Strongly correlated electrons:
Estimates of model parameters

Why model Hamiltonians?
Simple example. Intuitive approach.
Applications: 3d, 4 f and Cgy compounds.

What is left out?

Max-Planck Institut Stuttgart, Germany




Density functional formalism
{2 V2 +Veu (1) + Vi (1) + v,e(1) }(x) = £5¢04(r)

If good approximation to v... known, tremendous simplification.

1. Effective, local one-particle potential.

2. Efficient numerical methods available.

3. Used in large majority of ab initio solid-state physics calculations.

4. Surprisingly successful.
But
1. No systematic procedure for improving approximations for v,... For

strongly correlated systems, LDA and GGA often not good enough.
2. In principle only ground-state properties. £; often (successfully)
treated as excitation energies. But even if exact v, known, &; in

general not an exact excitation energy (But time-dependent DFT).

Need for many-body theory.



GW approximation

Based on diagrammatic theory.

Lem T ~YY (o = Zeroth order Green'’s function.
3 / \‘\ W = Screened interaction.
B Gy ~ Simplest diagram in an expansion in 1.

Dyson’s equation: G = Gg + Go2G.
Improves LDA (or GGA) for semiconductors.
But not sufficient for strongly correlated systems.

More complicated diagrams can be calculated, but hard to choose

diagrams. No systematic expansion.

Alternative: Find (simple) model which can be solved accurately.
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Model calculations
1. Often large systems: YBasCu30O~ (13 atoms); K3Cgo (60 atoms).

2. Correlation effects important: Often close to Mott transition. Often

3d or 4 f compound.

3. LDA(GGA) cannot address many of the interesting properties.
4. Ab initio guantum-chemical or many-body methods not feasible.
Often only model calculations possible.

Just keep strongest interactions and most important states.
Advantage: Easier to extract physics.

Danger: Use of oversimplified model, unrealistic parameters or too

crude approximations in solving model.

Need to estimate parameters from ab initio calculations or

experiments.



Ce. o — 7y transition

Promotional model:
5d | &

S %% lear — Er| < 0.1ev; A ~ 0.01 eV.

Explains: o~ - transition (bd — 4 f trans.).

Explains: Large specific heat and susceptibility.

But: 1.£4f — L'p ~ —2 eV (Johansson, 1978). 2. A~ 0.1eV.
Later:
Many-body effect produces narrow resonance at E'r.

Promotional model: Wrong parameters + simple (mean-field) solution

appeared to give “correct” physics.



Hamiltonian

H = Zz[_Qh_m V? "_V;%xt(ri)] + ZKJ' Irie—rﬂ'

Find some complete one-particle basis set.

H=>) emi+ . tijw;-fwj + 2 D ikl vz-jmwlw}wzwk.

This Hamiltonian can be solved for small atoms and molecules, using,

e.g., quantum chemical methods. But it is too complicated for systems

we have in mind here.
Need to
1) project out degrees of freedom

2) remove interaction terms
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Hubbard model

E.g., consider just the 3d electrons

t a9 in a transition metal (compound).

2 L
Include Coulomb interaction bet-

ween two electrons on same atom.

H = ZWZ t,M w +UZZ-”¢¢"%¢-,

Anderson model

E.g., consider 3d impurity in sp

host. Include Coulomb interaction

on impurity but not in host.

H =
Zka 8k¢la¢k0+g3d Za wiwﬁ—i_Zka vk [¢£J¢g+h-c-] —|_UnTn¢



Projecting out one-particle states

H=>) en; + Zz’#]‘ tiﬂbg%‘- ( fr T2 e \
Corresping Hamiltonian matrix: o1 €9
We study \ e )

(z—H)™ =32, W) (wl(z—H)7 30, 1) {ul = 22, 1w =5 (ul:

Resolvent operator has poles at eigenvalues Eu-

Project out states Q and keep states P (Lowdin). Hpp Hpg
Hamiltonian matrix is rewritten in block form: Hop Hoo
Look for poles of smaller matrix

|z — Hpp — Hpq(2 — Hoq) ™' Har| ™.

Identical to poles of (z — H )~ if eigenvectors have weight in P,
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Projecting out one-particle states. Continuation

Look for the poles of the smaller matrix

2 — Hpp — Hpg(z — Hoq) ' Hgp] ™.

But matrix elements now energy dependent. Replace z by “typical
energy Eqin (z — Hpg)™'. Study energy independent “small”

Hamiltonian

This down-folding done efficiently in LMTO and provides hopping

integrals for models.

Systematic and controlled approach.

Stuttgart




Coulomb integrals

; D2 (1) D2 !
Coulomb integrals: Fz-j — e2 fd?’?“fd?’r i ()25 (r)

=y

Mn: FSd,Sd ~ 21 eV, F3d743 ~ 10 eV,
F..,, ~ 5 — 0 eV (nearest neighbor).

Unjustified to keep ng,gd and neglect everything else. Furthermore

F3q34 ~ 21 eV is much too large to explain experiment.

Necessary to include neglected interactions implicitly as
renormalization of parameters. (This reduces 3, 34).

What not included explicitly in model is (if possible) included implicitly
as renormalization of parameters. What is included explicitly must not

be included implicitly (double counting).

The values of the parameters depend on what model they are used in.

Empirical parameters depend on the property considered.
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Many-particle problem

For one-particle problem project out higher states. Hopping more
long-ranged and procedure accurate over a smaller energy range as

more states are projected out, but procedure still controlled.
Hpp — Hpo(z — Hoq) ™' Hop.

For many-body problem not practical.

H : Two-body operators with two creation + two annihilation operators.

Q projects out many-electron states with at least one electron in

one-particle states to be projected out.
New terms with six operators. Very many terms.

We therefore rely on more intuitive and less rigorous approaches.

16
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Simple model of 3d impurity
H =3, [ eimio + (11,80, + Vbt + hoc)]+

/ 3 VRN 4
—l_UdanTnQ\L —I_ USd Z n 7140 . Ligand / 4s
1. Orbital 2 very localized = ¢ small. orbitals \ > Usd
3d

2. Orbitals 3+4 delocalized = V large. 1 \J% >

dd

We want to project out dynamics of levels 3 and 4, assuming that

electrons in space 3+4 can adjust perfectly to electrons in space 1+2.

Consider spinless case. Put the electron in space 1+2 on one level

(1 or 2) and calculate the total energy.

,’I \ ;' ,\‘ $ 4 E1 = &9 €3 = &4
3_\\ I)_4 3_\\ ,' USd eff
‘_T_Iebl b2 e =¢€1+éen
eff
l+ —_—> 1— +2 82 — 82 —I_ €b2
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Simple model of 3d impurity
H Z [Zz 1 ¥ n’w (t¢10¢20 T ng)awéla T hC)]—l—

/ 3 VRN
FUaanornay +Usa 2oy Moy Mg - as
1. Orbital 2 very localized = ¢ small. orbitals \ > Usd
3d

2. Orbitals 3+4 delocalized = V' large. 1 \t//% 2

dd
s }— S _‘_

‘ ebl €1 = &2 €3 = &4

T
5‘(;” = €1 1 €p1, é‘;ff = &9 1 Epa.

HF = e ny + 5/ ny + t(]s + PJun).
e e U?
el — e =1y, — 1% 4 O(L).

Renormalized by less than Usd/2, due to readjustments of charge.
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Exact solution
Introduce complete basis set. T ;O

1 A 3—\'\ /"—4 3— ! $Usd
1) = ofwf [0}, 12) = whvl,l0) i T
3) = plel 0y, [A) = iyl o). o o e

Write down 4 X 4 Hamiltonian matrix. Project out states |3) and |4).

t2(z—e1—€41)sin? ¢
—eq1)(z—e2—¢€42)—t%cos2¢"

Hiy =& +ep + —e1

¢ ~ Usq/V.Put z ~ €1 + €1;. Last term of order
t(t/V)(Usq/V')?. For low energy properties:

H = 5613”711 + 5§ffn2 + tcosqb(wi% T @%) + O(%)

As elect. in 1+2 hops, elect. in 3+4 has to readjust. Hinders hopping.

To order (U,q/V')?, neglect cos¢ = Simple effective Hamiltonian:

HeIF = 37 ny + &5 ng + t(¢]ws + ¢ln).

O. Gunnarsson, PRB 41, 514 (1990).
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Spin degenerate model.

HAI=Y" [ niores nog+t (W] jhog+0]b10) [+ U Ty

Ul /=E(ny=2)-E(ny=0)-2E(n=1). s 4

4s
2 Ligand "
5€ff — geff = U d — l& -+ O(L) orbitals Usd
2 1 S 4V V2"
3d
U2
Ul =U — L1Z4 + O(L) I )2
2 V V2 Ugg
\% egff-eﬁff yett Eqg + 2V no X
Renorm. Exact Renorm. Exact Renorm. Exact
1.0 1.17 3.18 -1.05 0.95 0.380 0.364 0.314 0.312
15 1.39 3.21 -0.97 -0.90 0.339 0.326 0.266 0.262 L=
2.0 1.53 3.29 -0.92 -0.88 0.317 0.307 0.240 0.237 U o
dd —
3.0 1.68 3.44 -0.87 -0.85 0.292 0.287 0.214 0.213
4.0 1.75 3.55 -0.85 -0.84 0.280 0.277 0.202 0.201 U g = )
S
6.0 1.83 3.68 -0.83 -0.82 0.268 0.267 0.190 0.190
10.0 1.90 3.80 0.81 0.81 0.259 0.258 0.181 0.181
20.0 1.95 3.90 -0.80 -0.80 0.252 0.252 0.174 0.174

Accurate for V' large. Two types of electrons.

O. Gunnarsson, PRB 41, 514 (1990).
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Spin degenerate model.

Vooestett pett By 42V Ny X
Renor. Exact Renor. Exact Renor. Exact
1.0 1.17 3.18 -1.05 -095 0.380 0.364 0.314 0.312
1.5 1.39 321 -097 -090 0.339 0.326 0.266 0.262
2.0 1.53 329 -092 -0.88 0.317 0.307 0.240 0.237
3.0 1.68 344 -0.87 -0.85 0.292 0.287 0.214 0.213
4.0 1.75 355 -0.85 -0.84 0.280 0.277 0.202 0.201
6.0 1.83 368 -083 -0.82 0.268 0.267 0.190 0.190
10.0 1.90 380 -0.81 -0.81 0.259 0.258 0.181 0.181
20.0 1.95 390 -080 -0.80 0.252 0.252 0.174 0.174

O. Gunnarsson, PRB 41, 514 (1990).
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Two types of electrons?

In model of a 3d compound, we could renormalize out levels involving

very delocalized electrons (hopping integrals large, electrons “fast”).

Can we separate electrons of real systems into localized and

delocalized?
System Localized Delocalized
4 f compounds 4f bd
3d compounds 3d 4s, 4p

Pretty good for 4 f compounds (Wys /W54 ~ 0.1)

Questionable for 3d compounds, in particular at beginning of series.

MPI-FKF ({7 ) Stuttgart
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Other high-lying excitations A3Cgo (A= K, Rb)

o
oHe -

Interesting physics in a partly occupied t1,, band.

We want to project out other bands. This leads to important
renormalization of U/, due to important interband transitions, which

are not explicitly included in effective model.

Add two electrons to one molecule. The surrounding molecules

polarize. This reduces the energy cost.

The polarization is described by (fairly) high-energy interband

transitions. These can be projected out and U is renormalized.

28
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“Perfect screening” (Herring)
Change occupancy of localized orbital (3d, 4 f).

Screening partly due to charge transfer to delocalized orbital on same
atom (4s, dd).

Assume that screening is “perfect”, i.e., that atom stays neutral. Then
calculation of U is reduced to (renormalized) atomic calculation.

E(nap) = 3Unys(nay — 1) + e4pnay.
U = E(5d24f") + E(5d*4 1) — 2B(5d%4f™).
E.g., Ce: U= E(5d*4f?) + E(5d*4f") — 2E(5d*4 f1).

Calculations show that “perfect” screening is a good approximation for

rare earths but not for transition metals.
Ce: 105% of screening inside the WS sphere.

Fe: 50% of screening inside the WS sphere (LMTO).

19



U for rare earths

/8

| I D
14 |- A Experiment
A\ Theory
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Ce Pr Nd PmSm Eu Gd Tb Dy Ho Er Tm

“Perfect” screening assumed.
“Renormalized” atom calculation

(inside Wigner-Seitz sphere).
Theory: Herbst, Wilkins, Watson, PRB 13, 1439 (1976); 17, 3089
(1978).

Exp.: Lang, Baer, Cox, PRL 42, 74 (1979).

But in general we cannot assume “perfect” screening.



Constrained density functional formalism
On-site Coulomb (Hubbard) interaction:

To estimate U we need to know how the energy varies with the

occupancy. This can be done by using a constrained DFT.

Elnyg] = Fln] + [ d&rVeu(r)n(r) + p{ [ d*rn(r) — N'}
+hsg{ [ d*rngy(r) —ng,}.

Normally, we adjust ;¢ so that number of electrons is /V. Here we in
addition adjust 115, so that number of 3d electrons on site i is N ,.

0= G 4 Veur(r) + p1 4 p1, Ps

Results in constant potential ,ugd acting on 3d electrons on atom <.
E(nsg+1)-E(nzq) ~ e39(nzq + 1/2)

U=FE(nz+1)+ E(nzg — 1) — 2E(n3yq) ~ 0g34/0n3zq.

Dederichs,Bligel, Zeller, Akai, PRL 53, 2512 (1984).
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“Subtract the kinetic energy”

Changing ns,4 also changes kinetic energy. Straightforward application

of constrained DFT incorrectly gives kinetic energy contribution to U.
Calculate E/[n},] in constrained mean-field theory for
_ T 1N\
H =) 10 tijVicV" 7+ 3 2 ijoor UijlicNjor
Adjust U;; so that E[n ] from constrained DFT reproduced.

Model and DFT give similar contribution from kinetic energy.
Hybertsen, Schliter, Christensen, PRB 89, 9028 (1989).

Cococcioni, Gironcoli, PRB 71, 035105 (2005).

Stuttgart
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“Cut the hopping”
Remove the hopping integrals from localized orbital (LMTO).
1. We can easily vary the occupation number of the level by hand.

2. No hopping from the localized level to the surrounding, i.e., no (3d)

kinetic energy contribution to U.
Practical approach:
1. Impurity program: Cut hopping to localized level on impurity.

2. Band structure program: Use a large super cell and cut hopping to

localized level on one atom in super cell.
McMahan, Martin, Satpathy, PRB 38, 6650 (88).

Gunnarsson, Andersen, Jepsen, Zaanen, PRB 39, 1708 (89).

MPI-FKF (426> Stuttgart
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Constrained RPA

In RPA the polarizability is written as

P(r,r :w) =320 320 hi(r)or ()5 (r);(x)

1 1
X (w—sj +e;+10F w4ej—e;—i0T )

Calculating a screened Coulomb interaction would involve
double-counting. Screening of 3d-electrons by 3d electrons both in
U and in Hubbard model.

Remove transitions where both occupied and unoccupied states

contain 3d-states by introducing an energy window around 3d-band.

Results sensitive to precise choice of window.
Aryasetiawan, Karlsson, Jepsen, Schonberger, PRB 74, 125106 (2006).

Aryasetiawan, Imada, Georges, Kotliar Biermann and Lichtenstein, PRB 70, 195104 (2004)
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U for Mn in CdTe

Mn atom

Unrenormalized (')
Relaxation of 3d orbital
Relaxation of 45, 4p orbitals

Relaxation core, XC effects

21.4 eV

-5.2 eV _ .
Relaxation of 3d orbital

2.2V important.

-1.2 eV

Atomic U

Mn in CdTe

On-site relaxation
Charge transfer from Mn

Charge transfer to n.n. ligand

12.8 eV

15.4 eV
76ey Charge transfer to 4sp

04 eV important.

Solid state U

7.4eV

25



Screening charge. Mn in CdTe

Screening charge

State  Screening charge

Mn4s 24 %
Mn4dp 25%
Te 25 %
Empty 19 %

Only about half the screening charge sits on Mn.

Gunnarsson, Andersen, Jepsen, Zaanen, PRB 39, 1708 (89).

Stuttgart
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Metallic Fe

“Cut off” method: U ~ 6.2 eV. Screening: 4s 24 %, 4p 29 %.
Simple estimate of screening charge:

Shift of 4sp levels:

AE; = F°(3d,4s) — 0nagpF(4s,45) — 2(1 — Onayp)
Screening charge dnys, = N(0)AFEk.

F°(3d,4s) = 1.01 Ry, F°(4s,4s) = 0.89 Ry, d = 4.68 ay,
N(0) = 2 states/Ry. = dnys, = 0.61. Calc. 0.53.

Simple estimate of U':

U — §€3d
n3d
U ~ F(3d,3d) — dn4s, F'(3d,4s) — (1 — 5n4sp)%

= F(3d,3d) — 0nusp[F(3d,4s) — 2] — 2 ~ 16.2—7.90n4,, — 5.8.

“Perfect screening” = U ~ 2.5 eV (renormalized atom 2.7 eV).

Anisimov, Gunnarsson, PRB 43, 7570 (1991)
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Results for Fe and Ce

System cLDA “cut-off” cRPA  “perfect screening”

EXp

Fe 221 6.22 43 2.74
Ce 45! 6° 3.2-3.3° 5°

2

S5-7

1. Cococcioni, Giroconcoli, PRB 71, 035105 (2005)

2. Anisimov, Gunnarsson, PRB 43, 7570 (1991)

3. Aryasetiawan, Karlsson, Jepsen, Schonberger, PRB 74, 125106 (2006).
4. Cox, Coultard, Loyd, J. Phys. F: Metal Physics 4, 807 (1974)

5. Herbst, Watson, Wilkins, PRB 13, 1439 (1976)
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Charge transfer energy
Cuprates:
Keep Cu 3d and O 2p levels. Need relative energy of these levels.
Nominally: Cu?*(3d”)0%~ (2p°%)
Consider the hopping of an O electron into the Cu 3d” shell.

Thus we calculate
EBdOL™Y) — B(3d®) & e54(nsq = 9.5) — £9,(nsq = 9.5).

This can be done if, e.g., the hopping integrals are cut.

But results depend crucially on precise definition of 3d orbital.

MPI-FKF ((##%) Stuttgart
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Photoemission Ndo,CuO, (end of 3d series)

Electron-doped high-1. cuprate.

Multiplet integrals from atomic data.
Satellite due to two-hole bound state. Positi-
on dep. on U.

U ("cut off”):

Stuttgart group U=8 eV.

McMahan, Martin, Satpathy U/=8.5 eV.

U (cLDA):

Hybertsen, Schliter, Christensen UU=10.5
eV.

42

Intensity

Agreement with experiment suggests a rather accurate U'.

Gunnarsson, Allen, Jepsen, Fujiwara, Andersen, ....., PRB 41, 4811 (1990).

42
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Neglected renormalizations
Methods for calculating renormalized parameters non-rigorous.
Involving uncontrolled approximations.
Here two examples:
1. Configuration dependence of hopping matrix elements.

2. XAS like enhancement of hopping matrix elements.

MPI-FKF ({5

Stuttgart
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Configuration dependence of hopping matrix elements

~

X 100  [Ry].

LMTO: Hopping integral proportional to

9 ~ s 9 nj Ne Mn Ce u
Ve A x §[Q§1(C, 8)] nd —1 n? 51 008 072
0 0
. . . . n; n. .85 0.19 0.91
¢i(C, s) is wavefunction at WS radius s with ", 6 0 o
. . . . 0 0

logarithmic derivative —{ — 1. " ne—1 40005 053
n)+1 n% -1 &7 o011 o069

¢1(C, s) sensitive to configuration.
Increase # of val. elec. n; = ¢;(C, r) expands = ¢;(C, s) larger.

Core hole (reduce n.) = ¢;(C, r) contracts = ¢;(C', s) smaller.

Consider hopping 4 f* — 4 f* 1L ~!
Use ¢;(C, s) for configuration 4 /™ or 4 "' or some average?

Difference more than factor of two V2!

32



Configuration dependence of hopping matrix elements

A x 100 [Ry].
N N Mn Ce U
n—1 nd 51 008 0.72
ny ny 85 019 0091
nl+1 nY 129 038 1.12

—1 .40 0.05 0.53
—1 .67 011 0.69




Model with breathing

Introduce orbital at standard configuration 7

and derivative with respect to n;

= CbZ(T ny)

ro(r)

A ¢l (T nl) ’nl nl 0.0 OI.5 1I.0 1|.5 2I.0 25

Anderson impurity model with gb? and gb} Describes breathing.

Project out high-lying states = Model with one orbital, but with

prescription for hopping matrix element.

Mixing of two orbitals

ﬁ Zma (wimaw()ma T H'C'>(n0 TNy — n?)

n’ 4+ n' = n?: No mixing in of 7. n" + n' # n): Mixing in ¢; .

Mn: U = 0.16 Ry. e} — & = 2.13Ry. |U|/ (e} — &¥) < 1

Perturbation theory accurate.
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Model with breathing

g; — e = 2.13 Ry is large.

The model tends to have two sets of states separated by 5} — 5?.

Project out high-lying states. Then left with low-lying states

corresponding to ordinary Anderson model.

Hopping matrix elements:

(ang|H|om; — 1) &~ %(um][ﬂym — 1)no.
lvn; — 1) config. Anderson model. |Zn; — 1) renormalized model.

Hopping 4 f° — 4 f1 L~!: Orbital extent for 4 f’ does not matter

since orbital empty. Calculate hopping for n? = 1.
Shows problems. Config. dependent hopping. Property dependent.

Too complicated.
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Many-body renormalization of hopping. Anderson model

Discussed: Ugd,45 renorm. U3d73d. What about hopping?
Anderson orthogonality catastrophe:
Ud

S

(0]1) — 0 as size of system — o0.

In): Ground state of 3d space in presence of n 3d electrons.
Suggests V', = Vaa4s(0[1) — 0?
Actually closer to X-ray absorption spectroscopy (XAS):

3d — 4s makes potential for 4s more attractive. Exciton like effect.

Suggests enhanced hopping to low-lying 4s states.

XAS spectrum: S(w) ~ (—2-)*O(w — wp),

w—wo

where ¢ depends on phase shifts and is positive. wg threshold.

Stuttgart

36



Many-body renormalization of hopping

No spin degeneracy

N Ny (1]0)

H = Zk 1€knk—|—ednd—|— \/_Zk 1(¢k¢d—|—HC) 5 3 93

d 9 5 .89

S Zk 1 Zl_l wkwl Nq 13 7 87

Solve model using ED (t = 1, 28 = 10) 79 85

—AFE ngy
€4 Ugq Exact Renor. Unre. Fit XAS Exact Renor. Unre. Fit XAS 5 fialc sgit tgiftf
-1.5 1 1.33 1.28 1.66 1.33 131 0.89 0.91 0.94 0.89 0.89 -1.09 -1.09 1.12
-1.5 3 0.98 0.83 1.66 0.99 0.94 0.76 0.81 0.94 0.78 0.74 -0.57 -0.64 1.21
-1.5 5 0.83 0.62 1.66 0.88 0.78 0.66 0.70 0.94 0.69 0.62 -0.29 -0.41 1.30
-1.0 3 0.64 0.48 1.20 0.69 0.62 0.57 0.55 0.90 0.55 0.53 -0.07 -0.09 1.31
-0.5 3 0.42 0.29 0.78 0.44 0.41 0.33 0.24 0.79 0.31 0.31 0.43 0.36 1.22
0.0 3 0.29 0.21 0.44 0.30 0.29 0.18 0.11 0.50 0.17 0.17 0.93 0.76 1.15
10 3 .043 .040 .043 .044 .043 .004 .003 .004 .004 .004 10.9 10.1 1.00
calc

Renor.: Calculate ed

XAS: [tog(€)]* = t2S(]e —ep +wp), € Uy

XAS and fit comp. ¢!t

Gunnarsson, Schonhammer, PRB 40,4160 (199).

E(nd — 1)

— E(nqg =0); Usa =
Fit: Choose best £!i* and tfit: U,; = 0.

= 0.

enhanced. Consistent with Ce comp. results.
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Many-body renormalization of hopping

—AF
eq U, Exact Renor. Unre. Fit XAS g&¢lc gt hit
-1.5 1 1.33 1.28 166 133 131 -109 -1.09 1.12
-1.5 2 1.12 1.02 166 1.12 108 -0.79 -0.81 1.18
-1.5 3 0.98 0.83 1.66 099 094 -057 -0.64 1.21
-1.5 5 0.83 0.62 1.66 0388 0.78 -0.29 -041 1.30
-1.0 3 0.64 0.48 1.20 0.69 0.62 -0.07 -0.09 131
-05 3 0.42 0.29 0.78 0.44 0.41 .43 0.36 1.22
0.0 3 0.29 0.21 044 030 0.29 .93 0.76 1.15
10 3 .043 .040 043 044 043 109 101 1.00
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Many-body renormalization of hopping

T
eq U, Exact Renor. Unre. Fit XAS g&¢lc gt hit
-1.5 1 0.89 0.91 094 089 089 -109 -1.09 1.12
-1.5 2 0.82 0.87 094 083 081 -0.79 -0.81 1.18
-1.5 3 0.76 0.81 094 0.7/8 0.74 -0.57 -0.64 1.21
-1.5 5 0.66 0.70 094 069 062 -0.29 -041 1.30
-1.0 3 0.57 0.55 090 0.55 0.53 -0.07 -0.09 1.31
-05 3 0.33 0.24 079 031 031 043 036 1.22
0.0 3 0.18 0.11 050 017 0.17 093 0.76 1.15
10 3 .004 .003 004 004 .004 109 101 1.00
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Many-body renormalization of hopping

Xc
eq U, Exact Renor. Unre. Fit XAS g@lc glit 4t
-1.5 1 0.12 0.10 0.05 0.12 0.13 -1.09 -1.09 1.12
-1.5 2 0.20 0.19 0.05 0.20 023 -0.79 -0.81 1.18
-1.5 3 0.27 0.30 0.05 0.28 0.32 -0.57 -0.64 1.21
-1.5 5 0.36 0.55 005 038 040 -029 -041 1.30
-1.0 3 0.47 0.74 0.12 0.50 047 -0.07 -0.09 1.31
-0.5 3 0.41 0.41 0.35 0.43 037 043 036 1.22
0.0 3 0.21 0.14 0.75 0.22 0.19 093 0.76 1.15
10 3 .0006 .0005 .0006 .0006 .0006 109 101 1.00
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Discovery of Fullerenes

e60 equivalent carbon atoms.
e1? Pentagons, 20 Hexagons.
ll  eSame shape as a soccer ball.
eDiscovered during astro-
physical studies 1985.
eCurl, Kroto, Smalley:
Nobel prize 1996.
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Narrow band system

Energy scales:
W ~ 0.6 ev t1, one-particle band width
wpn, ~ 0.2 eV Phonon energies

U~1—1.5eVv On-site Coulomb interaction

Alkali-doped: Gives off electrons to ¢;,,. Often metallic.

Due to unusual parameter range, many interesting issues raised.

1. W < U = Correlation important.

2.1m X¢g;_pn, ~ W= Boltzmann equ. questionable (I << d).
3. wpp, ~ W = Retardation effects small. Why large 1.?

4. wyp, ~ W = Migdal’s theorem questionable.

Organics: Cano-Cortes, Dolfen, Merino, Behler, Delley, Reuter, and
Koch, Eur. Phys. J. B 56, 173 (2007).

42



25 and 2p = approx. 3p2 hybrids in Cgq surface. 10 |

Hopping

Strong coupling. Bonding and anti-bonding 51 0.66 %

states far from Er.

Remaining approx. p, orbitals couple weakly.
Close to £ . Point towards neighboring mol.

Important for band structure.

Energy (eV)

-10 +

-15 +

-20

Two 2p — 2p hopping integrals V,,, and V),

Vi

_ R
O'_UO'R_O

o—MR—Ro).

)

—Vppﬂ- _ —

Vppa

1
4

Ry =3.1A.

Adjust v, to LDA band width and A to lattice parameter dep.




Comparison with LDA band structure

0.6 T T T T

05 L@ -

04 -

03 B C60 LDA —
02 = 9
o1 L FmJ3 structure.

O | | | |
r X W L r k Related to A3Cgo

Energy

0.6
05 F
0.4
0.3
0.2
0.1

0

structure.

Energy

r X \\ L r K

Essential hopping between molecules via to equivalent hopping

matrix elements. Determines band width.

Band structure depends primarily on geometrical structure.
Gunnarsson, Erwin, Koch, and Martin, PRB 57, 2159 (1998).

Satpathy, Antropov, Andersen, Jepsen, Gunnarsson, and Liechtenstein, PRB 46, 1773 (1992).
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Coulomb interaction /. Cgy molecule
Theory:

Simple estimate: Assume the charge of
the (t1,) orbital is spread out as a thin shell
over the Cgo molecule.

2
e
l]kdokxnﬂe ~ TR~ 4 eV.

This neglects the relaxation of the orbitals as an electron is added to

the molecule.

Better: LDA-LMTO U =FE(n+1)+ FE(n—1) —2E(n)
= U =~ 2.7 eV.

Antropov, Gunnarsson, Jepsen, PRB 46, 13647 (1992).

Stuttgart

MPI-FKF (Bl 26>
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Coulomb interaction UU. Cgy molecule

Experiment:
tju——p— AGo)
UMolecule =1 (060) A(C6O) ~ 2.7 eV. U
tpy———— _Ip(C6_O)
o Q/tlu
UMolecule — ]p(060) _A(CG()) — Eg ~ 3.3 eV. < /
S © h,
Eg IpCe0)  A(Cg)

The two experiment measure different U’s!
Experiment 1: Repulsion of two electrons.
Experiment 2: Attraction between electron and hole.

Parameters renormalized differently in diff. experiments!
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Coulomb interaction U. Cg solid
U screened by the polarization of surrounding @

molecules.

Include dipole interactions between Cgy molecu- @ @

les self-consistently.

Usolia = Unolecule — 0U.

Polarizability o« ~ 90 A% = U ~ 1.7 eV.

= UL Solid ™~ 2.7 — 1.7 = 1.0 €V [antropov, Gunnarsson, Jepsen. PRE 46, 13647 (1992)].
cRPA: U ~/ 08 €V [Nomura, Nakamura, Arita, PRB 85, 155452 (2012)].

At surface U screened less efficiently = Ugyrace = 1.3 €V.

Auger (surface sensitive): U = 1.4 eV.
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Estimate of U from Auger spectroscopy

v ¥ v T

CKVV Auger
AE = U = |.6 eV

0 5 10 15 20
2p Ja
o
PES ® PES
mj\f\/\/\/\‘/\m\\w

0 5 10 15 20 1s a
Two hole binding energy {eV]

One-particle theory: 1" = €valencel T Evalence2 — €1s

Convolute PES spectra.

Two valence holes interact by U. Shift convoluted PES spectra by U'.
Average shift about 1.6 eV. Shift for highest occupied level 1.4 eV.

Lof, van Veenendaal, Koopmans, Jonkman, and Sawatzky, PRL 68, 3924 (1992).
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Phonons and electron-phonon coupling. A3Cgo

Electron-phonon interaction belie-
ved to cause superconductivity.
Electron-phonon interaction im-

portant for transport properties and

INTENSITY

electronic properties in general.

! I W I I |
0 20 50 100 200 500 1000 2000
FREQUENCY {cm ')

1. Librations. 4-5 meV. A ~ 0.01 (Theor.) A < 0.08 (Exp.).
2. Intermolecular modes. 0 — 8 meV. A ~ 0.01 (Theory).
3. Alkali modes. 5 — 16 meV. A “small”.

4. Intramolecular modes. 34-195 meV. A ~ 0.5 — 1.0.
Focus on intramolecular phonons.

H,, A, intramol. phonons couple to ¢1,, level. H, Jahn-Teller phonons.
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Calculation of electron-phonon coupling

Calculation of electron-phonon coupling for Cgg solids very

complicated.

For intramolecular modes: If intramolecular hopping much larger than

Intermolecular hopping:

A~ N(O)Y,, B,

ro w,%

Ae,,, shift of £, per unit displacement. w,, phonon frequency.

Stuttgart
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Results for coupling strength

A /N(0)
Mode Wy Antropov Faulhaber Manini Iwahara
Hg(8) 1575 .022 .009 .014 .018
Hg (7) 1428 .020 .015 .015 .023
Hg (6) 1250 .008 .002 .003 .002
Hg (5) 1099 .003 .002 .004 .005
Hg(4) 774 .003 .010 .004 .006
Hg(3) 710 .003 .001 .009 .012
Hg(2) 437 .006 .010 011 011
Hg (1) 273 .003 .001 .005 .006
> Hg .068 .049 .065 .083

Antropov, Gunnarsson, and Liechtenstein, PRB 48,
7651 (1993).

Faulhaber, Ko, and Briddon, PRB 48, 661 (1993).
Manini, Corso, Fabrizio, and Tosatti, Phil. Mag. B 81,
793 (2001).

Iwahara, Sato, Tanaka, Chibotaru, PRB 82, 245409
(2010).

Antropov, Faulhaber and Manini LDA calculations.

lwahara hybrid functional B3LYP (20 % HF).

Rather large deviations illustrating numerically difficult calculations.
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A, /N(0)

Mode w,  Antropov Faulhaber Manini Iwahara
H,(8) 1575 022 .009 014 .018
H,(7) 1428 .020 .015 .015 .023
H,(6) 1250 .008 .002 .003 .002
H,(5) 1099 .003 .002 .004 .005
H,(4) 774 .003 .010 .004 .006
H,(3) 710 .003 .001 .009 012
H,(2) 437 .006 .010 011 011
H,(1) 273 .003 .001 .005 .006
> H, .068 .049 .065 .083

69
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Sensitivity of coupling to eigenvectors

exact __ 8
Cor = Zy’:l Cov' €y

Agexact — Zi,zl VAN Zm(Asﬁ’gf‘CtV = Zya(Asm)Q.

A~ N(O)Y,, Boe

rvo w2'

. €22 — \/0.95¢7, — v/0.05eg,
egxa = 1/0.05e7, + v/0.95¢g,

A7/N(0) = 0.010, Ag/N(0) = 0.030 instead of
A7 /N(0) = 0.020, \g/N(0) = 0.022

Il 552" = /0.95e5, + v/0.05¢eg,
egxa = 1/0.05e2, — v/0.95¢s,

Ao /N(0) = 0.033, A\g/N(0) = 0.019 instead of

Antropov, Gunnarsson, Liechtenstein, PRB 48, 7651 (1993).

53



Experimental estimate from Photoemission for free Cg, molecule

10 A ....................... tlg
g Sl hv=4.025eV Cc -~ Q-
2|8 60 [
i - t +
s51% ) ' 1u |\d
> B 35 3.0 2.5 Al
~ 4 BINDING ENERGY (eV) 3 |
2
Z 2w I
Z 2 \\,.*.“__,.\W/ A,/f'"\_-:’j ﬂ IU h w
0 e .=.-‘,=‘7'=,"'."7",*Zi {“P“nﬂ: .u.\ . KN
4000 3000 2000 1000 0 hU? A || ] ]

WAVE NUMBER (cm')

As the t1,, electron is removed, phonons are excited.
These excitations show up as satellites. Final states very simple.

The weight of satellites give information about electron-phonon
coupling.

Gunnarsson, Handshuh, Bechthold, Kessler, Ganteftr, and Eberhardt, PRL 74, 1875 (1995).
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Photoemission Cgo

Hamiltonian:

H =g an:1 Wl om + Ziil w, b, +

1. 3-fold degenerate ¢, level.

2. 42 phonon modes; 8 5-fold deg. H, + 2 A, modes.

3. Electron-phonon interaction.

Ground-state: |® >= [fon:l aml + 27371:1 Zizzl AT DT +
D @m;u,uwl@blbi + ...[|lvac > .

Final states: [vac >; bl lvac >;  blb] |vac >.

Photoemission spectrum:

plw) = 2 [N = L, slem [N, 0)[*dw — Ey(N — 1) + Ey(N)].

Solve Hamiltonian and adjust parameters until agreement with exp.
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Photoemission Cgo

104 v e [ P
3 ) Parameters not unique. Use
_ 8l 51 hv=4.025eV C I _
£ 18, 60 | calculated couplings to A, pho-
8 692 - nons.
> 4 BINDING ENERGY (&) | Total coupling strength A ~ 1.
2] i
z il . .
= A Substantial coupling strength.
Z 2 i ‘fﬁ'-'\.\:'-‘ _ -~ "'." : L
T ﬂ ”ﬂ 1 But partly canceled by Hund'’s
Odbmmermmmmr =2 r T il = L Tl v N
4000 3000 2000 1000 0 rule coupling.
WAVE NUMBER (cm’')
Coupling strengths:
Hg Mode 1 2 3 4 5 6 7 8

Av/N(O) 019 040 013 .018 .012 .005 .017 .023

Gunnarsson, Handshuh, Bechthold, Kessler, Gantefor, and Eberhardt, PRL 74, 1875 (1995).

Stuttgart

MPI-FKF (H4~
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Experimental estimate from Raman scattering
Phonon line width 7y, for mode v due to electron-phonon interaction:
v, = 2rh?w2 N (0)\,,
where w,, Is the phonon frequency.

Measure change in line width between undoped (insulating) and

doped (metallic) fullerides using Raman scattering = estimate of \,.

MPI-FKF (2%

Stuttgart
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Theoretical and experimental estimates of \

Theory Photoemission Raman
Wy Antropov Faulhaber Manini Iwahara Gunnarsson Iwahara Kuzmany
1575 .022 .009 .014 .018 .023 .011 .003
1428 .020 .015 .015 .023 .017 .028 .004
1250 .008 .002 .003 .002 .005 .007 .001
1099 .003 .002 .004 .005 .012 .009 .001
774 .003 .010 .004 .006 .018 .007 .003
710 .003 .001 .009 .012 .013 .015 .003
437 .006 .010 .011 .011 .040 .012 .020
273 .003 .001 .005 .006 .019 .007 .048
> Hg .068 .049 .065 .083 147 .096 .083

lwahara photoemission: New high resolution measurement.

Iwahara, Sato, Tanaka, Chibotaru, PRB 82, 245409 (2010).

Reasonable agreement B3LYP, lwhara photo. Raman total coupling.

Large deviation between Raman and other estimates for coupling

strength distribution.

Tendency to move coupling strength to lower modes in solids.
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Theory Photoemission Raman

Wy Antr.  Faulh. Manini Iwah. Gunnar. Iwah. Kuzmany

1575 .022  .009 014 .018 .023 011 .003
1428 .020 .015 .015 .023 017 .028 .004
1250 .008 .002 .003 .002 .005 .007 .001
1099 .003 .002 .004 .005 012 .009 .001
774 .003 .010 .004 .006 .018 .007 .003
710 003 .001 .009 012 013 015 .003
437 006 .010 011 011 .040 012 .020
273 003 .001 .005 .006 .019 .007 .048

z H, .068 .049 .065 .083 147 .096 .083
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Spectral weight transfer
Phonon v decays in an electron-hole pair.

This pair decays in phonon L. M

Coupling between different phonon modes.

30

H=3wbl bt leotd g+l

+U Z T = Z tij C;'racja )
i ij |

Four sites, two phonon modes.

Pon(®)

A =(1 + chg) A\ W=3.7, wi=0.5, wy=1,
)\eff:(l — C)\Q(%)Q))\Q 9120.3, 9220.4

Transfer of spectral weight to lower mode. U reduces phonon width.

Han and Gunnarsson, PRB B 61, 8628 (2000)
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Summary
Complicated systems with strong correlation effects: Need for models.

No systematic (practical) procedure for deriving models without

uncontrolled assumptions.

Assume two types of electrons, only a few types of Coulomb integrals.
Effects left out included as renormalization of parameters.

Works fairly well for quite a few cases.

But many effects left out.

Parameters property dependent.

MPI-FKF (%) Stuttgart
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14

(G No transitions from 3d
31 cLDA (modified)
B cLDA

A—A VRPA)

oo No 3d -> 3d transitions
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