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1 Introduction

The first microscopic theory for superconductivity was proposed in 1957 by Bardeen, Cooper
and Schrieffer [1] almost 50 years after the discovery of Kamerlingh Onnes of the zero elec-
tric resistance of the mercury below 4.1 K. The theory of superconductivity can be divided
into two separate areas: first the establishment of a pairing formalism, which leads to a su-
perconducting condensate, given some attractive particle-particle interaction, and secondly, a
mechanism by which two electrons might attract one another. BCS [2], by simplifying the in-
teraction, succeeded in establishing the pairing formalism. Indeed, one of the elegant outcomes
of the BCS pairing formalism is the universality of various properties; at the same time this
universality means that the theory really does not distinguish one superconductor from another,
and, more seriously, one mechanism from another. Luckily, while many superconductors do
display universality, some do not, and these, as it turns out, provide very strong support for the
electron-phonon mechanism. Before one establishes a theory of superconductivity, one requires
a satisfactory theory of the normal state [3]. In conventional superconductors, the Fermi liquid
theory appears to work very well, so that, while we cannot solve the problem of electrons inter-
acting through the Coulomb interaction, experiment tells us that Coulomb interactions give rise
to well-defined quasiparticles, i.e., a set of excitations which are in one-to-one correspondence
with those of the free-electron gas. The net result is that one begins the problem with a reduced
Hamiltonian

Hred =
∑
kσ

εkc
†
kσckσ +

∑
kk′

Vk,k′c
†
k↑c
†
−k↓c−k′↓ck′↑ , (1)

where, for example, the electron energy dispersion εk already contains much of the effect due
to Coulomb interactions. The important point is that well-defined quasiparticles with a well
defined energy dispersion near the Fermi surface are assumed to exist, and are summarized by
the dispersion εk with a pairing interaction Vk,k′ ≡ V (k, k′). The BCS equations is

∆k = −
∑
k′

Vk,k′
∆k′

2Ek′
tanh

Ek′

2T
, (2)

where

Ek =
√
ε2k +∆2

k (3)

is the quasiparticle energy in the superconducting state, ∆k the variational parameter used by
BCS, N(0) the normal density of states at the chemical potential EF , which is set to zero. An
additional equation which must be considered together with the gap equation is the number
equation,

n = 1− 1

N(0)

∑
k′

εk
Ek′

tanh
Ek′

2T
. (4)

Given a pair potential and an electron density, one has to solve these equations to determine
the variational parameter ∆k and the chemical potential, generally with an iterative numeri-
cal method. For conventional superconductors the chemical potential hardly changes from the
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normal to the superconducting state, and the variational parameter is much smaller than the
chemical potential, with the result that the second equation was usually ignored. BCS then
modeled the pairing interaction as a negative (and therefore attractive) constant potential V
with a sharp cutoff in momentum space at the Debye energy ωD

Vk,k′ ≈ −V θ
(
ωD − |εk|

)
θ
(
ωD − |εk′|

)
. (5)

Using this potential in the BCS equation (2) with (3), along with a constant density of states
assumption over the entire range of integration,

1

λ
=

ωD∫
0

tanh(E/2T )

E
dε (6)

where λ = N(0)V . At T = 0 K, the integral can be done analytically to give

∆ = 2ωD
exp(−1/λ)

1− exp(−1/λ)
. (7)

Close to the critical temperature, Tc, the BCS equation becomes

1

λ
=

ωD/2Tc∫
0

tanhx

x
dx (8)

which cannot be solved in terms of elementary functions for arbitrary coupling strength. Nonethe-
less, in weak coupling, one obtains

Tc = 1.13ωD exp(−1/λ). (9)

It is clear that Tc or the zero temperature variational parameter∆ depends on material properties
such as the phonon spectrum ωD, the electronic structure N(0) and the electron-ion coupling
strength V . However, it is possible to form various thermodynamic ratios, that turn out to be
independent of material parameters. The obvious example from the preceding equations is the
ratio 2∆/Tc. In weak coupling (most relevant for conventional superconductors), for example,

2∆

Tc
= 3.53, (10)

that is a universal result, independent of the material involved. Many other such ratios can
be determined within BCS theory, and the observed deviations from these universal values
contributed to the need for an improved formulation of BCS theory.
In the ’60s the first discrepancies between the experimental results and the theoretical predic-
tions began to be observed and the BCS theory [2] turned out to be inadequate for supercon-
ductors in which the electron-phonon interaction is strong. A primary reason for this is the
instantaneous nature of the BCS interaction which does not incorporate enough of the physics
of the electron-phonon system. For example, the electron-phonon interaction causes a mass
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2∆/Tc (Cs − Cn)/Cs λ TC
Al 3.535 1.43 0.43 1.18
Sn 3.705 1.68 2.77 3.75
Pb 4.497 2.77 1.55 7.22
Hg 4.591 2.49 1.62 4.19

Table 1: Deviations from the universality of BCS theory for some elemental superconductors.

enhancement of electron states near the Fermi level, seen in the specific heat, and a finite life-
time of electron quasiparticle states. In many material these effects are really, strong and well-
defined quasiparticles no longer exists. Nevertheless, Migdal [4] showed that Feynman-Dyson
perturbation theory can solve the electron-phonon problem to high accuracy, because the small
parameter λΩD/EF ≈ 10−3 keeps higher order corrections small.

Table 1 shows the values of the principal quantities for some characteristic elements. They
differ more and more from the BCS predictions as the of coupling constant λ increases. Ac-
cording to BCS theory, the expected values are 2∆/TC = 3.53 and (Cs − Cn)/Cs = 1.43.
These deviations arise when the interaction between electrons and phonons is strong, while
in the weak-coupling approximation the properties of the lattice and the dispersion of phonon
curves do not enter directly into the BCS theory.

The prediction of superconducting properties such as the critical temperature or the supercon-
ducting energy gap remains one of the outstanding challenges in modern condensed matter the-
ory. Owing to the complex nature of the superconducting state, a quantitative understanding of
the pairing mechanism in superconductors requires a very detailed knowledge of the electronic
structure, the phonon dispersions, and the interaction between electrons and phonons. For ex-
ample, in conventional superconductors below the critical temperature electron pairing results
from a subtle interplay between the repulsive Coulomb interaction and the attractive electron-
phonon interaction. Starting from the BCS theory several approaches to the calculation of the
superconducting properties have been proposed for arriving at first-principles Green’s function
methods such as the Migdal-Eliashberg [5] formalism that provides a very accurate description
of the superconducting state in almost all superconductors.

The electron-phonon coupling provided by Eliashberg theory is local in space and retarded in
time, reflecting the delay in the development of lattice overscreening. The result is in contrast
to the non local, instantaneous nature of the BCS model interaction, attractive for any pair of
electrons within the Debye energy ωD of the Fermi surface. Eliashberg theory is valid only
when λωD/EF ('

√
m∗/M) � 1, where EF is the Fermi level. This is the range of Migdal’s

theorem.
Migdal [4] argued that all vertex corrections areO(

√
m∗/M), wherem∗ is the electron effective

mass andM the ion mass, compared to the bare vertex, and therefore can be ignored; this means
that only single phonon scattering terms will contribute to the electronic self energy.
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2 Imaginary-axis Eliashberg equations

2.1 Nambu formalism

The Fröhlich interaction is formally very similar to the electron-electron interaction via Coulomb
forces, thus the mutual scattering of two electrons can be explained through the electron-
phonon-electron interaction in the same way. But the phase transition to the superconducting
state invalidates the perturbation theory developed for a metal in the normal state. However, in
1960, Nambu showed [6] how the formalism used in the normal state can be rewritten in such
a way that the diagrams used to deal with the normal state are applicable also to the supercon-
ducting state. The inclusion of Coulomb interactions causes the electron-phonon interaction to
be screened and this can constitute a considerable reduction.
In spite of the strong electron-phonon coupling, it remains true that phonon corrections to the
electron-phonon vertex are small. In contrast, Coulombic corrections are not necessarily small,
but are more or less constant factors, so they can be included in the coupling constant. In the
Nambu formalism a 2-component spinor for the electron

ψk =

(
ck↑

c†−k↓

)
, ψ†k =

(
c†k↑ c−k↓

)
(11)

and a bare-phonon field operator
ϕqν = bqν + b†−qν (12)

are defined. The Hamiltonian of an electron-phonon interacting system can be written [3] in
terms of ψ and ϕ. Including Coulomb interactions and it becomes

H =
∑
k

εkψ
†
kεkψ

†
kσ3ψk +

∑
qλ

Ωqλb
†
qλbqλ

∑
kk′λ

gk,k′λϕk−k′λψ
†
k′σ3ψk

+
1

2

∑
k1k2k3k4

〈k3k4|VC |k1k2〉
(
ψ†k3

σ3ψk1

)(
ψ†k4

σ3ψk2

)
, (13)

where εk is the one-electron Bloch energy relative to the Fermi levelEF , σ3 is a Pauli matrix,1Ω
is the bare phonon energy of wavevector q and mode ν, gkk′ν are electron phonon matrix ele-
ments, and VC is the Coulomb potential.
Translational invariance of VC restricts k1 + k2 − k3 − k4 to be either zero or a reciprocal
lattice vector K. The electrons are described in an extended zone scheme and the phonons
are described in a reduced zone scheme which is extended periodically throughout q-space.
In order to apply perturbation methods to superconductors the possibility of the existence of
Cooper pairs has to be included. This can be done taking the anomalous propagators. Using the

1The Pauli matrices are

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)



13.6 Giovanni A.C. Ummarino

Nambu formalism the Green function [7] becomes

G(k, τ) = −〈T {ψk(τ)ψ†k(0)}〉, (14)

Dλ(q, τ) = −〈T {ϕqλ(τ)ϕ†k(0)}〉 (15)

and the average is over the grand canonical ensemble (β = 1/T , where T is the temperature)

〈Q〉 =
Tr e−βHQ

Tr e−βH
, (16)

where the operators evolve in imaginary time and T is the time-ordering operator. As the matrix
operator ψk(τ)ψ†k(0) does not conserve the number of particles the definition of a new operator
U that adjusts the number of particles is necessary:

U = 1 +R† +R, (17)

whereR converts a given state in anN -particle system into the corresponding state in theN+2

particle system.
By this definition, the Green function for electrons is a 2× 2 matrix, the diagonal elements are
the conventional Green functions for spin-up electrons and spin-down holes, while G12 and G21

describe the pairing properties. It is defined as

G(k, τ) = −

(
〈T {ck↑(τ)c†k↑(0)}〉 〈UT {ck↑(τ)c−k↓(0)}〉

〈UT {c†−k↓(τ)c†k↑(0)}〉 〈T {c†−k↓(τ)c−k↓(0)}〉

)
. (18)

The diagonal elements are the ‘normal’ propagators. The off-diagonals elements are Gor’kov’s
F and F̄ , respectively.
The phonon and electron Green function could be expanded in a Fourier series

Dλ(q, τ) =
1

β

∞∑
n=−∞

e−iνnτDλ(q, iνn) (19)

G(k, τ) =
1

β

∞∑
n=−∞

e−iωnτG(k, iωn), (20)

where where νn = 2nπ/β and ωn = (2n+1)π/β with integer n are the Matsubara frequencies.
They are odd multiples of π/β for Fermions while for Bosons they are even.

2.2 Migdal-Eliashberg theory

The basic components of a many-body system are the propagators and the Migdal-Eliashberg
theory [8–14] is no exception. The one-electron Green function for the non-interacting system,
in momentum space at imaginary frequencies, is given by

G0(k, iωn) =
[
iωn1− εkσ3

]−1 (21)

and for the phonons
D0(q, iνn) =

[
M
(
ω2(q) + ν2n

)]−1
, (22)



Eliashberg Theory 13.7

Fig. 1: Feynman diagrams (a) and (b) are the corrections of second order in the electron-
phonon interaction to the electron propagator. Diagram (a) is included in Migdal theory while
(b) is the first omitted diagram. Panels (c) and (d) shown schematic Fermi surfaces and partic-
ular k-states that contribute to (a) and (b), respectively. The last term, in general, will involve
large energy denominators (as 3-4 and 1-4) such that it is negligible. This theorem may fail in
two circumstances: (i) when either phonon has |q| small, or (ii) when the Fermi surface has a
one-dimensional topology.

where M is the ion mass and ω(q) the phonon dispersion.
From a diagrammatic analysis a Dyson-like equation for the electron and phonon Green func-
tions can be written, though now for the electron it will be a 2× 2 matrix equation

[G(k, iωn)]−1 = [G0(k, iωn)]−1 −Σ(k, iωn), (23)

[D(q, iνn)]−1 = [D0(q, iνn)]−1 −Π(q, iνn) . (24)

where Σ is the electronic and Π the phonon self-energy. In principle, in these self-energies,
contain the full electron-phonon vertex. Migdal’s theorem states that vertex corrections are
small. It is therefore a good approximation to set the vertex to the bare vertex, meaning that the
electron-phonon interaction is truncated at order

√
m/M ∼ ωD/EF . The self energy is then

approximated as

Σ(k, iωn) = − 1

β

∑
k′n′ν

σ3G(k′, iωn′)σ3

[∣∣gk,k′,ν∣∣2Dν(k − k′, iωn − iωn′) + VC(k − k′)
]
,

(25)
where VC(k − k′) is the screened Coulomb potential, cf. (13), which has been taken to depend
only on the momentum transfer k − k′.
It is important to remember that Σ̂ is a 2× 2 matrix. It can be rewritten using the Pauli matrices

Σ(k, iωn) = iωn [1− Z(k, iωn)]1 + χ(k, iωn)σ3 + φ(k, iωn)σ1 + φ̄(k, iωn)σ2 . (26)

We can now use the Dyson equation to replace the Green function matrix in the Migdal approx-
imation to the self-energy (25). Solving the resulting system of equations for the components
of the self-energy will give us the Eliashberg equations.
Using the notation of (26), the electronic Dyson becomes

[G(k, iωn)]−1 = iωnZ1− (εk + χ)σ3 − φσ1 − φ̄σ2 . (27)
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Inverting this 2× 2 matrix, we obtain the Green matrix

G(k, iωn) =
1

Θ

[
iωnZ1 + (εk + χ)σ3 + φσ1 + φ̄σ2

]

=
1

Θ

(
iωnZ + (εk + χ) φ− iφ̄

φ+ iφ̄ iωnZ − (εk + χ)

)
, (28)

with the determinant of (27)

Θ = (iωnZ)2 − (εk + χ)2 − φ2 − φ̄2 . (29)

We see that the poles of the Green function matrix, i.e., the electron (and hole) elementary
excitations, are given by detG(k, ω) = Θ(k, ω) = 0

Ek =

√(
εk + χ

Z

)2

+
φ2 + φ̄2

Z2
, (30)

thus the gap function is given by

∆(k, iωn) =
φ− iφ̄
Z

. (31)

Inserting (27) in the Migdal approximation to the self-energy (25), we obtain a system of non-
linear equations for the components of the self-energy. For φ = φ̄ = 0 the system is diagonal
and a solution always exists. It corresponds to the normal state. In this case Z and χ are
determined by the normal-state self-energy: χ shifts the electronic energies and Z is a renor-
malizazion function [8].
If an additional solution with non-zero φ or φ̄ exists, it has lower free energy and describes a su-
perconducting state with gap function (31). Actually, it can be shown that, if in the Hamiltonian
there are no terms describing spin-dependent interactions, φ and φ̄ satisfy identical nonlinear
equations hence the solution will have φ = φ̄, except for a proportionality factor.2

The explicit form of the system of equations for the components of the self-energy is

iωn [1− Z(k, iωn)] =
1

β

∑
k′n′ν

|gk,k′,ν |2Dν(k − k′, iωn − iωn′)
iωn′Z(k′, iωn′)

Θ(k′, iωn′)

χ(k, iωn) =
1

β

∑
k′n′ν

|gk,k′,ν |2Dν(k − k′, iωn − iωn′)
χ(k′, iωn′) + ε′k
Θ(k′, iωn′)

φ(k, iωn) = − 1

β

∑
k′n′ν

[
|gk,k′,ν |2Dν(k − k′, iωn − iωn′)− VC(k − k′)

] φ(k′, iωn′)

Θ(k′, iωn′)

φ̄(k, iωn) = − 1

β

∑
k′n′ν

[
|gk,k′,ν |2Dν(k − k′, iωn − iωn′)− VC(k − k′)

] φ̄(k′, iωn′)

Θ(k′, iωn′)

n = 1− 2

β

∑
k′n′

χ(k′, iωn′) + εk′

Θ(k′, iωn′)

2The arbitrary phase comes from the one of the one-electron state. Normally, the physical quantities cannot
depend on this phase. However, it is measured by Josephson tunnelling. Thus BCS theory exhibits a broken gauge
symmetry.



Eliashberg Theory 13.9

These are the Eliashberg equations. The last equation gives the electron density and determines
the chemical potential µ.
The general Eliashberg equations couple all momenta k. To simplify them, they are usually
averaged over by replacing the sums over momenta by integrals over energy, weighted with the
density of states. The result is a single set of equations. This approximation turns out to be
good for elemental superconductors, but fails in describing more complex systems.
The k-dependence in G comes mainly from the explicit εk dependence of Θ, while it can be
averaged out in Z and φ (fixing εk = EF because these quantities are non-zero only near the
Fermi surface), so

Z(k, iωn) → 〈Z(k, iωn)〉ε=EF = Z(iωn)

φ(k, iωn) → 〈φ(k, iωn)〉ε=EF = φ(iωn)

χ(k, iωn) → 〈χ(k, iωn)〉ε=EF = χ(iωn)

On the right hand side of the Eliashberg equations the same k average can be obtained by ap-
plying the operator 1

N(0)

∑
k δ(εk) where N(0) is the normal density of states at the Fermi level

and introducing a unity factor
∫
dω δ(ω − ωq,ν), where q = k − k′ is the phonon wavevector3

[1− Z(iωn)] iωn = − 1

βN 2(0)

∑
n′

∫
dω
∑
kk′ν

|gk,k′,ν |2 δ(εk′)δ(εk)δ(ω − ωq,ν)2ωq,ν

(ωn − ωn′)2 + ω2
q,ν

×
∫ ∞
−∞

dε
N(ε)iωn′Z(iωn′)

Θ(ε, iωn′)

φ(iωn) =
1

βN 2(0)

∑
n′

∫
dω
∑
kk′ν

|gk,k′,ν |2 δ(ε′k)δ(εk)δ(ω − ωq,ν)2ωq,ν

(ωn − ωn′)2 + ω2
q,ν

×
∫ ∞
−∞

dε
N(ε)φ(iωn′)

Θ(ε, iωn′)

χ(iωn) = − 1

βN 2(0)

∑
n′

∫
dω
∑
kk′ν

|gk,k′,ν |2 δ(ε′k)δ(εk)δ(ω − ωq,ν)2ωq,ν

(ωn − ωn′)2 + ω2
q,ν

×
∫ ∞
−∞

dε
N(ε) [ε+ χ(iωn′)]

Θ(ε, iωn′)

n = 1− 2

βN(0)

∑
n′

∫ ∞
−∞

dε
N(ε) [ε+ χ(iωn′)]

Θ(ε, iωn′)
.

as the phonon interaction is very low, the sum over k′ has been split up into an angular average
for εk = EF and an integration in ε on the ε dependence of the electronic Green function.
Only the states near the Fermi level will contribute to this integral, because of the εk terms in
Θ(ε, iωn). When the density of states can be considered constant in this region, a further simpli-
fication can be introduced usingN(0) instead ofN(ε) and performing the integrals analytically.
In this way the final result is χ(iωn) = 0 and n = 1 (half-filling approximation).

3The equation for χ will be omitted from now on because, in many cases, its contribution can be neglected.
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It is useful to define the electron-boson spectral function, the positive-definite function

α2F (ω) = N(0)
∑
qν

g2q,νδ(ω − ωq,ν)

=
1

N(0)

∑
kk′

∑
ν

|gk,k′,ν |2 δ(εk′)δ(εk)δ(ω − ωq,ν), (32)

where
g2q,ν =

1

N2(0)

∑
k′

|gk,k′,ν |2 δ(εk+q)δ(εk) (33)

is the q-dependent electron-phonon coupling. With this the Eliashberg system takes the form

[1− Z(iωn)] iωn = −π
β

∑
n′

Z(iωn′)iωn′

Ξ(iωn′)

∫
dΩ

2Ωα2F (Ω)

(ωn − ωn′)2 +Ω2

φ(iωn) =
π

β

∑
n′

φ(iωn′)

Ξ(iωn′)

[ ∫
dΩ

2Ωα2F (Ω)

(ωn − ωn′)2 +Ω2
−N(0)V̄C

]
Ξ(iωn) =

√
[Z(iωn)ωn]2 + [φ(iωn)]2 ,

where V̄C represents an appropriate Fermi surface average of the screened Coulomb potential
VC . The sum over Matsubara frequencies can be cut off at an energy ωC . Solving these equa-
tions, we obtain the electron self-energy at the Fermi level.

2.3 Coulomb pseudopotential

Including the repulsive term in the Eliashberg equations is a hard task. The Coulomb interaction
cannot be introduced with the same accuracy of the electron-phonon one, since it does not
have a natural cut-off to ensure a convergent sum over the Matsubara frequencies. While the
electron-electron interaction has a large energy scale and a correspondingly short interaction
time, the electron-phonon interaction has a timescale typical of the much larger inverse phonon
frequencies. The time scale difference is normally dealt using an energy window ωC with a
renormalized electron-electron interaction [13]

µ∗ =
µ

1 + µ ln (EF/ωC)
, (34)

which is called Morel-Anderson pseudopotential. In this formula, µ is an average electron-
electron matrix element times the density of states at the Fermi level.
In the normal state self-energy the Coulomb potential is already included, so that only the off-
diagonal term will be affected by this correction, giving

φC(iωn) = −µ∗π
β

∑
n′

φ(iωn′)

Ξ(iωn′)
θ(ωC − |ωn′|). (35)

Including this contribution in the Eliashberg equation for φ, we obtain

∆(iωn)Z(iωn) =
π

β

∑
n′

∆(iωn′)√
ω2
n′ +∆2(iωn)

[λ(iωn′ − iωn)− µ∗(ωC)] θ(ωC − |ωn′ |)

Z(iωn) = 1 +
π

ωnβ

∑
n′

ωn′√
ω2
n′ +∆2(iωn)

λ(iωn′ − iωn)
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where λ(iωn′−iωn) is related to the electron-boson spectral density α2F (ω) through the relation

λ(iωn − iωn) =

∫ ∞
0

dΩ
2Ωα2F (Ω)

Ω2 + (ωn′ − ωn)2
. (36)

3 Real-axis Eliashberg equations

The Green function can be analytically continued onto the real-frequencies axis, by using the
expression ω + iδ, with an infinitesimal δ. The density of states is contained in the imaginary
part of G(k, ω + iδ).

In their real-axis formulation, the Eliashberg equations are a set of two non-linear integral equa-
tions for a complex frequency-dependent gap∆(ω) and a renormalization function Z(ω), which
exists also in the normal state. Both ∆(ω) and Z(ω) are temperature dependent.

∆(ω, T )Z(ω, T ) =

∫ ωC

0

dω′<

[
∆(ω′, T )√

ω′2 −∆2(ω′, T )

]∫ ∞
0

dΩα2F (Ω)

×
{

[n(Ω) + f(−ω′)]
[

1

ω + ω′ +Ω + iδ+
− 1

ω − ω′ −Ω + iδ+

]
− [n(Ω) + f(ω′)]

[
1

ω − ω′ +Ω + iδ+
− 1

ω + ω′ −Ω + iδ+

]}
−µ∗

∫ ωC

0

dω′<

[
∆(ω′, T )√

ω′2 −∆2(ω′, T )

]
[1− 2f(ω′)]

[1− Z(ω, T )]ω =

∫ ∞
0

dω′<

[
ω′√

ω′2 −∆2(ω′, T )

]∫ ∞
0

dΩα2F (Ω)

×
{

[n(Ω) + f(−ω′)]
[

1

ω + ω′ +Ω + iδ+
− 1

ω − ω′ −Ω + iδ+

]
− [n(Ω) + f(ω′)]

[
1

ω − ω′ +Ω + iδ+
− 1

ω + ω′ −Ω + iδ+

]}
.

Here, ωC is the boson energy cut-off introduced in the Coulomb pseudo potential and f(ω) =

1/(eβω + 1) is the Fermi, n(Ω) = 1/(eβΩ − 1) the Bose function. The real part of the prod-
uct ∆(ω, T )Z(ω, T ) and of Z(ω, T ) is determined by the principal-value integrals, while the
imaginary part comes from the delta-function parts.

The denominators can vanish for particular energies. Then the integrals must be done carefully
when a numerical approach is used. The low frequency behaviour of the various functions is,
at T = 0, <[∆(ω)] = c, =[∆(ω)] = 0, <[Z(ω)] = d and =[Z(ω)] = 0 while, at T 6= 0,
<[∆(ω)] ∝ ω2, =[∆(ω)] ∝ ω, <[Z(ω)] = d(T ) and =[Z(ω)] ∝ 1/ω where c and d are con-
stants.
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4 Simplified approaches

4.1 BCS limit

In order to better understand the Eliashberg equations, it can be useful to reduce them to BCS
limit. To achieve this aim further approximations are introduced: First of all, the bosons factor
in the real-axis Eliashberg equations are ignored, i.e., real bosons scattering are not taken into
account. Further, the imaginary parts of ∆ and Z must be neglected. We set

∆(ω, T ) =

{
∆0(T ) for ω < ωD
0 for ω ≥ ωD

, (37)

where ∆0(T ) is a real number and ωD is the Deybe energy and replace Z(ω, T ) by its value in
the normal state at ω = 0 and T = 0. Then

Z(0, T )− 1 = 2

∫ ∞
0

dω′
∫ ∞
0

dΩ α2F (Ω)

[
f(−ω′)

(ω′ +Ω)2
+

f(ω′)

(ω′ +Ω)2

]
≡ λ(T ) , (38)

which in the T → 0 limit is

Z(0, 0)− 1 =

∫ ∞
0

dΩ α2F (Ω)

∫ ∞
0

2dω′

(ω′ +Ω)2
≡ λ . (39)

The gap equation becomes

∆0(T ) =

∫ ωD

∆0(T )

dω′
∆0(T )√

ω′2 −∆2
0(T )

λ− µ∗

1 + λ

[
1− 2f(ω′)

]
. (40)

It is interesting to note that now ωD is important for both the λ and the µ∗ contribution.

With ε =
√
ω′2 −∆2

0, the equation can be rewritten as

∆0(T ) =
λ− µ∗

1 + λ

∫ ωD

0

dε
∆0(T )√
ε2 +∆2

0(T )

[
1− 2f

(√
ε2 +∆2

0(T )
)]

, (41)

which is the usual BCS equation at finite temperature. In the the T → 0 limit it becomes

∆0 =
λ− µ∗

1 + λ

∫ ωC

0

dε
∆0√
ε2 +∆2

0

, (42)

which corresponds to the BCS gap equation if we define λBCS = (λ− µ∗)/(1 + λ). The renor-
malization factor 1/(1 +λ) comes from the Z term in the Eliashberg equation, i.e., from having
included electron-phonon effects.

4.2 Critical temperature

Solving the Eliashberg system, even in the isotropic form, is a quite demanding task. However
the most relevant results can be obtained using a simpler approach proposed by McMillan [15].
Through a fit of a large set of results obtained using the spectral function of lead and solving the
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Eliashberg equations in a small range of the parameter space (λ < 2 and µ∗ < 0.15), McMillan
obtained an analytic formula for the critical temperature:

TC =
ΘD

1.45
exp

[
− 1.04 (1 + λ)

λ− µ∗ (1 + 0.62λ)

]
, (43)

where ΘD is the Debye temperature and the number λ has the same meaning as the electron-
phonon coupling parameter, and can be derived from the Eliashberg function as

λ = 2

∫
dΩ

α2F (Ω)

Ω
. (44)

Later, this formula was refined by Allen and Dynes [15], who substituted the factor ΘD/1.45

with Ωlog/1.2, with the much more representative frequency

Ωlog = exp

[
2

λ

∫
dΩ logΩ

α2F (Ω)

Ω

]
, (45)

which is a weighted average of the phonon frequencies. The McMillan formula predicts an up-
per limit for TC even if λ increases indefinitely. However this was a wrong conclusion because
the equation (43) was not derived analytically but obtained by numerical solutions in a fixed
range of the coupling constant and then it is not possible to consider the limit for λ → ∞. For
λ � 1, taking the limit of the Eliashberg equations the following expression for TC can be
obtained in an analytical way

TC = 0.183ωD
√
λ (46)

and it is clear that in Eliashberg theory there is no upper limit for the critical temperature.
In general the Eliashberg equations are solved numerically with an iterative method until you
reach self-consistency. The numerical procedure is very simple in the formulation on imaginary
axis, much less so on the real one. The critical temperature can be calculated or by solving an
eigenvalue equation [8] or, more easily, by giving a very small test value to superconducting gap
(for the Pb it is ∆ = 1.4 meV at T = 0 K so, for example, ∆(T ) = 10−7 meV) and checking at
which temperature the solution converges. In this way, Tc is obtained with accuracy superior to
experimental error bars.

5 Relation between real- and imaginary-axis formulation

5.1 Padé method for analytic continuation

The Eliashberg equations on the real axis are very difficult to solve, while their formulation
on the imaginary axis, while simpler to solve, can be used almost only to evaluate the critical
temperature. Therefore, a procedure which allows obtaining the real-axis gap and the renor-
malization function by analytically continuing ∆(iωn) and Z(iωn) is often used [16]. This
procedure makes use of Padé approximants. It speed up the numerical solution of Eliashberg
equations. However the Padé method is valid only at T < TC/10, thus it is often necessary
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Fig. 2: Validity check of Padé approximants methods. Here real and imaginary part of ∆(ω)
and Z(ω) are shown at T < TC/10.

to still solve for ∆(ω) directly from the real-frequency equations. Also when the Eliashberg
equations contain some terms that describe the presence of impurities in the superconductor the
accuracy of the Padé approximants can leave something to be desired.
The N -point Padé approximant to a complex function u(z) of the complex variable z, whose N
values ui = ui(zi) (i = 1, ..., N) are given at N complex points zi, is defined as the continued
fraction

CN(z) =
a1

1 +
a2(z − z1)

1 +
a3(z − z2)

1 +
a4(z − z3)

...
1+an(z−zn−1)

(47)

such that
CN(zi) = ui, i = 1, ..., N. (48)

The coefficients ai are given by recursive formula ai = gi(zi), where

g1(zi) = ui with i = 1, ..., N

gp(z) =
gp−1(zp−1)− gp−1(z)

(z − zp−1)gp−1(z)
for p ≥ 2

It can be shown that the continued fraction can be evaluated order-by-order via CN(z) =

AN(z)/BN(z) where AN and BN are polynomials given by the recursion relation

An+1(z) = An(z) + (z − zn)an+1An−1(z) with n = 1, 2, ..., N − 1

Bn+1(z) = Bn(z) + (z − zn)an+1Bn−1(z) with n = 1, 2, ..., N − 1

with starting values A0 = 0, A1 = a1, and B0 = B1 = 1.
A comparison of results obtained with the real-axis equations and results obtained with the Padé
method is shown in Fig. 2.
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5.2 Marsiglio, Schossmann, and Carbotte formulation

A more recent method [10] for solving the Eliashberg equations on the real axis introduces two
equations for the renormalized frequency ω̃(z) = zZ(z) and the pairing function φ(z)

ω̃(ω) = ω + iπT
∞∑
m=1

ω̃(iωm)√
ω̃2(iωm) + φ2(iωm)

[
λ(ω − iωm)− λ(ω + iωm)

]
+ iπ

∫ ∞
−∞

dz
ω̃(ω − z)√

ω̃2(ω − z)− φ2(ω − z)
α2F (z)

[
n(z) + f(z − ω)

]
(49)

φ(ω) = iπT

∞∑
m=1

φ(iωm)√
ω̃2(iωm) + φ2(iωm)

[
λ(ω − iωm)− λ(ω + iωm)− 2µ∗θ(ωC − |ωm|)

]
+ iπ

∫ ∞
−∞

dz
φ(ω − z)√

ω̃2(ω − z)− φ2(ω − z)
α2F (z)

[
n(z) + f(z − ω)

]
. (50)

These equations give solutions for the real-axis gap and renormalization function that are iden-
tical to those obtained from the solution of the real-axis equations. Then they are valid at any
temperature, but their numerical solution presents problems completely analogous to those of
the formulation on the real axis. The choice between these equations and those on the real axis
is thus just a matter of personal taste.

6 Tunneling inversion of the standard Eliashberg equations

In the past α2F (Ω) and µ∗ were obtained by experimental data or were considered as free
parameters. As shown in the lecture of R. Heid, now they can actually be calculated by density
functional theory [17] so, the theory does not contain free parameters.
When such calculations are not possible, the standard method to obtain these physical input
parameters involves single-particle tunneling spectroscopy, which is perhaps the simplest, most
direct probe of the excitations of a solid. In these experiments electrons are injected into (or
extracted from) a sample, as a function of bias voltage V . The typical example is a planar
junction SIN (superconductor, thin layer of insulating and a metal in the normal state) [18]. The
resulting current is proportional to the superconducting density of states [19]

IS(V ) ∝
∫
dω<

[
|ω|√

ω2 −∆2(ω)

]
[f(ω)− f(ω + V )] , (51)

where we have used the gap function, ∆(ω), defined as ∆(ω) ≡ φ(ω)/Z(ω). The propor-
tionality constant contains information about the density of states of the normal metal and the
tunneling matrix element. They are usually assumed to be constant.
In the zero temperature limit the derivative of the current with respect to the voltage is simply
proportional to the superconducting density of states(

dI

dV

)
S

/(
dI

dV

)
N

∝ <

{
|V |√

V 2 −∆2(V )

}
, (52)
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Fig. 3: Upper panel: Energy dependence of the lead density of states in the superconducting
states at very low temperature (T � Tc). The dashed line represents experimental data ob-
tained from tunneling, while BCS weak-coupling theory yields the dash-dotted line. The Eliash-
berg strong coupling result is shown by a solid line. Lower panel: Calculated electron phonon
spectral function of Pb (solid line) determined by inversion of Eliashberg equations compared
with the measured phonon density of states (dashed line) for the same material.

where S and N denote superconducting and normal state, respectively. The right hand side is
simply the density of states, computed within the Eliashberg framework. From the experimen-
tally measured quasiparticle density of states at very low temperature Nm(V ) = ( dI

dV
)S/(

dI
dV

)N ,
where the subscript m denotes ”measured”, it is possible, through a complicated mathematical
procedure, to obtain the electron-phonon spectral function α2F (ω) and the Coulomb pseudopo-
tential µ∗, not only for superconductors but also for normal metals via the proximity effect [19].

The procedure followed is conceptually simple but mathematically involved [20, 21]. A first
guess is made for the two quantities, namely α2F0(ω), i.e., starting with a generic function
greater than zero in a finite range and with a Coulomb pseudopotential parameter, µ∗0 ' 0.1. So
the Eliashberg equations (at T = 0) can be solved numerically with these two input parameters
in order to obtain the complex function ∆(ω) necessary for calculating the superconductive
density of states N0

c (ω) denoted by the subscript c (calculated) and 0 (for a first choice). Next,
the functional derivative δN0

c (ω)
δα2F (ν)

which give the infinitesimal response of N0
c (ω) to the change

in α2F (ν) is computed. This is used to make a second guess for α2F (ν) through the equation
δα2F0(ν) =

∫
dω[ δN

0
c (ω)

δα2F (ν)
]−1[Nm(ω) − N0

c (ω)]. The new electron phonon spectral function is
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α2F1(ν) = α2F0(ν) + δα2F0(ν). This procedure is continued until convergence is reached.
Unique α2F (ν) and µ∗ result. They are refered to as the measured microscopic parameters for
that particular material. It is not at all apparent that the structures of the density of states, as can
be seen in the upper panel of Fig. 3, reflect the shape of the electon-phonon spectral function,
through the function ∆(ω).
At zero temperature the gap function ∆(ω) is real and roughly constant up to a certain energy
equal to that constant. This implies that the density of states will have a gap, as in BCS theory.
At finite temperature the gap function has a small imaginary part starting from zero frequency
(and, in fact the real part approaches zero at zero frequency so that in principle there is no
gap, even for an s-wave order parameter. In practice, a very well-defined gap still occurs for
moderate coupling, and disappears at finite temperature only when the coupling strength is
increased significantly.
McMillan and Rowell were able to deconvolve their measurement, to produce the single elec-
tron density of states. Since the superconducting density of states is given by the right hand
side of (52), the structure in the data must reflect the structures in the gap function, ∆(ω), that
originate from the input function, α2F (ω). In other words, the dI/dV curve can be viewed as
as a highly nonlinear transform of α2F (ω). Thus the, usually very small, structure present in
the density of states contains important information (in coded form) concerning the electron-
phonon interaction as can be seen in the lower panel of Fig. 3, where the calculated electron
phonon spectral function of Pb determined by inversion of the Eliashberg equations is compared
with the neutron scattering measurements of the phonon density of states for the same material:
this is the most clear way to determine the mechanism of superconductivity in a material.
Once α2F (ω) (and µ∗) has been acquired in this way one can use the Eliashberg equations
to calculate other properties, for example, Tc or many others physical quantities (temperature
dependence of the gap, of the upper critical field, of the specific heat etc). These can then be
compared to experiment, and the agreement in general tends to be fairly good.
One may suspect, however, a circular argumentation, since the theory was used to produce the
spectrum (from experiment), and now the theory is used as a predictive tool, with the same spec-
trum. There are a number of reasons, however, for believing that this procedure has produced
meaningful information. First of all, the spectrum obtained comes out to be positive definite, as
is physically required. Second, the spectrum is non-zero precisely in the phonon region, as it
should be and it agrees very well with the measured spectrum. Moreover, as already mentioned,
various thermodynamic properties are calculated with this spectrum, with good agreement with
experiments. Finally, the density of states itself can be calculated in a frequency regime beyond
the phonon region. The agreement with experiment is spectacular.
None of these indicators of success can be taken as definitive proof of the electron-phonon
interaction. For example, even the excellent agreement with the density of states could be
understood as a mathematical property of analytic functions. This procedure has not been so
straightforward or possible in all superconductors.
An alternate inversion procedure, which utilizes a Kramers-Kronig relation to extract ∆(ω)

from the tunneling result and remove µ∗ from the procedure has been provided [22]. At last a
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procedure exists for obtaining the electron-phonon spectral density by inversion of optical con-
ductivity data, a process very similar in spirit to the McMillan-Rowell inversion of tunnelling
data. This procedure has the advantage that it can be utilized also in the normal state [23].

7 Approximations of the standard Eliashberg equations

As mentioned before, the standard Eliashberg theory has been formulated within a lot of ap-
proximations. Here a list of these simplifications with possible generalizations:

• validity of Migdal’s theorem: In almost all superconductors the condition ωD/EF � 1

is fulfilled. In HTCS and fullerenes ωD/EF ∼ 10−1 and the it is necessary to include
vertex corrections in the self-energy [24].

• single conduction band: Before the discovery of MgB2 the known superconductors
could be described within one-band models. Then the theory has been generalized to
two (MgB2) [25] ore more bands (iron pnictides).

• isotropic order parameter: In the oldest superconductors the order parameter does not
depend on the position on the Fermi surface, i.e., ∆ ≡ ∆(k). There is experimental
evidence that this is not true in HTCS [26–28].

• singlet superconductivity: Usually the spin of Cooper pairs is equal to zero, but in
Sr2RuO4 [29] probably it equals one, implying a different spatial symmetry (p-wave) [8].

• infinite conduction bandwidth: In almost all superconductors the width of the conduc-
tion band is much larger then the representative energy of the boson mediating the Cooper
pairs interaction (phonons, antiferromagnetic spin fluctuations) so that it can be consid-
ered to be infinite. In HTCS and Fullerenes this approximation breaks down and the real
bandwidth has to be included in the theory [13].

• half filling: Typically the occupation of the conduction band is symmetric. In HTCS this
is not true and the number of the Eliashberg equation increases because of χ(ω) 6= 0 [13].

• flat normal density of states: Generally the normal density of states can be approximated
by a constant around the Fermi level. In PuCoGa5 and in a small number of other com-
pounds this approximation is not valid [30]. Also in this case the number of Eliashberg
equations increases [8].

• no disorder or magnetic impurities: A material can be disordered with chemical doping
or neutron irradiation, moreover magnetic impurities can be added. To describe these
physical situations, new terms have to be introduced in the Eliashberg equations [31].

• no proximity effect: A thin layer of a noble metal on top of a superconductor can be
described by means of a generalization of Eliashberg equations [14].
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8 Cuprate high-temperature superconductors

The standard Eliashberg equations have been derived for superconductors where the energy gap
showed an s-wave symmetry and the Cooper pairing was mediated by the electron-phonon in-
teraction. This type of interaction allows the application of Migdal’s theorem, which states that
vertex corrections in the electron-phonon interaction can be neglected to order λωD/EF . On
the other hand, it is now widely accepted that the high Tc cuprates have an energy gap with d
symmetry [26]. As concerns the microscopic mechanism leading to Cooper pairs, in these ma-
terials, there is still no consensus, even though there are indications that antiferromagnetic spin
fluctuations can play an important role [28, 29]. In principle, different mechanisms can provide
a transition to the superconducting state without any phonon participation. But a scenario where
superconductivity occurs through a joint contribution of the phonon and electronic mechanisms
is also perfectly realistic. If different mechanisms are considered the Migdal’s theorem does
not work a priori. In this case the vertex corrections, at least in principle, cannot be neglected
and a new type of Eliashberg equations could be necessary. The simplest model of cuprates
uses a single-band approximation in a two-dimensional case, thus referring, for example, to the
a-b planes of the layered superconductors and neglecting the band dispersion and the gap in the
c-direction. For simplicity, one can consider the Fermi surface as circle in the a-b plane and
the wave vectors k and k′ completely determined by the respective azimuthal angles φ and φ′,
since their length is, as usual, taken equal to kF . The d-wave one-band Eliashberg equations in
the imaginary axis representation are [32]

ωnZ(iωn, φ) = ωn +
T

2

∑
m

∫ 2π

0

dφ′Λ(iωn − iωm, φ, φ′)NZ(iωm, φ
′) + Γ

NZ(iωn)

c2 +NZ(iωn)2

Z(iωn, φ)∆(iωn, φ) =
T

2

∑
m

∫ 2π

0

dφ′[Λ(iωn−iωm, φ, φ′)−µ∗(φ, φ′, ωc)ϑ(ωc−ωm)]N∆(iωm, φ
′)

where ϑ is the Heaviside function, ωc a cut-off energy,

Λ(iωn − iωm, φ, φ′) = 2

∫ +∞

0

dΩα2F (Ω, φ, φ′)/[(ωn − ωm)2 +Ω2],

N∆(iωm, φ) =
∆(iωm, φ)√

ω2
m +∆2(iωm, φ)

,

NZ(iωm, φ) =
ωm√

ω2
m +∆2(iωm, φ)

,

and

NZ(iωn) =
1

2π

∫ 2π

0

NZ(iωn, φ)dφ.

Γ is proportional to the impurity concentration or disorder and c is related to the electron phase
shift for scattering off an impurity. The Born limit is found when c = ∞ but Γ/c2 constant,
and the unitary limit when c = 0. In the Born limit there is a different behavior between s-
and d-symmetries: in the s-wave symmetry a non magnetic impurities do not affect the critical
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Fig. 4: The calculated superconductive density of states in the d-wave (red solid line) and
s-wave (black dashed line) case.

temperature while in the d-wave symmetry the critical temperature is strongly reduced. In
the simplest model the electron-boson spectral function α2(Ω)F (Ω, φ, φ′) and the Coulomb
pseudopotential µ∗(φ, φ′) to lowest order contain both s- and d-wave contributions,

α2F (Ω, φ, φ′) = α2Fs(Ω) + α2Fd(Ω)
√

2 cos(2φ)
√

2 cos(2φ′) (53)

µ∗(φ, φ′) = µ∗s + µ∗d(Ω)
√

2 cos(2φ)
√

2 cos(2φ′). (54)

A solution with a pure d-wave gap function ∆(ω, φ′) = ∆d(ω)cos(2φ) and a pure s-wave
renormalization function Z(ω, φ′) = Zs(ω) can be obtained. Indeed the equation for Zd(ω) is
a homogeneous integral equation whose only solution in the weak-coupling regime is Zd(ω) =

0. Even though in the strong-coupling limit a non-zero solution could exist above a certain
coupling strength threshold, but usually one does not consider this rather exotic case and then
the stable solution corresponds to Zd(ω) = 0 for all the couplings.
By assuming d-wave symmetry for the gap function, the parameter µ∗s does not enter into the
two relevant Eliashberg equations. Therefore, although it is certainly larger than µ∗d and so
drives the system towards d-wave symmetry, it does not influence the solution.
The superconductive density of statesNd(ω) can be easily obtained from the calculated frequency-
dependent gap function as

Nd(ω) =

∫ 2π

0

dφ

2π
<

{
ω√

ω2 −∆2
d(ω)cos2(2φ)

}
. (55)

In Fig. 4 the superconductive density of states calculated in s- and d-wave cases are compared.
The black-dotted line is the solution obtained for lead, the red-solid line is an ideal solution
where the input parameters are kept the same of the case of lead, but d-wave symmetry has
been imposed.
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9 Multi-band Eliashberg theory

The equations seen so far (in all their formulations) are suitable to describe only a relatively
small number of superconductors. There are many materials which are less trivial and show
a multi-band structure. Consider a superconductor containing several different groups of elec-
trons occupying distinct quantum states. The most typical example is a material with several
overlapping energy bands. One can expect that each band will possess its own energy gap.
This means that the density of states of the superconducting pairs contains several peaks. Of
course if the energy gap were defined as the smallest quantum of energy that can be absorbed
by the material, then only the smallest gap of the system would satisfy this definition. Thus
to avoid misunderstandings when talking about the multi-gap structure of a spectrum we will
mean explicitly the aforementioned multi-peak property of the density of states. For this case
the previous equations must be generalized.
Considering a two band system [25] as the MgB2, the parameters multiply: there are now four
separate electron-phonon spectral functions α2

ijF (Ω) and four Coulomb pseudopotentials µ∗ij ,
where i, j = 1, 2.
The isotropic Eliashberg equations generalized to n bands (i = 1, ..., n), are written on the imag-
inary axis as

ωnZi(iωn) = ωn + πT
∑
mj

λij(iωn, iωm)NZ
j (iωm) +

+
∑
j

[
Γij + ΓM

ij

]
NZ
j (iωn) (56)

Zi(iωn)∆i(iωn) = πT
∑
mj

[
λij(iωn, iωm)− µ∗ij(ωc)

]
×

×Θ(ωc − |ωm|)N∆
j (iωm) +

∑
j

[Γij + ΓM
ij ]N∆

j (iωn) (57)

where Γij and ΓM
ij are the non magnetic and magnetic impurity scattering rates, and, in a manner

quite similar to the single band case,

λij(iωm − iωn) ≡ 2

∫ ∞
0

dΩ
Ω α2

ijF (Ω)

Ω2 + (ωn − ωm)2
(58)

and

N∆
j (iωm) = ∆j(iωm) ·

[√
ω2
m +∆2

j(iωm)
]−1

, NZ
j (iωm) = ωm ·

[√
ω2
m +∆2

j(iωm)
]−1

.

The diagonal elements describe the intra-band coupling, while the off-diagonal the inter-band
one. The values of the inter-band coupling constants are not completely free, but there is a
constraint

λij
λji

=
Ni(0)

Nj(0)
. (59)

This means that the ratio of the interband coupling constant λ12 and λ21 is equal to the ratio of
density of states.
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Fig. 5: Temperature dependence of the gaps ∆1 and ∆2 in a two-band model, calculated in the
cases of (i) no intraband coupling (solid lines), (ii) weak intraband coupling (dotted lines), and
(iii) strong interband coupling (dash-dot lines). The intraband coupling constants are arbitrary;
here we used those for MgB2

It is interesting and propedeutic for the subsequent chapters to analyze different situations, as
the coupling constants change: the limit of small inter-band coupling and the opposite case, i.e.,
a pure inter-band case [25] will be considered. The first case is interesting because it allows
understanding that an, even small, interband coupling leads to the correlation of the two bands,
otherwise completely independent as it is shown Fig. 5.

In a superconductor without interband coupling (λij = λji = 0) the bands behaves as n different
superconductors that have n different transition temperatures, TC1 and TC2 , each associated with
the respective band. The resulting superconducting state that results will be given by the sum of
the n bands contributions which are completely independent. As the off-diagonal components
grow the n bands become connected. However, this does not means that the superconductor
behaves as a one-band system. As long as each band has different a spectral function, and a
different coupling constant, they will give different contributions. Changing the off-diagonal
elements λij results in different temperature of the upper and lower gaps. Each band contains
its own set of Cooper pairs. Since, generally speaking, kFi

and kFj
(here kFi

and kFj
are on the

Fermi surface for different bands), there is no pairing of electrons belonging to different energy
bands i.e. λij , of course, does not represent a pairing between electrons of different bands.
This does not mean, however, that the pairing within each band is completely insensitive to the
presence of the other. On the contrary, a peculiar interband interaction and the appearance of
nonlocal coupling constants are fundamental properties of the multiband model. Consider two
electrons belonging to band i. They exchange phonons and form a pair as a result. There exist
two pairing scenarios. In one of them, the first electron emits a virtual phonon and makes a
transition into a state within the same energy band. The second electron absorbs the phonon
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and also remains in the same energy band, forming a bound pair with the first one. This is the
usual pairing picture, described by a coupling constant λii. However, the presence of the other
energy band gives rise to an additional channel. Namely, the first electron, originally located in
band i, can emit a virtual phonon and make a transition into band k. The phonon is absorbed by
the second electron, which also is scattered into band k, where it pairs up with the first electron.
As we know, there is no energy conservation requirement for single virtual transitions; such
conservation, however, must hold for the initial and final states. In our case this criterion is
met. Indeed, the initial and final states correspond to particles on the Fermi surface. Note
that, in addition, the initial and final total momenta are equal to zero. Thus the initial state had
two electrons in band i, while the final state finds a pair in band k. Interband charge transfer
processes are described by nondiagonal coupling constants λij , and because of them the system
is characterized by a single critical temperature. Otherwise, each band would have its own Tc.
There is a formal similarity between the Eliashberg equations for a proximity system [14] and
those for a two band system: if the mathematical expression of Eliasberg theory for a system
with two gaps is compared with a proximity system it is possible to notice a profound formal
analogy between these two situations. In both cases there is induced superconductivity because
in the second band, as in a noble metal film, a very weak intrinsic pairing can be chosen so this
band alone would not become superconducting. However the mechanisms giving rise to induced
supercondutivity are very different. In the two band model the systems are “separated” in
momentum space and the second band acquires an order parameter thanks to phonon exchange.
The phase space for phonons is effectively increased. In the proximity effect, on the other hand,
the systems are spatially separated and superconductivity is induced by the tunnelling of Cooper
pairs.
The multiband Eliashberg model developed above can also be used to explain the temperature
dependence of the upper critical magnetic field [33]. For the sake of completeness, the lin-
earized gap equations in the presence of magnetic field, for a superconductor in the clean limit
are reported. In the following, vFj

is the Fermi velocity of the j-th band, and Hc2 is the upper
critical field

ωnZi(iωn) = ωn + πT
∑
mj

λij(iωn − iωm)sign(ωm)

Zi(iωn)∆i(iωn) = πT
∑
mj

[
λij(iωn − iωm)− µ∗ij(ωc)

]
×

×θ(|ωc| − ωm)χj(iωm)Zj(iωm)∆j(iωm)

χj(iωm) =
2√
βj

∫ +∞

0

dq exp(−q2)×

× tan−1

[
q
√
βj

|ωmZj(iωm)|+ iµBHc2sign(ωm)

]
.

Here βj = πHc2v
2
Fj
/(2Φ0) and Φ0 is the unit of magnetic flux. In these equations the bare Fermi

velocities vFj
[33] are the input parameters.
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10 Iron pnictide superconductors

10.1 Gaps, critical temperature, and upper critical magnetic field

The new class of superconductive Fe-based compounds [34, 35] shows similar characteristics
to the cuprates and the heavy fermions, for example the high values of the rate 2∆/Tc or the
presence of the pseudogap. For all three classes of materials it is proposed that superconduc-
tivity is mediated by antiferromagnetic spin fluctuations [28]. The most obvious difference is
that almost all the iron compounds present a multiband behavior while in HTCS and in heavy
fermions this behavior was detected only in some particular cases. The multi-band nature of Fe-
based superconductors may give rise to a multi-gap scenario [36] that is indeed emerging from
different experimental data with evidence for rather high gap ratios, ≈ 2 − 3. In this regard
neither a three-band BCS model is adequate (it can only account for the gap ratio and Tc but
not for the exact experimental gap values) nor a four-band Eliashberg model with small values
of the coupling constants and large boson energies because the calculated critical temperature
has turned out to be larger than the experimental one. The high experimental value of the larger
gap suggests that high values of the coupling constants might be necessary to explain the exper-
imental data within a three-band model [37]: one has therefore to employ the Eliashberg theory
for strong coupling superconductors. At the beginning a three-band Eliashberg model allowed
reproducing various experimental data, indicating that these compounds can represent a case of
dominant negative interband-channel superconductivity (s± wave symmetry) with small typi-
cal boson energies (≈ 10 meV) but too high values of the electron-boson coupling constants
(1.9 ≤ λtot ≤ 5.9). The way to solve this problem is suggested by experiments of Inosov and
coworkers [38]: they found that the temperature evolution of the spin resonance energy follows
the superconducting energy gap and this fact should indicate a feedback effect [28,39,40] of the
condensate on the spin fluctuations.
Then the experimental low temperature spin resonance can be chosen as the representative bo-
son energy and the two remaining free parameters can be fixed in order to reproduce the exact
experimental gap values. After this, with the same parameters, the critical temperature T ∗c can
be calculated. Generally it is always T ∗c � T exp

c where T exp
c is the experimental critical tem-

perature. In the next step the same temperature dependence of the superconductive gap has to
be imposed to the representative boson energy while the other input parameters used before are
kept fixed.
Of course, at T = T ∗c the energy peaks of the spectral functions (the representative boson en-
ergy) is equal to zero while at T = 0 K the new spectral functions are equal to the old ones. In
this way, by taking into account the feedback effect of the condensate [28,39,40] on the antifer-
romagnetic spin fluctuations it is possible to explain the experimental data (the gap values and
the critical temperature) in a model with only two free parameters in a moderate strong coupling
regime (λtot ≈ 1.5− 2).
Four representative cases are reported (three hole type and one electron type): LaFeAsO1−xFx,
SmFeAsO1−xFx, Ba1−xKxFe2As2, and Ba(FexCo1−x)2As2. The electronic structure of the hole
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type compounds can be approximately described by a three-band model with two hole bands
(indicated in the following as bands 1 and 2) and one equivalent electron band (3) [37] while
for one electron type compound the model contains one hole band (indicated in the following as
band 1) and two equivalent electron bands (2 and 3) [41]. The s-wave order parameters of the
hole bands∆1 and∆2 have opposite sign with respect to that of the electron band∆3 [42] in the
hole type case while ∆1 has opposite sign with respect to that of the two electron bands, ∆2 and
∆3 in the electron type case [41]. In such systems, in the first approximation, intraband cou-
pling could only be provided by phonons ph, and interband coupling only by antiferromagnetic
spin fluctuations sf [37, 39]. The experimental data concerning the four compounds considered
can be summarized as follow [39]:

1. LaFeAsO0.9F0.1 (LaFeAsOF) with TAc = 28.6 K where point-contact spectroscopy mea-
surements gave ∆1(0) ≈ 8.0 meV and ∆2(0) ≈ 2.8 meV;

2. Ba0.6K0.4Fe2As2 (BaKFeAs) with Tc = 37 K where ARPES measurements gave∆1(0) =

12.1± 1.5 meV, ∆2(0) = 5.2± 1.0 meV and ∆3(0) = 12.8± 1.4 meV

3. SmFeAsO0.8F0.2 (SmFeAsOF) with TAc = 52 K (T bulk
c = 53 K) where point-contact

spectroscopy measurements gave ∆1(0) = 18± 3 meV and ∆2(0) = 6.15± 0.45 meV;

4. Ba(FexCo1−x)2As2 (BaFeCoAs) with TAc = 22.6 K (T bulk
c = 24.5 K) where point-contact

spectroscopy measurements gave ∆1(0) = 4.1± 0.4 meV and ∆2(0) = 9.2± 1 meV.

TAc is the critical temperature obtained by Andreev reflection measurements [36] and T bulk
c is the

critical temperature obtained by transport measurements. Note that only in the case of ARPES
the gaps are associated to the relevant band since point-contact spectroscopy measurements
generally gives only two gaps, the larger one has been arbitrarily indicated as ∆1 supposing
that ∆1 ∼ |∆3|. To obtain the gap-values and the critical temperature within the s± wave,
one has to solve six coupled equations for the gaps ∆i(iωn) and the renormalization functions
Zi(iωn), where i is the index of the bands and ranges from 1 to 3. The solution of the system
of multiband Eliashberg equations requires a huge number of input parameters (18 functions
and 9 constants); however, some of these parameters are related to one another, some can be
extracted from experiments and some can be fixed by suitable approximations. In the case of
the pnictides several assumptions can be made: (i) the total electron-phonon coupling constant
is small, (ii) phonons mainly provide intraband coupling [42], (iii) spin fluctuations mainly
provide interband coupling [42]. The simplest way to take take these assumptions into account
is to set λphii = λphij = λsfii = 0. Indeed the upper limit of the phonon coupling in these
compounds is ≈ 0.35 [43], and the intraband spin-fluctuation coupling can be negliected [42].
Moreover, the phonon couplings and the Coulomb pseudopotentials roughly compensate each
other, then µ∗ii(ωc) = µ∗ij(ωc) = 0 [37]. Within these approximations, the electron-boson
coupling-constant matrix λij becomes [37, 39, 41]:

λij =

 0 λ12 λ13
λ21 = λ12ν12 0 λ23
λ31 = λ13ν13 λ32 = λ23ν23 0

 (60)
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λtot λoldtot λ12/21 λ13/31 λ23/32 Ω0 (meV)

1.87 0.76/0.85 1.21/5.44 0.00/0.00 9.04

BaFeCoAs 2.83 1.93 0.91/1.02 2.08/9.35 0.00/0.00 9.04

1.72 0.77/0.87 1.05/4.72 0.00/0.00 9.04

2.52 0.90/1.01 1.76/7.91 0.00/0.00 9.04

1.75 0.00/0.00 2.11/1.91 0.40/0.21 11.44

LaFeAsOF 2.38 2.53 0.00/0.00 2.93/2.66 0.46/0.24 11.44

2.04 0.00/0.00 2.27/2.27 0.56/0.28 14.80

BaKFeAs 2.84 3.87 0.00/0.00 3.21/3.21 0.67/0.34 14.80

1.72 0.00/0.00 1.55/3.88 0.42/0.84 20.80

SmFeAsOF 2.39 5.90 0.00/0.00 2.23/5.58 0.49/0.98 20.80

Table 2: The values of Ω0 and λij , that allow reproducing the experimental gap values, are
shown. λtot is compared with λoldtot that is the value determined in the previous works [37, 41].
In the first rows the sf spectral functions used have usual shape while in the second ones have
Lorentzian shape.

where νij = Ni(0)/Nj(0) and Ni(0) is the normal density of states at the Fermi level for the
i-th band. In the hole case λ21 = λ12 = 0 while in the electron case λ23 = λ32 = 0.

In the numerical simulations the standard form for the antiferromagnetic spin fluctuations is
used: α2

ijF
sf (Ω) = BijΩΩijΘ(Ωmax − Ω)/(Ω2 + Ω2

ij) where Bij are the normalization con-
stants necessary to obtain the proper values of λij while Ωij are the peak energies. In all the
calculations, for simplicity, Ωij = Ω0. The maximum spin-fluctuation energy is Ωmax = 10Ω0,
the cut-off energy is ωc = 30Ω0 and the maximum quasiparticle energy is ωmax = 40Ω0. The
typical sf energy Ω0 is the spin resonance energy that has been measured and the empirical
relation Ω0 = (2/5)Tc available in literature [44] is assumed to be correct for all compounds
examined.
Bandstructure calculations provide information about the factors νij that enter the definition
of λij . In the case of LaFeAsO0.9F0.1, ν13 = 0.91 and ν23 = 0.53; for Ba0.6K0.4Fe2As2,
ν13 = 1 and ν23 = 2; in SmFeAsO0.8F0.2, ν13 = 0.4 and ν23 = 0.5 and in Ba(FexCo1−x)2As2,
ν12 = 1.12 and ν13 = 4.50 [39].

First of all the imaginary-axis Eliashberg equations are solved in order to calculate the low-
temperature values of the gaps (which are actually obtained by analytical continuation to the
real axis by using the technique of the Padé approximants) and so the two free parameters
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∆1(meV) ∆2(meV) ∆3(meV) Tc(K) T ∗c (K)

6.63 -4.07 -9.18 26.07 33.00

BaFeCoAs 7.02 -4.12 -9.18 23.73 28.95

5.89 -3.78 -8.17 23.43 29.69

6.19 -3.79 -8.19 21.72 26.41

8.01 2.82 -7.75 29.37 37.22

LaFeAsOF 8.01 2.77 -7.71 26.86 31.81

12.04 5.20 -12.00 43.66 55.26

BaKFeAs 12.04 5.24 -11.91 38.33 46.18

14.86 6.15 -18.11 58.53 74.13

SmFeAsOF 15.51 6.15 -18.00 52.80 63.82

Table 3: The calculated values of the gaps and of the two critical temperature with and without
feedback effect. In the first rows the sf (spin-fluctuation) spectral functions used have the usual
shape while in the second line they have Lorentzian shape.

of the model are fixed: λ13 and λ23 (λ12). By properly selecting the values of λ13 and λ23
(λ12) it is relatively easy to obtain the experimental values of the gaps with reasonable val-
ues of λtot =

∑
ij Ni(0)λij/

∑
ij Ni(0) (between 1.72 and 2.04). However, in all the materi-

als examined, the high 2∆1,3/kBTc ratio (of the order of 8-9) makes it possible to reproduce
also the values of the large gap(s) only if the calculated critical temperature T ∗c is consider-
ably higher than the experimental one. For solving this problem, that is also present in the
HTCS, it is necessary to assume the existence a feedback effect [28, 39] of the condensate
and, in a phenomenological way, a temperature dependence of the representative boson energy
Ω0(T ) = Ω0 tanh(1.76

√
T ∗c /T − 1) that is, approximately, the temperature dependence of the

gap in the strong coupling case, is introduced in the Eliashberg equation.
The primary effect of this assumption is the reduction of the critical temperature without changes
in the gap values at T � T ∗c . For a completely consistent procedure it should be used Ω0(T ) =

Ω0η(T ) where η(T ) is the temperature dependent part of the superfluid density ρ(T ) = ρ(0)η(T )

and ρ(0) is the superfluid density at T = 0 K. η(T ) is a function of ∆i(iωn) and so, in this way,
the numerical solution of the Eliashberg equations becomes remarkably more complex and time
consuming.
For a general picture of the physical landscape the Eliashberg equations have to be solved in
three different situations: (i) only sf inter-band coupling is present and the sf spectral functions
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Fig. 6: Calculated critical temperature Tc with feedback effect versus standard critical tem-
perature T ∗c in three different situations: only interband sf coupling with standard spectral
functions (black squares), interband sf coupling with standard spectral functions and small
intraband ph coupling (red circles) and only interband sf coupling with Lorentz spectral func-
tions (dark blue triangles). The insert shows the sf spectral function, for Ba(FexCo1−x)2As2 at
different temperatures (T < T ∗c ) with the feedback effect.

have the usual shape of the normal state (ii) sf interband coupling with a small ph intra-band
contribution is present and sf spectral functions have the usual shape, and (iii) only sf interband
coupling is present and the sf spectral functions have Lorentz shape.

In the first case the coupling constant λtot is in the range 1.72-2.04. The results are almost
independent from Ωmax. The agreement with the experimental critical temperature is good. It is
important to notice that the coupling parameters almost do not change in these considered case.
In the second case there is also an intra-band phonon contribution, equal in each band and in
each compound for simplicity, with λphii = 0.35 and Ωph

0 = 18 meV that are the upper limits
for the ph coupling constants and the representative ph energies [43]. The ph spectral functions
have Lorentzian shape [37]. The phonon peaks are all in Ωij = Ωph

0 , and the antiferromagnetic
spin fluctuations peak in Ωij = Ωsf

0 and the half-width4 is always 2 meV [39] and ωc = 12Ωph
0 .

λtot and Tc are practically the same as the previous case. This last fact indicates that the effect
of intraband phonon contributions is negligible. In the third case (Lorentz shape of sf spectral
functions) the agreement with the experimental critical temperatures is very good in all com-
pounds but the total coupling is larger (2.38 ≤ λtot ≤ 2.84).

4In more recent work the half-width of the Lorentzian functions describing antiferromagnetic spin fluctuations
is equal to Ωsf

0 /2 [38].
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Fig. 7: Calculated temperature dependence of |∆i| from the solution of real axis Eliashberg
equations in the standard case (open symbol) and when the feedback effects are present (solid
symbol): |∆1| black, |∆2| red, and |∆3| dark blue. The experimental data [39] are shown as
big solid bullets.

Fig. 6 shows the linear relation between Tc and T ∗c in all three cases examined. In Table 2 the
input parameters of the Eliashberg equations in the first and third case examined for the four
compounds are listed. Table 3 summarizes the calculated values of the gaps and critical temper-
atures Tc and T ∗c obtained by numerical solution of the Eliashberg equations. Once the values
of the low-temperature gaps were obtained, the temperature dependence can be calculated by
directly solving the three-band Eliashberg equations in the real-axis formulation instead of us-
ing the analytical continuation to the real axis of the imaginary-axis solution. Of course, the
results of the two procedures are virtually identical at low temperature.

In Fig. 7 the calculated temperature dependence of |∆i| is compared with the experimental data
and the agreement is very good. In all cases, their behavior is rather unusual and completely
different from the BCS since the gaps slightly decrease with increasing temperature until they
suddenly drop close to Tc. This arises from a complex non-linear dependence of the ∆ vs. T
curves on the λij values and is possible only in a strong-coupling regime [45]. Curiously, in
all four compounds the rate T ∗c /Tc is the same, 1.27. The three-band Eliashberg equations for
the upper critical field [40] are solved. Here the three bare Fermi velocities vFj are the input
parameters. The number of adjustable parameters can be reduced to one by assuming that, as in
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Fig. 8: Experimental temperature dependence of the upper critical field in Ba(FexCo1−x)2As2,
LaFeAsO0.9F0.1, Ba0.6K0.4Fe2As2, and SmFeAsO0.8F0.2 (symbols), and the relevant fitting curves
(lines) obtained by solving the Eliasberg equations. H ‖ ab: Solid symbols, solid line and
H ‖ c: open symbols, dashed line.

a free-electron gas, vFj
∝ Nj(0) so that vF2 = vF1ν2/ν1 and vF3 = vF1/ν1, thus leaving vF1 as

the only free parameter.

Fig. 8 depicts the experimental values of the upper critical field measured [40] in the case of
Ba(FexCo1−x)2As2, Ba0.6K0.4Fe2As2, LaFeAsO0.9F0.1, and SmFeAsO0.8F0.2 compared to the
best-fitting curve obtained by solving the Eliashberg equations as discussed above. The quality
of the fit is rather good in almost all cases, which is a remarkable result of the model in spite
of the crudeness of the free-electron approximation. The phenomenology of iron-pnictides
superconductors can be explained in the framework of a three-band s± wave Eliashberg theory
with only two free parameters plus a feedback effect i.e., the effect of the condensate on the
antiferromagnetic spin fluctuactions responsible of the superconductivity in these compounds.
Indeed in the four iron compounds discussed, it is possible to reproduce the experimental critical
temperature, the gap values and the upper critical field in a moderate strong-coupling regime:
λtot ≈ 1.7 − 2.0. The large value of the rate between the gaps and the critical temperature
finds a natural justification in this model. Eventually, for describing the phenomenology of the
iron compound LiFeAs, it is necessary to use s± four-band Eliashberg equations in a moderate
strong coupling regime λtot = 1.6 and also in this case the agreement with the experimental
data is good [46].
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Fig. 9: (a) Normalized experimental conductance curve (circles) obtained in a
Ag/SmFeAsO0.8F0.2 point-contact. The dashed line is a BTK fit to the experiment, obtained
using the constant BCS values for the gaps. The solid line is a theoretical curve obtained by
introducing in the BTK model the energy-dependent gap functions calculated within the three-
band Eliashberg theory. (b) Temperature dependence of the −d2I/dV curves obtained from
the same contact as in (a), showing the displacement of the bosonic structures with increasing
temperature. The dashed line is obtained from the theoretical curve shown in (a). Inset: tem-
perature dependence of the energy peak, Ep (full symbols) extracted from (b) together with the
corresponding boson energy Ωb(T ) = Ep(T )−∆max(T ). Lines are guides to the eye.

10.2 Interaction mechanism

In moderate- or strong-coupling superconductors the tunneling or the Andreev refrection [36]
conductance curves can show signatures of the energy dependence of the superconducting gap.
These structures are more easily observable if the amplitude of the Andreev signal is large;
their signature in the second derivative of the I-V curve can be related to the electron-boson
spectral function. In the following, results obtained in an iron compound that provide examples
of such strong-coupling effects and of their analysis will be shown, they strongly support a
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spin-fluctuation-mediated origin of superconductivity if compared with the inelastic neutron
scattering measurements.
Fig. 9 shows a normalized experimental conductance curve obtained on an optimally doped
SmFeAsO0.8F0.2 polycrystal (circles). The amplitude of the Andreev signal in this contact is
exceptionally high [36] (about 80%) and, in addition to the clear two-gap features (peaks and
shoulders), additional structures or small kinks can be seen around 27 and 40 meV. The dashed
line is a BTK [36] fit to the experiment using the two-band 2D BTK model with BCS gap
values (i.e. independent of energy). The fit reproduces very well the experiment in the central
part of the curve (and allows obtaining reliable values of the gaps) but fails at higher energies.
The solid line is instead the result of inserting in the same BTK model the energy-dependent
order parameters obtained by solving the three-band Eliashberg equations in which, as usual,
the electron-boson spectral function is modeled by a Lorentzian curve [36]. Since to the best
of the present knowledge no spin-resonance energy value is available for this compound, the
characteristic energy has been chosen, following [44], by extrapolating the relationship Ω0 =

2Tc/5 ≈ 20 meV. Although the theoretical curve shows no structure at 27 meV, the feature at 40

meV is remarkably well reproduced as can be observed in Fig. 9 (a) and (b) (dashed line). Only
the structure present at approximatelyΩ0+∆max is reproduced and this indicates that the model
has to be investigated further or that additional features of the spectral function are playing an
important role. As expected, both structures shift in energy on increasing temperature, partly
because the amplitude of the superconducting gaps is also decreasing.
The inset to Fig. 9 (a) reports the position of the energy peak in the second derivative, Ep
(full symbols) and the values of the characteristic energy of the boson spectrum Ωb = Ep −
∆max(open symbols) as a function that decreases in temperature. This means that Ωb cannot
be the energy of a phonon mode (in that case it would not tend to zero!) and thus rules out
a phononic origin of this feature. Instead, the trend of Ωb is very similar to that of the spin-
resonance energy peak reported in the paper of Inosov et al. [38] and thus strongly supports a
spin-fluctuation mediated pairing mechanism in these compounds.
This three bands Eliashberg model has only two free parameter λ13 and λ23 and it is able to
explain the values of the gaps, the structures after the gaps in the point-contact spectra the
critical temperature, the dependence of temperature of the upper critical field etc. Similar results
can be obtained [41] for Ba(FexCo1−x)2As2.

11 Conclusion

The theory of Eliashberg is, in principle, a theory without free parameters, because the two
input parameters, the electron-phonon spectral function and the Coulomb pseudopotential can
be calculated via the Density Functional Theory (DFT). From the solution of the Eliashberg
equations on the real axis all the physical observables can then be calculated through, almost
always, simple functions of complex quantities ∆(ω, T ) and Z(ω, T ) that, of course, have to be
calculated numerically. Obviously, in the majority of cases, the materials of interest can not be
described by a s-wave model. However, using the appropriate generalizations, the phenomenol-
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ogy of almost all superconductors (except HTCS underdoped for now) can be reproduced by
this formalism. This theory, strictly speaking, is neither a theory from first principles nor a
purely phenomenological theory, and this is both its strength – it has a very close relationship
with the experimental observation – and its weakness – no one has ever discovered a new su-
perconductor based on the Eliashberg theory. 5 To be sure, no one has ever discovered a new
superconductor reasoning on any theory.
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