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8.2 Robert Eder

1 Introduction

Compounds containing 3d transition metal – or iron group – ions have been intriguing solid state

physicists ever since the emergence of solid state physics as a field of research. In fact, already

in the 1930’s NiO became the first known example of a correlated insulator in that it was cited

by deBoer and Verwey as a counterexample to the then newly invented Bloch theory of electron

bands in solids [1]. During the last 25 years 3d transition metal compounds have become one of

the central fields of solid state physics, following the discovery of the cuprate superconductors,

the colossal magnetoresistance phenomenon in the manganites and, most recently, the iron-

pnictide superconductors.

It was conjectured early on that the reason for the special behaviour of these compounds is the

strong Coulomb interaction between electrons in the partially filled 3d shells of the iron group

elements. These 3d wave functions are orthogonal to those of the inner-shells – 1s, 2s and 2p

– solely due to their angular part Y2,m(Θ, φ). Their radial part R3,2(r) thus is not pushed out

to regions far from the nucleus by the requirement to be orthogonal to the inner shell wave

functions and therefore is concentrated close to the nucleus (the situation is exactly the same

for the 4f wave functions in the Rare Earth elements). Any two electrons in the 3d shell thus

are forced to be close to each other on average so that their mutual Coulomb repulsion is strong

(the Coulomb repulsion between two 3d electrons is weak, however, when compared to the

Coulomb force due to the nucleus and the inner shells so that the electrons have to stay close to

one another!). For clarity we also mention that the Coulomb repulsion between two electrons

in the inner shells of most heavier elements is of course much stronger than between the 3d

electrons of the iron group elements. This, however, is irrelevant because these inner shells are

several 100 - 1000 eV below the Fermi energy so that they are simply completely filled. The

3d-orbitals in the iron group elements or the 4f -orbitals in the Rare Earths on the other hand

participate in the bands at the Fermi level so that the strong Coulomb interaction in these orbitals

directly influences the conduction electrons. This is why the Coulomb repulsion in these shells

dominates the physical properties of these compounds and gives rise to such a wide variety of

interesting phenomena. Let us therefore discuss the Coulomb interaction in a partially filled

atomic shell in more detail.

2 Multiplets of a free ion

2.1 General considerations

For definiteness we consider NiO. The atomic electron configurations are [Ar]3d84s2 for Nickel

and [He]2s22p4 for Oxygen. In a purely ionic picture the oxgen atom will want to fill its 2p shell

and become O2−, rendering Ni to be Ni2+ with electron configuration [Ar]3d8. Accordingly let

us first consider a Ni2+ ion in vacuum. It is a standard exercise in textbooks of atomic physics to

show that the d8 configuration, which is equivalent to d2, has the following multiplets: 3F , 3P ,
1G, 1D and 1S. The energies of these multiplets differ and can be observed experimentally, e.g.,
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in the spectrum of Ni vapor. The first two Hund’s rules state that the multiplet with the lowest

energy, i.e., the ground state of the Ni2+ ion, is 3F . Then we may ask: what is the physical

mechanism that leads to the multiplet splitting and makes 3F the ground state? The answer is

that it is the Coulomb repulsion between 3d electrons which splits the multiplets energetically

and enforces the first two Hund’s rules. When being asked for the energy of the dn configuration

one might give be tempted to give the following answer:

E[dn] ≈ n · ǫd + U · n(n− 1)

2
.

The first term, where ǫd is the energy of the d-orbital, is the single-particle energy. The sec-

ond term obviously counts the number of electron pairs and multiplies them by the parameter

U which accordingly has the meaning of an average Coulomb repulsion energy between two

electrons. For a non-degenerate orbital, instead of the five-fold degenerate d-orbital, n can take

only the values 0, 1 and 2, with corresponding Coulomb energies 0, 0 and U . In this case the

second term therefore reduces to the expression Un↑n↓ familiar from the Hubbard or Anderson

model.

In a degenerate situation, however, the Coulomb interaction between electrons has additional

aspects. Let us first consider a classical picture where the electrons are taken as charged mass

points orbiting around the nucleus. In this case the Colomb force Fij acting on electron i due

to electron j in general is not parallel to the position vector ri of electron i and thus exerts

a nonvanishing torque τij = ri × Fij . This means that the angular momentum of any given

electron changes constantly but since Fij = −Fji = f(|ri − rj|) (ri − rj) it is easy to see

that τij = −τji so that the two electrons i and j merely ‘exchange angular momentum’ and the

total angular momentum is conserved. The quantum mechanical version of this exchange of

angular momentum is shown in Fig. 1: The 8 d-electrons are initially distributed over the 5 d-

orbitals which are labeled by them-value in the angular part of their wave functions, Y2,m(Θ, φ).

Then, two electrons scatter from each other due to their Coulomb interaction and after the

scattering find themselves in orbitals with a different m-value. The sum over the m-values of

the occupied orbitals, which gives the z-component of the total orbital angular momentum Lz,

must remain constant during the scattering process so that the two scattering electrons move

!" # !" $ !"% !"$ !"#

Fig. 1: A scattering process between two electrons in a partly filled d-shell.
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along the ‘m-ladder’ in opposite direction and by an equal number of steps. The single particle

energy of the electrons, which is 8ǫd in Fig. 1, is unchanged by the scattering. This means that

scattering processes of the type shown in Fig. 1 connect all states with a given z-component

of the total spin and orbital angular momentum and all of these states are degenerate with

respect to their single particle energy. If we think of an unperturbed Hamiltonian H0 which

consists of the single particle energies of the various levels and consider the Coulomb interaction

between the 3d electrons as perturbation H1 we have exactly the situation of degenerate first

order perturbation theory. The textbook procedure then is to set up the secular determinant, i.e.,

the matrix 〈µ|H1|ν〉 where |µ〉 and |ν〉 run over the set of degenerate eigenstates of H0, and

diagonalize this.

To formulate this in a more quantitative fashion we first introduce Fermionic creation (and an-

nihilation) operators c†n,l,m,σ which create an electron with z-component of spin σ in the orbital

with principal quantum number n, orbital angular momentum l, and z-component of orbital

angular momentum m. In the following we will often contract (n, l,m, σ) to the ‘compound

index’ ν for brevity, so that e.g. c†νi = c†ni,li,mi,σi
. In our case the degenerate states |ν〉 can be

written as

|ν〉 = |ν1, ν2 . . . νn〉 = c†ν1c
†
ν2 . . . c

†
νn |0〉. (1)

In the case of a partly filled 3d-shell all ni = 3 and all li = 2 identically, so that these two indices

could be omitted, but we will keep them for the sake of later generalizations. In writing the basis

states as in (1) we need to specify an ordering convention for the creation operators on the right

hand side. For example, only states are taken into account where m1 ≤ m2 ≤ m3 · · · ≤ mn.

Moreover, if two mi are equal the c†mi↓
-operator is assumed to be to the left of the c†mi↑

-operator.

If we adopt this convention, every possible state obtained by distributing the n electrons over

the 2(2l + 1) spin-orbitals is included exactly once in the basis. If the ni and li were to take

different values we could generalize this by demanding that the (ni, li, mi)-triples be ordered

lexicographically. As will be seen below, strict application of an ordering convention for the

Fermi operators is necessary to determine the correct Fermi signs for the matrix elements. In

second quantization the Coulomb Hamiltonian H1 then reads (in atomic units)

H1 =
1

2

∑

i,j,k,l

V (νi, νj , νk, νl) c
†
νi
c†νjcνkcνl,

V (ν1, ν2, ν3, ν4) =

∫

dx

∫

dx′ ψ∗
ν1
(x) ψ∗

ν2
(x′) Vc(x, x

′) ψν4
(x) ψν3

(x′),

Vc(x, x
′) =

1

|r − r′| . (2)

Here x = (r, σ) is the combined position and spin coordinate and Vc is the Coulomb interaction

between electrons. Note the factor of 1/2 in front of H1 and the correspondence of indices and

integration variables ν4 ↔ x and ν3 ↔ x′ in the Coulomb matrix element, see textbooks of

many-particle physics such as Fetter-Walecka [2]. In the next paragraph we will calculate the

matrix elements V (ν1, ν2, ν3, ν4).
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2.2 Calculation of the Coulomb matrix elements

First, we use the fact that the single-particle basis we are using consists of atomic spin-orbitals

so if we parameterize the vector r by its polar coordinates (r, Θ, φ) we have

ψνi(x) = Rni,li(r) Yli,mi
(Θ, φ) δσ,σi

. (3)

The radial wave functions Rni,li are assumed to be real, as is the case for the true radial wave

function of bound states in a central potential. Apart from this we do not really specify them.

In fact, it would be rather difficult to give a rigorous prescription for their determination. It will

turn out, however, that these radial wave functions enter the matrix elements only via a discrete

and rather limited set of numbers which are very often obtained by fit to experiment.

In addition to (3), we use the familiar multipole expansion of the Coulomb interaction

1

|r − r′| =

∞
∑

k=0

k
∑

m=−k

Y ∗
k,m(Θ

′, φ′)
4π

2k + 1

rk<
rk+1
>

Yk,m(Θ, φ). (4)

We now evaluate the matrix element V (ν1, ν2, ν3, ν4) and first note that the sum over spin vari-

ables simply gives the prefactor δσ1,σ4
δσ2,σ3

. Next we pick one term with given k and m from

the multipole expansion (4) and proceed to the integration over the spatial variables (r, Θ, φ)

and (r′, Θ′, φ′). Let us first consider the angular variables (Θ, φ). Obviously these always come

as arguments of spherical harmonics and there is one from ψ∗
ν1(x), i.e., the bra, one from the

multipole expansion (4), i.e., H1, and one from ψν4(x), i.e., the ket. We thus find a factor of

∫ 2π

0

dφ

∫ 1

−1

dcos(Θ) Y ∗
l1,m1

(Θ, φ) Yk,m(Θ, φ) Yl4,m4
(Θ, φ) (5)

Such a dimensionless integral over three spherical harmonics is called a Gaunt coefficient and

can be shown to be proportional to a Clebsch-Gordan coefficient [3,4]. An interesting property

can be seen if we note the φ-dependence of Yl,m(Θ, φ) = Pl,m(Θ) e
imφ whence we find that the

Gaunt coefficient (5) is different from zero only if m1 = m4 +m. Moreover, the Θ-dependent

factors Pl,m(Θ) are all real [3,4], so that all nonvanishing Gaunt coefficients are real. In exactly

the same way the integration over (Θ′, φ′) gives

∫ 2π

0

dφ′

∫ 1

−1

dcos(Θ′) Y ∗
l2,m2

(Θ′, φ′) Y ∗
k,m(Θ

′, φ′) Yl3,m3
(Θ′, φ′), (6)

which by similar arguments is different from zero only if m2 + m = m3. Since (5) and (6)

must be different from zero for the same m in order to obtain a nonvanishing contribution we

must have m1 +m2 = m3 +m4. This is simply the condition, stated already above, that Lz be

conserved.

It remains to do the integral over the two radial variables r and r′. These two integrations cannot

be disentangled and we find a last factor

Rk(n1l1, n2l2, n3l3, n4l4) =

∫ ∞

0

dr r2
∫ ∞

0

dr′r′2Rn1l1(r)Rn2l2(r
′)

rk<
rk+1
>

Rn4l4(r)R
l
n3l3(r

′). (7)
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These integrals, which have the dimension of energy, are labeled by the multipole index k and

in the present case of Coulomb scattering within a d-shell the number of relevant multipole

orders is severely limited by the properties of the Gaunt coefficients. First, since the latter are

proportional to Clebsch-Gordan coefficients the three l-values appearing in them have to obey

the so-called triangular condition [5] whence k ≤ min(|l1 + l4|, |l2 + l3|). For a d-shell where

li = 2 it follows that k ≤ 4. Second, the parity of the spherical harmonic Ylm is (−1)l, i.e.,

even for the case li = 2. For integrals such as (5) or (6) to be different from zero the spherical

hamonic Ykm from the multipole expansion must have even parity, too, so that for Coulomb

scattering within a d-shell onlyR0,R2 andR4 are relevant. This shows that the sloppy definition

of the wave function Rni,l(r) is not a real problem – details of this wave function are irrelevant

anyway. In a way, these three parameters may be viewed as a generalization of the Hubbard-U

in that Rk is something like the ‘the Hubbard-U for k-pole interaction’.

Next, we introduce the following short notation for nonvanishing Gaunt coefficients

ck(lm; l′m′) =

√

4π

2k + 1

∫ 2π

0

dφ

∫ 1

−1

dcos(Θ) Y ∗
lm(Θ, φ) Yk,m−m′(Θ, φ) Yl′,m′(Θ, φ).

(8)

These coefficients are tabulated in Appendix 20a of the textbook by Slater [3] or Table 4.4 of

the textbook by Griffith [4], see also the Appendix of the present note. Using this notation we

can write the complete Coulomb matrix element as

V (ν1, ν2, ν3, ν4) = δσ1,σ4
δσ2,σ3

δm1+m2,m3+m4

∞
∑

k=0

ck(l1m1; l4m4) c
k(l3m3; l2m2)

Rk(n1l1, n2l2, n3l3, n4l4). (9)

To conclude this paragraph we discuss particle-hole symmetry. This phrase expresses the fact

that in a shell with angular momentum l the configurations with n electrons and 2(2l + 1)− n

electrons, i.e., n holes, have the same multiplets and that the energies of the multiplets are the

same up to an overall additive constant. We consider the following transformation:

|0〉 → |0′〉 = c†l,−l,↓c
†
l,−l,↑c

†
l,−l+1,↓c

†
l,−l+1,↑ . . . c

†
l,l,↓c

†
l,l,↑|0〉

c†ν → hν ,

cν → h†ν . (10)

This transformation replaces the empty state |0〉 by the filled shell |0′〉 and the electron cre-

ation/annihilation operators c†/c by hole annihilation/creation operators h/h†. We will now

show that the Hamiltonian H1, when expressed in terms of the hole operators, up to a constant,

has the same form as the original Hamiltonian. Once this is shown, we can define basis states

h†ν1 . . . h
†
νn|0′〉 which have n holes in the filled shell but have exactly the same matrix elements

between them as states of n electrons.

To show the equivalence we assume that in the Coulomb Hamiltonian (2) all Fermion c-operators

are replaced by h-operators according (10). Then, in each term we can permute the Fermion
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operators according to

hν1hν2h
†
ν3
h†ν4 = h†ν4h

†
ν3
hν2hν1 + δν2ν3hν1h

†
ν4
− δν1ν3hν2h

†
ν4
+ δν2ν4h

†
ν3
hν1 − δν1ν4h

†
ν3
hν2

where the terms quadratic in h-operators originate from anticommutations. The quartic terms

now have the original form, but with the replacement c→ h and

V (ν4, ν3, ν2, ν1) → V (ν1, ν2, ν3, ν4).

As can be seen from (2), however, this replacement is equivalent to complex conjugation of

the matrix elements, and since the matrix elements V are real – see (9) – the quartic terms of

the Hamiltonian expressed in terms of the hole-operators have the same form as the original

Hamiltonian in terms of electron operators.

As for the quadratic terms it can be shown by a somewhat lengthy calculation, see for example

Chapter 14 of Slaters textbook [3], that they can be brought to the form C1n + C2 with real

constants C1 and C2 and n the number of holes. For fixed n this is just a constant shift.

This theorem shows that the energies of the d8 multiplets are, up to an additive constant, iden-

tical to those of the d2 multiplets. Some terms in the Hamiltonian which will be discussed later

do not remain invariant under the particle-hole transformation but change sign.

2.3 Solution of the Coulomb problem by exact diagonalization

We now describe how the problem of the partly filled 3d-shell can be solved numerically, us-

ing the method of exact diagonalization. As already noted this may also be viewed as first

order degenerate perturbation theory with respect to the Coulomb interaction between the elec-

trons within a given shell. Our basis states (1) obviously correspond to all possible ways of

distributing n electrons over the 10 spin-orbitals of the 3d-shell (two spin directions for each

m ∈ {−2,−1 . . . 2}). As shown in Fig. 2 we can code each of these basis states by an in-

teger 0 ≤ i ≤ 210. If we really use all these integers we are actually treating all states with

 !"  #" $ # !%&

'()"&" $"#"#"#"$"$"#"$"#"#

$"#"#"#"$"$"#"$"#"#

 !"  #" $ # !%&

$ $ # # # # # $ # $ &"!($

Fig. 2: The coding of basis states by integers and a scattering process.
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0 ≤ n ≤ 10 simultaneously but this will be convenient for latter generalizations. Next, for a

given initial state |ν1, ν2, . . . νn〉 we can let the computer search for all possible transitions of

the type shown in Fig. 2 and compute the corresponding matrix elements from (9) using, say,

the ck(lm; l′m′) copied from Slater’s textbook and some given R0, R2 and R4. Let us consider

the following matrix element

〈0|cµn
. . . cµ1

V (λ1, λ2, λ3, λ4) c
†
λ1
c†λ2
cλ3
cλ4

c†ν1c
†
ν2
. . . c†νn|0〉.

For this to be nonzero, the operators c†λ3
and c†λ4

must be amongst the c†νi , otherwise the annihi-

lation operators in the Hamiltonian could be commuted to the right where they annihilate |0〉. In

order for these pairs of operators to cancel each other, cλ4
must first be commuted to the position

right in front of c†λ4
. If this takes n4 interachanges of Fermion operators we get a Fermi sign of

(−1)n4 . Bringing next cλ3
right in front of c†λ3

by n3 interchanges of Fermion operators gives

a sign of (−1)n3 . Next, the creation operators c†λ1
and c†λ2

have to be commuted to the right to

stand at their proper position as required by the ordering convention – see the discussion after

(1). If this requires an additional number of Fermion interchanges n2 for c†λ2
and and n1 for c†λ1

there is an additional Fermi sign of (−1)n1+n2 . The total matrix element for this transition then

is (−1)n1+n2+n3+n4V (λ1, λ2, λ3, λ4). The correct Fermi sign thereby is crucial for obtaining

correct results and must be computed by keeping track of all necessary interchanges of Fermion

operators. This is perhaps the trickiest part in implementing the generation of the Hamilton

matrix or any other operator as a computer program.

Once the matrix has been set up it can be diagonalized numerically. Thereby it is a good check

to evaluate the expectation values of the square of the orbital angular momentum and spin, L2

and S
2, which also allow to assign the standard term symbols. The operator of orbital angular

momentum can be written down by noting that the only nonvanishing matrix elements of the

spin raising/lowering operator are 〈l, m± 1|L±|l, m〉 =
√

(l ∓m)(l ±m+ 1) [5] whence

Lz =

l
∑

m=−l

∑

σ

m c†l,m,σcl,m,σ,

L+ =
l−1
∑

m=−l

∑

σ

√

(l −m)(l +m+ 1) c†l,m+1,σcl,m,σ,

and similar for L− = (L+)+. If |Ψ〉 then is a normalized eigenstate, that means a linear combi-

nation of basis states like (1), we define |Ψ1〉 = Lz|Ψ〉, |Ψ2〉 = L+|Ψ〉 and |Ψ3〉 = L−|Ψ〉 whence

〈Ψ |L2|Ψ〉 = 〈Ψ1|Ψ1〉+ 1
2
(〈Ψ2|Ψ2〉+ 〈Ψ3|Ψ3〉). The procedure for S2 is completely analogous.

The resulting expectation values 〈L2〉 and 〈S2〉 first have to assume the proper quantized values

L(L+ 1) and S(S + 1) with integer L and half-integer S and secondly have to be the same for

all eigenfunctions belonging to a given degenerate eigenvalue. This – and the proper level of

degeneracy of each eigenvalue – provides a stringent test for the correctness of the program.

Table 1 gives the resulting multiplet energies for d8 and d7, the resulting L and S for each

multiplet, as well as the degeneracy n. The values of the Rk parameters have been calculated

by using Hartree-Fock wave functions for Ni2+ and Co2+ in (7). The energy of the lowest
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E S L n Term E S L n Term

0.0000 1 3 21 3F 0.0000 3/2 3 28 4F
1.8420 0 2 5 1D 1.8000 3/2 1 12 4P
1.9200 1 1 9 3P 2.1540 1/2 4 18 2G
2.7380 0 4 9 1G 2.7540 1/2 5 22 2H

13.2440 0 0 1 1S 2.7540 1/2 1 8 2P
3.0545 1/2 2 10 2D
4.5540 1/2 3 14 2F
9.9774 1/2 2 10 2D

Table 1: Energies of the d8 multiplets calculated with R2 = 10.479 eV , R4 = 7.5726 eV
(Left), and energies of the d7 multiplets calculated with R2 = 9.7860 eV , R4 = 7.0308 eV
(Right).

multiplet is taken as the zero of energy and it turns out that all energy differences depend only

on R2 and R4. Note the increasing complexity of the level schemes with increasing number

of holes in the d-shell. Moreover, the multiplets do span a range of several eV. Finally, the

Table shows that the ground states indeed comply with the first two of Hund’s rules: they have

maximum spin and maximum orbital angular momentum for this spin. It can be shown this is

indeed always the case as long as one uses Coulomb and exchange integrals with the correct,

i.e. positive, sign [3, 4].

2.4 Special case: Diagonal matrix elements

As will become apparent later, the diagonal elements 〈ν|H1|ν〉 are of particular importance,

so we give explicit expressions for them. We have seen that in a matrix element of H1 n − 2

creation operators in the ket |ν〉 = |ν1, ν2, . . . νn〉 must be simply cancelled by their Hermitean

conjugate in the bra 〈ν| without ever ‘touching’ the Hamiltonian. We may then think of the

remaining two Fermion operators, which are the ones which are paired with Fermion operators

in the Hamiltonian, as having been commuted to the first and second position in the ket. This

will give uns a Fermi sign, but in a diagonal matrix element this Fermi sign is the same for the

ket and for the bra and cancels. Accordingly the n − 2 creation and annihilation operators in

the ket and bra which are paired with their own Hermitean conjugate can be simply ignored. It

follows, that it is sufficient to compute the diagonal matrix element of H1 between products of

only two Fermion operators. Using (2) one finds

〈0|cν2cν1 H1 c
†
ν1
c†ν2|0〉 =

1

2
[V (ν1, ν2, ν2, ν1) + V (ν2, ν1, ν1, ν2)

−V (ν1, ν2, ν1, ν2)− V (ν2, ν1, ν2, ν1)]

= V (ν1, ν2, ν2, ν1)− V (ν1, ν2, ν1, ν2).

Here the identity V (ν1, ν2, ν3, ν4) = V (ν2, ν1, ν4, ν3), which follows from exchanging the inte-

gration variables x ↔ x′ in (2), has been used. The second term in the last line is called the
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exchange integral and is different from zero only if σ1 = σ2. From (9) we have

V (ν1, ν2, ν2, ν1) =

∞
∑

k=0

ck(l1m1; l1, m1) c
k(l2m2; l2, m2) R

k(n1l1, n2l2, n2l2, n1l1),

V (ν1, ν2, ν1, ν2) = δσ1σ2

∞
∑

k=0

ck(l1m1; l2, m2) c
k(l1m1; l2, m2) R

k(n1l1, n2l2, n1l1, n2l2).

It is customary to introduce the following abbreviations

ak(lm; l′m′) = ck(lm; lm) ck(l′m′; l′m′)

bk(lm; l′m′) = ck(lm; l′m′) ck(lm; l′m′)

F k(nl;n′l′) = Rk(nl, n′l′, n′l′, nl)

Gk(nl;n′l′) = Rk(nl, n′l′, nl, n′l′)

The F k and Gk are called Slater-Condon parameters. It can be easily verified using (7) that F k

is a Coulomb-integral whereas Gk is an exchange integral. For the case of a partly filled d-shell

all ni and li are equal so for each k there is only one F k and one Gk and, in fact, Gk = F k. The

ak and bk are listed for example in Appendix 20a of Slater’s textbook [3] or in Appendix B of

the lecture notes [6].

Finally, since ν1 and ν2 can be any two out of the n Fermion operators in the ket, the total

diagonal matrix element of H1 is obtained by summing over all
n(n−1)

2
pairs:

〈ν|H1|ν〉 =
∑

i<j

∞
∑

k=0

(

ak(limi; ljmj) F
k − δσiσj

bk(limi; ljmj) G
k
)

(11)

As will be seen in the next paragraph, this formula is sufficient for the analytical calculation of

multiplet energies.

2.5 Analytical calculation of multiplet energies by diagonal sum-rule

The exact diagonalization procedure outlined above can be used to obtain all eigenenergies and

the corresponding eigenstates of the Coulomb problem. It is a flexible numerical method of

solution into which crystalline electric field, hybridization with ligand orbitals, spin-orbit cou-

pling, and Coulomb interaction with holes in core shells, which is important for the discussion

of X-ray absorption spectra, can be incorporated easily. On the other hand, multiplet theory

was invented during the 1920’s to explain the spectra of free atoms or ions, and at that time

computers were not available. It turns out, however, that despite the apparent complexity of the

problem the energies of the multiplets can be obtained analytically and this will be explained in

the following.

The first ingredient is the so-called diagonal sum-rule. This is simply the well-known theorem

that the sum of the eigenvalues of a Hermitean matrix H is equal to its trace tr(H) =
∑

iHii.

This follows immediately by noting that the trace of a matrix is invariant under basis transfor-

mations, i.e., tr(H) = tr(UHU−1) for any unitary matrix U . By choosing U to be the matrix

which transforms to the basis of eigenvectors of H the diagonal sum-rule follows.
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Next, one uses the fact that the Hamilton matrix is block-diagonal, with blocks defined by

their values of Lz and Sz. The diagonal sum-rule then can be applied for each of the blocks

separately. In addition, the dimension of these blocks decreases as Lz and Sz approach their

maximum values so that the number of multiplets contained in a given block decreases.

As an example for the procedure let us consider a p2 configuration (by particle-hole symmetry

this is equivalent to a p4 configuration). We write the Fermion operators in the form cl,m,σ,

i.e., we suppress the principal quantum number n. Since we have 6 possible states for a single

p-electron – three m-values with two spin directions per m-value – we have 15 states for two

electrons. The triangular condition implicit in the Gaunt coefficients now restricts the multipole

order k to be ≤ 2. Again, only even k contribute, so that we have two Slater-Condon parameters,

F 0 and F 2. The following Table which is taken from Slater’s textbook [3] gives the values of

the coefficients ak(1, m; 1, m′) and bk(1, m; 1, m′): We first consider the sector with Sz = 1.

m m′ a0 25a2 b0 25b2

±1 ±1 1 1 1 1
±1 0 1 −2 0 3
0 0 1 4 1 4

±1 ∓1 1 1 0 6

Table 2: The coefficients ak and bk for two p-electrons.

The highest possible Lz is Lz = 1 which is obtained for a single state, |1〉 = c†1,0,↑c
†
1,1,↑|0〉.

We can conclude that one of the multiplets is 3P and its energy is equal to the diagonal matrix

element of |1〉 which by (11) is

E(3P ) =
∑

k∈{0,2}

(ak(1, 1; 1, 0)− bk(1, 1; 1, 0)) F k = F 0 − 5

25
F 2.

We proceed to the sector Sz = 0. Here the highest possible Lz is Lz = 2 again obtained for

only single state namely c†1,1,↓c
†
1,1,↑|0〉. We conclude that we also have 1D with energy

E(1D) =
∑

k∈{0,2}

ak(1, 1; 1, 1) F k = F 0 +
1

25
F 2.

The two multiplets that we found so far, 1D and 3P , comprise 5 + 9 = 14 states - we thus

have just one state missing, which can only be 1S. To find its energy, we need to consider the

sector Sz = 0 and Lz = 0. There are three states in this sector: c†1,0,↓c
†
1,0,↑|0〉, c

†
1,−1,↑c

†
1,1,↓|0〉 and

c†1,−1,↓c
†
1,1,↑|0〉. Two out of the three eigenvalues of the 3 × 3 Hamiltonian in the basis spanned

by these states must be E(3P ) and E(1D), because these multiplets also have members with

Sz = 0 and Lz = 0. To obtainE(1S) we accordingly compute the sum of the diagonal elements

of the 3× 3 matrix and set

E(3P ) + E(1D) + E(1S) =
∑

k∈{0,2}

(ak(1, 0; 1, 0) + 2 ak(1,−1; 1, 1)) F k

→ E(1S) = F 0 +
10

25
F 2.
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This example shows the way of approach for multiplet calculations using the diagonal sum-

rule: one starts out with a state with maximum Lz or Sz for which there is usually only a single

basis state. This basis state belongs to some multiplet whose energy simply equals the ‘diagonal

element’ of the 1 × 1 Hamiltonmatrix. Then one proceeds to lower Sz and/or Lz and obtains

energies of additional multiplets by calculating the trace of the respective block of the Hamilton

matrix and using the known energies of multiplets with higher Lz or Sz. It turns out that in this

way the energies of all multiplets involving s, p, d, or f electrons can be expressed in terms of

the Slater-Condon parameters by analytical formulas. A rather complete list can be found for

example in the Appendices 21a and 21b of the textbook by Slater [3].

One point which may be helpful when reading the literature is the following: for the special

case of a partly filled d-shell many authors use the so-called Racah parameters A, B and C

instead of the 3 Slater-Condon parameters F 0, F 2 and F4. The rule for conversion is simple:

A = F 0 − 49

441
F 4 B =

1

49
F 2 − 5

441
F 4 C =

35

441
F 4.

The Racah-parameters have been introduced because the analytical formulas for the energies

of the multiplets of dn as derived by the diagonal sum-rule look nicer when they are expressed

in terms of them. For example Griffith [4] gives multiplet energies in terms of the Racah-

parameters in his Table 4.6.

As stated above, multiplet theory was originally developed to discuss the spectra of atoms or

ions in the gas phase. The question then arises, as to what are the values of the Slater-Condon

parameters. Of course one might attempt to compute these parameters using, e.g., Hartree-Fock

wave functions in the expression (7). It turns out, however, that very frequently the number of

multiplets considerably exceeds the number of relevant Slater-Condon parameters. In the case

of the p2 configuration we had three multiplets, 3P , 1D and 1S, but only two Slater-Condon

parameters F 0 and F 2. This would suggest to obtain the values of the Slater-Condon parameters

by fit to the spectroscopic data and the textbook by Slater [3] contains a vast amount of data

which are analyzed in this way. For the p2 configuration we restrict ourselves to a simple cross

check. Using the above formulae and eliminating the F ’s we find:

r =
E(1S)−E(1D)

E(1D)− E(3P )
=

3

2
. (12)

This relation should be obeyed by all ions with two p-electrons outside filled shells, e.g., the

series C, N1+ and O2+ or two holes in a filled p-shell such as the series O and F+. The energies

of these multiplets have been measured with high precision and are available in databases [7]

and Table 3 shows the resulting values of r. For the first row elements the deviation is about

25%, for the second row only about 5%. We recall that multiplet theory in its simplest form

corresponds to first order degenerate perturbation theory, whereH0 contains the orbital energies

and H1 the Coulomb interaction between electrons in one shell. It therefore ignores various

scattering processes which may lead to inaccuracies.
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p2 C N+ O2+ Si P+ S2+

1.124 1.134 1.130 1.444 1.430 1.399

p4 O F+ S Cl+

1.130 1.152 1.401 1.392

Table 3: The ratio (12) for various Atoms and Ions with p2 and p4 configurations ouside a

closed shell.

2.6 Spin-orbit coupling

As the last problem in this section on free atoms or ions we briefly discuss spin-orbit coupling.

The corresponding Hamiltonian is

HSO = λSO

n
∑

i=1

Li · Si = λSO

n
∑

i=1

(

Lz
iS

z
i +

1

2
(L+

i S
−
i + L−

i S
+
i )

)

.

where Li (Si) are the operator of orbital (spin) angular momentum of the ith electron. The first

term on the right hand side can be translated into second quantized form easily:

H
‖
SO =

λSO
2

l
∑

m=−l

m (c†l,m,↑cl,m,↑ − c†l,m,↓cl,m,↓). (13)

As regards the transverse part, we note [5] that the only nonvanishing matrix elements of the or-

bital angular momentum raising/lowering operator are 〈l, m±1|l±|l, m〉 =
√

(l ∓m)(l ±m+ 1)

whence

H⊥
SO =

λSO
2

l−1
∑

m=−l

√

(l −m)(l +m+ 1) (c†l,m+1,↓cl,m,↑ + c†l,m,↑cl,m+1,↓). (14)

It is easy to see that HSO changes sign under the particle-hole transformation (10). This means

that, e.g., the multiplets of dn and d10−n have the same Coulomb energies, but the splitting due

to spin-orbit coupling is opposite. Since the value of λSO is positive [5], this means that for less

than half-filled shells the ground state has the minimum value of J possible, whereas for more

than half-filled shells the ground state has the maximum possible value of J , i.e., Hund’s third

rule.

Spin-orbit coupling can be implemented rather easily into the numerical procedure, the main

difficulty again is keeping track of the Fermi sign. Due to the fact that neither Lz nor Sz are

conserved anymore the corresponding reduction of the Hilbert space is no longer possible. In

transition metal compounds the spin-orbit coupling constant λSO for the 3d shell is rather small,

of order λSO ≈ 0.05 eV. Still, if the ground state of a given ion has a nonvanishing spin, spin

orbit coupling will determine how this spin orients itself in an ordered phase, i.e., magnetic

anisotropy. In the rare earth elements spin-orbit coupling in the 4f shell is of comparable mag-

nitude as the Coulomb repulsion. There, taking spin-orbit coupling into account is mandatory.
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3 Effects of the environment in the crystal

So far we have considered a single ion in vacuum. Clearly, one might ask if the results obtained

in this limit retain any relevance once the ion is embedded into a solid and this will be discussed

in the following. It will become apparent that the small spatial extent of the 3d radial wave

function R3,2(r) strongly suppresses any effect of the environment in a solid, so that in many

cases the main effect of embedding the ion into a solid is the partial splitting of the multiplets

of the free ion.

In many transition metal compounds the 3d ions are surrounded by an approximately octahedral

or tetrahedral ‘cage’ of nonmetal ions such as Oxygen, Sulphur, Arsenic. An example for

octahedral coordination is provided by the perovskite structure. These nearest neighbor ions,

which will be called ‘ligands’ in the following, have a twofold effect: first, they produce a static

electric field – the so-called crystalline electric field or CEF – and second there may be charge

transfer that means electrons from a filled ligand orbital may tunnel into a 3d-orbital of the

transition metal ion due to the overlap of the respective wave functions.

3.1 Crystalline electric field

Let us first consider the crystalline electric field, whereby we model the ligands simply by nc

point charges Zie at the positions Ri. We denote the electrostatic potential due to these point

charges by VCEF(r) and find for the respective Hamiltonian [2]

HCEF =
∑

i,j

VCEF(νi, νj) c
†
νi
cνj ,

VCEF(ν1, ν2) =

∫

dx ψ∗
ν1
(x) VCEF(r) ψν2

(x). (15)

The radial dependence of the 3d wave functions ψν(x) is given by R3,2(r) which differs appre-

ciably from zero only in a narrow range r ≤ r3d. Assuming that r3d < Ri for all i we obtain

VCEF(r) from the multipole expansion (4)

VCEF(r) = −Zave
2

Rav

∞
∑

k=0

k
∑

m=−k

γk,m

(

r

Rav

)k
√

4π

2k + 1
Yk,m(Θ, φ),

γk,m =

√

4π

2k + 1

nc
∑

i=1

Zi

Zav

(

Rav

Ri

)k+1

Y ∗
k,m(Θi, φi). (16)

Here we have introduced the avergage distance and charge of the ligands, Rav and Zav . In

calculating the matrix elements VCEF(ν1, ν2) the integral over the polar angles (Θ, φ) again

gives a Gaunt coefficient. For a d-shell it again follows from the triangular condition that k ≤ 4

and from parity that k be even. The term with k = 0 gives only a constant shift and can be
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omitted so that

VCEF(ν1, ν2) =
∑

k∈{2,4}

γk,m1−m2
ck(2, m1; 2, m2) Ik,

Ik = −Zave
2

Rav

(

r3d
Rav

)k ∫ ∞

0

dρ ρk+2 R̃2
nl(ρ),

with the rescaled and normalized radial wave function R̃nl(ρ) = r
3/2
3d Rnl(ρr3d). Note that Ik has

the correct dimension of energy and that the integral is dimensionless and of order unity. For

r3d/Rav ≪ 1, which we expect to hold due to the small extent of the 3d radial wave function,

the sum can be terminated after the lowest k > 0 for which there is a nonvanishing contribution,

i.e., where γk,m does not vanish. As was the case for the Coulomb interaction, the CEF can be

described by very few – in fact only one if only the lowest order in r3d/Rav is kept – parameters

which depend on the radial wave function R3,2(r). These parameters again are frequently fitted

to experiment.

The actual form of the matrix elements depends on the geometry of the cage of ligands via the

sum in γk,m. For the frequently considered case of an ideal octahedron of identical charges

where Ri = R = Rav and Zi = Z = Zav one finds γk,m = 0 for 0 < k < 4 and

γ4,4 =

√

35

8

γ4,0 =

√

49

4
(17)

as well as γ4,−4 = γ4,4. Using the tabulated values of the c4(2, m; 2, m′) (see Appendix),

VCEF(ν1, ν2) can be written down as a matrix in the indices m1 and m2:

VCEF(ν1, ν2) =
I4
6















1 0 0 0 5

0 −4 0 0 0

0 0 6 0 0

0 0 0 −4 0

5 0 0 0 1















. (18)

This matrix has the eigenvalues I4 (twofold degenerate) and −2I4/3 (threefold degenerate). If

the ligands are O2− ions, Z = −2 and I4 > 0. For historical reasons the splitting between the

eigenvalues is frequently called 10Dq so that in our point charge model Dq = I4/6. The two

eigenfunctions belonging to the eigenvalue 6Dq are the real valued eg-type spherical harmonics,

the three eigenvalues belonging to the eigenvalue −4Dq are the real valued t2g-type spherical

harmonics, see the lecture by E. Pavarini. Lastly, we note that HCEF changes sign under the

particle-hole transformation (10). In a solid the multiplets of dn and d10−n thus are split in

opposite ways.

The implementation of the CEF in an exact diagonalization program is rather obvious. As an

example Fig. 3 shows the eigenenergies of the d8 and d7 configuration with Coulomb interaction

and octahedral CEF as 10Dq is increasing. Such plots of crystal field levels versus 10Dq are
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Fig. 3: Examples for Tanabe-Sugano diagrams: the splitting of multiplets of d8 (left) and d7

(right) for increasing 10Dq. The Slater-Condon parameters have the values given in Table

2. The symbols in the diagram for d8 give the energies calculated analytically by use of the

Wigner-Eckart theorem.

called Tanabe-Sugano diagrams after the authors who first derived them [8]. One realizes that

the highly degenerate multiplets of the free ion are split into several levels of lower degeneracy

by the CEF, which is to be expected for a perturbation which lowers the symmetry. Note that

the components into which a given multiplets splits up all have the same spin as the multiplet

itself. This is because the spin of an electron does not ‘feel’ an electrostatic potential – or, more

precisely, because the operator of total spin commutes with any operator which acts only on

the real-space coordinates ri of the electrons. Only the introduction of spin-orbit coupling, as

discussed in the preceding section, leads to a coupling between spin and environment of a given

ion and thus may lead to magnetic anisotropy.

3.2 Analytical results by application of the Wigner-Eckart theorem

In addition to the purely numerical approach, many results can be obtained by invoking the

Wigner-Eckart theorem. To formulate this theorem we first need to define a tensor opera-

tor. Let J be some angular momentum operator with eigenfunctions |j,m〉. This means

that the three components of J have to obey the commutation relations [Jα, Jβ] = iǫαβγJγ .

It follows [5] that the kets |j,m〉 obey J
2|j,m〉 = j(j + 1)|j,m〉, Jz|j,m〉 = m|j,m〉 and

J±|j,m〉 =
√

(j ∓m)(j ±m+ 1)|j,m± 1〉.
A rank-j tensor operator then is a set of 2j + 1 operators Oj,m which obey [Jz, Oj,m] = mOj,m

and [J±, Oj,m] =
√

(j ∓m)(j ±m+ 1)Oj,m±1. This means that these operators transform

amongst themselves like eigenfunctions of angular momentum. Note that a tensor operator al-

ways needs to refer to some angular momentum operator. As an example we choose J to be

the orbital angular momentum of a single particle. Then, the set of 2l + 1 spherical harmon-

ics Yl,m(Θ, φ) forms a rank-l tensor operator. Namely by acting with a component of J onto



Multiplets 8.17

the product Yl,m(Θ, φ)|Ψ (r, Θ, φ)〉 with an arbitrary wave function Ψ , the differential opera-

tors included in J will always produce two terms JYl,m|Ψ〉 = (JYl,m)|Ψ〉 + Yl,mJ |Ψ〉 so that

[J, Yl,m]|Ψ〉 = (JYl,m)|Ψ〉 and since |Ψ〉 is arbitrary the tensor operator property of Yl,m follows.

In exactly the same way, if J is the total angular momentum of n electrons the 2l+ 1 functions
∑n

i=1 Yl,m(Θi, φi) form a rank-l tensor operator as well. For a 3d shell with n electrons the

operator describing the CEF is HCEF =
∑n

i=1 VCEF(ri) with VCEF(r) given by (16). HCEF

therefore is a sum of components of a tensor operator and this property makes the Wigner-

Eckart theorem useful in the present case.

The theorem itself states that the matrix elements of any two rank-j tensor operators between

eigenstates of their respective angular momentum operator are proportional to one another,

whereby the constant of proportionality is independent of the values of m

〈α, j′, m′|OJ,M |α, j,m〉 = C(α, β, j′, j, J)〈β, j′, m′|ŌJ,M |β, j,m〉.

The symbols α and β stand for some unspecified ‘additional’ quantum numbers. Note that

neither m′, nor M , nor m appear in the constant of proportionality C. The deeper reason for

this theorem is that the dependence of the matrix elements on m′, M and m is given solely by

Clebsch-Gordan coefficients. More precisely, an alternative way of stating the theorem [5] is

that

〈α, j′, m′|OJ,M |α, j,m〉 = A(α, j, j′, J)〈j′m′Jj|JMjm〉

where 〈j′m′Jj|JMjm〉 is a Clebsch-Gordan coefficient. The above version then follows with

C(α, β, j, j′, J) = A(β, j, j′, J)/A(α, j, j′, J). The quantity A(α, j, j′, J) is known as the re-

duced matrix element.

To illustrate the application of the theorem we now use it to calculate the splitting of the 3F

ground state multiplet of d8, which is equivalent to d2, in ideal octahedral coordination. On the

left hand side we accordingly choose |α, j,m〉 = |3F,m〉 where |3F,m〉 is the member of the
3F multiplet with Lz = m and Sz = 1 (the value of Sz is arbitrary and the final results of course

must not depend on this choice). The |3F,m〉 are eigenfunctions of the total orbital momentum

operator. For OJM we choose
∑n

i=1 VCEF(ri), where VCEF(r) is the CEF potential (16) and the

sum is over all n electrons. For ideal octahedral coordination this is a linear combination of

components of a tensor operator of rank 4, see (16) and (17).

On the right hand side we choose |β, j,m〉 = Y3,m(Θ, φ) and for the tensor operator ŌJ,M the

expression

ṼCEF(Θ, φ) =

4
∑

m=−4

γ4,mY4,m(Θ, φ),

i.e., the dimensionless version of the CEF potential (16) but now for a single particle. The

Wigner-Eckart theorem then tells us that the secular determinant of the CEF potential between

the |3F,m〉 is, up to a constant factor C, the same as the matrix 〈Y3,m′|ṼCEF|Y3,m〉. Above

we found that the matrix elements of ṼCEF are γ4,m′−m c4(3, m′; 3, m) and using the tabulated
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c4(3m; 3m′) (see Appendix) this becomes

ṼCEF =
7

66

























3 0 0 0
√
15 0 0

0 −7 0 0 0 5 0

0 0 1 0 0 0
√
15

0 0 0 6 0 0 0√
15 0 0 0 1 0 0

0 5 0 0 0 −7 0

0 0
√
15 0 0 0 3

























. (19)

Since we are not interested in constant factors we drop the factor of 7/66. The matrix on the

right hand side then can be decomposed into 2 × 2 blocks and we obtain the eigenvalues −12

(once), −2 (three times) and +6 (three times). The Wigner-Eckart theorem now tells us that

the 3F ground state multiplet of both d2 and of d8 splits up in the same way, namely into three

levels, with degeneracies 1, 3 and 3 and energies −12C,−2C and 6C.

To ‘gauge’ the calculation and determine the constant C we now need to evaluate the CEF en-

ergy of one particular state of the true 3F multiplet. To that end we note that the CEF eigenstates

originating from the 3F multiplet are expressed in terms of the |3F,m〉 in exactly the same way

as the eigenstates of the matrix (19). By inspection of the matrix (19) we see, however, that the

eigenvalue +6 has one particularly simple eigenvector, namely (0, 0, 0, 1, 0, 0, 0). This corre-

sponds to the state |3F,m = 0〉. This special state now can be calculated as follows: by starting

with the member of 3F with maximum m, namely |3F, 3〉 = c†2,1,↑c
†
2,2,↑|0〉, acting repeatedly

with L− and normalizing we can work ourselves down to m = 0:

|3F, 3〉 = c†2,1,↑c
†
2,2,↑|0〉,

|3F, 2〉 = c†2,0,↑c
†
2,2,↑|0〉,

|3F, 1〉 =

(

√

2

5
c†2,0,↑c

†
2,1,↑ +

√

3

5
c†2,−1,↑c

†
2,2,↑

)

|0〉,

|3F, 0〉 =

(

√

4

5
c†2,−1,↑c

†
2,1,↑ +

√

1

5
c†2,−2,↑c

†
2,2,↑

)

|0〉.

From the Wigner-Eckart theorem we now know that the last state, |3F, 0〉, is an eigenstate of

the Coulomb energy plus CEF. Accordingly, its CEF-energy is simply the expectation value

〈3F, 0|HCEF|3F, 0〉 with HCEF given by (15) with (18). This is easily calculated and we obtain

the constant C as:

6C =
I4
6

(

4

5
(−8) +

1

5
2

)

= −I4,

so that C = −I4/6 = −Dq. We thus find that in octahedral coordination 3F of d2 splits into

three levels with E = −6Dq (3-fold degenerate), E = 2Dq (3-fold) and E = 12Dq (1-fold).

For d8 particle-hole symmetry tells us that the sign of the CEF splitting has to be inverted

whence we find the energies and degeneracies E = −12Dq (1-fold), E = −2Dq (3-fold) and

E = 6Dq (3-fold). This splitting of the lowest multiplet can be nicely seen in Fig. 3. In the
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result obtained by exact diagonalization the upper level with E = 6Dq ‘bends downward’ for

larger 10Dq. The reason is that the CEF mixes the 3F and 3P multiplets and the resulting level

repulsion for large 10Dq leads to the deviation from the linear behaviour, which gives only

the asymptotic behaviour for 10Dq → 0. Note the tremendous simplification which occurs

in this way, because the |3F,m〉 actually are linear combinations of Slater-determinants (1)

with coefficients which have to be obtained from diagonalizing the full Coulomb-Hamiltonian!

Historically, by using the Wigner-Eckart theorem together with skilfull application of group

theory, the energies and wave functions of transition metal ions in various coordinations in fact

were calculated analytically and without the use of a computer. This is how the Tanabe-Sugano

diagrams were obtained originally.

3.3 Charge transfer

We proceed to a discussion of charge transfer. This means that electrons can tunnel from lig-

and orbitals into 3d orbitals, so that the number of electrons in the d-shell fluctuates. To deal

with this we need to enlarge our set of Fermion operators c†ν/cν by operators l†µ/lµ which cre-

ate/annihilate electrons in orbitals centered on ligands. The compound index µ for the ligand

operators also must include the index i of the ligand: µ = (i, n, l,m, σ). The Hamiltonian then

would read

H =
∑

i,j

(

tνi,µj
c†νilµj

+H.c.
)

+
∑

j

ǫµj
l†µj
lµj

+
∑

i

ǫνic
†
νi
cνi. (20)

The hybridization integrals tνi,µj
may be expressed in terms of relatively few parameters by

using the famous Slater-Koster tables, see the lecture by E. Pavarini. For example, if only the

p-orbitals of the ligands are taken into account, which applies to oxides of transition metals

such as perovskites, there are just two relevant parameters, Vpdσ and Vpdπ. Estimates for these

may be obtained from fits to LDA band structures. If electrons are allowed to tunnel between

d-shell and ligand orbitals the site energies ǫµj
become relevant as well. Estimating the d-shell

site energies from LDA calculations is tricky due to the double counting problem: the energies

of the d-orbitals extracted from band structure calculations involve the Hartree-potential, which

is also included in the diagonal matrix elements of the multiplet Hamiltonian and thus must be

subtracted in some way. Recently, considerable interest has emerged in the determination of

such parameters.

The use of the Slater-Koster tables brings about a slight complication in that these are formu-

lated in terms of the real-valued spherical harmonics Yα(Θ, φ) which are linear combinations of

the original Y2,m(Θ, φ). However, these sets of functions are related by a simple unitary trans-

formation. We again specialize to the case where the ligands are oxygen ions which form an

ideal octahedron with the transition metal ion in the center of gravity of the octahedron. In this

case the number of relevant ligand orbitals can be reduced considerably. Namely, for each of

the real-valued transition metal 3d orbitals Yα(Θ, φ) there is precisely one linear combination of

O 2p orbitals on the ligands, Lα, which hybridizes with them. The Hamiltonian then simplifies
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to

Hhyb = 2 Vpdπ
∑

α∈t2g

∑

σ

(

c†α,σlασ +H.c.
)

+
√
3 Vpdσ

∑

α∈eg

∑

σ

(

c†α,σlασ +H.c.
)

.

By inserting the unitary transformation c†α =
∑2

m=−2 Uα,mc
†
m,σ to transform to the original

complex spherical harmonics this is easily included into the formalism. In the exact diagonal-

ization program this means that the number of orbitals has to be doubled, because we have the

five combinations Lα, each of which can accomodate an electron of either spin direction. This

leads to a quite drastic increase in the dimension of the Hilbert space but using, e.g., the Lanc-

zos algorithm, see the lecture by E. Koch [9], the problem still is tractable. Hhyb then simply

transfers electrons from ligand orbitals to d-orbitals and vice versa and is easy to implement.

4 Cluster calculation of photoemission and X-ray absorption

spectra

In the preceding section we have discussed the general formalism for exact diagonalization of a

cluster consisting of a transition metal ion and its nearest neighbor ions (‘ligands’). Thereby the

following terms were included into the Hamiltonian: the Coulomb repulsion between the elec-

trons in the 3d shell, the electrostatic field produced by the ligands, charge transfer between the

ligands and the transition metal d orbitals and, possibly, the spin orbit coupling in the 3d shell.

By diagonalizing the resulting Hamilton matrix we can obtain the eigenfunctions |Ψν〉 and their

energies Eν and these can be used to simulate various experiments on transition metal com-

pounds such as electron spectroscopy, optical spectroscopy, electron spin resonance or inelastic

neutron scattering. It has turned out that these simulations are in fact spectacularly successful.

In many cases calculated spectra can be overlayed with experimental ones and agree peak by

peak. Nowadays complete packages for such cluster simulations are available, and these are

used routinely for the interpretation of, e.g., electron spectroscopy [10]. This shows in partic-

ular that the multiplets of the free ion – suitably modified by the effects of crystalline electric

field and charge transfer – persist in the solid and thus are essential for a correct description

of transition metal compounds. In the following, we want to explain this in more detail and

consider photoelectron spectroscopy. In this lecture only a very cursory introduction can be

given, there are however several excellent reviews on the application of multiplet theory to the

simulation of photoelectron spectroscopy [11–13].

In a valence-band photoemission experiment electromagnetic radiation impinges on the sample

which then emits electrons – this is nothing but the well-known photo-electric effect. ‘Valence

band photoemission’ means that the photoelectrons are ejected from states near the Fermi level

so that, to simplest approximation, an ion in the solid undergoes the transition dn → dn−1 (note

that this ignores charge transfer, which in fact is quite essential!). What is measured is the cur-

rent I of photoelectrons as a function of their kinetic energy Ekin and possibly the polar angles

(Θ, φ) relative to the crystallographic axes of the sample. Frequently one measures the angle-

integrated spectrum, obtained by averaging over (Θ, φ), or rather: measuring a polycrystalline
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sample. A further parameter which strongly influences the shape of the spectrum I(Ekin) is

the energy hν of the incident photons. At sufficiently high hν the photoionization cross-section

for the transition metal 3d-orbitals is significantly larger than for the other orbitals in the solid

so that the photoelectrons in fact are emitted almost exclusively the 3d-orbitals. This is often

called XPS – for X-ray photoemission spectroscopy.

The theory of the photoemission process is complicated [14, 15] but with a number of simpli-

fying assumptions one can show that the photocurrent I(Ekin) measured in an angle-integrated

photoemission at high photon energy is proportional to the so-called single-particle spectral

function

A(ω) = − 1

πZ
ℑ

2
∑

m=−2

∑

µ

e−βEµ

〈

Ψµ

∣

∣

∣

∣

c†3,2,m,σ

1

ω + (H −Eµ) + i0+
c3,2,m,σ

∣

∣

∣

∣

Ψµ

〉

=
1

Z

2
∑

m=−2

∑

µ,ν

e−βEµ |〈Ψν|c3,2,m,σ|Ψµ〉|2δ(ω + (Eν −Eµ)). (21)

Here H is the Hamiltonian describing the solid, |Ψµ〉 and Eµ denote the eigenstates of H with

a fixed electron number Ne. Moreover β = (kBT )
−1 where kB is the Boltzmann constant, T

the temperature, and Z =
∑

µ exp(−βEµ). The operator c3,2,m,σ removes an electron from a

3d-orbital. In the thermodynamical limit the results will not depend on the position of the ion

in the sample and accordingly we have suppressed the site index on c3,2,m,σ. After removal of

the electron the sample then remains in an eigenstate |Ψν〉 with Ne−1 electrons and energy Eν .

The relation between Ekin and ω follows from energy conservation:

hν + Eµ = Ekin + Φ+ Eν

The left and right hand sides of this equation are the energies of the system before (solid+photon)

and after (solid + photo-electron) the photoemission process. Here Φ is the so-called work

function, i.e., the energy needed to transverse the potential barrier at the surface of the solid

(this needs to be introduced because the measured kinetic energy Ekin is the one in vac-

uum). It follows from the δ function in the second line of (21) that we have to put I(Ekin) ∝
A(Ekin + Φ− hν).

We now make the approximation, introduced by Fujimori and Minami [16], and evaluate A(ω)

by replacing the energies and wave functions of the solid by those of the octahedral cluster.

If we moreover let T → 0 the sum over µ becomes a sum over the m denerate gound states

of the cluster and e−βEµ/Z → 1/m. The underlying assumption is that the coupling of the

clusters to a solid will predominantly broaden the ionization states of the cluster to ‘bands’ of

not too large bandwidth. This broadening is usually simulated by replacing the δ-functions by

Lorentzians. To compare to a measured spectrum the calculated spectrum often is convoluted

with a Gaussian to simulate the finite energy resolution of the photoelectron detector. The upper

version of the equation (21) is suitable for using the Lanczos algorithm whereas the lower one

is better suited if the eigenstates and energies have been obtained by full diagonalization of the

eigenvalue problem.



8.22 Robert Eder

Fig. 4: Comparison of experimental valence band photoemission spectra and results from clus-

ter calculations: NiO (left), CoO(center), MnO(right). Reprinted with permission from [16],

Copyright 1984, from [17], Copyright 1991, and from [18], Copyright 1990 by the American

Physical Society.

Fig. 4 shows various examples from the literature where measured XPS-spectra are compared to

spectra calculated by the procedure outlined above. The sticks in some of the theoretical spectra

mark the final state energies Eν and are labeled by the symbols of the irreducible representation

of the octahedral group, see the lecture by E. Pavarini, to which the corresponding final state

wave function |Ψν〉 belongs. The figure shows that the agreement between the theoretical spec-

tra and experiment is usually rather good. It is interesting to note that the three oxides shown in

the figure all have the same crystal structure, namely the rock-salt structure. Since, moreover,

Ni, Co and Mn are close neighbors in the periodic table, LDA predicts almost identical band

structures, the main difference being an upward shift of the chemical potential with increasing

nuclear charge of the transition metal. Despite this, the XPS spectra differ considerably and

this change is reproduced very well by the theoretical spectra. This is clear evidence that the

shape of the spectra is determined not so much by the single particle band structure, but by the

multiplet structure of the transition metal ion, which in turn depends on its valence and spin

state.

Next, we discuss X-ray absorption. In an X-ray absorption experiment an electron from either

the 2p or the 3p shell absorbs an incoming X-ray photon and is promoted to the 3d-shell via a

dipole transition. In terms of electron configurations, the transition thus is 2p63dn → 2p53dn+1

(for definiteness we will always talk about the 2p shell from now on). Of particular interest

here is the range of photon energies just above the threshold where the energy of the photon is

sufficient to lift the core electron to an unoccupied state. Above this threshold the X-ray absorp-

tion coefficient κ(ω) rises sharply, which is called an absorption edge. The energy of the edge

thereby is characteristic for a given element so that one can determine unambiguously which

atom in a complex solid or molecule is probed. The ω-dependence of κ(ω) in an energy range

of a few eV above the absorption edge – called NEXAFS for ‘Near Edge X-ray Absorption Fine



Multiplets 8.23

Struture’ – contains information about the initial state of the 3d shell, that means its valence and

spin state, and this information can be extracted by using cluster calculations. The measured

quantity in this case is

κ(ω) = − 1

πZ
ℑ

2
∑

m=−2

∑

µ

e−βEµ

〈

Ψµ

∣

∣

∣

∣

D(n)
1

ω − (H − Eµ) + i0+
D(n)

∣

∣

∣

∣

Ψµ

〉

=
1

Z

2
∑

m=−2

∑

µ,ν

e−βEµ|〈Ψν|D(n)|Ψµ〉|2δ(ω − (Eν − Eµ)). (22)

This is very similar to the single-particle spectral function (21), the only difference is that now

the dipole operator D(n) (which will be defined later on) appears in place of the electron anni-

hilation operator c3,2,m,σ. This also implies that the number of electrons in the final states |Ψν〉
now is equal to that in the initial states |Ψµ〉.
We again make the approximation to use the octahedral cluster to simulate this experiment. The

initial state for this experiment – 2p63dn – is simply the ground state of the cluster. More diffi-

cult is the final state, 2p53dn+1. This has a hole in the 2p shell so that the single-particle basis

has to be enlarged once more to comprise also the 6 spin-orbitals available for 2p electrons. We

may restrict the basis, however, to include only states with 5 electrons in these 6 spin-orbitals,

so that the dimension of the Hilbert space increases only by a moderate factor of 6. The spin-

orbit coupling constant JSO,2p in the 2p shell of 3d transition metals is of order 10 eV so we

definitely need to include spin orbit coupling in the 2p-shell. Here the forms (13) and (14) with

l = 1 can be used. The orbital angular momentum l = 1 and the spin of 1
2

can be coupled to a

total angular momentum of either J = 3
2

or J = 1
2
. Using the identity

〈L · S〉 =
1

2
(J(J + 1)− L(L+ 1)− S(S + 1))

we expect a splitting of E 3

2

−E 1

2

= λSO

2
(15
4
− 3

4
) = 3λSO

2
. This means that we actually have two

edges, separated by 3λSO

2
≈ 10 − 15 eV for 2p core levels. The one for lower photon energy –

called the L3 edge – is due to electrons coming from 2P3/2, the one for higher photon energy

(L2-edge) due to electrons from 2P1/2. Since there are 4 2P3/2 states but only 2 2P1/2 states the

L3 edge has roughly twice the intensity of the L2 edge.

Next, there is the Coulomb interaction between the core-hole and the electrons in the d-shell.

For example, there may now be Coulomb scattering between a 2p and a 3d electron as shown in

Fig. 5. Let us consider the expression for the corresponding Coulomb matrix element (9). Here

one of the indices ν1 and ν2 and one of the indices ν3 and ν4 must now refer to the 2p orbital

and there are two possible combinations. If ν2 and ν3 refer to the 2p orbital we have

ck(2, m1; 2, m4) c
k(1, m3; 1, m2)F

k(3, 2; 2, 1).

The triangular condition for ck(1, m3; 1, m2) requires k ≤ 2. Since only Ylm with equal l and

hence with equal parity are combined in one ck only even k give non-vanishing contributions

and we have two Coulomb integrals, F 0(3, 2; 2, 1) and F 2(3, 2; 2, 1).
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Fig. 5: An electron in the 3d shell and an electron in the 2p shell scatter from one another.

If ν2 and ν4 refer to the 2p orbital we have

ck(2, m1; 1, m4) c
k(2, m3; 1, m2)G

k(3, 2; 2, 1).

The triangular condition for both ck requires k ≤ 3. Since now Y1m and Y2m are combined in

one Gaunt coefficient only odd k contribute, so that we have two relevant exchange integrals,

G1(3, 2; 2, 1) and G3(3, 2; 2, 1). Apart from these minor changes, the implementation of the d-p

Coulomb interaction is exactly the same as the d-d interaction.

The Coulomb interaction between electrons in the 2p shell is definitely very strong – but it is

irrelevant because we are considering only states with a single hole in this shell. Since this hole

has no second hole to scatter from, the only effect of the Coulomb repulsion between electrons

in the 2p shell is via the diagonal matrix elements which give a shift of the orbitals energy

ǫ2p. On the other hand ǫ2p merely enters the position of the absorption edge, which would be

≈ ǫ3d − ǫ2p but not its spectral shape. Since we are not really interested in computing the onset

of the edge, the precise value of ǫ2p and hence the Coulomb interaction between 2p electrons

is not important. Lastly we mention that the CEF effect on the inner-shell electrons is usually

neglected.

Lastly, we discuss the dipole operator D(n). This involves the matrix element of n · r, where

n is the vector which gives the polarization of the X-rays. This can be rewritten as

n · r = r

√

4π

3

1
∑

m=−1

ñm Y1,m(Θ, φ)

where ñ1 = (−nx + iny)/
√
2, ñ0 = nz and ñ−1 = (nx + iny)/

√
2. It follows that

D(n) =
∑

m,m′

∑

σ

dm,m′ c†3,2,m,σc2,1,m′,σ

dm,m′(n) = d ñm−m′ c1(2, m; 1, m′)

d =

∫ ∞

0

dr r3 R3,2(r)R2,1(r).

The factor of d merely scales the overall intensity of the spectrum and is largely irrelevant.

Combining all of the above one can compute X-ray absorption spectra. Fig. 6 shows examples



Multiplets 8.25

Fig. 6: Comparison of experimental 2p XAS-spectra and results from cluster calculations: NiO

(left) and LiVO2 (right). The bottom part of the right-hand figure shows theoretical spectra

calculated with different values of the CEF-strength ∆t. Reprinted with permission from [19],

Copyright 1999 and from [20], Copyright 1997 by the American Physical Society.

from the literature where experimental 2p-XAS spectra for NiO and LiVO2 are compared to

spectra obtained from multiplet theory. In both cases one can see the splitting of approximately

10-15 eV between the L3 and L2 edges. The edges do have an appreciable fine structure, how-

ever, and this is reproduced well by theory. The figure also illustrates the amount of information

contained in XAS-spectra: the lower panel on the right hand side shows theoretical spectra cal-

culated with different values of the CEF parameter, ∆t. The strong difference between the

spectra for ∆t = 1.7 and ∆t = 1.8 is due to a level crossing from a high-spin ground state

of the Vanadium ion for ∆t = 1.7 to a low-spin ground state for ∆t = 1.8. In fact, LiVO2

undergoes a phase transition at a temperature of ≈ 500 K whereby the magnetic susceptiblity

drops almost to zero in the low temperature phase. A low-spin to high-spin transition of the

Vanadium ion – for example caused by a change of the CEF due to thermal expansion – could

be a possible explanation. It is obvious, however, that the spectrum for the low-spin ground

state has no similarity whatsoever to the experimental spectrum at either 473 K or 523 K, rather

these spectra a very similar to the spectrum of the high-spin ground state with ∆t ≈ 0. A

high-spin to low-spin transition therefore can be ruled out as the origin of the drop in magnetic

susceptibility. This is one example how XAS can be used to determine the valence and spin of

a given transition metal ion.

Let us discuss this in more detail. Photoelectron spectroscopies are often performed because for

example the valence or the spin state of the transition metal ion in a given solid or molecule is

unknown. Let us assume that we have two possible states of the ion, |Ψ0〉 and |Ψ ′
0〉, with energies

E0 andE ′
0 (for simplicity we assume that these are nondegenerate). Then we may ask: how will

the spectrum change if we go from one ground state to the another? We note first that the final

states |Ψν〉 and their energies Eν in (21) and (22) are unchanged. What differs is first the energy
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Fig. 7: Left: Experimental Co 2p-XAS-Spectra for different Cobalt compounds with Perovskite

structure. Right: The bottom part shows theoretical spectra calculated for different valence

and spin states of Cobalt. By combining these spectra the actual experimental spectra can be

reproduced almost quantitatively, see the four spectra at the top. Reprinted with permission

from [21], Copyright 2011 by the American Physical Society.

differences Eν − E0. However, since we do not know E0 and E ′
0 – otherwise we would know

which one of them is lower in energy and hence the ground state – the absolute position of the

peaks in the spectrum is of no significance. What is really relevant, however, is the intensity

of the peaks which involves the matrix elements |〈Ψν|c|Ψ0〉|2 or |〈Ψν|D(n)|Ψ0〉|2. These matrix

elements may change drastically when the ground state wave function |Ψ0〉 changes and by

comparing with cluster simulations the shape of the spectrum can give information about the

valence and spin state of the transition metal ion. This is illustrated in Fig. 7, which shows

experimental Cobalt 2p XAS-spectra of various Co-compounds with perovskite structure as

well as theoretical spectra calculated by using the CTM4XAS package [10] for different valence

and spin states of the Cobalt-ion. The experimental spectra obviously can be reproduced quite

well by a superposition of such spectra for ‘pure’ valence and spin states of the Cobalt-ion.

This implies that different Cobalt ions in the sample are in different valence and spin states

whereby the percentages are simply given by the weight of the corresponding spectrum in the

superposition.

To summarize this section: multiplet theory is of considerable importance in the interpretation

of photoelectron spectroscopy. The simulated spectra usually show very good agreement with

experimental ones. All of this shows that the multiplets of the free ion persist in the solid and

that the proper desciption of the Coulomb interaction is crucial for the description of these

compounds.
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5 Conclusion

We have seen that the Coulomb repulsion between electrons in partially filled atomic shells

leads to multiplet splitting. The simple estimate

E[dn] ≈ n · ǫd + U · n(n− 1)

2
.

given in the introduction describes only the center of gravity of the energies of the dn-derived

states, and superimposed over this the Coulomb repulsion creates a multiplet spectrum with a

width of several eV. While multiplet theory was derived originally for the discussion of spec-

troscopic data of atoms and ions in the gas phase, it has turned out that it is essential also for

the understanding of many experiments on transition-metal compounds. Photoelectron spec-

troscopy, optical spectroscopy, electron spin resonance and inelastic neutron scattering all can

be interpreted in terms of multiplets. The often excellent agreement between theory and ex-

periment which can be obtained thereby is clear evidence that the multiplets of the free ion are

a reality also in solids, with the only modification being some additional splitting due to CEF

and modification of spectral intensities due to charge transfer. Any realistic description of 3d

transition metal compounds therefore must take multiplet splitting into account.
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Appendix

m m′ c0 7 c2 21 c4 a0 49 a2 441 a4 b0 49 b2 441 b4

±2 ±2 1 −2 1 1 4 1 1 4 1

±2 ±1 0
√
6 −

√
5 1 −2 −4 0 6 5

±2 0 0 −2
√
15 1 −4 6 0 4 15

±1 ±1 1 1 −4 1 1 16 1 1 16

±1 0 0 1
√
30 1 2 −24 0 1 30

0 0 1 2 6 1 4 26 1 4 36

±2 ∓2 0 0
√
70 1 4 1 0 0 70

±2 ∓1 0 0 −
√
35 1 −2 −4 0 0 35

±1 ∓1 0 −
√
6 −

√
40 1 1 16 0 6 40

Table 4: The Gaunt coeficients ck(2, m; 2, m′), the coefficients ak(2, m; 2, m′) and

bk(2, m; 2, m′)

m m′ c0 15 c2 33 c4 429
5
c6

±3 ±3 1 −5 3 −1

±3 ±2 0 5 −
√
30

√
7

±3 ±1 0
√
10

√
54 −

√
28

±3 0 0 0 −
√
63

√
84

±2 ±2 1 0 −7 6

±2 ±1 0
√
15

√
32 −

√
105

±2 0 0 −
√
20 −

√
3 4

√
14

±1 ±1 1 3 1 −15

±1 0 0
√
2

√
15 5

√
14

0 0 1 4 6 20

±3 ∓3 0 0 0 −
√
924

±3 ∓2 0 0 0
√
462

±3 ∓1 0 0
√
42 −

√
210

±2 ∓2 0 0
√
70

√
504

±2 ∓1 0 0 −
√
14 −

√
378

±1 ∓1 0 −
√
24 −

√
40 −

√
420

Table 5: The Gaunt coeficients ck(3, m; 3, m′)



Multiplets 8.29

References

[1] J.H. de Boer and E.J.W. Verwey, Proc. Phys. Soc. London 49, 59 (1937)

[2] A.L. Fetter and J.D. Walecka: Quantum Theory of Many Particle Systems

(McGraw-Hill, San Francisco, 1971)

[3] J.C. Slater: Quantum Theory of Atomic Structure (McGraw-Hill, New York, 1960)

[4] J.S. Griffith: The Theory of Transition Metal Ions

(Cambridge University Press, Cambridge, 1961)

[5] L.D. Landau and E.M. Lifshitz: Lehrbuch der Theoretischen Physik

(Akademie Verlag Berlin, 1988)

[6] E. Pavarini: The LDA+DMFT Approach, in [22]

[7] Yu. Ralchenko, A.E. Kramida, J. Reader, and NIST ASD Team (2011). NIST Atomic

Spectra Database (ver. 4.1.0), http://physics.nist.gov/asd

[8] S. Sugano, Y. Tanabe, and H. Kitamura: Multiplets of Transition Metal Ions

(Academic Press, New York 1970) (Dover, 1989)

[9] E. Koch: The Lanczos Method, in [22]

[10] See, e.g., the CTM4XAS package http://www.anorg.chem.uu.nl/CTM4XAS

[11] F.M.F. de Groot, J. of Electron Spectroscopy and Related Phenomena, 67 525 (1994)

[12] F.M.F. de Groot, Coordination Chemistry Reviews, 249 31 (2005)

[13] F.M.F. de Groot and A. Kotani: Core Level Spectroscopy of Solids

(Taylor And Francis, 2008)

[14] C. Caroli, D. Lederer-Rozenblatt, B. Roulet, and D. Saint-James,

Phys. Rev. B 8, 4552 (1973)

[15] P.J. Feibelman and D.E. Eastman, Phys. Rev. B 10, 4932 (1974)

[16] A. Fujimori and F. Minami, Phys. Rev. B 30, 957 (1984)

[17] J. van Elp, J.L. Wieland, H. Eskes, P. Kuiper, G.A. Sawatzky, F.M.F. de Groot, and

T.S. Turner, Phys. Rev. B 44, 6090 (1991)

[18] A. Fujimori, N. Kimizuka, T. Akahane, T. Chiba, S. Kimura, F. Minami, K. Siratori,

M. Taniguchi, S. Ogawa, and S. Suga, Phys. Rev. B 42, 7580 (1990)

[19] M. Finazzi, N.B. Brookes, and F.M.F. de Groot, Phys. Rev. B 59, 9933 (1999)

http://physics.nist.gov/asd
http://www.anorg.chem.uu.nl/CTM4XAS


8.30 Robert Eder

[20] H.F. Pen, L.H. Tjeng, E. Pellegrin, F.M.F. de Groot, G.A. Sawatzky, M.A. van Veenendaal,

and C.T. Chen, Phys. Rev. B 55, 15500 (1997)

[21] M. Merz, D. Fuchs, A. Assmann, S. Uebe, H. v.Löhneysen, P. Nagel, and S. Schuppler,
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