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1 DMRG: A young adult

On November 9, 1992, Physical Review Letters published a paper entitled “Density Matrix
Formulation for Quantum Renormalization Groups” by Steven R. White [1]. After introducing
a new algorithm for calculating the low-lying states and their observables of one-dimensional
lattice models, the paper presented impressively precise results for both the spin-1

2
and spin-1

Heisenberg antiferromagnet. It concludes: “This new formulation appears extremely powerful
and versatile, and we believe it will become the leading numerical method for 1D systems;
and eventually will become useful for higher dimensions as well.” I must admit that I am very
surprised that these very confident sentences made it past the referees; but this was just as
well: the successes of the density matrix renormalization group (DMRG) within the last two
decades have, if anything, far exceeded the hopes Steve White might have harboured for his
new algorithm at that time.

As all youths do, DMRG underwent puberty, developing a completely new personality: around
2004, when it was 12 years old, the (much older) realization [2,3] that DMRG is closely linked
to a special quantum state class, so-called matrix product states (MPS), suddenly spawned a
number of algorithmic extensions, which drastically enhanced the reach of DMRG (to name
but the first few: [4–10]). These algorithmic extensions could all be expressed in both DMRG
and MPS language, so many practitioners at first preferred to stay with the old way of speaking.
However, at least in my view it is now abundantly clear that formulating DMRG in the language
of MPS is notationally much cleaner and conceptually much more adequate, so I will present
the entire lecture in this way. The price to pay is to get used to a notation which will definitely
be unfamiliar to a physicist with standard training, as opposed to the DMRG language. But it
is worth the effort! For those readers who develop a deeper interest, an overview of DMRG
in the old language, with some focus on fields of application, is given by [11], whereas a very
technical, but hopefully thorough introduction into the structure and manipulation of MPS can
be found in [12]. A more conceptual orientation which presents the story as seen by quantum
information theory is found in [13].

2 Matrix product states

Let us consider a quantum system that lives on L lattice sites with d local states {σi} on each
site i ∈ {1, 2, . . . , L}. A good example to think of would be interacting spins-1

2
where the local

states are | ↑ 〉, | ↓ 〉 and d = 2. The lattice may at this point be of arbitrary dimension, we just
have to give an ordering to the site labels. In view of what is to come, one may of course think
of a one-dimensional chain with sites 1 through L.

Pure states are then defined on the Ld-dimensional Hilbert space

H = ⊗Li=1Hi Hi = {|1i〉, . . . , |di〉} (1)
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and the most general state reads

|ψ〉 =
∑

σ1,...,σL

cσ1...σL|σ1 . . . σL〉. (2)

In the following, we will often abbreviate as {σ} = σ1 . . . σL. The usual problem of numerical
simulations is that the number of state coefficients c{σ} grows exponentially with system size
L. A standard first approximation in order to reduce the exponential number of coefficients, the
so-called mean-field approximation, consists in factorizing the state coefficients as

cσ1...σL = cσ1 · cσ2 · . . . · cσL . (3)

Instead of dL coefficients, we now have dL coefficients (in the special case that we can as-
sume translational invariance of the state, the number reduces even more drastically to d). The
motivation of this ansatz dates back to the molecular field theory of Weiss (1907), where the
orientation of small elementary magnets (spin was not known at that time) is calculated by
assuming they are exposed to an external magnetic field and an additional effective magnetic
field, which self-consistently models the interaction with all other elementary magnets. Suc-
cessful as mean-field theories have been over the decades (the BCS theory of superconductivity
(1957), for example, is structurally a mean-field theory of Cooper pairs), they do not capture
the essential feature of quantum physics: entanglement.
What makes quantum mechanics fundamentally different from classical physics is the different
nature of the states: whereas they are points in phase space in classical physics, they are rays in
Hilbert space in quantum mechanics; moreover, the Hilbert space of a many-particle system is
given by the tensor product of the single-particle Hilbert spaces. To consider the most simple
example, take 2 spins-1

2
. Then Hi = {| ↑i 〉, | ↓i 〉} and H = H1 ⊗ H2. The combination of

the superposition principle (implied by states living in Hilbert space) and the tensor product
structure means that the most general state is

|ψ〉 = c↑↑|↑↑ 〉+ c↑↓|↑↓ 〉+ c↓↑|↓↑ 〉+ c↓↓|↓↓ 〉, (4)

subject merely to the normalization condition. It is now very easy to show that not every state
of this form factorizes, i.e. c↑↓ = c↑c↓ and so forth; to see this, just consider the singlet state

|ψ〉 = 1√
2
|↑↓ 〉 − 1√

2
|↓↑ 〉. (5)

States that factorize are called product states, whereas all others are called entangled states.
The importance of entangled states is of course given by the fact that they carry non-local
information and superclassical correlations, both of which are essential to quantum physics
[14–16]. How can we generalize the product state by Eq. (3) to describe (at least certain)
entangled states, while remaining numerically convenient? As general states are sums over
products of local states, we are led to think about matrices replacing the scalars of Eq. (3);
we are then looking at the sum of product states; they can be entangled. So the most simple
generalization would be

cσ1 · cσ2 · . . . · cσL →Mσ1 ·Mσ2 · . . . ·MσL , (6)
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where all Mσi are (2 × 2)-matrices, except on sites 1 and L, where they must be (1 × 2) and
(2×1) row and column vectors respectively, such that the matrix product yields a scalar. In fact,
the famous Affleck-Kennedy-Lieb-Tasaki (AKLT) model has a ground state that can be cast in
exactly this form and contains a wealth of non-trivial physics [17,18]. In fact, this simple ansatz
can also be used as a variational ansatz for the ground state of entire classes of Hamiltonians
giving quite deep insights into their physics; see, for example, [19–21]. Of course, (2 × 2)-
matrices are only of limited descriptive power given the wealth of quantum states.
We therefore consider the following generalization, which is a generic matrix product state:

|ψ〉 =
∑

σ1,...,σL

Mσ1Mσ2 . . .MσL|σ1σ2 . . . σL〉, (7)

where at each site we introduce d matrices Mσi , which therefore depend on the local state |σi〉.
The dimensions of the matrices are (1×D1), (D1×D2), . . . , (DL−2×DL−1), (DL−1×1), with
equal row and column indices of matrices associated to neighboring sites such that the matrix
product can be carried out, with the very first and last dimension 1, to yield a scalar.
A given state |ψ〉 does not have a unique decomposition into matrices Mσi: to see this consider
an arbitrary, but invertible matrix X of dimension (Di × Di). Then the matrix product state
does not change under the insertion of XX−1 = 1 between matrices Mσi and Mσi+1 , which
implies a gauge transformation

Mσi →MσiX Mσi+1 → X−1Mσi+1 . (8)

Later on, we will exploit this gauge degree of freedom to bring MPS into a particularly efficient
form for practical use.
Why is this state class so interesting? There are, in my view, five reasons for this.

1. Any quantum state can be represented as an MPS, although the representation may be
numerically inefficient. Nevertheless, it is therefore a mathematical structure of general
interest.

2. There is a hierarchy of MPS in the sense that states with low entanglement can be repre-
sented more efficiently (using smaller matrices) than highly entangled states. So-called
area laws reveal that these low-entanglement states are particularly important for low-
temperature quantum physics. This makes MPS useful in practice. For the link between
MPS and the entanglement of quantum states, I refer to the lecture of Jens Eisert.

3. They emerge naturally in the context of renormalization group schemes, connecting the
DMRG framework to more conventional RG schemes.

4. They can be manipulated easily and efficiently: this concerns the application of opera-
tors ranging from local creation or annihilation operators through Hamiltonians to time
evolution operators, the evaluation of overlaps and expectation values.

5. They can be searched efficiently: which state, given Ĥ , has the lowest energy among a
given class of MPS? This is the nucleus of a variational method (none other but DMRG).
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To prove the first statement, we need either of two matrix decompositions from linear algebra,
the QR or the singular value decomposition (SVD); for an excellent first introduction into these
techniques of numerical linear algebra, I recommend [22]. In this presentation, I will use the
SVD because it will cover all numerical needs we are going to have; however, in numerical
practice, the QR factorisation is much faster and should be used whenever possible instead of
the SVD (I will indicate these occasions). For an arbitrary (m × n)-matrix A, we have, with
k = min(m,n), the following decomposition

A = USV †, (9)

where the matrices have the following special properties:

• U is (m×k)-dimensional and consists of orthonormal columns, i.e., U †U = I; if m = k,
then UU † = I too, and U is unitary.

• S is (k×k)-dimensional and diagonal. The entries on the diagonal are called the singular
values si and are real and non-negative, si ≥ 0. The number r ≤ k of strictly positive
singular values is equal to the rank of A. All texts and computer codes assume that
singular values are sorted in descending order, s1 ≥ s2 ≥ s2 ≥ . . ..

• V † is (k × n)-dimensional and consists of orthonormal rows, i.e., V †V = I; if k = n,
then V V † = I too, and V is unitary.

“Old-fashioned” DMRG makes heavy use of the eigenvalue decomposition (EVD) AU = UΛ

for quadratic (and hermitean) A, with Λ a diagonal matrix with real (but not necessarily non-
negative) eigenvalues λi on the diagonal and U a unitary matrix whose column vectors |ui〉
can be taken to be an orthonormal basis. Here, incidentally, I have introduced a very useful
notation in linear algebra, namely that matrices are also read as sets of column vectors, U =

[|u1〉|u2〉 . . .], or of row vectors (which is used less frequently). SVD and EVD are however
closely connected: if A = USV †, then

A†A = V SU †USV † = V S2V † ⇒ (A†A)V = V S2 (10)

and similarly
AA† = USV †V SU † = US2U † ⇒ (AA†)U = US2. (11)

Comparing to the EVD, this means that the singular values squared are the eigenvalues of both
A†A and AA†, and the respective eigenvectors are the columns of U and V respectively. This
allows to translate between SVD based procedures in MPS-based algorithms and EVD based
procedures in classic DMRG.
Before concluding this tiny excursion into the truly rich properties of the SVD, let me mention
that it is also behind a very important decomposition of quantum states, the so-called Schmidt
decomposition. Its key importance is that it allows for a direct readout of the entanglement
properties of a state: consider a bipartition of the “universe” AB (in our case: the L sites) into
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1

{|j〉B}{|i〉A}

L!+1!

Fig. 1: Bipartitioning a quantum system in blocks A and B with block-local orthonormal bases.

subsystems A and B (in our case e.g. sites 1 through ` and ` + 1 through L); see Fig. 1. Then
the most general pure quantum state |ψ〉 reads

|ψ〉 =
dimHA∑
i=1

dimHB∑
j=1

ψij |i〉A |j〉B, (12)

where the {|i〉A} and {|j〉B} form orthonormal bases of subsystems A and B respectively; in
practice, these bases will usually be product bases resulting from local orthonormal bases like
{|σ1 . . . σ`〉}. Interpreting the ψij as the entries of a rectangular matrix Ψ , an SVD of Ψ gives
Ψ = USV † and we can rewrite our state in the Schmidt decomposed form

|ψ〉 =
r∑

α=1

sα |α〉A|α〉B (13)

with sα the (rank) r non-vanishing singular values of Ψ and

|α〉A =

dimHA∑
i=1

Uiα |i〉A |α〉B =

dimHB∑
j=1

V ∗jα |j〉B (14)

It is crucial to note that, due to the properties of U and V , the {|α〉A} and {|α〉B} form or-
thonormal sets respectively, because a pitfall of the MPS world is that one encounters state
decompositions that look like Eq. (13), but where orthonormality does not hold; hence they are
not Schmidt decompositions. The physics of the subsystems A and B is encoded by the reduced
density operators

ρ̂A = trB|ψ〉〈ψ| =
r∑

α=1

s2α |α〉A A〈α| ρ̂B = trA|ψ〉〈ψ| =
r∑

α=1

s2α |α〉B B〈α| (15)

which the Schmidt decomposition allows to be read off in eigenrepresentation. This allows
interesting observations like the identity of the non-vanishing eigenvalues of the reduced density
operators on A and B, even if A and B are very different: the difference only shows up in the
eigenvectors. This, by the way, is a neat illustration of the SVD/EVD link.
If we quantify entanglement by the von Neumann entropy of entanglement, then the entangle-
ment between subsystems A and B given a quantum state |ψ〉 is obtained by the (conventional)
von Neumann entropy of either of the subsystems A or B:

SA|B(|ψ〉) = −trAρ̂A ln ρ̂A = −trBρ̂B ln ρ̂B = −
r∑

α=1

s2a ln s
2
a . (16)
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We can use this formula and work out the entanglement of the two states already encountered,
the general product state and the singlet state of two spins.
In the case of the product state, we consider some bipartitioning into sites 1 through ` (subsys-
tem A) and `+ 1 through L (subsystem B). We can then write

|ψ〉 = |α〉A|α〉B with |α〉A,B =
∑
{σA,B}

cσA,B |σA,B〉, (17)

where σA ≡ σ1, . . . , σ` and similarly σB. The state is right away in a Schmidt representation,
and the eigenvalue spectrum of the reduced density operators is (1, 0, 0, . . .); inserting this in
the von Neumann entropy formula and using 0 ln 0 = limε→0+ ε ln ε = 0, we find that this
state is unentangled. As the product state is an MPS with matrix dimensions 1, we can state
that an MPS is unentangled if and only if it can be represented exactly by an MPS with matrix
dimensions 1. (I should add “for a given basis”, because entanglement has the unnerving and
deeply unphysical property that it is not invariant under global basis transformations: for a
simple example, consider the triplet states at Sz = ±1 which are product states, but which can
be rotated by a global basis transformation into the Sz = 0 triplet state which is entangled.) The
take-home message for us is that, as already mentioned, D = 1 MPS are classical (in the sense
of unentangled) states and that life gets quantum mechanical (interesting) only from D = 2

onwards.
In the case of the singlet state, the reduced density operator obtained by a partial trace is already
in diagonal form, ρ̂A = ρ̂B = diag(1

2
, 1
2
). Entanglement then is given by −2 · 1

2
ln 1

2
= ln 2. (In

statistical physics texts the base of the logarithm is e; in quantum information texts the base of
the logarithm is 2 as befits the world of qubits, such that entanglement here would be exactly
1.) The interest of this result is that, using Lagrangian multipliers, one can easily show that this
is the maximum entanglement any two-spin state could have and that it is achieved if and only
if the reduced density operators are maximally mixed, i.e., all eigenvalues are identical. This
makes sense as entanglement is a measure of the amount of non-local information in a quantum
system: a maximally mixed reduced density operator implies that the amount of local informa-
tion is minimal. We can generalize the result to a reduced density operator of dimension D: the
maximally mixed density operator then has eigenvalues D−1, and the maximal entanglement is
given by −D ·D−1 lnD−1 = lnD.
After this lengthy detour, I am now going to demonstrate that every state can in principle be
represented as an MPS. This is done by successively peeling off site after site (say, starting
with 1, but the reverse procedure is also possible). Consider cσ1σ2...σL , the coefficients of the
dL-dimensional state vector and reshape them into a (d × dL−1)-dimensional matrix, which is
then SV decomposed:

cσ1σ2...σL → Ψσ1,σ2...σL =
∑
a1

Uσ1,a1Sa1,a1V
†
a1,σ2...σL

. (18)

The matrix U is now sliced into d row vectors Aσ1 , which we interpret as (1 × d) matrices (d
being the maximum rank possible):

Uσ1,a1 → {Aσ1} with Aσ11,a1 = Uσ1,a1 . (19)
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a1

σ1

aL-1

σL

aℓ-1 aℓ

σℓ

σℓ

aℓ-1 aℓ

Fig. 2: Building blocks of an MPS: matrices for first and last sites, as well as bulk sites. Physical
indices point vertically, matrix indices horizontally. Complex-conjugation mirrors matrices
along the horizontal axis.

σ1 σL

Fig. 3: Graphical representation of an MPS: all connected lines between building blocks are
contracted over.

If we lump together ca1σ2σ3...σL = Sa1,a1V
†
a1,σ2...σL

, we have as a first step

cσ1σ2...σL =
∑
a1

Aσ11,a1c
a1σ2σ3...σL . (20)

In a second step (and all others will be the same), we will again use a sequence of reshaping
and a SVD,

ca1σ2σ3...σL → Ψa1σ2,σ3...σL =
∑
a2

Ua1σ2,a2Sa2,a2V
†
a2,σ3...σL

. (21)

U is now sliced “horizontally” into d matrices Aσ2 of dimension (d× d2), where

Aσ2a1,a2 = Ua1σ2,a2 , (22)

and if S and V are again lumped together to form a new ca2σ3σ4...σL , the state coefficients read
after the second step

cσ1σ2...σL =
∑
a1,a2

Aσ11,a1A
σ2
a1,a2

ca2σ3σ3...σL . (23)

It is easy to see that upon continuation the coefficients can be represented as a product of matri-
ces as in the definition of an MPS. After half the chain, matrix dimensions which first grow as
(1 × d), (d × d2), and so on, will shrink again because in SVD min(m,n) sets the dimension.
The largest matrix dimension is dL/2 (L assumed even), hence again exponential in L and it
seems nothing has been gained: we still need to approximate, i.e. replace matrices by smaller
ones (say, of some maximum dimension D ∼ 1000) while minimizing the loss of accuracy.
As should be obvious by now, the manipulation of MPS is extremely index-heavy. Fortunately,
there is by now a generally accepted graphical representation of MPS (Fig. 2) and their build-
ing blocks (up to one degree of freedom, which is nothing compared to the confusing notational
wealth surrounding Green’s functions or the sign conventions in general relativity). Each matrix
is drawn as a dot with two horizontal and one vertical line sticking out; the two horizontal lines
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1 !-1 ! 1 !

|a!-1〉A |a!〉A|σ!〉

Fig. 4: Block growth of classic DMRG.

σ1

a!-1

σ1

a!

σ!

Fig. 5: Block growth of classic DMRG represented in the MPS framework.

correspond to the row and column indices and the vertical line to the physical index labeling the
matrix. The degree of freedom is whether the vertical line points up or down. I let it point up.
If the index only takes the value 1, hence is a dummy index, the corresponding line is dropped
(this concerns first and last sites). If one wants to represent the complex-conjugated (not ad-
joint!) matrix Mσ∗, an object we will need for the bra 〈ψ|, the direction of the vertical line
is inverted, pointing down in my convention. For building an entire state or other more com-
plicated structures, there is a single rule: all connected lines are contracted, i.e., the connected
objects are multiplied and the joint index is summed over; for two matrices this is obviously a
matrix multiplication. A generic MPS as in Eq. (7) would then look like a comb (Fig. 3).
Some readers of these notes may be familiar with DMRG in the original notation of White, using
blocks (of sites) and sites. Let me put this notation into a more general context, that of a generic
1D renormalization scheme: consider a semi-infinite lattice of sites with d local degrees of
freedom. If we group the first ` sites into a block, a state on the block has d` coefficients, which
is exponentially large. If we decide that we build such blocks iteratively, starting from a “block”
containing just one site and adding site after site (Fig. 4), then we have to devise a decimation
scheme of discarding basis states to avoid the exponential growth d → d2 → d3 → . . . and to
keep the number of states manageable. If we decide to keepD states for a block description and
assume that we have a basis {|a`−1〉} for the block of length ` − 1 and add site ` (local states
{|σ`〉}), then the D states building the (incomplete!) basis of the block of length ` will read

|a`〉 =
∑
a`−1,σ`

〈a`−1, σ`|a`〉|a`−1〉|σ`〉 ≡
∑
a`−1,σ`

Mσ`
a`−1,a`

|a`−1〉|σ`〉, (24)

where we have reorganized the expansion coefficients into d matrices M labelled by the local
state; the entries are given by Mσ`

a`−1,a`
= 〈a`−1, σ`|a`〉 and connect states on the smaller block

and the larger block. The matrix entries therefore encode the decimation scheme, which can
now be represented as in Fig. 5. The reorganization of the coefficients is of interest because we
can iterate the scheme such that

|a`〉 =
∑

σ1,...,σ`

(Mσ1Mσ2 . . .Mσ`)1,a`|σ1σ2 . . . σ`〉. (25)
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aℓ

a´ℓ

=

aℓ

a´ℓ

=

Fig. 6: Graphical representation of left and right normalization conditions (left and right part
of the figure). The single lines represent identities.

The sums over the matrix row and column indices was simply absorbed into a compact matrix
multiplication notation, and structurally the basis states look like MPS. As we have specified
no decimation procedure, we can draw several conclusions: (i) DMRG is a method that grows
blocks using decimation yields states in the MPS format (with subtle modifications that can
be ignored here); (ii) any RG scheme in 1D that can be characterized by an iterative growth
and decimation scheme yields states in the MPS format; this holds in particular for Wilson’s
Numerical Renormalization Group (NRG) [23,24] which is the method of choice for the famous
Kondo problem. In fact, as a historical remark, the failure of Wilson’s NRG for general strongly
correlated problems in 1D was what motivated White’s work in 1992; the underlying MPS
structure finally allowed to understand the connection between NRG and DMRG [25].
I already mentioned in the beginning that there is a gauge degree of freedom in MPS. Both in
the general decomposition and in the block growth procedure we have unwittingly chosen a
gauge which will turn out to be extremely useful in practice. In the block growth procedure
both {|a`−1〉} and {|a`〉} form orthonormal sets, respectively. Therefore

δa′`,a` = 〈a′`|a`〉 =
∑

a′`−1σ
′
`a`−1σ`

M
σ′`∗
a′`−1,a

′
`
Mσ`

a`−1,a
′
`
〈a′`−1σ′`|a`−1σ`〉

=
∑
a`−1σ`

Mσ`∗
a`−1,a

′
`
Mσ`

a`−1,a
′
`
=
∑
σ`

(Mσ`†Mσ`)a′`,a`

or
I =

∑
σ`

Mσ`†Mσ` ≡
∑
σ`

Aσ`†Aσ` . (26)

Matrices that obey this relationship are called left-normalized and will be denominated by A;
exactly the same property follows from the general state decomposition from the column or-
thonormality U †U = I . If one builds blocks from the right, adding sites at the left end, or if one
carries out an SVD on a general state starting from the right, i.e. at site L, one obtains similarly
right-normalized matrices B with

I =
∑
σ`

Bσ`Bσ`†. (27)

I will refer to MPS that consist entirely of A-matrices as left-canonical, MPS that consist en-
tirely ofB-matrices I will call right-canonical. A third class, which is the most important one in
numerical practice, is called mixed-canonical and has structure AAAAAMBBBBBBBBB,
with one matrix without special normalization property sandwiched in between. We will discuss
further below how to convert between all three representations. Graphically, the normalization
conditions are represented as in Fig. 6.
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3 Matrix product operators

Given that quantum mechanics works by applying operators (unitary operators for time evolu-
tion, projection operators in measurements, ...) to states, it is quite surprising that the systematic
representation of operators in a generalization of the MPS scheme did not really start until quite
recently (see e.g. [26]). The most general operator on our L sites reads

Ô =
∑
{σ}

∑
{σ′}

cσ1...σL,σ
′
1...σ

′
L|σ1 . . . σL〉〈σ′1 . . . σ′L|, (28)

where the primed variables label the ingoing state the operator acts on and the unprimed vari-
ables the outgoing state. If we reshuffle the indices to group states on the same site, we have

cσ1...σL,σ
′
1...σ

′
L → cσ1σ

′
1σ2σ

′
2...σLσ

′
L (29)

and a “mean-field approximation” to the operator would read

cσ1σ
′
1σ2σ

′
2...σLσ

′
L → cσ1σ

′
1 · cσ2σ′2 · . . . · cσLσ′L . (30)

While there is no physical reason why this should be in any ways a good approximation, in fact
this is an exact representation of many operators: consider the operator Ŝzi acting on a spin on
site i. As this operator is in fact defined only onHi, a pedantic notation would be

Ŝzi → Î1 ⊗ Î2 ⊗ . . .⊗ Ŝzi ⊗ . . .⊗ ÎL (31)

and the coefficients would read

cσ1σ
′
1σ2σ

′
2...σLσ

′
L = δσ1,σ′1 · δσ2,σ′2 · . . . · (Ŝ

z)σi,σ′i · . . . · δσL,σ′L . (32)

So, if we introduce matrix product operators (MPO) as a straightforward generalization of the
MPS notation as

Ô =
∑
{σ}

∑
{σ′}

Mσ1σ′1Mσ2σ′2 . . .MσLσ
′
L|σ1 . . . σL〉〈σ′1 . . . σ′L| (33)

with the usual rules for the matrix dimensions, the above operator would be encoded simply
by scalar (i.e., D = 1) matrices, and this would also hold for operators as used for n-point
correlators such as Ŝ+

i Ŝ
−
j . Any more complicated operator can also be turned into an MPO:

reconsider the construction of an MPS for an arbitrary state, and group indices (σ1σ′1)(σ2σ
′
2) . . ..

Of course, the question arises whether this neat result will generalize in the sense that more
complicated operators like a Hamiltonian Ĥ still find an exact representation with small D. As
opposed to MPS of interest which will usually involve an approximation, we will find this to be
true for many Hamiltonians of interest.
What happens if we apply an MPO Ô to an MPS |ψ〉? Assuming that the MPS is formed by
matrices Mσi and the MPO by matrices Nσiσ

′
i it is a simple calculation to show that the new

state Ô|ψ〉 is again an MPS, with matrices M̃σi that have entries

M̃σi
(ab),(a′b′) =

∑
σ′i

N
σiσ
′
i

aa′ M
σ′i
bb′ . (34)
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σℓ

σ´ℓ

σ1 σL

σ´1 σ´L

Fig. 7: Graphical representation of an MPO: the vertical lines sticking out to the bottom repre-
sent ingoing physical states, the lines sticking out to the top outgoing physical states.

σ1 σL

σ1 σL

Fig. 8: Graphical representation of the application of an MPO to an MPS: all connected lines
between building blocks are contracted over. A new MPS results, with matrix dimensions being
the product of the original matrix dimensions.

Numerically, this operation can be implemented very efficiently; the important observation is
that the dimensions of the new matrices are given by the product of the old matrix dimensions.
This is potentially disastrous, as at least MPS dimensions can become very large for some
desired quality of approximation. But as most Hamiltonians in MPO form have dimensions less
than 10, the new MPS may still be barely manageable; nevertheless this observation indicates
that we need a compression procedure such that an MPS with undesirably large (unmanageable)
matrix dimensions can be approximated optimally by an MPS with smaller matrix dimensions
at some loss of accuracy.

Graphically, an MPO (Fig. 7) is represented in analogy to an MPS, with two vertical legs stick-
ing out, corresponding to the “ingoing” (line pointing down) and “outgoing” state (line pointing
up). The MPO times MPS gives MPS rule finds a simple graphical representation as in Fig. 8.
Lines sticking out in the same direction can be unified into a single one, with the rule that the
dimension of the unified line is the product of the original dimensions.
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4 Normalization and compression

As we have seen, the dimensions of MPS will usually grow as we proceed with calculations,
making them potentially useless if we do not counter this growth. How can we compress an
MPS with minimal loss of information? Let us assume (don’t worry that the assumption looks
a bit artificial) that we have a quantum state in the following MPS representation,

|ψ〉 =
∑
{σ}

Aσ1Aσ2 . . . Aσ`Mσ`+1Bσ`+2 . . . BσL|σ1 . . . σL〉 (35)

and the row and column dimensions of Mσ`+1 (and the adjacent column dimension of Aσ` and
row dimension of Bσ`+2) are too big and we want to reduce them with minimum of loss of
accuracy in the state description. To achieve this, we stack the d matrices Mσ`+1 columnwise
into a single matrix, i.e.

Ma`,σ`+1a`+1
=Mσ`+1

a`,a`+1
(36)

and carry out an SVD on the new matrix as M = USV †. If we absorb U it into Aσ` ← Aσ`U ,
this retains the left-normalization due to U †U = I and corresponds to a basis transformation of
the (reduced) orthonormal block basis for block A formed from sites 1 through `,

|a`〉A :=
∑

σ1,...,σ`

(Aσ1 . . . Aσ`)1,a`|σ1 . . . σ`〉. (37)

Similarly, we have a new orthonormal block basis on the block formed by sites `+1 through L
by slicing as

Bσ`+1
a`,a`+1

= V †a`,σ`+1a`+1
, (38)

where Bσ`+1 are right-normalized and

|a`〉B :=
∑

σ`+1,...,σL

(Bσ`+1 . . . BσL)a`,1|σ`+1 . . . σL〉 (39)

form an orthonormal set. Identifying sa` = Sa`,a` , we therefore have a Schmidt decomposition
of |ψ〉 as

|ψ〉 =
∑
a`

sa` |a`〉A|a`〉B. (40)

Hence (and this is why the mixed-canonical representation is so important, ensuring orthonor-
mal bases on A and B) a mixed-state representation can be turned into a Schmidt decomposition
and vice versa. The Schmidt decomposition, on the other hand, allows to read off the correct
compression strategy: the s2a corresponding to the statistical weights in the reduced density op-
erators, the optimal truncation is given by retaining those pairs of Schmidt states that have the
maximum Schmidt coefficients. If we can afford matrix dimensions D, and assume ordering
by descending singular values, we simply cut down the column dimension of Aσ` to D and
similarly the row dimension of Bσ`+1 , and both dimensions of S.
The problem with this procedure is that it only works at the seam between the left-normalized
and right-normalized parts of the state, but in general we have to truncate everywhere. Our
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prodecure immediately indicates how to remedy this: if (after truncation) we multiply S to the
left, Mσ` ← Aσ`S, the matrices on site ` will lose their normalization property and the state
will have the form

|ψ〉 =
∑
{σ}

Aσ1Aσ2 . . . Aσ`−1Mσ`Bσ`+1 . . . BσL|σ1 . . . σL〉. (41)

Compared to our initial state, the seam between left- and right-normalized states has shifted by
one to the left, and we can continue our truncation procedure now one site to the left. This, of
course, would also have been the case if we had not truncated at all.

This allows us to define two strategies: in order to bring any MPS into form AAAA . . . or
BBBB . . ., we start either from site 1 (for A) or site L (for B) and work our way through the
chain by a sequence of SVDs without truncations (in such a case, faster QR decompositions do
as well). In the previous paragraphs, we have just seen how a step to the left generates a B.
The fact that we had A-matrices to the left there only mattered for the truncation. Bringing any
MPS into left-canonical or right-canonical form I refer to as normalization (indeed, as one can
see easily, in the very last step of the procedure, a scalar survives, which is nothing but the norm
of the state, so one can use it as a “conventional” normalization procedure 〈ψ|ψ〉 !

= 1 as well).
Partially right-normalizing a left-normalized MPS generates a mixed-normalized MPS.

As a second strategy for compressing an MPS to some acceptable matrix dimension, we take
a state that is e.g. in form AAAAA . . . (which can be achieved by the first strategy) and move
through all mixed-canonical representations from the right, truncating along the way. Here, the
QR factorization, which does not give access to the singular values, is not useful.

At this point it is now easy to see for which types of states MPS can yield good approximations:
the quality of truncations depends on how quickly the singular values sa of the Schmidt de-
compositions (or the statistical weights of the reduced density operators) decay with a: if they
decay rapidly, the truncated statistical weight is negligible, and in practice truncated weigths for
ground states are often of the order 10−10 or even less if we keep matrix dimensions D ∼ 1000.
Usually, we do not know the spectrum of the reduced density operators; as entanglement is de-
rived from this spectrum, it contains similar (but much less) information: a state with a rapidly
decaying spectrum has lower entanglement than a state with slowly decaying spectrum. Hence,
the feasability of the representation of a state by an MPS rests on its entanglement properties,
MPS being a low-entanglement representation. For more details I refer to Jens Eisert’s lecture
in this volume.

Looking more closely, one realizes that this compression scheme cannot be absolutely optimal:
while it is optimal at each step, the compression at some site depends on the outcome of earlier
compressions on other sites, but not on the compression that will happen later. Hence there is
an informational asymmetry, which usually is not so important because the amount of compres-
sion at each site is small, as just mentioned. In cases where this is a problem, there exists an
alternative variational technique which is strictly optimal, see [12].
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5 Time-evolution: tDMRG, TEBD, tMPS

Traditionally, the exposition of DMRG starts with explaining the ground state algorithm, DMRG
proper, which for a given Hamiltonian Ĥ looks for its ground state within, as it turns out, the
space of MPS. This reflects the historical course of events: time-dependent DMRG [4–6, 8]
(with the variants of TEBD and tMPS, but this is all very much the same) was invented 12 years
after ground state DMRG. We will reverse this sequence, as time-dependent DMRG is much
easier to explain and also implement and can be used, albeit in a quite inefficient way, to find
the ground state of a given Hamiltonian.

We restrict our attention to time-independent Hamiltonians Ĥ; this captures a large number of
the problems encountered in practice. As all more important time-evolution schemes currently
in use consider small (“infinitesimal”) time steps, time-dependent Hamiltonians can be modeled
by a sequence of Hamiltonians that change after each small time step.

Assume we have an initial state |ψ(0)〉 in MPS form; such a state can be constructed by hand
(in simple cases like a Néel state, which is just a D = 1 MPS) or is obtained by some other
MPS calculation, e.g. as the ground state of some (other) Hamiltonian (otherwise there would
be no non-trivial dynamics) – this is the typical setup in ultra cold atom experiments where non-
equilibrium dynamics is generated by Hamiltonian quenches, i.e. abrupt changes in Hamiltonian
parameters. In the case of coherent evolution, the state at time t is given by

|ψ(t)〉 = e−iĤt|ψ(0)〉. (42)

If we manage to give e−iĤt an MPO representation, the problem would be solved within the
MPS framework, as applying an MPO to an MPS yields a new MPS. There are several issues
with this idea: (i) no one knows how to do this exactly in an efficient form on a classical
computer, let alone a piece of paper; (ii) usually we are interested in the entire evolution, i.e. the
state for an entire sequence of times; (iii) if the dimension of the resulting MPO is too large, the
resulting MPS will not be numerically manageable. While problems (i) and (ii) can be resolved
at some cost in accuracy, we will see (iii) to be a fundamental issue.

One approach, that is also historically the first, is to Trotterize time evolution. This is a well-
known analytical scheme first used in quantum field theory, and then first applied in numerical
physics by Suzuki [27] to quantum Monte Carlo schemes. Assume we want to calculate |ψ(t)〉
for times in [0, T ]. We split interval length T into N →∞ time steps τ → 0 with Nτ = T . In
numerical practice, τ will of course be solidly finite, e.g. τ = 0.01 when a typical time scale
of the problem is 1. Let us also assume that our Hamiltonian consists only of at most nearest-
neighbor terms, like Si ·Si+1 in the Heisenberg model or the hopping term

∑
σ(ĉ
†
iσ ĉi+1σ +h.c.)

in the Hubbard model. Then we can split the Hamiltonian in nearest-neighbour terms, Ĥ =∑L−1
i=1 ĥi, where in the case of the Heisenberg model ĥi = Si · Si+1. On-site terms like the

Hubbard interaction are “distributed” across the two ĥ that share a site and counted only half,
e.g. Un̂i↑n̂i↓ enters as (U/2)n̂i↑n̂i↓ in both ĥi−1 and ĥi. Watch out for first and last sites!
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Then we can rewrite the evolution operator as

e−iĤT =
N∏
i=1

e−iĤτ =
N∏
k=1

e−i
∑L−1

i=1 ĥiτ !
=

N∏
k=1

L−1∏
i=1

e−iĥiτ . (43)

Not only do we now have access to all times τ, 2τ, . . ., we now also only have to calculate
the (infinitesimal) time-evolution on two sites, e−iĥiτ . This is a (d2 × d2) matrix obtained by
diagonalizing the (d2 × d2) matrix representation Hi of ĥi and exponentiating it,

HiU = UΛ ⇒ Hi = UΛU † ⇒ e−iHiτ = Ue−iΛτU † = U ·diag(e−iλ1τ , e−iλ2τ , . . .)·U †, (44)

which is easily implemented using standard diagonalization and matrix multiplication routines.
So the fundamental building block can be calculated, but there is a catch, indicated by the
exclamation mark on the last identity in (43). This factorization does not work, due to Glauber’s
formula,

eÂ+B̂ = eÂeB̂e
1
2
[Â,B̂], (45)

which only holds under some restrictions on Â and B̂ (there may be further terms), but the
decisive point is that if two operators do not commute, the exponential of their sum will not
factorize in general. As our operators Â and B̂ scale as τ , however, in our case the commutator
will scale with τ 2. Hence, in the limit τ → 0, factorization becomes exact; for finite τ , the
error will scale as τ 2 and can therefore be excellently extrapolated to the exact τ → 0 limit.
This decomposition of the evolution operator is called the first-order Trotter decomposition,
because after N = T/τ time steps, the accumulated error will be of order τ . Higher-order
decompositions are available (fourth-order decompositions being the most popular, with an
error of order τ 4; for details, I refer to the literature), but for our purpose of explaining the
method first-order serves perfectly well.
As bond evolution operators commute if they do not share a site, it is customary to split the
Hamiltonians into odd and even bonds as

Ĥ = Ĥodd + Ĥeven; Ĥodd =
∑
i

ĥ2i−1, Ĥeven =
∑
i

ĥ2i (46)

and arrange time evolution as

e−iĤT = e−iĤevenτe−iĤoddτ ; e−iĤevenτ =
∏
i

e−iĥ2iτ , e−iĤoddτ =
∏
i

e−iĥ2i−1τ . (47)

Assuming we know the two-site time-evolution MPOs, we can represent the Trotter-decomposed
MPO for the global time evolution as in Fig. 9.
The two-site time-evolution MPO can easily be derived by our SVD decomposition procedure
developed for MPS. It is easy to calculate Uσ1σ2,σ′1σ

′
2 = 〈σ1σ2|e−iĥ1τ |σ′1σ′2〉. Then we proceed

by reshuffling of indices and SVD as

Uσ1σ2,σ′1σ
′
2 = Uσ1σ′1,σ2σ

′
2

SV D
=
∑
b

Wσ1σ′1,b
Sb,bWb,σ2σ′2

=
∑
b

M
σ1σ′1
1,b M

σ2σ′2
b,1
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Fig. 9: MPO representation of the Trotterized time-evolution operator e−iĤT ; every second line
corresponds to an odd-bond or even-bond infinitesimal time-evolution; at the bottom, there is
the state that is evolved in time contracted into the MPO.

which is just an MPO where I have absorbed two factors of
√
Sb,b into the left and right matrices.

As the original matrix is of dimension (d2 × d2), the MPO dimension is DW = d2; more
precisely, the matrices for odd bond evolutions have dimensions (1× d2), (d2× 1), (1× d2), . . .
and vice versa for even bonds. After one Trotter step, MPS matrix dimensions will therefore
have grown everywhere by a factor d2. This means that after each time step, we will have to
compress the MPS, and the time evolution algorithm takes a very simple form:

1. Apply infinitesimal Trotter time step in MPO form to MPS to obtain |ψ(t)〉 → |ψ(t+ τ)〉

2. Compress |ψ(t+ τ)〉

3. Continue with the next time step

In principle, it looks as if this procedure could be continued forever. The Trotter decomposition
error, which is O(τ 2) per time step will accumulate as t/τO(τ 2), hence grow linearly in time. It
can be made arbitrarily small by sending τ →∞ or, more efficiently, using higher-order Trotter
decompositions where the error will scale as O(τ 3) or even O(τ 5) in the most frequently used
approaches. The problem rests in the compression; compression as such is not a problem if we
can describe the state |ψ(t+τ)〉with the same accuracy as |ψ(t)〉 by an MPS of given dimension
D. This is however not the case: building on the Lieb-Robinson theorem [28], it has been
observed that entanglement in a time-evolving quantum state will grow up to linearly in time,
S(t) ≤ S(0) + νt, with some constant ν, and that this linear bound is met in “global quenches”
where the non-equilibrium is generated by a sudden change of the Hamiltonian operator. As
we have seen, a reduced density operator of dimension D (hence an MPS of dimension D) can
encode at most entanglement S = lnD; hence we have to increase matrix sizes in the MPS at
worst exponentially as time evolves to maintain the same accuracy. Time-dependent simulations
therefore hit an exponential wall after some time. No one has found a solution for that problem
yet. While observing thermalization is therefore excluded, in many situations of interest, ν
is small enough that we can see the physics of interest; as a few examples, consider spin-
charge separation [29], the propagation of bosonic correlations in ultracold atom gases [30], the
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relaxation of a density wave in strongly interacting ultracold atoms [31,32], but there are many
more.
Let me conclude this section by briefly discussing the calculation of ground states using imag-
inary time evolution. Quite generally, starting from a random state |ψ〉 =

∑
n cn|n〉, with

eigenstates Ĥ|n〉 = En|n〉, E0 ≤ E1 ≤ E2 ≤ . . .,

lim
β→∞

e−βĤ |ψ〉 = lim
β→∞

∑
n

e−βEncn|n〉 = lim
β→∞

e−βE0(c0|0〉+
∑
n>0

e−β(En−E0)cn|n〉

= lim
β→∞

e−βE0c0|0〉,

where for simplicity I have also assumed that the ground state is non-degenerate. We see that if
the random starting state has some overlap with the ground state, this contribution will survive
longest in the β →∞ limit. Of course, except for the unlikely case that E0 = 0, this surviving
contribution will either diverge or decay exponentially. But as we have to truncate after each
infinitesimal (imaginary) time step anyways, we can use this occasion to normalize the state at
every step, yielding the ground state |0〉 in the large-β limit.
Numerically, imaginary time evolution is more benign than real time evolution, as any errors
made numerically are exponentially suppressed by further applications of e−τĤ , whereas it is a
hallmark of a unitary (real time) evolution that errors are with us to stay and will only be com-
pounded with further errors. However, the procedure is slow compared to a direct variational
ground state search in MPS space, which is classic DMRG, and will be discussed below.

6 Overlaps and expectation values

Calculating time-evolving states as such is of course of little interest; in the end, we want to
calculate how much a state is changing from the original state (i.e. the overlap 〈ψ(t)|ψ(0)〉) or,
even more frequently, how some observable evolves in time, e.g. 〈Szi (t)〉 = 〈ψ(t)|Ŝzi |ψ(t)〉.
Let us first focus on the overlap, because the latter calculation will be a simple generalization.
Mathematically, representing |ψ〉 by matrices M and |φ〉 by matrices M̃ , we have

〈φ|ψ〉 =
∑
{σ}

∑
{σ′}

〈{σ′}|M̃σ′1∗ . . . M̃σ′L∗Mσ1 . . .MσL|{σ}〉 =
∑
{σ}

M̃σ1∗ . . . M̃σL∗Mσ1 . . .MσL .

(48)
Graphically, this can be represented as in Fig. 10. In which order are we to carry out the contrac-
tions? At first sight, this may seem a detail, but it is not: imagine we contract all the horizontal
lines first. Each contraction is a matrix-matrix multiplication that costs O(D3) assuming matrix
sizeD. Hence there areO(2LD3) operations ( we ignore edge effects and other details) for each
of the dL product basis configurations, and the overall operation count is O(2LD3dL) which is
exponentially large in system size even if we truncate MPS matrices. This would conclude the
story, but there is an exponential speedup: contractions are carried out moving through the net-
work from the left to the right, adding one matrix after another into the contracted part. The
operational count is now O((2L− 1)D3d), which is linear in L and only weakly polynomial in
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|ψ〉

〈φ|

Fig. 10: Contraction scheme for the overlap of two MPS. All arrows point to contraction points.

OO

|ψ〉

〈ψ|

E

Fig. 11: Contraction scheme for a two-point correlator, indicating the transfer operator E.

D. This can best be seen by rearranging the overlap equation as

〈φ|ψ〉 =
∑
{σ}

M̃σ1∗ . . . M̃σL∗Mσ1 . . .MσL

=
∑
{σ}

M̃σL† . . . M̃σ1†Mσ1 . . .MσL

=
∑
σL

M̃σL†

(
. . .

(∑
σ2

M̃σ2†

(∑
σ1

M̃σ1†Mσ1

)
Mσ2

)
. . .

)
MσL .

If one works out the contractions from inside out, the first bracket costs O(dD3), ignoring that
the first and last matrices are in reality vectors. The result is again a matrix, so the next bracket
is essentially a product of three matrices (carried out as two matrix-matrix multiplications) and
the cost is O(2dD3). Overall, we obtain the contraction count announced. This is the optimal
scheme, and the contraction is exact; I am mentioning this because in the higher-dimensional
generalizations of MPS contractions are not exact unless exponential complexity is accepted
(which is of course impossible) and finding the optimal contraction scheme is NP hard (i.e.
impossible to determine in practice).
Evaluating expectation values of operators is now very easy: assume we want to evaluate the
expectation value of Ô acting on site i, we just have to replace

∑
σi

by
∑

σi,σ′i
Oσi,σ′i

, a double

sum over the matrix elements of Ô in the local basis, information which is trivially available. So
the computational cost is hardly growing at all, and graphically, one would replace the vertical
line at site i by the operator. If we consider the object

E(a`−1a
′
`−1),(a`,a

′
`) :=

∑
σ`

Aσ`∗a`−1,a`
Aσ`a′`−1,a

′
`
, (49)

which is shown in Fig. 11, one can work out analytically or see graphically that it acts as a
transfer matrix in the calculation of correlators, determining the decay of correlators by its
eigenvalues. As is typical for transfer matrix calculations, all correlators are either long-ranged
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Fig. 12: Comparison between tDMRG simulations (lines) and experiment (points). In both
cases, the starting wave function is a density wave in an optical lattice with one boson on
even and no bosons on odd sites, that evolves according to a Bose-Hubbard-Hamiltonian with
hopping amplitude J and on-site repulsion U . The upper panel shows how the density relaxes
from 0 to 0.5 for various interaction strengths. For U/J = 9.9 one-dimensionality is partially
lost, leading to disagreement. The lower panel shows 4Re〈b†ibi+1〉 as a function of time: nearest-
neighbour quantum correlations are built up over time by the relaxation of the density wave.
Taken from [32].

or decay as a superposition of exponentials. Critical power-law decays are not possible for
MPS. Therefore, for a quantum state that has critical correlations, the MPS will approximate
the power law decay by a superposition of exponentials, but eventually switch to an exponential
decay on very long length scales, when only the slowest exponential decay in the superposition
survives. Increasing D, the MPS will model the critical decay on increasing length scales.

As an example of the accuracy achieved nowadays both by experiment and theory for non-trivial
strongly interacting systems, using time-dependent DMRG, consider the comparisons shown in
Fig. 12 between tDMRG and a state-of-the-art quantum simulator using ultracold atoms in an
optical lattice [32].
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7 Finite-temperature simulations

So far, we have been considering pure-state calculations only; quantum mechanics generally
deals with mixed states that are represented by (reduced) density operators ρ̂, which are Her-
mitean, non-negative, and normalized (trace 1). In the early days of MPS-formulations of
DMRG, it seemed advantageous to find a MPS-type state representation of ρ̂ in order to “re-
cycle” existing methods. This is indeed possible, using the concept of purification, first used
in this context by [8], which is the Schmidt decomposition read backwards: given a density
operator living on physical space P expressed in eigen-representation

ρ̂P =
∑
n

ρn|n〉P P 〈n|, (50)

we can interpret it as the reduced density operator on P for a state |ψ〉PQ living on a larger space
PQ, where Q must be at least as large as P (in practice, simply a copy of P : instead of a spin
chain, we simulate a spin ladder, etc.), and where the Schmidt decomposed form of |ψ〉PQ is

|ψ〉PQ =
∑
n

√
ρn|n〉P |n〉Q . (51)

The choice of the |n〉Q living on the auxiliary space Q is free as long as they form an orthonor-
mal set; this gives a gauge degree of freedom to |ψ〉PQ, the purification of ρ̂P

ρ̂P = trQ|ψ〉PQ PQ〈ψ| . (52)

Provided we know the purification, all further calculations can be done in a pure state framework
on PQ. Expectation values are (normalization of ρ̂ and |ψ〉 imply each other)

〈ÔP 〉ρ̂P = trP ÔP ρ̂P = trP ÔP trQ|ψ〉PQPQ〈ψ| = trPQÔP |ψ〉PQPQ〈ψ| = PQ〈ψ|ÔP |ψ〉PQ,
(53)

where we have used the cyclicity of the trace. Time evolution becomes

ρ̂P (t) = e−iĤt ρ̂P e+iĤt = e−iĤt trQ|ψ〉PQPQ〈ψ|e+iĤt = trQ|ψ(t)〉PQPQ〈ψ(t)| (54)

with |ψ(t)〉PQ = e−iĤt|ψ〉PQ. Hence we simply have to carry out a standard time-evolution of
a pure state. The problem is, of course, that usually we do not know the eigenrepresentation
of ρ̂P . But for the most important application, the thermal state e−βĤ , it can be calculated
easily: e−βĤ = e−βĤ/2 · ÎP · e−βĤ/2 = trQe

−βĤ/2|ρ0〉PQPQ〈ρ0|e−βĤ/2, where |ρ0〉PQ is the
purification of ρ̂P (β = 0) = ÎP (up to an irrelevant normalization). The infinite temperature
(β = 0) reduced density operator factorizes between individual sites, and so does the purified
state between pairs of sites in P and Q associated with each other. But the purification of the
totally mixed state ρ̂P (β = 0) on a site is nothing but a maximally entangled state between a site
in P and the corresponding site in Q, for example the singlet state if the physical site contains
a spin-1

2
. Now this state can be encoded easily as an MPS on one pair of sites, and as the MPS

factorizes between pairs of sites, the matrices have dimension 1 and can be written down by
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Fig. 13: Reachable times for the isotropic Heisenberg model with B̂† = Â = Ŝ± at the chain
center: Schemes A, B are the conventional scheme [8] and the improved scheme [34] compared
to the new scheme of [36]. The left panels show computational cost (proportional to the sum
of the third power of the matrix dimensions), the right panels the maximal matrix dimension.
Similar greyscales correspond to similar usage of resources. Adapted from [36].

hand. |ρβ〉PQ, a purification of ρ̂P (β), is then obtained by an imaginary time evolution up to
β/2. For time-dependent results obtained in this way and enhanced by a prediction technique,
consider [33]. However, it was observed that times reached are relatively short.
Let us consider this in more detail. If we subject a thermal state to a real-time evolution using
the same Hamiltonian, it remains unchanged as [ρ̂P (β), Ĥ] = 0. In the purification approach,
however, resource usage grows, because we are time-evolving the purified state which is not an
eigenstate of Ĥ , and the above reasoning for entanglement growth applies. We are therefore
moving through increasing costly purifications of the same density operator. As there is a
gauge freedom in the auxiliary state space, it might be possible to counteract this resource
growth by a suitable transformation of auxiliary states. Indeed, it was found that evolving the
auxiliary system backward in time, using e+iĤt, resources will not grow [34], and this increase
in efficiency also pays off for time-evolutions once a local operator has been applied. Substantial
further improvement [35, 36] (and a better understanding of the procedure of [34]) is possible
by exploiting the isomorphism between local bounded operators B̂ : H 7→ H and states |ψ〉 on
H⊗H. Our purified (MPS) state therefore has an (MPO) operator interpretation onH, and we
can discard the notion of purification entirely. In fact, in my view, this is the formulation to use
in the future, the old purification approach having its usefulness because it allows recycling of
tDMRG, whereas in the new approach, MPO manipulation routines are needed. The currently
best approach found there is given as

〈B̂(2t)Â〉β = Z(β)−1tr
(
[eiĤte−βĤ/2B̂e−iĤt][e−iĤtÂe−βĤ/2eiĤt]

)
, (55)

where the objects in [, ] are treated as MPOs that are constructed by Trotterization and compres-
sion just as in normal time-evolution. An auxiliary space Q is not needed at all.
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8 Ground states with MPS: DMRG

We have already seen that an imaginary time evolution is capable of yielding a ground state.
The classic technique, which is more efficient, is by a variational minimisation within MPS
space, and is what is traditionally referred to as DMRG, which is a variational minimisation
technique in MPS space and hence sometimes, but rarely, also referred to as VMPS. For a given
allowed maximum MPS matrix dimension D, the best MPS approximation to the ground state
energy (and the ground state) is given by

min
〈ψ|Ĥ|ψ〉
〈ψ|ψ〉

⇔ min
(
〈ψ|Ĥ|ψ〉 − λ〈ψ|ψ〉

)
, (56)

where we have introduced a Lagrangian multiplier λ to enforce normalization 〈ψ|ψ〉 = 1 that
will give the variational approximation to the ground state energy E0 from above (because we
are in a restricted search space). If we increase D, search space is enlarged (as it contains all
MPS of smaller dimension), and the approximate energy will decrease monotonically, allowing
for an extrapolation in D →∞, which is the exact limit.
Assuming we know the MPO representation of Ĥ , which I postpone for a moment, we have to
minimise the network represented in Fig. 14. This is a multilinear problem, as states |ψ〉 are
products of the unknown Mσ, for which no immediately efficient strategy is known. A time-
proven approach to the problem is the alternating least square (ALS) method, which runs as
follows:

1. Start with a guess for the MPS extremizing energy, {Mσi}.

2. Pick a site i, 1 ≤ i ≤ L, and consider all matrices Mσj , j 6= i, fixed and retain only
Mσi as variables. Eq. (56) is then quadratic in Mσi , and minimization becomes a linear
problem, leading to new Mσi minimizing energy within the “framework” provided by the
other matrices.

3. Now pick another site as i, repeating step 2, until all sites have been visited often enough
that λ does not decrease anymore. The resulting MPS is the variationally best approxi-
mation to the ground state, as is λ to the ground state energy.

Let us elaborate on these steps, because an efficient implementation strongly rests on details
here. The starting guess can be random or be constructed by an iterative growth of a chain
of length 2 → 4 → . . . → L, where at each step the chain is grown by inserting 2 sites at

- λ ×

Fig. 14: Network to be contracted to extremize 〈ψ|Ĥ|ψ〉 − λ〈ψ|ψ〉.
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= 0- λ ×

Fig. 15: Network to be contracted to extremize 〈ψ|Ĥ|ψ〉 − λ〈ψ|ψ〉. The unknown (variable)
matrix Mσi is shown in black.

- λ = 0

Fig. 16: Eigenvalue problem to be solved for extremizing 〈ψ|Ĥ|ψ〉− λ〈ψ|ψ〉 provided the state
|ψ〉 is in adequate mixed canonical form. Again, the unknown (variable) matrix Mσi is shown
in black.

the center, and determining the two sets of Mσ for these 2 sites such that energy is minimized
while keeping all previously found matrices fixed. This relates to the block plus site growth
strategy exposed earlier, and is what traditionally is referred to as “infinite system DMRG”.
Historically, this was even considered the core of the method, whereas it is rather the warm-up
to the “real” algorithm! This statement has to be qualified to the extent that for translationally
invariant systems the “warm-up” can be turned into a ground state search algorithm in its own
right under the name of iDMRG [12, 37].
For carrying out the minimization step, we take the derivative

∂

∂Mσi∗

(
〈ψ|Ĥ|ψ〉 − λ〈ψ|ψ〉

)
!
= 0. (57)

Graphically, this corresponds to Fig. 15, where the matrix with respect to which we take the
derivative is simply removed, because it contributed linearly to the original network. If we now
contract the two remaining networks, we have three free legs each and three legs connecting to
the unknown Mσi . We can rewrite this as∑

σ′ia
′
i−1a

′
i

Hσiai−1ai,σ′ia
′
i−1a

′
i
Mσ′ia

′
i−1a

′
i

=
∑

σ′ia
′
i−1a

′
i

Nai−1ai,a′i−1a
′
i
δσi,σ′iMσ′ia

′
i−1a

′
i

(58)

≡
∑

σ′ia
′
i−1a

′
i

Nσiai−1ai,σ′ia
′
i−1a

′
i
Mσ′ia

′
i−1a

′
i
, (59)

where the primed variables run over the legs connecting to Mσi and the unprimed variables run
over the free legs. H and N are the contracted networks, and for convenience I have brought all
indices down. The resulting equation has the form of a generalized eigenvalue problem,

Hm = λNm, (60)
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where the matrices are (dD2×dD2) dimensional and the vector m (from the reshaped matrices
Mσi) is dD2-dimensional. As we are looking for the ground state, we have to find the lowest
eigenvalue λ. With D ∼ 1000 in practice, this cannot be found by full diagonalization tech-
niques, but we can use large sparse eigensolvers such as provided by the Lanczos method (for
a first introduction, see [22]).

Generalized eigenvalue problems can be potentially dangerous, if the condition number of ma-
trix N becomes large. But if we assume that all matrices in |ψ〉 to the left of Mσi are left-
normalized, AAAA . . ., and all matrices to the right of it are right-normalized, . . . BBBB, the
normalization conditions imply that the entire network on the right collapses and only Mσi re-
mains. Then N = I , and a simple eigenvalue problem Hm = λm remains. In order to achieve
this convenient situation, we simply take our starting state, bring it by (partial) normalization
into form AAAAAAMBBBBB (wherever we want to start) and replace random choices of
locations i by systematic “sweeping” through the chain from right to left to right to left and so
on (or inversely), carrying out one suitable normalization step at each iteration moving left or
right to keep the seam between the left- and right-normalized matrices moving along with i.
This sweeping procedure is exactly the finite-system DMRG invented by White in 1992 and the
concurrent normalization procedure is nothing but White’s prediction algorithm [38].

A few more remarks are in order (for details, see [12]): contracting the left network (building
H) might in principle be very costly, but in practice one keeps three separate parts, namely
the part of H to the left of Mσi , the one on top (the part of the MPO), and the part of H to
the right of Mσi . If we sweep left and right, these parts can be recycled or updated iteratively
from previous steps, drastically reducing the numerical cost. At the same time, original DMRG
considered two sites for optimization at once, i.e. pairs MσiMσi+1 . Looking more closely at
how this is done, one realizes that this slightly breaks the variational nature of the method and
is a bit more costly numerically (by a factor of d); on the other hand, it is less plagued by the
problem of our “single-site” method that it may sometimes get stuck in a non-global minimum
(being non-variational can take you out of such dead ends). But this issue can be resolved
elegantly by adding suitable “noise” to the procedure [12, 39].

How can we control accuracy? Extrapolating in D →∞ is fine in principle (energies go down
monotonically, due to the variational nature of the procedure, other operators also converge
monotonically as a rule of thumb), but if MPS make sense it is because the Schmidt coefficients
decay rapidly, usually exponentially fast. But then we expect some kind of exponential con-
vergence in D which however is not so clean as to allow an easy extrapolation. It is easier to
monitor, as a function of D, the variation of the energy,

〈ψ|Ĥ2|ψ〉 − (〈ψ|Ĥ|ψ〉)2, (61)

which can be evaluated without further approximation as the Hamiltonian MPO is exact, and to
extrapolate quantities in the variation, which is 0 for D →∞ (|ψ〉 will be an exact eigenstate).
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9 Constructing the MPO representation of a Hamiltonian

So far we have dodged the issue of constructing the MPO corresponding to a Hamiltonian. In
fact, for short-ranged Hamiltonians this is quite easy, and as the construction is best understood
by looking at an example, I will consider the Heisenberg model

Ĥ = J

L−1∑
i=1

(
1

2
(Ŝ+

i Ŝ
−
i+1 + Ŝ−i Ŝ

+
i+1) + Ŝzi Ŝ

z
i+1

)
+ h

L∑
i=1

Ŝzi . (62)

This consists of operator strings of the type Î ⊗ Î ⊗ Ŝ+ ⊗ Ŝ− ⊗ Î ⊗ Î . . .. To simplify the
notation, I will introduce operator valued matrices in MPOs, namely

M̂ [i] =
∑
σi,σ′i

Mσi,σ
′
i|σi〉〈σ′i|. (63)

Then the Hamiltonian will take the form Ĥ = M̂ [1]M̂ [2] . . . M̂ [L]. Let us imagine the con-
struction of the Hamiltonian as the action of an automaton which has internal states (not to be
confused with quantum states of our system). It starts from the right end of the chain in some
internal state and moves through it to the left end. The action of the automaton is shown in
Fig. 17. The automaton starts in internal state 1, acts, and once it has passed site 1, it should be
in some final internal state and have produced exactly all terms that contribute to the Hamilto-
nian. This can be achieved as follows: we associate internal state 1 with “no non-trivial operator
to the right”. Being in state 1, the automaton has five options at a site: adding another Î to the
operator string (staying in 1), adding a Ŝ+ term (moving to state 2), a Ŝz term (moving to state
3), or a Ŝ− term (moving to state 4). In any of those cases, the automaton now must add the
term that completes the interaction at the next site, this is a (J/2)Ŝ− term, a JŜz term, or a
(J/2)Ŝ+ term. In any case, it moves into state 5, which corresponds to “completed interaction
to the right”. At the same time, it can also move directly from state 1 to 5 by introducing a hŜz

field term.

The action of the automaton can now be represented in matrix form where the row and column
indices correspond to the outgoing and ingoing internal state of the automaton at each step.
Taking into account that at site 1 the automaton must end in state 5 and that at site L it must
start in state 1, the matrices read

M̂ [i] =


Î 0 0 0 0

Ŝ+ 0 0 0 0

Ŝz 0 0 0 0

Ŝ− 0 0 0 0

hŜz (J/2)Ŝ− JzŜz (J/2)Ŝ+ Î

 (64)
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start

end
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SzS+ S-
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JSz (J/2)S+(J/2)S-
hSz

Fig. 17: States of the automaton constructing the Hamiltonian MPO for the Heisenberg model.

and on the first and last sites

M̂ [1] =
[
hŜz (J/2)Ŝ− JzŜz (J/2)Ŝ+ Î

]
M̂ [L] =


Î

Ŝ+

Ŝz

Ŝ−

hŜz

 . (65)

We can identify D̃ = 5 as the dimension of the Hamilton MPO which is given by the above
matrices. Similarly, other Hamiltonians can be constructed; for longer-ranged interactions, we
have to introduce further internal states such that the automaton can keep track of when to
complete an interaction. For a more elaborate discussion, see [12] and references therein.

10 Dynamical DMRG

Dynamical DMRG is the denomination for methods for the calculation of frequency-dependent
Green’s functions and spectral functions, hence the name which is not to be confused with
time-dependent DMRG for the calculation of out-of-equilibrium dynamics.
The fundamental object under study are objects such as

Sη(ω) :=

〈
0

∣∣∣∣Ô† 1

E0 + ω + iη − Ĥ
Ô

∣∣∣∣ 0〉 , (66)

where η = 0+ (numerically, it will be a small, but finite positive number) and |0〉 is the ground
state of Ĥ . This is nothing but the Fourier transform (with a numerical convergence factor e−ηt)
of the T = 0 Green’s function

GO(t) = 〈0|Ô†(t)Ô(0)|0〉 (t > 0) (67)
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but the Chebyshev results are obtained orders of magnitude faster. From [45].

where the Heisenberg picture is assumed. For available |0〉, various techniques have been pro-
posed which are not restricted to MPS, but can be efficiently implemented there.
The fastest (but often least precise) technique is the continuous fraction or Lanczos approach.
This approach was pioneered in [40], first used in the classic DMRG context by [41], but
can be made much more precise if expressed in MPS language [42]. Starting from |q1〉 =

Ô|0〉/‖Ô|0〉‖, it generates a sequence of orthonormal Krylov vectors (also known as Lanczos
vectors) |qm〉 as

βm|qm+1〉 = Ĥ|qm〉 − αm|qm〉 − βm−1|qm−1〉 , (68)

where the αm and βm (calculated by normalizing |qm+1〉) are the diagonal and off-diagonal el-
ements of a tridiagonal matrix representation of Ĥ: αm = 〈qm|Ĥ|qm〉 and βm = 〈qm+1|Ĥ|qm〉.
Then it can be shown by matrix inversion that

Sη(ω) =
〈0|Ô†Ô|0〉

E + iη − α1 −
β2
1

E + iη − α2 −
β2
2

E + iη − α3 − . . .

. (69)

The attractive feature of this procedure is that the generation of Krylov vectors is usually avail-
able for free as the necessary algorithm already is part of the Lanczos large sparse matrix diag-
onalization routine needed in the ground state search.
The current gold standard, but also slowest, approach is the correction vector approach [43,44].
One introduces the so-called correction vector

|c〉 = 1

E0 + ω + iη − Ĥ
Ô |0〉, (70)
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such that the Green’s function reads Gη(ω) = 〈0|Ô†|c〉. |c〉 is determined by solving the large
sparse equation system

(E0 + ω + iη − Ĥ)|c〉 = Ô|0〉, (71)

for which reliable, but quite costly techniques such as GMRES are available [22]. Note that it
is not a good idea to “square” the system as originally proposed in order to make it hermitian,
because the new condition number is now the square of the old one, drastically slowing down
convergence. Taking the limit η → 0 also implies strongly increasingD of the correction vector
MPS to maintain the desired accuracy, for reasons not fully understood at the moment.
More recently, a new technique was proposed which expands the Green’s function in terms
of Chebyshev polynomials [45]; I refer to the literature as it is not yet a widely used standard
method; but from Fig. 18 it should be clear that it is a serious contender for the correction vector
method, because it achieves similar accuracy orders of magnitude faster. – It remains, however,
to be seen whether this advantageous scenario continues to hold for more complex systems.
Concluding this section, let me mention that both at T = 0 and T > 0 (where the techniques just
discussed do not apply) frequency-dependent can be successfully obtained by a combination
of time-dependent DMRG for the calculation of two-time correlators and subsequent Fourier
transformation (for T = 0, see [6], for T > 0 see [33]). Frequency resolution is limited by the
finite range in time of tDMRG which necessitates some exponential damping of the real-time
data.

11 Outlook: DMRG in two dimensions

MPS and DMRG are obviously best suited to the study of one-dimensional quantum sys-
tems. However, there has been enormous interest in the notoriously elusive physics of two-
dimensional quantum systems for decades, ranging from frustrated magnets to high-Tc super-
conductors, with a recent surge of interest in the physics of topological quantum spin liquids.
Therefore it is not surprising that there have been numerous attempts to apply DMRG (MPS) to

Fig. 19: Two-dimensional DMRG setup: The 2D lattice is explored by a one-dimensional snake,
for which one formulates an MPS. Horizontal interactions become long-ranged, but the real
problem is that encoding the entanglement of vertically separated bipartitions of the system
becomes exponentially expensive.
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Fig. 20: The kagome lattice, whose name derives from the structure of Japanese bamboo bas-
kets, but can be found in natural magnetic substances.

two-dimensional quantum systems, seriously starting with [38] and mainly focusing on Heisen-
berg and t-J-models in two dimensions.
The fundamental idea is to map (see Fig. 19) the two-dimensional lattice to a one-dimensional
snake winding through the system, for which an MPS can be formulated. Technically, the price
to pay is that short-ranged interactions perpendicular to the snake direction can become long-
ranged (consider horizontal interactions in Fig. 19). In the beginning, this was considered to be
the main reason for the comparatively disappointing results obtained (the reasoning need not
concern us here). But in reality, the reason is given by the fact that entanglement for ground
states of short-ranged Hamiltonians scales linearly with system size (area law [46]), i.e. S ∝ L.
As we have seen, a reduced density operator of dimension D can at most encode entanglement
S = lnD. Now the reduced density operators generated by an MPS of dimension D have at
most dimension D themselves; hence we need MPS of (at least, because the distribution of
the weights enters also) dimension 2D to encode entanglement S. If we consider the vertical
cut through the system, it is crossed by the snake only once, and the matrices therefore have
to be exponentially large in the vertical size of the lattice, which strongly limits achievable
system sizes. On the upside, horizontal cuts are crossed by the snake L times, and we have
DL coefficients if we think about the bottom and top parts of the system being represented by
single matrices, and we can encode entanglement S = L lnD, matching the area law. The size
restriction therefore only applies in one spatial direction, such that simulations have focused on
long stripe systems Lx � Ly.
As tensorial generalizations of MPS such as PEPS [9], MERA [47] or iPEPS [48] do not suffer
from exponential growth of resources in two dimensions, they were at first considered vastly
superior to the essentially unsuitable DMRG approach in two dimensions. However, it was
realized that they suffer not only from scaling polynomially much worse in tensor dimension (up
toD16 as opposed toD3 for MPS operations), which would always be preferrable to exponential
growth in resources for sufficiently large system sizes, but also from quite severe issues with
normalizability and the conditioning of the arising linear algebra problems as well as further
approximations involved in the contractions. Therefore, progress in that direction has not been
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quite as spectacular as originally hoped for, which has left at least for now quite a bit of space
for brute-force, but numerically well controlled DMRG applications, which have progressed
both due to more powerful computers and progress in highly efficient implementations of the
algorithm.
To illustrate the state of the art, let me mention the recent large-scale numerical studies of the
isotropic Heisenberg antiferromagnet on the kagome lattice illustrated in Fig. 20, which have
stirred up a lot of interest [49, 50]. The nature of the ground state has been discussed since the
late eighties, without any conclusive answer, but numerous competing proposals so far. The
most likely candidate for the ground state (in the view of many, the definite solution) could
be identified recently as a quantum spin liquid by [49], more precisely, using D ∼ 17000 and
exploiting non-Abelian symmetries of the Hamiltonian in the largest DMRG study done so far,
as a Z2 topological quantum spin liquid [50]; lattices studied were on cylinders of a width of
up to 18 lattice spacings and a length of up to 70 lattice spacings. For an example, consider
Fig. 21, where the first reliable extrapolation of the (triplet) gap of the model is shown.
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References

[1] S.R. White, Phys. Rev. Lett. 69, 2863 (1992)
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