(N + 1)〉. Figure taken from Ref. [4].

with the eigenstates |r〉N and Ns the dimension of HN . This is particularly useful in the
crossover regime between different fixed points, where a description in terms of an effective
Hamiltonian with certain renormalized parameters is not possible. Only in the vicinity of the
fixed points (except for certain quantum critical points) one can go back to an effective Hamil-
tonian description, as described below.
Our primary aim now is to set up an iterative scheme for the diagonalization of HN , in order
to discuss the flow of the many-particle energies EN(r). Let us assume that, for a given N , the
Hamiltonian HN has already been diagonalized, as in Eq. (50). We now construct a basis for
HN+1, as sketched in Fig. 6:

|r; s〉N+1 = |r〉N ⊗ |s(N + 1)〉 . (51)

The states |r; s〉N+1 are product states consisting of the eigenbasis of HN and a suitable basis
|s(N +1)〉 for the added site (the new degree of freedom). From the basis Eq. (51) we construct
the Hamiltonian matrix for HN+1:

HN+1(rs, r′s′) = N+1〈r; s|HN+1|r′; s′〉N+1 . (52)

For the calculation of these matrix elements it is useful to decompose HN+1 into three parts

HN+1 =
√
ΛHN + X̂N,N+1 + ŶN+1 , (53)

(see, for example, Eq. (48)) where the operator ŶN+1 only contains the degrees of freedom
of the added site, while X̂N,N+1 mixes these with the ones contained in HN . Apparently, the
structure of the operators X̂ and Ŷ , as well as the equations for the calculation of their matrix
elements, depend on the model under consideration.
The following steps are illustrated in Fig. 7: In Fig. 7a we show the many-particle spectrum
of HN , that is the sequence of many-particle energies EN(r). Note that, for convenience, the
ground-state energy has been set to zero. Figure 7b shows the overall scaling of the energies by
the factor

√
Λ, see the first term in Eq. (48).
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EN+1 (r)EN (r) EN (r)
1/2a)

after truncation
b) c) d)

0

Fig. 7: (a): Many-particle spectrum EN(r) of the Hamiltonian HN with the ground-state
energy set to zero. (b): The relation between successive Hamiltonians, Eq. (48), includes a
scaling factor

√
Λ. (c) Many-particle spectrum EN+1(r) of HN+1, calculated by diagonalizing

the Hamiltonian matrix Eq. (52). (d) The same spectrum after truncation where only the Ns

lowest-lying states are retained; the ground-state energy has again been set to zero. Figure
taken from Ref. [4].

Diagonalization of the matrix Eq. (52) gives the new eigenenergies EN+1(w) and eigenstates
|w〉N+1 which are related to the basis |r; s〉N+1 via the unitary matrix U :

|w〉N+1 =
∑
rs

U(w, rs)|r; s〉N+1 . (54)

The set of eigenenergies EN+1(w) of HN+1 is displayed in Fig. 7c (the label w can now be
replaced by r). Apparently, the number of states increases by adding the new degree of freedom
(when no symmetries are taken into account, the factor is just the dimension of the basis |s(N+

1)〉). The ground-state energy is negative, but will be set to zero in the following step.
The increasing number of states is, of course, a problem for the numerical diagonalization;
the dimension of HN+1 grows exponentially with N , even when we consider symmetries of
the model so that the full matrix takes a block-diagonal form with smaller submatrices. This
problem can be solved by a very simple truncation scheme: after diagonalization of the various
submatrices of HN+1 one only keeps the Ns eigenstates with the lowest many-particle energies.
In this way, the dimension of the Hilbert space is fixed toNs and the computation time increases
linearly with the length of the chain. Suitable values for the parameter Ns depend on the model;
for the siAm,Ns of the order of a few hundred is sufficient to get converged results for the many-
particle spectra, but the accurate calculation of static and dynamic quantities usually requires
larger values of Ns. The truncation of the high energy states is illustrated in Fig. 7d.
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Such an ad-hoc truncation scheme needs further explanations. First of all, there is no guarantee
that this scheme will work in practical applications and its quality should be checked for each
individual application. Important here is the observation that the neglect of the high-energy
states does not spoil the low-energy spectrum in subsequent iterations – this can be easily seen
numerically by varying Ns. The influence of the high-energy on the low-energy states is small
since the addition of a new site to the chain can be viewed as a perturbation of relative strength
Λ−1/2 < 1. This perturbation is small for large values of Λ but for Λ → 1 it is obvious that
one has to keep more and more states to get reliable results. This also means that the accuracy
of the NRG results is getting worse when Ns is kept fixed and Λ is reduced (vice versa, it is
sometimes possible to improve the accuracy by increasing Λ for fixed Ns).

From this discussion we see that the success of the truncation scheme is intimately connected
to the special structure of the chain Hamiltonian (that is tn ∝ Λ−n/2) which in turn is due to
the logarithmic discretization of the original model. A direct transformation of the siAm to a
semi-infinite chain as in Eq. (15) results in tn → const [3], and the above truncation scheme
fails.

Let us now be a bit more specific on how to construct the basis |r; s〉N+1. For this we have to
decide, first of all, which of the symmetries of the Hamiltonian should be used in the iterative
diagonalization. In the original calculations of Ref. [1] and Refs. [10,11] the following quantum
numbers were used: total chargeQ (particle number with respect to half-filling), total spin S and
z-component of the total spin Sz. It was certainly essential in the 1970’s to reduce the size of the
matrices and hence the computation time as much as possible by invoking as many symmetries
as possible. This is no longer necessary to such an extent on modern computer systems, i.e. one
can, at least for single-band models, drop the total spin S and classify the subspaces with the
quantum numbers (Q,Sz) only. This simplifies the program considerably as one no longer has
to worry about reduced matrix elements and the corresponding Clebsch-Gordan coefficients,
see, for example [10]. The |r; s〉N+1 are then constructed as:

|Q,Sz, r; 1〉N+1 = |Q+ 1, Sz, r〉N ,

|Q,Sz, r; 2〉N+1 = c†N+1↑
∣∣Q,Sz − 1

2
, r
〉
N
,

|Q,Sz, r; 3〉N+1 = c†N+1↓
∣∣Q,Sz + 1

2
, r
〉
N
,

|Q,Sz, r; 4〉N+1 = c†N+1↑c
†
N+1↓ |Q− 1, Sz, r〉N .

(55)

Note that the quantum numbers (Q,Sz) on each side of these equations refer to different sys-
tems: on the left-hand side they are for the system including the added site, and on the right-
hand side without the added site. We do not go into the details of how to set up the Hamiltonian
matrices Eq. (52), as this procedure is described in great detail in Appendix B of Ref. [10].

For fermionic baths, the discretization parameter Λ and the number of states Ns kept in each
iteration are the only parameters which govern the quality of the results of the NRG procedure.
For a bosonic bath, the infinite dimensional basis |s(N + 1)〉 for the added bosonic site requires
an additional parameter Nb, which determines the dimension of |s(N + 1)〉.
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3.4 Renormalization group flow

The result of the iterative diagonalization scheme are the many-particle energies EN(r) with
r = 1, . . . , Ns (apparently, the number of states is less than Ns for the very first steps before the
truncation sets in). The index N goes from 0 to a maximum number of iterations, Nmax, which
usually has to be chosen such that the system has approached its low-temperature fixed point.

As illustrated in Fig. 7, the set of many-particle energies cover roughly the same energy range
independent of N , due to the scaling factor Λ(N−1)/2 in Eq. (47). The energy of the first excited
state of HN is of the order of Λ(N−1)/2tN−1, a constant according to Eq. (45). The energy of the
highest excited state kept after truncation depends on Ns – for typical parameters this energy is
approximately 5-10 times larger than the lowest energy.

Multiplied with the scaling factor Λ−(N−1)/2, see Eq. (46), the energies EN(r) are an approx-
imation to the many-particle spectrum of the Wilson chain Eq. (38) within an energy window
decreasing exponentially with increasing N . Note, that the energies for higher lying excitations
obtained for early iterations are not altered in later iteration steps due to the truncation proce-
dure. Nevertheless one can view the resulting set of many-particle energies and states from all
NRG iterations N as approximation to the spectrum of the full Hamiltonian and use them to
calculate physical properties in the whole energy range.

Here we want to focus directly on the many-particle energies EN(r) and show how one can
extract information about the physics of a given model by analyzing their flow, that is the de-
pendence of EN(r) on N .

As a typical example for such an analysis, we show in Fig. 8 the flow of the many-particle
energies for the symmetric siAm, with parameters εf = −0.5 · 10−3, U = 10−3, V = 0.004,
and Λ = 2.5 (the same parameters as used in Fig. 5 of Ref. [10]; note that we show here a
slightly different selection of the lowest-lying states). The energies are plotted for odd N only,
that is an odd total number of sites (which isN+2). This is necessary, because the many-particle
spectra show the usual even-odd oscillations of a fermionic finite-size system (the patterns for
even N look different but contain, of course, the same physics). The data points are connected
by lines to visualize the flow. As in Ref. [10], the many-particle energies are labeled by total
charge Q and total spin S.

What is the information one can extract from such a flow diagram? First of all we note the
appearance of three different fixed points of the RG transformation for early iteration numbers
N < 10, for intermediate values of N and for N > 60 (strictly speaking, because we look at
N odd only, these are fixed points of R2, not of R). The physics of these fixed points cannot be
extracted by just looking at the pattern of the many-particle energies. This needs some further
analysis, in particular the direct diagonalization of fixed point Hamiltonians (which usually
have a simple structure) and the comparison of their spectrum with the numerical data. An
excellent account of this procedure for the symmetric and asymmetric siAm has been given
in Refs. [10, 11], and there is no need to repeat this discussion here. The analysis shows that
for N ≈ 3 − 9, the system is very close to the free-orbital fixed point, with the fixed point
Hamiltonian given by Eq. (38) for εf = 0, U = 0, and V = 0. This fixed point is unstable and
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Fig. 8: Flow of the lowest-lying many-particle energies of the single-impurity Anderson model
for parameters εf = −0.5 · 10−3, U = 10−3, V = 0.004, and Λ = 2.5. The states are labeled
by the quantum numbers total charge Q and total spin S. See the text for a discussion of the
fixed points visible in this plot. Figure taken from Ref. [4].

forN ≈ 11−17, we observe a rapid crossover to the local-moment fixed point. This fixed point
is characterized by a free spin decoupled from the conduction band (here we have εf = −U/2,
U →∞, and V = 0). The local-moment fixed point is unstable as well and after a characteristic
crossover (see the discussion below) the system approaches the stable strong-coupling fixed
point of a screened spin (with εf = −U/2 and V 2/U → ∞). Note that the terminology
‘strong-coupling’ has been introduced originally because the fixed point Hamiltonian can be
obtained from the limit V →∞, so ‘coupling’ here refers to the hybridization, not the Coulomb
parameter U .

The NRG does not only allow to match the structure of the numerically calculated fixed points
with those of certain fixed point Hamiltonians. One can in addition identify the deviations from
the fixed points (and thereby part of the crossover) with appropriate perturbations of the fixed
point Hamiltonians. Again, we refer the reader to Refs. [10, 11] for a detailed description of
this analysis. The first step is to identify the leading perturbations around the fixed points. The
leading operators can be determined by expressing them in terms of the operators which diago-
nalize the fixed point Hamiltonian; this tells us directly how these operators transform under the
RG mapping R2. One then proceeds with the usual classification into relevant, marginal, and
irrelevant perturbations. The final results of this analysis perfectly agree with the flow diagram
of Fig. 8: There is a relevant perturbation which drives the system away from the free-orbital
fixed point, but for the local-moment fixed point there is only a marginally relevant perturbation,
therefore the system only moves very slowly away from this fixed point. Note that this marginal
perturbation – which is the exchange interaction between the local moment and the spin of the
first conduction electron site – gives rise to the logarithms observed in various physical quan-
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tities. Finally, there are only irrelevant operators which govern the flow to the strong-coupling
fixed point. These are responsible for the Fermi-liquid properties at very low temperatures [3].
Flow diagrams as in Fig. 8 also give information about the relevant energy scales for the
crossover between the fixed points. For example, an estimate of the Kondo temperature TK

(the temperature scale which characterizes the flow to the strong-coupling fixed point) is given
by TK ≈ ωcΛ

−N̄/2, with N̄ ≈ 55 for the parameters in Fig. 8.

4 Final remarks

The main purpose of these lecture notes was to give a brief introduction to the basic steps of the
NRG method, that is the logarithmic discretization (Sec. 3.1), the mapping onto a semi-infinite
chain (Sec. 3.2), and the iterative diagonalization (Sec. 3.3). A number of improvements of
these technical steps have been introduced since the development of the method by Wilson [1]
and I just want to mention a few here.
The discreteness of the model Eq. (34) can be (in some cases) problematic for the calculation
of physical quantities. As it is not possible in the actual calculations to recover the continuum
by taking the limit Λ → 1 (or by including the p 6= 0 terms), it has been suggested to average
over various discretizations for fixed Λ [12–14]. The discretization points are then modified as

xn =

{
1 : n = 0

Λ−(n+Z) : n ≥ 1 ,
(56)

where Z covers the interval [0, 1). This ‘Z-averaging’ indeed removes certain artificial oscilla-
tions.
Another shortcoming of the discretized model is that the hybridization function ∆(ω) is sys-
tematically underestimated. It is therefore convenient to multiply ∆(ω) with the correction
factor

AΛ =
1

2
lnΛ

Λ+ 1

Λ− 1
, (57)

which accelerates the convergence to the continuum limit. For a recent derivation of this cor-
rection factor, see [15].
The equations for the recursive calculation of the parameters of the semi-infinite chain, the {εn}
and {tn} in Eq. (38), have been given in Sec. 3.2, but it is certainly not obvious how to arrive at
analytical expressions as in Eq. (44) (for the special case of constant∆(ω)). This issue has been
discussed in more general terms in Ref. [16]. By using the theory of orthogonal polynomials,
expressions for the parameters {εn} and {tn} can now be given for more complex hybridization
functions, like the ones appearing in the Ohmic and sub-Ohmic spin-boson model.
Another technical improvement to be mentioned here is about the truncation of basis states in
the iterative diagonalization of the Wilson chain. It is not at all clear how many states one should
keep here and the convergence is usually checked by repeating the calculation for various values
of Ns. A quantitative criterion to analyze the convergence, based on the discarded weight in the
reduced density matrices, has been recently given in Ref. [17].
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The physics of the siAm, in particular the Kondo effect, has been mentioned here only in the
context of the renormalization group flow of the many-particle levels (Sec. 3.4). To actually
see the screening of the local moment by the conduction electrons, one has to calculate an
appropriate physical quantity, for example the magnetic susceptibility. Some extra care has to
be taken to calculate such quantities, for more details, see Sec. III in Ref. [4]. As an example
of the technical difficulties one has to solve to obtain reliable data for the specific heat, see the
recent paper Ref. [18].
The starting point for the NRG is the integral representation Eq. (18), which is just one possible
representation of the siAm. In Sec. 2 you have seen that there are many different ways to
represent the model which are all equivalent provided they give the same hybridization function
∆(ω). We have discussed that the siAm can always be viewed as a single-channel model. As
a side remark, note that for multi-impurity Anderson models it is not at all trivial to count the
number of screening channels. So far this has been done only for a few special cases.
There is a wide range of models and physical phenomena to which the NRG has been applied
(for an overview, see Secs. 4 and 5 in Ref. [4]). To conclude, here is a list of a few very recent
applications:

• Real-space charge densities and their connection to the Kondo-screening cloud [19].

• Real-time dynamics in quantum impurity systems [20].

• Steady-state currents through nanodevices [21].

• Transport through multi-level quantum dots [22].

• Multi-channel and multi-impurity physics [23].

• Zero-bias conductance in carbon nanotube quantum dots [24].
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http://www.cond-mat.de/events/correl11

[3] Alex C. Hewson: The Kondo Problem to Heavy Fermions,
(Cambridge University Press, Cambridge, England, 1993)

[4] R. Bulla, T.A. Costi, and Th. Pruschke, Rev. Mod. Phys. 80, 395 (2008)

[5] P.W. Anderson, Phys. Rev. 124, 41 (1961)

[6] R. Bulla, A.C. Hewson, and Th. Pruschke, J. Phys.: Condens. Matter 10, 8365 (1998)

[7] K. Chen and C. Jayaprakash, J. Phys.: Condens. Matter 7, L491 (1995)

[8] R. Bulla, Th. Pruschke, and A.C. Hewson, J. Phys.: Condens. Matter 9, 10463 (1997)

[9] R. Bulla, H.-J. Lee, N.-H. Tong, and M. Vojta, Phys. Rev. B 71, 045122 (2005)

[10] H.R. Krishna-murthy, J.W. Wilkins, and K.G. Wilson, Phys. Rev. B 21, 1003 (1980)

[11] H.R. Krishna-murthy, J.W. Wilkins, and K.G. Wilson, Phys. Rev. B 21, 1044 (1980)

[12] H.O. Frota and L.N. Oliveira, Phys. Rev. B 33, 7871 (1986)

[13] M. Yoshida, M.A. Whitaker, and L.N. Oliveira, Phys. Rev. B 41, 9403 (1990)

[14] W.C. Oliveira and L.N. Oliveira, Phys. Rev. B 49, 11986 (1994)

[15] V.L. Campo Jr. and L.N. Oliveira, Phys. Rev. B 72, 104432 (2005)
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We present a pedagogical discussion of the maximum entropy method for the analytic continu-
ation of Matsubara-time or -frequency quantum Monte Carlo data to real frequencies. Bayesian
methods are employed to recast this daunting inverse problem into one of optimizing the pos-
terior probability of a real-frequency spectral function. Bayesian methods are also used to
optimize the inputs. We develop the formalism, present a detailed description of the data qual-
ification, sketch an efficient algorithm to solve for the optimal spectra, give cautionary notes
where appropriate, and present a detailed case study to demonstrate the method.

1 Introduction

Most quantum Monte Carlo (QMC) simulations produce Green’s functions G of Matsubara
imaginary time τ = it or frequency iωn. However, real-frequency results are crucial since
most experiments probe dynamical quantities, including transport, densities of states, nuclear
magnetic resonance, inelastic scattering, etc. Thus, the inability to extract real-frequency or
real-time results from Matsubara (imaginary) time QMC simulations presents a significant lim-
itation to the usefulness of the method. The relation between G(τ) and A(ω) = − 1

π
ImG(ω) is

linear and surprisingly simple

G(τ) =

∫
dωA(ω)K(τ, ω) , (1)

or equivalently

G(iωn) =

∫
dωA(ω)K(iωn, ω) . (2)

These two equations are related through a Fourier transform of the kernel and the Green func-
tion. For example, for a Fermionic single-particle Green’s function G, K(τ, ω) = e−τω/(1 +

e−βω) and K(iωn, ω) = 1/(iωn − ω) [1]. These equations are equivalent since the Fourier
transform is a unitary transformation. Despite this simplicity, inversion of these equations is
complicated by the exponential nature of the kernel. For finite τ and large ω the kernel is expo-
nentially small, so that G(τ) is insensitive to the high frequency features of A(ω). Equivalently,
if we approximate both G and A by equal-length vectors and K by a square matrix, then we
find that the determinant of K is exponentially small, so that K−1 is ill-defined. Apparently,
there are an infinite number of A that yield the same G.
Previous attempts to address this problem include least-squares fits, Pade approximants and
regularization. However, these techniques tend to produce spectra A with features which are
overly smeared out by the regularization, or have parameters that are difficult to determine. In
the least squares method, Schüttler and Scalapino [1] approximated the spectrum with a set of
box functions. The location and weight of these functions was determined by minimizing the
least-squares misfit between the spectrum and the QMC data. However, as the number of box
functions is increased to better resolve features in the spectrum, the fit becomes unstable and
noisy. In the Pade method [2], G (or rather its Fourier transform) is fit to a functional form,
usually the ratio of two polynomials, which is then analytically continued formally by replacing
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iωn → ω + i0+. This technique works when the data G is very precise, as when analytically
continuing Eliashberg equations, or when the fitting function is known a priori. However, it is
generally unreliable for the continuation of less-precise QMC data to real frequencies. A more
useful approach is to introduce a regularization to the kernel, so that K−1 exists. This method
was developed by G. Wahba [3], and employed by White et al. [4] and Jarrell and Biham [5].
They used similar methods to minimize (G−KA)2 subject to constraint potentials which intro-
duce correlations between adjacent points in A and impose positivity. The stochastic analytic
continuation method of Sandvik and Beach [6, 7] treats the least squares measure of Schüttler
as a thermodynamic potential and introduces a temperature to control the regularization.
In the Maximum Entropy Method (MEM) we employ a different philosophy. Using Bayesian
statistics, we define the posterior probability of the spectra A given the data G, P (A|G). We
find the spectra which maximizes P (A|G) ∝ P (A)P (G|A) with the prior probability P (A)

defined so that A has only those correlations that are required to reproduce the data G. To
define the likelihood function P (G|A), we take advantage of the statistical sampling nature of
the QMC process.
In this chapter, we will present a short pedagogical development of the MEM to analytically
continue QMC data. A more detailed review has been presented previously [8], and to the
extent possible, we will follow the notation used there. This chapter is organized as follows:
In Sec. 2, we will present the MEM formalism. In Sec. 3, the Bryan MEM algorithm will be
sketched, which has been optimized for this type of problem. In Sec. 4, we will illustrate these
techniques with the spectra of the Periodic Anderson and Hubbard models, described below,
and finally in Sec. 5, we will conclude.

2 Formalism

2.1 Green’s functions

When a system is perturbed by an external field which couples to an operator B, the linear
response to this field is described by the retarded Green’s function

G(t) = −iΘ(t)
〈[
B(t), B†(0)

]
±

〉
(3)

where the negative (positive) sign is used for Boson (Fermion) operators B and B†, and makes
reference to the Dirac (anti)commutator. The Fourier transform, G(z), of G(t) is analytic in the
upper half plane, and its real and imaginary parts are related by

G(z) =

∫
dω

−1
π

ImG(ω)

z − ω
. (4)

The Matsubara-frequency Green’s function G(iωn) is obtained by letting z → iωn in Eq. (4).
This may be Fourier transformed to yield a relation between the Matsubara-time Green’s func-
tion produced by the QMC procedure, and −1

π
ImG(ω)

G(τ) =

∫
dω

−1
π

ImG(ω)e−τω

1± e−βω
. (5)
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2.2 Bayesian statistics

We use our QMC algorithm to generate a set Ḡi
l of i = 1, . . . , Nd estimates for the Green’s

function at each time τl or frequency ωl, l = 1, . . . , L. Since many functions A correspond to
the same data Ḡ, we must employ a formalism to determine which A(ω) is the most probable,
given the statistics of the data and any prior information that we have about A. To quantify the
conditional probability ofA given the data, and our prior knowledge, we use Bayesian statistics.
If we have two events a and b, then according to Bayes theorem the joint probability of these
two events is

P (a, b) = P (a|b)P (b) = P (b|a)P (a) , (6)

where P (a|b) is the conditional probability of a given b. The probabilities are normalized so
that

P (a) =

∫
dbP (a, b) and 1 =

∫
daP (a) . (7)

In our problem, we search for the spectrum A which maximizes the conditional probability of
A given the data Ḡ,

P (A|Ḡ) = P (Ḡ|A)P (A)/P (Ḡ) . (8)

Typically, we call P (Ḡ|A) the likelihood function, and P (A) the prior probability of A (or
the prior). Since we work with one set of QMC data at a time, P (Ḡ) is a constant during this
procedure, and may be ignored. The prior and the likelihood function require significantly more
thought, and will be the subject of the next two subsections.

2.3 Prior probability

We can define a prior probability for positive-definite normalizable spectra. For Bosonic Green’s
functions, we may define positive definite spectra if we redefine the kernel, e.g.,

K(τ, ω) =
ω[e−τω + e−(β−τ)ω]

1− e−βω
or K(iωn, ω) =

ω2

ω2 + ω2
n

(9)

with A(ω) = −1
πω

ImG(ω) ≥ 0 for Bosons. We modified the kernel to account for the symmetry
of the Bosonic dataG(τ) = G(β−τ) orG(iωn) = G(−iωn) and the spectrumA(ω) = A(−ω).
Note that the kernel is non-singular at ω = 0 and the spectral density A(ω) is positive definite.
For Fermionic Green’s functions the spectra are already positive definite

K(τ, ω) =
exp(−τω)

1 + exp(−βω)
or K(iωn, ω) =

1

iωn − ω
(10)

with A(ω) = −1
π

ImG(ω) ≥ 0 for Fermions. We may also define positive definite spectra for
more exotic cases, such as for the Nambu off-diagonal Green function G12. Since the corre-
sponding spectrum A12(ω) = −1

π
ImG12(ω) is not positive definite, we enforce positivity by

adding a positive real constant b

G12(τ) + b

∫
dωK(τ, ω) =

∫
dωK(τ, ω) (A12(ω) + b) . (11)
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Here, we may incorporate the symmetry of the spectrum A12(ω) = −A12(−ω) and the data
G12(τ) = −G12(β − τ) by modifying the kernel

K(τ, ω) =
e−τω − e−(β−τ)ω

1 + exp(−βω)
. (12)

With this kernel, the equation takes the canonical form Eq. (1), if we identify

A(ω) = A12(ω) + b , and G(τ) = G12(τ) + b

∫
dωK(τ, ω) . (13)

The value of b is determined by optimizing its posterior probability as discussed below. In each
of the Bosonic, Fermionic and Anomalous cases,∫ ∞

−∞
dωA(ω) <∞ . (14)

Although not required, it is convenient to normalize each of the spectral functions to one. This
is possible if we know the integral of the spectrum from other QMC measurements or if we
know the high frequency limit analytically (see Sec. 4.6). These positive-definite normalized
spectra A may be reinterpreted as probability densities.
Skilling [10] argues that the prior probability for such an unnormalized probability density
is proportional to exp(αS) where S is the entropy defined relative to some positive-definite
function m(ω)

S =

∫
dω
[
A(ω)−m(ω)− A(ω) ln (A(ω)/m(ω))

]
≈

N∑
i=1

Ai −mi − Ai ln (Ai/mi) , (15)

where Ai = A(ωi) dωi, i = 1, . . . , N . Thus, the prior is conditional on two as yet unknown
quantities m(ω) and α

P (A|m,α) = exp (αS) . (16)

m(ω) is called the default model since, in the absence of data Ḡ, P (A|Ḡ,m, α) ∝ P (A|m,α),
so the optimal A is equal to m. The choice of α will be discussed in Sec. 3.5.
Rather than trying to repeat Skilling’s arguments here for the entropic form of P (A|m,α), we
argue that this form yields the desired effects:

1. it enforces positivity of A,

2. it requires that A only have correlations which are required to reproduce the data Ḡ, and

3. it allows us to introduce prior knowledge about the the spectra (e.g., exact results at high
frequencies) in the default model.

The first effect follows from the form of P (A|m,α), assuming that m is positive definite. The
third effect will be discussed in Sec. 4.5.



13.6 Mark Jarrell

0 200 400 600 800 1000

QMC step

0.00

0.05

0.10

0.15

0.20
G

f (τ
=

β
/2

)

Fig. 1: f -electron local Green’s function Ḡf (τ = β/2) plotted as a function of the QMC step
for a symmetric periodic Anderson Model with U = 2, V = 0.6, and β = 20.

2.4 Likelihood function

The form of the likelihood function is dictated by the central limit theorem, which for the
purposes of this chapter may be illustrated with the following example. Suppose we use our
QMC algorithm to generate Nd measurements of the Green’s function Ḡi

l (where l is an integer
from 1 to L, and i an integer from 1 to Nd). According to the central limit theorem, if each of
these measurements is completely independent of the others, then, in the limit of large Nd, the
distribution of Ḡl will approach a Gaussian, and the probability of a particular value Gl is given
by

P (Gl) =
1√
2πσ

e−χ
2/2 , (17)

where

χ2 =
1

σ2

(
1

Nd

Nd∑
i=1

Ḡi
l −Gl

)2

=
1

σ2

(〈
Ḡl

〉
−Gl

)2
, σ2 =

1

Nd(Nd − 1)

∑
i

(〈
Ḡl

〉
− Ḡi

l

)2
,

and the angular brackets indicate an average over the bins of data
Of course, in the QMC process each of the measurements is not independent of the others.
Correlations exist between adjacent measurements (Ḡi

l and Ḡi+1
l ) in the QMC process, and

between the errors of the Green’s function at adjacent time slices (Ḡi
l and Ḡi

l+1) at the same
QMC step. The removal of these correlations is the most critical step in the MEM analytic
continuation procedure.
Correlations between adjacent measurements are illustrated in Fig 1 where measurements of
Ḡf (τ = β/2) are plotted as a function of the QMC step. Clearly, the data from adjacent
QMC steps is correlated and the data are skewed since the Green’s function is bounded from
below (Ḡi

l > 0). As a result the data are not Gaussianly distributed, as shown in Fig. 2(a).
Here, a histogram of the data is compared to a Gaussian fit. The deviations from a Gaussian
are quantified by the moments of the distribution. The most relevant ones in the present case
are the skewness (third moment) and kurtosis (fourth moment) which measure the degree of
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Fig. 2: Distribution of the data shown in Fig. 1 (a) and after rebinning (b). The solid line
is a Gaussian fit. In (b) the data was processed by packing it sequentially into bins of 30
measurements each.

asymmetry around the mean and the pointedness (or flatness) of the distribution relative to the
Gaussian [12]. The data are clearly not Gaussianly distributed, and display significant skew and
kurtosis. To deal with this difficulty, we rebin the data. For example, we set Ḡ1

l equal to the
average of the first 30 measurements, Ḡ2

l equal to the average of the next 30 measurements, etc.
It is well approximated by a Gaussian fit (the solid line).
The bin size, here 30 measurements, must be chosen large enough so that the bin-averages are
uncorrelated, but small enough so that sufficient bins remain to calculate the likelihood function.
To determine the smallest bin size that yields uncorrelated data we quantify the deviation of the
distribution from a Gaussian by measuring moments of the distribution. Of course, because the
data are a finite set, each of these measured moments has some standard deviation (proportional
to 1/

√
Nbins). Thus, one way to determine if the skewness and kurtosis of a distribution are

acceptably small is to measure these values relative to what is expected from a Gaussian dis-
tribution. We will use such relative values. As the bin size increases, the relative kurtosis and
skewness decrease monotonically, indicating the convergence of the distribution to a Gaussian.
This behavior is shown in Fig. 3a for the G(τ = β/2) data.
In addition, Fig. 3b shows that the error estimate also converges as the bin size increases. Here,
the error estimate is given by

σ =
√(〈

Ḡ2
〉
− 〈Ḡ〉2

)
/(Nbins − 1) (18)

where angular brackets indicate an average over the bins of data. Because correlations between
successive Monte Carlo measurements always make this error-estimate smaller than the actual
value, this error estimate should initially increase monotonically with bin size, as shown. This
behavior is easily understood by considering a perfectly correlated sample where the data in
each bin is identical. Clearly, for this perfectly correlated sample, the error estimate would be
zero. As the bins become uncorrelated, the error estimate increases. With independent data
and a large number of equally sized bins, eventually σ2 ∼ 1/Nbins. However, with a fixed
amount of data, as is typical with a QMC simulation, increasing the bin size decreases Nbins

proportionally, and the error estimate can saturate as illustrated in Fig. 3b. Thus, the saturation
of the error estimate indicates that the correlations between Monte Carlo measurements, i.e.,
between bin averages, have been removed. The point at which saturation occurs in a plot like
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Fig. 3: Relative kurtosis and skew (a) and error bar (b) of the data shown in Fig. 1 as a function
of bin size. Here the total amount of data is fixed, so increasing the bin size decreases Nbins

proportionately. As the bin size increases to about 30, the relative kurtosis and skew decrease
to roughly zero and the error bar saturates, indicating that the bins are uncorrelated samples
and that the data has become Gaussianly distributed.

Fig. 3b provides a useful first estimate of the minimum bin size required to remove correlations
between the bins. In general, one should perform this test for the Green’s function at all times
τl; however, we have found it is often sufficient to perform this test at only a few times. For the
remainder of this section, we will assume that the bin size is sufficiently large so that both the
error estimate and the moments of the distribution have converged to values which indicate that
the data are both statistically independent and Gaussian-distributed.
Now, only the errors in the Green’s function Ḡ at adjacent time slices remain correlated. This
correlation may be seen by comparing the results from a single measurement with the essentially
exact values obtained from averaging over many measurements. Such a comparison is shown
in Fig. 4 where, if the result from a single measurement differs from the essentially exact result
at a certain value of τ , then the results at adjacent values of τ also tend to deviate from the exact
results in a similar way. These correlations of the error in Matsubara time are characterized by
the covariance

Clk =
1

Nbins(Nbins − 1)

Nbins∑
j=1

(
〈
Ḡl

〉
− Ḡj

l )(
〈
Ḡk

〉
− Ḡj

k) . (19)

IfC is diagonal, then according to the central limit theorem, the likelihood function is P (Ḡ|A) =

exp[−χ2/2] where

χ2 =
L∑
l=1

(
Ḡl −

∑
jKl,jAj

σl

)2

. (20)

and σ2
l are the diagonal elements of C. However, in general, the covariance matrix Cij is not

diagonal because errors at different values of τ are correlated. To define a meaningful measure
of how well Ai reproduces the data, we must find the transformation U which diagonalizes the
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Fig. 4: Ḡf (τ) from one measurement compared to Ḡf (τ) obtained from the average over 800
bins of data, each containing 1520 measurements. If the result from a single measurement at
a certain point differs from the essentially exact result obtained by averaging over many bins,
then the results at adjacent points also deviate from the exact results.

covariance matrix
U−1CU = σ′2i δij . (21)

Both the data and kernel are now rotated into this diagonal representation

K′ = U−1K Ḡ′ = U−1Ḡ . (22)

and each measurement Ḡ′i is statistically independent. Therefore, we can use

χ2 =
∑
l

(
Ḡ′l −

∑
jK

′
l,jAj

σ′l

)2

. (23)

to measure the misfit between the spectrum and the data and to define the likelihood function.

Cautionary Notes. We find that the proper preparation of the data by removing correlations
is the most critical step in the MEM procedure. If the data are uncorrelated or the covariance
is calculated and diagonalized correctly, then the resulting spectra will be reliable (however, for
weak data, it will show a significant bias towards the default model). If not, then the Gaus-
sian form of the likelihood function is unjustified and the resulting spectra will generally have
spurious features.
However, care must be taken when calculating and diagonalizing the covariance. First, Since
the set of data is finite, it is necessary to balance the need of removing the correlations in
imaginary-time with the need of removing the correlations between Monte Carlo steps. To
remove the correlations in Monte Carlo steps the bin size must be large; however, to calculate
the covariance accurately, many bins of data are required. If there are not enough bins of data,
then the covariance and (as shown in Fig. 5) its eigenvalue spectrum can become pathological.
The reason for this pathology is that when we diagonalize the covariance matrix, we are asking
for L independent eigenvectors. We must have enough bins of data to determine these directions
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Fig. 5: Eigenvalue spectra of the covariance of Gf for different numbers of bins of data. Each
bin contains 100 measurements and L = 41. When Nbins . 2L, σ′2l develops a sharp break.

so that Nbins must be greater than or equal to L. In fact, since the information contained in a
given bin of data is not completely independent from the other bins, we must have Nbins > L.
Otherwise, as shown in Fig. 5, where L = 41, the eigenvalue spectrum displays a sharp break
when Nbins < L, indicating that only a finite number of directions, less than L, are resolved.
The small eigenvalues after the break are essentially numerical noise and yield artifacts in the
spectra. Simply throwing away the small eigenvalues and their associated eigenvectors does
not cure the difficulty since the small eigenvalues and eigenvectors contain the most precise
information about the solution. Thus, the only reasonable thing to do is to increase the number
of bins. Empirically, we find that we need

Nbins ≥ 2L (24)

in order to completely remove the pathology of the sharp break in the eigenvalues [13]. Second,
as illustrated in Fig. 4 adjacent data in time tend to be highly correlated. These correlations
grow as the time step used in the QMC calculation is reduced, making the rows and columns of
the covariance more correlated. Eventually, the covariance becomes ill conditioned and cannot
be diagonalized. Such severe oversampling of the Green function data does not provide more
information, but a small time step may be useful for other reasons (such as reducing Trotter
errors). In this case we can fix the problem by eliminating some fraction of the data e.g., taking
the data from every other time step.

2.5 Details of the MEM Formalism

We will now construct the formalism to locate the most likely spectrum Â and set the value of
α. The first step is to normalize the likelihood function P (Ḡ|A) and the prior P (A|α,m). Here
it will be necessary to integrate over the space of all spectra Ai. This is done with Gaussian
approximations to the integrals. Following Skilling and Bryan [14], we employ a measure
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dNA/
∏

i

√
Ai which amounts to a change of variables to a space where the entropy S, Eq. (15),

has no curvature [8]. For example, the normalized prior probability is

P (A|α,m) =
1

ZS
exp

{
α
(
−
∑

Ai lnAi/mi − Ai +mi

)}
(25)

where

ZS =

∫
dNA∏
i

√
Ai

exp
{
α
(
−
∑

Ai lnAi/mi − Ai +mi

)}
. (26)

The integrand is maximized when S = 0, i.e., when A = m. We approximate the in-
tegral by expanding the argument of the exponent to second order around this maximum,
S ≈ 1

2
δAT ∇∇S|A=m δA = −1

2
δAT {1/m} δA, where {1/m} is the diagonal matrix with

finite elements composed of 1/mi, and δA is the vector A−m.

ZS ≈
∫

dNA∏
i

√
Ai

exp

{
α

(
−1

2
δAT {1/m} δA

)}
. (27)

We define a change of variables, so that dyi = dAi/
√
Ai and find

ZS ≈
∫
dNy exp

{
α

(
−1

2
δyT{m}1/2 {1/m} {m}1/2δy

)}
= (2π/α)N/2 (28)

The likelihood function must also be normalized

P (Ḡ|A) = e−χ
2/2/ZL (29)

where

χ2 =
∑
l

(
Ḡ′l −

∑
iK
′
liAi
)2

σ′2l
(30)

where K ′ and Ḡ′ are the kernel and data rotated into the data space where the covariance is
diagonal, and σ′2l are the eigenvalues of the covariance. If we let Gl =

∑
iK
′
liAi, then

ZL =

∫
dLG exp

{
1

2

L∑
l=1

(
Ḡ′l −Gl

)2
σ′2l

}
= (2π)L/2

∏
l

σ′l (31)

Using Bayes theorem, we find

P (A,G|m,α) = P (G|A,m, α)P (A|m,α)

= P (A|G,m, α)P (G|m,α) (32)

or

P (A|G,m, α) ∝ P (G|A,m, α)P (A|m,α) =
exp(αS − χ2/2)

ZSZL
(33)

Since the normalization factors ZS and ZL are independent of the spectrum, for fixed α and
data, the most probable spectrum Â(α) is the one which maximizes Q = αS − χ2/2. An
algorithm to find this spectrum is discussed in Sec. 3. However, the question of how to select α
and the default model remains.
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2.5.1 Selection of α

The selection of α strongly affects the choice of the optimal spectrum [15] since α controls the
competition between S and χ2. If α is large, the entropy term is emphasized and the data cannot
move the spectrum far from the model. If α is small, then the least square misfit between the
spectrum and the data is minimized so that χ2 � L. The numerical error in the QMC data then
begins to dominate the solution and the spectra displays random oscillations and noise. Thus, it
is important to find a sensible way of selecting α. Typically, α is selected in one of three ways
described below.

Historic MEM [16,14] In the historic method, α is adjusted so that χ2 = L. The justification
for this is that if the spectrum is known and the data was repeatedly measured, then the misfit
between the data and the spectrum χ2 = L on average. However, the data are only measured
once and the spectrum is not known a priori. Also, setting χ2 = L tends to under-fit the data
since good data can cause structure in the spectrum which reduces χ2 from L. Thus, there is
little reason to believe that α can be chosen without input from the data itself.

Classic MEM [15] A more appropriate method of setting α is to choose the most probable
value, defined by maximizing

P (α|Ḡ,m) =

∫
dNA∏
i

√
Ai
P (A,α|Ḡ,m) . (34)

The integrand

P (A,α|Ḡ,m) = P (A|Ḡ,m, α)P (α) ∝ exp(αS − χ2/2)

ZSZL
P (α) (35)

involves the prior probability of α. Jeffreys [17] argues that since χ2 and S have different units,
α is a scale factor. He asserts that in lieu of prior knowledge, it should have the simplest scale
invariant form P (α) = 1/α. Thus,

P (α|Ḡ,m) =

∫
dNA∏
i

√
Ai

exp(αS − χ2/2)

ZSZLα
=

ZQ
ZSZLα

(36)

ZQ is calculated in a similar fashion as ZS . We expand about the maximum of Q at A = Â so
that exp{αS −χ2/2} ≈ exp{Q(Â) + 1

2
δAT ∇∇Q|Â δA} = exp{Q(Â) + 1

2
δAT{1

2
∇∇χ2|Â−

{α/Â}}δA}. We again make a Gaussian approximation to the integral, and if λi are the eigen-
values of 1

2
{A1/2} ∇∇χ2|Â {A1/2}, then

P (α|Ḡ,m) =
1

Wα

∏
i

(
α

α + λi

)1/2
eQ(Â)

α
(37)

where

Wα =

∫
dα

α

∏
i

(
α

α + λ

)1/2

eQ(Â) . (38)
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Fig. 6: The posterior probability P (α|Ḡ,m) as a function of α for the periodic Anderson
model data presented in Fig. 1. Since P (G|I) is unknown, the magnitude of the ordinate is also
unknown. The distribution is wide, so many reasonable values of α exist. The distribution is
also skewed, so the value of α at the peak is not representative of the mean.

The optimal α, α̂, may be determined by the condition

∂P (α|Ḡ,m)

∂α
= 0 . (39)

For strong data, P (α|Ḡ,m) is dominated by the product and expQ(Â) so that

− 2α̂S ≈
∑
i

λi
α̂ + λi

. (40)

Each λi which is much greater than α̂ contributes one to the sum and hence one to the number
of good observations in the data. If the number Ngood = −2α̂S is large, then P (α|Ḡ,m) is very
sharp and the spectra corresponding to α = α̂ is a good approximation of the spectra which has
been properly averaged over P (α|Ḡ,m).

Bryan’s Method [19] that Ngood � L. Then P (α|Ḡ,m) is a broad and highly skewed distri-
bution. For example, P (α|Ḡ,m) for the data shown in Fig. 1 is plotted in Fig. 6. The distribution
is wide, so many reasonable values of α exist. The distribution is also skewed, so the value of
α at the peak is not representative of the mean. To deal with this, Bryan [19] calculates the
optimal spectrum Â(α) for each α. The solution is taken to be

Ā =

∫
dαÂ(α)P (α|Ḡ,m) . (41)

These three MEM methods will produce essentially identical results if the data are uncorrelated
and precise. However, when the data are less precise but still uncorrelated, the method suggested
by Bryan, averaging Â(α) weighted by P (α|G,m), generally produces more acceptable results
and converges to a good result faster than the classic method and much faster than the historic
method as the data is improved. A further advantage of the averaging is that it allows an accurate
relative assessment of the posterior probability (

∫∞
0
dαP (m|G,α)) of the default model. This

information is invaluable in determining which default model yields the most likely A.
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Cautionary Notes. Some care must be used when working with Classic MEM and Bryan’s
method. Both rely on the accuracy of Eq. (37) for P (α|Ḡ,m), which is calculated with a
Gaussian approximation which is only accurate if Q is a sharply peaked function in the space
of all images. This approximation clearly fails when α → 0. Here there is no regularization
and infinitely many spectra will produce the same Q, so it is flat, not sharply peaked, in these
directions. In this case, the algorithm can reach a run-away condition where it tends toward
small values of α, the approximation for P (α|Ḡ,m) fails causing the calculation to tend towards
ever smaller values of α. This condition is easily identified in the calculation, and it can be cured
by increasing the quality of the data or by choosing a better default model (a Bryan or classic
MEM calculation with a perfect default model will always tend toward a solution with large α),
using the methods described below, or the annealing method described in the example Sec. 4.5.

2.6 Model selection

Bayesian statistics may also be employed to select the default model. I.e. if we must choose
between different models, or set parameters used to define a default model function, then we
choose these models or parameters based upon the posterior probability of the model

P (m|Ḡ) =

∫
dαP (α|m, Ḡ)P (m) . (42)

We see no a priori reason to favor one default model over another, so we typically set the prior
probability of the model P (m) =constant. Then the integrand in Eq. (42) is given by Eq. (37)
so that

P (m|Ḡ) ∝ Wα . (43)

Since the prior probability of the model is unknown, P (m|Ḡ) determines only the relative
probability of two models and, by inference, the relative probability of their corresponding
spectra.

Cautionary Notes. It can be tempting to try very informative models, such as the uncorre-
lated spectrum with sharp distinct features. Such default models will often have high posterior
probabilities P (m|Ḡ) but should nevertheless be avoided unless one can be sure, i.e., certain,
that the sharp features are real. For example, a model with a delta function peak, has a huge
amount of information, whereas the information from the QMC data is quite finite and may
not be able to correct a wrong delta-function feature in the model. In this respect, again, the
annealing technique described later is ideal.

2.7 Error propagation

To absolutely quantify the spectrum, we need to assign error bars to it. In the quadratic approx-
imation, the probability of the spectral density is

P (A|Ḡ,m, α) ∝ e−
1
2
δAT ·∇∇Q|Â·δA , (44)
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thus the covariance of the spectral density is

〈δA(ω)δA(ω′)〉 = − (∇∇Q|Â)−1 . (45)

It is not possible to assign error bars to each point in the spectral density since this matrix is
generally not diagonal. Thus errors between different points are strongly correlated. Also, Ai
represents the spectral probability within some region of finite width and hence lacks meaning
at a specific value of ω. However, it is possible to assign error bars to integrated functions of
the spectral density such as [18],

H =

∫
dωA(ω)h(ω) . (46)

where h(ω) is an arbitrary function of ω. The error of H may be associated with the covariance
of the spectral density 〈δA(ω)δA(ω′)〉〈

(δH)2
〉

=

∫ ∫
dωdω′ h(ω)h(ω′) 〈δA(ω)δA(ω′)〉 . (47)

The matrix ∇∇Q|Â is readily available because it is used as the Hessian of the Newton search
algorithm typically used to find the optimal spectral density.

Cautionary Notes. Care should be taken in the interpretation of the error bars, especially if a
highly informative default model is used. Suppose for example the data is weak, but a default
model in essentially exact agreement with the data is used, then as discussed above, a large
α solution will be found corresponding to a Q with small curvature in the space of images,
and hence very small error bars. This does not necessarily mean that the resulting spectrum is
accurate though, it just means that the default model is one of many which is consistent with
the weak data. Unless the information in a default model is known to be accurate (such as
the spectra from a higher temperature, or one which becomes exact at high frequencies), such
highly informative default models should generally be avoided.

3 Bryan’s method: a MEM algorithm

We will now sketch Bryan’s numerical algorithm to find the optimal spectrum. For a more de-
tailed description, we refer the reader to his paper [19]. We have found his algorithm to be very
appropriate for the numerical analytic continuation problem for two reasons: First, due to the
exponential nature of the kernel which relates A to the data Ḡ, we typically have L � Ngood.
Thus, the problem is usually “oversampled.” Bryan tailored his numerical algorithm [19] to this
type of problem by working in a reduced space whose dimension is determined by singular-
value-decomposition of the kernel K and is equal to the largest possible number of good, i.e.
numerically significant, singular values which may parametrize the solution. The dimension of
this space is usually much less than the number of Ai, and we found the computational advan-
tage over methods that use the entire space determined by the number of Ai to be significant.
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Second, for the analytic continuation problem, the approximation of setting α equal to its op-
timal value is questionable because of the wide range of reasonably acceptable values of α.
Bryan deals with this by calculating a result which is averaged over P (α|G,m).

3.1 Typical algorithms

What distinguishes Bryan’s numerical algorithm from its predecessors is the way in which the
space of possible solutions is searched. Typical algorithms search for an optimal A by stepping
through the entire space of A

A→ A+ δA (48)

with
δA = −(∇∇Q)−1∇Q . (49)

The Hessian (∇∇Q)−1 is

(∇∇Q)−1 = (α∇∇S −∇∇L)−1 =
(
α{A}−1 −∇∇L

)−1
. (50)

where {A} is a diagonal matrix with the elements of A along its diagonal. It may conceptually
be expanded using the binomial theorem so that (∇∇Q)−1 may be written as a power series in
{A}∇∇L. Thus, δA may be written as a combination of {A}∇Q = {A} (α∇S −∇L), and
powers of {A}∇∇L acting on {A}∇S and {A}∇L. Each of these vectors defines a direction
in which the search can proceed. Typically, between three and ten directions are used; however,
these directions are often inappropriate for the problem at hand, because as mentioned earlier,
the space of all possible solutions is too large for such oversampled data.

3.2 Singular-space algorithm

To alleviate this problem, Bryan performs a singular-value decomposition (SVD) of the kernel
K, i.e., K = V ΣUT where U and V are orthogonal matrices and Σ is a diagonal matrix,
and works in the resulting singular space. To see that this space still contains the solution, we
consider

∇L =
∂F

∂A

∂L

∂F
= KT ∂L

∂F
(51)

where F = KA. We see that ∇L lies in the vector space defined by the columns of KT . We
next perform a SVD on K and assume the diagonal elements of Σ are ordered from largest to
smallest. The smallest elements are essentially zero (to the numerical precision of the computer)
since the kernel is effectively singular. However, s of the elements are assumed finite. Now the
vector space spanned by the columns of KT is the same as the space spanned by the columns of
U associated with the non-singular values. Bryan calls this reduced space the singular space.
Thus, to the precision that can be represented on the computer, {A}∇L and all of the search
directions formed by acting with {A}∇∇L lie in the singular space spanned by the columns
of {A}Us, where Us is the singular space projection of U . The only direction not in this space
is {A}∇S. Thus, Bryan’s algorithm works in at most an s + 1-dimensional subspace of the
N -dimensional space of A.
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In this singular space, the condition for an extremum of Q, ∇Q = 0, is

α∇S −∇L = 0→ −α ln (Ai/mi) =
∑
j

Kji
∂L

∂Fj
. (52)

Thus, the solution may be represented in terms of a vector u

ln (A/m) = KTu . (53)

Unless K is of full rank, so that s = N , the components of u will not be independent. However,
since KT and U share the same vector space and since most of the relevant search directions lie
in the singular space, Bryan proposes that the solution be represented in terms of U and u as

Ai = mi exp
∑
n

Uinun . (54)

Thus, to the precision to which it may be represented on the computer and determined by SVD,
the space u must contain the solution defined by ∇Q = 0, and the search can be limited to this
s-dimensional space.
Bryan’s algorithm proceeds by first reducing all the relevant matrices to the singular space. With
the definitions K = V ΣUT and log(A/m) = Uu, the condition for an extremum becomes

− αUu = UΣV T ∂L

∂F
, (55)

or
− αu = ΣV T ∂L

∂F
≡ g , (56)

where each of these matrices and vectors has been reduced to the singular space (u is now a
vector of order s, Σ is an s × s diagonal matrix, etc.). Bryan then uses a standard Newton’s
search to find the solution in the singular space, starting from an arbitrary u. The increment at
each iteration is given by

Jδu = −αu− g , (57)

where J = αI + ∂g/∂u is the Jacobian matrix, I the identity matrix, and

∂g

∂u
= ΣV T ∂

2L

∂F 2

∂F

∂A

∂A

∂u
. (58)

With the definition W = ∂2L/∂F 2 (which is just the diagonal matrix with elements 1/σ′2l ),
M = ΣV TWVΣ, and T = UTAU . M and T are symmetric s × s matrices, the Jacobian
J = αI +MT , and

(αI +MT ) δu = −αu− g (59)

At each iteration δumust be restricted in size so that the algorithm remains stable. Thus, another
parameter µ (a Marquart-Levenberg parameter) is added

[(α + µ)I +MT ] δu = −αu− g (60)
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and adjusted to keep the step length δuTTδu below some the limit

δuTTδu ≤
∑
i

mi (61)

so the search is within the range of validity of a local quadratic expansion of Q.
This search can be made more efficient if Eq. (60) is diagonalized, so that of the order of s
operations are required for each α µ pair. First, we diagonalize T

TP = PΓ (62)

where P is an orthogonal matrix and Γ is diagonal with finite elements γi. Then we define

B = {γ1/2}P TMP{γ1/2} (63)

and solve the second eigenvalue equation

BR = RΛ (64)

where R is orthogonal and Λ the diagonal matrix with finite elements λi. Finally, to diagonalize
Eq. (60) we define

Y = P{γ−1/2}R . (65)

Then Y −TY −1 = T , and Y −1MY −T = Λ, so that

Y −1 [(α + µ)I +MT ] δu = [(α + µ)I + Λ]Y −1δu = Y −1 [−αu− g] (66)

which yields s independent equations for Y −1δu. Again, as these equations are iterated, µ must
be adjusted to keep the step length

δuTTδu =
∣∣Y −1δu∣∣2 ≤∑

i

mi . (67)

3.3 Selection of α

The value α is adjusted so that the solution iterates to either a fixed value of χ2 (for historic
MEM) or to a maximum value of P (α|G,m) given by Eq. (37) (for classic MEM). Then, A is
obtained from

Ai = mi exp

(
s∑

n=1

Uinun

)
. (68)

Alternatively, Bryan suggests that one may start the algorithm with a large α for which P (α|Ḡ,m)

is negligibly small, and then iterate to α ≈ 0 so that the averaged spectrum may be approxi-
mated

〈A〉 =

∫ ∞
0

dαP (α|G,m)Â(α) (69)

where Â(α) is the optimal spectrum (that for which ∇Q = 0) for the value of α specified
in the argument. This latter step may be necessary when P (α|G,m) is not a sharply peaked
distribution. In fact this is usually the case, as may be seen in Fig. 6.
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3.4 Error propagation

As discussed in Sec. 3.7, it is possible to assign error bars to integrated functions of the spectrum
H =

∫
dωA(ω)h(ω)

〈
(δH)2

〉
=

∫ ∫
dωdω′ h(ω)h(ω′) 〈δA(ω)δA(ω′)〉 , (70)

where
〈δA(ω)δA(ω′)〉 = − (∇∇Q|Â)−1 . (71)

This is the inverse of the Hessian of the algorithm discussed above and is easily calculated in
terms of singular-space quantities

− ∇∇Q|Â = {1/A}UY −T{αI + Λ}Y −1UT{1/A} . (72)

Its inverse

− (∇∇Q|Â)−1 = {A}UY
{

1

α + λ

}
Y TUT{A} (73)

may be used to calculate the error of H ,
√

(δH)2 for any α. In principle, one should average
the error over P (α|m, Ḡ); however, we find that it is generally adequate to calculate the error
of the spectrum at the optimal α̂.
We close this section with several practical comments: On a workstation, finding the optimal
spectrum by searching in the singular space requires only a few minutes of computer time.
This efficiency is in sharp contrast with the amount of computer we needed [20] even on a
“supercomputer” for standard Newton algorithms [14] or simulated annealing methods that use
the full space of A. We found it essential to use 64 bit arithmetic to obtain stable results.
Also, we use LINPACK’s [21] singular-value decomposition routine to do the SVD and also to
compute any eigenvalues and eigenvectors. The SVD routine in Numerical Recipes [22] and
the EISPACK [23] eigenvalue-eigenvector routine RS are not as stable.

4 Case study

In this section, we will demonstrate that it is possible to extract spectral densities from quantum
Monte Carlo data that are essentially free from artifacts caused by over fitting to the data and
have only small and controllable amounts of statistical error. We will use as an example the
electronic spectral densities of the infinite-dimensional periodic Anderson model (PAM). We
have already qualified the local Greens function data to remove correlations using the procedure
discussed in Sec. 2.4, so we can begin to process the data to obtain the single-particle density
of states spectral function.
For the majority of this section, we will consider particle-hole symmetric dataG(τ) = G(β−τ),
and spectra A(ω) = A(−ω). This prior information may be imposed on the solution by con-
structing a symmetric kernel and default models. We will use three symmetric default models:
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Fig. 7: A sequence of spectral densities generated from increasingly accurate data with a Gaus-
sian model (dashed line). Every time the number of bins of data is doubled, the error is reduced
by 1/

√
2. As Nbins increases beyond 2L = 82, spurious structures are quickly suppressed.

two non-informative models — the flat model m(ω) = constant and a simple Gaussian

m(ω) =
1

Γ
√
π

exp[−(ω/Γ )2] (74)

and also a third one obtained from second-order perturbation theory in U [24, 25]. The kernel
for symmetric Fermionic Green’s functions may be modified to reflect the symmetry and the
associated integral may be restricted to positive frequencies

G(τ) =

∫ ∞
0

dωA(ω)
e−τω + e−(τ−β)ω

1 + e−βω
. (75)

4.1 Convergence of spectra

To minimize the effects of statistical errors, the accuracy of the data needs to be increased until
the spectral density has converged. This is demonstrated in Fig. 7, where the accuracy of the
data are improved by increasing the number of bins of data. Here, a Gaussian default model is
used whose width Γ = 1.6 (chosen by an optimization procedure to be discussed below). Each
time the number of bins of data is doubled, the accuracy of the data increases by 41%. The
spectral densities corresponding to the smallest number of bins of data have spurious features
associated with over fitting. These features are associated with difficulties in calculating the
covariance matrix, as discussed in Sec. 2.4. As Nbins increases beyond 2L = 82, the spurious
structure is quickly suppressed. By the time 800 bins of data have been used, the spectral density
appears to be converged to within several line widths.

4.2 Default model selection

One may also test the dependence of the spectral density on the default model by changing its
parameters or by using different models. The best model is the one with the largest posterior
probability, calculated by assuming that the prior probability of the default model is flat, so
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Fig. 8: Dependence of the spectral density upon the default model. The width Γ of the Gaussian
default model (a) is varied, producing a series of spectral densities (b). In the inset to (a) is the
posterior probability of the default model P (m|Ḡ), produced by integrating the joint probability
P (A,α,m|Ḡ) over α and A, is plotted as a function of Γ . The normalization of P (m|Ḡ) is
unknown because it depends upon the probability of the data and the prior probability of the
default model which are unknown.

that P (A,α,m|Ḡ) ∝ P (A,α|Ḡ,m). Then P (m|Ḡ) is obtained by integrating P (A,α,m|Ḡ)

over A and α. The effects of varying the default model parameters are shown in Fig. 8a where
the same data set is analytically continued with Gaussian default models whose widths satisfy
1.0 < Γ < 2.4. The posterior probability P (m|Ḡ) of these default models, shown in the
inset, is peaked around Γ ≈ 1.6 (We note that the normalization of P (m|Ḡ) is unknown,
since the prior probability of the default model and data are unknown). The resulting spectral
densities are shown in Fig. 8b and are found to depend only weakly upon the default model.
It is also possible to optimize the perturbation theory default model and hence to optimize the
corresponding spectral densities. In the optimization of the default for the PAM spectra, the
d-f -hybridization V may be treated as a variational parameter.

4.3 Error propagation

In Fig. 9, we compare the optimal spectral densities obtained with the optimal perturbation the-
ory, Gaussian, and flat default models. (The flat default model, with no adjustable parameters, is
not optimized.) The posterior probabilities for each result indicate that the perturbation theory
default model produces by far the most probable spectral density. However, we note that the
qualitative features of the spectral density change little with the default model even though a
large variety of default models were used. This independence is one signature of good data!
As a final test of the quality of the spectral density, one can evaluate its error in different intervals
of frequency. In Fig. 9, we chose to assign error bars to the integrated spectral density (h(ω) =
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Fig. 9: The f-electron density of states Af (ω) generated using (a) a perturbation theory, (b) a
Gaussian, and (c) a flat default model. These models are shown as insets to each graph. The
data points indicate the integrated spectral weight within 10 non-overlapping regions of width
indicated by the horizontal error bar. The vertical error bar indicates the uncertainty of the
integrated weight within each region.

1) over different non-overlapping regions. The width of the region centered at each error bar
is indicated by the horizontal spread of the error bar, the spectral weight within this region is
indicated by the value of the data point, while the estimate of the uncertainty is indicated by
the vertical spread. The perturbation theory default model yields the most precise spectra at all
frequencies, consistent with the posterior probabilities of the models.

4.4 Two-particle spectra

There are special difficulties associated with the calculation of spectral densities associated with
two-particle Green’s functions. These difficulties include noisier and more correlated data and
the lack of a good default model. The latter problem stems from the traditional difficulties of
performing perturbation theory for two-particle properties.
As an example, we will analytically continue the local f -electron dynamic spin susceptibility
χ′′(ω) of the symmetric PAM. The Monte Carlo data χ(τ) = 2 〈S−(τ)S+(0)〉 is related to
χ′′(ω) by

χ(τ) =

∫ ∞
0

dω
ω[e−τω + e−(β−τ)ω](χ′′(ω)/ω)

1− e−βω
. (76)

To construct a model we will employ an alternative to perturbation theory, and construct a
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Fig. 10: χ′′(ω)/ω for V = 0.6, U = 2 and β = 20 for the PAM generated using a default model
defined by two moments of the spectral density. The data points indicate the integrated spectral
weight within 10 non-overlapping regions of width indicated by the horizontal error bar. The
vertical error bar indicates the uncertainty of the integrated weight within each region.

default model from different moments of the spectral function. They will be used as constraints
to the principle of maximum entropy. The moments used to generate the default model are

1

2
χ(ω = 0) =

∫ ∞
0

dω(χ′′(ω)/ω) . (77)

χ(τ = 0) =

∫ ∞
0

dω (χ′′(ω)/ω)ω coth(βω/2) . (78)

The (unnormalized) model is then generated by maximizing the entropy subject to these con-
straints imposed with Lagrange multipliers λ0 and λ1 and is easily found to be

m(ω) = exp[λ0 + λ1ω coth(βω/2)] (79)

where λ0 and λ1 are determined by the constraint equations above.
Clearly this procedure may be generalized to utilize an arbitrary number of measured moments
and often provides a better default model than perturbation theory. However, as shown in
Fig. 10, the final spectral density can differ significantly from the default model when defined
in this way. Nevertheless, the error bars indicate that the spectral density is trustworthy.

4.5 Annealing method

Occasionally we have reason to calculate a series of spectra for a variety of temperatures, e.g.
for the calculation of transport coefficients. If this set is sufficiently dense, then starting from
a perturbation theory default at high temperature, we may use the resulting spectra as a default
model for the next lower temperature. As far as we know, this procedure has no Bayesian jus-
tification; however, it has significant physical motivation. At sufficiently high temperatures,
perturbation theory often becomes exact. Thus, this annealing procedure may be initialized
with an essentially exact result. Furthermore, as the temperature is lowered, we expect the high



13.24 Mark Jarrell

−2 0 2 4

ω

0.0

0.1

0.2

0.3

0.4

A
d
(ω

)

Default

Image

−4 −2 0 2 4

ω

0.0

0.2

0.4

A
d
(ω

)

β=2.5

β=3.0

β=3.5

β=4.0

β=5.0

β=6.0

β=7.0

β=10.0

β=20.0

β=40.0

β=2.5

Fig. 11: The evolution of the d-electron density of states of the asymmetric PAM when U = 1.5,
V = 0.6 nd = 0.6, and nf = 1.0. At high temperatures, as shown in the inset, the spectra
is in essentially exact agreement with second-order perturbation theory. In addition, the d-
electron states far from the Fermi surface are weakly renormalized by the strong electronic
correlation on the f -orbitals. Thus, as the temperature is lowered, the low-frequency spectra
change continuously, whereas the high frequency features change very little.

frequency features of many spectra to freeze out (this is an essential assumption behind the nu-
merical renormalization group method). Thus, the QMC is only required to supply information
about the low-frequency features. Since QMC is a discrete sampling procedure in Matsub-
ara time, according to Nyquist’s theorem QMC only provides information below the Nyquist
frequency ωN = π/∆τ . Thus, perturbation theory provides the high-frequency information,
QMC the low-frequency information, and MEM provides a natural method for combining these
information sources.
For example, the evolution of the d-electron density of states of the asymmetric PAM is shown
in Fig. 11. At high temperatures, as shown in the inset, the spectra is in essentially exact
agreement with second-order perturbation theory. In addition, the d-electron states far from the
Fermi surface are weakly renormalized by the strong electronic correlation on the f -orbitals.
Thus, as the temperature is lowered, the low-frequency spectra change continuously, whereas
the high frequency features change very little.

4.6 Matsubara frequency self-energy

We obtain high-quality estimates of the self-energy Σ(k, ω) by employing MEM directly to
the Matsubara-frequency self-energies calculated from continuous-time quantum Monte Carlo
(CTQMC) [26,27]. Since the self-energy lacks features due to the bare dispersion, its spectrum
generally has less features than the single-particle spectral function. Therefore, higher quality
results are obtained by directly analytically continuing the self energy and then constructing the
Green function via the Dyson equation [2].
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Fig. 12: Self energy spectra σ(k, ω) = − 1
π
Σ ′′(k, ω)/U2χσ,σ calculated by annealing for the

Hubbard model calculated with the DCA with U = 6t (4t = 1), t′ = 0, k = (0, 0) cluster size
Nc = 16 and filling n = 0.85 with an optimized Gaussian default model.

We illustrate this method with the self energy spectra of the 2D Hubbard model calculated with
the Dynamical Cluster Approximation (DCA). Since the DCA is a self consistent method, we
calculate the host Green’s function from the penultimate iteration very precisely so that its error
is negligible compared to the error measured in the last final iteration used to calculate the
binned data. It is convenient to normalize the non-Hartree part of the Σ(k, iωn) by U2χσ,σ,
where χσ,σ = 〈nσnσ〉−〈nσ〉2 = nσ(1−nσ) and is the local polarization of a single spin species
σ. The normalized spectrum of self-energy acts as a probability distribution:

Σ(k, iωn)−ΣH

U2χσ,σ
=

∫
dω

σ(k, ω)

iωn − ω
, (80)

where σ(k, ω) = − 1
π
Σ ′′(k, ω)/U2χσ,σ,

∫
dωσ(k, ω) = 1, using χσ,σ obtained from the Monte

Carlo process. Fig. 12 shows σ(K = (0, 0), ω) obtained by annealing, starting with a Gaussian
default model with width and location optimized as discussed above.

We conclude this section by noting that while the systematic preparation of the data described
in Sec. 2.4 and the qualification of the spectrum described in this section is time-consuming, we
believe that it is as important to the quality of the final result, as is an accurate MEM code.
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5 Conclusion

The Maximum Entropy Method is a precise and systematic way of analytically continuing
Matsubara-time quantum Monte Carlo results to real frequencies. Due to the exponential nature
of the kernel which relates the spectra and the data, there are many A which correspond to the
same Ḡ. With the MEM we employ Bayesian statistics to determine which of these is the most
probable. Bayesian inference is also used to assign error bars to integrals over the spectrum and
optimize the default model.
The posterior probability of the spectrum is given by the product of the prior probability and
the likelihood function. The entropic nature of the prior ensures that the only correlated devi-
ations from the default model which appear in the spectrum are those which are necessary to
reproduce the data. The form of the likelihood function is determined by the central limit theo-
rem, assuming that the data are statistically independent and Gaussianly distributed. Ensuring
these preconditions is the most critical step in the MEM procedure, and requires that the data
be systematically rebinned and that the data and the kernel be rotated into the space in which
the covariance of the data is diagonal.
Once the data has been properly characterized, we calculate the optimal spectrum using Bryan’s
algorithm which searches for a solution in the reduced singular space of the kernel. Bryan’s
method is more efficient than conventional techniques which search the entire spectral space.
For any search algorithm three different techniques can be employed to set the Lagrange pa-
rameter α which determines the relative weight of the entropy and misfit: the historic, classic or
Bryan’s averaging technique. With precise uncorrelated data, each returns essentially the same
spectrum, but with less-precise uncorrelated data, Bryan’s technique yields the best results.
Also, as the QMC data are systematically improved, images produced with Bryan’s technique
appear to converge more quickly than those produced by the other techniques.
Together, the techniques discussed in this chapter provide a powerful, accurate, and systematic
approach to the analytic continuation problem. In each case where we have employed these
techniques we have been able to produce spectra that are precise at low frequencies, and free
from spurious (unjustified) features at all ω.

5.1 Steps to ensure a robust MEM calculation

In this lecture we have summarized the proper implementation of MEM and given a number of
cautionary notes. As a parting discussion, these will be summarized here along with a few other
common sense rules of thumb.

1. Rebin your data to remove correlations in QMC time.

2. Generate sufficient bins of data so that Nbins
>∼ 2L where L is the number of Matsubara

times or frequencies used.

3. If a self consistent method, such as DCA, is used to generate the data, be sure that the
error in G from the previous iteration is negligible.
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4. When possible, normalize your data so that the spectrum integrates to one.

5. Calculate the covariance of the (renormalized) data making sure that: (1) the eigenvalue
spectrum is continuous (if not, increase Nbins), and (2) that the covariance matrix is well
enough conditioned to allow it to be diagonalized (if not, the data is oversampled in
Matsubara time).

6. Diagonalize the covariance and rotate the data and kernel into the diagonal frame.

7. Choose a good default model, hopefully you can use the annealing technique. Always use
a non-informative default model unless you are certain that the information in the model
is exact.

8. When possible, use Bryan’s MEM for marginalizing over α.

9. Systematically improve your data until the calculated spectrum converges.

10. When the annealing method is used, if the temperature step appears large, i.e. the spec-
trum changes abruptly, you may want to introduce data at additional intermediate temper-
atures.

11. If the annealing method is not used, try different non-informative default models. A
reliable result is independent of the model. You may also want to use the model with the
highest posterior probability (calculated when Bryan’s method is used).
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Obtaining dynamical properties from quantum Monte Carlo (QMC) simulations is a notoriously

difficult problem because QMC provides a limited number of values of a dynamical correlation

function

{G(m), m = 1,M} (1)

either at Matsubara frequencies iωm or at imaginary time points τm, whereas dynamical infor-

mation is associated with a spectral function A(ω) depending on the continuous energy variable

ω. The procedure of obtaining the dynamical correlation function A(ω) from the known set

of values G(m) is called analytic continuation. One of the most complete overview of this

problem for the case when the set of values {G(m), m = 1,M} is obtained from numeric

calculations can be found in Ref. [1]. Generally, the procedure requires solving the Fredholm

integral equation of the first kind [2]

G(m) =

∫ ∞

−∞

dω K(m,ω) A(ω) , m = 1, . . . ,M , (2)

where K(m,ω) is some known kernel which depends on what quantities are associated with

G(m) and A(ω).

One of numerous examples is when one wants to determine the Lehmann spectral function

[3]. This function contains a lot of important information on quasiparticles. For example, the

Lehmann function is proportional to the spectral response observed in experiments on angle

resolved photoemission spectroscopy (ARPES) [4].

A typical quantity calculated in QMC is G(m) = G(τm) which is called imaginary time Green

function (GF)

G(τm) = 〈 Tτ c(τm)c
†(0) 〉 . (3)

Here Tτ is the time ordering operator and c is the annihilation operator of a quasiparticle. The

imaginary time GF satisfies the periodicity (anti-periodicity) relation

G(τ + β) = ±G(τ) (4)

with a period equal to the inverse temperature β = 1/T . Here upper (lower) sign is for boson

(fermion) operators. Hence, there is an equivalent representation given by the values of the

Fourier transform G(m) = G(iωm) of the imaginary time GF

G(iωm) =

∫ β

0

dτ eiωmτ G(τ) (5)

at Matsubara frequencies iωm equal to (2m+ 1)iπ/β [2imπ/β] for fermion [boson] operators

[3]. The quantity G(iωm) is the GF in the Mastubara representation. Indeed, there is the inverse

Fourier transform from the Matsubara representation to the imaginary time GF

G(τ) =
1

β

∑

ωm

e−iωmτ G(iωm) . (6)
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It can be shown [3] that in the case when QMC data for the GF are obtained in the Matsubara

representation (5), G(m) = G(iωm), the kernel K(m,ω) ≡ K(iωm, ω) of the Eq. (2) is

K(iωm, ω) = ±
1

iωm − ω
, (7)

where plus (minus) sign corresponds to boson (fermion) operators. On the other hand, if the

QMC data are given in terms of the imaginary time GF, (3), the kernel K(m,ω) ≡ K(τm, ω) of

the analytic continuation is

K(τm, ω) = −
exp(−τmω)

exp(−βω)± 1
, (8)

where the positive (negative) sign is for fermion (boson) operators.

Another example is when the quantity of interest is the optical conductivity σ(ω) and the quan-

tity supplied by QMC is the imaginary time current-current correlation functionG(m) = J(τm).

The kernel K(m,ω) ≡ K(τm, ω) in this case is

K(τm, ω) =
1

π

ω exp(−τmω)

1− exp(−βω)
. (9)

Indeed, the problem of solving the Fredholm equation of the first kind is encountered in many

areas which are far from the particular problem of analytic continuation. For example, one has

to solve an equation of the same type to restore the thermodynamic properties of the quantum

systems from QMC [5] or to recover the variety of impurity traps in organic materials from

the ESR spectra [6, 7]. Moreover, a similar equation has to be solved for medical X-ray and

impedance tomography, image deblurring, and many other practical applications [8]. Indeed,

because of the notorious practical importance of the problem there is a long history of the vast

amount of attempts to develop methods giving solutions for this class of equations. The main

difficulty with the type of equations considered above is the following: they belong to the class

of ill-posed problems. The main characteristic feature of this class is that there is no unique

solution in the mathematical sense. Hence, to solve such an equation, one has to introduce some

additional information specifying what kind of solution is expected. Therefore, it is impossible

to single out the best method for solving this class of equations because each specific problem

requires its own approach.

In the following we give a historical, although incomplete, overview of the approaches invented

to solve the Fredholm equations of the first kind and follow the development of the methods

up to recent times. In Sec. 1, we introduce the most simple minded approach, the least-squares

fit, and show why it is not suitable for ill-posed problems. We describe various approaches to

ill-posed problems in Sec. 2. In particular, we discuss there Tikhonov-Phillips regularization

method, the maximum entropy method, and several variants of the stochastic sampling method.

The stochastic optimization method (SOM), which is the main topic of this chapter, is compared

with other stochastic sampling methods in Sec. 2.4. We give a detailed description of the SOM

and some practical recipes in Secs. 3 and 4, respectively. Some tests of SOM are presented in

Sec. 5.
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1 Difficulties to solve ill-posed problems

To outline the difficulties encountered in the problem of solving the Fredholm equation of the

first kind it is convenient to transform the equation into its discrete analog. The discrete analog

is a matrix equation which seems to be easily solvable by least-squares fit. However, this naive

approach immediately fails due to the ill-posed nature of the problem and the solution shows

a sawtooth noise instability. We introduce the discrete analog of the Fredholm equation in

Sec. 1.1. The least-squares fit approach, the nature of the ill-posed problems, and the features

of the sawtooth noise instability are described in Sec. 1.2.

1.1 Discrete form of integral equation

Approximating the spectral function by its values on a finite spectral mesh of N points

A(ω) =

N
∑

n=1

A(ωn)δ(ω − ωn) , (10)

the integral equation (2) can be rewritten in matrix form

G(m) =

N
∑

n=1

K(m,ωn)A(ωn) , m = 1, . . . ,M , (11)

or equivalently presented as

~G = ̂K ~A . (12)

Here ~G ≡ (G(1), G(2), . . . , G(M)) [ ~A ≡ (A(ω1), A(ω2), . . . , A(ωN))] is an M-dimensional

[N-dimensional] vector and ̂K(m,n) ≡ K(m,ωn) is an M × N matrix (M ≥ N). The matrix

̂K(m,n) is known, depending on the kernel of the integral equation, ~A is the vector to be

determined, and ~G is obtained by QMC with components known with some error-bars.

1.2 Sawtooth noise instability

In practice, the problem expressed by Eq. (12) is usually ill-posed, either because of non-

existence or non-uniqueness of a solution ~A [9]: Noise, which is always present in a given

vector ~G, leads to the situation when there is no solution ~A that exactly satisfies Eq. (12). On

the other hand, there is an infinite number of solutions which make the left hand side of Eq. (12)

approximately equal to its right hand side. Therefore, one can not search for a unique vector ~A

but has to find some solution which is the best in some sense, or find a set of solutions which are

good according to some sensible criterion. The above features are the fingerprints of ill-posed

problems.

The most simple minded approach in such a case is to search for the least-squares minimum-

norm solution ~A which minimizes the deviation measure which is chosen in the form of the

Euclidean residual norm

‖ ̂K ~A− ~G ‖2=

M
∑

m=1

∣

∣

∣

∣

∣

N
∑

n=1

K(m,ωn)A(ωn)−G(m)

∣

∣

∣

∣

∣

2

. (13)
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Fig. 1: Examples of sawtooth noise in a least-squares fit with restricted positive spectral func-

tion. The spikes in non-regularized solutions (red solid line in panels (a) and (b)) are much

larger than the actual value of the spectra (blue dashed lines in (a) and (b)).

Indeed, one immediately surrenders to the ill-posed nature of the problem and tries to mini-

mize, although the difference between the left- and right-hand sides of the Eq. (12) never reach

zero. Choosing the Euclidean norm one admits the absence of a unique solution because the

approximate equality in Eq. (12) can be defined in terms of an infinite number of another norms.

For the Euclidean norm one can find the solution of the best least-squares fit in terms of the

singular value decomposition of the matrix ̂K into a weighted sum of separable matrices [10]

̂K =

r
∑

i=1

σi ~ui ⊗ ~v†i , (14)

where ~u ⊗ ~v ≡ ~u(k)~v(l) is the matrix determined by the outer product of the left and right

singular vectors of ̂K, ~u and ~v, respectively. The real and nonnegative numbers σ1 ≥ σ2 ≥

. . . σr > 0 are the singular values of ̂K. The least-squares solution ~A is given by the explicit

expression

~A =

r
∑

i=1

~u†
i ⊗ ~vi
σi

~G . (15)

A problem arises from small singular values σi: Even very small statistical errors in ~G induce

large perturbations to the solution ~A. These perturbations, called sawtooth noise, are typical

for ill-posed problems and look like fast oscillations with amplitude much larger than the actual

solution ~A. The origin of the sawtooth noise is that the solution ~A over-fits the statistical errors

present in the input data ~G. The sawtooth noise can even lead to large negative values of the

otherwise positive actual solution ~A. However, the least-squares fit under the condition of non-

negativity of the spectral function ~A results in sawtooth noise too (see Fig. 1).
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2 Methods to solve ill-posed problems

It was shown in the previous section that the least-squares fit approach to the matrix form (12)

of the integral equation (2) leads to results with sawtooth noise which can be very far from the

actual solution. The noise arises from the small singular values σi of the integral kernel ̂K.

There are many methods developed to fight this noise. The simplest and most obvious one is the

truncated singular value decomposition (TSVD), where the terms in Eq. (15), that correspond to

several of the smallest singular values σi, are neglected. However, the above trick is just a par-

ticular example of a broad general class of approaches. Most, if not all, methods to circumvent

the problem of spurious noise in the solution of the integral equation (2) can be united under

the title regularization methods. As a particular example, the simplest regularization method

for the matrix representation (12) of the integral equation (2) is based on the following trick. A

regularization functional F( ~A), suppressing the oscillations of the solution ~A, is added to the

Euclidean norm (13)

‖ ̂K ~A− ~G ‖2 +γF( ~A) (16)

and the deviation measure (16) is minimized instead. So, in general words, the regularized

solution is sought as a minimizer of the deviation measure which is a weighted combination of

the residual norm ‖ ̂K ~A − ~G ‖2 and a constraint γF( ~A). Indeed, to construct the functional

F( ~A) one needs some prior knowledge about solution the ~A.

The functional (16) is historically the very first approach, named Tikhonov-Phillips regulariza-

tion, that was developed to fight the sawtooth noise instability. However, to introduce a generic

classification of the regularization approaches, it is convenient to use Bayesian statistical infer-

ence. According to the Bayes’ theorem [11]

P [A|G] P [G] = P [G|A] P [A] , (17)

where P [A|G] is the posterior or conditional probability that the spectral function is A, provided

the correlation function is G. Neglecting the normalization factor P [G], which is independent

of A, one gets

P [A|G] ∼ P [G|A] P [A] , (18)

where the ill-posed problem to find the most probable A given G is converted into the much

easier problem of finding G given A, i.e., of maximizing the likelihood function, P [G|A] tak-

ing into account simultaneously the prior knowledge about the spectrum P [A]. Note that any

attempt to neglect the prior knowledge, i.e., to set P [A] ≡ const and reduce the problem to the

maximizing just the likelihood function, leads to the sawtooth noise instability of the solution.

Notably, any method to regularize ill-posed problems can be presented in the form of a Bayesian

approach and the distinctions between different approaches are restricted to the choice of the

likelihood function P [G|A] and the prior knowledge P [A]. Below, we introduce different possi-

bilities of this choice. We describe the Tikhonov-Phillips regularization method in Sec 2.1, the

maximum entropy method in Sec. 2.2, and several variants of the stochastic sampling method

in Sec. 2.3. We finally consider the stochastic optimization method as an effective example of

stochastic sampling methods in Sec. 2.4.
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2.1 Tikhonov-Phillips regularization method

Historically, the approach called Tikhonov-Phillips regularization method (TPRM) has been

invented independently in many different contexts and became the first approach to solve the

above problems. The name comes from the first applications of the ideas to integral equations by

A.N. Tikhonov [Tikhonoff] [12, 13] and D.L. Phillips [14] in the early 40ies of the last century.

Independently, the regularization approache was applied in a different context to the discrete

problem of matrix inversion [15–17] and is know in the statistical literature as ridge regression.

However, leaving aside the differences in terminology and interpretations, the general idea is

the following.

In the sense of Bayes’ inference the TPRM is a choice where the likelihood function is

P [G|A] ∼ exp{− ‖ ̂K ~A− ~G ‖2} (19)

and the prior knowledge is

P [A] ∼ exp{−λ2 ‖ Γ̂ ~A ‖2} . (20)

Thus, the deviation measure to minimize is the sum ‖ ̂K ~A − ~G ‖2 +λ2 ‖ Γ̂ ~A ‖2. Here,

the likelihood function requires the least-squares fit of ~G while the constraint, where the so-

lution ~A is multiplied by a nonzero matrix Γ̂ , suppresses large absolute values of A(ωk).

Namely, the constraint removes spikes and, hence, large values of derivatives in the solution

[A(ωk+1)− A(ωk)]/[ωk+1 − ωk].

The simplest modification of TPRM sets Γ̂ as identity matrix Γ̂ = Î . In this case expression

(15) for the solution ~A takes the form

~A =
r

∑

i=1

{

σ2
i

σ2
i + λ2

}

~u†
i ⊗ ~vi
σi

~G . (21)

It is clear that contributions, corresponding to small singular values σi ≪ λ, are automatically

filtered out by the factors in the curly brackets and large sawtooth spikes of the solution are

suppressed. Thus over-fitting of the noise in the input data is avoided by restricting the possible

solutions to the smooth ones. There are several approaches to find the optimal regularization pa-

rameter λ, L-curve [18,19] and U-curve [20] methods in particular. These approaches consider

relations between the Euclidean norm of the solution ‖ Γ̂ ~A ‖2 and the residual ‖ ̂K ~A− ~G ‖2.

An interesting modification of the TPRM is given in [21, 22]. The method expresses the so-

lution ~A in terms of an average over a correlation matrix 〈 ~̃A ~̃A†〉 of possible solutions ~̃A. The

knowledge of this correlation matrix provides a prior knowledge about the solution.

There are other methods which are based on the suppression of the large derivatives of the

solution. These methods are based on the form of the functional (16), where the constraint

γF( ~A) is explicitly taken in a form which suppresses large derivatives of the solution [23, 24].

Many similar functionals can be found in earlier studies, see [9] for details on the rigorous

mathematical treatment of ill-posed problems.
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2.2 Maximum entropy method

One can criticize the first historical method to solve ill-posed problems as relying on uncondi-

tional smoothening of the solution. The constraint of the TPRM suppresses solutions with large

derivatives. This can be a problem when the spectral function has sharp edges or narrow peaks.

One of the recent approaches, the Maximum Entropy Method (MEM) [1], provides an attractive

strategy to circumvent some problems of the TPRM.

MEM searches for the most probable “true” solution A(ω) among many possible particular

solutions ˜A(ω) assuming prior knowledge that the “true” solution A(ω) is close to a predefined

function D(ω) called default model. The likelihood function of MEM is

P [G| ˜A] = exp{−χ2[ ˜A]/2} , (22)

where

χ2[ ˜A] =

M
∑

m=1

E−1(m)[G(m)− ˜G(m)]2 , (23)

and G̃(m) is related to a particular solution ˜A(ω) through ˜G(m) =
∫∞

−∞
dω K(m,ω) ˜A(ω).

The matrix E(m) is set by the noise in G and is related to the covariance matrix. The prior

knowledge function is defined as

P [G|A] = exp{α−1S[ ˜A]} , (24)

where the entropy

S[ ˜A] =

∫

dω ˜A(ω) ln[ ˜A(ω)/D(ω)] (25)

characterizes the deviation of a particular solution ˜A(ω) from the default model D(ω), a func-

tion that serves as the maximum entropy configuration. The regularization parameter α controls

how much weight is given to the minimization of the deviation measure χ2[ ˜A], i.e., to the re-

semblance of the solution ˜A(ω) to the default model D(ω).

The MEM is superior to TPRM in cases where a lot of explicit information is known about

A(ω). Moreover, one can avoid smoothening of large derivatives, typical for TPRM, given

the knowledge about sharp parts of the “true” solution A(ω). The nonphysical smoothening

can be avoided if sharp parts of the solution can be explicitly included into the default model.

However, the method highly relies on the default model which can be a serious drawback if

the most interesting features of the spectra are very sensitive to the form of the chosen default

model [25].

2.3 Stochastic sampling methods

Any stochastic sampling method (SSM) uses a minimal prior knowledge about the solution,

does not require any default model, and does not introduce any apparent smoothening of the

solution. The characteristic feature of this class of methods is a change of the likelihood function
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P [ ˜A|G] into a likelihood functional (see, e.g., [26])

A =

∫

d ˜A ˜A P [ ˜A|G] , (26)

where the “true” solution A is obtained as an average of particular solutions ˜A, weighted by

the likelihood function P [ ˜A|G]. An optimal likelihood function has to prefer solutions ˜A with

small deviation measure χ2[ ˜A]. Particular solutions ˜A with too small χ2[ ˜A] over-fit the data G

and suffer from sawtooth noise. However, although it has not been proven formally, it is known

that in practice the sawtooth noise can be self-averaging in a sum over a large enough number

of solutions. One has to keep χ2[ ˜A] not too restrictive because the sawtooth noise persists if

most of the solutions in the functional (26) over-fit the input data. The requirement to take into

account solutions ˜A with large enough χ2[ ˜A] sets up an implicit regularization procedure.

Starting from the very first practical design of a SSM by Sandvik [27], most of SSMs suggest

the likelihood function in the form of a Boltzmann distribution

P[A|G] = exp{−χ2[ ˜A]/T }, (27)

where T is treated as a fictitious temperature and χ2 is defined by Eq. (23) and can be considered

as a fictitious energy. Then, because of the above interpretation, one can use the Metropolis

algorithm [28] to sample possible functions ˜A. The prior knowledge function is usually defined

by the condition that the spectral function ˜A(ω) is positively definite and that the first few known

frequency moments are conserved.

In principle, although introducing many useful details, the approaches suggested in Refs. [25,

29] belong to the same class as that introduced by Sandvik [27]. All three approaches do not

use any default model for defining the prior knowledge function and, thus, are convenient in the

problems where there is not much knowledge about how the resulting spectral function A(ω)

has to look like.

A somewhat different approach is suggested in the statistical MEM (SMEM) by Beach [30]

and Jarrel [31]. The method defines a dimensionless field n(x) which is related to the default

model D(ω). Then, averaging is performed over the dimensionless field using the likelihood

Boltzmann distribution Eq. (27). The useful feature of the method is that, depending on its

parameters, it can interpolate between two limiting cases when the spectrum is completely

governed by the deviation measure (27) and when it is defined solely by the default model.

2.4 Stochastic optimization method: relation to other stochastic sampling

approaches

The stochastic optimization method (SOM) [32], which is the main topic of this lecture, is

a particular example of SSMs. SOM also does not use any default model, does not impose

any apparent smoothening on the solution, and restricts prior knowledge to normalization and

positivity of the solution.

A particular feature of SOM, which singles it out among SSMs, is that the sampling of solu-

tions, which optimizes the deviation measure, is made without the artificial interpretation of the
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likelihood function as a Boltzmann distribution [32,33]. A similar idea was also suggested later

in the “generic inversion via falsification of theories” strategy [34]. Indeed, averaging over par-

ticular solutions (26), weighted by some likelihood function, has no relation to any real partition

function. On the contrary, one simply has to average over a set of particular solutions, each of

which fits the input data well enough. Therefore, the interpretation of χ2[ ˜A] as an “energy” of

some state in a system of a given temperature T is a superfluous feature of the traditional SSMs.

There is no real Hamiltonian and real temperature in the averaging procedure (26) and the net

goal is to accumulate a large enough number of solutions which fit, but not over-fit, the data set

G(m).

Hence, it does not matter how the set of averaged “good enough” solutions is found. This is

why the strategy to find particular solutions in SOM is completely different from other SSMs.

On every step SOM starts from an arbitrary chosen initial particular solution and minimizes its

deviation measure until a “good enough” fit is found. In this way SOM finds a large-enough

number of “good” particular solutions and calculates an average

A(ω) =

L
∑

j=1

ξj ˜Aj(ω). (28)

The simplest option is to set all coefficients equal to ξj = 1/L for all L particular solutions

whose deviation measure χ2[ ˜A] is smaller than some selected value. A detailed description of

the SOM, i.e., how to organize the process and how to choose its optimal parameters, is given

in Secs. 3 and 4.

3 Stochastic optimization method: general description

In comparison to other SSMs, the SOM uses a slightly different measure χ2[ ˜A], a considerably

different way to parametrize a particular solution ˜Aj(ω), and a completely different way to ac-

cumulate the particular spectral functions ˜Aj(ω) for averaging. An important feature of SOM

is that it treats the energy space continuously without imposing any finite ω-mesh. We describe

the deviation measure and parametrization of the spectra in Secs. 3.1 and 3.2, respectively. Sec-

tions 3.3 and 3.4 discuss the way to obtain a particular solution and explain the general features

of elementary updates which decrease the deviation measure of particular solutions. Global

updates and the refinement of the solution are considered in Secs. 3.5, and 3.6, respectively.

Finally, elementary updates of classes I and II are described in Secs. 3.7 and 3.8.

3.1 Deviation measure

The first step is to define the deviation measure determining which solution is a good approxi-

mation of the input data set G. The set G corresponds to some QMC data on imaginary times

G(m) = G(τm) or at some Matsubara frequencies G(m) = G(iωm), m = 1, . . . ,M . Then the
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deviation measure of SOM is given by expression

D[ ˜A] =
M
∑

m=1

|∆(m)| . (29)

Here ∆(m) is the deviation function

∆(m) =
G(m)− G̃(m)

S(m)
, (30)

which characterizes individual deviations of specific data points G(m) from the values of the

simulated function G̃(m) defined by the particular spectral function ˜A in terms of relation

˜G(m) =

∫ ∞

−∞

dω K(m,ω) ˜A(ω) . (31)

The factors S(m) can be chosen as error-bars of the QMC data G(m), if they are known.

However, there are plenty of sampling methods [32, 35–37], which can provide almost uni-

form, m-independent error-bars of the QMC data. These methods are usually used when G(m)

changes several orders of magnitude in the range 1 ≤ m ≤ M . If the m-indepenent factor

S(m) ≡ S is put outside of the sum (29), the contribution of the data points with small |G(m)|

to the deviation measure D[ ˜A] is evidently underestimated. In this case a reasonable choice for

S(m) is to take S(m) = |G(m)|d, where 0 ≤ d ≤ 1. Then, the contributions from the points

with small and large values of |G(m)| are equally represented in the sum when d → 1.

3.2 Parametrization of particular spectra

We parameterize the spectral function ˜A as a sum

˜A(ω) =

K
∑

t=1

η{Pt}(ω) (32)

of rectangles {Pt} = {ht, wt, ct}

η{Pt}(ω) =

{

ht , ω ∈ [ct − wt/2, ct + wt/2] ,

0 , otherwise ,
(33)

determined by height ht > 0, width wt > 0, and center ct.

A configuration

C = {{Pt}, t = 1, ..., K} (34)

with the normalization constraint
K
∑

t=1

htwt = I, (35)

defines, according to Eqs. (31), (32), and (33), the function G̃(m) at any point m. Figure 2

shows how the intersection of rectangles is understood in SOM.
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Fig. 2: An example of a configuration with K = 4. Panel (b) shows how the intersection of

rectangles in panel (a) is treated.

Note that the specific type of the functions (33) is not crucial for the general features of the

method although a simple form of the analytic expressions (31),(32), and (33) is of considerable

importance for the performance of the method. If the analytic expression for G̃(m) is not

available for a given kernel K, one tabulates the quantities

Λ(m,Ω) =

∫ Ω

−∞

K(m, x) dx ,m = 1, . . . ,M (36)

and finds the value of G̃(m) using the following straightforward relation

G̃(m) =
K
∑

t=1

ht [Λ(m, ct + wt/2)− Λ(m, ct − wt/2)] . (37)

In certain cases it is, however, straightforward to find analytic expressions. For example, let us

consider the case when G(m) = G(τm) is a fermionic GF given by QMC at imaginary times (3)

at zero temperature. In this case Eq. (8) reduces to K(τω) = e−τmω and the spectral function is

defined only at ω > 0. It implies that in configuration (34) all ct −wt/2 ≥ 0. Then, the explicit

relation for the GF G̃(τm) in terms of the configuration C is

G̃C(τm) =







I , τm = 0 ,

2τ−1
m

K
∑

t=1

hte
−ctτm sinh(wtτm/2) , τm 6= 0 .

(38)
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Another example of an analytic expression is when one has a Matsubara GF (5) given via the

kernel (7). In this case the analytic expression for G̃(iωm) is

G̃C(iωm) = ±
K
∑

t=1

ht ln

[

ct − wt/2− iωm

ct + wt/2− iωm

]

, (39)

where the plus (minus) sign is for boson (fermion) operators.

3.3 General overview: obtaining particular solution and its sum

Here we survey the whole procedure while the following sections add the necessary details.

First, L ≥ 10 attempts to find particular solutions are performed. An attempt to obtain each

particular solution ˜Aj consists of two stages. The first is a random generation of initial con-

figurations of rectangles and the second is a fixed number F of global updates decreasing the

deviation measure D.

At first stage of the attempt j, some initial configuration C init
j , (34), is randomly generated. This

means that a number of rectangles K is randomly chosen, with K in some range 1 < K <

Kmax. The parameters {Pt} of all rectangles are randomly generated under the constraint of

normalization (35). Indeed one can impose further constraints, if some additional information

is available.

Then F global updates are performed. The global update consists of a randomly chosen se-

quence of elementary updates which are described in next sections. A global update, which

modifies the configuration Cj(r) → Cj(r+1), is accepted when D[ ˜Ar+1] < D[ ˜Ar]. For the par-

ticular solution ˜Aj , obtained at each attempt after F global updates, one can control the quality

of the fit of the input data using the deviation function ∆(m), (30). The number F of global

updates is considered to be satisfactory, if the input data G(m) are fit down to the noise level in

a more than half of the L attempts. If not, the number of global updates F is increased and the

procedure with L ≥ 10 attempts is repeated.

Finally, when a satisfactory number of global updates F is found, an accumulation of L ≫ 10

particular solutions ˜Aj and their deviation measures D[ ˜Aj] is performed. After L attempts there

is a minimal deviation measure MIN{D[ ˜Aj ]}, limited by the noise of the input data G(m), and

the rest of measures are larger. Tests show that to avoid over-fitting, i.e., to regularize the final

solution, one has to include into the sum (28) all particular solutions whose deviation measures

D[ ˜Aj ] are smaller than the double of the minimal deviation measure

D[ ˜Aj ] ≤ 2MIN{D[ ˜Aj]} . (40)

Such a choice of the regularization parameter is very similar to the strategy adopted in many

other methods, e.g., SSM [29] or MEM [31]. Both in SOM and in many other methods the

strategy is to keep differences between the fit G̃(m) and data G(m) of the order of the error-bars

to avoid over-fitting. The inequality (40) is the way to introduce the regularization parameter in

the most explicit manner.
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3.4 General features of elementary updates

By elementary update we mean a random change of the configuration, which is either accepted

or rejected in accordance with certain rules. There are two classes of elementary updates. The

updates of class I do not alter the number of rectangles, K, changing only the values of the

parameters from a randomly chosen set {Pt}. The updates of class II either add a new rectangle

with randomly chosen parameters {hK+1, wK+1, cK+1}, or remove a stochastically chosen rect-

angle t from the configuration. If a proposed change violates a constraint (38) (e.g., a change of

wt or ht, or any update of the class II), then the necessary change of some other parameter set

{Pt′} is simultaneously proposed, to satisfy the requirement of the constraint.

The updates should keep the parameters of a new configuration within the domain of definition

of the configuration C. Formally, the domains of definition of a configuration (34) are Ξht
=

[0,∞], Ξct = [−∞,∞], Ξwt
= [0,∞], and ΞK ∈ [1,∞]. However, for the sake of faster

convergence, one can reduce the domains of definition.

As there is no general a priori prescription for choosing reduced domains of definition, the

rule of thumb is to start with maximal domains and then, after some rough solution is found,

reduce the domains to reasonable values suggested by this solution. In particular, since the

probability to propose a change of any parameter of a configuration is proportional to K−1, it

is natural to restrict the maximal number of rectangles ΞK ∈ [1, Kmax] by some large number

Kmax. To forbid rectangles with extremely small weight, which contribute to G̃(τ) less than the

statistical errors of G(τ), one can impose the constraint htwt ∈ [Smin, 1], with Smin ≪ IK−1
max.

When there is some preliminary knowledge that an overwhelming majority of integral weight

of the spectral function ˜A(ω) is in a range [ωmin, ωmax], one can restrict the domain of definition

of the parameter ct by Ξct = [ωmin, ωmax]. Then, to reduce the phase space one can choose

Ξht
= [hmin,∞] and Ξwt

= [wmin,min {2(ct − ωmin), 2(ωmax − ct)}].

While the initial configuration, the update type, and the parameter to be altered are chosen

stochastically, the variation of the value of the parameters relevant to the update is optimized

to maximize the decrease of D. Each elementary update of our optimization procedure (even

that of the class II) is organized as a proposal to change some continuous parameter ξ by a

randomly generated δξ in a way that the new value belongs to Ξξ. Although proposals with

smaller values of δξ are accepted with higher probability it is important, for the sake of better

convergence, to propose sometimes changes δξ that probe the whole domain of definition Ξξ.

To probe all scales of δξ ∈ [δξmin, δξmax] we generate δξ with the probability density function

P ∼ (max(| δξmin |, |δξmax|)/|δξ|)
γ, where γ ≫ 1.

Calculating the deviation measures D(ξ), D(ξ + δξ), D(ξ + δξ/2), and searching for the mini-

mum of the parabolic interpolation, we find an optimal value of the parameter change

δξopt = −b/2a, (41)

where

a = 2(D(ξ + δξ)− 2D(ξ + δξ/2) +D(ξ))(δξ)−2, (42)
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and

b = (4D(ξ + δξ/2)−D(ξ + δξ)− 3D(ξ))δξ. (43)

In the case a > 0 and ξopt ∈ Ξξ we adopt as the update proposal δ̃ξ the value δξ, δξ/2, or δξopt

for which the deviation measure D(ξ+ δ̃ξ) is the smallest. Otherwise, if the parabola minimum

is outside Ξξ, one has to compare only deviations for δξ and δξ/2.

3.5 Global updates

The updating strategy has to provide for the efficient minimization of the deviation measure. It is

highly inefficient to accept only those proposals that lead to the decrease of the deviation, since

there is an enormous number of local minima with values Dloc[C] much larger than that obtained

as minimal deviation measure MIN{D[ ˜Aj]}. As we observed in practice, these multiple minima

drastically slow down (or even freeze) the process.

To optimize the escape from a local minimum, one has to provide a possibility of reaching a

new local minimum with lower deviation measure through a sequence of less optimal config-

urations. It might seem that the most natural way of doing this would be to accept sometimes

(with low enough probability) the updates leading to the increase of the deviation measure.

However, this simple strategy turns out to be impractical. The reason is that the density of

configurations per interval of deviation sharply increases with D. So that the acceptance prob-

ability for a deviation-increasing update should be fine-tuned to the value of D. Otherwise, the

optimization process will be either non-convergent, or ineffective [if the acceptance probability

is, correspondingly, either too large, or too small in some region of D].

A way out of the situation is to perform some sequence of T temporary elementary updates of

a configuration C(0)

C(0) → C(1) → ... → C(r) → C(r + 1) → ... → C(T ) , (44)

where the proposal to update the configuration C(r) → C(r + 1) is (temporary) accepted with

probability

Pr→r+1 =

{

1 , D[C(r + 1)] < D[C(r)] ,

Z (D[C(r)]/D[C(r + 1)]) , D[C(r + 1)] > D[C(r)] .
(45)

(Function Z satisfies the boundary conditions Z(0) = 0 and Z(1) = 1.) Then we choose out

of the configurations {C(r)} (44) the one with minimal deviation measure and, if it is different

from C(0), declare it to be the result of the global update, or, if this configuration turns out to be

just C(0), reject the update.

We choose the function Z in the form

Z(x) = x1+d (d > 0) , (46)

which leads to comparatively high probabilities to accept small increases and hampers signifi-

cant enlargements of the deviation measure. Empirically, we found out that the global update
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Fig. 3: Example of a global update with 4 elementary updates. The process transfers initial

configuration by 4 elementary updates (dashed red arrows) from the initial minimum of the D-

surface (solid blue line) to a lower minimum through the minima whose deviation measures are

larger than that in the initial configuration.

procedure is most effective if one keeps the parameter d = d1 ≪ 1 at the first T1 steps of

sequence (44) (to leave local minimum) and then changes it to a value d = d2 ≫ 1 for the last

T − T1 elementary updates (to decrease the deviation measure). In our algorithm the values

T ∈ [1, Tmax], T1 ∈ [1, T ], d1 ∈ [0, 1], and d2 ∈ [1, dmax] were stochastically chosen for each

global update run.

The two-step procedure for the global update is a method to reach the same goal as the tempering

and annealing procedures used in SSM methods [27, 25, 29]. A temporary rise and consequent

drop of the fictitious temperature T is used in the standard SSMs. Similarly, temporary permis-

sion to grow up the deviation measure with the following directive to drop it down is introduced

into SOM. An exchange between deep local minima of the deviation measures Dloc[C] has low

probability. Therefore, the procedure which first rises and then drops the deviation measure

arranges a path between some deep local minima through some shallow ones.

3.6 Final solution and refinement

After a set of L configurations
{

Cfin
j , j = 1, ..., L

}

(47)

that satisfy criterion (40) is produced, the solution (28) can be obtained by summing up the

rectangles, (33) and (47).
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Fig. 4: Some of the elementary updates of class I: (a)→(b) is the shift of a rectangle (dashed

red line); (c)→(d) is the change of the height of a rectangle (dashed red line) without changing

its weight htwt and center ct.

We employ, however, a more elaborated procedure, which we call refinement. Namely, we use

the set (47) as a source of Lref new independent starting configurations for further optimization.

These starting configurations are generated as linear combinations of randomly chosen members

of the set (47) with stochastic weight coefficients. Then, the refined final solution is represented

as the average (28) of Lref particular solutions resulting from the optimization procedure.

The main advantage of such a trick is that the initial configurations for the optimization pro-

cedure now satisfy the criterion (40) from the very beginning. Moreover, as any linear combina-

tion of a sufficiently large number R of randomly chosen parent configurations
{

Cfin
η , η = 1, ..., R

}

smoothes the sawtooth noise, the deviation of a refined configuration Cfin
ref is normally lower than

that of each additive one.

3.7 Elementary updates of class I

(A) Shift of rectangle. Change the center ct of a randomly chosen rectangle t (Fig. 4a and 4b).

The continuous parameter for optimization (41-43) is ξ = ct which is restricted to the domain

of definition Ξct = [ωmin + wt/2, ωmax − wt/2].

(B) Change of width without change of weight. Alter the width wt of a randomly chosen rect-

angle t without changing of the rectangle weight htwt = const and center ct (Fig. 4c and

4d). The continuous parameter for optimization is ξ = wt which is restricted by Ξwt
=

[wmin,min {2(ct − ωmin), 2(ωmax − ct)}].

(C) Change of weight of two rectangles. Change the heights of two rectangles t and t′ (where t

is a randomly chosen and t′ is either randomly chosen or closest to t rectangle) without change

of widths of both rectangles. The continuous parameter for optimization is the variation of
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the height ξ = ht of rectangle t. To restrict the weights of the chosen rectangles to [Smin, 1]

and preserve the total normalization (35) this update suggests to change ht → ht + δξ and

ht′ → ht′ − δξwt′/wt with δξ confined to the interval

Smin/wt − ht < δξ < (ht′ − Smin/wt′)wt/wt′ . (48)

3.8 Elementary updates of class II

(D) Adding a new rectangle. To add a new rectangle one has to generate some new set {Pnew} =

{hnew, wnew, cnew} and reduce the weight of some other rectangle t (either randomly chosen or

closest) in order to keep the normalization condition (35). The reduction of the rectangle weight

t is obtained by decreasing its height ht.

The center of the new rectangle is selected at random according to

cnew = (ωmin + wmin/2) + (ωmax − ωmin − wmin)r . (49)

As soon as the value cnew is generated, the maximal possible width of a new rectangle is given

by

wmax
new = 2min(ωmax − cnew, cnew − ωmin) . (50)

The continuous parameter for optimization δξ = hnewwnew is generated to keep the weights of

both new rectangles and rectangle t larger than Smin

δξ = Smin + r(htwt − Smin) . (51)

Then, the value of the new rectangle height hnew for given δξ is generated to keep the width of

new rectangles within the limits [wmin, w
max
new ]

hnew = δξ/wmax
new + r(δξ/wmin − δξ/wmax

new ) . (52)

(E) Removing a rectangle. To remove some randomly chosen rectangle t, we enlarge the height

ht′ of some another (either randomly chosen or closest) rectangle t′ according to the normal-

ization condition (35). Since such a procedure does not involve a continuous parameter for

optimization, we unite removing of rectangle t with the shift procedure (A) of the rectangle t′.

Then, the proposal is the configuration with the smallest deviation measure.

(F) Splitting a rectangle. This update cuts some rectangle t into two rectangles with the same

heights ht and widths wnew1
= wmin + r(wt − wmin) and wnew2

= wt − wnew1
(Fig. 5). Since

removing a rectangle t and adding of two new glued rectangles does not change the spectral

function we introduce the continuous parameter δξ which describes the shift of the center of the

new rectangle with the smallest weight. The other rectangle is shifted in the opposite direction

to keep the center of gravity of the two rectangles unaltered. The domain of definition Ξξ

obviously follows from the parameters of the new rectangles.

(G) Glueing rectangles. This update glues two (either randomly chosen or closest) rectangles

t and t′ into a single new rectangle with weight hnewwnew = htwt + wt′ht′ and width wnew =

(wt + wt′)/2. The initial center of the new rectangle cnew corresponds to the center of gravity

of rectangles t and t′. We introduce a continuous parameter by simultaneously shifting the new

rectangle.
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Fig. 5: Elementary updates of class II: (a)→(b) splitting of rectangle (dashed red line) and

(b)→(a) gluing of rectangles without changing its total weight htwt and center of gravity ct.

4 Practical aspects of the method

First, we summarize what is done by the SOM algorithm automatically and what are the num-

bers we need to determine in each particular case. The algorithm described in the previous

section is able to search for as many particular solutions ˜Aj as requested. For every attempt j

to find a particular solution ˜A it does the following steps:

(i) Generate an initial configuration C init
j with K < Kmax rectangles. Each initial configura-

tion C init
j is statistically independent from the previous one C init

j−1.

(ii) Search for a particular solution ˜Aj performing F global updates.

(iii) Store the final configuration Cfin
j of solution ˜Aj and its deviation measure D[ ˜Aj].

After L attempts one obtains the final regularized solution as the sum

A(ω) =
1

Lgood

L
∑

j=1

θ
{

2MIN{D[ ˜Aj]} −D[ ˜Aj ]
}

˜Aj(ω) . (53)

Here θ(x) is the θ-function: θ(x ≥ 0) equals to unity and zero otherwise. Lgood is the number

of “good” fits

Lgood =
L
∑

j=1

θ
{

2MIN{D[ ˜Aj]} −D[ ˜Aj]
}

, (54)

restricted by the regularization condition that the deviation measure is less than twice of the

minimal deviation measure MIN{D[ ˜Aj]} found during L attempts.

To finalize the preparation of the method for solving different problems it is necessary to give

recipes how to choose the numbers F (Sec. 4.1) and L (Sec. 4.2) in every particular case.
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Fig. 6: (a) Typical spectrum ˜Aj(ω) (red solid line), corresponding to a particular configuration

Cj , compared to the actual spectrum (blue dashed line). Typical dependence of the deviation

function ∆(m) (30) on imaginary times τm corresponding to a spectrum ˜Aj(ω) which (b) under-

fits and (c) over-fits the uncorrelated noise of imaginary time data.

4.1 Choosing the number of global updates F

To check whether a particular number F is large enough to reproduce the given data set (1) it

is enough to perform about L ≈ 10 attempts to find particular solutions ˜Aj and consider the

deviation functions ∆(m), (30), which correspond to each particular solution.

Note that a particular solution itself does not bear any important information on the quality of

the fit of the data. Indeed, every particular solution contains sawtooth noise and typically looks

like the solid red line in Fig. 6(a). One can claim that the comparison with the exact answer

(dashed blue line) can give some insight into the quality, but in practice the exact answer is not

known.

On the contrary, the deviation function ∆(m) gives direct information on the quality of the fit.

Such a test of the quality of the fit requires uncorrelated noise in the QMC data, i.e., when

the deviation from the exact solution δG(m) for any m-point is independent from that in the

neighboring m-point. Indeed, we take the uncorrelated nature of the noise for granted because

the analytic continuation from correlated QMC data is a way to a wrong answer from the onset.

For the sake of definiteness we consider here an example with imaginary time data. However,

the case of the Matsubara representation is identical. Figure 6(b) shows an example when

the input data are under-fitted by a particular solution. One can see that the typical period of

oscillations of the deviation function ∆(m) around zero is much larger than the typical distance

between the input data points τm. To the contrary, the fit shown in the Fig. 6(c) is noise-limited

because the typical period of oscillations is comparable with a typical distance between data

points. One can introduce a numeric criterion of the fit-quality

κ =
1

M − 1

M
∑

m=2

θ {−∆(m)∆(m − 1)} (55)
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Fig. 7: (a) Self-averaging of the sawtooth noise after summation of 4, 30, and 500 solutions.

(b) Typical probability distribution P (D/Dmin) of solutions with different deviation measures.

which is the ratio of number of intersections of zero by the function ∆(m) and number of

the intervals between M input data points. Ideally, one would like to have κ → 1/2 though

it happens very rarely that κ > 1/3. Practically, a solution with fit-quality κ > 1/4 can be

considered a good one.

Then, after L ≈ 10 attempts to find particular solutions ˜Aj , each by F global updates, the fit-

qualities κj are considered. If κj > 1/4 for more than L/2 attempts, the number F is large

enough. If not, it has to be increased.

4.2 Choosing the number of particular solutions L

SOM performs L attempts to find particular solutions Ãj . The sum of particular solutions (28)

becomes smoother as the number L of attempts increases. Figure 7(a) shows how the sawtooth

noise self-averages when L increases. One can collect a distribution of the deviation measures

and the typical picture is presented in Fig. 7(b). There is the minimal deviation measure Dmin

which corresponds to the best fit of the noisy data G(m) and there is a probability distribution

which increases when D is slightly larger than the minimal deviation measure Dmin. Indeed, the

distribution has some maximum and decreases for larger deviation measures D because there is

the most probable deviation measure which is reached after F global updates. The shaded area

in Fig. 7(b) shows which part of the distribution is included in the final solution (53) in order to

regularize the sawtooth noise. We can not formulate any rigorous criterion when one can stop

the accumulation of particular solutions. However, it looks reasonable to stop when there is no

significant difference between the final spectra with Lgood and (1− 1/3)Lgood particular spectra

included. We found that the above criterion is similar to that when one compares the sum (53)

with θ
{

2MIN{D[ ˜Aj]} −D[ ˜Aj]
}

and with θ
{

2(1− 1/3)MIN{D[ ˜Aj]} −D[ ˜Aj]
}

.
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Fig. 8: The test spectrum (dashed blue line) and the spectrum obtained by SOM (solid red line).

Panels (a) and (b) show the whole spectrum and its low energy part, respectively.

5 Tests of SOM

The procedure to check the SOM for different cases is the following. A spectral function A(ω),

which is called test spectrum, is selected. Then, a set of input data with superimposed noise

{

G̃(m)

[

1 +
B

2
R

]

, m = 1,M

}

(56)

is generated. Finally, the SOM procedure is performed to restore the test spectrum.

The generation procedure of G̃(m) uses a particular kernel K, relation (31), and the test spec-

trum. Statistical noise is added with amplitude B using a random number R in the range

R ∈ [−1, 1] . (57)

We present tests for the imaginary time representation in Sec. 5.1. In particular, we test the

case of a zero temperature GF in Sec. 5.1.1, finite temperature GF for fermions in Sec. 5.1.2,

and finite temperature optical conductivity in Sec. 5.1.3. The test for GF in the Matsubara

representation is presented in Sec. 5.2.

5.1 Test of SOM for imaginary time representation

5.1.1 Zero temperature Green function for a quasiparticle

For zero temperature the GF the kernel (8) for fermions reduces to K(τω) = e−τmω and the

spectral function A(ω) is defined only at ω > 0. To check the accuracy of SOM, we tested it for

a spectral density distribution that spreads over a large range of frequencies and simultaneously

possesses fine structure in the low-frequency region [32]. The test spectrum was modeled as the

sum of a delta-function with the energy εδ = 0.03 and the weight Zδ = 0.07, and a continuous
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Fig. 9: The test spectrum (dashed blue line) and the spectrum obtained by SOM (solid red line)

for the Lehmann spectral function of fermions at finite temperature.

high-frequency spectral density which starts at the threshold εth = 0.04. The continuous part of

the spectral function Acon was modeled by the function

Acon(ω) =
Zδ

√
ω − εth

2π
√
εgap[(ω − εth) + εgap]

θ (ω − εth) θ (0.566− ω) (58)

(here εgap = εth − εδ is a microgap) in the range ω ∈ [εth, 0.566] and by a triangle at higher

frequencies (see the blue dashed line in the Fig. 8).

The GF G(τ) was calculated from the test spectrum in the M = 300 points τm = τmaxm
2/M2

in the time range from zero to τmax = 1000. The noise amplitude was chosen rather small

B = 10−4. The restored spectral function reproduces both gross features of the high-frequency

part (Fig. 8(a)) and the fine structure at small frequencies (Fig. 8(b)). The energy and the weight

of the delta-function was restored with an accuracy of 10−4. The final solution was obtained by

averaging (53) Lgood = 1100 particular solutions.

5.1.2 Finite temperature Green function for fermions

In this test the kernel is given by Eq. (8) for fermions and the spectral function A(ω) is defined

in the whole range −∞ < ω < ∞. The test spectrum was modeled by two triangles (blue

dashed line in Fig. 9).

The GF G(τ) was calculated at finite temperature β = 50 on M = 600 uniformly spaced

points in the range [0, β]. The noise amplitude was chosen rather small B = 10−4. The restored

spectral function (red solid line in Fig. 9) reproduces the main features of the test spectrum. The

final solution was obtained by averaging (53) Lgood = 150 particular solutions.



14.24 Andrey S. Mishchenko

0 2 4 6
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0 1 2
0.0

0.1

0.2

0.3

0.4

0.5(a) (b)

Fig. 10: The test spectrum (dashed blue line) and the spectrum obtained by SOM (solid red

line) for optical conductivity at finite temperature. Panels (a) and (b) show the whole range and

low energy part, respectively.

5.1.3 Finite temperature optical conductivity

In this test the kernel is given by Eq. (9) and the spectral function σ(ω) is symmetric σ(ω) =

σ(−ω). The test spectrum was modeled by two triangles (blue dashed line in Fig. 10). The

current-current correlation function J(τ) was calculated at finite temperature β = 20 on M =

200 uniformly spaced points in the range [0, β]. The noise amplitude was chosen rather small

B = 10−4. The restored optical conductivity (red solid line in Fig. 10) reproduces the main

features of the test spectrum (Fig. 10(a)) and its low energy part (Fig. 10(b)). The final solution

was obtained by averaging (53) Lgood = 200 particular solutions.

5.2 Test of SOM for Matsubara representation

In this test the kernel is given by Eq. (7) and the spectral function A(ω) is defined in the whole

ω-range. The test spectrum was modeled by two triangles (blue dashed line in Fig. 11(c)).

The GF G(iωn) was calculated at finite temperature β = 30 for the first M = 200 positive

Matsubara frequencies iωn and the analytic continuation was done directly from the set of GFs

in Matsubara representation. The noise amplitude was B = 10−4. In Fig. 11 one can see

rather good overall agreement between the test and the restored spectra. The final solution was

obtained by averaging (53) Lgood = 200 particular solutions.

The real and imaginary parts of the GF in Matsubara representation are shown in Fig. 11(a). the

imaginary time GF, calculated from the test spectrum by Eq. (31), is shown in Fig. 11(b) by a

solid black line. The imaginary time GF, calculated from the first 200 Matsubara components

in the inverse Fourier transform (6), is shown in Fig. 11(b) by green circles. It is seen that

the first 200 components of the GF in the Matsubara representation are not enough to describe

the imaginary time GF at small values of τ . This discrepancy is a direct indication that the
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Fig. 11: (a) First 200 Fourier components of the real (red circles) and imaginary (black squares)

part of the GF in Matsubara representation obtained from the GF in imaginary time. (b) Imag-

inary time GF (solid line) and imaginary time GF obtained from first the M = 200 GFs in

Matsubara representation. The inset shows low imaginary times. (c) Actual spectrum (dashed

blue line) and that restored from 200 Matsubara components (red solid line).

transformation of the QMC data from one representation into the other is a step which can

lose information. Namely, it is dangerous to transform the Matsubara representation into the

imaginary time representation because even a large number of Matsubara points still can lead to

spurious oscillations of the imaginary time GF (Fig. 11(b)). Hence, it is preferable to make the

analytic continuation from the same representation as that in which the QMC data are obtained.

Conclusion

We presented the stochastic optimization method for analytic continuation. The method was

considered in relation with numerous other methods handling ill-posed problems. It was con-

cluded that the method is the best for problems when one has to avoid any artificial smoothening

of the spectral function and when there is no a priory knowledge about the expected solution.

The method was successfully applied to many problems. The exponential kernel K(m,ω) =

exp[−τmω] for zero temperature was considered in Refs. [32, 38–57] and various kernels,

ranging from Fermi distribution to the Matsubara frequency representation, are considered in

Refs. [58–62]. The method was also used for Gaussian kernels in Refs. [6,7]. Indeed, the broad

area of the solved problems and the successful tests for problems which were not considered

before give confidence that the method has considerable potential when application to problems

where initial a priori knowledge is not available.

The author acknowledges support of RFBR 10-02-00047a and fruitful discussions with B.V. Svis-

tunov and N.V. Prokof’ev.



14.26 Andrey S. Mishchenko

References

[1] M. Jarrell and J.E. Gubernatis, Phys. Rep. 269, 133 (1996)

[2] R. Kress, Linear Integral Equations (Springer, New York, 1999)

[3] G.D. Mahan, Many Particle Physics (Plenum Press, New York, 1990)

[4] A Damascelli, Z. Hussain, and Z.X. Shen, Rev. Mod. Phys. 75, 473 (2003)

[5] C. Huscroft, R. Gass, and M. Jarrell, Phys. Rev. B 61, 9300 (2000)

[6] H. Matsui, A.S. Mishchenko, and T. Hasegawa, Phys. Rev. Lett. 104, 056602 (2010)

[7] A.S. Mishchenko, H. Matsui, and T. Hasegawa, Phys. Rev. B 85, 085211 (2012)

[8] J. Kaipio and S. Erkki, Statistical and Computational Inverse Problems,

(Applied Mathematical Sciences Vol. 160) (Springer, Berlin, 2005)

[9] A.N. Tikhonoff and V.Y. Arsenin, Solutions of Ill-Posed Problems

(Winston & Sons, Washington, 1977)

[10] G.H. Golub and C. Reinsch, Numerische Mathematik 14, 403 (1970)

[11] R.T. Cox, The Algebra of Probable Inference (Johns Hopkins University Press, 1961);

A. Papoulis, Probability and Statistics (Prentice Hall, New York, 1990)

[12] A.N. Tikhonoff, Dokladyu Akademii Nauk SSSR 39, 195 (1943)

[13] A.N. Tikhonoff, Dokladyu Akademii Nauk SSSR 151, 501 (1963)

(Soviet Mathematics 4, 1035 (1963))

[14] D.L. Phillips, J. ACM 9, 84 (1962)

[15] A.E. Hoerl, Chemical Engineering Progress 58, 54 (1962)

[16] A.E. Hoerl and R.W. Kennard, Technometrics 12, 55 (1970)

[17] M. Foster, J. Soc. Industr. Appl. Math. 9, 387 (1961)

[18] P.C. Hansen, Soc. Industr. Appl. Math. Rev. 34, 561 (1992)

[19] P.C. Hansen and D.P. O’Leary, Soc. Industr. Appl. Math. J. Sci. Comput. 14, 487 (1993)

[20] D. Krawchuk-Stando and M. Rudnicki, Int. J. Appl. Math. Comput. Sci. 17, 157 (2007)

[21] I.S. Krivenko and A.N. Rubtsov, arXiv:cond-mat/0612233

[22] I.S. Krivenko and A.N. Rubtsov, JETP Lett. 94, 768 (2012)



Stochastic Optimization Method for Analytic Continuation 14.27

[23] M. Jarrell and O. Biham, Phys. Rev. Lett. 63, 2504 (1989)

[24] S.R. White, D.J. Scalapino, R.L. Sugar, and N.E. Bickers, Phys. Rev. Lett. 63, 1523 (1989)

[25] K. Vafayi and O. Gunnarsson, Phys. Rev B 76, 035115 (2007)

[26] J. Skilling, J. Microsc. 190, 28 (1998)

[27] A.W. Sandvik, Phys. Rev B 57, 10287 (1998)

[28] N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, E. Teller,

J. Chem. Phys. 21, 1087 (1953)

[29] O.F. Syljuasen, Phys. Rev B 78, 174429 (2008)

[30] K.S.D. Beach, arXiv:cond-mat/0403055

[31] S. Fuchs, T. Pruschke and M. Jarrell, Phys. Rev E 81, 056701 (2010)

[32] A.S. Mishchenko, N.V. Prokofév, A. Sakamoto and B.V. Svistunov,

Phys. Rev. B 62, 6317 (2000)

[33] S.R. White, Computer Simulation Studies of Condensed Matter Physics III

(Springer, Heidelberg, 1991), p. 145

[34] E. Vitali, M. Rossi, L. Reatto and D.E. Galli, Phys. Rev. B 82, 174510 (2010)

[35] D.M. Ceperley, J. Comput. Phys. 51, 404 (1983)

[36] D.M. Ceperley and B.J. Alder, J. Chem. Phys. 81, 5833 (1984)

[37] N.V. Prokofév, B.V. Svistunov, and I.S. Tupitsyn, Phys. Rev. Lett. 82, 5092 (1999)

[38] A.S. Mishchenko, N.V. Prokof’ev, and B.V. Svistunov, Phys. Rev. B 64, 033101 (2001)

[39] A.S. Mishchenko, N.V. Prokof’ev, A. Sakamoto, and B.V. Svistunov,

Int. J. Mod. Phys. B 15, 3940 (2001)

[40] A.S. Mishchenko, N. Nagaosa, N.V. Prokof’ev, A. Sakamoto, and B.V. Svistunov,

Phys. Rev. B 66, 020301(R) (2002)

[41] A.S. Mishchenko, N. Nagaosa, N.V. Prokof’ev, A. Sakamoto, and B.V. Svistunov,

Phys. Rev. Lett. 91, 236401 (2003)

[42] A.S. Mishchenko and N. Nagaosa, Phys. Rev. Lett. 93, 036402 (2004)

[43] A.S. Mishchenko and N. Nagaosa, Phys. Rev. B 73, 092502 (2006)

[44] A.S. Mishchenko and N. Nagaosa, J. Phys. Chem. Solids 67, 259 (2006)



14.28 Andrey S. Mishchenko

[45] G. De Filippis, V. Cataudella, A.S. Mishchenko, C.A. Perroni, and J.T. Devreese,

Phys. Rev. Lett. 96, 136405 (2006)

[46] A.S. Mishchenko, Proceedings of the International School of Physics “Enrico Fermi”,

Course CLXI, 177-206 (2006)

[47] A.S. Mishchenko and N. Nagaosa, Polarons in Complex Matter,

Springer Series in Material Science, Springer, ed. by A.S. Alexandrov, 503-544 (2007)

[48] V. Cataudella, G. De Filippis, A.S. Mishchenko, and N. Nagaosa,

Phys. Rev. Lett. 99, 226402 (2007)

[49] A.S. Mishchenko, in “Computational Many-Particle Physics”, ed. by H. Fehske, R. Schei-

der and A. Weisse, Lect. Notes Phys. 739, pp. 367-395 (Springer, Berlin Heidelberg 2008)

[50] A.S. Mishchenko, N. Nagaosa, Z.-X. Shen, G. De Filippis, V. Cataudella, T.P. Devereaux,

C. Bernhard, K.W. Kim, and J. Zaanen, Phys. Rev. Lett. 100, 166401 (2008)

[51] V. Cataudella, G. De Filippis, A.S. Mishchenko, and N. Nagaosa,

J. Supercond. Nov. Magn., 22, 17 (2009)

[52] A.S. Mishchenko, N. Nagaosa, A. Alvermann, H. Fehske, G. De Filippis, V. Cataudella,

and O.P. Sushkov, Phys. Rev. B, 79, 180301(R) (2009)

[53] A.S. Mishchenko, Usp. Phys. Nauk 179, 1259 (2009) [Phys. Usp. 52, 1193 (2009)]

[54] A.S. Mishchenko, Advances in Condensed Matter Physics 2010, 306106 (2010)

[55] G.L. Goodvin, A.S. Mishchenko, and M. Berciu, Phys. Rev. Lett. 107, 076403 (2011)

[56] A.S. Mishchenko, N. Nagaosa, K.M. Shen, Z.-X. Shen, X.J. Zhou, T.P. Devereaux,

Europhys. Lett. 95, 57007 (2011)

[57] G. De Filippis, V. Cataudella, A.S. Mishchenko and N. Nagaosa,

Phys. Rev. B, 85, 094302 (2012)

[58] S.S. Aplesnin, Zh. Eksp. Teor. Fiz. 124 1080 (2003) [JETR 97 969 (2003)]

[59] H. Hafermann, S. Brener, A.N. Rubtsov, M.I. Katsnelson, and A.I. Lichtenstein,

J. Phys.: Condens. Matter 21, 064248 (2009)

[60] H. Hafermann, M.I. Katsnelson, and A.I. Lichtenstein, Europhys. Lett., 85, 37006 (2009)

[61] E. Gorelov, M. Karolak, T.O. Wehling, F. Lechermann, A.I. Lichtenstein, and E. Pavarini,

Phys. Rev. Lett. 104, 226401 (2010)
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15.2 David P. DiVincenzo

1 Introduction

This lecture is, of course, not so closely connected with the other material of this School. Hope-
fully, it will give you some ideas that might come in handy when you think about the hard
problems of strong correlations in electrons that you will be carefully studying in the other
parts. Quantum Information Theory spends a lot of time thinking about the “trivial” aspects
of quantum theory, the parts that you would call “kinematics” in more traditional treatments
of quantum mechanics. Kinematics is the counterpart to dynamics; kinematics is the part of
quantum theory where you set up your problem, get straight what basis states you will use, take
care of selection rules and quantum numbers; dynamics is the part where you really solve for
the behavior of your quantum system, including, as well as you can, the features of the real
Hamiltonian that you want to study. I will try to convince you in this lecture that the “trivial”,
kinematic parts of quantum theory are really interesting in their own right, and are leading us to
completely unanticipated applications of quantum theory. In fact, quantum information theory
is anything but trivial, it has already generated proposed theorems that a lot of smart mathe-
maticians worked on proving for many years (and, in one case, finally disproved). By the end
of this chapter, I will at least be able to say what this particularly deep theorem was.

2 Teleportation and other quantum communication protocols

Much of quantum information theory is driven by thought experiments which explore the ca-
pabilities, in principle, for quantum systems to perform certain tasks. A few of these are very
famous, like quantum cryptography, and have in fact been turned into real experiments. I will
explore in detail another famous one called quantum teleportation; I will emphasize what re-
source question teleportation arises from, and I will show you how, by slightly changing the
premise of the thought experiment, you come to another subject, which is called remote state
preparation. Chances are you haven’t heard of remote state preparation, but you will see that it
is just as rich and interesting as teleportation (perhaps richer).
Quantum teleportation was first reported as a thought experiment in 1993 [1]. I have been told
by two of the six authors (Bennett and Wootters) that this work arose from the question, “If
Alice has a quantum state and wants to send it to Bob, how can she do it?” The presumption
is that the quantum state is held in the internal state of a particle; we will often imagine that
this is a qubit state, meaning that the Hilbert space containing the quantum state is just two
dimensional. This could be because the state is that of the spin of a spin-1/2 particle, so that the
two quantum basis states are “spin up” and “spin down”. We will be more abstract and just give
a binary labeling to these states (0/1).
The first answer to the Bennett/Wootters question is, “send the particle containing the state
from Alice to Bob.” So, since this was rather obvious, what Bennett and Wootters (and their
co-authors Jozsa, Crépeau, Brassard, and Peres) really asked was, “what other method will do
the same job?” In constructing their answer they were inspired by ideas in classical commu-
nication theory. Classically, there are other resources that can assist in communication tasks –
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trusted third parties, authentication techniques, etc. At the basic level, many of these assistance
techniques boil down to the idea that shared classical information between Alice and Bob, even
if it is completely random, can greatly facilitate communication tasks. For example, it makes
possible the sending of completely secret messages.
What was clear to Bennett and company was that no classical resource by itself was adequate
for accomplishing the task of quantum state transmission; even an arbitrarily long classical
message is inadequate for the task. The reason for this is that such classical information would
have to come from somewhere, and since Alice is in possession of just one particle, the only
thing she can do to make meaningful classical information is to measure this particle. But it
was known since 1973 (it is called Holevo’s theorem [8]) that Alice can get at most one bit of
information from any measurement of a spin 1/2 particle. This is completely inadequate for
Bob to reconstruct the state of the particle faithfully. A qubit quantum state in general takes two
complex numbers (with a normalization constraint) to describe:

|ψ〉 = α|0〉+ β|1〉. (1)

But Bennett and company had another trick in mind, which concerned the other shared resource
that is available in quantum physics: entanglement [9]. If two separated spins have never been
correlated, then their joint quantum state can only be a tensor product:

|ψAB〉 = |ψA〉 ⊗ |ψB〉 = (α|0〉A + β|1〉A)⊗ (γ|0〉B + δ|1〉B) (2)

= αγ|00〉+ αδ|01〉+ βγ|10〉+ βδ|11〉) (3)

(I introduced a few different obvious conventions for representing this state.) This is the set of
unentangled states; any pure state that cannot be written in a product form is entangled. (The
situation is a little different for mixed quantum states, as I will touch on shortly.) Entanglement
includes as a special case the notion of classical correlations; in fact this is represented by the
mixed state

|ψcorr.〉〈ψcorr.| =
1

2
|00〉〈00|+ 1

2
|11〉〈11|. (4)

In words: Alice and Bob have two particles whose state is certainly the same, but with a 50%
probability to be in the 0 or the 1 state. But for the general case of Eq. (2), we have known
since Bell that such quantum states have correlations that cannot be mimicked by any classical
theory. Thus, Bennett et al. were motivated to explore this shared resource for the conveyance
of an arbitrary quantum state. In particular, they used the “most entangled state”:

|β00〉 =
1√
2
(|00〉+ |11〉) (5)

This is sometimes confusingly called an “Einstein-Podolsky-Rosen” state (it is a distant relative
of the state that EPR wrote down, actually due to Bohm), and less confusingly called a “Bell
state”.
In fact, this state proves to be very useful for the problem of conveying the state of a particle
from Alice to Bob. Let us go through the details, following pp. 26-28 of [10]. We suppose that
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Alice has qubit state |ψ0〉 to “teleport” to Bob, and that they have also previously shared the
Bell pair in state |β00〉. Of course the entanglement knows nothing about the message ψ0. But
with some simple unitary transformations, this total state can be brought to a useful form for
performing the communication function.
The quantum circuit is a basic tool of quantum information theory, so let me spend some time
discussing the rules of these circuits, before going into the particulars of quantum teleportation.
Figure 1 is just one example of a huge variety of quantum circuits that are used to compactly
express many of the primitive operations in quantum information or quantum computation. It
is somewhat analogous to a Feynman diagram of scattering theory, in that each horizontal line
indicates the presence of a single qubit (so Fig. 1 represents a three-qubit operation). Time goes
from left to right. The first few symbols placed on these lines indicate the actions of quantum
logic gates. These gates perform specific unitary transformations on the quantum state. In this
way, quantum information is not only about kinematics, but, in this limited way, also about
dynamics. That is to say, it is understood that this unitary transformation should come from
some Hamiltonian acting on the qubits at the time indicated. But quantum information theory
does not care about the details of what this Hamiltonian is, or where it comes from; it only
requires that the indicated state transformation can be done.
The first symbol in the circuit diagram in Fig 1, involving the first two qubits, indicates the
action of the controlled NOT gate, or CNOT. The transformation produced by this is “classical”,
in the sense that it can be defined by a truth table, viz.,

00 7−→ 00

01 7−→ 01

10 7−→ 11

11 7−→ 10 . (6)

But it is understood that, by the linearity of the Schrödinger equation, this truth table indicates
the action on any arbitrary quantum state of these two qubits, which will involve a superposition
of these two basis states. The idea of the gate is that it performs a NOT (i.e., inversion of 0 and
1) on the second qubit (the “target qubit”), if the first qubit (the “control qubit”) is a 1; if the
control qubit is a 0, nothing is done to the target qubit.
The second gate in the quantum circuit of Fig. 1, indicated as an “H” acting on the first qubit, is
called a Hadamard gate. It performs the non-classical one-qubit rotation summarized by

|0〉 7−→ 1√
2
(|0〉+ |1〉)

|1〉 7−→ 1√
2
(|0〉 − |1〉) . (7)

The next symbol encountered in Fig. 1 is not a unitary operation, but indicates that quantum
measurement is performed on qubits 1 and 2 separately. The symbol is meant to evoke the idea
of an old-fashioned electrical measuring meter; but of course the measurement of a two-level
quantum system gives only the two possible (classical) outcomes “0” or ”1”. M1 and M2 are
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the classical variables representing these two binary outcomes; the double lines indicate that
these classical values are communicated to the third qubit, controlling the action of two final
one-qubit gates on this qubit. The measurement outcomes appear as an exponent in these gates;
this simply means that, for example, if M1 = 0, then nothing is done to the the third qubit (it
has the “identity” operation performed on it), while if M1 = 1, then the “X” gate is performed,
which is just the NOT operation

0 7−→ 1

1 7−→ 0 . (8)

The action conditioned on M2 is similar except that the “Z” gate (also known at the “π phase
gate) is performed, specified by the quantum operation

|0〉 7−→ |0〉
|1〉 7−→ −|1〉 . (9)

Both X and Z, of course, act linearly on quantum superpositions. These simple examples give
essentially all the rules that are needed to interpret quantum gate diagrams.
Now, we return to the details of quantum teleportation. First, given the starting state

|ψ0〉 = |ψ〉|β00〉 =
1√
2

[
α|0〉(|00〉+ |11〉) + β|1〉(|00〉+ |11〉)

]
, (10)

local action by Alice (a “CNOT” operation between her two particles) brings this state to

|ψ1〉 =
1√
2

[
α|0〉(|00〉+ |11〉) + β|1〉(|10〉+ |01〉)

]
. (11)

This and subsequent operations is schematized in Fig. 1. Alice then rotates her first qubit (the
Hadamard rotation):

|ψ2〉 =
1

2

[
α(|0〉+ |1〉)(|00〉+ |11〉) + β(|0〉 − |1〉)(|10〉+ |01〉)

]
. (12)

Here is a very simple but revealing way of simply rewriting this state, by regrouping of qubits:

|ψ2〉 =
1

2

[
|00〉(α|0〉+ β|1〉) + |01〉(α|1〉+ β|0〉)

+ |10〉(α|0〉 − β|1〉) + |11〉(α|1〉 − β|0〉)
]
. (13)

Recall that the first two qubits are in Alice’s possession, and the third in Bob’s. In this form it
is easy to see what happens if Alice now measures her two qubits. If she gets “00”, then the
state “collapses” (by the projection postulate) to the first term. The job is then done: the state
remaining with Bob is exactly the one with which Alice started. This occurs with probability
1/4. In the other 3/4 of the cases, Alice gets a different outcome, and Bob’s state is something
different from |ψ〉. This is summarized so:
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Fig. 1: Quantum circuit summarizing the steps of quantum teleportation.

00 7−→ |ψ3(00)〉 ≡
[
α|0〉+ β|1〉

]
(14)

01 7−→ |ψ3(01)〉 ≡
[
α|1〉+ β|0〉

]
(15)

10 7−→ |ψ3(10)〉 ≡
[
α|0〉 − β|1〉

]
(16)

11 7−→ |ψ3(11)〉 ≡
[
α|1〉 − β|0〉

]
. (17)

But for each of the three other outcomes, there is a simple local operation that Bob can perform
which will rotate his state to |ψ〉. So, all that is required is the communication of the two
measured bits from Alice to Bob, in order that he knows which rotation to perform.
To summarize the operational effect of quantum teleportation: By the prior sharing of one Bell
pair, and the transmission of two classical bits, the same act of quantum communication is
accomplished as the direct transmission of one arbitrary qubit state. The sharing of the Bell
pair can be accomplished by the transmission of one qubit, which can be done ahead of time,
as the state of this qubit is uncorrelated to the “message” qubit until the CNOT operation is
performed. The classical two-bit message is also uncorrelated with the quantum message. No
matter what the values of α and β, the four outcomes 00, 01, 10, and 11 occur at random with
equal probability.
This is all well known and rather simple. But now, as promised, we change the premise of
teleportation in an apparently trivial way. We imagine that the values of α and β are known to
Alice. We might first wonder what “known” means; is it covered by the fact that Alice is in
possession of the quantum particle with some state? The answer is “no”, the particle, although
it has some state, is to be unknown to Alice, supplied, say, by some third party; the particle’s
state may even be entangled with some other particle otherwise uninvolved in the transmission.
So, in this new setting, we assume that Alice has explicit knowledge of α and β, by having them
stored (to some high precision) in her computer memory.
This is the remote state preparation (RSP) setting. Alice and Bob can accomplish the task by
the teleportation protocol, without making reference to the stored values α and β. But can any
improvement be accomplished if Alice uses her extra knowledge?
The answer is not simple. We discovered [4] that in RSP it is necessary to discuss a resource
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tradeoff between entangled pairs and communication of classical bits. In the teleportation set-
ting (Alice having no knowledge of the state), no such tradeoff is available: it was shown that,
if n states are to be teleported, it is necessary to use n entangled pairs, even if it is allowed to
transmit more than 2n classical bits; and, it is necessary to transmit 2n classical bits, even if it
is allowed to use more than n entangled pairs.
In RSP, both tradeoffs become remarkably nontrivial. We illustrate this with one protocol that
we reported, which goes in the direction of less classical communication, at the cost of higher
use of entanglement. It uses another feature of two-qubit entanglement, embodied in the fol-
lowing equation:

1√
2
(|01〉 − |10〉) = eiφ

1√
2
(|ψψ⊥〉 − |ψ⊥ψ〉). (18)

Here |ψ〉 is any state of a single qubit, |ψ⊥〉 is orthogonal to |ψ〉, and φ is a |ψ〉-dependent
but irrelevant phase (which can also be absorbed into the definition of |ψ⊥〉). This amounts
to the interesting spin-physics statement that in the two-particle spin singlet, the two spins are
opposite in any basis.
The essence of the RSP protocol that we will describe is a projective measurement by Alice.
With a knowledge of α and β, Alice constructs a quantum measurement in the basis |ψ〉 =
α|0〉 + β|1〉 and |ψ⊥〉 = −β|0〉 + α|1〉. Alice performs this measurement on her half of a
singlet-entangled pair shared with Bob. With a probability of 50% she gets the outcome ψ⊥,
and in this case, because of Eq. (18), part of the job is done: At this point, Bob’s state is ψ, as
desired. Of course, he must be somehow informed of this fact, and something further must be
done in the case of failure. Failure is not so straightforward to fix, as there is no rotation that
Bob can perform to bring ψ⊥ to ψ, given that he does not have any information about ψ. If we
insist on near-certainty of success, it is not clear that any improvement can be achieved over
regular teleportation.
But in fact a real improvement is possible, at least in the setting where some number of states
specified by the constants (α(1), β(1)), (α(2), β(2)), . . . , (α(n), β(n)) is given. The game will be to
assume that a very large number of Alice-Bob singlets are available, and to try to successfully
perform RSP on all n of these states, with the least amount of classical communication from
Alice to Bob. Here is what we found [4]: Alice performs n projective measurements on her
halves of the first n singlets. In all likelihood, about half of her outcomes will be ψ(i) and half
will be ψ⊥(i). But if she takes many more blocks of n particles (all singlet-entangled with Bob),
and repeats the same set of measurements, then eventually she will get all outcomes ψ⊥(i) for
all n particles in that block. While this is very rare, it will happen almost certainly after she
has done 2n+log2 n tries. (This is the same as flipping n coins and asking if they are all “heads”;
it does eventually happen.) Alice now just needs to report to Bob which of these tries was
successful, and this takes n + log2 n bits. Thus, in the limit of n → ∞, the number of bits
per state RSPed goes to 1. Thus, we have clearly improved on teleportation of unknown states,
which cannot be done with fewer than 2 classical bits per teleportation.
This is perhaps unimpressive, given the gigantic (and diverging) amount of singlet resources that
are consumed in this protocol. We found a significant improvement on this protocol, involving
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Fig. 2: Quantum-classical tradeoff curve for Remote State Preparation, as reported in first
discovery [4].

something called entanglement recycling; I will not describe this here, but it decreases the
consumption of entanglement from 2n+log2 n singlets to n(3+ 1

2
log2 3) ≈ 3.79n singlets. Fig. 2

shows that, unlike in teleportation, in RSP there is a continuous tradeoff between the number
of singlets needed (called “ebits”, or just “e” here) and the number of classical bits (b) that
must be transmitted. Finally, within a few years the optimal tradeoff was found (Fig. 3, [5]);
it was interesting that it was absolutely better than teleportation, in that it was possible to have
protocols using both less entanglement (i.e., less than one singlet per RSP) and less classical
communication (i.e., less than two classical bits per RSP).
It is worth noting that all of this work is “merely kinematical”. It was not at all about under-
standing eigenstates, or about time evolution of quantum states. It all emerged from statements
about the geometry of the quantum Hilbert space. But “kinematical” means anything but “triv-
ial”; I believe that the reader of these lecture notes would find the final paper in this work,
Ref. [5], a very challenging work to understand, invoking quite sophisticated statistical facts
about randomly-chosen ensembles of unitary matrices.

3 More simple but deep questions about entanglement

Quantum teleportation posed more “elementary” questions about quantum entanglement that
have led to extremely lengthy mathematical investigations. Bennett, Wootters, and company
also wondered what would happen to teleportation if some lesser resource than perfect singlets
were available. First they considered the case of states such as

|ψ(α)〉 = α|01〉 − β|10〉, (19)
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Fig. 3: Final, optimal, quantum-classical tradeoff curve for Remote State Preparation, as cal-
culated in [5].

with α > 1/
√
2, say (note the normalization condition |α|2 + |β|2 = 1). That is, we consider

states that are pure, but not maximally entangled. It was found [2] that the degree of entan-
glement of this state could be uniquely characterized by the entropy of the mixed state held by
Alice (or Bob) alone, that is, of

ρA =

(
|α|2 0

0 1− |α|2

)
. (20)

This von Neumann entropy function is just

H(ρA) = −|α|2 log(|α|2)− (1− |α|2) log(1− |α|2). (21)

This function plays the following operational role: if Alice and Bob share N copies of ψ(α),
they can, almost with certainly, concentrate this entanglement, obtaining NH(ρA) copies of
ψ(1/

√
2) (that is, of singlets). The entanglement concentration protocol is elementary, requir-

ing only that Alice and Bob both measure the number of “0”s among their N states; no com-
munication between them is required. It was also noted that this conversion is reversible in the
limit of large N ; that is, the conversion

N copies of ψ(1/
√
2)→ N/H(ρA) copies of ψ(α) (22)
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can also be done by Alice and Bob. But the protocol (called entanglement dilution) is very
different from that of concentration, and requires some communication (of order

√
N bits)

between Alice and Bob.
Returning to another operational question about teleportation, Bennett and coworkers next won-
dered of what use a collection of impure entangled states would be; by this we refer to Alice-
Bob states that must be represented by density matrices – note that this is very different from
the “impureness” of ρA above, that is just a consequence of the Alice-Bob entanglement. Said
in another way, we now consider states for which the Alice and Bob parts are further entangled
with a third subsystem – an “environment” – to which no one has any access. It was natural to
ask whether pure entanglement could be extracted from these states, which we call ρAB. That
is, we ask for a process

N copies of ρAB → D(ρAB)N copies of ψ(1/
√
2), (23)

which may involve some classical communication between Alice and Bob, and we ask what
conversion efficiency D(ρAB) is attainable. The process was given a new name, “distillation”,
because it was quickly observed that the strategies that Alice and Bob would need to employ
were very different from those involved in concentration. D(ρAB) was referred to as the dis-
tillable entanglement, and it was seen to be related to various other quantities of interest in
quantum communication theory. It proved, however, to be very difficult to calculate, as it re-
mains to this day. This motivated the examination, again, of the reverse process: creating mixed
states by a kind of dilution process, starting with pure entanglement. This process is defined by

N copies of ψ(1/
√
2)→ N/E(ρAB) copies of ρAB. (24)

E(ρAB) is called the “entanglement cost” for forming state ρAB. It is an upper bound for the
more operationally significant quantity D(ρAB), but there are definitely states for which they
are not equal: the process of going back and forth between mixed and pure entanglement is not
reversible, unlike for the pure-state case.
There is a straightforward approach to calculating E(ρAB), which has to do with the fact that
every mixed state has an ensemble representation, that is, as mixtures of pure states:

ρAB =
∑
i

pi|φi〉〈φi| . (25)

Given such an ensemble E , it is natural to define its entanglement as

EE =
∑
i

piH(φi). (26)

This expression has a clear operational interpretation: starting with a supply of singlets, a supply
of each bipartite state is created by dilution, then one of them is chosen (by the flip of a coin,
so to speak). The randomness of the coin flipping creates the desired mixed state. Now, the
ensemble E is not unique, but there is some ensemble for which the expenditure of entanglement
is minimal. It is natural to conclude that

E(ρAB) = EF (ρAB) = min
E
EE(ρAB). (27)



Quantum Information 15.11

EF , called the entanglement of formation, can be readily calculated for many mixed states of
interest. Eq. (27) was considered so obvious in our original work that it was asserted without
proof (and, in fact, with no notational distinction made between E and EF ). It became evident,
however, that a proof was not obvious, and the conjecture, known as the “additivity of entan-
glement cost”, became a central unproved proposition of quantum information theory. This
conjecture received intensive scrutiny for more than 10 years. Several years ago, it was proved
false [7]. No explicit violations of additivity have actually been exhibited, and the most explicit
work on the matter shows that non-additivity will occur when the Hilbert space dimension of
ρAB exceeds 3.9× 104 (sic) [6].

4 Lessons

I hope that you have learned a few things from this lecture. First, quantum kinematics is not
trivial! The structure of the quantum Hilbert space alone makes possible the posing of some very
deep and complex questions, which profoundly affect how we can communicate and compute.
Quantum information first identified itself as a discipline only about 20 years ago, but already
there is a vast number of results, some with very profound implications for the further course
of experimental physics, and some posing very deep questions for the mathematicians. We
have gotten some glimpse, in our examples, of how quantum entanglement can be a unique
resource for the accomplishment for a variety of concrete tasks. Theory is far, far ahead of
experiment in quantum information science, but we can foresee that many of the capabilities
that we theoretically envision will, someday, be a reality in the laboratory. This will give us
theorists even more work to do!
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1 Introduction

Understanding the behavior of large interacting quantum systems is essential in quantum chem-

istry, in the study of exotic condensed matter phenomena such as high-Tc superconductivity or

the fractional quantum Hall effect, and beyond. For sytems with only weak interactions, mean

field approaches have been applied successfully. However, this approach breaks down when the

interactions between parts of the system become sufficiently strong – interactions give rise to

quantum correlations, i.e., entanglement, in the system, which is not captured by a mean field

approach. The study of entanglement, on the other hand, is one of the core topics of Quan-

tum Information Theory, where an extensive framework for the characterization, quantification,

and manipulation of entanglement has been developed. This suggests to apply quantum infor-

mation concepts, and in particular the theory of entanglement, to the description of quantum

many-body systems. Indeed, an active field of research has grown during the last decade at the

interface of quantum information theory and quantum many-body physics, and the aim of this

lecture is to give an introduction to this area.

For clarity of the presentation, we will initially restrict to quantum spin systems on a lattice

(such as a line or a square lattice in 2D), with a corresponding Hilbert space (Cd)⊗N (where each

spin has d levels, and the lattice has N sites); generalizations to fermionic systems and beyond

lattices will be discussed later. Also, we will for the moment focus on ground state problems,

i.e., given some Hamiltonian H acting on our spin system, we will ask about properties of its

ground state |Ψ〉. The approach we pursue will be variational – we will try to obtain a family

of states which gives a good approximation of the ground state, for which quantities of interest

can be evaluated efficiently, and where the best approximation to the ground state can be found

efficiently. For instance, mean-field theory is a variational theory based on the class of product

states (for spin systems) or Slater determinants (for electronic systems).

Of course, one could simply parametrize the ground state as

|Ψ〉 =
∑

i1,...,iN

ci1...iN |i1, . . . , iN〉 , (1)

and use the ci1...iN as variational parameters. Unfortunately, the number of parameters ci1...iN
grows exponentially with N , making it impossible to have an efficient description of |Ψ〉 for

growing system sizes. On the other hand, we know that efficient descriptions exist for physical

Hamiltonians: Since H =
∑

i hi is a sum of few-body terms (even if we don’t restrict to

lattice systems), a polynomial number Nk of parameters (with k the bodiness of the interaction)

allows to specify H , and thus its ground state. This is, while a general N-body quantum state

can occupy an exponentially large Hilbert space, all physical states live in a very small “corner”

of this space. The difficulty, of course, is to find an efficient parametrization which captures the

states in this corner of Hilbert space, while at the same time allowing for efficient simulation

methods.



Entanglement in correlated quantum systems 16.3

2 Matrix product states (MPS)

2.1 The area law

In order to have a guideline for constructing an ansatz class, let us look at the entanglement

properties of ground states of interacting quantum systems. To this end, we consider a ground

state |Ψ〉 on a lattice and cut a contiguous region of length L (in one dimension) or an area A

(in two dimensions), cf. Fig. 1. It is a well-known result from quantum information theory [1]

Fig. 1: Area law: The entropy of the reduced states of a block A scales like the length of its

boundary ∂A; in one dimension, this implies that the entropy is bounded by a constant.

that the von Neumann entropy of the reduced density matrix ρA of region A,

S(ρA) = −ρA log ρA ,

quantifies the entanglement between region A and the rest of the system. For a random quantum

state, we expect this entanglement to be almost maximal, i.e., on the order of |A| log d (where

|A| is the number of spins in region A). Yet, if we study the behavior of S(ρA) for ground

states of local Hamiltonians, it is found that S(ρA) essentially scales like the boundary of re-

gion A, S(ρA) ∝ |∂A|, with possible corrections for gapless Hamiltonians which are at most

logarithmic in the volume, S(ρA) ∝ |∂A| log |A|. This behavior is known as the area law for

the entanglement entropy and has been observed throughout for ground states of local Hamil-

tonians (see, e.g., Ref. [2] for a review); for gapped Hamiltonians in one dimension, this result

has been recently proven rigorously [3].

2.2 Matrix product states

Since the entropy S(ρA) quantifies the entanglement between region A and its complement, the

fact that S(ρA) scales like the boundary of ρA suggests that the entanglement between region A

and the rest is essentially located around the boundary between the two regions, as illustrated

in Fig. 2. We will now construct an ansatz for many-body quantum systems, starting from the

Fig. 2: The area law suggests that the entanglement between two regions is located around the

boundary.
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Fig. 3: Construction of MPS: a) Each site is composed of two virtual subsystems. b) The virtual

subsystems are placed in maximally entangled states. c) Linear maps Ps are applied which map

the two virtual systems to the physical system.

insight that the entanglement is concentrated around the boundary of regions; for the moment,

we will focus on one-dimensional systems. Clearly, since we want to have this property for

any partitioning of the lattice, we cannot just place entangled pairs as in Fig. 2, but we have

to choose a more subtle strategy. To this end, we consider the system at each site as being

composed of two “virtual” subsystems of dimension D each, as illustrated in Fig. 3a. Then,

each of the two subsystems is placed in a maximally entangled state

|ωD〉 =
D
∑

i=1

|i, i〉

with the corresponding subsystems at the adjacent sites, as shown in Fig. 3b. The maximally

entangled states are called “bonds”, with D the “bond dimension”. This construction already

satisfies the area law: For any region we cut, there are exactly two maximally entangled states

crossing the cuts, bounding the entanglement by 2 logD. Finally, we apply at each site s linear

maps Ps : CD ⊗ CD → Cd, which creates a description of a state on a chain of d-level sys-

tems, cf. Fig. 3c. (Note that the rank of the reduced density operator of any region cannot be

increased by applying the linear maps Ps.) The construction can be carried out either with peri-

odic boundary conditions, or with open boundary conditions by omitting the outermost virtual

subsystems at the end of the chain. The total state of the chain can be written as

|Ψ〉 = (P1 ⊗ · · · ⊗ PN )|ωD〉
⊗N , (2)

where the maps Ps act on the maximally entangled states as illustrated in Fig. 3c.

This class of states can be rewritten as follows: For each site s, define a three-index tensor A
[s]
i,αβ,

i = 1, . . . , d, α, β = 1, . . . , D, where the A
[s]
i can be interpreted as D ×D matrices, such that

Ps =
∑

i,α,β

A
[s]
i,αβ|i〉〈α, β| . (3)

Then, the state (2) can be rewritten as

|Ψ〉 =
∑

i1,...,iN

tr
[

A
[1]
i1
A

[2]
i2
· · ·A

[N ]
iN

]

|i1, . . . , iN〉 , (4)

i.e., the coefficient ci1...iN in (1) can be expressed as a product of matrices.1 For this reason, these

states are called Matrix Product States (MPS). For systems with open boundary conditions, the

1 The equivalence of (2) and (4) can be proven straightforwardly by noting that for two maps P1 and P2, and
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matrices A
[1]
i1

and A
[N ]
iN

are 1 × D and D × 1 matrices, respectively, so that the trace can be

omitted. More generally, D can be chosen differently across each link.

As it turns out, MPS are very well suited to describe ground states of one-dimensional quantum

systems. On the one hand, we have seen that by construction, these states all satisfy the area

law. On the other hand, it can be shown that all states which satisfy an area law, such as ground

states of gapped Hamiltonians [3], as well as states for which the entanglement of a block grows

slowly (such as for critical 1D systems), can be well approximated by an MPS [4, 3]: Given a

state |Φ〉 on a chain of length N for which the entropy of any block of length L is bounded by

Smax, S(ρL) ≤ Smax, there exists an MPS |ΨD〉 which approximates |Φ〉 up to error2

∣

∣ |Φ〉 − |ΨD〉
∣

∣ =: ǫ ≤ const×
N ecSmax

Dc
. (5)

Note that even if Smax grows logarithmically with N , the numerator is still a polynomial in N .

This is, in order to achieve a given accuracy ǫ, we need to choose a bond dimension D which

scales polynomially in N and 1/ǫ, and thus, the total number of parameters (and, as we will see

later, also the computation time) scales polynomially as long as the desired accuracy is at most

1/poly(N).

2.3 Tensor network notation

The defining equation (4) for Matrix Product States is a special case of a so-called tensor net-

work. Generally, tensor networks are given by a number of tensors Ai1,i2,...,iK , Bi1,i2,...,iK , etc.,

where each tensor usually only depends on a few of the indices. Then, one takes the product of

the tensors and sums over a subset of the indices,

ci1...ik =
∑

ik+1,...,iK

Ai1,i2,...,iKBi1,i2,...,iK · · · .

For instance, in (4) the tensors are the A[s] ≡ A
[s]
i,αβ, and we sum over the virtual indices

α, β, . . . , yielding

ci1...iN = tr
[

A
[1]
i1
A

[2]
i2
· · ·A

[N ]
iN

]

.

the bond |ωD〉 between them, it holds that

P1 ⊗ P2|ωD〉 =
∑

i1,i2,α,β

(A
[1]

i1
A

[2]

i2
)αβ |i1, i2〉〈α, β| ,

and iterating this argument through the chain.
2 Stricly speaking, this bound only follows from an area law for the Rényi entropy

Sα =
log tr[ρα]

1− α

for α < 1, with c in (5) depending on α [4], which also holds for gapped Hamiltonians [3]. The proof uses the fact

that a bound on the area law implies a fast decay of the Schmidt coefficients (i.e., the eigenvalues of the reduced

density operator), and thus, one can construct an MPS by sequentially doing Schmidt decompositions of the state

and discarding all but the largest D Schmidt coefficients [5, 4].
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Tensor networks are most conveniently expressed in a graphical language. Each tensor is de-

noted by a box with “legs” attached to it, where each leg corresponds to an index – a three-index

tensor A[s] ≡ A
[s]
i,αβ is then depicted as

.

Summing over a joint index is denoted by connecting the corresponding legs, e.g.,

.

In this language, the expansion coefficient ci1...iN [Eq. (1)] of an MPS (which we will further on

use interchangably with the state itself) is written as :

. (6)

We will make heavy use of this graphical language for tensor networks in the following.

2.4 Evaluating expectation values for MPS

As we have discussed at the end of Section 2.2, MPS approximate ground states of local Hamil-

tonians efficiently, as the effort needed for a good approximation scales only polynomially in

the length of the chain and the desired accuracy. Thus, it seems appealing to use the class of

MPS as a variational ansatz to simulate the properties of quantum many-body systems. How-

ever, to this end it is not sufficient to have an efficient description of relevant states – after all,

the Hamiltonian itself forms an efficient description of its ground state, but it is hard to extract

information from it! Rather, a good variational class also requires that we can efficiently extract

quantities of interest such as energies, correlation functions, and the like, and that there is an

efficient way to find the ground state (i.e., minimize the energy within the variational class of

states) in the first place.

Let us start by discussing how to compute the expectation value a local operator h (such as a

term in the Hamiltonian) for an MPS. To this end, note that

〈Ψ|h|Ψ〉 =
∑

i1,...,iN
j1,...,jN

c∗i1...iN cj1...jNδi1,j1 · · · δik−1,jk−1
h
jkjk+1

ikik+1
δik+2,jk+2

· · · δiN ,jN

where

h =
∑

ik,ik+1
jk,jk+1

h
jkjk+1

ikik+1
|ik, ik+1〉〈jk, jk+1|
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acts on sites k and k + 1. Using the graphical tensor network notation, this can be written as

. (7)

In order to evaluate this quantity, we have to contract the whole diagram (7). In principle,

contracting arbitrary tensor networks can become an extremely hard problem (strictly speaking,

PP-hard [6]), as in some cases it essentially requires to determine exponentially big tensors

(e.g., we might first have to compute ci1...iN from the tensor network and from it determine the

expectation value). Fortunately, it turns out that the tensor network of Eq. (7) can be contracted

efficiently, i.e., with an effort polynomial in D and N . To this end, let us start from the very

left of the tensor network in Eq. (7) and block the leftmost column (tensors A[1] and Ā[1]).

Contracting the internal index, this gives a two-index tensor

L
αα′

=
∑

i

A
[1]
iαĀ

[1]
iα′ ,

which we interpret as a (bra) vector with a “double index” αα′ of dimension D2. Graphically,

this can be denoted as

,

where we use a doubled line to denote the “doubled” index of dimension D2. We can now

continue this way, and define operators (called transfer operators)

(E[s])ββ
′

αα′ =
∑

i

A
[s]
i,αβĀ

[s]
i,α′β′

which we interpret as mapping the double index αα′ to ββ ′, and graphically write as

.

Similarly, we define operators

(8)

and

.
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All of these operators can be computed efficiently (in the parameters D and N), as they are

vectors/matrices of fixed dimension D2, and can be obtained by contracting a constant number

of indices.

Using the newly defined objects L, E, Eh, and R, the expectation value 〈Ψ|h|Ψ〉, Eq. (7), can

be rewritten as

〈Ψ|h|Ψ〉 = LE
[2] · · ·E[k−1]

EhE
[k+2] · · ·R

= .

This is, 〈Ψ|h|Ψ〉 can be computed by multiplying a D2-dimensional vector O(N) times with

D2 × D2 matrices. Each of these multiplication takes O(D4) operations, and thus, 〈Ψ|h|Ψ〉

can be evaluated in O(ND4) operations. There are O(N) terms in the Hamiltonian, and thus,

the energy 〈Ψ|
∑

i hi|Ψ〉/〈Ψ|Ψ〉 can be evaluated in time O(N2D4), and thus efficiently; in

fact, this method can be easily improved to scale as O(ND3).3 Similarly, one can see that e.g.

correlation functions 〈Ψ|Pi ⊗ Qj |Ψ〉 or string order parameters 〈Ψ|X ⊗ X ⊗ · · · ⊗ X|Ψ〉 can

be reduced to matrix multiplications and thus evaluated in O(ND3). Exactly the same way,

evaluating expectation values for MPS with periodic boundary conditions can be reduced to

computing the trace of a product of matrices E of size D2 × D2. Each multiplication scales

like O(D6), and using the same tricks as before, one can show that for systems with periodic

boundary conditions, expectation values can be evaluated in time O(ND5).

In summary, we find that energies, correlations functions, etc. can be efficiently evaluated for

MPS, with computation times scaling as O(ND3) and O(ND5) for open and periodic boundary

conditions, respectively.

2.5 Variational optimization of MPS

As we have seen, we can efficiently compute the energy of an MPS with respect to a given local

Hamiltonian H =
∑

i hi. In order to use MPS for numerical simulations, we still need to figure

out an efficient way to find the MPS which minimizes the energy for a given D. To this end,

let us first pick a site k, and try to minimize the energy as a function of A[k], while keeping all

other MPS tensors A[s], s 6= k, fixed. Now, since |Ψ〉 is a linear function of A[k], we have that

〈Ψ|H|Ψ〉

〈Ψ|Ψ〉
=

~A[k]†X ~A[k]

~A[k]†Y ~A[k]

is the ratio of two quadratic forms in A[k]. Here, ~A[k] denotes the vectorized version of A
[k]
i,αβ,

where (i, α, β) is interpreted as a single index. The matrices X and Y can be obtained by

contracting the full tensor network (7) except for the tensors A[k] and Ā[k], which can be done

3Firstly, one uses that the products L · · ·E[s] and E[s] · · ·R need to be computed only once (this can be sim-

plified even further by choosing the appropriate gauge [7, 8]), reducing the N -scaling to O(N). Secondly, one

slightly changes the contraction order: Starting from the left, one contracts A[1], Ā[1], A[2], Ā[2], A[3], etc.: This

involves multiplications of D×D matrices with D× dD matrices, and D×Dd matrices with Dd×D matrices,

yielding a O(dD3) scaling.
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efficiently. The ~A[k] which minimizes this energy can be found by solving the generalized

eigenvalue equation

X ~A[k] = E Y ~A[k]

where E is the energy; again, this can be done efficiently in D. For MPS with open boundary

conditions, we can choose a gauge4 for the tensors such that Y = 11 [7, 8] – this reduces the

problem to a usual eigenvalue problem, and avoids problems due to ill-conditioned Y .

This shows that we can efficiently minimize the energy as a function of the tensor A[k] at an

individual site k. In order to minimize the overall energy, we start from a randomly chosen

MPS, and then sweep through the sites, sequentially optimizing the tensor at each site. Itering

this a few times over the system (usually sweeping back and forth) quickly converges to a state

with low energy. Although in principle, such an optimization can get stuck [10, 11], in practice

it works extremely well and generally converges to the optimal MPS (though some care might

have to be put into choosing the initial conditions).

In summary, we find that we can use MPS to efficiently simulate ground state properties of

one-dimensional quantum systems with both open and periodic boundary conditions. This sim-

ulation method can be understood as a reformulation of the Density Matrix Renormalization

Group (DMRG) algorithm [12, 13], which is a renormalization algorithm based on keeping the

states which are most relevant for the entanglement of the system, and which since its invention

has been highly successful in simulating the physics of one-dimensional quantum systems (see

Refs. [7, 14] for a review of the DMRG algorithm and its relation to MPS).

3 Projected entangled pair states (PEPS)

3.1 PEPS for two-dimensional systems

As we have seen, MPS are very well suited for simulating ground state properties of one-

dimensional systems. But what if we want to go beyond one-dimensional systems, and, e.g.,

study interacting spin systems in two dimensions? Two-dimensional systems can exhibit a rich

variety of phenomena, such as topologically ordered states [15, 16], which are states distinct

from those in the trivial phase, yet which do not break any (local) symmetry. Moreover, two-

dimensional spin systems can be highly frustrated due to the presence of large loops in the

interaction graph, and even classical two-dimensional spin glasses can be hard to solve [17]. In

the following, we will focus on the square lattice without loss of generality.

4 MPS have a natural gauge degree of freedom, since for any Xs with a right inverse X−1

s , we can always

replace

A
[s]

i
↔ A

[s]

i
Xs

A
[s+1]

i
↔ X−1

s A
[s+1]

i

without changing the state; this gauge degree of freedom can be used to obtain standard forms for MPS with

particularly nice properties [9, 8].
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Fig. 4: PEPS construction for a 2D square lattice, where we have omitted the site-dependence

P ≡ Ps of the maps Ps.

A first idea to simulate two-dimensional systems would be to simply use an MPS, by choosing

a one-dimensional ordering of the spins in the two-dimensional lattice. While this approach has

been applied successfully (see, e.g., Ref. [18]), it cannot reproduce the entanglement features of

typical ground states in two dimensions as one increases the system size: As we have discussed

in Section 2.1, two-dimensional systems also satisfy an area law, i.e., in the ground state we

expect the entanglement of a region A with its complement to scale like its boundary, S(ρA) ∼

|∂A|. To obtain an ansatz with such an entanglement scaling, we follow the same route as in the

construction of MPS: We consider each site as being composed of four D-dimensional virtual

subsystems, place each of them in a maximally entangled state |ωD〉 with the corresponding

subsystem of each of the adjacent sites, and finally apply a linear map

Ps : C
D ⊗ C

D ⊗ C
D ⊗→C

d

at each site s to obtain a description of the physical state on a 2D lattice of d-level sytems. The

construction is illustrated in Fig. 4. Due to the way they are constructed, these states are called

Projected Entangled Pair States (PEPS). Again, we can define five-index tensors A[s] = A
[s]
i,αβγδ,

where now

Ps =
∑

iαβγδ

A
[s]
i,αβγδ|i〉〈α, β, γ, δ| ,

and express the PEPS in Fig. 4 graphically as a tensor network

(where we have omitted the tensor labels). Similar to the result in one dimension, one can show

that PEPS approximate ground states of local Hamiltonians well as long as the density of states

grows at most polynomially with the energy [19, 20], and thereby provide a good variational

ansatz for two-dimensional systems. (Note, however, that it is not known whether all 2D states

which obey an area law are approximated well by PEPS.)
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3.2 Contraction of PEPS

Let us next consider what happens if we try to compute expectation values of local observables

for PEPS. For simplicity, we first discuss the evaluation of the normalization 〈Ψ|Ψ〉, which is

obtained by sandwiching the ket and bra tensor network of |Ψ〉,

〈Ψ|Ψ〉 = . (9)

This can again be expressed using transfer operators

(the E should be thought of as being “viewed from the top”), leaving us with the task of con-

tracting the network

.

[This easily generalizes to the computation of expectation values, where some of the E have to

be modified similarly to Eq. (8)]. Different from the case of MPS, there is no one-dimensional

structure which we can use to reduce this problem to matrix multiplication. In fact, it is easy to

see that independent of the contraction order we choose, the cluster of tensors we get (such as a

rectangle) will at some point have a boundary of a length comparable to the linear system size.

This is, we need to store an object with a number of indices proportional to
√
N – and thus an

exponential number of parameters – at some point during the contraction, making it impossible

to contract such a network efficiently. (Indeed, it can be proven that such a contraction is a

computationally hard problem [6].)

This means that if we want to use PEPS for variational calculations in two dimensions, we have

to make use of some approximate contraction scheme, which of course should have a small and

ideally controlled error. To this end, we proceed as follows [21]: Consider the contraction of a
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two-dimensional PEPS with open boundary conditions,

. (10)

Now consider the first two columns, and block the two tensors in each column into a new tensor

F (with vertical bond dimension D4):

. (11)

This way, we have reduced the number of columns in (10) by one. Of course, this came at the

cost of squaring the bond dimension of the first column, so this doesn’t help us yet. However,

what we do now is to approximate the right hand side of (11) by an MPS with a (fixed) bond

dimension αD2 for some α. We can then iterate this procedure column by column, thereby

contracting the whole PEPS, and at any point, the size of our tensors stays bounded. It remains

to be shown that the elementary step of approximating an MPS |Φ〉 [such as the r.h.s. of (11)]

by an MPS |Ψ〉 with smaller bond dimension can be done efficiently: To this end, it is sufficient

to note that the overlap 〈Φ|Ψ〉 is linear in each tensor A[s] of |Ψ〉, and thus, maximizing the

overlap
∣

∣〈Φ|Ψ〉
∣

∣

2

〈Ψ|Ψ〉

can again be reduced to solving a generalized eigenvalue problem, just as the energy minimiza-

tion for MPS in the one-dimensional variational method. Differently speaking, the approxi-

mate contraction scheme succeeds by reducing the two-dimensional contraction problem to a

sequence of one-dimensional contractions, i.e., it is based on a dimensional reduction of the

problem.

This shows that PEPS can be contracted approximately in an efficient way. The scaling in D

is naturally much less favorable than in one dimension, and for the most simple approach one

finds a scaling of D12 for open boundaries, which using several tricks can be improved down to

D8. Yet, the method is limited to much smaller D as compared to the MPS ansatz. It should be
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noted that the approximate contraction method we just described has a controlled error, as we

know the error made in in each approximation step. Indeed, the approximation is very accurate

as long as the system is short-range correlated, and the accuracy of the method is rather limited

by the D needed to obtain a good enough approximation of the ground state. Just as in one

dimension, we can use this approximate contraction method to build a variational method for

two-dimensional systems by successively optimizing over individual tensors [21].

3.3 Extensions of PEPS

The PEPS construction is not limited to square lattices, but can be adapted to other lattices,

higher dimensions, and even arbitrary interaction graphs. Clearly, the approximate contraction

scheme we just presented works for any two-dimensional lattice, and in fact for any planar

graph. In order to approximately contract systems in more than two dimensions, note that

the approximate contraction scheme is essentially a scheme for reducing the dimension of the

problem by one; thus, in order to contract e.g. three-dimensional systems we can nest two layers

of the scheme. In cases with a highly connected PEPS graph (e.g., when considering systems

with highly connected interaction graphs such as orbitals in a molecule), one can of course still

try to find a sequential contraction scheme, though other contraction methods might be more

promising.

The contraction method described in Section 3.2 is not the only contraction scheme for PEPS.

One alternative method is based on renormalization ideas [22–24]: There, one takes blocks of

e.g. 2 × 2 tensors and tries to approximate them by a tensor with lower bond dimension by the

appropriate truncation,

.

Finding the best truncation scheme requires exact knowledge of the environment, i.e., the con-

traction of the remaining tensor network. Since this is as hard as the original problem, heuristic

methods to approximate the environment (such as to only contract a small number of surrond-

ing tensors exactly, and imposing some boundary condition beyond that) have been introduced.

While these approximations are in principle less accurate and the error is less controlled, their

more favorable scaling allows for larger D and thus potentially better approximations of the

ground state.

Another approach to speed up PEPS contraction is using Monte Carlo sampling [25–27]: We

can always write
〈Ψ|O|Ψ〉

〈Ψ|Ψ〉
=

∑

i

p(i)
〈i|O|Ψ〉

〈i|Ψ〉
, (12)

where the sum runs over an orthonormal basis |i〉, and p(i) = |〈i|Ψ〉|2/〈Ψ|Ψ〉; in particular, we

want to consider the local spin basis i = (i1, . . . , iN). If we can compute 〈i|Ψ〉 and 〈i|O|Ψ〉

(where the latter reduces to the former if O is a local operator), then we can use Monte Carlo
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sampling to approximate the expectation value 〈Ψ|O|Ψ〉. In particular, for PEPS 〈i|Ψ〉 can

again be evaluated by contracting a two-dimension tensor network; however, this network now

has bond dimension D rather than D2. Thus, we can apply any of the approximate contraction

schemes described before, but we can go to much larger D with the same computational re-

sources; it should be noted, however, that the number of operations needs to be multiplied with

the number M of sample points taken, and that the accuracy of Monte Carlo sampling improves

as 1/
√
M .

4 Simulating time evolution and thermal states

Up to now, our discussion has been focused on ground states of many-body systems. How-

ever, the techniques described here can also be adapted to simulate thermal states as well as

time evolution of systems governed by local Hamiltonians. In the following, we will discuss

the implementation for one-dimensional systems; the generalization to to 2D and beyond is

straightforward.

Let us start by discussing how to simulate time evolutions. (This will also form the basis for

the simulation of thermal states.) We want to study how an initial MPS |Ψ〉 changes under the

evolution with eiHt; w.l.o.g., we consider H to be nearest neighbor. To this end, we perform a

Trotter decomposition

eiHt ≈
(

eiHevent/MeiHoddt/M
)M

where we split H = Heven+Hodd into even and odd terms (acting between sites 12, 34, . . . , and

23, 45, . . . , respectively), such that both Heven and Hodd are sums of non-overlapping terms.

For large M , the Trotter expansion becomes exact, with the error scaling like O(1/M). We can

now write

eiHevenτ =
⊗

i=1,3,5,...

eihi,i+1τ =

(with τ = t/M), and similarly for eiHoddτ . Thus, after one time step τ the initial MPS is

transformed into

.

Here, the lowest line is the initial MPS, and the next two lines the evolution by Heven and Hodd

for a time τ , respectively. We can proceed this way and find that the state after a time t is

described as the boundary of a two-dimensional tensor network. We can then use the same

procedure as for the approximate contraction of PEPS (proceeding row by row) to obtain an

MPS description of the state at time t [5]. A caveat of this method is that this only works well

as long as the state has low entanglement at all times, since only then, a good MPS approx-

imation of the state exists [4, 28]. While this holds for low-lying excited states with a small

number of quasiparticles, this is not true after a quench, i.e., a sudden change of the overall
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Hamiltonian of the system [29, 30]. However, this does not necessarily rule out the possibil-

ity to simulate time evolution using tensor networks, since in order to compute an expectation

value 〈Ψ|e−iHtOeiHt|Ψ〉, one only needs to contract a two-dimensional tensor network with no

boundary, which can not only be done along the time direction (row-wise) but also along the

space direction (column-wise), where such bounds on the correlations do not necessarily hold;

indeed, much longer simulations times have be obtained this way [31].

In the same way as real time evolution, we can also implement imaginary time evolution; and

since e−βH acting on a random initial state approximates the ground state for β → ∞, this can

be used as an alternative algorithm for obtaining MPS approximations of ground states.

In order to simulate thermal states, we use Matrix Product Density Operators (MPDOs) [32]

ρ =
∑

i1,...,iN
j1,...,jN

tr[A
[1]
i1,j1 · · ·A

[N ]
iN ,jN

]|i1, . . . , iN〉〈j1, . . . , jN |

= ,

where each tensor A[s] now has two physical indices, one for the ket and one for the bra layer.

We can then write the thermal state as

e−βH = e−βH/211e−βH/2

and use imaginary time evolution (starting from the maximally mixed state 11 which has a triv-

ial tensor network description) and the Trotter decomposition to obtain a tensor network for

e−βH , which can again be transformed into an MPDO with bounded bond dimension using

approximate contraction [32].

5 Other tensor network ansatzes

There is a number of other entanglement based ansatzes beyond MPS and PEPS for interacting

quantum systems, some of which we will briefly sketch in the following.

Firstly, there is the Multiscale Entanglement Renormalization Ansatz (MERA) [33], which is an

ansatz for scale invariant systems (these are systems at a critical point where the Hamiltonian

is gapless, and which have algebraically decaying correlation functions), and which incorpo-

rates the scale-invariance in the ansatz. A first step towards a scale-invariant ansatz would be

to choose a tree-like tensor network. However, such an ansatz will not have sufficient entangle-

ment between different blocks. Thus, one adds additional disentanglers which serve to remove

the entanglement between different blocks, which gives rise to the tensor network shown in

Fig. 5. In order to obtain an efficiently contractible tensor network, one chooses the tensors to

be unitaries/isometries in vertical direction, such that each tensor cancels with its adjoint. It is

easy to see that this way for any local O, in the tensor network for 〈Ψ|O|Ψ〉 most tensors cancel,

and one only has to evaluate a tensor network of the size of the depth of the MERA, which is
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Fig. 5: The Multi-Scale Entanglement Renormalization Ansatz (MERA) in 1D. (The left and

right boundary are connected.)

logarithmic in its length [33]. The MERA ansatz is not restricted to one dimension and can also

be used to simulate critical system in 2D and beyond [34].

A different variational class is obtained by studying states for which expectation values can be

computed efficiently using Monte Carlo sampling. Following Eq. (12), this requires (for local

quantities O) that we can compute 〈i|Ψ〉 efficiently for all i = (i1, . . . , iN). One class of states

for which this holds is formed by MPS, which implies that we can evaluate expectation values

for MPS using Monte Carlo sampling [26, 25] (note that the scaling in D is more favorable

since 〈i|Ψ〉 can be computed in time ∝ ND2). This can be extended to the case where 〈i|Ψ〉

is a product of efficiently computable objects, such as products of MPS coefficients defined

on subsets of spins: We can arrange overlapping one-dimensional strings in a 2D geometry

and associate to each of them an MPS, yielding a class known as string-bond states [25, 35],

which combines a flexible geometry with the favorable scaling of MPS-based methods. We

can also consider 〈i|Ψ〉 to be a product of coefficients each of which only depends on the spins

ik supported on a small plaquette, and where the lattice is covered with overlapping plaquettes,

yielding a family of states known as Entangled Plaquette States (EPS) [36] or Correlator Product

States (CPS) [37], which again yields an efficient algorithm with flexible geometries. In all of

these ansatzes, the energy is minimized by using a gradient method, which is considerably

facilitated by the fact that the gradient can be sampled directly without the need to first compute

the energy landscape.

In order to simulate infinite lattices, it is possible to extend MPS and PEPS to work for infinite

systems: iMPS and iPEPS. The underlying idea is to describe the system by an infinite MPS

and PEPS with a periodic pattern of tensors such as ABABAB. . . (which allows the system to

break translational symmetry and makes the optimization more well-behaved). Then, one fixes

all tensors except for one and minimizes the energy as a function of that tensor until convergence

is reached. For the optimization, one needs to determine the dependence of the energy on the
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selected tensor, which can be accomplished in various ways, such as using the fixed point of

the transfer operator, renormalization methods (cf. Section 3.3), or the corner transfer matrix

approach. For more information, see, e.g., [38–40].

6 Simulation of fermionic sytems

Up to now, we have considered the simulation of spin systems using tensor networks. On

the other hand, in many cases of interest, such as for the Hubbard model or the simulation of

molecules, the underlying systems are fermionic in nature. In the following, we will discuss

how tensor network methods such as MPS, PEPS, or MERA can be extended to the simulation

of fermionic systems.

In order to obtain a natural description of fermionic systems, the idea is to replace each object

(i.e., tensor) in the construction of MPS, PEPS, or MERA by fermionic operators [41–43]. This

is, in the construction of MPS and PEPS, Fig. 3 and Fig. 4, both the maximally entangled bonds

and the Ps are now built from fermionic operators and need to preserve parity; equally, in the

MERA construction, Fig. 5, all unitaries and isometries are fermionic in nature. The resulting

states are called fermionic PEPS (fPEPS) and fermionic MERA (fMERA).

Let us now have a closer look at a fermionic tensor network, and discuss how to compute

expectation values for those states. E.g., the fPEPS construction yields a state

(P1 ⊗ P2 ⊗ · · · )(ω1 ⊗ ω2 ⊗ · · · )|Ω〉 ,

where |Ω〉 is the vacuum state, the ωi create entangled fermionic states between the correspond-

ing auxiliary modes, and the Ps map the auxiliary fermionic modes to the physical fermionic

modes at site s (leaving the auxiliary modes in the vacuum). While the product of the ωi contains

only auxiliary mode operators in a given order, the product of the Ps contains the physical and

auxiliary operators for each site grouped together. To compute expectation values, on the other

hand, we need to move all the physical operators to the left and the virtual operators to the right

in the product of the Ps; additionally, the virtual operators have to be arranged such that they

cancel with the ones arising from the product of the ωi. Due to the fermionic anti-commutation

relations, this reordering of fermionic operators results in an additional complication which

was not present for spin systems. Fortunately, it turns out that there are various ways how to

take care of the ordering of fermionic operators at no extra computational cost: One can use

a Jordan-Wigner transformation to transform the fermionic system to a spin system [41, 43];

one can map the fPEPS to a normal PEPS with one additional bond which takes care of the

fermionic anticommutation relations [42]; or one can replace the fermionic tensor network by

a planar spin tensor network with parity preserving tensors, where each crossing of lines [note

that a planar embedding of a network such as the 2D expectation value in Eq. (9) gives rise to

crossings of lines, which corresponds to the reordering of fermionic operators] is replaced by a

tensor which takes care of the anticommutation rules [44, 45].



16.18 Norbert Schuch

7 Summary

In this lecture, we have given an overview over entanglement-based ansatzes for the descrip-

tion and simulation of quantum many-body systems. We started by discussing the area law for

the entanglement entropy which is obeyed by ground states of local interactions, and used this

to derive the Matrix Product State (MPS) ansatz which is well suited to describe the physics

of such systems. We showed that the one-dimensional structure of MPS allows for the effi-

cient evaluation of expectation values, and that this can be used to build a variational algorithm

for the simulation of one-dimensional systems. We have then discussed Projected Entangled

Pair States (PEPS), which naturally generalize MPS and are well suited for the description of

two-dimensional systems, and we have shown how approximation methods can be used to im-

plement efficient PEPS based simulation. We have also demonstrated that MPS and PEPS can

be used to simulate the time evolution and thermal states of systems governed by local Hamil-

tonians. Finally, we have discussed other tensor network based approaches, such as MERA for

scale-invariant systems or iMPS and iPEPS for infinite sytems, and concluded with a discussion

on how to apply tensor network methods to fermionic systems.

At the end, let us note that while we have focused on Tensor Networks in the context of nu-

merical simulations, these ansatzes also serve as powerful analytical tools. To name just a few,

MPS and PEPS can be used to build exactly solvable models (most prominently, the AKLT

model [46]), where a given MPS or PEPS arises as the exact ground state of a local Hamil-

tonian [9, 47, 48], and they serve as a framework to understand entanglement properties of

quantum states and thus to classify quantum phases, such as topological phases [49] and sym-

metry protected phases [50–53], thereby going beyond the framework of Landau theory which

can be understood using product states, i.e., MPS with D = 1.
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character table, 6.8
characters, 6.7
characters orthogonality relations, 6.7
charge Kondo effect, 11.22
charge transfer, 8.19
classic MEM, 13.12
coherent potential approximation CPA,

10.5, 10.18
constrained DFT, 4.15, 9.8, 10.17
constrained RPA, 9.9

continued fraction, 12.6
controlled NOT gate, 15.4
core level spectroscopy, 8.22, 9.13
correlated electron systems, 1.3
correlation energy, 4.2
correlation in band semiconductors, 4.31
correlator product states (CPS), 16.16
Coulomb exchange, 7.4
Coulomb integral, 6.4, 7.4, 8.5, 9.8, 9.18
crystal field, 2.12, 6.4, 6.14, 8.14

D

default model, 13.5, 13.14, 13.20
density matrix renormalization group

(DMRG), 16.9
DFT, 1.6, 4.2

constrained, 4.15, 9.8, 10.17
cut off, 9.9

diagonal sum-rule, 8.10
diagrammatic technique, 1.11
direct exchange, 7.8
direct product, 6.10
distillable entanglement, 15.10
double exchange, 7.18
double-counting, 4.3, 4.10, 6.3, 9.2
downfolding, 3.4, 7.9, 7.29, 9.4
dual-fermion scheme, 1.7
dynamical mean-field theory (DMFT),

1.6, 4.10, 11.17
impurity solver, 11.13, 11.18
local approximation, 11.18

Dyson equation, 10.13

E

Einstein-Podolsky-Rosen state, 15.3
electric field gradients, 10.14
electron affinity, 4.8, 4.15
electron-phonon interaction, 9.19
electronic structure, 3.2
EMTO, 3.4
energy derivative, 4.19
entangled plaquette states (EPS), 16.16
entanglement, 7.9, 15.3

concentration, 15.9
dilution, 15.10

1
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distillation, 15.10
entanglement cost, 15.10
entanglement of formation, 15.11
exact diagonalization, 8.7
exchange

Coulomb, 7.4
direct, 7.8
double, 7.18
ferromagnetic superexchange, 7.16
kinetic, 7.7
orbital, 7.21
superexchange, 7.13

exchange integral, 4.6, 7.4, 8.5
extended Hubbard model, 4.26

F

FeAs superconductors, 4.7, 5.21
Fermi liquid, 11.10

local, 11.19
Fermi surface, 2.8, 5.14
fermionic

MERA (fMERA), 16.17
PEPS (fPEPS), 16.17
tensor networks, 16.17

fixed point, 12.18
formation energy, 10.10
Fredholm equation, 14.2
fullerenes, 9.16
functional discontinuity, 4.16
functional integral, 1.4
fundamental gap, 4.8, 4.15

G

Gaunt coefficient, 8.5
Goodenough-Kanamori rules, 7.17, 7.19
Green function, 1.4, 3.19, 14.2

two-particle, 1.5
group, 6.5
group of the wavevector, 6.26
Gutzwiller

approximation, 5.9
density-functional theory, 5.24
wave function, 5.6
multi-band, 5.7

Gutzwiller theory
time-dependent, 5.27

gyromagnetic ratio, 7.2

H

Hadamard gate, 15.4
Hartree-Fock, 4.8, 5.6, 5.20, 7.12
Heavy Fermions, 11.17
Heisenberg model, 7.25, 10.18
Hellmann-Feynman theorem, 10.12
historic MEM, 13.12
hopping integral, 9.7, 9.13
Hubbard U , 4.4, 4.6

breathing, 9.10
comparison, 9.11
constrained DFT, 4.15, 9.8, 10.17
constrained RPA, 4.15, 9.9
linear response, 4.15
perfect screening, 9.8

Hubbard model, 4.2, 5.6, 5.15, 7.23
Hund’s rules, 5.6, 7.6, 8.3
hybridization, 4.27
hybridization function, 1.7, 12.5

I

ill-posed problem, 14.3
imaginary time evolution, 16.15
impurity problem, 1.7
impurity solver, 1.11
infinite

Matrix Product States (iMPS), 16.16
Projected Entangled Pair States (iPEPS),

16.16
infinite spatial dimensions, 5.9
inter-site interaction, 4.26
inverse photoemission, 9.13
ionization potential, 4.8, 4.15
irreducible representation, 6.7
iterative diagonalization, 12.2, 12.14
itinerant ferromagnetism, 5.16

J

Jahn-Teller effect, 6.30
Jahn-Teller phonons, 9.20
Jastrow wave functions, 5.6

K

KCuF3, 6.19, 6.24, 6.27, 6.34
kinematics, 15.2
kinetic exchange, 7.7
KKR, 3.13
KKR-GF method, 10.2
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Knight shift, 10.15
Kohn-Sham equations, 5.3

Green function approach, 10.2
renormalized, 5.25

Kohn-Sham states, 4.4
Kondo

effect, 11.2, 11.14, 12.2, 12.7, 12.21
resonance, 11.20
single-electron transistor, 11.21
temperature, 11.4, 11.12, 12.2, 12.20

Kondo model
definition, 11.2
infrared divergency, 11.3, 11.7, 11.12
overcompensated, 11.15
resistance minimum, 11.3
two channel, 11.15, 11.16, 11.23
undercompensated, 11.15

Kramers degeneracy, 6.21
Kugel-Khomskii mechanism, 7.21

L

LaMnO3, 6.34
LDA+DMFT, 3.24, 6.4
LDA+U, 4.3, 4.4

calculation of forces, 4.19
calculation of phonons, 4.22
calculation of stress, 4.20

least-squares fit, 14.4
ligand field, 6.14, 6.28
likelihood function, 13.6, 14.6
linear muffin-tin orbitals, 3.2
Lloyd’s formula, 10.8
local density of states, 10.4
local-moment fixed point, 12.19
localized basis set, 4.13
logarithmic discretization, 12.2, 12.8
LSDA, 2.5

M

manganites, 2.10
matrix product

density operator (MPDO), 16.15
states (MPS), 16.4

Matsubara representation, 14.2
maximally localized Wannier functions,

3.27
maximum entropy method (MEM), 13.3,

14.8

Bryan’s method, 13.15
classic, 13.12
historic, 13.12

metal-insulator transition, 7.24
minimal basis-set, 3.4
mixed state, 15.3
model parameters, 9.2, 9.8
Monte Carlo, 16.13, 16.16
Mott insulator, 4.2
Mott transition, 7.23
multi-band Hubbard models, 5.4
multiple-scattering theory, 3.13, 10.7
multiplet, 7.6
multiscale entanglement renormalization

ansatz (MERA), 16.15

N

NEXAFS, 8.22
NMTO, 3.4
non-collinear magnetism, 2.5
numerical renormalization group (NRG),

11.13, 11.20, 12.2

O

OMTA, 3.8
orbital-ordering, 6.33, 7.21
over-fit of data, 14.5

P

partition function, 1.4
path integral formulation, 1.12
Pauli matrices, 7.30
periodic Anderson model (PAM), 11.17
phonon dispersion curves, 4.22, 10.14
photoemission, 8.20, 9.13, 9.21
point group operations, 6.11
potential discontinuity, 4.8
prior knowledge, 13.4, 14.6, 14.8
project out states, 9.5
projected entangled pair states (PEPS),

16.10
projection scheme, 1.16

Q

quantum
circuit, 15.4
logic gates, 15.4
measurement, 15.4
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quantum impurity systems, 12.2
quantum information theory, 15.2
quantum Monte Carlo, 1.6

continuous-time (CT-QMC), 1.12
strong-coupling (CT-HYB), 1.14
weak-coupling (CT-INT), 1.12

qubit, 15.2

R

Racah parameters, 5.23, 8.12
Raman scattering, 9.22
random alloys, 10.18
real harmonics, 6.36
reduced matrix element, 8.17
reference system, 10.5
regularization, 14.3

Tikhonov-Phillips, 14.7
remote state preparation (RSP), 15.6
renormalization group, 11.7

β-function, 11.12, 11.15
fixed point, definition, 11.9
poor man’s scaling, 11.7, 11.11
strong-coupling fixed-point, 11.12
transformation, 11.8

renormalization group flow, 11.11, 12.14
renormalization of parameters, 9.2, 9.8,

9.11
renormalized Kohn-Sham equations, 5.25
representation, 6.7
resolvent, 3.18
rotational invariance, 4.5, 4.11, 4.14

S

sawtooth noise, 14.4
scale invariance, 16.15
Schrieffer-Wolff transformation, 11.6
screening

breathing, 9.10
comparison, 9.11
contrained DFT, 10.17
perfect, 9.8
RPA, 9.9

second quantization, 7.10
self-interaction, 4.8
semi-infinite chain, 12.2, 12.6, 12.11
single-electron transistor, 11.21
single-impurity Anderson model, 12.3
Slater integral, 4.6

Slater’s rules, 9.10
Slater-Condon parameters, 8.10
Slater-Koster two-center integrals, 6.38
Slater-Pauling curve, 10.21
space group, 6.12
spectral function, 8.21, 14.4
spectral representation, 10.3
spin-orbit coupling, 6.20, 8.13
Sr2RuO4, 2.17
SrMnO3, 2.10, 2.14
SrRuO3, 2.17
SrTcO3, 2.15
star of the k point, 6.26
stochastic optimization method, 14.10
stochastic sampling methods, 14.8
Stoner theory, 2.19, 5.18
string-bond states (SBS), 16.16
strong fluctuations, 1.3
strong-coupling fixed point, 12.19
superexchange, 2.13, 7.13
susceptibility, 1.5
symmetry and band gap, 4.5
symmetry breaking, 4.9

T

Tanabe-Sugano diagrams, 8.16
teleportation, 15.2
tensor network, 16.5
tensor operator, 8.16
thermal states, 16.15
tight-binding, 5.4, 6.21
Tikhonov-Phillips regularization, 14.7
time evolution, 16.14
tolerance factor, 2.15
transfer operator, 16.7, 16.11
transition-metal oxides, 2.9, 6.3

vibrational properties, 4.24
Trotter decomposition, 16.14
truncation, 12.16
two-particle spin-singlet, 15.7

V

valence-band photoemission, 8.20
virtual crystal approximation VCA, 10.21
von Neumann entropy, 15.9

W

Wannier functions, 3.2, 4.13, 6.3
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Wannier orbitals, 3.24
Wigner-Eckart theorem, 8.16
Wilson chain, 12.11

X

X-ray absorption, 8.22
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