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● The Problem
● Bayes Theorem and the MEM
● An Algorithm

– How things fail (cautionary notes)
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– The annealing method (use it!)
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Assumtion
● You have an ergodic QMC code that gives you 

G(i?
n
), G(), ? ()...

G0 QMC Cluster
Solver on one
processor

G

QMC
timewarmup sample

QMC Cluster
Solver on one
processor

QMC Cluster
Solver on one
processor

G0

G

G

warmup sample
QMC
time

Perfectly 
Parallel

Serial
G

G

G

SPRNG

● It generates data that can be made statistically 
independent (rebinning, covariance...)



  

The Problem

●

● If we write G=KA
– Det(K) =0

– K-1 does not exist

●

●

●

●

● Many A give the same G 
(within the error)

● Which of the many A is 
best ?

G =∫
Ae − 

1e − 

G(i? n)=∫
A (ω )
iω n−ω

G A

Xi? n

ω

A(ω )=−1/?ℑGR(ω )



  

The kernel 

● The kernel K in G = KA is
– For Bosons

– For Fermions



  

Desired Properties of the Solution

● Want A with no spurious features
– A should have only the information required to 

reproduce G and satisfy a priori  constraints

● Want to be able to incorporate a priori information
– Exact results

– Sum rules u2n(1−n)
i? n

∫d? A (ω )=1

~
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Bayes Theorem

● We cannot answer the question “given G, what 
is A”?

● Instead we ask, “given G, what is the most 
probable A”?
– Optimize P(A|G)

● Use Bayes Theorem 
– P(A,G)=P(A|G)P(G) = P(G|A) P(A)

– P(G) is a constant associated with QMC

– P(A|G) ∝ P(G|A) P(A)
● What are P(G|A) and P(A)?

G A

X



  

The Prior Probability P(A)

● Suppose I tell you 
that 
– 1/3 of kangaroos 

are left handed

– 1/3 of kangaroos 
are blue eyed

● What fraction, p
1
 , 

of kangaroos are 
both left handed 
and blue eyed?

I wonder if he is a 
Southpaw?

A



  

Correlations and Kangaroos
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Shannon Entropy
● Homework: show that p

1
=1/9 is 

the result obtained by 
maximizing the Shannon entropy 
subject to the know constraints
–

– i.e.,

● By maximizing the Shannon 
entropy subject to known 
constraints, we ensure that the 
answer we obtain has 
– the least information-->data+a priori

– No spurious features

– Enforces positivity of A 

−∑i
pi ln( pi)−∑ j

? j(constraint j)

p1+p2=1/3



  

S is defined relative to a model

S=−∑i
A i ln A i /mi−A i+mi

● The model allows us to introduce a priori 
information 
– Exact result at high T

– Exact result at high frequency

● The model should not be overly informative 
unless you are certain the information 
introduced is exact

● It is important that the model not have wrong 
information 



  

The Likelihood function P(G|A)

G0 QMC Cluster
Solver on one
processor

G

QMC
time

G

Bin 1 Bin 2 Bin 3 ...

Symmetric PAM f-electron local Green’s function Gf (τ = β/2) plotted as a 
function of the QMC step for U = 2, V = 0.6, and β = 20.

Skewed!



  

The Likelihood function

Distribution of the data shown in the last slide  (a) and after rebinning (b). The solid line
is a Gaussian fit. In (b) the data was processed by packing it sequentially into bins of 
30 measurements each. Below, moments of the data versus bin size.

P(G|A)= exp -? 2/2

Right?



  

The likelihood function: correlations 
in Masubara time or frequency

● Calc. the covariance C
● Diagonalize C
● Rotate G=KA 
● Calculate P(G|A)= exp 

-?2/2



  

Cautionary note: Calculate C

Eigenvalue spectra of the covariance of the PAM f G for different numbers of bins of data. 
Each bin contains 100 measurements and L = 41. When Nbins < 2L, the eigenvalue 
spectrum  develops a sharp break.  Generally we need



  

The Maximum Entropy Method

● The question Given G what is the most probable A? 

– Maximize P(A|G) ∝ P(G|A) P(A) (Bayes theorem).

– P(A) ∝ exp(α S),   P(G|A) ∝ exp(-χ 2/2) 

– S = – ∑ A
i
 ln(A

i
/m

i
) – A

i
 + m

i

● What about ?

– P(A,|G) = P(A|G,) P()

– P() = 1/, Jeffrey prior 

– P(|G) =  dA P(A,|G)

– If you can perform  dA, then you are done!

● But..The space of A is very large!

G A

MEM
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A Maximum Entropy Algorithm

● To perform   dA we use Gaussian 
approximations

– Use a measure
● S is flat

– For example, the normalized prior of A   

f



  

● The likelihood function is normalized
–

–

● In the Gaussian approximation, MEM amounts 
to optimizing

● This may be done with, e.g., a Newton Search
– See the Workshop Proceedings

Q

A

http://bayes.wustl.edu/etj/etj.html

http://bayes.wustl.edu/etj/etj.html


  

Three flavors of MEM: selection of 

● Historic MEM

– Adjust  so that 

● Classic MEM 

– Find  that maximizes P(|G,m)

● Bryan's method

– Marginalize A over P(|G,m)

– Find the optimal A for each , A()

– find

^



  

For Classic and Bryan's Method we 
need P(?|G,m)

P(?) ∝1/?



  

● For strong data, P(|G,m) is dominated by the 
product and the exponential, so that the 
Classic optimal ,  is given by^



  

Bryan vs. Classic vs. Historic MEM

● Historic should not be used
● For strong data, the Bryan and Classic MEM 

are the same

● For weaker data (or m), P(|G,m) is heavily 
skewed and the Bryan MEM should be used  



  

Cautionary Note!

● For very weak data or model m, α becomes 
small so that Q=αS-? 2/2 becomes flat in some 
directions A (for example high frequencies)

G =∫
Ae − 

1e − 

● In this case, the Gaussian approximations to 
the integrals dA breaks down, and the code 
runs away to 
– Most common problem encountered with MEM

– Fix with better data or better m (annealing method)



  

Error Estimates

● The distribution of A is given by
–

● Thus the covariance of A is
–

● We may estimate the error of integrals of A
–

–

● We know         since it is used in the Newton 
search to find A() (see workshop proc.)
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Error Propagation
● Most often, we let h be a box function, so that 

we calculate errors on regions of A

The PAM f-electron density of states Af (ω) generated using (a) a perturbation theory, (b) a
Gaussian, and (c) a flat default model. 



  

Model Selection: the symmetric PAM

● I previously mentioned
–

● I see no reason to believe P(m) is not flat, so
–

● E.g.,



  

Two Particle Spectra

● Here, we let A=''()/, which is positive definite



  

The Annealing Method
● The Gaussian approximations used 

for integrals ∫dA break down when
– The data is weak

– The model is weak

– Annealing addresses these problems.

● Need a series of data in 
temperature
– Start at high T where 

● Data is always strong
● We can often calculate A exactly

– Use the A at high T as the m or the next 
lower T, etc.

– Always produces superior results

T
A

m

Am

A

m

Am

A

m

Am

A



  

Annealing method: PAM d-DOS

The evolution of the d-electron density of states of the asymmetric PAM when U = 1.5,
V = 0.6 nd = 0.6, and nf = 1.0. At high temperatures, as shown in the inset, the 
spectra

● T steps chosen 
so that A 
changes slowly

● Model is nearly 
exact at high T

● Not Bayesian 
(purists close 
your eyes)!

● Inexpensive! 
High T runs 
cheap! 

● Best results.



  

Matsubara Freq. Self energy

? (k ,? )−ω H=∫dx
−1 /?ω ' ' (k , x)

ω −x

● The Self energy also has a Hilbert transform

● It is convenient to normalize the spectrum, 
using
–

– So that

? (k ,? )−ωH~U
2n(1−n)/ω

∫ dx−1/?ω ' ' (k , x)=U 2n(1−n)

● We continue the spectrum



  

Rubtsov CTQMC/DCA of Hubbard Model

Calculations of H. Chen

Normalized self energy spectra σ(k, ω)  calculated by annealing for the Hubbard model  
with the DCA with U = 6t (4t = 1), t′ = 0, k = (0, 0) cluster size Nc = 16 and filling n = 
0.85 with an optimized Gaussian default model.



  

Steps to ensure a good MEM
1. Rebin your data to remove correlations in QMC time.
2. Generate sufficient bins of data so that Nbins >  2L where
 L is the number of Matsubara time or frequencies used.
3. If a self consistent method, such as DCA, is used to generate the 
data, be sure that the error in G from the previous iteration is negligible.
4. When possible, normalize your data so that the spectrum integrates to one.
5. Calculate the covariance of the data making sure that: (1) the eigenvalue 
spectrum is continuous (if not, increase Nbins), and (2) that the covariance matrix is 
well enough conditioned to allow it to be diagonalized (if not, the data is oversampled 
in Matsubara time).
6. Diagonalize the covariance, rotate the data and kernel into the diagonal frame.
7. Choose a good default model, hopefully you can use the annealing technique.  
Use a non-informative model unless the information in the model is exact.
8. When possible, use Bryan’s MEM for marginalizing over α.
9. Systematically improve your data until the calculated spectrum converges.
10. When the annealing method is used, if the temperature step appears large (i.e. 
the spectrum changes abruptly) introduce data at additional intermediate 
temperatures.
11. If your model is not exact, try different non-informative default models. A 
reliable result is independent of the model. You may also want to use the model with 
the highest posterior probability (Bryan’s method).
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