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3.2 Eva Pavarini

1 Magnetism in strongly-correlated systems

Long-range magnetic order is a manifestation of emergence, the hallmark of strong electron-
electron correlations. It arises from the same interactions that lead to the metal-insulator tran-
sition and orbital-ordering or that give rise to the Kondo effect. And yet, magnetic order phe-
nomena can, to a large extent, be explained by solving spin models and forgetting about the
microscopic mechanisms which justify them. To understand models and mechanisms we have,
however, to take a step back into the complex world of strong correlations [1–7].
Magnetism ultimately arises from the intrinsic magnetic moment of electrons, µ = −gµBs,
where µB is the Bohr magneton and g ' 2.0023 is the electronic g-factor. It is however an
inherently quantum mechanical effect, the consequence of the interplay between Pauli exclusion
principle, Coulomb electron-electron interaction, and hopping of electrons. To understand this
let us consider the simplest possible system, an isolated atom or ion. In the non-relativistic limit
electrons in a single ion are typically described by the Hamiltonian

HNR
e = −1

2

∑
i

∇2
i −

∑
i

Z

ri
+
∑
i>j

1

|ri − rj|
,

where Z is the atomic number and {ri} are the coordinates of the electrons with respect to the
ionic nucleus. Here, as in the rest of this lecture, we use atomic units. If we consider only the
external atomic shell with quantum numbers nl, for example the 3d shell of transition-metal
ions, we can rewrite this Hamiltonian as follows

HNR
e = εnl

∑
mσ

c†mσcmσ +
1

2

∑
σσ′

∑
mm̃m′m̃′

U l
mm′m̃m̃′c

†
mσc

†
m′σ′cm̃′σ′cm̃σ. (1)

Here εnl is the energy of the electrons in the nl atomic shell and m the degenerate one-electron
states in that shell. For a hydrogen-like atom

εnl = −
1

2

Z2

n2
.

The couplings U l
mm′m̃m̃′ are the four-index Coulomb integrals. In a basis of atomic functions

the bare Coulomb integrals are

U iji′j′

mm′m̃m̃′ =

∫
dr1

∫
dr2

ψimσ(r1)ψjm′σ′(r2)ψj′m̃′σ′(r2)ψi′m̃σ(r1)

|r1 − r2|
,

and

U l
mm′m̃m̃′ = U iiii

mm′m̃m̃′ m,m′, m̃, m̃′ ∈ nl shell.

The eigenstates of Hamiltonian (1) for fixed number of electrons, N , are the multiplets [8, 9].
Since in HNR

e the Coulomb repulsion and the central potential are the only interactions, the
multiplets can be labeled with S and L, the quantum numbers of the electronic total spin and
total orbital angular momentum operators, S =

∑
i si, and L =

∑
i li. Closed-shell ions have

S = L = 0 in their ground state. Ions with a partially-filled shell are called magnetic ions; the
value of S and L for their ground state can be obtained via two rules due to Friedrich Hund.
They say that the lowest-energy multiplet is the one with
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• the largest value of S

• the largest value of L compatible with the previous rule

The main relativistic effect is the spin-orbit interaction, which has the form HSO
e =

∑
i λi li·si.

For not too heavy atoms it is a weak perturbation. Then, for electrons in a given shell, we can
use the first and second Hund’s rule to rewrite HSO

e in a simpler form

HSO
e ∼ λ L · S =

1

2
λ
(
J2 − S2 −L2

)
, (2)

λ ∼ [2Θ(1− 2n)− 1] gµ2
B

1

2S

〈
1

r

d

dr
vR(r)

〉
,

where n is the filling and Θ the step function; vR(r) is the effective potential, which includes,
e.g., the Hartree electron-electron term [10]. For a hydrogen-like atom, vR(r) = −Z/r.
Because of the LS coupling (2) the eigenstates have quantum numbers L, S and J , where
J = S + L is the total angular momentum. The value of J in the ground-state multiplet is
given by the third Hund’s rule

• total angular momentum J =


|L− S| for filling n < 1/2

S for filling n = 1/2

L+ S for filling n > 1/2

In the presence of spin-orbit interaction a given multiplet is then labeled by 2S+1LJ , and its
states can be indicated as |JJzLS〉. If we consider, e.g., the case of the ion Cu2+, characterized
by the [Ar] 3d9 electronic configuration, Hund’s rules tell us that the 3d ground-state multiplet
has quantum numbers S = 1/2, L = 2 and J = 5/2. A Mn3+ ion, which is in the [Ar] 3d4

electronic configuration, has instead a ground-state multiplet with quantum numbers S = 2,
L = 2 and J = 0. The order of the Hund’s rules reflects the hierarchy of the interactions. The
strongest interactions are the potential vR(r), which determines εnl, and the average Coulomb
interaction, the strength of which is measured by the average direct Coulomb integral,

Uavg =
1

(2l + 1)2

∑
mm′

U l
mm′mm′ .

For a N -electron state the energy associated with these two interactions is E(N) = εnlN +

UavgN(N − 1)/2, the same for all multiplets of a given shell. The first Hund’s rule is instead
due to the average exchange Coulomb integral, Javg, defined as

Uavg − Javg =
1

2l(2l + 1)

∑
mm′

(
U l
mm′mm′ − U l

mm′m′m

)
,

which is the second largest Coulomb term; for transition-metal ions Javg ∼ 1 eV. Smaller
Coulomb integrals determine the orbital anisotropy of the Coulomb matrix and the second
Hund’s rule.1 The third Hund’s rule comes, as we have seen, from the spin-orbit interaction
which, for not too heavy atoms, is significantly weaker than all the rest.

1For more details on Coulomb integrals and their averages see Ref. [10].
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The role of Coulomb electron-electron interaction in determining S and L can be understood
through the simple example of a C atom, electronic configuration [He] 2s2 2p2. We consider
only the p shell, filled by two electrons. The Coulomb exchange integrals have the form

Jpm,m′ = Up
mm′m′m (3)

=

∫
dr1

∫
dr2

ψimσ(r1)ψim′σ(r2)ψimσ(r2)ψim′σ(r1)

|r1 − r2|

=

∫
dr1

∫
dr2

φimm′σ(r1)φimm′σ(r2)

|r1 − r2|
=

1

V

∑
k

4π

k2
|φimm′σ(k)|2 ,

and they are therefore positive. They generate the Coulomb-interaction term

−1

2

∑
σ

∑
m6=m′

Jpm,m′c
†
mσcmσc

†
m′σcm′σ = −1

2

∑
m6=m′

2Jpm,m′

[
Smz S

m′

z +
1

4
nmn

′
m

]
.

This interaction yields an energy gain if the two electrons occupy two different p orbitals with
parallel spins, hence favors the state with the largest spin (first Hund’s rule). It turns out that for
the p2 configuration there is only one possible multiplet with S = 1, and such a state has L = 1.
There are instead two excited S = 0 multiplets, one with L = 0 and the other with L = 2; the
latter is the one with the lowest energy (second Hund’s rule).
To understand the magnetic properties of an isolated ion we have to analyze how its levels are
modified by an external magnetic field h. The effect of a magnetic field is described by

HH
e = µB (gS +L) · h+

h2

8

∑
i

(
x2
i + y2

i

)
= HZ

e +HL
e . (4)

The linear term is the Zeeman Hamiltonian. If the ground-state multiplet is characterized by
J 6= 0 the Zeeman interaction splits its 2J + 1 degenerate levels. The second order term yields
Larmor diamagnetism, which is usually only important if the ground-state multiplet has J = 0,
as it happens for ions with closed external shells. The energy µBh is typically very small (for
a field as large as 100 T it is as small as 6 meV); it can however be comparable with or larger
than the spin-orbit interaction if the latter is tiny (very light atoms). Taking all interactions into
account, the total Hamiltonian is

He ∼ HNR
e +HSO

e +HH
e .

In a crystal the electronic Hamiltonian is complicated by the interaction with other nuclei and
their electrons. The non-relativistic part of the Hamiltonian takes then the form

HNR
e = −1

2

∑
i

∇2
i +

1

2

∑
i6=i′

1

|ri − ri′ |
−
∑
iα

Zα
|ri −Rα|

+
1

2

∑
α6=α′

ZαZα′

|Rα −Rα′|
,

where Zα is the atomic number of the nucleus located at position Rα. In a basis of localized
Wannier functions [10] this Hamiltonian can be written as

HNR
e = −

∑
ii′σ

∑
mm′

ti,i
′

m,m′c
†
imσci′m′σ

+
1

2

∑
ii′jj′

∑
σσ′

∑
mm′

∑
m̃m̃′

U iji′j′

mm′m̃m̃′c
†
imσc

†
jm′σ′cj′m̃′σ′ci′m̃σ, (5)
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where

ti,i
′

m,m′ = −
∫
dr ψimσ(r)

[
−1

2
∇2 + vR(r)

]
ψi′m′σ(r).

The terms εm,m′ = −ti,im,m′ yield the crystal-field matrix and ti,i
′

m,m′ with i 6= i′ the hopping
integrals. The label m indicates here the orbital quantum number of the Wannier function.
In general the Hamiltonian (5) will include states stemming from more than a single atomic
shell. For example, in the case of strongly-correlated transition-metal oxides, the set {im} in-
cludes transition-metal 3d and oxygen 2p states. The exact solution of the many-body problem
described by (5) is an impossible challenge. The reason is that the properties of a many-body
system are inherently emergent and hence hard to predict ab-initio in the lack of any understand-
ing of the mechanism behind them. In this lecture, however, we want to focus on magnetism.
Since the nature of cooperative magnetic phenomena in crystals is nowadays to a large extent
understood, we can find realistic approximations to (5) and even map it onto simpler models
which still retain the essential ingredients to explain long-range magnetic order.
Let us identify the parameters of the electronic Hamiltonian important for magnetism. The first
is the crystal-field matrix εm,m′ . The crystal field at a given site i is a non-spherical potential due
to the joint effect of the electric field generated by the surrounding ions and of covalent-bond
formation [9]. The crystal field might split the levels within a given shell and has therefore a
strong impact on magnetic properties. We can identify three ideal regimes. In the strong crystal
field limit the crystal field splitting is so large that it is comparable with the average Coulomb
exchange responsible for the first Hund’s rule. This can happen in 4d or 5d transition-metal
oxides. A consequence of an intermediate crystal field (weaker than the average Coulomb
exchange but larger than Coulomb anisotropy and spin-orbit interaction) is the quenching of the
angular momentum, 〈L〉 = 0. In this limit the second and third Hund’s rule are not respected.
This typically happens in 3d transition-metal oxides. In 4f systems the crystal-field splitting
is usually much weaker than the spin-orbit coupling (weak crystal field limit) and mainly splits
states within a given multiplet, leaving a reduced magnetic moment. In all three cases, because
of the crystal field, a magnetic ion in a crystal might lose, totally or partially, its spin, angular
or total moment. Or, sometimes, it is the other way around. This happens for Mn3+ ions, which
should have a J = 0 ground state according to the third Hund’s rule. However in perovskites
such as LaMnO3 they behave as S = 2 ions because of the quenching of the angular momentum.
Even if the crystal field does not suppress the magnetic moment of the ion, the electrons might
delocalize to form broad bands completely losing their original atomic character. This happens,
e.g., if the hopping integrals ti,i

′

m,m′ are much larger than the average on-site Coulomb interaction
Uavg. Surprisingly, magnetic instabilities arise even in the absence of localized moments. This
itinerant magnetism is mostly due to band effects, i.e., it is associated with a large one-electron
linear static response-function, χ0(q; 0). In this limit correlation effects are typically weak. To
study them we can exploit the power of the standard model of solid-state physics, the density-
functional theory (DFT), taking into account Coulomb interaction effects beyond the local-
density approximation (LDA) at the perturbative level, e.g., in the random-phase approximation
(RPA). With this approach we can understand and describe Stoner instabilities.
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In the opposite limit, the local moments regime, the hopping integrals are small with respect
to Uavg. This is the regime of strong electron-electron correlations, where complex many-body
effects, e.g., those leading to the Mott metal-insulator transition, play an important role. At
low enough energy, however, only spin excitations matter. Ultimately, at integer filling we can
integrate out (downfold) charge fluctuations and describe the system via effective spin Hamilto-
nians. The latter typically take the form

HS =
1

2

∑
ii′

Γ i,i′ Si · Si′ + · · · = HH
S + . . . . (6)

The term HH
S given explicitly in (6) is the Heisenberg Hamiltonian, and Γ i,i′ is the Heisenberg

exchange coupling, which can be antiferromangetic (Γ i,i′ > 0) or ferromagnetic (Γ i,i′ < 0).
The Hamiltonian (6) can, for a specific system, be quite complicated, and might include long-
range exchange interactions or anisotropic terms. Nevertheless, it represents a huge simplifica-
tion compared to the unsolvable many-body problem described by (5), since, at least within very
good approximated schemes, it can be solved. Spin Hamiltonians of type (6) are the minimal
models which still provide a realistic picture of long-range magnetic order in strongly-correlated
insulators. There are various sources of exchange couplings. Electron-electron repulsion itself
yields via Coulomb exchange a ferromagnetic Heisenberg interaction, the Coulomb exchange
interaction. The origin of such interaction can be understood via a simple model with a single
orbital, m. The inter-site Coulomb exchange coupling has then the form

J i,i
′
= U ii′i′i

mmmm =

∫
dr1

∫
dr2

ψimσ(r1)ψi′mσ(r2)ψimσ(r2)ψi′mσ(r1)

|r1 − r2|
,

and it is therefore positive, as one can show by following the same steps that we used in Eq. (3)
for Jpm,m′ . Hence, the corresponding Coulomb interaction yields a ferromagnetic Heisenberg-
like Hamiltonian with Γ i,i′ = −2J i,i′ < 0. A different source of magnetic interactions are the
kinetic exchange mechanisms (direct exchange, super-exchange, double exchange, Rudermann-
Kittel-Kasuya-Yosida interaction . . . ), which are mediated by the hopping integrals. Kinetic
exchange couplings are typically (with few well understood exceptions) antiferromagnetic [11].
A representative example of kinetic exchange will be discussed in the next section.

While itinerant and local moment regime are very interesting ideal limit cases, correlated ma-
terials elude rigid classifications. The same system can present features associated with both
regimes, although at different temperatures and/or energy scales. This happens in Kondo sys-
tems, heavy Fermions, metallic strongly-correlated materials, and doped Mott insulators.

In this lecture we will discuss in representative cases the itinerant and localized moment regime
and their crossover, as well as the most common mechanisms leading to magnetic cooperative
phenomena. Since our target is to understand strongly-correlated materials, we adopt the for-
malism typically used for these systems. A concise introduction to Matsubara Green functions,
correlation functions, susceptibilities and linear-response theory can be found in the Appendix.
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Fig. 1: The band structure of the one-band tight-binding model (hypercubic lattice). The
hopping integral is t = 0.4 eV. From left to right: one-, two-, and three-dimensional case. At
half-filling (n = 1) the Fermi level is at zero energy.

2 The Hubbard model

The simplest model that we can consider is the one-band Hubbard model

H = εd
∑
i

∑
σ

c†iσciσ − t
∑
〈ii′〉

∑
σ

c†iσci′σ + U
∑
i

ni↑ni↓ = Hd +HT +HU , (7)

where εd is the on-site energy, t is the hopping integral between first nearest neighbors 〈ii′〉 and
U the on-site Coulomb repulsion; c†iσ creates an electron in a Wannier state with spin σ centered
at site i and niσ = c†iσciσ. The Hubbard model is a simplified version of Hamiltonian (5) with
m = m′ = m̃ = m̃′ = 1 and 

εd = −ti,i1,1

t = t
〈i,i′〉
1,1

U = U iiii
1111

.

In the U = 0 limit the Hubbard model describes a system of independent electrons. The
Hamiltonian is then diagonal in the Bloch basis

Hd +HT =
∑
k

∑
σ

[εd + εk]c
†
kσckσ. (8)

The energy dispersion εk depends on the geometry and dimensionality d of the lattice. For a
hypercubic lattice in d dimensions

εk = −2t
d∑

ν=1

cos(krνa),

where a is the lattice constant, and r1 = x, r2 = y, r3 = z. The energy εk does not depend on
the spin. In Fig. 1 we show εk in the one-, two- and three-dimensional case.
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In the opposite limit (t = 0) the Hubbard model describes a collection of isolated atoms. Each
atom has four electronic many-body states

|N,S, Sz〉 N S E(N)

|0, 0, 0〉 = |0〉 0 0 0

|1, 1
2
, ↑〉 = c†i↑|0〉 1 1/2 εd

|1, 1
2
, ↓〉 = c†i↓|0〉 1 1/2 εd

|2, 0, 0〉 = c†i↑c
†
i↓|0〉 2 0 2εd + U

(9)

where E(N) is the total energy, N the total number of electrons and S the total spin. We can
express the atomic Hamiltonian Hd +HU in a form in which the dependence on Ni, Si, and Siz
is explicitly given

Hd +HU = εd
∑
i

ni + U
∑
i

[
−
(
Siz
)2

+
n2
i

4

]
, (10)

where Siz = (ni↑ − ni↓)/2 is the z component of the spin operator and ni =
∑

σ niσ = Ni.
In the large t/U limit and at half-filling we can downfold charge fluctuations and map the
Hubbard model into an effective spin model of the form

HS =
1

2
Γ
∑
〈ii′〉

[
Si · Si′ −

1

4
nini′

]
. (11)

The coupling Γ can be calculated by using second-order perturbation theory. For a state in
which two neighbors have opposite spins, | ↑, ↓〉 = c†i↑c

†
i′↓|0〉, we obtain the energy gain

∆E↑↓ ∼ −
∑
I

〈↑, ↓ |HT |I〉〈I
∣∣∣∣ 1

E(2) + E(0)− 2E(1)

∣∣∣∣ I〉〈I|HT | ↑, ↓〉 ∼ −
2t2

U
.

Here |I〉 ranges over the excited states with one of the two neighboring sites doubly occupied
and the other empty, | ↑↓, 0〉 = c†i↑c

†
i↓|0〉, or |0, ↑↓〉 = c†i′↑c

†
i′↓|0〉; these states can be occupied

via virtual hopping processes. For a state in which two neighbors have parallel spins, | ↑, ↑〉 =
c†i↑c

†
i′↑|0〉, no virtual hopping is possible because of the Pauli principle, and ∆E↑↑ = 0. Thus

1

2
Γ ∼ (∆E↑↑ −∆E↑↓) =

1

2

4t2

U
. (12)

The exchange coupling Γ = 4t2/U is positive, i.e., antiferromagnetic.
Canonical transformations [12] provide a scheme to derive systematically the effective spin
model at any perturbation order. Let us consider a unitary transformation of the Hamiltonian

HS = eiSHe−iS = H + [iS,H] +
1

2
[iS, [iS,H]] + . . . .

We search for a transformation operator which eliminates, at a given order, hopping integrals
between states with a different number of doubly occupied states. To do this first we split the
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Fig. 2: Left: The crystal structure of HgBa2CuO4 showing the two-dimensional CuO2 layers.
Spheres represent atoms of Cu (blu), O (red), Ba (yellow), and Hg (grey). Right: A CuO2 layer.
The first nearest-neighbors hopping integral between neighboring Cu sites, t, is roughly given
by ∼ 4t2pd/∆dp, where tpd is the hopping between Cu d and O p states and ∆dp = εd − εp their
charge-transfer energy.

kinetic term HT into a component, H0
T , which does not change the number of doubly occupied

states and two terms which either increase it (H+
T ) or decrease it (H−T ) by one

HT = −t
∑
〈ii′〉

∑
σ

c†iσci′σ = H0
T +H+

T +H−T ,

where

H0
T = −t

∑
〈ii′〉

∑
σ

ni−σc
†
iσci′σni′−σ

−t
∑
〈ii′〉

∑
σ

(1− ni−σ) c†iσci′σ (1− ni′−σ) ,

H+
T = −t

∑
〈ii′〉

∑
σ

ni−σc
†
iσci′σ (1− ni′−σ) ,

H−T =
(
H+
T

)†
.
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The term H0
T commutes with HU . The remaining two terms fulfill the commutation rules

[H±T , HU ] = ∓UH±T .

The operator S can be expressed as a linear combination of powers of the three operators
H0
T , H

+
T , and H−T . The actual combination which gives the effective spin model at a given

order can be found via a recursive procedure [12]. At half-filling and second order, however,
we can simply guess the form of S which leads to the Hamiltonian (11). By defining

S = − i

U

(
H+
T −H

−
T

)
we obtain

HS = HU +H0
T +

1

U

{[
H+
T , H

−
T

]
+
[
H0
T , H

−
T

]
+
[
H+
T , H

0
T

]}
+O(U−2).

If we restrict the Hilbert space of HS to the subspace with one electron per site (half filling),
no hopping is possible without increasing the number of occupied states; hence, only the term
H−T H

+
T contributes. After some algebra, we obtain HS = H

(2)
S +O(U−2) with

H
(2)
S =

1

2

4t2

U

∑
ii′

[
Si · Si′ −

1

4
nini′

]
.

The Hubbard model (7) is seldom realized in Nature in this form. To understand real materials
one typically has to take into account orbital degrees of freedom, long-range hopping inte-
grals and sometimes longer range Coulomb interactions or perhaps even more complex many-
body terms. Nevertheless, there are very interesting systems whose low-energy properties are,
in the first approximation, described by (7). These are strongly correlated organic crystals
(one-dimensional case) and high-temperature superconducting cuprates, in short HTSCs (two-
dimensional case). An example of HTSC is HgBa2CuO4, whose structure is shown in Fig. 2.
It is made of CuO2 planes well divided by BaO-Hg-BaO blocks. The x2 − y2-like states stem-
ming from the CuO2 planes can be described via a one-band Hubbard model. The presence of
a x2 − y2-like band at the Fermi level is a common feature of all HTSCs.

2.1 Itinerant magnetism
2.1.1 Pauli paramagnetism

Let us consider first the non-interacting limit of the Hubbard model, Hamiltonian (8). In the
presence of an external magnetic field h = hz ẑ the energy εk of a Bloch state is modified by
the Zeeman interaction (4) as follows

εk → εkσ = εk +
1

2
σgµBhz,

where we take the direction of the magnetic field as quantization axis and where on the right-
hand side σ = 1 or−1 depending if the spin is parallel or antiparallel to h. Thus, at linear order
in the magnetic field, the T = 0 magnetization of the system is

Mz = −
1

2
(gµB)

1

Nk

∑
k

[nk↑ − nk↓] ∼
1

4
(gµB)

2 ρ(εF )hz,
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Fig. 3: Top: Density of states (DOS) per spin, ρ(ε)/2, for a hypercubic lattice in one, two,
and three dimension. The energy dispersion is calculated for t = 0.4 eV. The curves exhibit
different types of Van-Hove singularities. Bottom: Effects of ρ(εF ) on the temperature depen-
dence of χR = χP (T )/χP (0). Up to ∼ 1000 K only the logarithmic Van-Hove singularity
(two-dimensional case) yields a sizable effect.

where nkσ = c†kσckσ andNk is the number of k points; ρ(εF ) is the total density of states (DOS)
at the Fermi level, εF . The T = 0 susceptibility is then given by the Pauli formula

χP (0) =
1

4
(gµB)

2 ρ(εF ).

In linear-response theory (see Appendix) the magnetization induced along ẑ by an external
magnetic field hz(q;ω)ẑ oscillating with vector q is given by

Mz(q;ω) = χzz(q;ω)hz(q;ω).

The Pauli susceptibility χP (0) is thus the static (ω = 0) and uniform (q = 0) linear response
function to an external magnetic field. At finite temperature the Pauli susceptibility takes the
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form

χP (T ) =
1

4
(gµB)

2

∫
dερ(ε)

(
−dn(ε)

dε

)
,

where n(ε) = 1/(1 + e(ε−µ)β) is the Fermi distribution function, β = 1/kBT and µ the chem-
ical potential. χP (T ) depends weakly on the temperature; its temperature dependence is more
pronounced, however, in the presence of van-Hove singularities close to the Fermi level (Fig. 3).
Although we have considered here the non-interacting limit of the Hubbard model, Pauli para-
magnetism is important even in the U 6= 0 case. This happens in the so-called Fermi-liquid
regime. When Landau Fermi-liquid theory holds there is a one-to-one correspondence between
the one-electron states and the excitations of the many-body system, the quasi particles. The
latter are characterized by heavy masses m∗

m∗

m
= 1 +

1

3
F s

1 > 1, F s
1 > 0

and are more polarizable than electrons; correspondingly the system exhibits an enhanced Pauli
susceptibility

χ

χP
=

1

1 + F a
0

> 1, F a
0 < 0.

The coefficients F s
1 and F a

0 are Landau parameters. Because of the finite lifetime of quasiparti-
cles and/or non Fermi-liquid phenomena of various nature, the temperature and energy regime
in which the Fermi-liquid behavior is observed can be very narrow. This happens, e.g., for
heavy Fermions or Kondo systems. We will discuss this in the last section.

2.1.2 Stoner instabilities

In the presence of the Coulomb interaction U 6= 0 finding the solution of the Hubbard model
requires many-body techniques. Nevertheless, in the small U limit, we can already learn a lot
about magnetism from Hartree-Fock (HF) static mean-field theory. In the simplest version of
the HF approximation we make the following substitution

HU = U
∑
i

ni↑ni↓ → HHF
U = U

∑
i

[ni↑〈ni↓〉+ 〈ni↑〉ni↓ − 〈ni↑〉〈ni↓〉] .

This approximation transforms the Coulomb two-particle interaction into an effective single-
particle interaction. Let us search for a ferromagnetic solution and set therefore

〈niσ〉 = nσ =
n

2
+ σm,

where m = (n↑ − n↓)/2 and n = n↑ + n↓. It is convenient to rewrite the mean-field Coulomb
energy as in (10), i.e., as a function of m, n and Siz

HHF
U = U

∑
i

[
−2mSiz +m2 +

n2

4

]
. (13)
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l

m

Fig. 4: Band-structure trend in hole-doped cuprates and correlation with Tc max, the maximum
value of the critical temperature for superconductivity. From Ref. [13].

The solution of the problem defined by the HamiltonianH0+H
HF
U amounts to the self-consistent

solution of a non-interacting electron system with Bloch energies

εUkσ = εk + n−σ U = εk +
n

2
U − σmU.

In a magnetic field we additionally have to consider the Zeeman splitting. Thus

εkσ = εUkσ +
1

2
gµBhzσ.

In the small U limit and for T → 0 the magnetization Mz = −gµBm is then given by

Mz ∼ χP (0)

[
hz −

2

gµB
Um

]
= χP (0)

[
hz + 2(gµB)

−2UMz

]
Solving for Mz we find the Stoner expression

χS(0; 0) =
χP (0)

1− 2 (gµB)
−2 UχP (0)

.

Thus with increasing U the q = 0 static susceptibility increases and at the critical value

Uc = 2/ρ(εF )

it diverges, i.e., even an infinitesimal magnetic field can produce a finite magnetization. This
means that the ground state becomes unstable against ferromagnetic order.
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Fig. 5: Top: Effect of r = t′/t on the band structure of the two-dimensional tight-binding
model. Black line: Fermi level at half filling. Bottom: corresponding density of states per spin.

Let us consider the case of the half-filled d-dimensional hypercubic lattice whose density of
states is shown in Fig. 3. In three dimensions the DOS is flat around the Fermi level, e.g.,
ρ(εF ) ∼ 2/W where W is the band width. For a flat DOS ferromagnetic instabilities are likely
only when U ∼ W , a rather large value of U , which typically also brings in strong-correlation
effects not described by static mean-field theory. In two dimensions we have a rather different
situation because a logarithmic Van-Hove singularity is exactly at the Fermi level (Fig. 3); a
system with such a density of states is unstable toward ferromagnetism even for very small U .
In real materials distortions or long-range interactions typically push the Van-Hove singularities
away from the Fermi level. In HTSCs the electronic dispersion is modified as follows by the
hopping t′ between second nearest neighbors

εk = −2t[cos(kxa) + cos(kya)] + 4t′ cos(kxa) cos(kya).

As shown in Fig. 4, the parameter r ∼ t′/t ranges typically from ∼ 0.15 to 0.4 [13]. Fig. 5
shows that with increasing r the Van-Hove singularity moves downwards in energy.
It is at this point natural to ask ourselves if ferromagnetism is the only possible instability. For
a given system, magnetic instabilities with q 6= 0 might be energetically favorable with respect
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Fig. 6: Doubling of the cell due to antiferromagnetic order and corresponding folding of the
Brillouin zone (BZ) for a two-dimensional hypercubic lattice. The antiferromagnetic Q2 =
(π/a, π/a, 0) vector is also shown.

to ferromagnetism; an example of a finite-q instability is antiferromagnetism (see Fig. 6).
To investigate finite-q instabilities we generalize the Stoner criterion. Let us consider a mag-
netic excitation characterized by the vector q commensurate with the reciprocal lattice. This
magnetic superstructure defines a new lattice; the associated supercell includes j = 1, . . . , Nj

magnetically non-equivalent sites. We define therefore the quantities

Siz(q) =
∑
j

eiq·RjSjiz ,

〈Sjiz 〉 = m cos(q ·Rj),

where j runs over the magnetically non-equivalent sites {Rj} and i over the supercells in the
lattice. In the presence of a magnetic field oscillating with vector q and pointing in the z
direction, hj = hz cos(q ·Rj)ẑ, the mean-field Coulomb and Zeeman terms can be written as

HHF
U +HZ =

∑
i

[
gµB
2

(
hz −

2

gµB
mU

)[
Siz(q) + Siz(−q)

]
+m2 +

n2

4

]
,

where m has to be determined self-consistently. This leads to the generalized Stoner formula

χS(q; 0) =
1

2
(gµB)

2 χ0(q; 0)

[1− Uχ0(q; 0)]
, (14)

χ0(q; 0) = −
1

Nk

∑
k

nk+q − nk
εk+q − εk

.

The expression (14) is the same that we can find in the so-called random-phase approximation.
For q = 0 in the zero-temperature limit we recover the ferromagnetic RPA susceptibility with

χ0(0; 0) = 2 (gµB)
−2 χP (0) ∼ 1

2
ρ(εF ).
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Fig. 7: The ratio χ0(q; 0)/χ0(0; 0) in the xy plane for a hypercubic lattice (T ∼ 230 K) at half
filling. From left to right: one, two and three dimensions.

Figure 7 shows the non-interacting susceptibility in the xy plane for our d-dimensional hy-
percubic lattice. The figure shows that, in the one-dimensional case, the susceptibility di-
verges at the antiferromagnetic vector Q1 = (π/a, 0, 0); in two dimensions this happens at
Q2 = (π/a, π/a, 0); in three dimension atQ3 = (π/a, π/a, π/a), not shown in the figure. The
energy dispersion exhibits at these vectors the property of perfect nesting

εk+Qi = −εk.

Remarkably, the T = 0 non-interacting susceptibility χ0(Qi; 0) diverges logarithmically at the
nesting vector unless the density of states is zero at the Fermi level (ε→ 0)

χ0(Qi; 0) ∝
1

4

∫ εF=0

−∞
dερ(ε)

1

ε
→∞.

Under these conditions an arbitrary small U can cause a magnetic transition with magnetic
vector Qi. In the two-dimensional case we have reached a similar conclusion for the T =

0 ferromagnetic (q = 0) instability. The finite-temperature χ0(q; 0) susceptibility (Fig. 7)
shows that, however, the antiferromagnetic instability is the strongest. Perfect nesting at Q2 is
suppressed by t′ 6= 0

εk+Q2 = −εk + 8t′ cos(kxa) cos(kya).

Figure 8 shows how the susceptibility is modified by t′ 6= 0 (half filling). The Q2 instability is
important even for t′ ∼ 0.4t, but instabilities at incommensurate vectors around it are stronger.
As a last remark it is important to notice that the RPA expression (14) depends on the filling
only through the density of states, i.e., magnetic instabilities described by the Stoner formula
can exist at any filling. This is very different from the case of the local moment regime that we
will discuss starting from the next section.
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Fig. 8: The ratio χ0(q; 0)/χ0(0; 0) in the xy plane for the two-dimensional hypercubic lattice
(230 K) at half filling. Left: t′ = 0.2t. Right: t′ = 0.4t.

2.2 Isolated magnetic ions
2.2.1 Paramagnetism

As we have seen, the ground-state multiplet of free ions with partially occupied shells can be
determined via the Hund’s rules. In Tab. 1 and Tab. 2 we can find the values of the S, L, and
J quantum numbers for the ground-state multiplet of the most common transition-metal and
rare-earth ions. If t = 0 and n = 1, the Hubbard model (7) describes precisely a collection of
idealized free ions with an incomplete shell. For such idealized ions the only possible multiplet
is the one with quantum numbers J = S = 1/2, L = 0. In the presence of a uniform external
magnetic field hz ẑ we can then obtain the magnetization per atom as

Mz = 〈M i
z〉 = −gµB

Tr [e−gµBhzβS
i
zSiz]

Tr [e−gµBhzβSiz ]
= gµBS tanh (gµBhzβS) ,

and thus

∂Mz

∂hz
= (gµBS)

2 1

kBT

[
1− tanh2 (gµBhzβS)

]
.

The static uniform susceptibility is then given by the h→ 0 limit

χzz(0; 0) = (gµBS)
2 1

kBT
=
C1/2

T
, (15)

where C1/2 is the S = 1/2 Curie constant. If S = 1/2, the relation S2 = S(S + 1)/3 holds.
Thus, for reasons that will become clear in short, the Curie constant is typically expressed as

C1/2 =
(gµB)

2 S(S + 1)

3kB
.
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Ion n S L J 2S+1LJ

V4+ Ti3+ 3d1 1/2 2 3/2 2D3/2

V3+ 3d2 1 3 2 2F2

Cr3+ V2+ 3d3 3/2 3 3/2 4F3/2

Mn3+ Cr2+ 3d4 2 2 0 5D0

Fe3+ Mn2+ 3d5 5/2 0 5/2 6S5/2

Fe2+ 3d6 2 2 4 5D4

Co2+ 3d7 3/2 3 9/2 4F9/2

Ni2+ 3d8 1 3 4 3F4

Cu2+ 3d9 1/2 2 5/2 2D5/2

Table 1: Quantum numbers of the ground-state multiplet for several transition-metal ions with
partially filled d shells. In transition-metal oxides the angular momentum is typically quenched
because of the crystal-field and therefore only the total spin matters.

If the ions have ground-state total angular momentum J we can calculate the susceptibility with
the same technique, provided that we replace g with the Landé factor gJ

gJ =
〈JJzLS|(gS +L) · J |JJzLS〉
〈JJzLS|J · J |JJzLS〉

∼ 3

2
+
S(S + 1)− L(L+ 1)

2J(J + 1)
,

and calculate the thermal average of the magnetization, M = −gJµBJ , accounting for the
2J + 1 degeneracy of the multiplet. The result is

Mz = 〈M i
z〉 = gJµBJ BJ (gJµBhzβJ)

where BJ(x) is the Brillouin function

BJ(x) =
2J + 1

2J
coth

(
2J + 1

2J
x

)
− 1

2J
coth

(
1

2J
x

)
.

In the low-temperature (x → ∞) limit BJ(x) ∼ 1, and thus the magnetization approaches its
saturation value in which all atoms are in the ground state

Mz ∼ gJµBJ ≡M0.

In the high-temperature (x→ 0) limit

BJ(x) ∼ x
J + 1

3J

[
1− 2J2 + 2J + 1

30J2
x2

]
,

and thus the susceptibility exhibits the Curie high-temperature behavior

χzz(0; 0) ∼
CJ
T

=
µ2

3kBT
,
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Ion n S L J 2S+1LJ gJ

Ce3+ 4f 1 1/2 3 5/2 2F5/2 6/7
Pr3+ 4f 2 1 5 4 3H4 4/5
Nd3+ 4f 3 3/2 6 9/2 4I9/2 8/11
Pm3+ 4f 4 2 6 4 5I4 3/5
Sm3+ 4f 5 5/2 5 5/2 6H5/2 2/7
Eu3+ 4f 6 3 3 0 7F0 0
Gd3+ 4f 7 7/2 0 7/2 8S7/2 2
Tb3+ 4f 8 3 3 6 7F6 3/2
Dy3+ 4f 9 5/2 5 15/2 6H15/2 4/3
Ho3+ 4f 10 2 6 8 5I8 5/4
Er3+ 4f 11 3/2 6 15/2 4I15/2 6/5
Tm3+ 4f 12 1 5 6 3H6 7/6
Yb3+ 4f 13 1/2 3 7/2 2F7/2 8/7

Table 2: Quantum numbers of the ground-state multiplet for rare-earth ions with partially filled
f shells and corresponding gJ factor. In 4f materials the crystal field is typically small; thus
the ground-state multiplet is in first approximation close to that of the corresponding free ion.

where the generalized Curie constant is

CJ =
(gJµB)

2J(J + 1)

3kB
,

and where µ = gJµB
√
J(J + 1) is the total magnetic moment. Correspondingly, the suscepti-

bility decreases as 1/T with increasing T (Fig. 9). We have thus the three limit cases

χzz(0; 0) ∼


0 kBT/|M0|hz → 0

CJ/T |M0|hz/kBT → 0

CJ/T hz → 0

.

Remarkably, the T → 0 and hz → 0 limit cannot be interchanged. If hz is finite the suscepti-
bility goes to zero in the T → 0 limit; instead, if we perform the hz → 0 limit first it diverges
with the Curie form 1/T . The point hz = T = 0 is a critical point in the phase space.
Let us return to the S = 1/2 case, i.e., the one relevant for the Hubbard model. It is interesting
to calculate the inter-site spin correlation function Si,i′

Si,i′ = 〈(Si − 〈Si〉) · (Si′ − 〈Si′〉)〉 = 〈Si · Si′〉 − 〈Si〉 · 〈Si′〉 .

We express 〈Si ·Si′〉 in the form [S(S+1)−Si(Si+1)−Si′(Si′+1)]/2, where Si = Si′ = 1/2

andS = Si+Si′ is the total spin. Then, since in the absence of magnetic field 〈Si〉 = 〈Si′〉 = 0,

Si,i′ = [S(S + 1)− 3/2]/2 =

{
1/4 S = 1

−3/4 S = 0
.

The ideal paramagnetic state is however characterized by uncorrelated sites. Hence

Si,i′ = 〈Si · Si′〉 ∼

{
〈Si〉 · 〈Si′〉 ∼ 0 i 6= i′

〈Si · Si〉 = 3/4 i = i′
. (16)
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Fig. 9: Left: Mz/M0 = BJ(x) as a function of x = hzM0/kBT . The different lines correspond
to J = 1/2 (blue), J = 1 (green) and J = 3/2 (red). Right: The ratio Mz/M0hz for finite
magnetic field in the small x limit; the slope is (J + 1)/3J .

The (ideal) paramagnetic phase is thus quite different from a spatially disordered state, i.e., a
situation in which each ion has a spin oriented in a given direction but spin orientations are
randomly distributed. In the latter case, in general, 〈Si · Si′〉 6= 0 for i′ 6= i, even if, e.g., the
sum of 〈Siz · Si

′
z 〉 over all sites i′ with i′ 6= i is zero∑

i′ 6=i

〈Siz · Si
′

z 〉 ∼ 0.

The high-temperature static susceptibility can be obtained from the correlation function Eq. (16)
using the fluctuation-dissipation theorem and the Kramers-Kronig relations (see Appendix).
The result is

χzz(q; 0) ∼
(gµB)

2

kBT

∑
i′

S i,i′zz e
iq·(Ri−Ri′ ) = χizz(T ) =

M2
0

kBT
=
C1/2

T
. (17)

This shows that χzz(q; 0) is q-independent and coincides with the local susceptibility χizz(T )

χzz(0; 0) = lim
hz→0

∂Mz

∂hz
= χizz(T ).

How can the spin susceptibility (17) be obtained directly from the atomic limit of the Hubbard
model, Eq. (10)? To calculate it we can use, e.g., the imaginary time and Matsubara frequencies
formalism (see Appendix). Alternatively at high temperatures we can obtain it from the corre-
lation function as we have just seen. The energy of the four atomic states are given by (9) and,
at half filling, the chemical potential is µ = εd + U/2. Therefore

χzz(0; 0) ∼
(gµB)

2

kBT

Tr
[
e−β(Hi−µNi) (Siz)

2
]

Tr [e−β(Hi−µNi)]
−

[
Tr
[
e−β(Hi−µNi) Siz

]
Tr [e−β(Hi−µNi)]

]2


=
C1/2

T

eβU/2

1 + eβU/2
.



Magnetism: Models and Mechanisms 3.21

Thus the susceptibility depends on the energy scale

U = E(Ni + 1) + E(Ni − 1)− 2E(Ni).

If we perform the limit U → ∞ we effectively eliminate doubly occupied and empty states.
In this limit we recover the expression that we found for the spin S = 1/2 model, Eq. (17).
This is a trivial example of downfolding, in which the low-energy and high-energy sector are
decoupled from the start in the Hamiltonian. In the large U limit the high-energy states are
integrated out leaving the system in a magnetic S = 1/2 state.

2.2.2 Larmor diamagnetism and Van Vleck paramagnetism

For ions with J = 0 the ground-state multiplet, in short |0〉, is non-degenerate and the linear
correction to the ground-state total energy due to the Zeeman term is zero; remarkably, for open-
shell ions the magnetization remains nevertheless finite because of higher-order corrections. At
second order there are two contributions for the ground state. The first is the Van-Vleck term

MVV
z = 2hzµ

2
B

∑
I

|〈0|(Lz + gSz)|I〉|2

EI − E0

,

where EI is the energy of the excited state |I〉 and E0 the energy of the ground-state multiplet.
The Van-Vleck term is weakly temperature-dependent and typically small. The second term is
the diamagnetic Larmor contribution

ML
z = −1

4
hz〈0|

∑
i

(x2
i + y2

i )|0〉.

The Larmor and Van-Vleck terms have opposite signs and typically compete with each other.

2.3 Interacting localized moments
2.3.1 Spin models

In the large U limit and at half filling we can map the Hubbard model into an effective Heisen-
berg model. In this section we solve the latter using static mean-field theory. In the mean-field
approximation we replace the Heisenberg Hamiltonian (11) with

HMF
S =

1

2
Γ
∑
〈ii′〉

[
Si · 〈Si′〉+ 〈Si〉 · Si′ − 〈Si〉 · 〈Si′〉 −

1

4
nini′

]
.

In the presence of an external magnetic field h we add the Zeeman term and have in total

H = gµB
∑
i

[Si · (h+ hmi ) + const] ,

hmi = n〈ii′〉Γ 〈Si′〉/gµB ,

where n〈ii′〉 is the number of first nearest neighbors and hmi is the molecular field at site i.
We define the quantization axis z as the direction of the external magnetic field, h = hz ẑ,
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and assume that ẑ is also the direction of the molecular field, hmi = ∆hiz ẑ. Since Γ > 0 and
hypercubic lattices are bipartite, the likely magnetic order is two-sublattice antiferromagnetism.
Thus we setMA

z = −gµB〈Siz〉,MB
z = −gµB〈Si

′
z 〉,whereA andB are the two sublattices, i ∈ A

and i′ ∈ B. In the absence of an external magnetic field, the total magnetization per formula
unit,Mz = (MB

z +MA
z )/2, vanishes in the antiferromagnetic state. We define therefore as order

parameter σm = 2m = (MB
z −MA

z )/2M0, which is zero only above the critical temperature
for antiferromagnetic order. We then calculate the magnetization for each sublattice and find
the system of coupled equations{

MA
z /M0 = B1/2

[
M0(hz +∆hAz )β

]
MB

z /M0 = B1/2

[
M0(hz +∆hBz )β

] , (18)

where {
∆hAz = −(MB

z /M0)S
2Γn〈ii′〉/M0

∆hBz = −(MA
z /M0)S

2Γn〈ii′〉/M0

.

For hz = 0 the system (18) can be reduced to the single equation

σm = B1/2

[
σmS

2Γn〈ii′〉β
]
. (19)

This equation has always the trivial solution σm = 0. Figure 10 shows that, for small enough
temperatures it also has a non-trivial solution σm 6= 0. The order parameter σm equals ±1 at
zero temperature and its absolute value decreases with increasing temperature. It becomes zero
for T ≥ TN with

kBTN =
S(S + 1)

3
n〈ii′〉Γ.

If T ∼ TN we can find the non-trivial solution by first rewriting (19) as

σm = B1/2

[
TN

T
σm

]
. (20)

The inverse of this equation yields T/TN as a function of σm

T

TN

=
σm

B−1
1/2 [σm]

.

If T ∼ TN the parameter σm is small. We then expand the right-hand side in powers of σm

σm

B−1
1/2(σm)

∼ σm
σm + σ3

m/3 + . . .
∼ 1− σ2

m/3 + . . . .

This leads to the following expression

σm =
√
3

(
1− T

TN

)1/2

,
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Fig. 10: The self-consistent solution of Eq. (20) for σm ≥ 0. The blue line shows the right-
hand side of the equation, the Brillouin function B1/2(x), with x = σmTN/T . The red lines
show the left-hand side of the equation, σm(x) = αx, with α = T/TN; the three different
curves correspond to representative T/TN values.

which shows that the order parameter has a discontinuous temperature derivative at T = TN.
It is interesting to derive the expression of the static uniform susceptibility. For this we go back
to the system of equations (18) and calculate from it the total magnetization Mz. In the weak
magnetic field limit MA

z ∼ −σmM0 + χzz(0; 0)hz and MB
z ∼ σmM0 + χzz(0; 0)hz. Then, by

performing the first derivative of Mz with respect to hz in the hz → 0 limit we obtain

χzz(0; 0) =
C1/2(1− σ2

m)

T + (1− σ2
m)TN

.

The uniform susceptibility vanishes at T = 0 and reaches the maximum at T = TN, where it
takes the value C1/2/2TN. In the high-temperature regime σm = 0 and

χzz(0; 0) ∼
C1/2

T + TN

,

which is smaller than the susceptibility of free S = 1/2 magnetic ions.
The magnetic linear response is quite different if we apply an external field h⊥ perpendicular
to the spins in the antiferromagnetic lattice. The associated perpendicular magnetization is

M⊥ ∼M0
σm(gµBh⊥)√

(gµBh⊥)2 + (4σm)2(kBTN)2
,

and therefore the perpendicular susceptibility is temperature-independent for T ≤ TN

χ⊥(0; 0) = lim
h⊥→0

dM⊥
dh⊥

=
C1/2

2TN

.

Hence, for T < TN the susceptibility is anisotropic, χzz(0; 0) = χ‖(0; 0) 6= χ⊥(0; 0); at the
absolute zero χ‖(0; 0) vanishes, but the response to h⊥ remains strong. For T > TN the order
parameter is zero and the susceptibility isotropic, χ‖(0; 0) = χ⊥(0; 0).
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We have up to now considered antiferromagnetic order only. What about other magnetic in-
stabilities? Let us consider first ferromagnetic order. For a ferromagnetic spin arrangement by
repeating the calculation we find

χzz(0; 0) =
C1/2(1− σ2

m)

T − (1− σ2
m)TC

,

where TC = −S(S + 1)n〈ii′〉Γ/3kB is, if the exchange coupling Γ is negative, the critical
temperature for ferromagnetic order. Then, differently than in the antiferromagnetic case, the
high-temperature uniform susceptibility is larger than that of free S = 1/2 magnetic ions.
For a generic magnetic structure characterized by a vector q and a supercell with j = 1, . . . , Nj

magnetically non-equivalent sites we make the Ansatz

〈M ji
z 〉 = −σmM0 cos(q ·Rj) = −gµBm cos(q ·Rj) ,

where σm is again the order parameter. We consider a magnetic field rotating with the same q
vector. By using the static mean-field approach we then find

kBTq =
S(S + 1)

3
Γq, Γq = −

∑
ij 6=0

Γ 00,ijeiq·(Ti+Rj), (21)

where Γ 00,ij is the exchange coupling between the spin at the origin and the spin at site ij, and
{Ti} are lattice vectors. In our example, T0 = TC and TqAF

= TN = −TC. Thus we have

χzz(q; 0) =
C1/2(1− σ2

m)

T − (1− σ2
m)Tq

, (22)

which diverges at T = Tq. The susceptibility χzz(q; 0) reflects the spatial extension of correla-
tions, i.e., the correlation length, ξ; the divergence of the susceptibility at Tq is closely related
to the divergence of ξ. To see this we calculate ξ for a hypercubic three-dimensional lattice, as-
suming that the system has only one instability with vectorQ. First we expand Eq. (21) around
Q obtaining Tq ∼ TQ + α(q −Q)2 + . . . and then we calculate χ00,ji

zz , the Fourier transform
of Eq. (22). We find that χ00,ji

zz decays exponentially with r = |Ti +Rj|, i.e., χ00,ji
zz ∝ e−r/ξ/r.

The range of the correlations is ξ ∝ [TQ/(T − TQ)]1/2, which becomes infinite at T = TQ.
It is important to notice that in principle there can be instabilities at any q vector, i.e., q does
not need to be commensurate with reciprocal lattice vectors. The value of q for which Tq is the
largest determines (within static mean-field theory) the type of magnetic order that is realized.
The antiferromagnetic structure in Fig. 6 corresponds to qAF = Q2 = (π/a, π/a, 0).
In real systems the spin S is typically replaced by an effective magnetic moment, µeff , and
therefore C1/2 → Ceff = µ2

eff/3kB. It follows that µeff is the value of the product 3kBTχzz(q; 0)
in the high-temperature limit (here T � Tq). The actual value of µeff depends, as we have
discussed in the introduction, on the Coulomb interaction, the spin-orbit coupling and the crystal
field. In addition, the effective moment can be screened by many-body effects, as it happens for
Kondo impurities; we will discuss the latter case in the last section.
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Fig. 11: Ferromagnetism in Hartree-Fock. The chemical potential is taken as the energy zero.

2.3.2 The Hartree-Fock approximation

We have seen that Hartree-Fock mean-field theory yields Stoner magnetic instabilities in the
weak coupling limit. Can it also describe magnetism in the local moment regime (t/U � 1)?
Let us focus on the half-filled two-dimensional Hubbard model for a square lattice, and let us
analyze two possible magnetically ordered states, the ferro- and the antiferro-magnetic state.
If we are only interested in the ferromagnetic or the paramagnetic solution, the Hartree-Fock
approximation of the Coulomb term in the Hubbard model, HHF

U , is given by Eq. (13); the HF
Hamiltonian is H = Hd + HT + HHF

U . For periodic systems it is convenient to write H in k
space. We then adopt as one-electron basis the Bloch states Ψkσ

Ψkσ(r) =
1√
Ns

∑
i

eik·Ti Ψiσ(r),

where Ψiσ(r) is a Wannier function with spin σ, Ti a lattice vector and Ns the number of lattice
sites. The term HHF

U depends on the spin operator Siz, whose Fourier transform in k space is

Sz(k,k
′) =

1

Ns

∑
i

ei(k−k
′)·Ti 1

2

∑
σ

σc†iσciσ.

The term HHF
U has the same periodicity of the lattice and does not couple states with different

k vectors. Thus only Sz(k,k) contributes, and the Hamiltonian can be written as

H =
∑
σ

∑
k

εknkσ + U
∑
k

[
−2m Sz(k,k) +m2 +

n2

4

]
,

where m = (n↑ − n↓)/2 and n = 1; for simplicity we set εd = 0. The HF correction splits the
bands with opposite spin, leading to new one-electron eigenvalues, εkσ = εk+

1
2
U − σUm; the

chemical potential is µ = U/2. The separation between εk↑ − µ and εk↓ − µ is 2mU , as can
be seen in Fig. 11. The system remains metallic for U smaller than the bandwidth W . In the
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Fig. 12: Antiferromagnetism in Hartree-Fock. The chemical potential is taken as the energy
zero. Blue: εk. Red: εk+Q2 = −εk. The high-symmetry lines are those of the large BZ in Fig. 6.

large t/U limit and at half filling we can assume that the system is a ferromagnetic insulator
and m = 1/2. The total energy of the ground state is then

EF =
1

Nk

∑
k

[εkσ − µ] =
1

Nk

∑
k

[
εk −

1

2
U

]
= −1

2
U.

Let us now describe the same periodic lattice via a supercell which allows for a two-sublattice
antiferromagnetic solution; this supercell is shown in Fig. 6. We rewrite the Bloch states of the
original lattice as

Ψkσ(r) =
1√
2

[
ΨAkσ(r) + ΨBkσ(r)

]
, Ψαkσ(r) =

1√
Nsα

∑
iα

eiT
α
i ·k Ψiασ(r).

Here A and B are the two sublattices with opposite spins and T A
i and TB

i are their lattice vec-
tors; α = A,B. We take as one-electron basis the two Bloch functions Ψkσ and Ψk+Q2σ, where
Q2 = (π/a, π/a, 0) is the vector associated with the antiferromagnetic instability and the cor-
responding folding of the Brillouin zone, also shown in Fig. 6. Then, in the HF approximation,
the Coulomb interaction is given by

HHF
U =

∑
i∈A

[
−2mSiz +m2 +

n2

4

]
+
∑
i∈B

[
+2mSiz +m2 +

n2

4

]
.

This interaction couples Bloch states with k vectors made equivalent by the folding of the
Brillouin zone. Thus the HF Hamiltonian takes the form

H =
∑
k

∑
σ

εknkσ +
∑
k

∑
σ

εk+Q2nk+Q2σ + U
∑
k

[
−2m Sz(k,k +Q2) + 2m2 + 2

n2

4

]
.

The sum over k is restricted to the Brillouin zone of the antiferromagnetic lattice. We find the
two-fold degenerate eigenvalues

εk± − µ =
1

2
(εk + εk+Q2)±

1

2

√
(εk − εk+Q2)

2 + 4(mU)2. (23)
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A gap opens where the bands εk and εk+Q2 cross, e.g., at the X point of the original Brillouin
zone (Fig. 12). At half filling and for mU = 0 the Fermi level crosses the bands at the X
point too; thus the system is insulator for any finite value of mU . In the small t/U limit we can
assume that m = 1/2 and expand the eigenvalues in powers of εk/U . For the occupied states
we find

εk− − µ ∼ −
1

2
U − ε2

k

U
= −1

2
U − 4t2

U

(εk
2t

)2

The ground-state total energy for the antiferromagnetic supercell is then 2EAF with

EAF = −1

2
U − 4t2

U

1

Nk

∑
k

(εk
2t

)2

∼ −1

2
U − 4t2

U

so that the energy difference per couple of spins between ferro- and antiferro-magnetic state is

∆EHF = EHF
↑↑ − EHF

↑↓ =
2

n〈ii′〉
[EF − EAF] ∼

1

2

4t2

U
∼ 1

2
Γ, (24)

which is similar to the result obtained from the Hubbard model in many-body second order
perturbation theory, Eq. (12). Despite of the similarity with the actual solution, one has to
remember that the spectrum of the Hartree-Fock Hamiltonian has very little to do with the
spectrum of the Heisenberg model, the model which describes the actual low-energy behavior
of the Hubbard Hamiltonian. If we restrict ourselves to the antiferromagnetic solution, the first
excited state is at an energy ∝ U rather than ∝ Γ ; thus we cannot use a single HF calculation
to understand the magnetic excitation spectrum of a given system. It is more meaningful to
use HF to compare the total energy of different states and determine in this way, within HF,
the ground state. Even in this case, however, one has to keep in mind that HF suffers of spin
contamination, i.e., singlet states and Sz = 0 triplet states mix [11]. The energy difference per
bond EHF

↑↑ − EHF
↑↓ in Eq. (24) only resembles the exact result, as one can grasp by comparing

it with the actual energy difference between triplet and singlet state in the two-site Heisenberg
model

∆E = ES=1 − ES=0 = Γ,

a factor two larger. The actual ratio ∆E/∆EHF might depend on the details of the HF band
structures. Thus, overall, Hartree-Fock is not the ideal approach to determine the onset of
magnetic phase transitions. Other shortcomings of the Hartree-Fock approximation are in the
description of the Mott metal-insulator transition. In Hartree-Fock the metal-insulator transition
is intimately related to long-range magnetic order (Slater transition), but in strongly-correlated
materials the metal-insulator transition can occur in the paramagnetic phase (Mott transition). It
is associated with a divergence of the self-energy at low frequencies rather than with the forma-
tion of superstructures. This physics, captured by many-body methods such as the dynamical
mean-field theory (DMFT) [6], is completely missed by the Hartree-Fock approximation.
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3 The Kondo model

The Kondo impurity is a representative case of a system which exhibits both local moment and
Pauli paramagnetic behavior, although in quite different temperature regimes [5]. The Kondo
effect was first observed in diluted metallic alloys, metallic systems in which isolated d or f
magnetic impurities are present, and it has been a riddle for decades. A Kondo impurity in a
metallic host can be described by the Anderson model

HA =
∑
σ

∑
k

εknkσ +
∑
σ

εfnfσ + Unf↑nf↓ +
∑
σ

∑
k

[
Vkc

†
kσcfσ + h.c.

]
, (25)

where εf is the impurity level, occupied by nf ∼ 1 electrons, εk is the dispersion of the metallic
band and Vk the hybridization. If we assume that the system has particle-hole symmetry with
respect to the Fermi level, then εf = −U/2. The Kondo regime is characterized by the param-
eters values εf � εF and εf + U � εF , and by a weak hybridization, i.e., the hybridization
function∆(ε) = π 1

Nk

∑
k |Vk|2δ(εk−ε) is such that∆(εF )� |εF−εf |, |εF−εf−U |. Through

the Schrieffer-Wolff canonical transformation [12] one can map the Anderson model onto the
Kondo model2

HK =
∑
σ

∑
k

εknkσ + ΓSf · sc(0) = H0 +HΓ , (26)

where

Γ ∼ −2|VkF |2
[
1

εf
− 1

εf + U

]
> 0

is the antiferromagnetic coupling arising from the hybridization, Sf the spin of the impurity
(Sf = 1/2), and sc(0) is the spin-density of the conduction band at the impurity site. The
solution of the problem defined by (25) or (26) is not at all trivial and requires many-body
techniques such as the Wilson numerical renormalization group [14] or the Bethe Ansatz [15].
Here we only discuss some important exact results. First we define the impurity susceptibility,
χfzz(T ), as the total susceptibility minus the contribution of the metallic band in the absence
of the impurity [14–16]. One can show that at high temperatures χfzz(T ), has the following
behavior

χfzz(T ) ∼
(gµB)

2Sf (Sf + 1)

3kBT

{
1− 1

ln (T/TK)

}
.

This expression resembles the Curie susceptibility, apart from the ln(T/TK) term. The scale TK

is the Kondo temperature, which, in first approximation, is given by

kBTK ∼ De−2/ρ(εF )Γ ,

2The Schrieffer-Wolf transformation yields additionally a potential scattering interaction, a pair tunneling cou-
pling and a shift of the energies εk. These interactions are however not important for the discussion in this section
and therefore we neglect them.



Magnetism: Models and Mechanisms 3.29

where 2D = W is the band-width of the host conduction band. Because of the ln (T/TK) term,
the susceptibility apparently diverges at T ∼ TK. In reality, however, around TK there is a
crossover to a new regime. For T � TK

χfzz(T ) ∼
C1/2

WTK

{
1− αT 2 + . . .

}
,

whereW is a (universal) Wilson number. Thus the low-temperature system has a Fermi-liquid
behavior with enhanced density of states, i.e., with heavy masses m∗/m; furthermore χfzz(0) =
C1/2/WTK is the Curie susceptibility (Eq. (15)) with the temperature frozen at T = WTK. At
T = 0 the impurity magnetic moment is screened by the conduction electrons, which form
a singlet state with the spin of the impurity. In other words, the effective magnetic moment
formed by the impurity magnetic moment and its screening cloud,

µ2
eff(T ) ≡ 3kBTχ

f
zz(T ) ∝ 〈Sfz Sfz 〉+ 〈Sfz scz〉,

vanishes for T � TK. The Kondo temperature is typically 10-30 K or even smaller, hence the
Fermi-liquid behavior is restricted to a very narrow energy and temperature region.
We can understand the existence of a Fermi-liquid regime by using a simple approach due to
Anderson, the so-called poor-man scaling [17], and an argument due to Nozières. First we
divide the Hilbert space into a high- and a low-energy sector. We define as high-energy states
those with at least one electron or one hole at the top or bottom of the band; the corresponding
constraint for the high-energy electronic level εq is

D′ < εq < D

−D < εq < −D′,

where D′ = D − δD. Next we introduce the operator PH , which projects onto the high-energy
states, and the operator PL = 1 − PH , which projects onto states with no electrons or holes in
the high-energy region. Then we downfold the high-energy sector of the Hilbert space. To do
this we rewrite the Kondo Hamiltonian as

H ′ = PLHPL + δHL = HL + δHL,

δHL = PLHPH(ω − PHHPH)−1PHHPL.

Here HL is the original Hamiltonian, however in the space in which the high-energy states
have been eliminated; the term δHL is a correction due to the interaction between low and
(downfolded) high-energy states. Next we calculate δHL using perturbation theory. The first
non-zero contribution is of second order in Γ

δH
(2)
L ∼ PLHΓPH(ω − PHH0PH)

−1PHHΓPL.

There are two types of processes which contribute at this order, an electron and a hole process,
depending if the downfolded states have (at least) one electron or one hole in the high-energy
region. Let us consider the electron process. We set

PH ∼
∑
σ

∑
q

c†qσ|FS〉〈FS|cqσ, PL ∼
∑
σ

∑
k

c†kσ|FS〉〈FS|ckσ,
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where |εk| < D′ and |FS〉 =
∏
kσ c

†
kσ|0〉 is the Fermi see, i.e., the many-body state correspond-

ing to the metallic conduction band. Thus

δH
(2)
L = −1

2
Γ 2
∑
q

1

ω − εq
Sf · sc(0) + . . .

∼ 1

4
ρ(εF )Γ

2 δD

D
Sf · sc(0) + . . . .

We find an analogous contribution from the hole process. The correction δH(2)
L modifies the

parameter Γ of the Kondo Hamiltonian as follows

Γ → Γ ′ = Γ + δΓ,

δΓ

δ lnD
=

1

2
ρ(εF )Γ

2. (27)

The equation (27) has two fixed points, Γ = 0 (weak coupling) and Γ →∞ (strong coupling).
By solving the scaling equations we find

Γ ′ =
Γ

1 + 1
2
ρ(εF )Γ ln D′

D

.

If Γ is antiferromagnetic the renormalized coupling constant Γ ′ diverges for D′ = De−2/Γρ(εF ),
an energy proportional to the Kondo energy kBTK. This divergence (scaling to strong coupling)
indicates that at low energy the interaction between the spins dominates and therefore the sys-
tem forms a singlet in which the impurity magnetic moment is screened. The existence of this
strong coupling fixed point is confirmed by the numerical renormalization group of Wilson [14].
Nozières [19] has used this conclusion to show that the low-temperature behavior of the sys-
tem must be of Fermi liquid type. His argument is the following. For infinite coupling Γ ′ the
impurity traps a conduction electron to form a singlet state. For a finite but still very large Γ ′

any attempt of breaking the singlet will cost a very large energy. Virtual excitations (into the
nf = 0 or nf = 2 states and finally the nf = 1 triplet state) are however possible and they
yield an effective indirect interaction between the remaining conduction electrons surround-
ing the impurity. This is similar to the phonon-mediated attractive interaction in metals. The
indirect electron-electron coupling is weak and can be calculated in perturbation theory (1/Γ
expansion). Nozières has shown that, in first approximation, the effective interaction is between
electrons of opposite spins lying next to the impurity, it is of order D4/Γ 3 and repulsive; hence
it gives rise to a Fermi-liquid behavior with enhanced susceptibility [19].
If Γ = ΓF < 0 (ferromagnetic coupling, as for example the coupling arising from direct
Coulomb exchange) the renormalized coupling constant Γ ′ goes to zero in the D′ → 0 limit
(scaling to weak coupling). This means that the local spin becomes asymptotically free and
yields a Curie-type susceptibility, which diverges for T → 0. For small but finite coupling we
can account for the ferromagnetic interaction perturbatively (expansion in orders of ΓF ). In f
electron materials often both ferro and antiferromagnetic exchange couplings are present, the
first, ΓF , arising from the Coulomb exchange, the second, Γ , from the hybridization. There
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Fig. 13: Sketch of the scaling diagrams for the two-channel Kondo model. Γ = −Jhyb and
ΓF = −Jsf . For Γ > 0 (antiferromagnetic) and ΓF < 0 (ferromagnetic) the antiferromag-
netic coupling scales to strong coupling and ferromagnetic one to weak coupling (right bottom
quadrant). From Ref. [18].

are therefore two possibilities. If both exchange interactions couple the impurity with the same
conduction channel, only the total coupling ΓF + Γ matters. Thus a |ΓF | > Γ suppresses the
Kondo effect. If, however, ferromagnetic and antiferromagnetic exchange interaction couple
the impurity to different conduction channels, a |ΓF | > Γ does not suppress the Kondo effect
(Fig. 13), but merely reduces TK. In the infinite |ΓF | limit the model describes an undercom-
pensated Kondo effect [18].

4 Conclusion

In this lecture we introduced some of the fundamental aspects of magnetism in correlated sys-
tems. We have seen two distinct regimes, the itinerant and the local moment regime. In the first
regime we can, in most cases, treat correlation effects in perturbation theory. In the world of
real materials this is the limit in which the density-functional theory (DFT), in the local-density
approximation or its simple extensions, works best. If the system is weakly correlated we can
calculate the linear-response function in the random-phase approximation and understand fairly
well magnetism within this approach.
The opposite regime is the strong-correlation regime, in which many-body effects play a key
role. In this limit perturbation theory fails and we have in principle to work with many-body
methods. If, however, we are interested only in magnetic phenomena, at integer filling a strong
simplification comes from mapping the original many-body Hamiltonian into an effective spin
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model. The exact solution of effective spins models requires in general numerical methods
such as the Monte Carlo or quantum Monte Carlo approach, or, when the system is small
enough, exact diagonalization or Lanczos. These techniques are discussed in the lectures of
Werner Krauth, Stefan Wessel and Jürgen Schnack. The density-matrix renormalization group
(DMRG), particularly efficient for one-dimensional systems, is instead presented in the lectures
of Ulrich Schollwöck and Jens Eisert.
To work with material-specific spin models we need to calculate the magnetic exchange pa-
rameters. Typically this is done starting from total-energy DFT calculations for different spin
configurations, e.g., in the LDA+U approximation. The LDA+U approach is based on the
Hartree-Fock approximation, and therefore when we extract the parameters from LDA+U cal-
culations we have to keep in mind the shortcomings of the method. Furthermore if we want to
extract the magnetic couplings from total energy calculations we have to make a guess on the
form of the spin model. More flexible approaches, which allow us to account for actual corre-
lations effects, are based on Green functions and the local-force theorem [20], as discussed in
the lecture of Sasha Lichtenstein, or on canonical transformations [12, 21].
In strongly-correlated materials localized and itinerant moments physics can often be observed
in the same system, although in different energy or temperature regimes. This is apparent in the
case of the Kondo effect. For a Kondo impurity the susceptibility exhibits a Curie behavior at
high temperature and a Fermi-liquid behavior at low temperature. In correlated transition-metal
oxides Fermi liquid and local-spin magnetism can both play an important role but at different en-
ergy scales. Furthermore, in the absence of a large charge gap downfolding to spin models is not
really justified. The modern method to bridge between localized and itinerant regime and deal
with the actual complications of real systems is the dynamical mean-field theory (DMFT) [6].
Within this technique we solve directly generalized Hubbard-like models, however in the local
self-energy approximation. DMFT is the first flexible approach that allows us to understand the
paramagnetic Mott metal-insulator transition and thus also magnetism in correlated materials
in a realistic setting. Modern DMFT codes are slowly but steadily becoming as complex and
flexible as DFT codes, allowing us to deal with the full complexity of strongly-correlated mate-
rials. While this is a huge step forwards, we have to remember that state-of-the-art many-body
techniques have been developed by solving simple models within certain approximations. We
have to know very well these if we want to understand real materials and further advance the
field. In DMFT we solve self-consistently an effective quantum-impurity model, a generaliza-
tion of the Anderson model. Thus a lot can be learnt from the solution of the Anderson model
in the context of the Kondo problem. Much can be understood alone with simple arguments, as
Anderson or Noziéres have shown us, reaching important conclusions on the Kondo problem
with paper and pencil.
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Appendices

A Formalism

The formulas in this Appendix are in atomic units: The numerical value of e, m and ~ is 1, that
of µB is 1/2, and energies are in Hartree.

A.1 Matsubara Green functions

A.1.1 Imaginary time and frequency Green functions

The imaginary time Matsubara Green function is defined as

Gαβ(τ ) = −〈T cα(τ1)c
†
β(τ2)〉 = −

1

Z
Tr
[
e−β(H−µN)T cα(τ1)c

†
β(τ2)

]
,

where T is the time-ordering operator, τ = (τ1, τ2), Z = Tre−β(H−µN) is the partition function,
and the imaginary time operators o(τ) = c(τ), c†(τ) are defined as o(τ) = eτ(H−µN)o e−τ(H−µN).
The indices α and β are the flavors; they can be site and spin indices in the atomic limit, and
k and spin indices in the non-interacting electrons limit. Writing explicitly the action of the
time-ordering operator we obtain

Gαβ(τ ) = −Θ(τ1 − τ2)〈cα(τ1)c
†
β(τ2)〉+Θ(τ2 − τ1)〈c†β(τ2)cα(τ1)〉.

Using the invariance of the trace of the product of operators under cyclic permutations, one can
show that the following properties hold

Gαβ(τ ) = Gαβ(τ1 − τ2),

Gαβ(τ) = −Gαβ(τ + β) for − β < τ < 0.

The Fourier transform on the Matsubara axis is

Gαβ(iνn) =
1

2

∫ β

−β
dτeiνnτGαβ(τ) =

∫ β

0

dτeiνnτGαβ(τ),

with νn = (2n+ 1)π/β. The inverse Fourier transform is given by

Gαβ(τ) =
1

β

+∞∑
n=−∞

e−iνnτGαβ(iνn).

The convergence ofGαβ(τ) is only guaranteed in the interval−β < τ < β. A discussion of this
can be found in the lecture of Robert Eder. Finally, if nα is the number of electrons for flavor
α, one can show that

Gαα(τ → 0+) = −1 + nα, Gαα(τ → β−) = −nα. (28)
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Fig. 14: The function Gkσ(τ) defined in Eq. (30) for a state well below the Fermi level (red)
and at the Fermi level (blue) and β = 2 (eV)−1. The green line shows the atomic G(τ) from
Eq. (32) for U = 6 eV and h = 0.

A.1.2 Non-interacting limit

For a non-interacting system described by

H0 =
∑
k

∑
σ

εknkσ (29)

we can show that

Gkσ(τ) = −〈T
[
ckσ(τ)c

†
kσ(0)

]
〉

= − [Θ(τ) (1− nσ(εk))−Θ(−τ)nσ(εk)] e−(εk−µ)τ , (30)

where

nσ(εk) =
1

1 + eβ(εk−µ)
.

The Fourier transform at Matsubara frequencies is

Gkσ(iνn) =
1

iνn − (εk − µ)
.

To obtain the analytic continuation of this Green function on the real axis we substitute

iνn → ω + i0+.

A.1.3 Matsubara sums

The non-interacting Green function Gkσ(z) has a pole at zp = εk − µ; the Fermi function nσ(z)
has instead poles for z = iνn. Let us consider the integral

1

2πi

∮
C

Fkσ(z)nσ(z)ezτdz = 0,
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where 0 < τ < β and where the function Fkσ(z) is analytic everywhere except at some poles
{zp}. The contour C is a circle in full complex plane centered at the origin and including the
poles of the Fermi function (Matsubara frequencies) and the poles of Fkσ(z). The integral is
zero because the integrand vanishes exponentially for |z| → ∞. Furthermore

Res [nσ(iνn)] = −
1

β
.

Using Cauchy’s integral theorem we then have

1

β

∑
n

eiνnτFkσ(iνn) =
∑
zp

Res [Fkσ(zp)]nσ(zp)ezpτ .

We can use this expression and (28) to show that

1

β

∑
n

e−iνn0−Gkσ(iνn) = Gkσ(0−) = nσ(εk),

1

β

∑
n

e−iνn0+Gkσ(iνn) = Gkσ(0+) = nσ(εk)− 1.

In a similar way we can show that

1

β

∑
n

eiνn0+Gkσ(iνn)Gkσ(iνn) =
dnσ(εk)

dεk
= βnσ(εk)[−1 + nσ(εk)],

1

β

∑
n

eiνn0+Gkσ(iνn)Gk+qσ(iνn + iωm) =
nk+q − nk

iωm + εk+q − εk
,

where in the last relation ωm = 2mπ/β is a Bosonic Matsubara frequency.

A.1.4 Atomic limit

It is interesting to consider a half-filled idealized atom described by the Hamiltonian

H = εd
∑
σ

nσ + U

(
N2

4
− S2

z

)
+ gµBhSz. (31)

For τ > 0 we can calculate explicitly the Green function obtaining

Gσ(τ) = −
1

2

1

1 + eβU/2 cosh (βgµBh/2)

[
eτ(U−gµBhσ)/2 + e(β−τ)(U+gµBhσ)/2

]
. (32)

The Fourier transform of Gσ(τ) is

Gσ(iνn) =

[
w−

iνn + (U − gµBhσ)/2
+

w+

iνn − (U + gµBhσ)/2

]
,

where

w± =
1

2

1 + eβU/2e±βgµBhσ/2

1 + eβU/2 cosh (βgµBh/2)
.

Since the Green function is written as the sum of functions with one pole, the analytic continu-
ation is simple, as in the non-interacting case. We replace iνn with ω + i0+.



3.36 Eva Pavarini

A.1.5 Lehmann representation

Using the Lehmann representation we can rewrite

Gkσ(iνn) =

∫
Akσ(ε)

1

iνn − ε
dε,

where Akσ(ε) = − 1
π
Im [Gkσ(ε)] is the spectral function. The spectral function is related to the

density of states as follows

ρσ(ε) =
1

Nk

∑
k

Akσ(ε).

A.2 Linear response theory
A.2.1 Theory

The response of a system described by the Hamiltonian H to a small magnetic field h(r, t) is
given by the linear correction to the Hamiltonian, i.e.,∑

ν

δHν(r; t) = −
∑
ν

Mν(r; t)hν(r; t), (33)

whereM (r; t) is the magnetization operator in the Heisenberg representation

Mν(r; t) = eiHtMν(r)e
−iHt

and ν = x, y, z. To linear order in the perturbation, and assuming that the perturbation is turned
on adiabatically at t0 = −∞

〈Mν(r; t)〉 = 〈Mν(r)〉0 − i
∑
ν′

∫
dr′
∫ t

−∞
dt′〈[Mν(r; t), δHν′(r

′; t′)]〉0,

where 〈Mν(r)〉0 is the (equilibrium) thermal average in the absence of the perturbation. By
replacing

∑
ν′ δHν′(r

′; t′) with the expression (33) we obtain

δ〈Mν(r; t)〉 = 〈Mν(r; t)〉 − 〈Mν(r)〉0 = i
∑
ν′

∫
dr′
∫ t

−∞
dt′〈[Mν(r; t),Mν′(r

′; t′)]〉0hν′(r′; t′).

The function

χνν′(r, r
′; t, t′) = i〈[Mν(r; t),Mν′(r

′; t′)]〉0Θ(t− t′) (34)

is the so-called retarded response function. It is often convenient to work with the operators
∆Mν(r; t) = Mν(r; t) − 〈Mν(r)〉0 which measure the deviation with respect to the average
in the absence of perturbation; since numbers always commute, we can replace Mν(r; t) with
∆Mν(r; t) in the expression (34).
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If the Hamiltonian H has time translational invariance symmetry the retarded response function
depends only on time differences t− t′. For the Fourier transform we have

δ〈Mν(r;ω)〉 =
∑
ν′

∫
dr′χνν′(r, r

′;ω)hν′(r
′;ω).

For a lattice with lattice translational invariance, if we Fourier transform to reciprocal space and
integrate over the unit cell

δ〈Mν(q;ω)〉 =
∑
ν′

∫
dr

∫
dr′eiq·rχνν′(q, r, r

′;ω)hν′(q, r
′;ω).

Finally, if the perturbation depends on r′ only through a phase we obtain

δ〈Mν(q;ω)〉 =
∑
ν′

∫
dr

∫
dr′eiq·(r−r

′)χνν′(q, r, r
′;ω)hν′(q;ω) =

∑
ν′

χνν′(q;ω)hν′(q;ω).

In the ω = 0 and q → 0 limit we have

χνν′(0; 0) = lim
hν′→0

∂Mν

∂hν′
,

where hν′ = hν′(0; 0).

A.2.2 Kramers-Kronig relations and thermodynamic sum rule

Important properties of the spin susceptibility are the Kramers-Kronig relations

Re[χ(q;ω)]− Re[χ(q;∞)] =
1

π
P
∫ +∞

−∞

Im[χ(q;ω′)]

ω′ − ω
dω′,

Im[χ(q;ω)] = − 1

π
P
∫ +∞

−∞

Re[χ(q;ω′)]− Re[χ(q;∞)]

ω′ − ω
dω′,

where P is the Cauchy principal value, and Re and Im indicate the real and imaginary part.
The first Kramers-Kronig relation yields the sum rule

Re[χ(q;ω = 0)]− Re[χ(q;∞)] =
1

π
P
∫ +∞

−∞

Im[χ(q;ω′)]

ω′
dω′. (35)

In the q = 0 limit, Eq. (35) is known as thermodynamic sum rule.

A.2.3 Fluctuation-dissipation theorem and static susceptibility

We define the spin correlation function

Sνν′(q; t) = 〈∆Sν(q; t)∆Sν′(−q)〉0

= 〈Sν(q; t)Sν′(−q) 〉0 − 〈Sν(q)〉0 〈Sν′(−q)〉0
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where∆Sν(q; t) = Sν(q; t)−〈Sν(q)〉0 and 〈Sν(q)〉0 = 〈Sν(q; 0)〉0. The fluctuation-dissipation
theorem relates Sνν′(q; t) with the magnetic susceptibility. First, one can show that the follow-
ing relation holds

Im[χνν′(q; t)] = (gµB)
21

2
[Sνν′(q; t)− Sν′ν(q;−t)]. (36)

The correlation function has the property

Sνν′(q;ω) = eβωSν′ν(q;−ω).

Thus, in ω space Eq. (36) is replaced by

Im[χνν′(q;ω)] =
1

2(1 + nB)
(gµB)

2Sνν′(q;ω), nB(ω) =
1

eβω − 1
.

Assuming kBT large and using Eq. (35) one can then show that

Re[χνν′(q;ω = 0)]− Re[χνν′(q;∞)] ∼ (gµB)
2

kBT
Sνν′(q; t = 0).

A.2.4 Imaginary time and frequency response function

We define the susceptibility in imaginary time as

χνν′(q; τ, τ
′) = 〈T ∆Mν(q; τ)∆Mν′(−q; τ ′)〉0

= 〈TMν(q; τ)Mν′(−q; τ ′)〉0 − 〈Mν(q)〉0〈Mν′(−q)〉0,

where ∆Mν(q; τ) = Mν(q; τ) − 〈Mν(q; τ)〉0 = Mν(q; τ) − 〈Mν(q)〉0. As in the case of the
Green function, by using the invariance properties of the trace one can show that

χνν′(q; τ, τ
′) = χνν′(q; τ − τ ′).

The response function in imaginary time is related to the response function at the Bosonic
Matsubara frequency iωn through the Fourier transforms

χνν′(q; τ) =
1

β

∑
n

e−iωmτχνν′(q; iωm),

χνν′(q; iωm) =

∫
dτeiωmτχνν′(q; τ).

In the rest of the Appendix we replace for simplicity the notation 〈〉0 with 〈〉.
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A.3 Magnetic susceptibility
A.3.1 Spin and magnetization operators

The spin operators Sν are defined as

Sν =
1

2

∑
σσ′

c†σσνcσ′ ,

where ν = x, y, z and σν are the Pauli matrices

σx =

(
0 1

1 0

)
σy =

(
0 −i
i 0

)
σz =

(
1 0

0 −1

)
.

The magnetization operators Mν are defined as Mν = −gµBSν .

A.3.2 Matsubara magnetic susceptibility

The magnetic susceptibility for a single-band system can be expressed as

χzz(q; τ ) = (gµB)
21

4

∑
σσ′

σσ′ χqσσ
′
(τ ), (37)

where σ = 1 or −1 depending if the spin is up or down, τ = (τ1, τ2 τ3, τ4) and

χqσσ
′
(τ ) =

1

β

1

Nk

∑
k

χqσσ
′

k (τ ),

χqσσ
′

k (τ ) = 〈T ckσ(τ1)c
†
k+qσ(τ2)ck+qσ′(τ3)c

†
kσ′(τ4)〉

− 〈T ckσ(τ1)c
†
k+qσ(τ2)〉〈T ck+qσ′(τ3)c

†
kσ′(τ4)〉.

In Fourier space

χzz(q; iωm) =
1

4

∑
σσ′

σσ′
1

β2

∑
nn′

χqσσ
′

n,n′ (iωm),

where ωm = 2mπ/β is a Bosonic Matsubara frequency and

χqσσ
′

n,n′ (iωm) = χqσσ
′
(ν) =

1

16

∫∫∫∫
dτ eiν·τχqσσ

′
(τ ).

The integral for each τ component is from −β to β and ν = (νn,−νn − ωm, νn′ + ωm,−νn′).

A.3.3 Generalized Matsubara two-particle Green function

We define the generalized two-particle Green function

χαβγδ (τ ) = 〈T cα(τ1)c
†
β(τ2)cγ(τ3)c

†
δ(τ4)〉 − 〈T cα(τ1)c

†
β(τ2)〉〈T cγ(τ3)c

†
δ(τ4)〉. (38)

The Fourier transform of (38) is

χαβγδ (ν) = χαβγδn,n′ (iωm) =
1

16

∫∫∫∫
dτ eiν·τχαβγδ (τ ).
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From the symmetry properties of the trace we find that ν4 = −ν1 − ν2 − ν3. If we redefine
ν1 = νn, ν2 = −νn − ωm, ν3 = νn′ + ωm, and ν4 = −νn′ we obtain

ν = (νn,−νn − ωm, νn′ + ωm,−νn′),

χαβγδn,n′ (iωm) =
1

16

∫∫∫∫
dτ ei[−ωmτ23+νnτ12+νn′τ34] χαβγδ (τ ), (39)

where τij = τi − τj . The complex conjugate is given by[
χαβγδn,n′ (iωm)

]∗
= χαβγδ−n−1,−n′−1(−iωm),

where ν−n−1 = −νn, and ν−n′−1 = −νn′ .

A.3.4 Symmetry properties

Let us now analyze the symmetry properties of (39). By using the fact that the response function
(38) is real in τ space and by exchanging the indices 1 and 4, 2 and 3 in the integrand, we find

χαβγδn,n′ (iωm) = χδγβαn′,n (iωm),

and hence, if α = δ, β = γ, νn = ν ′n is a reflection axis for the absolute value of (39)∣∣∣χαβγδn,n′ (iωm)
∣∣∣ = ∣∣∣χδγβαn′,n (iωm)

∣∣∣
An additional reflection axis can be found by first shifting the frequency νn = νl − ωm

χαβγδl,n′ (iωm) =
1

16

∫∫∫∫
dτ ei(−ωmτ13+νlτ12+νn′τ34)χαβγδ (τ )

and then exchanging in the integrand the indices 12 with 34 and vice versa. Hence

χαβγδl,n′ (iωm) = χγδαβn′,l (−iωm)

so that, if α = γ and β = δ, νn+m = −νn′ is a mirror line∣∣∣χαβγδn+m,n′(iωm)
∣∣∣ = ∣∣∣χγδαβ−n′−1,−n−m−1(iωm)

∣∣∣ .
A.3.5 Non interacting limit

For a non-interacting system Wick’s theorem yields

χαβγδ (τ ) = −〈T cα(τ1)c
†
δ(τ4)〉〈T cγ(τ3)c

†
β(τ2)〉

= −Gαδ(τ14)Gγβ(−τ23).

We take as example the one band model (29) and set α = kσ, β = k + qσ, γ = k + qσ′, and
δ = kσ′. Then, in the paramagnetic case, the magnetic susceptibility is given by

χzz(q; τ ) = −(gµB)21

4

1

β

1

Nk

∑
k

∑
σ

Gkσ(τ14)Gk+qσ(τ32).
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Its Fourier transform is

χzz(q; iωm) = (gµB)
21

4

1

β2

∑
nn′

∑
σ

χqσσn,n′(iωm),

where ∑
σ

χqσσn,n′(iωm) = −β
1

Nk

∑
k

∑
σ

Gkσ(iνn)Gk+qσ(iνn + iωm)δn,n′ .

Thus the static susceptibility is

χzz(q; 0) = − (gµB)
2 1

4

1

Nk

∑
k

∑
σ

nσ(εk+q)− nσ(εk)
εk+q − εk

.

Finally, in the q → 0 and T → 0 limit we find

χzz(0; 0) =
1

4
(gµB)

2 ρ(εF )

ρ(εF ) = −
∑
σ

1

Nk

∑
k

dnσ(εk)

dεk

∣∣∣∣
T=0

A.3.6 Atomic limit

We calculate the local atomic susceptibility for the system described by the Hamiltonian (31)
starting from the general expression (38). In the sector τi > τi+1 we have

χσ σσ′σ′(τ ) =
1

2(1 + eβU/2)

(
eτ12U/2+τ34U/2 + δσσ′e

(β−τ12)U/2−τ34U/2
)
.

The magnetic susceptibility for τi > τi+1 is then given by

χzz(τ ) = (gµB)
2 1

4

1

β

∑
σσ′

σσ′χσ σσ′σ′(τ ) =
(gµB)

2

4β

1

(1 + eβU/2)
e(β−τ12−τ34)U/2,

which depends only on τ12 + τ34. If we perform the Fourier transform we recover formula for
the uniform static susceptibility

χzz(0; 0) = (gµB)
2 1

4kBT

eβU/2

1 + eβU/2
= (gµB)

2 1

4

1

β2

∑
nn′

∑
σσ′

σσ′ χ0σσ′

n,n′ (0),

where

∑
σσ′

σσ′ χ0σσ′

n,n′ (iωm) = β
1

iνn − U/2
1

iνn′ − U/2
1 + eβU/2

eβU/2
δωm,0.
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A.3.7 Alternative formulation

The spin susceptibility can also be obtained from χi,i
′

zz (τ ) with τ = (τ1, τ1, τ3, τ3). We have

χi,i
′

zz (τ ) = χi,i
′

zz (τ13) = 〈TM i
z(τ1)M

i′

z (τ3)〉 − 〈M i
z〉〈M i′

z 〉,

where M i
z = −gµBSiz is the magnetization at site i. Its Fourier transform is

χi,i
′

zz (iωm) =

∫
dτ13e

iωmτ13χi,i
′

zz (τ13).

By Fourier transforming to the reciprocal space we find

χzz(q; τ13) = 〈TMz(q; τ1)Mz(−q; τ3)〉 − 〈Mz(q)〉〈Mz(−q)〉,

χzz(q; iωm) =

∫
dτeiωmτ13χzz(q; τ13).



Magnetism: Models and Mechanisms 3.43

References

[1] H. Bruus and K. Flensberg: Many-Body Quantum Theory in Condensed Matter Physics
(Oxford University Press, 2004)

[2] P. Fazekas: Lecture Notes on Electron Correlation and Magnetism
(World Scientific, Singapore, 1999)

[3] D.C. Matthis: The Theory of Magnetism Made Simple
(World Scientific, Singapore, 2006)

[4] K. Yosida: Theory of Magnetism
(Springer, Heildelberg, 1998)

[5] A.C. Hewson: The Kondo Problem to Heavy Fermions
(Cambridge University Press, 1993)

[6] E. Pavarini, E. Koch, A. Lichtenstein, D. Vollhardt:
The LDA+DMFT approach to strongly correlated materials,
Reihe Modeling and Simulation, Vol. 1 (Forschungszentrum Jülich, 2011)
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