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1 Indistinguishable particles

Everyday experience tells us that no two objects are the same. We can always find some prop-
erties in which they differ. We can even tell identical twins apart, if only we know them well
enough: their characteristic traits give them individuality. It has therefore been argued that ob-
jects that cannot be distinguished must be identical, as Leibnitz did with his Principle of the
Identity of Indiscernibles [1]. We might, however, imagine a replicator that could produce a
perfect clone that is identical to the original in every respect. Still, being material objects, orig-
inal and clone cannot be at the same place at the same time. So even then we could tell original
and clone apart by closely following their trajectory in space. This is, of course, only possible
in a classical setting. Quantum mechanically, our knowledge of the actual position is limited by
the uncertainty principle.
While the idea of identical clones sounds like science fiction, it is standard fare in modern
physics: with the discovery of the periodic table it was realized that all materials are built from
a small set of different types of atoms, the elementary particles of chemistry. The notion of
elementary particle seems, however, to depend on the energy range of interest. While from a
chemist’s point of view all atoms of a given element are identical, probing the atom at higher
energies, we can actually find an internal structure, allowing us to distinguish atoms of the same
type but in different excited states [2]. Probing at even higher energies, it turns out that atoms are
built of more elementary particles: electrons and the nuclei. These are the elementary particles
of condensed-matter physics and quantum chemistry. At still higher energies the nuclei turn out
to be built of protons and neutrons, which at even higher energies appear to be built of up and
down quarks.
The elementary particle we will mainly be concerned with here is the electron. For a system of
two electrons we can write the wave function as Ψ(x1, x2), where x1 are the degrees of freedom,
e.g., position and spin, of the first electron, and x2 those of the second. As indistinguishable
particles, the labeling as first and second electron is of course arbitrary, and we can ask how
the wave function changes when we exchange the labels, putting the first electron at x2 and the
second at x1. Such a reordering is performed by the permutation operator P :

PΨ(x1, x2) = Ψ(x2, x1) .

Indistinguishability implies that the observables do not change under a relabeling of the parti-
cles. This is true, in particular, for the probability density: |Ψ(x1, x2)|2 = |Ψ(x2, x1)|2, i.e.,

PΨ(x1, x2) = eiϕΨ(x1, x2) (1)

with some phase ϕ. When permuting twice gives the identity, P 2 = 1, then e2iϕ = 1, i.e., ϕ
can only take two different values: ϕ = 2π, meaning that the wave function does not change
(symmetric), or ϕ = π, which means that it changes sign (antisymmetric) under the permutation
P . These are the irreducible representations of the permutation group. A particular consequence
of antisymmetry is that for Ψ(x1, x2 → x1) = 0, i.e., the two particles can never be found at the
same place. This is the Pauli principle.
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Fig. 1: Permutation of particles: In 3-dimensional space the permutation is independent of
the path along which the particles are exchanged. In 2-dimensional space it matters how the
exchange paths wind around each other, giving rise to the braid group and fractional statistics.
In 1-dimension, particles have to pass through each other in order to exchange their positions.

The definition of indistinguishability is that no experiment can distinguish one particle from the
other. Consequently, observables involving indistinguishable particles must remain unchanged
when the particles are relabeled, or, more technically, they must commute with all possible
permutations of the particles. This applies, in particular, to the Hamiltonian: [P,H] = 0. This
implies that the symmetric and antisymmetric components of the many-body wave function are
not mixed by the Hamiltonian: if the initial wave function is symmetric/antisymmetric, this
does not change under time evolution.

There is an intriguing connection between the spin of the indistinguishable particles and the
symmetry of their many-body wave function: for particles with integer spin (bosons) the wave
function is symmetric under particle permutations, for fermions (half-integer spin) the wave
function is antisymmetric. In non-relativistic quantum mechanics this spin-statistics connec-
tion is incorporated ad hoc via the initial conditions. In relativistic field-theory the connection
between spin and statistics can be derived under fairly general assumptions on the axioms of
the theory [3, 4]. For popular accounts, see [5, 6]. More recently there have been efforts to
establish the spin-statistics connection in non-relativistic quantum mechanics. The basic idea
of the approach is to perform the permutation of particles along a smooth path, where the spin
picks up a geometric phase ϕ [7].

The concept of permuting particles by moving them along paths is also vital for understanding
the statistics in lower-dimensional systems. Let us permute two particles by moving particle
one along path γ1(t) from γ1(0) = x1 to γ1(1) = x2 and the other particle along γ2(t) from
x2 to x1. If we call this operation Pγ , then P 2

γ is given by moving particle one first along γ1(t)

from x1 to x2 and then along γ2(t) from x2 back to x1 and likewise for the other particle. In
three and higher dimensions these combined paths can be continuously deformed into the paths
ι1(t) = x1 and ι2(t) = x2, which correspond to not moving the particles at all, i.e., the identity.
Since the paths are homotopic, P 2

γ = 1, as assumed above. In two dimensions this is not the
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case. Let us assume the two paths γ1(t) and γ2(t) that exchange the particles wind around each
other in clockwise direction as shown in Fig. 1. Applying this operation a second time, we
obtain paths winding around each other twice to restore the original order of particles. These
are however not homotopic to the paths corresponding to the identity 1, as deforming γ1(t)

and γ2(t) into ι1 and ι2 would involve passing the curves through one another. Thus in two
dimensions P 2

γ need not be the identity and thus there is no restriction on the phase ϕ in (1).
Since any phase is allowed, particles with such statistics are called anyons [8]. They appear,
e.g., as quasiparticles in the fractional quantum Hall effect.
In one dimension two particles would have to pass through each other to exchange their posi-
tions. Therefore particles that cannot be at the same position, as is true for fermions, cannot
exchange their positions. Then configuration space splits into equivalent parts, each with a spe-
cific ordering of the particles, separated from each other by nodes in the wave function where
the coordinates of at least two particles agree. In each of these nodal pockets the ground state
wave function is non-vanishing [9]. This is what makes many one-dimensional systems solv-
able [10].

1.1 Symmetric and antisymmetric wave functions

The (anti)symmetry of a many-body wave function has profound effects on the physical prop-
erties of the system. This can already be seen for a simple system of two particles, with one
particle in a state ϕa(x) and the other in state ϕb(x). When the particles are distinguishable the
many-body wave function could be

Ψ12(x1, x2) = ϕa(x1)ϕb(x2) or Ψ21(x1, x2) = ϕb(x1)ϕa(x2) . (2)

For indistinguishable particles the wave functions is (anti)symmetric

Ψ±(x1, x2) =
1√
2

(
Ψ12(x1, x2)± Ψ21(x1, x2)

)
. (3)

We can then calculate the expectation value of the squared distance〈
(x1 − x2)2

〉
=
〈
x2

1

〉
+
〈
x2

2

〉
− 2

〈
x1x2

〉
. (4)

For wave function Ψ12, assuming that the single-electron states are normalized, we obtain

〈x2
1〉12 =

∫
dx1 x

2
1|ϕa(x1)|2

∫
dx2 |ϕb(x2)|2 = 〈x2〉a· 1

〈x2
2〉12 =

∫
dx1 |ϕa(x1)|2

∫
dx2 x

2
2|ϕb(x2)|2 = 1 ·〈x2〉b

〈x1x2〉12 =
∫
dx1 x1|ϕa(x1)|2

∫
dx2 x2|ϕb(x2)|2 = 〈x〉a · 〈x〉b

Giving the expectation value in terms of single-electron expectation values〈
(x1 − x2)2

〉
12

=
〈
x2
〉
a

+
〈
x2
〉
b
− 2 〈x〉a 〈x〉b . (5)

Due to the symmetry (x1−x2)2 = (x2−x1)2 we obtain the same expectation value for Ψ21. For
indistinguishable particles additional cross terms appear in the expectation value of an operator
M

〈M〉± =
1

2

(
〈M〉12 ± 〈Ψ12|M |Ψ21〉 ± 〈Ψ21|M |Ψ12〉+ 〈M〉21

)
. (6)
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Fig. 2: Probability distribution |Ψ(x1, x2)|2 for two identical particles in a one-dimensional
infinite potential well with one particle in the ground and the other in the first excited state.
For the symmetric wave function, shown on the left, the probability of finding the electrons is
largest on the line x1 = x2, for the antisymmetric wave function, shown in the centre, the prob-
ability vanishes there. For comparison, the right-most plot shows the probability distribution
for independent particles.

For observables involving only one coordinate like M = x2
1, and similarly for x2

2, these terms
are of the form 〈

Ψ12

∣∣x2
1

∣∣Ψ21

〉
=

∫
dx1 x

2
1 ϕa(x1)ϕb(x1)

∫
dx2 ϕb(x2)ϕa(x2) , (7)

which vanishes if the two states ϕa and ϕb are orthogonal. For operators like M = x1x2

involving both coordinates they do not vanish, even for orthogonal states

〈Ψ12 |x1x2|Ψ21〉 =

∫
dx1 x1 ϕa(x1)ϕb(x1)

∫
dx2 x2 ϕb(x2)ϕa(x2) = 〈x〉ab · 〈x〉ab . (8)

These non-vanishing cross terms are called exchange terms. They make expectation values for
symmetric and antisymmetric wave functions different. In the present case〈

(x1 − x2)2
〉
± =

〈
x2
〉
a

+
〈
x2
〉
b
− 2
(
〈x〉a 〈x〉b ± |〈x〉ab|

2
)

(9)

we see that the exchange terms decrease (increase) the expectation value of the squared distance
by 2| 〈x〉ab |2 for symmetric (antisymmetric) wave functions compared to the result for distin-
guishable particles. I.e., indistinguishable fermions tend to avoid each other while bosons tend
to move closer together. For two identical particles in a one-dimensional box this tendency is
readily apparent from the probability density |Ψ(x1, x2)|2 shown in Fig. 2.
The effect of (anti)symmetry thus has to do with the overlap of the of the single-particle states
that are involved. When this overlap vanishes for some reason, the symmetry of the wave
function makes no difference. An extreme example is two electrons that are strictly localized
in non-overlapping regions in space. In this case all integrals of the type (8) vanish, and there
is no observable to distinguish an (anti)symmetric from a non-symmetrized state. This makes
sense, since their localization in different regions of space makes them actually distinguishable.
Such a situation is, of course, never perfectly realized. And in principle we would have to
antisymmetrize the states of all electrons in the universe. Except for the rare case that we have
sent an electron of an entangled pair to our far-away friend Bob, it is, however, safe to assume
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that the electrons on the moon have negligible overlap with those in our (terrestrial) laboratory.
We can then consider them distinguishable from those in our experiment, so that we need only
antisymmetrize the wave function with respect to the electrons in our apparatus.
Often we have a similar situation where we can use the spin to tell electrons apart: When the
Hamiltonian of our system does not affect the spin [~S,H] = 0, and we are only interested in
observables that commute with the spin, we can distinguish two types of electrons by their spin
direction Sz. In that case we need not antisymmetrize all electrons, but only the spin-up and
the spin-down electrons separately. This is a typical example of how quantum numbers that are
conserved in the processes we are interested in make can elementary particles distinguishable.
This is how the concept of elementary particle becomes dependent on what energy scale we are
interested in.

2 Reduced density matrices

By definition, observables on an N -particle Hilbert space that do not distinguish between the
particles must be symmetric under particle permutations. For example, a single-particle opera-
tor M(x) takes the form

∑N
i=1 M(xi) in the N -particle Hilbert space. We can write a general

operator as a sum of n-particle operators

M(x) = M0 +
∑
i

M1(xi) +
1

2!

∑
i6=j

M2(xi, xj) +
1

3!

∑
i6=j 6=k

M3(xi, xj, xk) + · · · (10)

= M0 +
∑
i

M1(xi) +
∑
i<j

M2(xi, xj) +
∑
i<j<k

M3(xi, xj, xk) + · · · , (11)

where the summations can be restricted since the operators must be symmetric in their argu-
ments, e.g. M2(xi, xj) = M2(xj, xi), while for two or more identical coordinates the operator
is really one of lower order, e.g. M2(xi, xi) only acts on a single coordinate and should be
included in M1.
To evaluate expectation values it is useful to introduce density matrices [11]

Γ (p)(x′1, . . . , x
′
p;x1, . . . , xp) :=(

N

p

)∫
dxp+1 · · · dxN Ψ(x′1, . . . , x

′
p, xp+1, . . . , xN)Ψ(x1, . . . , xp, xp+1, . . . , xN) , (12)

where we integrate over all except p coordinates of the normalized N -particle wave function Ψ .
When x = (r, σ) denotes the coordinate and the spin of the particle, the integral over x means
integration over space and summation over spin. The density matrices are obviously related by

Γ (p)(x′1, . . . , x
′
p;x1, . . . , xp) =

p+ 1

N − p

∫
dxp+1Γ

(p+1)(x′1, . . . , x
′
p, xp+1;x1, . . . , xp, xp+1) (13)

They are Hermitean, e.g. Γ (2)(x′1, x
′
2;x1, x2) = Γ (2)(x1, x2;x′1, x

′
2), and (anti)symmetric in each

set of their arguments, e.g. Γ (2)(x′1, x
′
2;x1, x2) = −Γ (2)(x′2, x

′
1;x1, x2). The p-body density

matrix contains all the information needed for evaluating expectation values of operators up to
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order p. The expectation value of a single-electron operator, e.g., the expectation value of the
kinetic energy T = −1/2

∑
i∆ri is obtained from the one-body density matrix as

〈Ψ |T |Ψ〉 = −1

2

∫
dx ∆r Γ

(1)(x′;x)

∣∣∣∣
x′=x

, (14)

where we first keep x′ 6= x to make sure that the derivative only operates on the second argu-
ment, x = (r, σ), but after that set x′ = x so both arguments are summed over. For a local
operator like the Coulomb potential we can directly work with the diagonal elements of the
density matrix. For the interaction of the electrons with a nucleus of charge Z at R this gives

〈V 〉 = −Z
∫
dx

Γ (1)(x;x)

|r −R|
. (15)

Similarly, the Coulomb repulsion between the electrons is given by

〈U〉 =

∫
dx dx′

Γ (2)(x, x′;x, x′)

|r − r′|
. (16)

We see that for calculating the eigenenergies of a many-body Hamiltonian describing a system
of N electrons moving around nuclei of charge Zα at position Rα

H = −1

2

∑
i

∆i −
∑
i,α

Zα
|ri −Rα|

+
∑
i<j

1

|ri − rj|
(17)

we do not need the full eigenfunction but only the corresponding one-body density matrix and
the diagonal elements of the two-body density matrix. It is then tempting to try to calculate
the ground state energy of an N -electron system by finding the two-electron density matrix that
leads to the lowest energy expectation value. This is known as Coulson’s Challenge [12]. The
approach is, however, not practical since we know no criterion that would tell us what function
of four arguments is actually a fermionic density matrix, i.e., one that can be obtained via (12)
from an antisymmetric N -electron wave function. For the single-electron density matrix there
is such a criterion: for any Γ (x′;x) with eigenvalues γi ∈ [0, 1] and trace TrΓ (x′;x) = N there
exists a normalized N -electron wave function with single-electron density matrix Γ (x′;x).
Since we made sure that the N -electron wave function is normalized, the diagonal elements of
the density matrices have straightforward physical interpretations. From the definition (12) we
see that the single-electron density matrix gives the electron density Γ (1)(x;x) = n(x), while
the two-electron density matrix 2Γ (2)(x, x′;x, x′) = n(x, x′) gives the conditional electron
density, i.e., the electron density at x′, given that one electron is at x. They are normalized
accordingly∫

dxΓ (1)(x;x) = N and
∫
dx dx′ Γ (2)(x, x′;x, x′) =

N(N − 1)

2
. (18)

The way the two-electron density differs from the simple product of the one-electron densities
describes the correlation of the electrons

n(x, x′) = n(x)n(x′) g(x, x′) . (19)
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The factor g(x, x′) is called the pair-correlation function. Since by the Pauli principle no two
electrons can occupy the same state, it vanishes for x = x′. From (13) we find

n(x) (N − 1) =

∫
dx′ n(x, x′) = n(x)

∫
dx′ n(x′) g(x, x′)

which gives the sum rule ∫
dx′ n(x′)

(
g(x, x′)− 1

)
= −1 , (20)

which implies that the integrand vanishes for |r − r′| → ∞. In practice n(x′) (g(x, x′)− 1) is,
as a function of x′, quite localized around x. It is called the exchange-correlation hole. With
this we can write the Coulomb repulsion energy between the electrons as

〈U〉 =
1

2

∫
dx dx′

n(x)n(x′)

|r − r′|
+

1

2

∫
dx dx′

n(x)n(x′)
(
g(x, x′)− 1

)
|r − r′|

, (21)

where the first term is the long ranged Coulomb interaction between the uncorrelated charge
densities (Hartree energy), while the second term is the interaction of the charge density with
its rather localized exchange-correlation hole.

3 Slater determinants

When dealing with indistinguishable particles, we need only consider many-body wave func-
tions that are (anti)symmetric under particle permuations. This can be ensured by explicitly
(anti)symmetrizing an arbitrary wave function

S± Ψ(x1, . . . , xN) :=
1√
N !

∑
P

(±1)PΨ
(
xp(1), . . . , xp(N)

)
, (22)

where (±1)P is the parity of the permutation P that maps n→ p(n). Since there areN ! different
permutations, this can easily become an extremely expensive operation. Since (anti)symme-
trization only involves a relabeling of coordinates, in integrals, i.e., matrix elements, we can
save some work by observing that in matrix elements only one of the wave functions needs to
be properly (anti)symmetrized [11]∫

dx (S±Ψa(x))M(x) (S±Ψb(x)) =
√
N !

∫
dx Ψa(x)M(x) (S±Ψb(x)) , (23)

where x = x1, . . . , xN and the observable M commutes with particle permutations.
It is remarkable that for products of single-electron states antisymmetrization can be performed
very efficiently: it is simply the prescription for calculating a determinant, which can be calcu-
lated with O(N3) operations. Interestingly, the corresponding operation for bosons, the sym-
metrized of a product of single-electron states, called the permanent, cannot be performed effi-
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ciently. Given a set of spin-orbitals ϕα(x) we write the Slater determinant

Φα1···αN (x) := S− ϕα1(x1) · · ·ϕαN (xN) =
1√
N !

∣∣∣∣∣∣∣∣∣∣
ϕα1(x1) ϕα2(x1) · · · ϕαN (x1)

ϕα1(x2) ϕα2(x2) · · · ϕαN (x2)
...

... . . . ...
ϕα1(xN) ϕα2(xN) · · · ϕαN (xN)

∣∣∣∣∣∣∣∣∣∣
.

(24)
Obviously, replacing the orbitals by linear combinations ϕ̃αn(x) =

∑N
m=1 an,m ϕαm(x) among

themselves produces the same Slater determinant, merely changing the normalization by det(A),
which is non-zero as long as A is invertible.
For N = 1 a Slater determinant is simply the one-electron orbital ϕα(x); for N = 2 it has the
familiar form (ϕα(x)ϕβ(x′)− ϕβ(x)ϕα(x′))/

√
2.

Slater determinants are popular electronic wave functions because operations can be calculated
efficiently, even for large numbers N of electrons, using standard methods of linear algebra.
As an example, using (23), we see that the overlap of two Slater determinants is simply the
determinant of the overlap matrix of their single electron orbitals:∫

dx1 · · · dxN Φα1···αN (x1, . . . , xN)Φβ1···βN (x1, . . . , xN) = det
(
〈ϕαn|ϕβm〉

)
. (25)

It follows that Slater determinants constructed from a set of orthonormal spin-orbitals ϕµ(x)

are normalized – except when they contain an orbital more than once, in which case the deter-
minant, obeying the Pauli principle, vanishes. Likewise, it follows that two Slater determinants
Φα1···αN (x1, . . . , xN) and Φβ1···βN (x1, . . . , xN) are orthogonal except when they are built from
the same set of orbitals, i.e., {α1, . . . , αN} = {β1, . . . , βN}. Thus, if we fix some ordering of
the orbitals, e.g., α1 < α2 < · · · < αN , the determinants formed from all possible choices of N
spin-orbitals from the set of K orthonormal single-electron functions ϕµ(x) forms an orthonor-
mal set in the N -electron Hilbert space. There are K · (K − 1) · (K − 2) · · · (K − (N − 1))

ways of picking N indices out of K. Since we only use one specific ordering of these indices,
we still have to divide by N ! to obtain the number of such determinants:

K!

N !(K −N)!
=

(
K

N

)
. (26)

They span the antisymmetrized N -particle Hilbert space. Thus, the choice of an orthonormal
set of single-electron functions {ϕµ(x)|µ = 1 . . . K} induces an orthonormal basis{

Φα1···αN (x1, . . . , xN)
∣∣∣ α1 < α2 < · · · < αN ∈ {1, . . . , K}

}
(27)

in the corresponding N -electron space. Given a set of one-electron functions, we can thus, by
the variational principle, approach the exact solution of the many-body problem in the corre-
sponding N -electron Hilbert space by including more and more of these determinants. This
is called the configuration interaction (CI) method. It becomes exact on this space when we
include all

(
K
N

)
basis determinants (exact diagonalization or full CI). Even though these calcu-

lation very quickly involve unimaginable numbers of determinants – for N = 25 electrons in
K = 100 orbitals the number of basis functions already exceeds 1023 – the result is still not
exact, as the single electron basis is not complete. This is illustrated in Fig. 3.
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Fig. 3: Left: Convergence of a calculation for an N -electron system with K basis functions.
The dimension of the Hilbert space for configuration interaction is dim =

(
K
N

)
. The plot on the

right shows the log10 of this as a function of the number of electrons N and orbitals K.

3.1 Hartree-Fock

To calculate expectation values for Slater determinants we take again the route via the reduced
density matrices described in Sec. 2. To calculate the one-body density matrix, we expand the
Slater determinant along its first row

Φα1···αN (x1, . . . , xN) =
1√
N

N∑
n=1

(−1)1+n ϕαn(x1)Φαi6=n(x2, . . . , xN) , (28)

where Φαi6=n(x2, . . . , xN) is the determinant with the first row and the n-th column removed,
which can be written asN−1-electron Slater determinants with orbital αn removed. The integral
for obtaining the one-body density matrix is then just of the type (25), so that

Γ (1)(x′;x) =
1

N

∑
n,m

(−1)n+m ϕαn(x′)ϕαm(x)
det(〈ϕαj 6=n|ϕαk 6=m〉)

det(〈ϕαj |ϕαk〉)
(29)

where we have introduced the normalization factor of the Slater determinant. For orthonormal
orbitals this simplifies to the familiar expressions

Γ (1)(x′;x) =
∑
n

ϕαn(x′)ϕαn(x) and n(x) =
∑
n

|ϕn(x)|2 . (30)

For higher-order density matrices, we could expand the N − 1 Slater determinants further. A
simpler way to generalize (28) is, however, to realize that we can write the permutations of a
set of N objects by considering all possible partitions of this set into two sets and taking all
permutations among the elements of these sets. This lets us write a Slater determinant as the
sum over products of two smaller Slater determinants:

Φα1···αN (x) =
1√(
N
p

) ∑
n1<n2<···<np

(−1)1+
∑
i niΦαn1 ···αnp (x1, . . . , xp)Φαi6∈{n1,...,np}(xp+1, . . . , xN)

(31)
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For p = 2 we get the general form of the two-body density matrix for a Slater determinant

Γ (2)(x′1, x
′
2;x1, x2)=

∑
n′<m′
n<m

(−1)n
′+m′+n+mΦαn′ ,αm′ (x

′
1, x
′
2)Φαn,αm(x1, x2)

det(〈ϕαj 6=n′,m′ |ϕαk 6=n,m〉)
det(〈ϕαj |ϕαk〉)

(32)
Since the summation indices are ordered, for orthogonal orbitals only the terms with (n′,m′) =

(n,m) remain, giving the generalization of (30) to p = 2

Γ (2)(x′1x
′
2;x1, x2) =

∑
n<m

Φαn,αm(x′1, x
′
2)Φαn,αm(x1, x2) (33)

and
n(x1, x2) =

∑
n,m

|Φαn,αm(x1, x2)|2 , (34)

where the factor of 2 is included by summing over all combinations (n,m), not only the ordered
ones, and m = n can be included, since in that case the determinant vanishes. In terms of the
orbitals this becomes

n(x1, x2) =
∑
n,m

(
|ϕαn(x1)|2|ϕαm(x2)|2 − ϕαn(x1)ϕαm(x1)ϕαm(x2)ϕαn(x2)

)
, (35)

from which it is easy to find the pair correlation function

g(x1, x2) = 1−
∑

n,m ϕαn(x1)ϕαm(x1) ϕαm(x2)ϕαn(x2)

n(x1)n(x2)
. (36)

Given the explicit form of the two-body density matrix (32), we can meet Coulson’s challenge
for the Hamiltonian (17), albeit restricted to density matrices that arise from Slater determinants.
This procedure is equivalent to the Hartree-Fock method, which gives the Slater determinant for
which the total energy is stationary.
For a homogeneous electron gas, i.e., the Hamiltonian (17) without ionic potentials (except for
a homogeneous neutralizing background), one such stationary point is, by symmetry, the Slater
determinant of plane waves of wave vectors k with |k| ≤ kF . For this simple case we can
calculate the pair correlation function (36) explicitly

g(r1, σ1, r2, σ2)− 1 = − 9

(
sin(kF r)− kF r cos(kF r)

)2

(kF r)6
δσ1,σ2 (37)

with r = r2 − r1. This shows how electrons of the same spin avoid getting close to each
other because of the antisymmetry requirement (exchange hole), while for a Slater determinant
electrons of opposite spin are uncorrelated.
The exchange hole decays rapidly with distance and becomes more localized with increasing
density, approaching a delta function in the limit kF → ∞. As shown in Fig. 4, the exchange
hole is essentially contained in a sphere of the Wigner-Seitz radius rσ = 21/3rs, i.e., the ra-
dius of a sphere containing one electron of a given spin. Since this condition is somewhat
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Fig. 4: Exchange hole for a paramagnetic homogeneous electron gas in units of the spin Wigner-
Seitz radius kF rσ = (9π/2)1/3. In addition, the dotted line shows the contribution of the
exchange hole to the Coulomb repulsion energy of Eq. (21).

similar to the sum rule (20) for the pair-correlation function, this is not entirely unexpected. In-
cluding correlation effects, which are missing in Hartree-Fock, could increase the range of the
exchange-correlation hole, while, missing exchange effects, the correlation hole for electrons of
different spin should be more localized. This is in fact what is found in quantum Monte Carlo
calculations, see, e.g., Fig. 1 of Ref. [13].
We note in passing that the homogeneous electron gas is not necessarily the Hartree-Fock
ground state. Allowing the Slater determinant to break the symmetry of the Hamiltonian, we
might obtain a lower energy solution [14]. Enforcing the symmetry of the Slater determinant
is called restricted Hartree-Fock, allowing it to have a lower symmetry is unrestricted Hartree-
Fock. See, e.g., Ref. [15] for a simple example.
To go beyond Hartree-Fock we could now derive the matrix elements of n-particle operators
between different Slater determinants, so that we could represent the operators, e.g., in the
orthonormal basis (27). For this we could introduce generalized density matrices with two
different many-body wave functions [11]. A much more transparent approach is, however,
provided by the formalism of second quantization. It addresses the main inconvenience when
working with Slater determinants: keeping track of the sign for sub-determinants. In second
quantization these signs are simply stored in the relative positions of certain operators. For this
to work, these operators have to change sign when exchanging the order of two of them – they
have to anti-commute.

4 Second quantization

The first object to be successfully quantized was the electron. It was no longer described as
a classical point-particle but by a quantum mechanical Schrödingier field. Later, for studying
the interaction of radiation with matter, also the electromagnetic field had to be quantized,
giving rise to quantum particles – photons. This process, pioneered by Dirac [16], was called
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the second quantization. Shortly after, Jordan, Klein, and Wigner used a similar approach to
quantize the Schrödingier field and found that it could be used to write antisymmetric states in
a very convenient way using particle-type operators [17, 18].
When working with Slater determinants of the form (24) we are working in a real-space basis.
Like in fundamental quantum mechanics, it is, however, often useful to abstract from a specific
basis and work with abstract states: Instead of a wave function ϕα(x), we write a Dirac state
|α〉. Second quantization allows us to do the same for Slater determinants.
Let us consider a Slater determinant for two electrons, one in state ϕα(x), the other in state
ϕβ(x). It is simply the antisymmetrized product of the two states

Φαβ(x1, x2) =
1√
2

(ϕα(x1)ϕβ(x2)− ϕβ(x1)ϕα(x2)) . (38)

We could do the same for Dirac states, defining a two-particle Dirac state

|α, β〉 :=
1√
2

(|α〉|β〉 − |β〉|α〉) .

The idea of second quantization is then to specify the states using operators

c†βc
†
α|0〉 = |α, β〉 . (39)

When these operators change sign when they are reordered, antisymmetry of the wave function
will be automatically ensured

|α, β〉 = c†βc
†
α|0〉 = −c†αc

†
β|0〉 = −|β, α〉 . (40)

Naturally, this also implies the Pauli principle for the special case β = α..

4.1 Creation and annihilation operators

To arrive at the formalism of second quantization we postulate a set of operators that have
certain reasonable properties. We then verify that we can use operators with these properties to
represent Slater determinants. We start by motivating the properties of the new operators.
To be able to construct many-electron states, we start from the simplest such state: |0〉 the state
with no electron, i.e., the vacuum state, which we assume to be normalized 〈0|0〉 = 1. Next
we introduce for each single-electron state |α〉 (corresponding to an orbital ϕα(x)) an operator
c†α. We call it a creation operator, since we ask that applying c†α to an N -electron state adds an
electron in state |α〉 to that state, making it anN+1 electron state. In effect, the operator should
be constructed such as to mimic the effect of adding an extra column ϕα and an extra row xN+1

to the Slater determinant (24). Since the order in which we add rows/columns matters for the
sign of the Slater determinant, we postulate that the operators change sign when exchanged:
c†αc
†
β = −c†βc†α. This is more conveniently written as {c†α, c

†
β} = 0 by introducing the anti-

commutator
{A,B} := AB +BA . (41)
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The simplest state we can produce with these operators is the single-electron state |α〉 = c†α|0〉.
When we want to calculate its norm, we have to consider the adjoint of c†α|0〉, formally obtaining
〈α|α〉 = 〈0|cαc†α|0〉, or, more generally, 〈α|β〉 = 〈0|cαc

†
β|0〉. This must mean that cα, the adjoint

of a creation operator, must remove an electron from the state, otherwise the overlap of cαc
†
β|0〉

with the vacuum state 〈0| would vanish. We therefore call the adjoint of the creation operator
an annihilation operator. We certainly cannot take an electron out of the vacuum state, so
cα|0〉 = 0. Moreover, by taking the adjoint or the anti-commutator of the creation operators,
we see that also the annihilation operators anti-commute: {cα, cβ} = 0. Moreover, to obtain
the proper normalization of the single-electron states, we postulate the commutation relation
{cα, c†β} = 〈α|β〉.
Thus, we have defined the vacuum state |0〉 and the set of operators cα related to single-electron
states |α〉 with the properties

cα|0〉 = 0
{
cα, cβ

}
= 0 =

{
c†α, c

†
β

}
〈0|0〉 = 1

{
cα, c

†
β

}
= 〈α|β〉

(42)

We note that the creators and annihilators are not ordinary operators in a Hilbert space, but
transfer states from an N -electron to a N ± 1-electron Hilbert space, i.e., they are operators
defined on the Fock space. It is also remarkable that the mixed anti-commutator is the only
place where the orbitals that distinguish different operators enter.
One type of operators is particularly useful for making contact with the real-space picture: The
operators Ψ̂ †(x), with x = (r, σ), that create an electron of spin σ at position r, i.e., in state
|x〉 = |r, σ〉. Because of their importance they get a special name, field operators, and a special
symbol Ψ̂ †(x) instead of c†x, but really they are just ordinary creation operators for the states
corresponding to a delta function at r and a spin σ. The anti-commutator for the field-operators
obviously follow from (42){

Ψ̂(x), Ψ̂(x′)
}

= 0 =
{
Ψ̂ †(x), Ψ̂ †(x′)

}
and

{
Ψ̂(x), Ψ̂ †(x′)

}
= δ(x− x′) . (43)

Given the single-electron wave functions in real space ϕα(x), we can express any creation
operator in terms of the field operators

c†α =

∫
dxϕα(x)Ψ̂ †(x) . (44)

Using (43), it is easy to see that these operator indeed fulfill all properties (42) required of the
creation operators.
Conversely, if we have a complete set of single electron states {ϕαn(x)}, we can expand the field
operators in terms of the corresponding creators and annihilators. Given the overlap matrix
S = (〈αn|αm〉) we can use the Cholesky factorization S−1 = T †T to orthonormalize the
orbitals ϕ̃αn(x) =

∑
Tn,m ϕαm(x). The completeness relation is then∑

n,m

ϕαn(x)
(
S−1

)
n,m

ϕαm(x′) =
∑
j

ϕ̃αj(x) ϕ̃αj(x
′) = δ(x− x′) . (45)
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Using this together with the commutation relations (42) we see that the operators

Ψ̂(x) =
∑
n

ϕ̃αn(x) cαn , (46)

fulfill the commutation relations (43) of the field operators.

4.2 Representation of Slater determinants

We now show that we can write a Slater determinant in terms of the algebra (42) we have
just defined. For this we consider an N -electron state

∏
c†α |0〉 and prove that its real-space

representation, obtained via the field operators is just the corresponding Slater determinant

Φα1α2...αN (x1, x2, . . . , xN) =
1√
N !

〈
0
∣∣∣ Ψ̂(x1)Ψ̂(x2) . . . Ψ̂(xN) c†αN . . . c

†
α2
c†α1

∣∣∣ 0〉 (47)

Not surprisingly, the proof is by induction. As a warm-up we consider the case of a single-
electron wave function (N = 1). Using the special case of an anti-commutation relation

{Ψ̂(x), c†α} =

∫
dx′ ϕα(x′)

{
Ψ̂(x), Ψ̂ †(x′)

}
= ϕα(x) (48)

we see that 〈
0
∣∣∣ Ψ̂(x1) c†α1

∣∣∣ 0〉 =
〈

0
∣∣∣ϕα1(x1)− c†α1

Ψ̂(x1)
∣∣∣ 0〉 = ϕα1(x1) (49)

For the two-electron state N = 2, we anticommute Ψ̂(x2) in two steps to the right〈
0
∣∣∣ Ψ̂(x1)Ψ̂(x2) c†α2

c†α1

∣∣∣ 0〉 =
〈

0
∣∣∣ Ψ̂(x1)

(
ϕα2(x2)− c†α2

Ψ̂(x2)
)
c†α1

∣∣∣ 0〉
=

〈
0
∣∣∣ Ψ̂(x1)c†α1

∣∣∣ 0〉 ϕα2(x2)−
〈

0
∣∣∣ Ψ̂(x1)c†α2

Ψ̂(x2)c†α1

∣∣∣ 0〉
= ϕα1(x1)ϕα2(x2)− ϕα2(x1)ϕα1(x2) . (50)

We see how anti-commutating automatically produces appropriate sign for the antisymmetric
wave function. Dividing by

√
2, we obtain the desired two-electron Slater determinant.

The general case of an N -electron state works just the same. Anti-commuting Ψ̂(xN) all the
way to the right produces N − 1 terms with alternating sign〈

0
∣∣∣ Ψ̂(x1) . . . Ψ̂(xN−1)Ψ̂(xN) c†αN c

†
αN−1

. . . c†α1

∣∣∣ 0〉 =

+
〈

0
∣∣∣ Ψ̂(x1) . . . Ψ̂(xN−1) c†αN−1

. . . c†α1

∣∣∣ 0〉 ϕαN (xN)

−
〈

0
∣∣∣ Ψ̂(x1) . . . Ψ̂(xN−1)

∏
n6=N−1 c

†
αn

∣∣∣ 0〉 ϕαN−1
(xN)

...

(−1)N
〈

0
∣∣∣ Ψ̂(x1) . . . Ψ̂(xN−1) c†αN . . . c†α2

∣∣∣ 0〉 ϕα1 (xN)

Using (47) for the N − 1-electron states, this is nothing but the Laplace expansion of

D =

∣∣∣∣∣∣∣∣∣∣
ϕα1(x1) ϕα2(x1) · · · ϕαN (x1)

ϕα1(x2) ϕα2(x2) · · · ϕαN (x2)
...

... . . . ...
ϕα1(xN) ϕα2(xN) · · · ϕαN (xN)

∣∣∣∣∣∣∣∣∣∣
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along the N th row. Dividing by
√
N ! we see that we have shown (47) for N -electron states.

Thus we see that instead of working with the Slater determinant Φα1α2...αN (x1, x2, . . . , xN) we
can work with the corresponding N -electron product state

∏
c†α |0〉. In particular, instead of

working with the basis of Slater determinants (27) induced by an orthonormal set of single-
electron states {ϕαn(x)}, we can work with the corresponding basis of product states{ ∏

α1<···<αN

c†αN · · · c
†
α1
|0〉

}
. (51)

4.3 Representation of n-body operators

Having established the relation between product states and Slater determiants, it is straightfor-
ward to express the matrix elements of a general n-body operator (11)

M(x) = M0 +
∑
i

M1(xi) +
∑
i<j

M2(xi, xj) +
∑
i<j<k

M3(xi, xj, xk) + · · · (52)

with N -electron Slater determinants:∫
dx1 · · · dxN Φβ1···βN (x1, · · · , xN)M(x1, · · · , xN)Φα1···αN (x1, · · · , xN)

=
〈

0
∣∣∣ cβ1 · · · cβN M̂ c†αN · · · c

†
α1

∣∣∣ 0〉 (53)

with the representation of the n-body operator in terms of field operators

M̂ =
1

N !

∫
dx1 · · · xN Ψ̂ †(xN) · · · Ψ̂ †(x1)M(x1, · · · , xN) Ψ̂(x1) · · · Ψ̂(xN) . (54)

Note that this form of the operator is only valid when applied to N -electron states. But from
here on, we can work entirely in terms of our algebra (42).
To see what (54) means we look at its parts (52). As usual, we start with the simplest case,
the zero-body operator, which, up to trivial prefactor, is M0(x1, · · · , xN) = 1. Operating on an
N -electron wave function, it gives

M̂0 =
1

N !

∫
dx1dx2 · · · xN Ψ̂ †(xN) · · · Ψ̂ †(x2)Ψ̂ †(x1) Ψ̂(x1)Ψ̂(x2) · · · Ψ̂(xN)

=
1

N !

∫
dx2 · · · xN Ψ̂ †(xN) · · · Ψ̂ †(x2) N̂ Ψ̂(x2) · · · Ψ̂(xN)

=
1

N !

∫
dx2 · · · xN Ψ̂ †(xN) · · · Ψ̂ †(x2) 1 Ψ̂(x2) · · · Ψ̂(xN)

...

=
1

N !
1 · 2 · · · N = 1 (55)

where we have used that ∫
dx Ψ̂ †(x)Ψ̂(x) = N̂ (56)
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is the number operator and that applying n annihilation operators Ψ̂(xj) to an N -electron state
gives a state with N − n electrons. We note that we obtain a form of M̂0 = 1 that apparently
does not depend on the number of electrons in the wave function that it is applied to. This was
not the case for the original expression (54).
Next we consider one-body operators M(x1, . . . , xN) =

∑
jM1(xj)

M̂1 =
1

N !

∫
dx1 · · · dxN Ψ̂ †(xN) · · · Ψ̂ †(x1)

∑
j

M1(xj) Ψ̂(x1) · · · Ψ̂(xN)

=
1

N !

∑
j

∫
dxj Ψ̂

†(xj)M1(xj) (N − 1)! Ψ̂(xj)

=
1

N

∑
j

∫
dxj Ψ̂

†(xj)M1(xj) Ψ̂(xj)

=

∫
dx Ψ̂ †(x) M1(x) Ψ̂(x)

Here we have first anticommuted Ψ̂ †(xj) all the way to the left and Ψ̂(xj) to the right. Since
these take the same numbers of anticommutations, there is no sign involved. The operation
leaves the integrals over the variables except xi, a zero-body operator for N − 1 electron states,
operating on Ψ̂(xj)|N -electron state〉.
Expanding the field-operators in a complete orthonormal set Ψ̂(x) =

∑
n ϕαn(x) cαn gives

M̂1 =
∑
n,m

∫
dxϕαn(x)M(x)ϕαm(x) c†αncαm =

∑
n,m

〈αn|M1|αm〉 c†αncαm . (57)

Also here we find a form for M̂1 that is apparently independent of the number of electrons N
and can be evaluated directly in the basis states (51).
For the two-body operators M(x1, . . . , xN) =

∑
i<jM2(xi, xj) we proceed in the familiar way,

anti-commuting first the operators with the coordinates involved in M2 all the way to the left
and right. This time we are left with a zero-body operator for N − 2 electrons:

M̂2 =
1

N !

∫
dx1 · · · dxN Ψ̂ †(xN) · · · Ψ̂ †(x1)

∑
i<j

M2(xi, xj) Ψ̂(x1) · · · Ψ̂(xN)

=
1

N !

∑
i<j

∫
dxidxj Ψ̂

†(xj)Ψ̂
†(xi)M2(xi, xj) (N − 2)! Ψ̂(xi)Ψ̂(xj)

=
1

N(N − 1)

∑
i<j

∫
dxidxj Ψ̂

†(xj)Ψ̂
†(xi)M2(xi, xj) Ψ̂(xi)Ψ̂(xj)

=
1

2

∫
dx dx′ Ψ̂ †(x′) Ψ̂ †(x) M2(x, x′) Ψ̂(x) Ψ̂(x′)

Expanding in an orthonormal basis, we get

M̂2 =
1

2

∑
n,n′,m,m′

∫
dxdx′ ϕαn′ (x

′)ϕαn(x)M2(x, x′)ϕαm(x)ϕαm′ (x
′) c†αn′c

†
αncαmcαm′

=
1

2

∑
n,n′,m,m′

〈αnαn′ |M2|αmαm′〉 c†αn′c
†
αncαmcαm′ (58)
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where the exchange of the indices in the second line is a consequence of the way the Dirac
state for two electrons is usually written: first index for the first coordinate, second index for
the second, while taking the adjoint of the operators changes their order. Obviously, from the
symmetry M2(x, x′) = M2(x′, x) follows 〈αnαn′ |M2|αmαm′〉 = 〈αn′αn|M2|αm′αm〉.
The procedure generalizes to operators acting on more than two electrons in the natural way.
We note that, while we started from a form of the operators (52) that was explicitly formulated
in an N -electron Hilbert space, the results (55), (57), and (58) are of the same form no matter
what value N takes. Thus these operators are valid not just on some N -electron Hilbert space,
but on the entire Fock space. This is a particular strength of the second quantized formulation.

4.4 Vacuum state and electron-hole transformation

We have introduced the state |0〉 as the state with no electrons, N = 0. The whole formalism
of second quantization requires, however, only (42), i.e., that |0〉 is normalized and annihilated
by the annihilation operators. We can exploit this to obtain more convenient descriptions of
many-electron systems. As a first example, see [19] for the physics background, let us consider
the d-states of an atom. Denoting the operator for putting an electron of spin σ in the d-orbital
with directional quantum number m by d†mσ, we can describe a dN configuration, i.e., a state
with N d-electrons as a linear combination of product states

∏N
n=1 d

†
mnσ|0〉. Here |0〉 is the

state without electrons. This is the description we have used so far. It specifies the states the
electrons are in. For an almost full shell it might, however, be more convenient to specify the
state in terms of the non-occupied states. We can do this by introducing a new “vacuum” state

|full shell〉 = d†−2↓d
†
−1↓ · · · d

†
2↓d
†
−2↑d

†
−1↑ · · · d

†
2↑|0〉 =

∏
σ

−2∏
m=2

d†mσ|0〉 , (59)

corresponding to a filled d-shell. |full shell〉 certainly does not fulfill the requirements for a
vacuum state, since dmσ|full shell〉 6= 0. Thanks to the Pauli principle it is, however, annihilated
by any electron creation operator c†δ in the space of d-orbitals. Thus, when we relabel these
electron creation operators as hole annihilation operators, hδ = c†

δ̄
, then |full shell〉 behaves as

a vacuum state for these newly labeled operators hδ. We pick the relation between the hole
state δ and the corresponding electron states δ̄ such that form of the anti-commutation relations
remain unchanged: {hα, h

†
β} = {c†ᾱ, cβ̄} = 〈β̄|ᾱ〉 = 〈α|β〉. Having established an isomorphism

between the algebra of electron operators and that of the corresponding hole operators, we can
relate electron expectation values to those of hole-states, e.g., 〈0|cαc

†
β|0〉 = 〈full|hᾱh†β̄|full〉.

A common choice is to take the complex conjugate state ϕδ̄(x) = ϕδ(x).
We can now ask what kind of particles the operators h†δ create. This is most easily done in the
basis d†mσ of spherical harmonics; the general h†δ follow then by expanding them in the d†mσ. A
full d-shell has total orbital momentum L = 0 and total spin S = 0. Removing an electron
in state |mσ〉 thus changes Lz from 0 to −m and Sz from 0 to −σ. The corresponding creator
therefore creates a hole with directional quantum number −m and spin −σ. We express this by
writing the electron-hole transformation as h†mσ = d−m,−σ. We can make a similar argument
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for a completely filled band
|full band〉 =

∏
σ

∏
k

b†kσ|0〉 , (60)

with hole operators h†kσ = b−k,−σ.
We can then relate the matrix elements for N -electron states of type |e〉 =

∏
c†αn|0〉 and the

related N -hole states |h〉 =
∏
h†ᾱn|full〉, where |full〉 =

∏Nstates

n=1 c†αn|0〉 is assumed to be nor-
malized, as is required of a vacuum state. Working with orthonormal operators, we find that
the matrix elements for a one-body operator (57) change sign and have a constant shift on the
diagonal

〈h′|M̂1|h〉 =
∑
n,m

〈αn|M1|αm〉 〈h′|c†αncαm|h〉 (61)

=
∑
n,m

〈αn|M1|αm〉 〈h′|hᾱnh
†
ᾱm|h〉 (62)

=
∑
n,m

〈αn|M1|αm〉

 〈ᾱn|ᾱm〉︸ ︷︷ ︸
〈full|c†αncαm |full〉

〈h′|h〉 − 〈h′|h†ᾱmhᾱn|h〉︸ ︷︷ ︸
=〈e′|c†αmcαn |e〉

 (63)

= 〈full|M̂1|full〉 δh′,h − 〈e′|M̂1|e〉 . (64)

In going to the second line, we converted from writing the matrix element in electron operators
to the formulation in hole operators. The identity of the matrix elements for the N -hole and
N -electron states in the third line follows from the fact that the operators cᾱ and hα form, with
their respective vacua, the same algebra. For two-body operators (58) we use

hαhβh
†
γh
†
δ = h†δh

†
γhβhα − 〈α|γ〉hβh

†
δ + 〈α|δ〉hβh

†
γ − 〈β|γ〉h

†
δhα + 〈β|δ〉h†γhα . (65)

Collecting contributions of the direct two-body terms to 〈h′|M̂2|h〉 we get

1

2

∑
αβγδ

〈βα|M2|γδ〉〈h′|δαδ hβh
†
γ−δβγh

†
δ hα|h〉=

1

2

∑
αβ

〈βα|M2|βα〉 δh′,h−
∑
αβγ

〈βα|γα〉〈h′|h†γhβ|h〉

and similarly for minus the exchange terms
1

2

∑
αβγδ

〈βα|M2|γδ〉〈h′|δαγ hβh
†
δ−δβδh

†
γ hα|h〉=

1

2

∑
αβ

〈βα|M2|αβ〉 δh′,h−
∑
αβγ

〈βα|αγ〉〈h′|h†γhβ|h〉

The first terms only contribute to diagonal matrix elements and give the expectation value of
the full shell 〈full|M̂2|full〉. The one-body terms also contribute only to the diagonal when the
full shell is symmetric (atomic shell: radial symmetry, filled band: k = 0) and M2 conserves
the corresponding quantum numbers (atomic shell: m1 +m2 = m3 +m4, filled band: k1 +k2 =

k3 + k4): fixing, e.g., α = γ then also fixes β = δ. Moreover, all terms
∑

α〈βα|M2|βα〉 or
the corresponding exchange term are independent of |β〉 for orbitals of the same symmetry (just
rotate the basis to the desired |β′〉) so that, again, there is just a constant shift of the diagonal
elements

〈h′|M̂2|h〉 =

(
〈full|M̂2|full〉+N

∑
α

(〈βα|M2|βα〉 − 〈βα|M2|αβ〉)

)
δe′,e+〈e′|M̂2|e〉 . (66)
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An interesting new situation arises when we consider product states that are not closed shells.
A popular example is the Fermi sea for a homogeneous electron gas

|Fermi sea〉 =
∏
σ

∏
|k|≤kF

c†kσ|0〉 . (67)

We can now introduce new annihilation operators as

hkσ =

{
c†−k,−σ for |k| ≤ kF
c k, σ for |k| > kF

(68)

They are of hole-type for states occupied in |Fermi sea〉, while for empty states they are of elec-
tron type. This mixing of character has an interesting consequence: electron creation operators
in a basis other than that used for defining the new vacuum are transformed to operators with
mixed creator/annihilator contributions. As an example, the field operator

Ψ̂σ(r) =

∫
dk eikr ck =

∫
|k|≤kF

dk eikr h†−k,−σ +

∫
|k|>kF

dk eikr hk,σ (69)

is no longer a pure annihilation operator in the hole picture. I.e., we no longer get the full
algebra (42) but are restricted to operators defined in the basis that was used to generate the new
vacuum.

5 Many-body states

We now consider small model Hamiltonians to illustrate the techniques introduced so far. This
will also allow us to discuss characteristic many-body states without too much complication.

5.1 Hubbard model

As the first example we study the Hubbard model with two sites, i = 1, 2, between which the
electrons can hop with matrix element −t and with an on-site Coulomb repulsion U

H = −t
∑
σ

(
c†2σc1σ + c†1σc2σ

)
+ U

∑
i∈{1,2}

ni↑ni↓ . (70)

The number of electrons N and Sz are conserved, so the Fock space Hamiltonian is block-
diagonal in the Hilbert spaces with fixed number of up- and down-spin electrons N↑ and N↓
with dimensions

N 0 1 2 3 4

N↑ 0 1 0 2 1 0 2 1 2

N↓ 0 0 1 0 1 2 1 2 2

dim 1 2 2 1 4 1 2 2 1 16
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The Hamiltonian for N = N↑ = 1 is easily constructed. By introducing the basis states c†1↑|0〉
and c†2↑|0〉, we obtain the Hamiltonian matrix

〈
0
∣∣∣ (c1↑

c2↑

)
H
(
c†1↑ c†2↑

) ∣∣∣0〉 =

(
0 −t 〈0|c1↑ c

†
1↑c2↑ c

†
2↑|0〉

−t 〈0|c2↑ c
†
2↑c1↑ c

†
1↑|0〉 0

)
=

(
0 −t
−t 0

)
.

This is easily diagonalized giving the familiar bonding and antibonding solution

|±〉 =
1√
2

(
c†1↑ ± c

†
2↑

)
|0〉 = c†±↑|0〉 . (71)

For N↑ = 1 = N↓, we obtain a non-trivial interacting system

〈
0
∣∣∣

c1↑c2↓

c2↑c1↓

c1↑c1↓

c2↑c2↓

 H
(
c†2↓c

†
1↑ c†1↓c

†
2↑ c†1↓c

†
1↑ c†2↓c

†
2↑

) ∣∣∣0〉 =


0 0 −t −t
0 0 −t −t
−t −t U 0

−t −t 0 U

 . (72)

To diagonalize the matrix, we transform the basis into linear combinations of covalent and ionic
states

|cov±〉 =
1√
2

(
c†2↓c

†
1↑ ± c

†
1↓c
†
2↑

)
|0〉 (73)

|ion±〉 =
1√
2

(
c†1↓c

†
1↑ ± c

†
2↓c
†
2↑

)
|0〉 (74)

It is then easy to verify that |cov−〉 is an eigenstate with eigenvalue εcov− = 0 and that |ion−〉
has eigenenergy εion− = U . The remaining two states mix(

〈cov+|
〈ion+|

)
H
(
|cov+〉 |ion+〉

)
=

1

2

{
U −

(
U 4t

4t −U

)}
. (75)

Rewriting the matrix (
U 4t

4t −U

)
=
√
U2 + 16t2

(
cosΘ sinΘ

sinΘ − cosΘ

)
, (76)

we find the ground state of the half-filled two-site Hubbard model

|gs〉 = cosΘ/2 |cov+〉+ sinΘ/2 |ion+〉 (77)

=
1√
2

(
cos Θ

2
c†2↓c

†
1↑ + cos Θ

2
c†1↓c

†
2↑ + sin Θ

2
c†1↓c

†
1↑ + sin Θ

2
c†2↓c

†
2↑

) ∣∣0〉 (78)

with an energy of εgs = (U −
√
U2 + 16t2)/2. Without correlations (U = 0 ; Θ = π/2), all

basis states have the same prefactor, so we can factorize the ground state, writing it as a product
c†+↓c

†
+↑|0〉 of the operators defined in (71). For finite U this is no longer possible. In the strongly

correlated limit U � t (Θ ↘ 0) the ground state becomes the maximally entangled state |cov+〉
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Fig. 5: Spectrum of the two-site Hubbard model as a function of U/t.

and can not even approximately be expressed as a two-electron Slater determinant. See [15] for
a more detailed discussion, but beware that there the basis was chosen slightly differently to
make the symmetry of the singlet/triplet state apparent.
We can, however, construct a product state, exploiting the freedom we gained by introducing
second quantization: the product wave function in Fock space

|VB〉 =
(

1 + c†2↓c
†
1↑

)(
1 + c†1↓c

†
2↑

) ∣∣0〉 (79)

= |0〉︸︷︷︸
N=0

+
(
c†2↓c

†
1↑ + c†1↓c

†
2↑

) ∣∣0〉︸ ︷︷ ︸
N↑=1=N↓

+ c†2↓c
†
1↓c
†
2↑c
†
1↑|0〉︸ ︷︷ ︸

N=4

(80)

has a component in the two-electron Hilbert space that is just the covalent state |cov+〉. It would
be very desirable to generalize this approach to a half-filled state without double occupancies,
i.e., a Mott state and to models with more than two sites. We might try an ansatz

|VB?〉 =
∏
〈ij〉

(
1 + c†j↓c

†
i↑ + c†i↓c

†
j↑

) ∣∣0〉 (81)

that has the advantage of not producing doubly occupied sites. The product is over pairs of
sites, i.e., bonds, where each site only occurs in one such bond (if a site i participated in two
bonds 〈ij〉 and 〈ik〉, there would be terms with doubly occupied site i, e.g., c†k↓c

†
i↑ c
†
i↓c
†
k↑). There

are, however, many ways we could partition the lattice sites into bonds, and to maintain the
symmetry of the lattice we would have to sum over them. Alternatively, we could take products
of all bond states and use a Gutzwiller projection to eliminate the doubly occupied sites. This
is the idea of the resonating valence bond (RVB) state [20]. Unfortunately, neither approach to
the Mott state is easy to handle.
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In the negative-U Hubbard model we do not have such problems. For U � t the ground state
is a linear combination of doubly occupied sites |ion+〉, which can be obtained from

|pair〉 =
1

2

(
1 + c†2↓c

†
2↑

) (
1 + c†1↓c

†
1↑

)
|0〉 . (82)

As each pair of creation operators in the product involves only a single site, this ansatz readily
generalizes to larger lattices

|pair〉 =
∏
i

1√
2

(
1 + c†i↓c

†
i↑

)
|0〉 . (83)

The idea of such grand-canonical product states in Fock space are central for understanding the
superconducting state.

5.2 BCS state

We now turn from the Hubbard model to the BCS Hamiltonian

HBCS =
∑
kσ

εk c
†
kσckσ +

∑
k,k′

Vk,k′ c
†
−k′↓c

†
k′↑ck↑c−k↓ (84)

in which the interaction term scatters Cooper pairs of electrons (k ↑, −k ↓) with different
values of k. We start again by looking at a two-site model. With periodic boundary conditions,
the bonding and antibonding states (71) become states with k = 0 and k = π, respectively.
Note that for both values (k = π being at the boundary of the Brillouin zone) we have k = −k.
Setting V0,π = −I , we obtain the two-site Hamiltonian

H =
∑

k∈{0,π},σ

εk nkσ − I
(
c†π↓c

†
π↑c0↑c0↓ + c†0↓c

†
0↑cπ↑cπ↓

)
. (85)

For N↑ = 1 = N↓ the Hamiltonian matrix is

〈
0
∣∣∣

c0↑cπ↓
cπ↑c0↓

c0↑c0↓

cπ↑cπ↓

 H
(
c†π↓c

†
0↑ c†0↓c

†
π↑ c†0↓c

†
0↑ c†π↓c

†
π↑

) ∣∣∣0〉 =


ε0 + επ 0 0 0

0 ε0 + επ 0 0

0 0 2ε0 −I
0 0 −I 2επ

 (86)

To find the ground state, we need only consider the subspace of the Cooper pairs

|pairk〉 = c†−k↓c
†
k↑|0〉 . (87)

Writing ε̄ = (ε0 + επ)/2 and ∆ = επ − ε0(
2ε0 −I
−I 2επ

)
= 2ε̄−

(
∆ I

I −∆

)
= 2ε̄−

√
I2 +∆2

(
cosΘ sinΘ

sinΘ − cosΘ

)
(88)
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we diagonalize, just as we did in the case of the Hubbard model, to find the ground state of the
half-filled two-site BCS-model for I > 0

|gs〉 = cosΘ/2 |pair0〉+ sinΘ/2 |pairπ〉 =
(

cos Θ
2
c†0↓c

†
0↑ + sin Θ

2
c†π↓c

†
π↑

) ∣∣0〉 (89)

It is similar in form to the ground state (82) of the negative-U two-site Hubbard model, except
that the two pairs can have different amplitudes, as the pair with lower band energy εk is pre-
ferred. Introducing Θ0 = Θ and Θπ = π − Θ we can recover this state (for any I > 0, not
just in the limit of large interaction as for the negative-U Hubbard model) from the Fock-space
product-state

|BCS〉 =
∏

k∈{0,π}

1√
1 + cos2 Θk

2

(
1 + cos Θk

2
c†−k↓c

†
k↑

) ∣∣0〉 . (90)

This readily generalizes to larger numbers of k-points, where it becomes the BCS wave function.

6 Conclusions

We have studied the consequences of one of the most bizarre features of quantum mechan-
ics, the existence of indistinguishable particles. To treat such particles, we have to introduce
artificial labels but must make sure that no observable depends on them. The invariance un-
der permutations of these labels implies that many-particle wave functions must be properly
(anti)symmetrized. The type of symmetry is given by the spin-statistics connection. Unfortu-
nately, imposing the correct (anti)symmetry on a generic N -particle wave function is a compu-
tationally hard problem as there are N ! permutations. One way to get around this problem is
to integrate-out all degrees of freedom that are not explicitly considered. This gives rise to the
reduced density matrices. Another is to exploit the fact that products of single-particle wave
functions can be efficiently anti-symmetrized by forming the Slater determinant. Working with
Slater determinants is made more convenient by introducing operators that are designed to en-
code the Fermi sign in their position. This technique of second quantization has two important
benefits: we are no longer restricted to calculating with Slater determinants in configuration-
space representation but can work with abstract Dirac states instead. Even more importantly,
creation and annihilation operators are defined in Fock space. They enable us to write observ-
ables in a unified way on Fock space. Moreover, they allow us to also write wave functions in
Fock space. Using this additional degree of freedom, it is possible to write non-Fermi-liquid
states as generalized Slater determinants (product states), the most famous being the BCS state.
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