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1 Introduction

For weakly or moderately correlated systems ab initio methods, such as the density functional

formalism [1, 2] or the GW method [3, 4], are often quite successful. For strongly correlated

systems, however, these methods are often not sufficient. It is then necessary to treat correlation

effects in a more accurate way. Such systems are often quite complicated with large unit cells.

It is then very hard to treat correlation effects within an ab initio approach, and one often

turns to model Hamiltonians. The idea is then to focus on states and interactions believed to

be particularly important for the physics of interest. This has the additional advantage that it

may then be easier to understand the physics, since less important effects do not confuse the

interpretation. On the other hand, there is a risk of oversimplifying the model and thereby

missing the correct physics. The purpose of this lecture is to discuss this approach.

In principle it is straightforward to construct a model. We can produce a complete basis set and

then calculate matrix elements of the real space Hamiltonian (in atomic units)

H =
∑

i

(

−1

2
▽2

i +Vext(ri)

)

+
∑

i<j

1

|ri − rj|
. (1)

For atoms or small molecules, this Hamiltonian may then be solved using various many-body

methods, e.g., configuration interaction (CI), where the many-body wave function is written as

a linear combination of determinants. For strongly correlated solids, however, a Hamiltonian

obtained in this way is often too complicated to allow reasonably accurate calculations. We are

then forced to use substantially simpler models. This usually involves a drastic reduction of

the basis set and the neglect of many interactions. Typical examples are the Anderson [5], the

Hubbard [6] and the t-J [7] models.

This approach involves the neglect of interactions which are large. For instance, the Anderson

impurity model is often used for a 3d impurity in a weakly correlated host. We define a direct

Coulomb integral

Fij =

∫

d3r

∫

d3r
′ |Φi(r)|2|Φj(r

′

)|2
|r− r

′| , (2)

where Φi(r) is the wave function of a state i. Then the Coulomb integral F3d,3d between 3d

electrons is kept, while, for instance, the integral F3d,4s between a 3d and a 4s electron is

neglected. For a free Mn atom F3d,3d = 21 eV and F3d,4s = 10 eV. Such an approximation is

clearly highly questionable. An essential task is then to try to include the explicitly neglected

interactions or states implicitly as a renormalization of parameters in the model. As we show

later, this leads to an effective Coulomb interaction between the 3d electrons which is much

smaller than the calculated value for a free atom. A basic assumption of such simple models is

then that all the neglected interactions can, with a reasonable accuracy, be included implicitly as

a renormalization of various model parameters. In this approach it is important to keep track of

what effects are explicitly included in the model. These should not be included in the calculation

of renormalized parameters, since this would involve double-counting.

There are various ways of obtaining parameters. One approach has been indicated above. We

use ab initio calculations to calculate parameters and then we try to estimate how these are
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Fig. 1: Schematic density of state for a Ce compound according to the promotional model.

renormalized by neglected interactions. Another is to calculate certain properties of the model,

compare with experiment and then adjust parameters until the experimental value is obtained.

This approach then automatically gives renormalized parameters. It is important to try to obtain

as much independent information as possible about the parameters, both from calculations and

from different experiments, and to check if the various pieces of information are consistent.

The importance of obtaining theoretical information about parameters can be illustrated by the

historical development of the theory of Ce compounds. Traditionally, Ce compounds were de-

scribed in the so called promotional model [8]. It was assumed that the Ce 4f level was located

very close to the Fermi level, EF , and that it had a very weak interaction with other states. A

mean-field theory was then used to show that this leads to a very narrow resonance, as indicated

in Fig. 1. The narrowness of the resonance could explain the large susceptibility and specific

heat of Ce compounds, and the closeness of the 4f level to EF the change of apparent va-

lence when the pressure or temperature are changed. Thermodynamic considerations, however,

showed that the 4f level ought to be about 2 eV below EF [9], in strong disagreement with

the model. This result was later reconciled with experiment in a many-body approach [10, 11],

showing that even if the 4f level is far belowEF it can form a Kondo-like many-body resonance

atEF leading to very large values of the susceptibility and the specific heat. This illustrates how

an oversimplified (mean-field) method can nevertheless lead to reasonable results if it is com-

bined with a bad choice of parameters. Correcting the parameters then forces us to use a better

method and to find out more about the correct physics.
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2 Projecting out states

2.1 One-particle Hamiltonian

One approach to the construction of models is to project out stateswhich are believed not to be

essential for the physics. We can illustrate this for a one-particle Hamiltonian

H =
∑

i

εini +
∑

i 6=j

tijψ
†
iψj (3)

We introduce a projection operator

P =
∑

ν∈P

|ν〉〈ν|, (4)

where |ν〉 are states we want to keep. We introduce the resolvent operator

(z −H)−1 =
∑

ν

|ν〉〈ν|(z −H)−1
∑

µ

|µ〉〈µ| =
∑

n

|n〉 1

z −En

〈n|, (5)

which has poles for z = En at the eigenvalues, where H|n〉 = En|n〉. Introducing the comple-

ment Q = (1− P ), we can write the Hamiltonian as [12, 13]

(

HPP HPQ

HQP HQQ

)

, (6)

where, e.g., HPP = PHP . Then we can derive the exact result (Löwdin downfolding)

P (z −H)−1P = [z −HPP −HPQ(z −HQQ)
−1HQP ]

−1. (7)

The operator P (z − H)−1P has the same poles as the original operator (z − H)−1, if the

corresponding eigenstates have weight inside the space P . The new operator has a smaller

dimension, but because of the z dependence it is not simpler. To simplify the expression, we

put z equal to an energy (ε0) in the range of interest. The operator is then energy independent.

As an additional simplification, we may assume that the off-diagonal elements of HQQ can be

neglected. Then the matrix elements of the new operator become

tij → tij −
∑

µ∈Q

tiµtµj
ε0 −Eµ

. (8)

This latter approximation is accurate if the states being projected out are much higher in en-

ergy than the states of interest and if the off-diagonal elements are small compared with the

energy difference ε0−Eµ. The assumption about HQQ being diagonal can also be relaxed. This

approach reduces the size of the Hamiltonian matrix, i.e., the number of states, at the cost of ob-

taining more long-range hopping. For a one-particle Hamiltonian, this approach is a controlled

and systematic procedure for reducing the size of the Hamiltonian.
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Fig. 2: Schematic picture of a very simple model of a transition metal compound, with a 3d
atom (levels 2 and 4) coupling to a ligand (with levels 1 and 3).

2.2 Many-body Hamiltonian

We now consider a many-body Hamiltonian, with a two-body interaction in the form of a

Coulomb interaction. We then define P as projecting out states that have no electron in cer-

tain (high-lying) one-particle states |µ〉, and Q = 1 − P . We consider a Coulomb interaction

with four (creation and annihilation) operators and project out a state with one electron in |µ〉.
Then HQP contains an operator c†µσ and HPQ an operator cµσ . Even if we assume HQQ to be

diagonal, we are left with an operator HPQHQP acting on a state without electrons in |µ〉. Then

cµσc
†
µσ ≡ 1, and two operators drop out. But we are still left with six other operators, which

in the general case are all different. We have then generated a three-body operator. This is too

complicated, and all such operators need to be neglected. Unless it can be shown that these

terms are small, this means that there is not a controlled systematic procedure for reducing the

number of states. We then have to rely on more intuitive approaches.

As an example we consider a very simple model which is relevant for 3d impurities. The model

is constructed so that an exact solution can be found. We want to illustrate how this model

can be projected down to a simpler model with renormalized parameters. We introduce the

Hamiltonian [14]

H =
∑

σ

(

4
∑

i=1

εiniσ + (tψ†
1σψ2σ + V ψ†

3σψ4σ +H.c.)

)

+ Uddn2↑n2↓ + Usd

∑

σσ
′

n2σ n4σ′ (9)

where level 2 corresponds to a 3d level and level 4 to a 4s level on a transition metal atom. Level

1 and 3 correspond to a ligand coupling to the transition metal atom via the hopping integrals t

and V . On the transition metal atom there is a large Coulomb interaction Udd between electrons

in the 3d level and a weaker Usd interaction between the 3d and 4s levels. We assume that

orbital 2 is quite localized, so that t is small, but that levels 3 and 4 are delocalized, so that V is

large. The level structure is shown schematically in Fig. 2.

We first consider the spinless case, and put one electron in each of the spaces 1+2 and 3+4.

We derive parameters in an intuitive approach, and then compare with a controlled projection

approach, possible in this case. We introduce the eigenstates of the space 3+4 with the electron

in space 1+2 on site 1 or 2. With the electron on level 1 the bonding and antibonding eigenstates
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in the 3+4 space are

ψb1 = a3ψ3 + a4ψ4 (10)

ψa1 = a4ψ3 − a3ψ4,

with the energies εb1 and εa1. With the electron in 1+2 on level 2 the states are

ψb2 = cosφψb1 + sinφψa1 (11)

ψa2 = sinφψb1 − cosφψa1, (12)

(13)

with the energies εb2 and εa2. Here φ is of the order Usd/V which is small in the limit we

consider below. We assume that the electron in the space 3+4 can adjust completely to the

movement of the electron in space 1+2 due to |V | ≫ |t|. We then replace the four-level model

in Eq. (9) by a two-level model with the effective level positions

εeff1 = ε1 + εb1; εeff2 = ε2 + εb2 (14)

To test this, we now solve the full model exactly. We introduce a complete basis set

|1̃〉 = ψ†
1ψ

†
b1|0〉

|2̃〉 = ψ†
2ψ

†
b2|0〉 (15)

|3̃〉 = ψ†
1ψ

†
a1|0〉

|4̃〉 = ψ†
2ψ

†
a2|0〉,

where we have chosen the basis set so that only the first two states are relevant if the assumptions

above are correct. We now calculate the resolvent operator [14]

(z −H)−1 =











z − ε1 − εb1 −t cosφ 0 t sinφ

−t cosφ z − ε2 − εb2 −t sinφ 0

0 −t sinφ z − ε1 − εa1 −t cosφ
t sinφ 0 −t cosφ z − ε2 − εa2











−1

. (16)

We now focus on the upper left 2× 2 corner and use Löwdin folding [12] to project out the two

high-lying states. For instance, the 11 element takes the form

H̃11 = ε1 + εb1 +
t2 (z − ε1 − εa1) sin

2φ

(z − ε1 − εa1)(z − ε2 − εa2)− t2cos2φ
. (17)

For simplicity, we put ε1 = ε2 and assume that the term t2cos2φ in the denominator can be

neglected. Putting z ≈ ε1 + εb1, we then find that the correction term in Eq. (17) is of the order

t(t/V )(Usd/V )
2. If |V | ≫ |t| and |V | ≫ Usd, it is indeed justified to neglect the correction

term. We then find that the level positions difference, εeff1 −εeff2 , have corrections to zeroth order

in (1/V ), due to εb1 and εb2. These corrections are included in our intuitive approach above.
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V εeff2 -εeff1 U eff E0 + 2V n2 χ
Renorm. Exact Renorm. Exact Renorm. Exact

1.0 1.17 3.18 -1.05 -0.95 0.380 0.364 0.314 0.312

1.5 1.39 3.21 -0.97 -0.90 0.339 0.326 0.266 0.262

2.0 1.53 3.29 -0.92 -0.88 0.317 0.307 0.240 0.237

3.0 1.68 3.44 -0.87 -0.85 0.292 0.287 0.214 0.213

4.0 1.75 3.55 -0.85 -0.84 0.280 0.277 0.202 0.201

6.0 1.83 3.68 -0.83 -0.82 0.268 0.267 0.190 0.190

10.0 1.90 3.80 -0.81 -0.81 0.259 0.258 0.181 0.181

20.0 1.95 3.90 -0.80 -0.80 0.252 0.252 0.174 0.174

Table 1: Ground-state energy E0, occupancy n2 of level 2 and susceptibility χ of the spin-

degenerate model (9). The parameters are ε1 = ε2 = ε3 = ε4 = 0, t = 1, Udd = 4 and

Usd = 2.

Then there is a second order correction to the hopping integral due to cosφ. This correction is

due to the fact that the electron in the space 3+4 cannot completely follow the electron in space

1+2 in the optimum way. This correction is usually neglected.

We now turn to the same model with spin degeneracy. The exact solution can then be obtained

from a 16× 16 matrix. In this case the analytical calculation is to complicated to illustrate what

happens, and we focus on a numerical calculation. We first calculate the energy E(n2) of the

3+4 space as a function of the occupancy of level 2. We then obtain

εeff1 = ε1 + E(0)

εeff2 = ε2 + E(1) (18)

U eff = E(2) + E(0)− 2E(1)

in analogy with the spinless case. We then calculate the ground-state energy, E0, the occupancy

n2 of level 2 and the spin susceptibility χ = −∂2E0(H)/∂H2, where the model couples to an

external magnetic field via the term −H(n2↑ − n2↓). The results are shown in Table 1. We have

added a contribution 2V to the total energyE0, since there would have been a trivial contribution

−2V if there had been no interaction between spaces 1+2 and 3+4. As expected, the agreement

between the approximate (Renorm.) and exact results improves as |V | is increased. However,

the agreement is surprisingly good even for V = t.

3 Effective Coulomb interaction

The essential point of the model from the previous section is that we can distinguish between

two types of electrons, “slow” electrons (space 1+2) and ”fast” electrons (space 3+4), in the

following referred to as “localized” and “delocalized”. The idea is that the delocalized electrons

are assumed to adjust in an optimum way to the movements of the localized electrons. We can

then estimate effective parameters in a similar way as in the previous section. For each system

we then have to decide which electrons we consider localized and include explicitly in the model
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System Localized Delocalized

4f compounds 4f 5d
3d compounds 3d 4s, 4p

Table 2: ”Slow” (“localized”) and ”fast” (“delocalized”) electrons for 3d and 4f compounds.

and which are delocalized and only included implicitly as a renormalization of the parameters.

This is illustrated in Table 2. For 4f compounds the 4f DFT band width is about 1/10 of the 5d

band-width, and we may reasonably talk about two types of electrons. For 3d compounds this

distinction is much less clear cut.

3.1 Perfect screening

We now focus on the calculation of an effective Coulomb integral U eff as an essential model

parameter. We apply the approach of the previous section to a real system. For that reason, we

need to know how the energy of the system varies with the occupancy of, e.g., a 3d or 4f level,

Eq. (18). Herring [15] estimated these energies using atomic data, assuming that any change

in the number of localized electrons on an atom is compensated by the opposite change in the

number of delocalized electrons on the same atom. For a 3d metal this can be written as

U = E(3dn+14s0) + E(3dn−14s2)− 2E(3dn4s1), (19)

where E(3dn4sm) is the energy of an atom (ion) with n 3d electrons and m 4s electrons. In this

approach it is assumed that the variation in the number of 3d electrons is perfectly screened by

a change in the number of 4s electrons. We refer to this as “perfect screening”.

A similar method was used by Cox et al. [16] who studied transition metals and Herbst et al. [17]

who studied the rare earths. They performed Hartree-Fock calculations for renormalized atoms

with Wigner-Seitz boundary conditions.

3.2 Constrained density functional formalism

Dederichs et al. [18] calculated U using a constrained density functional formalism. The func-

tional for a 3d compound is written as

E[ni
3d] = F [n]+

∫

d3r Vext(r)n(r)+µ

(
∫

d3r n(r)−N

)

+µi
3d

(
∫

d3r ni
3d(r)− ni

3d

)

. (20)

Here F [n] describes the kinetic and potential energy of the system, Vext(r) is an external poten-

tial, µ is the chemical potential and µi
3d is a Lagrange parameter. ni

3d is the number of localized

electrons on site i, referred to as the central site in the following. A stationary point of the

energy functional to density variations is searched

0 =
∂F

∂n
+ Vext(r) + µ+ µi

3dP
i
3d, (21)
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where P i
3d is a projection operator acting on the localized electrons. From this a new Kohn-

Sham equation can be derived, where µi
3d enters as an additional nonlocal potential acting only

on the localized electrons. µi
3d is varied until the prescribed number of 3d electrons is obtained.

This requires a definition of localized electrons. For instance, in methods based on an expansion

in spherical waves in a region around each nucleus a natural definition can be introduced. This

way an effective U eff is calculated, using a formula equivalent to Eq. (18).

In the approach above, U eff contains a change of the kinetic energy of the electrons included

explicitly in the model. This contribution needs to be subtracted. Hybertson et al. [19] did this

by considering the model Hamiltonian in which U eff will be used, e.g.,

H =
∑

ijσ

tijψ
†
iσψjσ +

∑

i

U effni↑ni↓, (22)

where tij are hopping integrals. This model is then solved in a constrained mean-field the-

ory to simulate the constrained density functional approach. The energy as a function of the

constrained occupancies is calculated, and U eff is varied until the constrained DFT result is re-

produced. We refer to this as cLDA. Cococcioni and Giroconcoli [20] used a similar approach.

An alternative approach was used by McMahan et al. [21] and by Gunnarsson et al. [22]. They

performed a band structure calculation with a large unit cell [21–23]. Then the hopping integrals

from the orbital with localized electrons is cut off for the central atom in the unit cell. Then

the occupation of the orbital can be trivially varied without a variation of the kinetic energy for

hopping in and out of the orbital, since this energy is zero. Double-counting is also explicitly

avoided, contrary to claims elsewhere [24]. This method is referred to as “cut off’ LDA. In a

different method, the hopping between the localized orbitals and the delocalized orbitals was

cut on all sites, not only on the central site [28].

3.3 Constrained RPA

A different approach was taken by Aryasetiawan et al. [25]. They calculated the Coulomb

interaction using a constrained random phase screening. In the random phase approximation

(RPA) the polarizability is written as

P (r, r′;ω) =

occ
∑

i

unocc
∑

j

ψi(r)ψ
∗
i (r

′)ψ∗
j (r)ψj(r

′)

(

1

ω − εj + εi + i0+
− 1

ω + εj − εi − i0+

)

,

where ψi(r) and εi are one-particle eigenfunctions and eigenvalues. Calculating the effective

Coulomb interaction by using this screening would be incorrect, since it would involve double-

counting. The Hubbard model explicitly allows localized electrons to screen the interaction be-

tween localized electrons, and the use of Eq. (23) would then lead to double counting. Aryaseti-

awan et al. [25] therefore excluded contributions to Eq. (23) where both i and j stand for Bloch

states containing mainly localized states. For a transition metal compound they then excluded

states within an energy window where the states are mainly of 3d character and for a rare earth

compound a window where the states are mainly of 4f character. The definition of the energy

window involves uncertainties [25]. This method is referred to as cRPA.
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Unrenormalized (F 0) 21.4 eV

Relaxation of 3d orbital -5.2 eV

Relaxation of 4s, 4p orbitals -2.2 eV

Relaxation core, XC effects -1.2 eV

Atomic U 12.8 eV

Table 3: Contribution to U for a free Mn atom with the configuration 3d5.14s0.644p0.70. This

corresponds to the configuration for Mn in CdTe.

On-site relaxation 15.4 eV

Charge transfer to Mn -7.6 eV

Charge transfer to n.n. ligand -0.4 eV

Solid state U 7.4 eV

Table 4: Contribution to U for a Mn impurity in CdTe.

3.4 Screening and breathing

The definition of U can be approximately rewritten as

U = E(n + 1) + E(n− 1)− 2E(n) ≈ δε

δn
, (23)

where E(n) is the energy of the system with n localized electrons and ε is the energy eigenvalue

of the localized orbital and n is the occupancy. If the system were not allowed to relax, this

would lead to U = F , where F , given in Eq. (2), is the direct Coulomb integral of the orbital. In

reality, the charge density relaxes and the corresponding change in the electrostatic potential acts

back on the orbital eigenvalue, reducing the shift as n is varied and leading to a renormalized

U . We can illustrate this for the case of a Mn impurity in CdTe [26]. First a free Mn atom is

studied (Table 3). The spherical part F 0
3d,3d of the direct Coulomb integral is large, 21 eV. The

main renormalizing process is a breathing of the 3d orbital, where the orbital expands as the 3d

occupancy is increased [26,29]. This reduces U by about 5 eV. Breathing of the 4s, 4p and core

orbitals contribute less. The net result is a reduction of U from about 21 eV to about 13 eV. In

the solid there are similar breathing effects, reducing U to about 15 eV (see Table 4). However,

now there is additional charge transfer from the surrounding to the Mn atom, reducing the U by

almost 8 eV. Charge transfer to near neighbors (n.n.) plays a smaller role. The result is reduction

of U to about 7 eV according to this calculation.

The breathing effect can also be understood from Slater’s rules [30]. According to these rules,

the effective nuclear charge for a 3d orbital is Z∗ = Z−18−0.35(n3d−1), where Z is the true

nuclear charge and n3d is the 3d occupancy. This illustrates how the effective nuclear charge is

reduced and the orbital expands as n3d is increased. According to Slater’s rules, the occupancy

of the 4s and 4p orbitals do not influence Z∗ for the 3d orbital. This then suggests that the

charge transfer in the solid to 4s and 4p should not influence breathing very much. This is also

supported by a comparison of Tables 3 and 4.
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System cLDA “cut-off” cRPA “perfect screening” Exp

Fe 2.2 [20] 6 [23] 4 [25] 2.7 [16] 2 [31, 32]

Ce 4.5 [20] 6 [23] 3.2-3.3 [25] 5 [17] 5-7 [35]

Table 5: Results for U for Fe as an example of a 3d metal and Ce illustrating a 4f metal.

3.5 Results

We now consider results obtained using the methods above for 3d and 4f metals. Specifically,

we consider Fe and Ce as examples of 3d and 4f metals. The results are shown in Table 5.

“Perfect screening” provides a rather good estimate for both Fe and Ce. The ”cut-off” method

gives a substantially too large U for Fe. It was found [23] that only about half the screening

charge is on the Fe atom, as one would expect from the energetics of the screening process [23].

It is then to be expected that U is substantially larger than the “perfect screening” result. cLDA

gives a very good result compared with experiment, and actually somewhat smaller than “per-

fect screening”. It is not clear why this result is so different from the ”cut-off” method, and it

would be interesting to study the screening in cLDA. The U in cRPA is a bit too large. Inter-

estingly, the ”cut-off” method gives a good estimate of U towards the end of the 3d series, e.g.,

for the cuprates [34].

For Ce “perfect screening” provides a fairly accurate estimate of U . The “cut off” method

gives only a slightly larger U , in good agreement with experiment. In this case it is found

that the screening charge on Ce is approximately unity [23], so it is not surprising that there is

rather good agreement with “perfect screening”. cLDA gives a U slightly smaller than “perfect

screening” and U in cRPA is substantially smaller. It is not clear why cRPA implies such an

effective screening and gives a U that is only roughly half the experimental estimate.

4 Neglected renormalizations

In this section we discuss two renormalizations of parameters, which are usually neglected. The

purpose is not to argue that these effects should be included. This could be done, but it would

result in more parameters and the results would probably be less transparent. The purpose is

rather to illustrate that the parameters of effective models contain complicated renormalizations,

and that ab initio estimates of such parameters may neglect several such effects. The purpose

is also to show that if we insist on a rather simple model, which is advocated here, the effective

parameters may actually be different for different properties.

4.1 Configuration dependence of hopping integrals

We already discussed in Sec. 3.4 that there is a substantial breathing of the localized orbital

when the occupancy is changed. This changes the hopping integral into this orbital. In the

LMTO method [36], used here, the hopping integral V is related to a potential parameter ∆̃,

V 2 ∼ ∆̃ ≈ s

2
[φl(C, s)]

2, (24)
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nl nc Mn Ce U

n0
l − 1 n0

c 51 8 72

n0
l n0

c 85 19 91

n0
l + 1 n0

c 129 38 112

n0
l n0

c − 1 40 5 53

n0
l + 1 n0

c − 1 67 11 69

Table 6: Potential parameter ∆̃ for different configurations of Mn, Ce and U in non-spin-

polarized calculations. The localized orbital is 3d (Mn), 4f (Ce) and 5f (U), and we consider

a core hole in the 1s (Mn), 3d (Ce) and 4f (U) orbital. The occupancy of the localized and core

orbital is nl and nc, respectively. We introduce n0
l , which is 5 (Mn), 1 (Ce) and 3 (U) and n0

c

which is 2 (Mn), 10 (Ce) and 14 (U). All energies are in mRy.

where φl(C, s) is the value of the localized orbital at the Wigner-Seitz radius s. The localized

orbital with the angular momentum l is solved for an energy C, which gives the logarithmic

derivative −l − 1 at s. The value of ∆̃ is shown in Table 6 for a few metals with and without a

core hole [27]. The table illustrates the strong dependence of the hopping on the configuration

used to calculate ∆̃. For instance, if we want to describe how a host electron hops into a Ce

atom, should we then use the initial configuration or the final configuration to calculate ∆̃ or

should we use an average? Table 6 shows that the difference could be even as much as a factor

of two.

To address this issue, we temporarily introduce an impurity model with two orbitals [27]

ϕ0
l ≡ ϕl(r, n

0
l ) (25)

ϕ1
l ≡ A

∂

∂nl

ϕl(r, nl)|nl=n0

l
,

where A is chosen so that φ1
l is normalized. By forming linear combinations of ϕ0

l and ϕ1
l , we

can obtain an appropriate orbital for different occupancies, i.e., describing breathing. In, for

instance, an Anderson impurity model we then introduce a term leading to transitions between

these two orbitals

Ũ
∑

mσ

(ψ†
1mσψ0mσ +H.c.)(n0 + n1 − n0

l ), (26)

where ni =
∑

mσ nimσ . If the occupancy of the two levels adds up to n0
l , the orbital ϕ0

l is

appropriate and there is no mixing of the orbital ϕ1
l . For any other occupancy, transitions to ϕ1

l

are induced and the system has the freedom to adjust to the occupancy. For Mn in CdTe we

find that Ũ = 0.16 Ry. The energies of the two orbitals are quite different, ε0 = −0.45 Ry

and ε1 = 1.68 Ry. The model then tends to have two sets of states, one set at ε0 and one set at

ε1. We can then project out all high-lying states, having a substantial weight in ϕ1
l . The result

is then that we recover the normal Anderson impurity model, with just one localized orbital.

But in this process the hopping matrix elements are modified. Since the mixing matrix element

Ũ/(ε1 − ε0) = 0.08 ≪ 1, this approach should be rather accurate.

We can then answer the question of how to calculate these elements. Let us consider a host

electron hopping into a configuration with nl localized electrons, resulting in a configuration
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with nl + 1 localized electrons. The projection procedure then shows that the matrix element

should be calculated using nl + 1 electrons, i.e., the end configuration [27]. For nl = 0 this

is easy to understand. In the initial state there is no localized electron and the extent of the

localized wave function then plays no role. It is then natural that it is the wave function in the

final configuration that matters. In a similar way it is the initial configuration that matters when

an electron hops out of the localized orbital.

We then should be using different hopping integrals for different experiments. For Ce com-

pounds, for instance, f 0 − f 1-hopping is particularly important for valence photoemission, and

we would use nl = 1 for calculating these hopping matrix elements. For inverse photoemis-

sion, we are often interested in the relative weights of the f 1 and f 2 peaks. We then need to

distinguish between the calculation of the ground-state and the calculation of the final states,

resulting from the inverse photoemission process. In the ground-state calculation the important

matrix elements would be calculated for nl = 1 and in the final state for nl = 2. For core level

spectroscopies we should in addition include a core hole for the calculation of matrix elements

for the final states but not for the ground-state.

As argued above, this would lead to a complicated model. It seems questionable if the possible

additional gain in physics would justify such a complicated model with additional parameters.

However, the example illustrates one source of uncertainty in models with configuration inde-

pendent hopping parameters. It also illustrates how parameters can be different for different

experiments.

4.2 Many-body renormalization of hopping integrals

In Secs. 2.2 and 3 we discussed how the effective level energies and Coulomb integrals can be

obtained by letting delocalized electrons adjust to the movements of localized electrons. This

approach, however, raises questions about other many-body effects. One issue is the Anderson

orthogonality catastrophe [37]. Consider the case when delocalized electrons interact with a

(truly) localized electron via the Coulomb interaction. Let us then change the occupancy of

the localized level by one and let |0〉 and |1〉 be the lowest states of the delocalized electrons

in the presence of 0 or 1 localized electrons, respectively. Then 〈0|1〉 = 0 for an infinite

system [37]. One might then think that the hopping integrals should be reduced by such effects.

When a delocalized electron hops into a localized level, all the other electrons would adjust their

wave functions to the new potential. Then one might expect that the overlap 〈0|1〉 = 0 enters

the effective hopping integral. This is, however, not the appropriate comparison. Anderson’s

orthogonality catastrophe refers to the case when the localized electron is removed from the

system. Here it hops into or out of delocalized states. The appropriate comparison is then X-ray

absorption (XAS) or X-ray emission (XES). In addition to the Anderson effect there is then an

exciton like effect, transferring spectral weight towards the Fermi energy. For instance, the XES

spectrum looks like

S(ω) ∼
(

ω̃

ω − ω0

)α

Θ(ω − ω0), (27)
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−∆E nd

εd Usd Ex. Ren. Unre. Fit XAS Ex. Ren. Unre. Fit XAS εcalcd εfitd tfiteff
-1.5 1 1.33 1.28 1.66 1.33 1.31 0.89 0.91 0.94 0.89 0.89 -1.09 -1.09 1.12

-1.5 2 1.12 1.02 1.66 1.12 1.08 0.82 0.87 0.94 0.83 0.81 -0.79 -0.81 1.18

-1.5 3 0.98 0.83 1.66 0.99 0.94 0.76 0.81 0.94 0.78 0.74 -0.57 -0.64 1.21

-1.5 5 0.83 0.62 1.66 0.88 0.78 0.66 0.70 0.94 0.69 0.62 -0.29 -0.41 1.30

-1.0 3 0.64 0.48 1.20 0.69 0.62 0.57 0.55 0.90 0.55 0.53 -0.07 -0.09 1.31

-0.5 3 0.42 0.29 0.78 0.44 0.41 0.33 0.24 0.79 0.31 0.31 0.43 0.36 1.22

0.0 3 0.29 0.21 0.44 0.30 0.29 0.18 0.11 0.50 0.17 0.17 0.93 0.76 1.15

10 3 .043 .040 .043 .044 .043 .004 .003 .004 .004 .004 10.9 10.1 1.00

Table 7: Energy lowering ∆E and occupancy of the d level nd in the exact calculation (“Ex.”)

compared with results of calculations for the model (28) with Usd = 0. The unrenormalized d
level position was used for “Unre.” and the calculated renormalized position for “Ren.” and

“XAS”. For “XAS” the effective hopping integral was renormalized [Eq. (29)] and for “Fit”

both the level position and the hopping were adjusted to obtain the best agreement with the

exact results. The parameters are t = 1, B = 5 N = 17 and Nel = 9.

where ω̃ is a typical energy and ω0 is the threshold energy. The exponent α is positive and

determined by the phase shift due to the Coulomb interaction between localized and delocalized

electrons. From Eq. (27) we might then expect hopping integrals for states close to the Fermi

energy to be enhanced. This would then in particular influence thermodynamic properties.

To check these ideas we have considered the spinless model [38]

H =

N
∑

k=1

εknk + εdnd +
t√
N

N
∑

k=1

(ψ†
kψd +H.c.) +

Usd

N

N
∑

k=1

N
∑

l=1

ψ†
kψl nd, (28)

where we have introduced N delocalized states with the energies εk and a localized state with

the energy εd. There is a hopping integral t, connecting the localized and delocalized states.

When the localized level is occupied the delocalized electrons feel a scattering potential Usd.

The delocalized levels are equally spaced over an energy 2B.

This model can be solved using exact diagonalization for finite N [38]. We have used N = 17

and the number of electrons Nel = 9. Although this is far from an infinite system, Anderson’s

orthogonality catastrophe already has an effect. ForB = 5, εd = −1.5 and Usd = 5, the overlap

between the lowest states of delocalized electrons in the presence or absence of a localized

electron is 0.85 < 1. We then calculate the energy lowering ∆E = E0 −
∑′

k εk, where E0 is

the ground-state energy and the sum goes over the Nel lowest states. We have also calculated

the 3d occupancy, nd and the charge susceptibility χc = −∂nd/∂εd. The results are shown in

Table 7 and 8.

We compare the exact results with several approximations [38]. In all these calculations Usd

was put to zero and its effects were approximately included via renormalized parameters. The

column “Ren.” shows results where εd was replaced by εcalcd = Ẽ0(1)− Ẽ0(0). Here Ẽ0(nd) is

the energy of the model as a function of the occupancy nd. In this calculation the hopping to the
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χc

εd Usd Ex. Ren. Unre. Fit XAS εcalcd εfitd tfiteff
-1.5 1 0.12 0.10 0.05 0.12 0.13 -1.09 -1.09 1.12

-1.5 2 0.20 0.19 0.05 0.20 0.23 -0.79 -0.81 1.18

-1.5 3 0.27 0.30 0.05 0.28 0.32 -0.57 -0.64 1.21

-1.5 5 0.36 0.55 0.05 0.38 0.40 -0.29 -0.41 1.30

-1.0 3 0.47 0.74 0.12 0.50 0.47 -0.07 -0.09 1.31

-0.5 3 0.41 0.41 0.35 0.43 0.37 0.43 0.36 1.22

0.0 3 0.21 0.14 0.75 0.22 0.19 0.93 0.76 1.15

10 3 .0006 .0005 .0006 .0006 .0006 10.9 10.1 1.00

Table 8: Same as Table 7 but for calculating χ.

localized level was cut to avoid double-counting. The Table also shows results for unrenormal-

ized parameters (“Unre.”). We then treated the εfitd and tfiteff as fitting parameters, and adjusted

these parameters to obtain the best possible agreement (“Fit”) with the exact results. Finally we

have performed calculations where the hopping matrix element to a level εk

(

teff(εk)
)2

= t2S(|εk − εF + ω0|), (29)

was related to the X-ray absorption or emission spectra. teff(εk)
2, summed over all states, is un-

renormalized, but the hopping parameters to states close to the Fermi energy, εF , are enhanced

at the cost of hopping to the band edges. In calculations with teff(εk) we used the renormalized

level position εcalcd .

We first compare the exact results with the unrenormalized and renormalized results. The renor-

malization improves the agreement with the exact results substantially. For most parameter sets

the agreement is relatively good. For Usd large and for |εd| rather small, there are still substantial

deviations. “XAS” shows the results when the hopping is renormalized as well, using Eq. (29).

There is then a substantial additional improvement, and the agreement is now generally rather

good. Finally, we have treated both the hopping and the level position as adjustable parameters.

This gives only a marginal improvement and sometimes the results are even worse. This is

remarkable, since the d-level position is now also a fit parameter and εcalcd is sometimes rather

different from εfitd . On the other hand, hopping is energy-dependent, and “XAS” presumably

describes this better than “Fit”. This suggests that Eq. (29) gives a quite good renormalization.

In the case of Ce the delocalized states are primarily of 5d character. According to the Friedel

sum rule we can then estimate the phase shift as δ ∼ π/10. This then gives a singularity index

of the order α ∼ 0.1. For thermodynamic properties we may then expect an enhancement of the

order of (ω̃/TK)
0.1, where TK is the Kondo temperature. For, e.g., CeCu2Si2 TK = 0.001 eV,

and t2 may then be enhanced by a factor of two, if we assume ω̃ ∼ 1 eV. As discussed above,

we do not advocate including these effects explicitly in a model. However, one should be aware

that thermodynamic and spectroscopic properties may be renormalized differently.
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Fig. 3: Levels of the C60 molecule. The left-hand part shows the levels obtained by using a basis

of one 2s and three 2p orbitals per carbon atom (sp3). The right-hand part shows the levels

obtained by using just one radial 2p orbital per atom (2pr). The numbers give the amount of

radial 2p character (2pr) in the full calculation (after Ref. [39]).

5 Fullerenes

In this section we discuss the parameters for a molecular solid. As an example we use fullerenes

[39]. Similar work has been done for TTF-TCNQ [40].

5.1 Hopping

The important levels in a C60 molecule can be described in a tight-binding picture including

a 2s and three 2p orbitals on each of the 60 C atoms. The corresponding molecular levels

are shown in Fig. 3. The molecule forms approximate sp2 hybrids on each C atom which point

towards the neighboring C atoms and radial orbitals pr pointing out of the molecule. The former

orbitals interact strongly and form bonding and antibonding molecular orbitals at the lower and

upper end of the spectrum, respectively. The pr orbitals interact much less and form molecular

orbitals in the middle of the spectrum. The figure illustrates that these molecular orbitals can

be described rather well using only the pr orbitals. In the neutral molecule all orbitals up to and

including the hu orbital are filled.

C60 molecules condense to a solid of rather weakly bound molecules. Thus the distance (∼3 Å)

between the closest C atoms on two neighboring molecules is much larger than the distance

(∼1.4 Å) between two C atoms on the same C60 molecule. The molecular levels then essentially
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Fig. 4: Band structure for a C60 solid in the Fm3̄ structure (a) according to an ab initio LDA

and (b) according to a TB calculation (after Gunnarsson et al. [43]).

preserve their identity in the solid, but the discrete molecular levels are broadened to narrow,

essentially non-overlapping bands. The alkali-doped fullerenes are of particular interest. In

these systems the t1u band is partly filled. Therefore the three-fold degenerate t1u molecular

level is particularly interesting.

The band structure can be described in a tight-binding (TB) scheme. We first form a molecu-

lar orbital corresponding to the t1u level. The hopping between the molecules is described by

hopping integrals Vppσ and Vppπ corresponding to hopping between orbitals pointing directly

towards each other or orbitals pointing perpendicular to the connecting line of the centers. Fol-

lowing Harrison [41], we assume that the ratio of the π− and σ-integrals is -1/4. Then

Vppσ = vσ
R

R0
e−λ(R−R0);

Vppπ
Vppσ

= −1

4
R0 = 3.1 Å, (30)

whereR is the separation of the carbon atoms. The prefactorR has been included to simulate the

r-dependence of a 2p orbital as described by Slater’s rules [30]. The overall hopping strength,

determined by vσ, is adjusted to the band-width in a band structure calculation, and the decay

length λ is determined from the dependence of the band width on the lattice parameter. Here

we use the parameters [42, 43]

λ = 1.98 Å
−1
and vσ = 0.917 eV. (31)

The resulting TB band structure is compared with an ab initio band structure calculation in

Fig. 4. The agreement is quite good. The resulting band structure εk has a simple parameter-

ization [42, 44]. The dominating hopping between two molecules in this structure is given by

two equivalent hopping integrals, with all other hopping integrals being substantially smaller.

Effectively, we have therefore adjusted this parameter, requiring that the TB band width should

agree with the LDA band width. The shape of the band structure in Fig. 4 is therefore primarily

determined by the geometry of the C60 molecule and by the relative positions and orientations

of the C60 molecules in the Fm3̄ symmetry.
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5.2 Coulomb interaction

We first consider the Coulomb integral U0 between two t1u-electrons for a free C60 molecule.

A very simple estimate is obtained by assuming that the charge density of the t1u orbital forms

a thin shell of charge on a sphere with the radius of the C60 molecule R ∼ 3.5 Å. Then U0 =

1/R ≈ 4 eV. This neglects that the orbitals breath when the occupancy is changed. To obtain a

better estimate one can calculate how the t1u eigenvalue changes with occupancy, using Eq. (23)

and LDA. This leads to values of the order 2.7-3.0 eV [45–47]. U0 for a free molecule can also

be estimated from experimental results using

U0 = Ip(C
−
60)−A(C−

60) = E0(2) + E0(0)− 2E0(1), (32)

where E0(n) is the energy of a C60 molecule with n t1u electrons. This leads to U0 ∼ 2.7 eV, in

fairly good agreement with theory [39, 48].

We next consider U for a C60 solid, following Antropov et al. [47]. U is strongly screened by

the polarization of the surrounding molecules. To describe this, we put the C60 molecules on

an fcc lattice and assign a polarizability α to each molecule. An electron is added to the central

molecule, and the surrounding molecules are allowed to polarize in a self-consistent way. This

polarization acts back on the electron and reduces the energy-increase of the t1u level by an

amount δU . The summation over neighboring molecules is extended until it is converged. The

U for the solid is then

U = U0 − δU. (33)

The value of α can be determined from the experimental value, ε = 4.4, of the dielectric

function [51]. Using the Clausius-Mossotti relation and the lattice parameter a = 14.04 Å,

this leads to α = 90 Å3. Ab initio calculations using the density functional formalism give

α = 83 Å3 [46]. Using α = 90 Å3, Antropov et al. [47] found δU = 1.7 eV. Together with

U0 = 2.7 eV, this gives U = 1.0 eV. These values of U do not include the metallic screening

from the t1u electrons in A3C60 compounds, and they are appropriate for models where the

metallic screening is treated explicitly when solving the corresponding model.

We next consider the nearest neighbor interaction V , which is obtained by calculating the in-

crease of the energy of a t1u orbital on a molecule 1 when an electron is added to a neighboring

molecule 2. This leads to the result

V = 1/Rnn − δV, (34)

where Rnn is the nearest neighbor separation and −δV is the lowering of the t1u orbital on

molecule 1 due to the polarization of the surrounding molecules when an electron is added to

molecule 2. For a = 14.04 Å, Antropov et al. [47] estimated that δV =1.12 eV, resulting in

V = 0.3 eV for the polarizability α = 90 Å3. The same value V = 0.3 eV was also obtained

by Pederson and Quong [46]. We can see that U is indeed substantially larger than V , and that

it is justified to focus on the effects of U at first.

U can be estimated experimentally from Auger spectroscopy [49, 50]. A carbon 1s electron

is emitted in a photoemission process. This is followed by an Auger process, where a carbon
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Fig. 5: Schematic representation of various phonons in A3C60 compounds. The figure shows,

from left to right, (a) librations, (b) intermolecular C60-C60 phonons, (c) A-C60 phonons and

(d)-(e) intramolecular Hg modes. The figure indicates the radial and tangential character of the

low-lying and and high-lying Hg modes, respectively (After Hebard [52]).

2p electron falls down into the 1s hole and another 2p electron is emitted. For noninteracting

electrons, the Auger spectrum is just the self-convolution of the photoemission spectrum. For

the interacting system, the Auger spectrum is expected to be shifted due to the interaction of

the two holes in the final state. Indeed, Lof et al. [49] found good agreement with the self-

convoluted curve when this was shifted by 1.6 eV. The experimental estimate of the Coulomb

interaction is then U = 1.6 ± 0.2 eV [49] as an average over all orbitals and about 1.4 eV for

the highest occupied orbital. Since Auger is rather surface sensitive, this number may be more

representative for U at the surface. One can estimate that U at the surface is about 0.3 eV larger

than in the bulk, due to fewer neighbors and less efficient screening [47]. This suggests that the

bulk value of U for the t1u and hu orbitals may be on the order U = 1.1 eV, which is close to

the theoretical estimate. U has also been estimated for K6C60 in a similar way [50], giving a

similar value U = 1.5 eV.

5.3 Electron-phonon interaction

The electron-phonon interaction plays an important role for many properties of the alkali-doped

fullerides. For instance, superconductivity is believed to be due the electron-phonon interaction.

Fig. 5 indicates the different types of phonons in alkali-doped C60 compounds. The low-lying

modes are librations (4-5 meV) and intermolecular modes (energies up to about 17 meV) in-

volving alkali-C60 and C60-C60 modes. The high-lying modes (34-195 meV) are intramolecular

modes, where the molecules are deformed. All the low-lying modes have a rather weak cou-

pling to the t1u electrons, and the main coupling is to the intramolecular phonons. Here, we
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therefore focus on the the coupling to these phonons. These phonons couple primarily to the

level energies in contrast to the intermolecular phonons which couple to the hopping integrals.

The C60 molecule has 60×3−6 = 174 intramolecular modes. For symmetry reasons, however,

the t1u electrons only couple to modes with Ag or Hg symmetry. There are eight five-fold

degenerate Hg modes and two nondegenerate Ag modes. The coupling to the t1u-level takes the

form [53]

Hel−ph =

8
∑

ν=1

gν

5
∑

M=1

∑

σ

3
∑

m=1

3
∑

m′=1

(

V
(M)
Hg

)

mm′

ψ†
mσψm′σ

(

bνM + b†νM

)

+

10
∑

ν=9

gν
∑

σ

3
∑

m=1

3
∑

m′=1

(

VAg

)

mm′
ψ†
mσψm′σ

(

bν + b†ν
)

, (35)

where ψ†
mσ creates a t1u electron with quantum number m and b†νM creates a phonon in mode ν

with quantum number M . The first eight modes are Hg Jahn-Teller phonons and the next two

are Ag phonons. The coupling constants are gν and the coupling to the Hg phonons is given by

the matrices

V
(1)
Hg

=
1

2







−1 0 0

0 −1 0

0 0 2






V

(2)
Hg

=

√
3

2







1 0 0

0 −1 0

0 0 0






V

(3)
Hg

=

√
3

2







0 1 0

1 0 0

0 0 0







V
(4)
Hg

=

√
3

2







0 0 1

0 0 0

1 0 0






V

(5)
Hg

=

√
3

2







0 0 0

0 0 1

0 1 0






(36)

and the coupling to the Ag phonons by

V
(1)
Ag

=







1 0 0

0 1 0

0 0 1






. (37)

The corresponding dimensionless electron-phonon coupling constant is [53]

λ =
5

3
N(0)

8
∑

ν=1

g2ν
~ων

+
2

3
N(0)

10
∑

ν=9

g2ν
~ων

, (38)

where N(0) is the density of states per spin and molecule and ων is the frequency of mode ν.

The theoretical calculation of the electron-phonon coupling for a solid is very complicated.

Lannoo et al. [54] showed that for intramolecular modes in fullerides, important simplifications

follow from the large difference between the intramolecular (EI) and intermolecular (W ) energy

scales. The coupling for a solid can then be obtained approximately from a calculation for a

free molecule and the density of states N(0) of the solid. Thus, it is sufficient to calculate the

shift ∆ενα of the t1u levels α for a free C60 molecule per unit displacement of the νth phonon

coordinate. One then finds that

λ ∼ N(0)
∑

να

∆ε2να
ω2
ν

. (39)
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λν/N(0)
Theory Photoemission Raman

Mode ων Antrop. [55] Faul. [56] Man. [57] Iwa. [60] Gun. [58] Iwa. [60] Kuz. [61]

Hg(8) 1575 .022 .009 .014 .018 .023 .011 .003

Hg(7) 1428 .020 .015 .015 .023 .017 .028 .004

Hg(6) 1250 .008 .002 .003 .002 .005 .007 .001

Hg(5) 1099 .003 .002 .004 .005 .012 .009 .001

Hg(4) 774 .003 .010 .004 .006 .018 .007 .003

Hg(3) 710 .003 .001 .009 .012 .013 .015 .003

Hg(2) 437 .006 .010 .011 .011 .040 .012 .020

Hg(1) 273 .003 .001 .005 .006 .019 .007 .048
∑

Hg .068 .049 .065 .083 .147 .096 .083

Table 9: Partial electron-phonon coupling constants λν/N(0) (in eV) according to different

theoretical calculations and derived from photoemission and Raman scattering. The energies

ων (in cm−1) of the modes for the undoped system are shown.

This gives a molecule-specific quantity which is multiplied by N(0). Table 9 shows results for

the electron-phonon coupling. The theoretical calculations by Antropov et al [55], Faulhaber et

al. [56] and Manini et al. [57] are based on ab initio LDA calculations. The work of Iwahara

et al. is based on the B3LYP functional with some Hartree-Fock exchange mixed in. There are

substantial deviations between the distribution of coupling strength to the different modes in

the different calculations. This distribution is very sensitive to the precise form of the phonon

eigenvectors. The deviations between the total coupling strengths are smaller. The work of Iwa-

hara et al. gives a stronger coupling than the other three calculations. This is not so surprising,

since this work is based on a rather different functional.

An experimental method for estimating the electron-phonon coupling is the use of photoemis-

sion data. Because of the relatively strong electron-phonon coupling, we expect to see satel-

lites due to the excitation of phonons. The weights of the satellites give information about the

strength of the coupling. This is essentially the Franck-Condon effect, but because of the Jahn-

Teller effect the calculation of the satellite structure is rather complicated. The photoemission

spectra of K3C60 and Rb3C60 have been analyzed along these lines [62]. Due to the broadening

effects in a solid and due to the complications in the theoretical treatment of bands with disper-

sion, however, it was not possible to derive reliable, quantitative values for the electron-phonon

coupling.

Photoemission spectra have also been measured for free C−
60 ions. In this case the theoretical

treatment is substantially simpler [58]. In these experiments, a beam of C−
60 ions was created

and a photoemission experiment was performed using a laser light source (~ω = 4.025 eV)

and a time of flight spectrometer. The spectrum resulting from emission from the t1u level

was measured. To analyze the results, we use the couplings in Eq. (35) of the t1u level to

the two Ag and the eight five-fold degenerate Hg modes. For this model the ground-state can

be calculated by numerical diagonalization to any desired accuracy [58]. Furthermore, within
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Fig. 6: Experimental (dots) and theoretical (full line) photoemission spectrum of C−
60. The

theoretical no-loss (dashed), single-loss (dotted) and double-loss (dashed-dotted) curves are

also shown. The contributions of the different modes to the single-loss curve are given by bars

(Hg: open, Ag: solid). The inset shows the experimental spectrum over a larger energy range

(after Gunnarsson et al. [58]).

the sudden approximation [63], the photoemission spectrum can easily be calculated. A set of

coupling constants is then assumed and the resulting spectrum is compared with experiment.

The coupling parameters are varied until good agreement with experiment is obtained, thereby

providing an estimate of the couplings. The resulting spectrum is compared with experiment in

Fig. 6 and the corresponding parameters are shown in Table 9. An uncertainty in this approach

is that with the available resolution, it is not possible to distinguish between the coupling to

Ag modes and Hg modes with similar energies. The couplings to the Ag modes were therefore

taken from a calculation [55]. With this assumption, the couplings to the Hg modes can then

be determined. An equally good fit can, however, be obtained using other couplings to the Ag

modes if the couplings to the Hg modes are changed correspondingly.

Substantially later the experiments in Ref. [58] were repeated by Wang et al. [59]. It was now

possible to obtain a better resolution. These data have been analyzed in a similar way as in

Ref. [58] by Iwahara et al. [60]. Their results are also shown in Table 9. The total coupling

is weaker than in Ref. [58], but still substantially larger than in the ab initio LDA calculations.

The agreement with the calculation using the B3LYP is better.

Raman scattering provides a different method of estimating the coupling strength. The electron-

phonon coupling allows phonons to decay into an electron-hole pair in the metallic fullerides.

This decay contributes to the width of the phonon and can be measured in Raman scattering.

Other factors may also contribute to the width, but one can try to eliminate these by subtracting

the width of the phonons for a nonmetallic system, where a decay in electron-hole pairs is not
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possible. This was done by Winter and Kuzmany [61], and Table 9 shows results adapted [39]

from the experiments [61]. The total weight does not differ much from what was obtained

from photoemission [60], but the distribution of weight between the different modes differs

dramatically. Theoretically, it is found that in the solid there is a transfer of weight to lower

modes, due to the coupling to electron-hole pairs [64]. This mechanism is operative for the

Raman data but not for the photoemission data (taken for a free molecule). This may explain

some of the discrepancy between the photoemission and Raman data.

6 Conclusions

For complicated systems with strong correlation effects it is often not possible to obtain accurate

ab initio solutions, but it is instead useful to turn to models. An important issue is then how to

obtain parameters and how to renormalize parameters to include as much physics as possible.

We have discussed how the basic principle is to try to include, implicitly as a renormalization

of parameters, all effects not explicitly included in the model. On the other hand, we should

not allow effects included explicitly in the model to renormalize parameters. For many-body

systems there is no general systematic and controlled way of doing this. The basic assumption is

often that the electrons can be put into two groups of “fast” (delocalized) and “slow” (localized)

electrons, where the ”fast” electrons are assumed to adjust to the “slow” electrons, and therefore

can be projected out. Such a division is, however, often not very clear cut. Nevertheless some

methods have been relatively successful in obtaining parameters for certain classes of systems.

We have, however, shown simple examples of many-body effects that are usually not included,

but can have an appreciable effect on the parameters. In particular, renormalization effects

may work differently for different experiments. We have also argued that it is important to

try to extract parameters from different sources, both theory and experiment, to obtain a better

understanding of the accuracy of the parameters.
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