
Strongly correlated electrons:
Estimates of model parameters

Why model Hamiltonians?

Simple example. Intuitive approach.

Applications: 3d, 4f and C60 compounds.

What is left out?

Max-Planck Institut Stuttgart, Germany
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Density functional formalism

{− ~2

2m
▽2 +Vext(r) + VH(r) + vxc(r)}ψi(r) = εiψi(r)

If good approximation to vxc known, tremendous simplification.

1. Effective, local one-particle potential.

2. Efficient numerical methods available.

3. Used in large majority of ab initio solid-state physics calculations.

4. Surprisingly successful.

But

1. No systematic procedure for improving approximations for vxc. For

strongly correlated systems, LDA and GGA often not good enough.

2. In principle only ground-state properties. εi often (successfully)

treated as excitation energies. But even if exact vxc known, εi in

general not an exact excitation energy (But time-dependent DFT).

Need for many-body theory.
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GW approximation

Based on diagrammatic theory.

Σ = 
G

W

0

G0 = Zeroth order Green’s function.

W = Screened interaction.

Simplest diagram in an expansion in W .

Dyson’s equation: G = G0 +G0ΣG.

Improves LDA (or GGA) for semiconductors.

But not sufficient for strongly correlated systems.

More complicated diagrams can be calculated, but hard to choose

diagrams. No systematic expansion.

Alternative: Find (simple) model which can be solved accurately.

MPI-FKF Stuttgart
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Model calculations

1. Often large systems: YBa2Cu3O7 (13 atoms); K3C60 (60 atoms).

2. Correlation effects important: Often close to Mott transition. Often

3d or 4f compound.

3. LDA(GGA) cannot address many of the interesting properties.

4. Ab initio quantum-chemical or many-body methods not feasible.

Often only model calculations possible.

Just keep strongest interactions and most important states.

Advantage: Easier to extract physics.

Danger: Use of oversimplified model, unrealistic parameters or too

crude approximations in solving model.

Need to estimate parameters from ab initio calculations or

experiments.
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Ce. α− γ transition
Promotional model:

∆
EF

5d
4fε |ε4f − EF | < 0.1 eV; ∆ ∼ 0.01 eV.

Explains: α-γ - transition (5d→ 4f trans.).

Explains: Large specific heat and susceptibility.

But: 1. ε4f − EF ∼ −2 eV (Johansson, 1978). 2. ∆̃ ∼ 0.1 eV.

Later:

Many-body effect produces narrow resonance at EF .

Promotional model: Wrong parameters + simple (mean-field) solution

appeared to give “correct” physics.
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Hamiltonian

H =
∑

i[− ~
2

2m
▽2

i +Vext(ri)] +
∑

i<j
e2

|ri−rj | .

Find some complete one-particle basis set.

H =
∑

i εini +
∑

i 6=j tijψ
†
iψj +

1
2

∑

ijkl vijklψ
†
iψ

†
jψlψk.

This Hamiltonian can be solved for small atoms and molecules, using,

e.g., quantum chemical methods. But it is too complicated for systems

we have in mind here.

Need to

1) project out degrees of freedom

2) remove interaction terms

MPI-FKF Stuttgart
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Hubbard model

t
U

E.g., consider just the 3d electrons

in a transition metal (compound).

Include Coulomb interaction bet-

ween two electrons on same atom.

H =
∑

ij

∑

σ ti,jψ
†
iσ
ψ
j
′
σ
+ U

∑

i ni↑ni↓.,

Anderson model

sp
3d

V U
E.g., consider 3d impurity in sp

host. Include Coulomb interaction

on impurity but not in host.

H =
∑

kσ εkψ
†
kσψkσ+ε3d

∑

σ ψ
†
σψσ+

∑

kσ Vk[ψ
†
kσψσ+h.c.]+Un↑n↓.
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Projecting out one-particle states

H =
∑

i εini +
∑

i 6=j tijψ
†
iψj .

Corresping Hamiltonian matrix:

We study











ε1 t12 ....

t21 ε2 ...

... ... ...











(z−H)−1 =
∑

ν |ν〉〈ν|(z−H)−1
∑

µ |µ〉〈µ| =
∑

µ |µ〉 1
z−Eµ

〈µ|.
Resolvent operator has poles at eigenvaluesEµ.

Project out states Q and keep states P (Löwdin).

Hamiltonian matrix is rewritten in block form:

Look for poles of smaller matrix





HPP HPQ

HQP HQQ





[z −HPP −HPQ(z −HQQ)
−1HQP ]

−1.

Identical to poles of (z −H)−1 if eigenvectors have weight in P.

MPI-FKF Stuttgart
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Projecting out one-particle states. Continuation

Look for the poles of the smaller matrix

[z −HPP −HPQ(z −HQQ)
−1HQP ]

−1.

But matrix elements now energy dependent. Replace z by “typical”

energy E0 in (z −HQQ)
−1. Study energy independent “small”

Hamiltonian

This down-folding done efficiently in LMTO and provides hopping

integrals for models.

Systematic and controlled approach.

MPI-FKF Stuttgart
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Coulomb integrals

Coulomb integrals: Fij = e2
∫

d3r
∫

d3r
′ Φ2

i (r)Φ
2
j (r

′
)

|r−r
′ | .

Mn: F3d,3d ∼ 21 eV, F3d,4s ∼ 10 eV,

Fnn ∼ 5− 6 eV (nearest neighbor).

Unjustified to keep F3d,3d and neglect everything else. Furthermore

F3d,3d ∼ 21 eV is much too large to explain experiment.

Necessary to include neglected interactions implicitly as

renormalization of parameters. (This reduces F3d,3d).

What not included explicitly in model is (if possible) included implicitly

as renormalization of parameters. What is included explicitly must not

be included implicitly (double counting).

The values of the parameters depend on what model they are used in.

Empirical parameters depend on the property considered.
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Many-particle problem

For one-particle problem project out higher states. Hopping more

long-ranged and procedure accurate over a smaller energy range as

more states are projected out, but procedure still controlled.

HPP −HPQ(z −HQQ)
−1HQP .

For many-body problem not practical.

H : Two-body operators with two creation + two annihilation operators.

Q projects out many-electron states with at least one electron in

one-particle states to be projected out.

New terms with six operators. Very many terms.

We therefore rely on more intuitive and less rigorous approaches.
16
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Simple model of 3d impurity

H =
∑

σ[
∑4

i=1 εiniσ + (tψ†
1σψ2σ + V ψ†

3σψ4σ + h.c.)]+

+Uddn2↑n2↓ + Usd

∑

σσ
′ n

2σ
n4σ

′ .

1. Orbital 2 very localized ⇒ t small.

2. Orbitals 3+4 delocalized ⇒ V large.

Ligand 
orbitals

t

V

Usd

3d

4s

1

3 4

Udd

2

We want to project out dynamics of levels 3 and 4, assuming that

electrons in space 3+4 can adjust perfectly to electrons in space 1+2.

Consider spinless case. Put the electron in space 1+2 on one level

(1 or 2) and calculate the total energy.

Usd

ε
εb2

b1

1

4

1

4

3 3

2 2

ε1 = ε2 ε3 = ε4

εeff1 = ε1 + εb1

εeff2 = ε2 + εb2.
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Simple model of 3d impurity

H =
∑

σ[
∑4

i=1 εiniσ + (tψ†
1σψ2σ + V ψ†

3σψ4σ + h.c.)]+

+Uddn2↑n2↓ + Usd

∑

σσ
′ n

2σ
n4σ

′ .

1. Orbital 2 very localized ⇒ t small.

2. Orbitals 3+4 delocalized ⇒ V large.

Ligand 
orbitals

t

V

Usd

3d

4s

1

3 4

Udd

2

Usd

ε
εb2

b1

1

4

1

4

3 3

2 2

ε1 = ε2 ε3 = ε4

εeff1 = ε1 + εb1, εeff2 = ε2 + εb2.

Heff = εeff1 n1 + εeff2 n2 + t(ψ†
1ψ2 + ψ†

2ψ1).

εeff2 − εeff1 = 1
2
Usd − 1

8

U2
sd

V
+O( 1

V 2 ).

Renormalized by less than Usd/2, due to readjustments of charge.
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Exact solution
Introduce complete basis set.

|1̃〉 = ψ†
1ψ

†
b1|0〉, |2̃〉 = ψ†

2ψ
†
b2|0〉

|3̃〉 = ψ†
1ψ

†
a1|0〉, |4̃〉 = ψ†

2ψ
†
a2|0〉.

Usd

ε
εb2

b1

1

4

1

4

3 3

2 2

Write down 4× 4 Hamiltonian matrix. Project out states |3̃〉 and |4̃〉.
H̃11 = ε1 + εb1 +

t2(z−ε1−εa1)sin
2φ

(z−ε1−εa1)(z−ε2−εa2)−t2cos2φ
.

φ ∼ Usd/V . Put z ∼ ε1 + ε1b. Last term of order

t(t/V )(Usd/V )2. For low energy properties:

Heff = εeff1 n1 + εeff2 n2 + tcosφ(ψ†
1ψ2 + ψ†

2ψ1) + O( 1
V 3 ).

As elect. in 1+2 hops, elect. in 3+4 has to readjust. Hinders hopping.

To order (Usd/V )2, neglect cosφ⇒ Simple effective Hamiltonian:

Heff = εeff1 n1 + εeff2 n2 + t(ψ†
1ψ2 + ψ†

2ψ1).
O. Gunnarsson, PRB 41, 514 (1990).
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Spin degenerate model.

Heff=
∑

σ[ε
eff
1 n1σ+εeff2 n2σ+t(ψ†

1σψ2σ+ψ†
2σψ1σ)]+U

effn1↑n1↓.

U eff=E(n2=2)-E(n2=0)-2E(n=1).

εeff2 − εeff1 = Usd − 1
4

U2
sd

V
+O( 1

V 2 ).

U eff = U − 1
2

U2
sd

V
+O( 1

V 2 ).

Ligand 
orbitals

t

V

Usd

3d

4s

1

3 4

Udd

2

V εeff
2

-εeff
1

Ueff E0 + 2V n2 χ

Renorm. Exact Renorm. Exact Renorm. Exact

1.0 1.17 3.18 -1.05 -0.95 0.380 0.364 0.314 0.312

1.5 1.39 3.21 -0.97 -0.90 0.339 0.326 0.266 0.262

2.0 1.53 3.29 -0.92 -0.88 0.317 0.307 0.240 0.237

3.0 1.68 3.44 -0.87 -0.85 0.292 0.287 0.214 0.213

4.0 1.75 3.55 -0.85 -0.84 0.280 0.277 0.202 0.201

6.0 1.83 3.68 -0.83 -0.82 0.268 0.267 0.190 0.190

10.0 1.90 3.80 -0.81 -0.81 0.259 0.258 0.181 0.181

20.0 1.95 3.90 -0.80 -0.80 0.252 0.252 0.174 0.174

t = 1

Udd = 4

Usd = 2

Accurate for V large. Two types of electrons.
O. Gunnarsson, PRB 41, 514 (1990).
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Spin degenerate model.

V εeff2 -εeff1 U eff E0 + 2V n2 χ

Renor. Exact Renor. Exact Renor. Exact

1.0 1.17 3.18 -1.05 -0.95 0.380 0.364 0.314 0.312

1.5 1.39 3.21 -0.97 -0.90 0.339 0.326 0.266 0.262

2.0 1.53 3.29 -0.92 -0.88 0.317 0.307 0.240 0.237

3.0 1.68 3.44 -0.87 -0.85 0.292 0.287 0.214 0.213

4.0 1.75 3.55 -0.85 -0.84 0.280 0.277 0.202 0.201

6.0 1.83 3.68 -0.83 -0.82 0.268 0.267 0.190 0.190

10.0 1.90 3.80 -0.81 -0.81 0.259 0.258 0.181 0.181

20.0 1.95 3.90 -0.80 -0.80 0.252 0.252 0.174 0.174

O. Gunnarsson, PRB 41, 514 (1990).
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Two types of electrons?

In model of a 3d compound, we could renormalize out levels involving

very delocalized electrons (hopping integrals large, electrons “fast”).

Can we separate electrons of real systems into localized and

delocalized?

System Localized Delocalized

4f compounds 4f 5d

3d compounds 3d 4s, 4p

Pretty good for 4f compounds (W4f/W5d ∼ 0.1)

Questionable for 3d compounds, in particular at beginning of series.

MPI-FKF Stuttgart
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Other high-lying excitations A3C60 (A= K, Rb)

����������
����������
����������
����������
����������

����������
����������
����������
����������
����������

����������
����������
����������
����������

t1u

Interesting physics in a partly occupied t1u band.

We want to project out other bands. This leads to important

renormalization of U , due to important interband transitions, which

are not explicitly included in effective model.

Add two electrons to one molecule. The surrounding molecules

polarize. This reduces the energy cost.

The polarization is described by (fairly) high-energy interband

transitions. These can be projected out and U is renormalized.
28
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“Perfect screening” (Herring)

Change occupancy of localized orbital (3d, 4f ).

Screening partly due to charge transfer to delocalized orbital on same

atom (4s, 5d).

Assume that screening is “perfect”, i.e., that atom stays neutral. Then

calculation of U is reduced to (renormalized) atomic calculation.

E(n4f) =
1
2
Un4f (n4f − 1) + ε4fn4f .

U = E(5d24fn+1) + E(5d44fn−1)− 2E(5d34fn).

E.g., Ce: U = E(5d24f 2) + E(5d44f 0)− 2E(5d34f 1).

Calculations show that “perfect” screening is a good approximation for

rare earths but not for transition metals.

Ce: 105% of screening inside the WS sphere.

Fe: 50% of screening inside the WS sphere (LMTO).
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U for rare earths

“Perfect” screening assumed.

“Renormalized” atom calculation

(inside Wigner-Seitz sphere).
Theory: Herbst, Wilkins, Watson, PRB 13, 1439 (1976); 17, 3089

(1978).

Exp.: Lang, Baer, Cox, PRL 42, 74 (1979).

But in general we cannot assume “perfect” screening.
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Constrained density functional formalism

On-site Coulomb (Hubbard) interaction:

To estimate U we need to know how the energy varies with the

occupancy. This can be done by using a constrained DFT.

E[ni
3d] = F [n] +

∫

d3rVext(r)n(r) + µ{
∫

d3rn(r)−N}
+µi

3d{
∫

d3rni
3d(r)− ni

3d}.

Normally, we adjust µ so that number of electrons is N . Here we in

addition adjust µi
3d so that number of 3d electrons on site i is N i

3d.

0 = ∂F
∂n

+ Vext(r) + µ+ µi
3dP

i
3d

Results in constant potential µi
3d acting on 3d electrons on atom i.

E(n3d+1)-E(n3d) ≈ ε3d(n3d + 1/2)

U = E(n3d + 1) + E(n3d − 1)− 2E(n3d) ≈ ∂ε3d/∂n3d.
Dederichs,Blügel, Zeller, Akai, PRL 53, 2512 (1984).
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“Subtract the kinetic energy”

Changing n3d also changes kinetic energy. Straightforward application

of constrained DFT incorrectly gives kinetic energy contribution to U .

Calculate E[ni
3d] in constrained mean-field theory for

H =
∑

ijσ tijψ
†
iσψ

i σ + 1
2

∑′

ijσσ′ Uijniσnjσ′

Adjust Uij so that E[ni
3d] from constrained DFT reproduced.

Model and DFT give similar contribution from kinetic energy.
Hybertsen, Schlüter, Christensen, PRB 89, 9028 (1989).

Cococcioni, Gironcoli, PRB 71, 035105 (2005).

MPI-FKF Stuttgart
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“Cut the hopping”

Remove the hopping integrals from localized orbital (LMTO).

1. We can easily vary the occupation number of the level by hand.

2. No hopping from the localized level to the surrounding, i.e., no (3d)

kinetic energy contribution to U .

Practical approach:

1. Impurity program: Cut hopping to localized level on impurity.

2. Band structure program: Use a large super cell and cut hopping to

localized level on one atom in super cell.
McMahan, Martin, Satpathy, PRB 38, 6650 (88).

Gunnarsson, Andersen, Jepsen, Zaanen, PRB 39, 1708 (89).

MPI-FKF Stuttgart
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Constrained RPA

In RPA the polarizability is written as

P (r, r
′
: ω) =

∑occ
i

∑unocc
j ψi(r)ψ

∗
i (r

′
)ψ∗

j (r)ψj(r
′
)

×( 1
ω−εj+εi+i0+

− 1
ω+εj−εi−i0+

)

Calculating a screened Coulomb interaction would involve

double-counting. Screening of 3d-electrons by 3d electrons both in

U eff and in Hubbard model.

Remove transitions where both occupied and unoccupied states

contain 3d-states by introducing an energy window around 3d-band.

Results sensitive to precise choice of window.
Aryasetiawan, Karlsson, Jepsen, Schönberger, PRB 74, 125106 (2006).

Aryasetiawan, Imada, Georges, Kotliar Biermann and Lichtenstein, PRB 70, 195104 (2004)
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U for Mn in CdTe
Mn atom

Unrenormalized (F 0) 21.4 eV

Relaxation of 3d orbital -5.2 eV

Relaxation of 4s, 4p orbitals -2.2 eV

Relaxation core, XC effects -1.2 eV

Atomic U 12.8 eV

Relaxation of 3d orbital

important.

Mn in CdTe

On-site relaxation 15.4 eV

Charge transfer from Mn -7.6 eV

Charge transfer to n.n. ligand -0.4 eV

Solid state U 7.4 eV

Charge transfer to 4sp

important.
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Screening charge. Mn in CdTe

Screening charge

State Screening charge

Mn 4s 24 %

Mn 4p 25 %

Te 25 %

Empty 19 %

Only about half the screening charge sits on Mn.
Gunnarsson, Andersen, Jepsen, Zaanen, PRB 39, 1708 (89).

MPI-FKF Stuttgart

26



Metallic Fe

“Cut off” method: U ∼ 6.2 eV. Screening: 4s 24 %, 4p 29 %.

Simple estimate of screening charge:

Shift of 4sp levels:

∆Es = F 0(3d, 4s)− δn4spF
0(4s, 4s)− 2

d
(1− δn4sp)

Screening charge δn4sp = N(0)∆Es.

F 0(3d, 4s) = 1.01 Ry, F 0(4s, 4s) = 0.89 Ry, d = 4.68 a0,

N(0) = 2 states/Ry. ⇒ δn4sp = 0.61. Calc. 0.53.

Simple estimate of U :

U = ∂ε3d
∂n3d

U ≈ F (3d, 3d)− δn4spF (3d, 4s)− (1− δn4sp)
2
d

= F (3d, 3d)−δn4sp[F (3d, 4s)− 2
d
]− 2

d
≈ 16.2−7.9δn4sp−5.8.

“Perfect screening” ⇒ U ∼ 2.5 eV (renormalized atom 2.7 eV).
Anisimov, Gunnarsson, PRB 43, 7570 (1991)
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Results for Fe and Ce

System cLDA “cut-off” cRPA “perfect screening” Exp

Fe 2.21 6.22 43 2.74 2

Ce 4.51 62 3.2-3.33 55 5-7

1. Cococcioni, Giroconcoli, PRB 71, 035105 (2005)

2. Anisimov, Gunnarsson, PRB 43, 7570 (1991)

3. Aryasetiawan, Karlsson, Jepsen, Schönberger, PRB 74, 125106 (2006).

4. Cox, Coultard, Loyd, J. Phys. F: Metal Physics 4, 807 (1974)

5. Herbst, Watson, Wilkins, PRB 13, 1439 (1976)
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Charge transfer energy

Cuprates:

Keep Cu 3d and O 2p levels. Need relative energy of these levels.

Nominally: Cu2+(3d9)O2−(2p6)

Consider the hopping of an O electron into the Cu 3d9 shell.

Thus we calculate

E(3d10L−1)− E(3d9) ≈ ε3d(n3d = 9.5)− ε2p(n3d = 9.5).

This can be done if, e.g., the hopping integrals are cut.

But results depend crucially on precise definition of 3d orbital.

MPI-FKF Stuttgart
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Photoemission Nd2CuO4 (end of 3d series)

Electron-doped high-Tc cuprate.

Multiplet integrals from atomic data.

Satellite due to two-hole bound state. Positi-

on dep. on U .

U (”cut off”):

Stuttgart group U=8 eV.

McMahan, Martin, Satpathy U=8.5 eV.

U (cLDA):

Hybertsen, Schlüter, Christensen U=10.5

eV.
42

Agreement with experiment suggests a rather accurate U .
Gunnarsson, Allen, Jepsen, Fujiwara, Andersen, ....., PRB 41, 4811 (1990).

42
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Neglected renormalizations

Methods for calculating renormalized parameters non-rigorous.

Involving uncontrolled approximations.

Here two examples:

1. Configuration dependence of hopping matrix elements.

2. XAS like enhancement of hopping matrix elements.

MPI-FKF Stuttgart
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Configuration dependence of hopping matrix elements

LMTO: Hopping integral proportional to

V 2 ∼ ∆̃ ≈ s
2
[φl(C, s)]

2

φl(C, s) is wavefunction at WS radius s with

logarithmic derivative −l − 1.

∆̃ × 100 [Ry].
nl nc Mn Ce U

n0

l − 1 n0
c .51 0.08 0.72

n0

l n0
c .85 0.19 0.91

n0

l + 1 n0
c 1.29 0.38 1.12

n0

l n0
c − 1 .40 0.05 0.53

n0

l + 1 n0
c − 1 .67 0.11 0.69

φl(C, s) sensitive to configuration.

Increase # of val. elec. nl ⇒ φl(C, r) expands ⇒ φl(C, s) larger.

Core hole (reduce nc) ⇒ φl(C, r) contracts ⇒ φl(C, s) smaller.

Consider hopping 4fn → 4fn+1L−1

Use φl(C, s) for configuration 4fn or 4fn+1 or some average?

Difference more than factor of two V 2!
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Configuration dependence of hopping matrix elements

∆̃× 100 [Ry].

nl nc Mn Ce U

n0
l − 1 n0

c .51 0.08 0.72

n0
l n0

c .85 0.19 0.91

n0
l + 1 n0

c 1.29 0.38 1.12

n0
l n0

c − 1 .40 0.05 0.53

n0
l + 1 n0

c − 1 .67 0.11 0.69
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Model with breathing

Introduce orbital at standard configuration n0
l

and derivative with respect to nl

φ0
l ≡ φl(r, n

0
l )

φ1
l ≡ A ∂

∂nl
φl(r, nl)|nl=n0

l

Anderson impurity model with φ0
l and φ1

l . Describes breathing.

Project out high-lying states ⇒ Model with one orbital, but with

prescription for hopping matrix element.

Mixing of two orbitals

Ũ
∑

mσ(ψ
†
1mσψ0mσ + H.c.)(n0 + n1 − n0

l )

n0 + n1 = n0
l : No mixing in of φ1

l . n0 + n1 6= n0
l : Mixing in φ1

l .

Mn: Ũ = 0.16 Ry. ε1l − ε0l = 2.13 Ry. |Ũ |/(ε1l − ε0l ) ≪ 1

Perturbation theory accurate.
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Model with breathing

ε1l − ε0l = 2.13 Ry is large.

The model tends to have two sets of states separated by ε1l − ε0l .

Project out high-lying states. Then left with low-lying states

corresponding to ordinary Anderson model.

Hopping matrix elements:

〈µ̃nl|H|ν̃nl − 1〉 ≈ φl(s,nl)

φl(s,n
0
l )
〈µnl|H|νnl − 1〉n0

l
.

|νnl − 1〉 config. Anderson model. |ν̃nl − 1〉 renormalized model.

Hopping 4f 0 → 4f 1L−1: Orbital extent for 4f 0 does not matter

since orbital empty. Calculate hopping for n0
l = 1.

Shows problems. Config. dependent hopping. Property dependent.

Too complicated.
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Many-body renormalization of hopping. Anderson model

Discussed: U3d,4s renorm. U3d,3d. What about hopping?

Anderson orthogonality catastrophe:

〈0|1〉 → 0 as size of system → ∞.
Uds

|n〉: Ground state of 3d space in presence of n 3d electrons.

Suggests V eff
3d,4s = V3d,4s〈0|1〉 → 0?

Actually closer to X-ray absorption spectroscopy (XAS):

3d→ 4s makes potential for 4s more attractive. Exciton like effect.

Suggests enhanced hopping to low-lying 4s states.

XAS spectrum: S(ω) ∼ ( ω̃
ω−ω0

)αΘ(ω − ω0),

where α depends on phase shifts and is positive. ω0 threshold.

MPI-FKF Stuttgart
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Many-body renormalization of hopping
No spin degeneracy

H =
∑N

k=1 εknk + εdnd+
t√
N

∑N
k=1(ψ

†
kψd+H.c.)

+Usd

N

∑N
k=1

∑N
l=1 ψ

†
kψl nd

Solve model using ED (t = 1, 2B = 10)

N Nel 〈1̃|0̃〉

5 3 .93

9 5 .89

13 7 .87

17 9 .85

−∆E nd

εd Usd Exact Renor. Unre. Fit XAS Exact Renor. Unre. Fit XAS εcalcd εfitd tfit
eff

-1.5 1 1.33 1.28 1.66 1.33 1.31 0.89 0.91 0.94 0.89 0.89 -1.09 -1.09 1.12

-1.5 3 0.98 0.83 1.66 0.99 0.94 0.76 0.81 0.94 0.78 0.74 -0.57 -0.64 1.21

-1.5 5 0.83 0.62 1.66 0.88 0.78 0.66 0.70 0.94 0.69 0.62 -0.29 -0.41 1.30

-1.0 3 0.64 0.48 1.20 0.69 0.62 0.57 0.55 0.90 0.55 0.53 -0.07 -0.09 1.31

-0.5 3 0.42 0.29 0.78 0.44 0.41 0.33 0.24 0.79 0.31 0.31 0.43 0.36 1.22

0.0 3 0.29 0.21 0.44 0.30 0.29 0.18 0.11 0.50 0.17 0.17 0.93 0.76 1.15

10 3 .043 .040 .043 .044 .043 .004 .003 .004 .004 .004 10.9 10.1 1.00

Renor.: Calculate εcalcd = E(nd = 1)− E(nd = 0); Usd = 0.

Fit: Choose best εfitd and tfiteff ; Usd = 0.

XAS: [teff(ε)]
2 = t2S(|ε− εF + ω0), ε

calc
d ; Usd = 0.

XAS and fit comp. tfiteff enhanced. Consistent with Ce comp. results.
Gunnarsson, Schönhammer, PRB 40,4160 (199).
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Many-body renormalization of hopping

−∆E

εd Usd Exact Renor. Unre. Fit XAS εcalcd εfitd tfiteff

-1.5 1 1.33 1.28 1.66 1.33 1.31 -1.09 -1.09 1.12

-1.5 2 1.12 1.02 1.66 1.12 1.08 -0.79 -0.81 1.18

-1.5 3 0.98 0.83 1.66 0.99 0.94 -0.57 -0.64 1.21

-1.5 5 0.83 0.62 1.66 0.88 0.78 -0.29 -0.41 1.30

-1.0 3 0.64 0.48 1.20 0.69 0.62 -0.07 -0.09 1.31

-0.5 3 0.42 0.29 0.78 0.44 0.41 .43 0.36 1.22

0.0 3 0.29 0.21 0.44 0.30 0.29 .93 0.76 1.15

10 3 .043 .040 .043 .044 .043 10.9 10.1 1.00
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Many-body renormalization of hopping

nd

εd Usd Exact Renor. Unre. Fit XAS εcalcd εfitd tfiteff

-1.5 1 0.89 0.91 0.94 0.89 0.89 -1.09 -1.09 1.12

-1.5 2 0.82 0.87 0.94 0.83 0.81 -0.79 -0.81 1.18

-1.5 3 0.76 0.81 0.94 0.78 0.74 -0.57 -0.64 1.21

-1.5 5 0.66 0.70 0.94 0.69 0.62 -0.29 -0.41 1.30

-1.0 3 0.57 0.55 0.90 0.55 0.53 -0.07 -0.09 1.31

-0.5 3 0.33 0.24 0.79 0.31 0.31 0.43 0.36 1.22

0.0 3 0.18 0.11 0.50 0.17 0.17 0.93 0.76 1.15

10 3 .004 .003 .004 .004 .004 10.9 10.1 1.00
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Many-body renormalization of hopping

χc

εd Usd Exact Renor. Unre. Fit XAS εcalcd εfitd tfiteff

-1.5 1 0.12 0.10 0.05 0.12 0.13 -1.09 -1.09 1.12

-1.5 2 0.20 0.19 0.05 0.20 0.23 -0.79 -0.81 1.18

-1.5 3 0.27 0.30 0.05 0.28 0.32 -0.57 -0.64 1.21

-1.5 5 0.36 0.55 0.05 0.38 0.40 -0.29 -0.41 1.30

-1.0 3 0.47 0.74 0.12 0.50 0.47 -0.07 -0.09 1.31

-0.5 3 0.41 0.41 0.35 0.43 0.37 0.43 0.36 1.22

0.0 3 0.21 0.14 0.75 0.22 0.19 0.93 0.76 1.15

10 3 .0006 .0005 .0006 .0006 .0006 10.9 10.1 1.00
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Discovery of Fullerenes

•60 equivalent carbon atoms.

•12 Pentagons, 20 Hexagons.

•Same shape as a soccer ball.

•Discovered during astro-

physical studies 1985.

•Curl, Kroto, Smalley:

Nobel prize 1996.
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Narrow band system

Energy scales:

W ∼ 0.6 eV t1u one-particle band width

ωph ∼ 0.2 eV Phonon energies

U ∼ 1− 1.5 eV On-site Coulomb interaction

Alkali-doped: Gives off electrons to t1u. Often metallic.

Due to unusual parameter range, many interesting issues raised.

1. W < U ⇒ Correlation important.

2. Im Σel−ph ∼ W⇒ Boltzmann equ. questionable (l << d).

3. ωph ∼ W ⇒ Retardation effects small. Why large Tc?

4. ωph ∼ W ⇒ Migdal’s theorem questionable.

Organics: Cano-Cortes, Dolfen, Merino, Behler, Delley, Reuter, and

Koch, Eur. Phys. J. B 56, 173 (2007).

42



Hopping

2s and 2p⇒ approx. sp2 hybrids in C60 surface.

Strong coupling. Bonding and anti-bonding

states far from EF .

Remaining approx. pr orbitals couple weakly.

Close to EF . Point towards neighboring mol.

Important for band structure.
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Two 2p− 2p hopping integrals Vppσ and Vppπ:

Vppσ = vσ
R
R0
e−λ(R−R0); Vppπ

Vppσ
= −1

4
R0 = 3.1 Å.

Adjust vσ to LDA band width and λ to lattice parameter dep.
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Comparison with LDA band structure
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Fm3̄ structure.

Related to A3C60

structure.

Essential hopping between molecules via to equivalent hopping

matrix elements. Determines band width.

Band structure depends primarily on geometrical structure.
Gunnarsson, Erwin, Koch, and Martin, PRB 57, 2159 (1998).

Satpathy, Antropov, Andersen, Jepsen, Gunnarsson, and Liechtenstein, PRB 46, 1773 (1992).
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Coulomb interaction U . C60 molecule
Theory:

Simple estimate: Assume the charge of

the (t1u) orbital is spread out as a thin shell

over the C60 molecule.

UMolecule ∼ e2

R
∼ 4 eV.

R

This neglects the relaxation of the orbitals as an electron is added to

the molecule.

Better: LDA-LMTO U = E(n+ 1) + E(n− 1)− 2E(n)

⇒ U ≈ 2.7 eV.
Antropov, Gunnarsson, Jepsen, PRB 46, 13647 (1992).

MPI-FKF Stuttgart
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Coulomb interaction U . C60 molecule

Experiment:

UMolecule = Ip(C
−
60)− A(C−

60) ≈ 2.7 eV. U

−Ip(C60
− )

−A(C60
− )t1u

t1u

UMolecule = Ip(C60)−A(C60)−Eg ≈ 3.3 eV.

Eg I p(C60) A(C60)

t1u

hu

The two experiment measure different U ’s!

Experiment 1: Repulsion of two electrons.

Experiment 2: Attraction between electron and hole.

Parameters renormalized differently in diff. experiments!
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Coulomb interaction U . C60 solid

U screened by the polarization of surrounding

molecules.

Include dipole interactions between C60 molecu-

les self-consistently.

USolid = UMolecule − δU .

Polarizability α ∼ 90 Å3 ⇒ δU ∼ 1.7 eV.

⇒ USolid ∼ 2.7− 1.7 = 1.0 eV [Antropov, Gunnarsson, Jepsen, PRB 46, 13647 (1992)].

cRPA: U ∼ 0.8 eV [Nomura, Nakamura, Arita, PRB 85, 155452 (2012)].

At surface U screened less efficiently ⇒ USurface = 1.3 eV.

Auger (surface sensitive): U = 1.4 eV.
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Estimate of U from Auger spectroscopy

1s

2p

One-particle theory: T = εvalence1 + εvalence2 − ε1s

Convolute PES spectra.

Two valence holes interact by U . Shift convoluted PES spectra by U .

Average shift about 1.6 eV. Shift for highest occupied level 1.4 eV.
Lof, van Veenendaal, Koopmans, Jonkman, and Sawatzky, PRL 68, 3924 (1992).
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Phonons and electron-phonon coupling. A3C60

Electron-phonon interaction belie-

ved to cause superconductivity.

Electron-phonon interaction im-

portant for transport properties and

electronic properties in general.

1. Librations. 4-5 meV. λ ∼ 0.01 (Theor.) λ < 0.08 (Exp.).

2. Intermolecular modes. 0− 8 meV. λ ∼ 0.01 (Theory).

3. Alkali modes. 5− 16 meV. λ “small”.

4. Intramolecular modes. 34-195 meV. λ ∼ 0.5− 1.0.

Focus on intramolecular phonons.

Hg, Ag intramol. phonons couple to t1u level. Hg Jahn-Teller phonons.
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Calculation of electron-phonon coupling

Calculation of electron-phonon coupling for C60 solids very

complicated.

For intramolecular modes: If intramolecular hopping much larger than

intermolecular hopping:

λ ∼ N(0)
∑

να
∆ε2να
ω2
ν

,

∆ενα shift of ενα per unit displacement. ων phonon frequency.

MPI-FKF Stuttgart
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Results for coupling strength

λν/N(0)

Mode ων Antropov Faulhaber Manini Iwahara

Hg (8) 1575 .022 .009 .014 .018

Hg (7) 1428 .020 .015 .015 .023

Hg (6) 1250 .008 .002 .003 .002

Hg (5) 1099 .003 .002 .004 .005

Hg (4) 774 .003 .010 .004 .006

Hg (3) 710 .003 .001 .009 .012

Hg (2) 437 .006 .010 .011 .011

Hg (1) 273 .003 .001 .005 .006
∑

Hg .068 .049 .065 .083

Antropov, Gunnarsson, and Liechtenstein, PRB 48,

7651 (1993).

Faulhaber, Ko, and Briddon, PRB 48, 661 (1993).

Manini, Corso, Fabrizio, and Tosatti, Phil. Mag. B 81,

793 (2001).

Iwahara, Sato, Tanaka, Chibotaru, PRB 82, 245409

(2010).

Antropov, Faulhaber and Manini LDA calculations.

Iwahara hybrid functional B3LYP (20 % HF).

Rather large deviations illustrating numerically difficult calculations.
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λν/N(0)

Mode ων Antropov Faulhaber Manini Iwahara

Hg(8) 1575 .022 .009 .014 .018

Hg(7) 1428 .020 .015 .015 .023

Hg(6) 1250 .008 .002 .003 .002

Hg(5) 1099 .003 .002 .004 .005

Hg(4) 774 .003 .010 .004 .006

Hg(3) 710 .003 .001 .009 .012

Hg(2) 437 .006 .010 .011 .011

Hg(1) 273 .003 .001 .005 .006
∑

Hg .068 .049 .065 .083

69
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Sensitivity of coupling to eigenvectors

eexactντ =
∑8

ν′=1 cνν′eν′τ

∆εexactνα =
∑8

ν′=1 cνν′∆εν′α
∑

να(∆ε
exact
να )2 =

∑

να(∆ενα)
2.

λ ∼ N(0)
∑

να
∆ε2να
ω2
ν

.

I. eexact7τ =
√
0.95e7τ −

√
0.05e8τ

eexact8τ =
√
0.05e7τ +

√
0.95e8τ

λ7/N(0) = 0.010, λ8/N(0) = 0.030 instead of

λ7/N(0) = 0.020, λ8/N(0) = 0.022

II. eexact2τ =
√
0.95e2τ +

√
0.05e8τ

eexact8τ =
√
0.05e2τ −

√
0.95e8τ

λ2/N(0) = 0.033, λ8/N(0) = 0.019 instead of

λ2/N(0) = 0.006, λ8/N(0) = 0.022
Antropov, Gunnarsson, Liechtenstein, PRB 48, 7651 (1993).
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Experimental estimate from Photoemission for free C−
60

molecule

u

hω

e-
t1g

t1u

h

As the t1u electron is removed, phonons are excited.

These excitations show up as satellites. Final states very simple.

The weight of satellites give information about electron-phonon

coupling.

Gunnarsson, Handshuh, Bechthold, Kessler, Ganteför, and Eberhardt, PRL 74, 1875 (1995).
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Photoemission C−
60

Hamiltonian:

H = ε0
∑3

m=1 ψ
†
mψm +

∑42
ν=1 ωνb

†
νbν +

∑

m

∑

n

∑

ν c
ν
nmψ

†
mψn(bν + b†ν).

1. 3-fold degenerate t1u level.

2. 42 phonon modes; 8 5-fold deg. Hg + 2 Ag modes.

3. Electron-phonon interaction.

Ground-state: |Φ >= [
∑3

m=1 amψ
†
m +

∑3
m=1

∑42
ν=1 am;νψ

†
mb

†
ν +

∑

mµν am;µ,νψ
†
mb

†
µb

†
ν + ...]|vac > .

Final states: |vac >; b†ν |vac >; b†µb
†
ν |vac >.

Photoemission spectrum:

ρ(ω) =
∑

s |〈N − 1, s|cm|N, 0〉|2δ[ω − Es(N − 1) + E0(N)].

Solve Hamiltonian and adjust parameters until agreement with exp.
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Photoemission C−
60

Parameters not unique. Use

calculated couplings to Ag pho-

nons.

Total coupling strength λ ∼ 1.

Substantial coupling strength.

But partly canceled by Hund’s

rule coupling.

Coupling strengths:

Hg Mode 1 2 3 4 5 6 7 8

λν/N(0) .019 .040 .013 .018 .012 .005 .017 .023

Gunnarsson, Handshuh, Bechthold, Kessler, Ganteför, and Eberhardt, PRL 74, 1875 (1995).

MPI-FKF Stuttgart
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Experimental estimate from Raman scattering

Phonon line width γν for mode ν due to electron-phonon interaction:

γν = 2π~2ω2
νN(0)λν ,

where ων is the phonon frequency.

Measure change in line width between undoped (insulating) and

doped (metallic) fullerides using Raman scattering ⇒ estimate of λν .

MPI-FKF Stuttgart
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Theoretical and experimental estimates of λ
Theory Photoemission Raman

ων Antropov Faulhaber Manini Iwahara Gunnarsson Iwahara Kuzmany

1575 .022 .009 .014 .018 .023 .011 .003

1428 .020 .015 .015 .023 .017 .028 .004

1250 .008 .002 .003 .002 .005 .007 .001

1099 .003 .002 .004 .005 .012 .009 .001

774 .003 .010 .004 .006 .018 .007 .003

710 .003 .001 .009 .012 .013 .015 .003

437 .006 .010 .011 .011 .040 .012 .020

273 .003 .001 .005 .006 .019 .007 .048
∑

Hg .068 .049 .065 .083 .147 .096 .083

Iwahara photoemission: New high resolution measurement.

Iwahara, Sato, Tanaka, Chibotaru, PRB 82, 245409 (2010).

Reasonable agreement B3LYP, Iwhara photo. Raman total coupling.

Large deviation between Raman and other estimates for coupling

strength distribution.

Tendency to move coupling strength to lower modes in solids.
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Theory Photoemission Raman

ων Antr. Faulh. Manini Iwah. Gunnar. Iwah. Kuzmany

1575 .022 .009 .014 .018 .023 .011 .003

1428 .020 .015 .015 .023 .017 .028 .004

1250 .008 .002 .003 .002 .005 .007 .001

1099 .003 .002 .004 .005 .012 .009 .001

774 .003 .010 .004 .006 .018 .007 .003

710 .003 .001 .009 .012 .013 .015 .003

437 .006 .010 .011 .011 .040 .012 .020

273 .003 .001 .005 .006 .019 .007 .048
∑

Hg .068 .049 .065 .083 .147 .096 .083
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Spectral weight transfer
Phonon ν decays in an electron-hole pair.

This pair decays in phonon µ.

Coupling between different phonon modes.
ν µ

H =
∑

iν

ωνb
†
iνbiν+

∑

iσ

[ε0+
∑

ν

gν(biν+b
†
iν)]niσ

+U
∑

i

ni↑ni↓ +
∑

ij

tijc
†
iσcjσ

Four sites, two phonon modes. 0 1 2
ω
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ρ ph
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γ 
(F

W
H

M
)

two−mode
one−mode

U=0
η=0.01

λeff1 =(1 + cλ2)λ1

λeff2 =(1− cλ2(
ω1

ω2
)2)λ2

W=3.7, ω1=0.5, ω2=1,

g1=0.3, g2=0.4
Transfer of spectral weight to lower mode. U reduces phonon width.
Han and Gunnarsson, PRB B 61, 8628 (2000)
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Summary

Complicated systems with strong correlation effects: Need for models.

No systematic (practical) procedure for deriving models without

uncontrolled assumptions.

Assume two types of electrons, only a few types of Coulomb integrals.

Effects left out included as renormalization of parameters.

Works fairly well for quite a few cases.

But many effects left out.

Parameters property dependent.

MPI-FKF Stuttgart
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