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Obtaining dynamical properties from quantum Monte Carlo (QMC) simulations is a notoriously

difficult problem because QMC provides a limited number of values of a dynamical correlation

function

{G(m), m = 1,M} (1)

either at Matsubara frequencies iωm or at imaginary time points τm, whereas dynamical infor-

mation is associated with a spectral function A(ω) depending on the continuous energy variable

ω. The procedure of obtaining the dynamical correlation function A(ω) from the known set

of values G(m) is called analytic continuation. One of the most complete overview of this

problem for the case when the set of values {G(m), m = 1,M} is obtained from numeric

calculations can be found in Ref. [1]. Generally, the procedure requires solving the Fredholm

integral equation of the first kind [2]

G(m) =

∫ ∞

−∞

dω K(m,ω) A(ω) , m = 1, . . . ,M , (2)

where K(m,ω) is some known kernel which depends on what quantities are associated with

G(m) and A(ω).

One of numerous examples is when one wants to determine the Lehmann spectral function

[3]. This function contains a lot of important information on quasiparticles. For example, the

Lehmann function is proportional to the spectral response observed in experiments on angle

resolved photoemission spectroscopy (ARPES) [4].

A typical quantity calculated in QMC is G(m) = G(τm) which is called imaginary time Green

function (GF)

G(τm) = 〈 Tτ c(τm)c
†(0) 〉 . (3)

Here Tτ is the time ordering operator and c is the annihilation operator of a quasiparticle. The

imaginary time GF satisfies the periodicity (anti-periodicity) relation

G(τ + β) = ±G(τ) (4)

with a period equal to the inverse temperature β = 1/T . Here upper (lower) sign is for boson

(fermion) operators. Hence, there is an equivalent representation given by the values of the

Fourier transform G(m) = G(iωm) of the imaginary time GF

G(iωm) =

∫ β

0

dτ eiωmτ G(τ) (5)

at Matsubara frequencies iωm equal to (2m+ 1)iπ/β [2imπ/β] for fermion [boson] operators

[3]. The quantity G(iωm) is the GF in the Mastubara representation. Indeed, there is the inverse

Fourier transform from the Matsubara representation to the imaginary time GF

G(τ) =
1

β

∑

ωm

e−iωmτ G(iωm) . (6)



Stochastic Optimization Method for Analytic Continuation 14.3

It can be shown [3] that in the case when QMC data for the GF are obtained in the Matsubara

representation (5), G(m) = G(iωm), the kernel K(m,ω) ≡ K(iωm, ω) of the Eq. (2) is

K(iωm, ω) = ± 1

iωm − ω
, (7)

where plus (minus) sign corresponds to boson (fermion) operators. On the other hand, if the

QMC data are given in terms of the imaginary time GF, (3), the kernel K(m,ω) ≡ K(τm, ω) of

the analytic continuation is

K(τm, ω) = − exp(−τmω)

exp(−βω)± 1
, (8)

where the positive (negative) sign is for fermion (boson) operators.

Another example is when the quantity of interest is the optical conductivity σ(ω) and the quan-

tity supplied by QMC is the imaginary time current-current correlation functionG(m) = J(τm).

The kernel K(m,ω) ≡ K(τm, ω) in this case is

K(τm, ω) =
1

π

ω exp(−τmω)

1− exp(−βω)
. (9)

Indeed, the problem of solving the Fredholm equation of the first kind is encountered in many

areas which are far from the particular problem of analytic continuation. For example, one has

to solve an equation of the same type to restore the thermodynamic properties of the quantum

systems from QMC [5] or to recover the variety of impurity traps in organic materials from

the ESR spectra [6, 7]. Moreover, a similar equation has to be solved for medical X-ray and

impedance tomography, image deblurring, and many other practical applications [8]. Indeed,

because of the notorious practical importance of the problem there is a long history of the vast

amount of attempts to develop methods giving solutions for this class of equations. The main

difficulty with the type of equations considered above is the following: they belong to the class

of ill-posed problems. The main characteristic feature of this class is that there is no unique

solution in the mathematical sense. Hence, to solve such an equation, one has to introduce some

additional information specifying what kind of solution is expected. Therefore, it is impossible

to single out the best method for solving this class of equations because each specific problem

requires its own approach.

In the following we give a historical, although incomplete, overview of the approaches invented

to solve the Fredholm equations of the first kind and follow the development of the methods

up to recent times. In Sec. 1, we introduce the most simple minded approach, the least-squares

fit, and show why it is not suitable for ill-posed problems. We describe various approaches to

ill-posed problems in Sec. 2. In particular, we discuss there Tikhonov-Phillips regularization

method, the maximum entropy method, and several variants of the stochastic sampling method.

The stochastic optimization method (SOM), which is the main topic of this chapter, is compared

with other stochastic sampling methods in Sec. 2.4. We give a detailed description of the SOM

and some practical recipes in Secs. 3 and 4, respectively. Some tests of SOM are presented in

Sec. 5.
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1 Difficulties to solve ill-posed problems

To outline the difficulties encountered in the problem of solving the Fredholm equation of the

first kind it is convenient to transform the equation into its discrete analog. The discrete analog

is a matrix equation which seems to be easily solvable by least-squares fit. However, this naive

approach immediately fails due to the ill-posed nature of the problem and the solution shows

a sawtooth noise instability. We introduce the discrete analog of the Fredholm equation in

Sec. 1.1. The least-squares fit approach, the nature of the ill-posed problems, and the features

of the sawtooth noise instability are described in Sec. 1.2.

1.1 Discrete form of integral equation

Approximating the spectral function by its values on a finite spectral mesh of N points

A(ω) =

N∑

n=1

A(ωn)δ(ω − ωn) , (10)

the integral equation (2) can be rewritten in matrix form

G(m) =

N∑

n=1

K(m,ωn)A(ωn) , m = 1, . . . ,M , (11)

or equivalently presented as

~G = K̂ ~A . (12)

Here ~G ≡ (G(1), G(2), . . . , G(M)) [ ~A ≡ (A(ω1), A(ω2), . . . , A(ωN))] is an M-dimensional

[N-dimensional] vector and K̂(m,n) ≡ K(m,ωn) is an M × N matrix (M ≥ N). The matrix

K̂(m,n) is known, depending on the kernel of the integral equation, ~A is the vector to be

determined, and ~G is obtained by QMC with components known with some error-bars.

1.2 Sawtooth noise instability

In practice, the problem expressed by Eq. (12) is usually ill-posed, either because of non-

existence or non-uniqueness of a solution ~A [9]: Noise, which is always present in a given

vector ~G, leads to the situation when there is no solution ~A that exactly satisfies Eq. (12). On

the other hand, there is an infinite number of solutions which make the left hand side of Eq. (12)

approximately equal to its right hand side. Therefore, one can not search for a unique vector ~A

but has to find some solution which is the best in some sense, or find a set of solutions which are

good according to some sensible criterion. The above features are the fingerprints of ill-posed

problems.

The most simple minded approach in such a case is to search for the least-squares minimum-

norm solution ~A which minimizes the deviation measure which is chosen in the form of the

Euclidean residual norm

‖ K̂ ~A− ~G ‖2=
M∑

m=1

∣∣∣∣∣

N∑

n=1

K(m,ωn)A(ωn)−G(m)

∣∣∣∣∣

2

. (13)
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Fig. 1: Examples of sawtooth noise in a least-squares fit with restricted positive spectral func-

tion. The spikes in non-regularized solutions (red solid line in panels (a) and (b)) are much

larger than the actual value of the spectra (blue dashed lines in (a) and (b)).

Indeed, one immediately surrenders to the ill-posed nature of the problem and tries to mini-

mize, although the difference between the left- and right-hand sides of the Eq. (12) never reach

zero. Choosing the Euclidean norm one admits the absence of a unique solution because the

approximate equality in Eq. (12) can be defined in terms of an infinite number of another norms.

For the Euclidean norm one can find the solution of the best least-squares fit in terms of the

singular value decomposition of the matrix K̂ into a weighted sum of separable matrices [10]

K̂ =

r∑

i=1

σi ~ui ⊗ ~v†i , (14)

where ~u ⊗ ~v ≡ ~u(k)~v(l) is the matrix determined by the outer product of the left and right

singular vectors of K̂, ~u and ~v, respectively. The real and nonnegative numbers σ1 ≥ σ2 ≥
. . . σr > 0 are the singular values of K̂. The least-squares solution ~A is given by the explicit

expression

~A =

r∑

i=1

~u†
i ⊗ ~vi
σi

~G . (15)

A problem arises from small singular values σi: Even very small statistical errors in ~G induce

large perturbations to the solution ~A. These perturbations, called sawtooth noise, are typical

for ill-posed problems and look like fast oscillations with amplitude much larger than the actual

solution ~A. The origin of the sawtooth noise is that the solution ~A over-fits the statistical errors

present in the input data ~G. The sawtooth noise can even lead to large negative values of the

otherwise positive actual solution ~A. However, the least-squares fit under the condition of non-

negativity of the spectral function ~A results in sawtooth noise too (see Fig. 1).
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2 Methods to solve ill-posed problems

It was shown in the previous section that the least-squares fit approach to the matrix form (12)

of the integral equation (2) leads to results with sawtooth noise which can be very far from the

actual solution. The noise arises from the small singular values σi of the integral kernel K̂.

There are many methods developed to fight this noise. The simplest and most obvious one is the

truncated singular value decomposition (TSVD), where the terms in Eq. (15), that correspond to

several of the smallest singular values σi, are neglected. However, the above trick is just a par-

ticular example of a broad general class of approaches. Most, if not all, methods to circumvent

the problem of spurious noise in the solution of the integral equation (2) can be united under

the title regularization methods. As a particular example, the simplest regularization method

for the matrix representation (12) of the integral equation (2) is based on the following trick. A

regularization functional F( ~A), suppressing the oscillations of the solution ~A, is added to the

Euclidean norm (13)

‖ K̂ ~A− ~G ‖2 +γF( ~A) (16)

and the deviation measure (16) is minimized instead. So, in general words, the regularized

solution is sought as a minimizer of the deviation measure which is a weighted combination of

the residual norm ‖ K̂ ~A − ~G ‖2 and a constraint γF( ~A). Indeed, to construct the functional

F( ~A) one needs some prior knowledge about solution the ~A.

The functional (16) is historically the very first approach, named Tikhonov-Phillips regulariza-

tion, that was developed to fight the sawtooth noise instability. However, to introduce a generic

classification of the regularization approaches, it is convenient to use Bayesian statistical infer-

ence. According to the Bayes’ theorem [11]

P [A|G] P [G] = P [G|A] P [A] , (17)

where P [A|G] is the posterior or conditional probability that the spectral function is A, provided

the correlation function is G. Neglecting the normalization factor P [G], which is independent

of A, one gets

P [A|G] ∼ P [G|A] P [A] , (18)

where the ill-posed problem to find the most probable A given G is converted into the much

easier problem of finding G given A, i.e., of maximizing the likelihood function, P [G|A] tak-

ing into account simultaneously the prior knowledge about the spectrum P [A]. Note that any

attempt to neglect the prior knowledge, i.e., to set P [A] ≡ const and reduce the problem to the

maximizing just the likelihood function, leads to the sawtooth noise instability of the solution.

Notably, any method to regularize ill-posed problems can be presented in the form of a Bayesian

approach and the distinctions between different approaches are restricted to the choice of the

likelihood function P [G|A] and the prior knowledge P [A]. Below, we introduce different possi-

bilities of this choice. We describe the Tikhonov-Phillips regularization method in Sec 2.1, the

maximum entropy method in Sec. 2.2, and several variants of the stochastic sampling method

in Sec. 2.3. We finally consider the stochastic optimization method as an effective example of

stochastic sampling methods in Sec. 2.4.
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2.1 Tikhonov-Phillips regularization method

Historically, the approach called Tikhonov-Phillips regularization method (TPRM) has been

invented independently in many different contexts and became the first approach to solve the

above problems. The name comes from the first applications of the ideas to integral equations by

A.N. Tikhonov [Tikhonoff] [12, 13] and D.L. Phillips [14] in the early 40ies of the last century.

Independently, the regularization approache was applied in a different context to the discrete

problem of matrix inversion [15–17] and is know in the statistical literature as ridge regression.

However, leaving aside the differences in terminology and interpretations, the general idea is

the following.

In the sense of Bayes’ inference the TPRM is a choice where the likelihood function is

P [G|A] ∼ exp{− ‖ K̂ ~A− ~G ‖2} (19)

and the prior knowledge is

P [A] ∼ exp{−λ2 ‖ Γ̂ ~A ‖2} . (20)

Thus, the deviation measure to minimize is the sum ‖ K̂ ~A − ~G ‖2 +λ2 ‖ Γ̂ ~A ‖2. Here,

the likelihood function requires the least-squares fit of ~G while the constraint, where the so-

lution ~A is multiplied by a nonzero matrix Γ̂ , suppresses large absolute values of A(ωk).

Namely, the constraint removes spikes and, hence, large values of derivatives in the solution

[A(ωk+1)− A(ωk)]/[ωk+1 − ωk].

The simplest modification of TPRM sets Γ̂ as identity matrix Γ̂ = Î . In this case expression

(15) for the solution ~A takes the form

~A =
r∑

i=1

{
σ2
i

σ2
i + λ2

}
~u†
i ⊗ ~vi
σi

~G . (21)

It is clear that contributions, corresponding to small singular values σi ≪ λ, are automatically

filtered out by the factors in the curly brackets and large sawtooth spikes of the solution are

suppressed. Thus over-fitting of the noise in the input data is avoided by restricting the possible

solutions to the smooth ones. There are several approaches to find the optimal regularization pa-

rameter λ, L-curve [18,19] and U-curve [20] methods in particular. These approaches consider

relations between the Euclidean norm of the solution ‖ Γ̂ ~A ‖2 and the residual ‖ K̂ ~A− ~G ‖2.

An interesting modification of the TPRM is given in [21, 22]. The method expresses the so-

lution ~A in terms of an average over a correlation matrix 〈 ~̃A ~̃A†〉 of possible solutions ~̃A. The

knowledge of this correlation matrix provides a prior knowledge about the solution.

There are other methods which are based on the suppression of the large derivatives of the

solution. These methods are based on the form of the functional (16), where the constraint

γF( ~A) is explicitly taken in a form which suppresses large derivatives of the solution [23, 24].

Many similar functionals can be found in earlier studies, see [9] for details on the rigorous

mathematical treatment of ill-posed problems.
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2.2 Maximum entropy method

One can criticize the first historical method to solve ill-posed problems as relying on uncondi-

tional smoothening of the solution. The constraint of the TPRM suppresses solutions with large

derivatives. This can be a problem when the spectral function has sharp edges or narrow peaks.

One of the recent approaches, the Maximum Entropy Method (MEM) [1], provides an attractive

strategy to circumvent some problems of the TPRM.

MEM searches for the most probable “true” solution A(ω) among many possible particular

solutions Ã(ω) assuming prior knowledge that the “true” solution A(ω) is close to a predefined

function D(ω) called default model. The likelihood function of MEM is

P [G|Ã] = exp{−χ2[Ã]/2} , (22)

where

χ2[Ã] =

M∑

m=1

E−1(m)[G(m)− G̃(m)]2 , (23)

and G̃(m) is related to a particular solution Ã(ω) through G̃(m) =
∫∞

−∞
dω K(m,ω) Ã(ω).

The matrix E(m) is set by the noise in G and is related to the covariance matrix. The prior

knowledge function is defined as

P [G|A] = exp{α−1S[Ã]} , (24)

where the entropy

S[Ã] =

∫
dω Ã(ω) ln[Ã(ω)/D(ω)] (25)

characterizes the deviation of a particular solution Ã(ω) from the default model D(ω), a func-

tion that serves as the maximum entropy configuration. The regularization parameter α controls

how much weight is given to the minimization of the deviation measure χ2[Ã], i.e., to the re-

semblance of the solution Ã(ω) to the default model D(ω).

The MEM is superior to TPRM in cases where a lot of explicit information is known about

A(ω). Moreover, one can avoid smoothening of large derivatives, typical for TPRM, given

the knowledge about sharp parts of the “true” solution A(ω). The nonphysical smoothening

can be avoided if sharp parts of the solution can be explicitly included into the default model.

However, the method highly relies on the default model which can be a serious drawback if

the most interesting features of the spectra are very sensitive to the form of the chosen default

model [25].

2.3 Stochastic sampling methods

Any stochastic sampling method (SSM) uses a minimal prior knowledge about the solution,

does not require any default model, and does not introduce any apparent smoothening of the

solution. The characteristic feature of this class of methods is a change of the likelihood function
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P [Ã|G] into a likelihood functional (see, e.g., [26])

A =

∫
dÃ Ã P [Ã|G] , (26)

where the “true” solution A is obtained as an average of particular solutions Ã, weighted by

the likelihood function P [Ã|G]. An optimal likelihood function has to prefer solutions Ã with

small deviation measure χ2[Ã]. Particular solutions Ã with too small χ2[Ã] over-fit the data G

and suffer from sawtooth noise. However, although it has not been proven formally, it is known

that in practice the sawtooth noise can be self-averaging in a sum over a large enough number

of solutions. One has to keep χ2[Ã] not too restrictive because the sawtooth noise persists if

most of the solutions in the functional (26) over-fit the input data. The requirement to take into

account solutions Ã with large enough χ2[Ã] sets up an implicit regularization procedure.

Starting from the very first practical design of a SSM by Sandvik [27], most of SSMs suggest

the likelihood function in the form of a Boltzmann distribution

P[A|G] = exp{−χ2[Ã]/T }, (27)

where T is treated as a fictitious temperature and χ2 is defined by Eq. (23) and can be considered

as a fictitious energy. Then, because of the above interpretation, one can use the Metropolis

algorithm [28] to sample possible functions Ã. The prior knowledge function is usually defined

by the condition that the spectral function Ã(ω) is positively definite and that the first few known

frequency moments are conserved.

In principle, although introducing many useful details, the approaches suggested in Refs. [25,

29] belong to the same class as that introduced by Sandvik [27]. All three approaches do not

use any default model for defining the prior knowledge function and, thus, are convenient in the

problems where there is not much knowledge about how the resulting spectral function A(ω)

has to look like.

A somewhat different approach is suggested in the statistical MEM (SMEM) by Beach [30]

and Jarrel [31]. The method defines a dimensionless field n(x) which is related to the default

model D(ω). Then, averaging is performed over the dimensionless field using the likelihood

Boltzmann distribution Eq. (27). The useful feature of the method is that, depending on its

parameters, it can interpolate between two limiting cases when the spectrum is completely

governed by the deviation measure (27) and when it is defined solely by the default model.

2.4 Stochastic optimization method: relation to other stochastic sampling

approaches

The stochastic optimization method (SOM) [32], which is the main topic of this lecture, is

a particular example of SSMs. SOM also does not use any default model, does not impose

any apparent smoothening on the solution, and restricts prior knowledge to normalization and

positivity of the solution.

A particular feature of SOM, which singles it out among SSMs, is that the sampling of solu-

tions, which optimizes the deviation measure, is made without the artificial interpretation of the
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likelihood function as a Boltzmann distribution [32,33]. A similar idea was also suggested later

in the “generic inversion via falsification of theories” strategy [34]. Indeed, averaging over par-

ticular solutions (26), weighted by some likelihood function, has no relation to any real partition

function. On the contrary, one simply has to average over a set of particular solutions, each of

which fits the input data well enough. Therefore, the interpretation of χ2[Ã] as an “energy” of

some state in a system of a given temperature T is a superfluous feature of the traditional SSMs.

There is no real Hamiltonian and real temperature in the averaging procedure (26) and the net

goal is to accumulate a large enough number of solutions which fit, but not over-fit, the data set

G(m).

Hence, it does not matter how the set of averaged “good enough” solutions is found. This is

why the strategy to find particular solutions in SOM is completely different from other SSMs.

On every step SOM starts from an arbitrary chosen initial particular solution and minimizes its

deviation measure until a “good enough” fit is found. In this way SOM finds a large-enough

number of “good” particular solutions and calculates an average

A(ω) =

L∑

j=1

ξjÃj(ω). (28)

The simplest option is to set all coefficients equal to ξj = 1/L for all L particular solutions

whose deviation measure χ2[Ã] is smaller than some selected value. A detailed description of

the SOM, i.e., how to organize the process and how to choose its optimal parameters, is given

in Secs. 3 and 4.

3 Stochastic optimization method: general description

In comparison to other SSMs, the SOM uses a slightly different measure χ2[Ã], a considerably

different way to parametrize a particular solution Ãj(ω), and a completely different way to ac-

cumulate the particular spectral functions Ãj(ω) for averaging. An important feature of SOM

is that it treats the energy space continuously without imposing any finite ω-mesh. We describe

the deviation measure and parametrization of the spectra in Secs. 3.1 and 3.2, respectively. Sec-

tions 3.3 and 3.4 discuss the way to obtain a particular solution and explain the general features

of elementary updates which decrease the deviation measure of particular solutions. Global

updates and the refinement of the solution are considered in Secs. 3.5, and 3.6, respectively.

Finally, elementary updates of classes I and II are described in Secs. 3.7 and 3.8.

3.1 Deviation measure

The first step is to define the deviation measure determining which solution is a good approxi-

mation of the input data set G. The set G corresponds to some QMC data on imaginary times

G(m) = G(τm) or at some Matsubara frequencies G(m) = G(iωm), m = 1, . . . ,M . Then the
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deviation measure of SOM is given by expression

D[Ã] =
M∑

m=1

|∆(m)| . (29)

Here ∆(m) is the deviation function

∆(m) =
G(m)− G̃(m)

S(m)
, (30)

which characterizes individual deviations of specific data points G(m) from the values of the

simulated function G̃(m) defined by the particular spectral function Ã in terms of relation

G̃(m) =

∫ ∞

−∞

dω K(m,ω) Ã(ω) . (31)

The factors S(m) can be chosen as error-bars of the QMC data G(m), if they are known.

However, there are plenty of sampling methods [32, 35–37], which can provide almost uni-

form, m-independent error-bars of the QMC data. These methods are usually used when G(m)

changes several orders of magnitude in the range 1 ≤ m ≤ M . If the m-indepenent factor

S(m) ≡ S is put outside of the sum (29), the contribution of the data points with small |G(m)|
to the deviation measure D[Ã] is evidently underestimated. In this case a reasonable choice for

S(m) is to take S(m) = |G(m)|d, where 0 ≤ d ≤ 1. Then, the contributions from the points

with small and large values of |G(m)| are equally represented in the sum when d → 1.

3.2 Parametrization of particular spectra

We parameterize the spectral function Ã as a sum

Ã(ω) =

K∑

t=1

η{Pt}(ω) (32)

of rectangles {Pt} = {ht, wt, ct}

η{Pt}(ω) =

{
ht , ω ∈ [ct − wt/2, ct + wt/2] ,

0 , otherwise ,
(33)

determined by height ht > 0, width wt > 0, and center ct.

A configuration

C = {{Pt}, t = 1, ..., K} (34)

with the normalization constraint
K∑

t=1

htwt = I, (35)

defines, according to Eqs. (31), (32), and (33), the function G̃(m) at any point m. Figure 2

shows how the intersection of rectangles is understood in SOM.
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Fig. 2: An example of a configuration with K = 4. Panel (b) shows how the intersection of

rectangles in panel (a) is treated.

Note that the specific type of the functions (33) is not crucial for the general features of the

method although a simple form of the analytic expressions (31),(32), and (33) is of considerable

importance for the performance of the method. If the analytic expression for G̃(m) is not

available for a given kernel K, one tabulates the quantities

Λ(m,Ω) =

∫ Ω

−∞

K(m, x) dx ,m = 1, . . . ,M (36)

and finds the value of G̃(m) using the following straightforward relation

G̃(m) =
K∑

t=1

ht [Λ(m, ct + wt/2)− Λ(m, ct − wt/2)] . (37)

In certain cases it is, however, straightforward to find analytic expressions. For example, let us

consider the case when G(m) = G(τm) is a fermionic GF given by QMC at imaginary times (3)

at zero temperature. In this case Eq. (8) reduces to K(τω) = e−τmω and the spectral function is

defined only at ω > 0. It implies that in configuration (34) all ct −wt/2 ≥ 0. Then, the explicit

relation for the GF G̃(τm) in terms of the configuration C is

G̃C(τm) =





I , τm = 0 ,

2τ−1
m

K∑
t=1

hte
−ctτm sinh(wtτm/2) , τm 6= 0 .

(38)
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Another example of an analytic expression is when one has a Matsubara GF (5) given via the

kernel (7). In this case the analytic expression for G̃(iωm) is

G̃C(iωm) = ±
K∑

t=1

ht ln

[
ct − wt/2− iωm

ct + wt/2− iωm

]
, (39)

where the plus (minus) sign is for boson (fermion) operators.

3.3 General overview: obtaining particular solution and its sum

Here we survey the whole procedure while the following sections add the necessary details.

First, L ≥ 10 attempts to find particular solutions are performed. An attempt to obtain each

particular solution Ãj consists of two stages. The first is a random generation of initial con-

figurations of rectangles and the second is a fixed number F of global updates decreasing the

deviation measure D.

At first stage of the attempt j, some initial configuration C init
j , (34), is randomly generated. This

means that a number of rectangles K is randomly chosen, with K in some range 1 < K <

Kmax. The parameters {Pt} of all rectangles are randomly generated under the constraint of

normalization (35). Indeed one can impose further constraints, if some additional information

is available.

Then F global updates are performed. The global update consists of a randomly chosen se-

quence of elementary updates which are described in next sections. A global update, which

modifies the configuration Cj(r) → Cj(r+1), is accepted when D[Ãr+1] < D[Ãr]. For the par-

ticular solution Ãj , obtained at each attempt after F global updates, one can control the quality

of the fit of the input data using the deviation function ∆(m), (30). The number F of global

updates is considered to be satisfactory, if the input data G(m) are fit down to the noise level in

a more than half of the L attempts. If not, the number of global updates F is increased and the

procedure with L ≥ 10 attempts is repeated.

Finally, when a satisfactory number of global updates F is found, an accumulation of L ≫ 10

particular solutions Ãj and their deviation measures D[Ãj] is performed. After L attempts there

is a minimal deviation measure MIN{D[Ãj ]}, limited by the noise of the input data G(m), and

the rest of measures are larger. Tests show that to avoid over-fitting, i.e., to regularize the final

solution, one has to include into the sum (28) all particular solutions whose deviation measures

D[Ãj ] are smaller than the double of the minimal deviation measure

D[Ãj ] ≤ 2MIN{D[Ãj]} . (40)

Such a choice of the regularization parameter is very similar to the strategy adopted in many

other methods, e.g., SSM [29] or MEM [31]. Both in SOM and in many other methods the

strategy is to keep differences between the fit G̃(m) and data G(m) of the order of the error-bars

to avoid over-fitting. The inequality (40) is the way to introduce the regularization parameter in

the most explicit manner.
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3.4 General features of elementary updates

By elementary update we mean a random change of the configuration, which is either accepted

or rejected in accordance with certain rules. There are two classes of elementary updates. The

updates of class I do not alter the number of rectangles, K, changing only the values of the

parameters from a randomly chosen set {Pt}. The updates of class II either add a new rectangle

with randomly chosen parameters {hK+1, wK+1, cK+1}, or remove a stochastically chosen rect-

angle t from the configuration. If a proposed change violates a constraint (38) (e.g., a change of

wt or ht, or any update of the class II), then the necessary change of some other parameter set

{Pt′} is simultaneously proposed, to satisfy the requirement of the constraint.

The updates should keep the parameters of a new configuration within the domain of definition

of the configuration C. Formally, the domains of definition of a configuration (34) are Ξht
=

[0,∞], Ξct = [−∞,∞], Ξwt
= [0,∞], and ΞK ∈ [1,∞]. However, for the sake of faster

convergence, one can reduce the domains of definition.

As there is no general a priori prescription for choosing reduced domains of definition, the

rule of thumb is to start with maximal domains and then, after some rough solution is found,

reduce the domains to reasonable values suggested by this solution. In particular, since the

probability to propose a change of any parameter of a configuration is proportional to K−1, it

is natural to restrict the maximal number of rectangles ΞK ∈ [1, Kmax] by some large number

Kmax. To forbid rectangles with extremely small weight, which contribute to G̃(τ) less than the

statistical errors of G(τ), one can impose the constraint htwt ∈ [Smin, 1], with Smin ≪ IK−1
max.

When there is some preliminary knowledge that an overwhelming majority of integral weight

of the spectral function Ã(ω) is in a range [ωmin, ωmax], one can restrict the domain of definition

of the parameter ct by Ξct = [ωmin, ωmax]. Then, to reduce the phase space one can choose

Ξht
= [hmin,∞] and Ξwt

= [wmin,min {2(ct − ωmin), 2(ωmax − ct)}].
While the initial configuration, the update type, and the parameter to be altered are chosen

stochastically, the variation of the value of the parameters relevant to the update is optimized

to maximize the decrease of D. Each elementary update of our optimization procedure (even

that of the class II) is organized as a proposal to change some continuous parameter ξ by a

randomly generated δξ in a way that the new value belongs to Ξξ. Although proposals with

smaller values of δξ are accepted with higher probability it is important, for the sake of better

convergence, to propose sometimes changes δξ that probe the whole domain of definition Ξξ.

To probe all scales of δξ ∈ [δξmin, δξmax] we generate δξ with the probability density function

P ∼ (max(| δξmin |, |δξmax|)/|δξ|)γ, where γ ≫ 1.

Calculating the deviation measures D(ξ), D(ξ + δξ), D(ξ + δξ/2), and searching for the mini-

mum of the parabolic interpolation, we find an optimal value of the parameter change

δξopt = −b/2a, (41)

where

a = 2(D(ξ + δξ)− 2D(ξ + δξ/2) +D(ξ))(δξ)−2, (42)
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and

b = (4D(ξ + δξ/2)−D(ξ + δξ)− 3D(ξ))δξ. (43)

In the case a > 0 and ξopt ∈ Ξξ we adopt as the update proposal δ̃ξ the value δξ, δξ/2, or δξopt

for which the deviation measure D(ξ+ δ̃ξ) is the smallest. Otherwise, if the parabola minimum

is outside Ξξ, one has to compare only deviations for δξ and δξ/2.

3.5 Global updates

The updating strategy has to provide for the efficient minimization of the deviation measure. It is

highly inefficient to accept only those proposals that lead to the decrease of the deviation, since

there is an enormous number of local minima with values Dloc[C] much larger than that obtained

as minimal deviation measure MIN{D[Ãj]}. As we observed in practice, these multiple minima

drastically slow down (or even freeze) the process.

To optimize the escape from a local minimum, one has to provide a possibility of reaching a

new local minimum with lower deviation measure through a sequence of less optimal config-

urations. It might seem that the most natural way of doing this would be to accept sometimes

(with low enough probability) the updates leading to the increase of the deviation measure.

However, this simple strategy turns out to be impractical. The reason is that the density of

configurations per interval of deviation sharply increases with D. So that the acceptance prob-

ability for a deviation-increasing update should be fine-tuned to the value of D. Otherwise, the

optimization process will be either non-convergent, or ineffective [if the acceptance probability

is, correspondingly, either too large, or too small in some region of D].

A way out of the situation is to perform some sequence of T temporary elementary updates of

a configuration C(0)

C(0) → C(1) → ... → C(r) → C(r + 1) → ... → C(T ) , (44)

where the proposal to update the configuration C(r) → C(r + 1) is (temporary) accepted with

probability

Pr→r+1 =

{
1 , D[C(r + 1)] < D[C(r)] ,
Z (D[C(r)]/D[C(r + 1)]) , D[C(r + 1)] > D[C(r)] . (45)

(Function Z satisfies the boundary conditions Z(0) = 0 and Z(1) = 1.) Then we choose out

of the configurations {C(r)} (44) the one with minimal deviation measure and, if it is different

from C(0), declare it to be the result of the global update, or, if this configuration turns out to be

just C(0), reject the update.

We choose the function Z in the form

Z(x) = x1+d (d > 0) , (46)

which leads to comparatively high probabilities to accept small increases and hampers signifi-

cant enlargements of the deviation measure. Empirically, we found out that the global update
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Fig. 3: Example of a global update with 4 elementary updates. The process transfers initial

configuration by 4 elementary updates (dashed red arrows) from the initial minimum of the D-

surface (solid blue line) to a lower minimum through the minima whose deviation measures are

larger than that in the initial configuration.

procedure is most effective if one keeps the parameter d = d1 ≪ 1 at the first T1 steps of

sequence (44) (to leave local minimum) and then changes it to a value d = d2 ≫ 1 for the last

T − T1 elementary updates (to decrease the deviation measure). In our algorithm the values

T ∈ [1, Tmax], T1 ∈ [1, T ], d1 ∈ [0, 1], and d2 ∈ [1, dmax] were stochastically chosen for each

global update run.

The two-step procedure for the global update is a method to reach the same goal as the tempering

and annealing procedures used in SSM methods [27, 25, 29]. A temporary rise and consequent

drop of the fictitious temperature T is used in the standard SSMs. Similarly, temporary permis-

sion to grow up the deviation measure with the following directive to drop it down is introduced

into SOM. An exchange between deep local minima of the deviation measures Dloc[C] has low

probability. Therefore, the procedure which first rises and then drops the deviation measure

arranges a path between some deep local minima through some shallow ones.

3.6 Final solution and refinement

After a set of L configurations {
Cfin

j , j = 1, ..., L
}

(47)

that satisfy criterion (40) is produced, the solution (28) can be obtained by summing up the

rectangles, (33) and (47).



Stochastic Optimization Method for Analytic Continuation 14.17

1 

(a) 

(d) (b) 

(c) A 

A 

ω ω 

Fig. 4: Some of the elementary updates of class I: (a)→(b) is the shift of a rectangle (dashed

red line); (c)→(d) is the change of the height of a rectangle (dashed red line) without changing

its weight htwt and center ct.

We employ, however, a more elaborated procedure, which we call refinement. Namely, we use

the set (47) as a source of Lref new independent starting configurations for further optimization.

These starting configurations are generated as linear combinations of randomly chosen members

of the set (47) with stochastic weight coefficients. Then, the refined final solution is represented

as the average (28) of Lref particular solutions resulting from the optimization procedure.

The main advantage of such a trick is that the initial configurations for the optimization pro-

cedure now satisfy the criterion (40) from the very beginning. Moreover, as any linear combina-

tion of a sufficiently large number R of randomly chosen parent configurations
{
Cfin

η , η = 1, ..., R
}

smoothes the sawtooth noise, the deviation of a refined configuration Cfin
ref is normally lower than

that of each additive one.

3.7 Elementary updates of class I

(A) Shift of rectangle. Change the center ct of a randomly chosen rectangle t (Fig. 4a and 4b).

The continuous parameter for optimization (41-43) is ξ = ct which is restricted to the domain

of definition Ξct = [ωmin + wt/2, ωmax − wt/2].

(B) Change of width without change of weight. Alter the width wt of a randomly chosen rect-

angle t without changing of the rectangle weight htwt = const and center ct (Fig. 4c and

4d). The continuous parameter for optimization is ξ = wt which is restricted by Ξwt
=

[wmin,min {2(ct − ωmin), 2(ωmax − ct)}].
(C) Change of weight of two rectangles. Change the heights of two rectangles t and t′ (where t

is a randomly chosen and t′ is either randomly chosen or closest to t rectangle) without change

of widths of both rectangles. The continuous parameter for optimization is the variation of
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the height ξ = ht of rectangle t. To restrict the weights of the chosen rectangles to [Smin, 1]

and preserve the total normalization (35) this update suggests to change ht → ht + δξ and

ht′ → ht′ − δξwt′/wt with δξ confined to the interval

Smin/wt − ht < δξ < (ht′ − Smin/wt′)wt/wt′ . (48)

3.8 Elementary updates of class II

(D) Adding a new rectangle. To add a new rectangle one has to generate some new set {Pnew} =

{hnew, wnew, cnew} and reduce the weight of some other rectangle t (either randomly chosen or

closest) in order to keep the normalization condition (35). The reduction of the rectangle weight

t is obtained by decreasing its height ht.

The center of the new rectangle is selected at random according to

cnew = (ωmin + wmin/2) + (ωmax − ωmin − wmin)r . (49)

As soon as the value cnew is generated, the maximal possible width of a new rectangle is given

by

wmax
new = 2min(ωmax − cnew, cnew − ωmin) . (50)

The continuous parameter for optimization δξ = hnewwnew is generated to keep the weights of

both new rectangles and rectangle t larger than Smin

δξ = Smin + r(htwt − Smin) . (51)

Then, the value of the new rectangle height hnew for given δξ is generated to keep the width of

new rectangles within the limits [wmin, w
max
new ]

hnew = δξ/wmax
new + r(δξ/wmin − δξ/wmax

new ) . (52)

(E) Removing a rectangle. To remove some randomly chosen rectangle t, we enlarge the height

ht′ of some another (either randomly chosen or closest) rectangle t′ according to the normal-

ization condition (35). Since such a procedure does not involve a continuous parameter for

optimization, we unite removing of rectangle t with the shift procedure (A) of the rectangle t′.

Then, the proposal is the configuration with the smallest deviation measure.

(F) Splitting a rectangle. This update cuts some rectangle t into two rectangles with the same

heights ht and widths wnew1
= wmin + r(wt − wmin) and wnew2

= wt − wnew1
(Fig. 5). Since

removing a rectangle t and adding of two new glued rectangles does not change the spectral

function we introduce the continuous parameter δξ which describes the shift of the center of the

new rectangle with the smallest weight. The other rectangle is shifted in the opposite direction

to keep the center of gravity of the two rectangles unaltered. The domain of definition Ξξ

obviously follows from the parameters of the new rectangles.

(G) Glueing rectangles. This update glues two (either randomly chosen or closest) rectangles

t and t′ into a single new rectangle with weight hnewwnew = htwt + wt′ht′ and width wnew =

(wt + wt′)/2. The initial center of the new rectangle cnew corresponds to the center of gravity

of rectangles t and t′. We introduce a continuous parameter by simultaneously shifting the new

rectangle.
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Fig. 5: Elementary updates of class II: (a)→(b) splitting of rectangle (dashed red line) and

(b)→(a) gluing of rectangles without changing its total weight htwt and center of gravity ct.

4 Practical aspects of the method

First, we summarize what is done by the SOM algorithm automatically and what are the num-

bers we need to determine in each particular case. The algorithm described in the previous

section is able to search for as many particular solutions Ãj as requested. For every attempt j

to find a particular solution Ã it does the following steps:

(i) Generate an initial configuration C init
j with K < Kmax rectangles. Each initial configura-

tion C init
j is statistically independent from the previous one C init

j−1.

(ii) Search for a particular solution Ãj performing F global updates.

(iii) Store the final configuration Cfin
j of solution Ãj and its deviation measure D[Ãj].

After L attempts one obtains the final regularized solution as the sum

A(ω) =
1

Lgood

L∑

j=1

θ
{
2MIN{D[Ãj]} −D[Ãj ]

}
Ãj(ω) . (53)

Here θ(x) is the θ-function: θ(x ≥ 0) equals to unity and zero otherwise. Lgood is the number

of “good” fits

Lgood =
L∑

j=1

θ
{
2MIN{D[Ãj]} −D[Ãj]

}
, (54)

restricted by the regularization condition that the deviation measure is less than twice of the

minimal deviation measure MIN{D[Ãj]} found during L attempts.

To finalize the preparation of the method for solving different problems it is necessary to give

recipes how to choose the numbers F (Sec. 4.1) and L (Sec. 4.2) in every particular case.
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Fig. 6: (a) Typical spectrum Ãj(ω) (red solid line), corresponding to a particular configuration

Cj , compared to the actual spectrum (blue dashed line). Typical dependence of the deviation

function ∆(m) (30) on imaginary times τm corresponding to a spectrum Ãj(ω) which (b) under-

fits and (c) over-fits the uncorrelated noise of imaginary time data.

4.1 Choosing the number of global updates F

To check whether a particular number F is large enough to reproduce the given data set (1) it

is enough to perform about L ≈ 10 attempts to find particular solutions Ãj and consider the

deviation functions ∆(m), (30), which correspond to each particular solution.

Note that a particular solution itself does not bear any important information on the quality of

the fit of the data. Indeed, every particular solution contains sawtooth noise and typically looks

like the solid red line in Fig. 6(a). One can claim that the comparison with the exact answer

(dashed blue line) can give some insight into the quality, but in practice the exact answer is not

known.

On the contrary, the deviation function ∆(m) gives direct information on the quality of the fit.

Such a test of the quality of the fit requires uncorrelated noise in the QMC data, i.e., when

the deviation from the exact solution δG(m) for any m-point is independent from that in the

neighboring m-point. Indeed, we take the uncorrelated nature of the noise for granted because

the analytic continuation from correlated QMC data is a way to a wrong answer from the onset.

For the sake of definiteness we consider here an example with imaginary time data. However,

the case of the Matsubara representation is identical. Figure 6(b) shows an example when

the input data are under-fitted by a particular solution. One can see that the typical period of

oscillations of the deviation function ∆(m) around zero is much larger than the typical distance

between the input data points τm. To the contrary, the fit shown in the Fig. 6(c) is noise-limited

because the typical period of oscillations is comparable with a typical distance between data

points. One can introduce a numeric criterion of the fit-quality

κ =
1

M − 1

M∑

m=2

θ {−∆(m)∆(m − 1)} (55)
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Fig. 7: (a) Self-averaging of the sawtooth noise after summation of 4, 30, and 500 solutions.

(b) Typical probability distribution P (D/Dmin) of solutions with different deviation measures.

which is the ratio of number of intersections of zero by the function ∆(m) and number of

the intervals between M input data points. Ideally, one would like to have κ → 1/2 though

it happens very rarely that κ > 1/3. Practically, a solution with fit-quality κ > 1/4 can be

considered a good one.

Then, after L ≈ 10 attempts to find particular solutions Ãj , each by F global updates, the fit-

qualities κj are considered. If κj > 1/4 for more than L/2 attempts, the number F is large

enough. If not, it has to be increased.

4.2 Choosing the number of particular solutions L

SOM performs L attempts to find particular solutions Ãj . The sum of particular solutions (28)

becomes smoother as the number L of attempts increases. Figure 7(a) shows how the sawtooth

noise self-averages when L increases. One can collect a distribution of the deviation measures

and the typical picture is presented in Fig. 7(b). There is the minimal deviation measure Dmin

which corresponds to the best fit of the noisy data G(m) and there is a probability distribution

which increases when D is slightly larger than the minimal deviation measure Dmin. Indeed, the

distribution has some maximum and decreases for larger deviation measures D because there is

the most probable deviation measure which is reached after F global updates. The shaded area

in Fig. 7(b) shows which part of the distribution is included in the final solution (53) in order to

regularize the sawtooth noise. We can not formulate any rigorous criterion when one can stop

the accumulation of particular solutions. However, it looks reasonable to stop when there is no

significant difference between the final spectra with Lgood and (1− 1/3)Lgood particular spectra

included. We found that the above criterion is similar to that when one compares the sum (53)

with θ
{
2MIN{D[Ãj]} −D[Ãj]

}
and with θ

{
2(1− 1/3)MIN{D[Ãj]} −D[Ãj]

}
.
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Fig. 8: The test spectrum (dashed blue line) and the spectrum obtained by SOM (solid red line).

Panels (a) and (b) show the whole spectrum and its low energy part, respectively.

5 Tests of SOM

The procedure to check the SOM for different cases is the following. A spectral function A(ω),

which is called test spectrum, is selected. Then, a set of input data with superimposed noise

{
G̃(m)

[
1 +

B
2
R
]
, m = 1,M

}
(56)

is generated. Finally, the SOM procedure is performed to restore the test spectrum.

The generation procedure of G̃(m) uses a particular kernel K, relation (31), and the test spec-

trum. Statistical noise is added with amplitude B using a random number R in the range

R ∈ [−1, 1] . (57)

We present tests for the imaginary time representation in Sec. 5.1. In particular, we test the

case of a zero temperature GF in Sec. 5.1.1, finite temperature GF for fermions in Sec. 5.1.2,

and finite temperature optical conductivity in Sec. 5.1.3. The test for GF in the Matsubara

representation is presented in Sec. 5.2.

5.1 Test of SOM for imaginary time representation

5.1.1 Zero temperature Green function for a quasiparticle

For zero temperature the GF the kernel (8) for fermions reduces to K(τω) = e−τmω and the

spectral function A(ω) is defined only at ω > 0. To check the accuracy of SOM, we tested it for

a spectral density distribution that spreads over a large range of frequencies and simultaneously

possesses fine structure in the low-frequency region [32]. The test spectrum was modeled as the

sum of a delta-function with the energy εδ = 0.03 and the weight Zδ = 0.07, and a continuous
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Fig. 9: The test spectrum (dashed blue line) and the spectrum obtained by SOM (solid red line)

for the Lehmann spectral function of fermions at finite temperature.

high-frequency spectral density which starts at the threshold εth = 0.04. The continuous part of

the spectral function Acon was modeled by the function

Acon(ω) =
Zδ

√
ω − εth

2π
√
εgap[(ω − εth) + εgap]

θ (ω − εth) θ (0.566− ω) (58)

(here εgap = εth − εδ is a microgap) in the range ω ∈ [εth, 0.566] and by a triangle at higher

frequencies (see the blue dashed line in the Fig. 8).

The GF G(τ) was calculated from the test spectrum in the M = 300 points τm = τmaxm
2/M2

in the time range from zero to τmax = 1000. The noise amplitude was chosen rather small

B = 10−4. The restored spectral function reproduces both gross features of the high-frequency

part (Fig. 8(a)) and the fine structure at small frequencies (Fig. 8(b)). The energy and the weight

of the delta-function was restored with an accuracy of 10−4. The final solution was obtained by

averaging (53) Lgood = 1100 particular solutions.

5.1.2 Finite temperature Green function for fermions

In this test the kernel is given by Eq. (8) for fermions and the spectral function A(ω) is defined

in the whole range −∞ < ω < ∞. The test spectrum was modeled by two triangles (blue

dashed line in Fig. 9).

The GF G(τ) was calculated at finite temperature β = 50 on M = 600 uniformly spaced

points in the range [0, β]. The noise amplitude was chosen rather small B = 10−4. The restored

spectral function (red solid line in Fig. 9) reproduces the main features of the test spectrum. The

final solution was obtained by averaging (53) Lgood = 150 particular solutions.
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Fig. 10: The test spectrum (dashed blue line) and the spectrum obtained by SOM (solid red

line) for optical conductivity at finite temperature. Panels (a) and (b) show the whole range and

low energy part, respectively.

5.1.3 Finite temperature optical conductivity

In this test the kernel is given by Eq. (9) and the spectral function σ(ω) is symmetric σ(ω) =

σ(−ω). The test spectrum was modeled by two triangles (blue dashed line in Fig. 10). The

current-current correlation function J(τ) was calculated at finite temperature β = 20 on M =

200 uniformly spaced points in the range [0, β]. The noise amplitude was chosen rather small

B = 10−4. The restored optical conductivity (red solid line in Fig. 10) reproduces the main

features of the test spectrum (Fig. 10(a)) and its low energy part (Fig. 10(b)). The final solution

was obtained by averaging (53) Lgood = 200 particular solutions.

5.2 Test of SOM for Matsubara representation

In this test the kernel is given by Eq. (7) and the spectral function A(ω) is defined in the whole

ω-range. The test spectrum was modeled by two triangles (blue dashed line in Fig. 11(c)).

The GF G(iωn) was calculated at finite temperature β = 30 for the first M = 200 positive

Matsubara frequencies iωn and the analytic continuation was done directly from the set of GFs

in Matsubara representation. The noise amplitude was B = 10−4. In Fig. 11 one can see

rather good overall agreement between the test and the restored spectra. The final solution was

obtained by averaging (53) Lgood = 200 particular solutions.

The real and imaginary parts of the GF in Matsubara representation are shown in Fig. 11(a). the

imaginary time GF, calculated from the test spectrum by Eq. (31), is shown in Fig. 11(b) by a

solid black line. The imaginary time GF, calculated from the first 200 Matsubara components

in the inverse Fourier transform (6), is shown in Fig. 11(b) by green circles. It is seen that

the first 200 components of the GF in the Matsubara representation are not enough to describe

the imaginary time GF at small values of τ . This discrepancy is a direct indication that the
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Fig. 11: (a) First 200 Fourier components of the real (red circles) and imaginary (black squares)

part of the GF in Matsubara representation obtained from the GF in imaginary time. (b) Imag-

inary time GF (solid line) and imaginary time GF obtained from first the M = 200 GFs in

Matsubara representation. The inset shows low imaginary times. (c) Actual spectrum (dashed

blue line) and that restored from 200 Matsubara components (red solid line).

transformation of the QMC data from one representation into the other is a step which can

lose information. Namely, it is dangerous to transform the Matsubara representation into the

imaginary time representation because even a large number of Matsubara points still can lead to

spurious oscillations of the imaginary time GF (Fig. 11(b)). Hence, it is preferable to make the

analytic continuation from the same representation as that in which the QMC data are obtained.

Conclusion

We presented the stochastic optimization method for analytic continuation. The method was

considered in relation with numerous other methods handling ill-posed problems. It was con-

cluded that the method is the best for problems when one has to avoid any artificial smoothening

of the spectral function and when there is no a priory knowledge about the expected solution.

The method was successfully applied to many problems. The exponential kernel K(m,ω) =

exp[−τmω] for zero temperature was considered in Refs. [32, 38–57] and various kernels,

ranging from Fermi distribution to the Matsubara frequency representation, are considered in

Refs. [58–62]. The method was also used for Gaussian kernels in Refs. [6,7]. Indeed, the broad

area of the solved problems and the successful tests for problems which were not considered

before give confidence that the method has considerable potential when application to problems

where initial a priori knowledge is not available.

The author acknowledges support of RFBR 10-02-00047a and fruitful discussions with B.V. Svis-

tunov and N.V. Prokof’ev.
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