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1 Introduction

Predicting materials properties requires robust and reliable calculations at the most fundamental
level. Often the effects being studied or designed originate from electron correlations, and small
errors in their treatment can result in crucial and qualitative differences in the properties. Ac-
curate treatment of electron correlations and collective behaviors is one of the great challenges
in modern science [1, 2]. Explicit solution of the many-body Schrödinger equation leads to
rapidly growing computational cost as a function of system size: exponential, as in configura-
tion interaction (CI) [3], or at the minimum, a high power, e.g., O(N7) as in the coupled-cluster
CCSD(T) [3], the preeminent quantum chemistry method.
To circumvent the problem, most computational quantum mechanical studies of large, realis-
tic systems rely on simpler independent-particle approaches based on density-functional theory
(DFT) [2, 4], using an approximate energy functional to include many-body effects. These re-
place the electron-electron interaction by an effective potential, thereby reducing the problem
to a set of one-electron equations. These methods have often been extremely effective in com-
plex molecules and solids [4], and are the standard in electronic structure, widely applied in
condensed matter, quantum chemistry, and materials science.
Despite the tremendous successes of DFT (most noticeably through its Car-Parrinello molecu-
lar dynamics implementation [5]), the treatment of electronic correlation is approximate. For
strongly correlated systems (e.g., high-temperature superconductors, heavy-fermion metals,
magnetic materials, optical lattices), where correlation effects from particle interaction cru-
cially modify materials properties [6–9], the approximation can lead to qualitatively incorrect
results. Even in moderately correlated systems when the method is qualitatively correct, the re-
sults are sometimes not sufficiently accurate. For example, in ferroelectric materials the usually
acceptable 1% errors in DFT predictions of the equilibrium lattice constant can lead to almost
full suppression of the ferroelectric order.
The development of alternatives to independent-particle theories is therefore of paramount fun-
damental and practical significance. Quantum Monte Carlo (QMC) methods [10–15] are among
the most promising candidates for post-mean-field calculations. By using stochastic sampling
rather than explicit integration over phase space, these methods have computational costs that
scale gracefully (N3-N4) with system size and exceptional potential for parallel scaling [16].
For fermion systems, however, QMC methods suffer from the so-called “sign” problem [17–
19]. In these systems, the Pauli exclusion principle requires that the states be anti-symmetric
under interchange of two particles. As a consequence, negative signs appear, which cause
cancellations among contributions of the Monte Carlo (MC) samples of phase space. In fact, as
the temperature is lowered or the system size is increased, such cancellation becomes more and
more complete. The net signal thus decays exponentially. The algebraic scaling is then lost, and
the method breaks down. Clearly the impact of this problem on the study of correlated electron
systems is extremely severe.
To date most applications of QMC methods to correlated electron systems have either lived
with the sign problem or relied on some form of approximation to overcome the exponential
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scaling. The former is seen more often in the community studying lattice models for strongly
correlated systems where, understandably, it is more difficult to make approximations and more
demanding of insensitivity of the many-body method to a priori input. However, this approach
clearly has severe limitations in the systems that can be examined. The latter has been more
prevalent in electronic structure, where without some control of the sign problem it is difficult
to sustain signal in even the simplest realistic Hamiltonian. This approach loses exactness and
the results can be biased by the approximation.

The approach we take in these lecture notes is in some sense to combine the two approaches.
The sign/phase problem will be controlled approximately. We cast the MC random walks in a
space of over-complete Slater determinants, which significantly reduces the severity of the sign
problem. In this space we formulate constraints on the random-walk paths which lead to better
approximations that are less sensitive to the details of the constraint. We then develop internal
checks and constraint release methods to systematically improve the approach.

These methods have come under the name of constrained path Monte Carlo (CPMC) [20] for
systems where there is a sign problem (for example, Hubbard-like models where the local in-
teractions lead to auxiliary-fields that are real). For electronic systems where there is a phase
problem (as the Coloumb interaction leads to complex fields), the methods have been referred
to as phaseless or phase-free auxiliary-field QMC (AFQMC) [15, 21]. In both cases, the idea
is to constrain the sign or phase of the overlap of the sampled Slater determinants with a trial
wave function. It eliminates the sign or phase instability and restores low-power (typically to
the third power of system size) computational scaling. Applications to a variety of systems have
shown that the methods are very accurate, even with simple trial wave functions taken directly
from mean-field calculations (see, e.g., Refs [22] and [23] references therein). As an example,
in Ref. [23], an 8 × 128 lattice in a doped repulsive Hubbard model (with over 900 electrons)
is studied to calculate the ground-state magnetic and charge-correlations. The dimension of the
Hilbert space for this system is O(10600)!

With these notes, we will give a pedagogical introduction to the AFQMC method, starting
from the forms without any constraint [13, 14], then discussing the sign and phase problem
[18, 19, 24], and ideas for constraining the paths in the path integral in AF space [15, 20, 25]
to eliminate the problem. The chapter is not meant to be a comprehensive review. Rather,
we focus on several basic algorithmic aspects, given the length restrictions of the chapter, to
complement the lectures. We will cover ground-state calculations in Hubbard-like models [19,
20, 26] and in realistic materials [15, 21, 27]. We will not cover finite-temperature calculations,
although corresponding methods have been developed [28, 29], nor will we discuss boson or
mixture systems, although the algorithms share many common features and some of the papers
on boson systems [29–31] contain details that can serve as useful references. Some of the more
pedagogical materials in this chapter are based on Refs. [19] and [24]. The references cited
are sources where we have drawn materials for the lectures, and point to possible additional
reading; they are by no means a literature survey.
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2 Formalism

2.1 Ground-state projection

The Hamiltonian for any many-fermion system with two-body interactions (e.g., the electronic
Hamiltonian under the Born-Oppenheimer approximation) can be written as

Ĥ = Ĥ1 + Ĥ2 = −
�2
2m

M�

m=1

∇
2

m
+

M�

m=1

Vext(rm) +
M�

m<n

Vint(rm − rn) (1)

where rm is the real-space coordinate of the mth fermion, Vext(rm) is the effect of the external
potential on it, and Vint(rm − rn) is the interaction between fermions m and n. We have repre-
sented the external potential as local, although this does not have to be the case. For example,
in plane-wave calculations we will use a norm-conserving pseudopotential. This will lead to a
non-local function Vext [27]. The total number of fermions, M , will be fixed in the calculations
we discuss. For simplicity, we have suppressed spin-indices, but the spin will be made explicit
when necessary. In that case, Mσ is the number of electrons with spin σ (σ = ↑ or ↓). We
assume that the interaction is spin-independent, so the total Sz, defined by (M↑ −M↓), is fixed
in the calculation, although it will be straightforward to generalize our discussions to treat other
cases, for example, when there is spin-orbit coupling.
With any chosen one-particle basis, for example lattice sites (Hubbard model), plane-waves (as
in solid state calculations) [27], or Gaussians (as in quantum chemistry) [21, 32], the Hamilto-
nian can be written in the general form

Ĥ = Ĥ1 + Ĥ2 =
N�

i,j

Tijc
†
i
cj +

1

2

N�

i,j,k,l

Vijklc
†
i
c†
j
ckcl, (2)

where N is the size of the chosen one-particle basis, and c†
i

and ci are the corresponding creation
and annihilation operators. The one-body matrix elements, Tij , contain the effect of both the
kinetic energy and external potential, while the two-body matrix elements, Vijkl, are from the
interaction. The matrix elements are integrals expressed in terms of the basis functions and
the potentials. We will assume that they have been evaluated and are known as we begin our
many-body calculations. Examples are given below.
One of the simplest Hamiltonians of this form is the Hubbard model, which has played an
important role in many-body physics and whose properties are still not fully understood:

Ĥ = K̂ + V̂ = −t
N�

�i,j�σ

c†
iσ
cjσ + U

N�

i

ni↑ni↓ . (3)

Here N is the number of lattice sites, c†
iσ

and cjσ are creation and annihilation operators of an
electron of spin σ on the i-th lattice site, t is the nearest-neighbor hopping energy, niσ = c†

iσ
ciσ

is the density operator, and U is the interaction strength. Two parameters, the interaction U/t

and the electron density (M↑ +M↓)/N , determine the physics given the topology of the lattice.
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Most ground-state QMC methods are based on

|Ψ0� ∝ lim
τ→∞

e−τĤ
|ΨT �; (4)

that is, the ground state |Ψ0� of a many-body Hamiltonian Ĥ can be projected from any known
trial state |ΨT � that satisfies �ΨT |Ψ0� �= 0. In a numerical method, the limit can be obtained
iteratively by

|Ψ (n+1)
� = e−∆τĤ

|Ψ (n)
�, (5)

where |Ψ (0)� = |ΨT �. Ground-state expectation �Ô� of a physical observable Ô is given by

�Ô� = lim
n→∞

�Ψ (n)|Ô|Ψ (n)�

�Ψ (n)|Ψ (n)�
. (6)

For example, the ground-state energy can be obtained by letting Ô = Ĥ . A so-called mixed
estimator exists, however, which is exact for the energy (or any other Ô that commutes with Ĥ)
and can lead to considerable simplifications in practice:

E0 = lim
n→∞

�ΨT |Ĥ|Ψ (n)�

�ΨT |Ψ (n)�
. (7)

QMC methods carry out the iteration in Eq. (5) by Monte Carlo sampling. The difference
between different classes of methods amounts primarily to the space that is used to represent
the wave function or density matrix and to carry out the integration. The auxiliary-field QMC
(AFQMC) methods work in second quantized representation and in an auxiliary-field space,
while Green’s function Monte Carlo (GFMC) or diffusion Monte Carlo (DMC) works in first-
quantized representation and in configuration space [10, 11].
Let us assume that |ΨT � is of the form of a single Slater determinant or a linear combination of
Slater determinants. A Slater determinant is the form of a mean-field solution to Ĥ (see next
section) expressed in terms of the basis functions chosen in Eq. (2). The operation of e−τĤ1 on a
Slater determinant is straightforward to calculate, and it simply yields another determinant. The
ground-state projection would therefore turn into the propagation of a single Slater determinant
if it were somehow possible to write the two-body propagator e−τĤ2 as the exponential of a
one-body operator. This is realized in mean-field methods. In the Hartree-Fock (HF) approx-
imation Ĥ2 is replaced by one-body operators times expectations with respect to the current
Slater determinant wave function, schematically:

c†
i
c†
j
ckcl → c†

i
cl�c

†
j
ck� − c†

i
ck�c

†
j
cl� . (8)

A decomposition that includes pairing is also possible, leading to a Hartree-Fock-Bogoliubov
calculation. In the local density approximation (LDA) in DFT [4], Ĥ2 is replaced by the density
operator in real-space times a functional of the local density calculated with respect to the cur-
rent Slater determinant in the self-consistent process. In both these cases, an iterative procedure
can be used, following Eq. (5), to project out the solution to the approximate Hamiltonians, as
an imaginary-time evolution of a single Slater determinant [33].
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2.2 Slater determinant space

The building blocks of Slater determinants are single-particle basis states. These single-particle
basis states can be plane waves, or lattice sites in the Hubbard model, Gaussians, or energy
eigenstates in a mean-field potential. Often the space of single-particle basis states is truncated.
Single-particle wave functions (orbitals) are formed with the basis states. Slater determinants
are then built from the single-particle orbitals.
We define some notations that we will use throughout the discussion [24]:

• N : number of single-electron basis states. For example, N can be the number of lattice
sites (L× L) in the two-dimensional Hubbard model.

• |χi�: the ith single-particle basis state (i = 1, 2, · · · , N ). For example, |χG� can be a
plane wave basis state with χG(r) ∝ eiG·r, where r is a real-space coordinate.

• c†
i

and ci: creation and annihilation operators for an electron in |χi�. ni ≡ c†
i
ci is the

corresponding number operator.

• M : number of electrons (if we omit spin index, e.g., if the system is fully polarized). In
the more general case, Mσ is the number of electrons with spin σ (σ = ↑ or ↓). Of course,
the choice of N above must ensure that Mσ ≤ N .

• ϕm: single-particle orbital (we include an index m for discussions below to distinguish
different single-particle orbitals). A single-particle orbital ϕm, given in terms of the
single-particle basis states {|χi�} as

�
i
ϕi,m|χi� =

�
i
c†
i
ϕi,m|0�, can be conveniently

expressed as an N -dimensional vector:




ϕ1,m

ϕ2,m

...
ϕN,m





Given M different single-particle orbitals, we form a many-body wave function from their anti-
symmetrized product:

|φ� ≡ ϕ̂†
1
ϕ̂†
2
· · · ϕ̂†

M
|0� (9)

where the operator
ϕ̂†
m
≡

�

i

c†
i
ϕi,m (10)

creates an electron in the mth single-particle orbital {ϕ1,m,ϕ2,m, · · · ,ϕN,m}. The many-body
state |φ� in Eq. (9) can be conveniently expressed as an N ×M matrix:

Φ ≡





ϕ1,1 ϕ1,2 · · · ϕ1,M

ϕ2,1 ϕ2,2 · · · ϕ2,M

...
...

...
ϕN,1 ϕN,2 · · · ϕN,M







Auxiliary-Field Quantum Monte Carlo 15.7

Each column of this matrix represents a single-particle orbital that is completely specified by
its N -dimensional vector. It is straightforward to keep the different columns orthonormalized.
If the real-space coordinates of the electrons are R = {r1, r2, · · · , rM}, the many-body state in
Eq. (9) gives (see Sec. 2.4)

�R|φ� = φ(R) = det





ϕ1(r1) ϕ2(r1) · · · ϕM(r1)

ϕ1(r2) ϕ2(r2) · · · ϕM(r2)
...

...
...

ϕ1(rM) ϕ2(rM) · · · ϕM(rM)




,

where ϕm(r) =
�

i
ϕi,mχi(r).

The many-body state |φ� is known as a Slater determinant. One example of a Slater determinant
is the HF solution |φHF� =

�
σ
|φσ

HF
�, where |φσ

HF
� is defined by a matrix Φσ

HF
whose columns

are the Mσ lowest HF eigenstates. We can now add the following to our list of notations above:

• |φ�: a many-body wave function which can be written as a Slater determinant.

• Φ: an N × M matrix which represents the Slater determinant |φ�. Φij will denote the
matrix element of the matrix Φ in the ith row and jth column. For example, Φij = ϕi,j

above in Φ. Below when a Slater determinant |φ� is referred to, it will often be helpful to
think in terms of the matrix representation Φ operationally.

• |Ψ�: a many-body wave function which is not necessarily a single Slater determinant,
e.g., |Ψ (n)� in Eq. (5).

Several properties of the Slater determinant are worth mentioning. For any two non-orthogonal
Slater determinants, |φ� and |φ��, it can be shown that their overlap integral is

�φ|φ�
� = det(Φ†Φ�). (11)

The operation on any Slater determinant by any operator B̂ of the form

B̂ = exp
��

ij

c†
i
Uijcj

�
(12)

simply leads to another Slater determinant [34], i.e.,

B̂|φ� = φ̂� †
1
φ̂� †
2
· · · φ̂� †

M
|0� ≡ |φ�

� (13)

with φ̂� †
m

=
�

j
c†
j
Φ�
jm

and Φ� ≡ eUΦ, where U is a square matrix whose elements are given by
Uij and B ≡ eU is therefore an N ×N square matrix as well. In other words, the operation of
B̂ on |φ� simply involves multiplying an N ×N matrix by an N ×M matrix.
We can define the expectation of an operator Ô with respect to a pair of non-orthogonal Slater
determinants:

�Ô� ≡
�φ|Ô|φ��

�φ|φ��
. (14)
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The “bar” distinguishes it from the true interacting many-body expectations in Eq. (6), which
we wish to compute with QMC. The simplest example of Eq. (14) is the single-particle Green’s
function Gij ≡ �cic

†
j
�. In the ground-state formalism,

Gij ≡
�φ|cic

†
j
|φ��

�φ|φ��
= δij − [Φ�(Φ†Φ�)−1Φ†]ij. (15)

Given the Green’s function G, the general expectation defined in Eq. (14) can be computed
for most operators of interest. This is an important property that will be used in our QMC
calculations. For example, we can calculate the expectation of a general two-body operator,
Ô =

�
ijkl

Oijklc
†
i
c†
j
ckcl, under the definition of Eq. (14):

�Ô� =
�

ijkl

Oijkl(G
�
jk
G�

il
−G�

ik
G�

jl
), (16)

where the matrix G� is defined as G� ≡ 1−G.
Recently the use of a projected BCS wave function as a trial wave function in AFQMC has
been formulated [35]. The overlap between a projected BCS wave function |ΨBCS� and a Slater
determinant |φ�, and the corresponding ”Green’s function” of Eq. (15) can be evaluated at a
cost similar to that between two Slater determinants.

2.3 Hubbard-Stratonovich transformation

In order to carry out Eq. (5) in the Slater-determinant space we have introduced above, we write
the many-body propagator e−∆τĤ in single-particle form. With a small ∆τ > 0, the Trotter
approximation can be used:

e−∆τĤ
≈ e−∆τĤ1e−∆τĤ2 , (17)

which introduces a Trotter error. For actual implementation of the algorithms we discuss here,
higher order Trotter break-ups are often used. The Trotter error can be further reduced with an
extrapolation procedure after separate calculations have been done with different values of ∆τ .
The Ĥ1 part of the propagator in (17) is the exponential of a one-body operator. The Ĥ2 part is
not. It is, however, possible to rewrite e−∆τĤ2 in this desired form through a so-called Hubbard-
Stratonovich (HS) transformation [36]. For example, for the Hubbard model in Eq. (3), an
exact, discrete HS transformation [37] exists for the repulsive on-site repulsion

e−∆τUni↑ni↓ = e−∆τU(ni↑+ni↓)/2
�

xi=±1

1

2
eγxi(ni↑−ni↓), (18)

where the constant γ is determined by cosh(γ) = exp(∆τU/2). Similarly, for an attractive
interaction V ni↑ni↓ with V < 0

e−∆τV ni↑ni↓ = e−∆τV (ni↑+ni↓−1)/2
�

xi=±1

1

2
eγxi(ni↑+ni↓−1), (19)

where cosh(γ) = exp(∆τ |V |/2).
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In general, if Ĥ2 can be written as a sum of squares of one-body operators, of the form

Ĥ2 =
1

2

Nγ�

γ=1

λγ v̂
2

γ
, (20)

we can apply the HS transformation to each term (after Trotter break-up):

e−(∆τ/2) λ v̂
2
=

1
√
2π

� ∞

−∞
dx e−x

2
/2 ex

√
−∆τλ v̂, (21)

where x is an auxiliary-field variable. The constant in front of v̂ in the exponent on the right-
hand side can be real or imaginary, depending on the sign of λ. The key is that the quadratic
form (in v̂) on the left is replaced by a linear one on the right. In Eq. (20), λγ is a constant and
v̂γ is a one-body operator similar to Ĥ1. Each γ leads to one auxiliary-field in Eq. (21).
We now show one way to manipulate a general Ĥ2 into the form in Eq. (20). Let us cast Vijkl in
Eq. (2) in the form of a Hermitian matrix by introducing two indices α = (i, l) and β = (k, j):
Vαβ = V(i,l),(k,j) = Vijkl. The Hermitian matrix V can then be diagonalized and written as
V = RΛR†, where R is a matrix whose columns are the eigenvectors of V and Λ is a diagonal
matrix containing the corresponding eigenvalues λα. That is

Vαβ =
�

γ

RαγλγR
∗
βγ
. (22)

The two-body operator V̂ can therefore be written as

Ĥ2 =
�

ijkl

Vijkl c
†
i
clc

†
j
ck −

�

ijkl

Vijkl c
†
i
ck δjl

=
�

γ

λγ

��

il

R(i,l)γc
†
i
cl

���

jk

R∗
(k,j)γ

c†
j
ck

�
−

�

ik

�
�

j

Vijkj

�
c†
i
ck.

Noting that Ĥ2 is Hermitian, we can put the above in a more symmetric form

Ĥ2 =
1

2

�

γ

λγ{ρ̂γ, ρ̂
†
γ
}+ ρ̂0, (23)

where the one-body operators are defined as ρ̂γ ≡
�

il
R(i,l)γc

†
i
cl and ρ̂0 ≡ −

�
ik
[
�

j
(Vijkj +

Vjijk)/2]c
†
i
ck. Since

{ρ̂γ, ρ̂
†
γ
} =

1

2
[(ρ̂γ + ρ̂†

γ
)2 − (ρ̂γ − ρ̂†

γ
)2] ≡ v̂2

γ
− v̂�

γ

2

, (24)

we have succeeded in writing Ĥ2 in the desired form.
The way to decompose Ĥ2 above leads to approximately 2N2 auxiliary fields. Often the in-
teraction simplifies Ĥ2 and the number of auxiliary fields can be much reduced. For example,
straightforward applications to molecular systems using Gaussian basis sets employed the above
decomposition, except that the matrix elements are all real [21, 38] (and terms with λ below a
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small threshold can be discarded). A modified Cholesky decomposition has been used which
leads to O(N) fields [32]. In a plane-wave basis, the two-body part is the Fourier transform of
1/|rm − rn| which leads to 1/Q2 [27].
Different forms of the HS transformation exist [39], and can affect the performance of the QMC
method. For example, subtracting a mean-field “background” from the two-body term prior to
the decomposition improves the calculations [21, 31, 40]. Indeed experience shows that they
can not only impact the statistical accuracy, but also lead to different quality of approximations
under the constrained-path methods that we discuss below. Therefore, although we discuss the
algorithms under the generic form of Eq. (25), we emphasize that it is worthwhile to explore
different forms of the HS transformation in an actual implementation [41].
If we denote the collection of auxiliary fields by x and combine one-body terms from Ĥ1 and
Ĥ2, we obtain the following compact representation of the outcome of the HS transformation:

e−∆τĤ =

�
dx p(x)B̂(x), (25)

where p(x) is a probability density function (PDF), for example, a multi-dimensional Gaussian.
The propagator B̂(x) in Eq. (25) has a special form, namely, it is a product of operators of the
type in Eq. (12), with Uij depending on the auxiliary field. The matrix representation of B̂(x)

will be denoted by B(x).
In essence, the HS transformation replaces the two-body interaction by one-body interactions
with a set of random external auxiliary fields. In other words, it converts an interacting system
into many non-interacting systems living in fluctuating external auxiliary-fields. The sum over
all configurations of auxiliary fields recovers the interaction.

2.4 A simple example

We now study in some details the ground-state of the one-dimensional Hubbard model with 4
sites and with open boundary conditions We can think of the lattice as a crude representation of
particles in a one-dimensional box, with only four equally-spaced grid points to discretize the
continuous space inside the box and the kinetic energy written in terms of finite difference. We
will consider N↑ = 2 and N↓ = 1. This can be thought of as a chain of 4 hydrogen atoms, with
one of them ionized to H+, in a minimal basis. We label the four sites 1 through 4.
First let us examine the trivial case of free electrons, i.e. U = 0. We can write down the
1-electron Hamiltonian matrix, based on Eq. (3), which is of dimension 4× 4:

H =





0 −1 0 0

−1 0 −1 0

0 −1 0 −1

0 0 −1 0




. (26)

The eigenstates of H can be obtained by direct diagonalization. With these eigenstates, we
immediately obtain the ground-state wave function |ψ0� of the 3-electron system from the Pauli
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exclusion principle:

|ψ0� =





0.3717 −0.6015

0.6015 −0.3717

0.6015 0.3717

0.3717 0.6015




⊗





0.3717

0.6015

0.6015

0.3717




,

where the first matrix contains two single-particle orbitals (two columns) for the two ↑ electrons
and the second matrix contains one single-electron orbital for the one ↓ electron. Each single-
electron orbital is an eigenvector of H . Note the second and third lowest single-electron states
are degenerate, causing the 3-electron system to be open shell and |ψ0� to be degenerate. We
have simply picked one particular linear combination for the second ↑-electron in |ψ0� above.
An object of the form of |ψ0� is of course nothing more than a Slater determinant. For example,
the amplitude of the configuration |R� = |↓ ↑ 0 ↑�, i.e., two ↑ electrons on sites 2 and 4 and the
one ↓ electron on site 1, is given by

�R|ψ0� = det

�
0.6015 −0.3717

0.3717 0.6015

�
· det

�
0.3717

�
.

That is, more formally,

|R� =





0 0

1 0

0 0

0 1




⊗





1

0

0

0





and �R|ψ0� = det(R† · Ψ0) is a number, where R and Ψ0 denote the matrices corresponding to
|R� and |ψ0�, respectively.
For this non-interacting system, an alternative (albeit indirect and indeed circular) way of ob-
taining |ψ0� is by the power method. From the eigenvalues and eigenvectors of K̂, we can easily
construct the matrix for e−∆τK̂ , which has the same structure as H in Eq. (26) above (i.e., a 4×4

matrix e−∆τH). Denote this matrix by BK . With an arbitrarily chosen initial Slater determinant
|ψ(0)� (with non-zero overlap with |ψ0�), we can then repeatedly apply e−∆τĤ to carry out the
iterative process in Eq. (5), which means multiplying both the 4 × 2 ↑ matrix and the 4 × 1 ↓

matrix by BK . The process will lead to |ψ0� as n → ∞.
Note that the solution remains a single Slater determinant during the iteration, as discussed at
the end of Sec. 2.1. We could obtain the self-consistent solution of a mean-field equation via
this procedure, which looks like a (imaginary-)time-dependent HF or DFT calculation. The
orbitals in the determinant (in this example the two ↑-spin orbitals) must be periodically re-
orthonormalized to avoid the loss of numerical precision. This procedure is often done with a
modified Gram-Schmidt, and is standard in mean-field calculations. Incidentally, the tendency
for the orbitals to collapse to the lowest energy single-particle orbital is intimately related to the
sign problem. In any simulation without the use of Slater determinant (second quantization) as
its random walker, for example in standard DMC, this is the driving force for the sign problem.
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Now let us consider the many-body case, by turning on the interaction U . The first approach of
directly diagonalizing H is the method of exact diagonalization. The size of the matrix is now
the size of the Hilbert space (not just N ), which in this example is 24. Thus the computational
cost of this approach grows exponentially with system size. The power method of Eq. (5),
on the other hand, can still apply if we can write e−∆τĤ in some one-electron form. The HS
transformation does just that. Assuming ∆τ is small and applying the Trotter break-up, we have

e−∆τĤ
⇒

�

x

p(x)





eγx1 0 0 0

0 eγx2 0 0

0 0 eγx3 0

0 0 0 eγx4




· BK ⊗





e−γx1 0 0 0

0 e−γx2 0 0

0 0 e−γx3 0

0 0 0 e−γx4




· BK ,

where x = {x1, x2, x3, x4}. This is just Eq. (25). Note that B(x) has an ↑ and a ↓ component,
each of which is a 4 × 4 matrix. Applying each B(x) to a Slater determinant means precisely
the same as in the non-interacting case (with BK ⊗BK). In other words, B(x) operating on any
Slater determinant |φ� simply involves matrix multiplications for the ↑ and ↓ components sep-
arately, leading to another Slater determinant |φ��, as in Eq. (13). Starting from a single Slater
determinant, e.g., |Ψ (0)� = |ψ0�, we would end up with a multi-determinant representation of
|Ψ (1)�, and so on. We will maintain a constant population as described below.

3 Ground-State AFQMC Methods

In this section, we discuss the ground-state AFQMC method. The CPMC and its generalization
to the phase problem are free of the decay of the average sign. The methods are approximate,
relying on what we will generally refer to as the constrained path approximation.

3.1 Free-projection AFQMC

In this section we briefly describe the ground-state AFQMC method without any constraints.
We will rely on the machinery established in the previous section. Our goal is to illustrate
the essential ideas, in a way which will facilitate our discussion of the sign problem and help
introduce the framework for the constrained path Monte Carlo methods. We will not go into
details such as how to efficiently sample the auxiliary fields or how to stabilize the matrices.
They are described in the literature. We write the usual path-integral and Metropolis form
explicitly here to show that it is the same as the open-ended random walk approach we take in
CPMC, as far as understanding the sign problem is concerned.
We want to compute ground-state expectation values �Ô� using (6) and (25). The denominator
in (6) is

�ψ(0)
|e−n∆τĤ e−n∆τĤ

|ψ(0)
� =

�
�ψ(0)

|

� 2n�

l=1

dx(l)p(x(l))B̂(x(l))
�
|ψ(0)

�

=

� ��

l

dx(l)p(x(l))
�
det

�
[Ψ (0)]†

�

l

B(x(l))Ψ (0)

�
. (27)
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In the standard ground-state AFQMC method [13], a value of n is first chosen and fixed
throughout the calculation. If we use X to denote the collection of the auxiliary-fields X =

{x(1),x(2), . . . ,x(2n)} and D(X) to represent the integrand in Eq. (27), we can write the expec-
tation value of Eq. (6) as

�Ô� =

�
�Ô�D(X) dX�
D(X) dX

=

�
�Ô�

��D(X)
�� s(X) dX� ��D(X)

�� s(X) dX
, (28)

where
s(X) ≡ D(X)/

��D(X)
�� (29)

measures the “sign” of D(X). The non-interacting expectation value for a given X is that
defined in Eq. (14)

�Ô� ≡
�φL|Ô|φR�

�φL|φR�
(30)

with

�φL| = �ψ(0)
| B̂(x(2n))B̂(x(2n−1)) · · · B̂(x(n+1))

|φR� = B̂(x(n))B̂(x(n−1)) · · · B̂(x(1)) |ψ(0)
�,

which are both Slater determinants.
D(X) as well as �φL| and |φR� are completely determined by the path X in auxiliary-field
space. The expectation in Eq. (28) is therefore in the form of Eq. (62), with f(X) = |D(X)|

and g(X) = �Ô�. The important point is that, for each X , |D(X)| is a number and g(X) can
be evaluated using Eqn. (15) and (16). Often the Metropolis Monte Carlo algorithm [42] is
used to sample auxiliary-fields X from |D(X)|. Any �Ô� can then be computed following the
procedure described by Eq. (61) in the appendix.
We will carry out free-projection calculations with an open-ended random walk [20, 40] simi-
lar to the CP approach, instead of using Metropolis sampling as outlined above [14, 43] which
keeps an entire path of a fixed length 2n as the object to sample. (An example of free-projection
is shown in Fig. 2 in Sec. 3.3.) The open-ended random walk framework does not have any
ergodicity issues, and it is straightforward to project to longer imaginary-time in order to ap-
proach the ground state. This approach also allows a natural implementation of importance
sampling and the constraint, as we discuss below.

3.2 Why and how does the sign problem occur?

The sign problem occurs because of the fundamental symmetry between the fermion ground-
state |Ψ0� and its negative −|Ψ0� [19,44]. For any ensemble of Slater determinants {|φ�} which
gives a Monte Carlo representation of the ground-state wave function, this symmetry implies
that there exists another ensemble {−|φ�} which is also a correct representation. In other words,
the Slater determinant space can be divided into two degenerate halves (+ and −) whose bound-
ing surface N is defined by �Ψ0|φ� = 0. This surface is in general unknown.
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In some special cases symmetry prohibits any crossing of N in the random walk. The AFQMC
calculation is then free of the sign problem. An example [45] is the half-filled (M↑ +M↓ = N )
repulsive Hubbard model, which via particle-hole symmetry can be mapped to an attractive
model with no spin polarization: M↑ = M↓. It is easy to see this in the latter case: if we choose
an initial population of walkers of the form |φ↑� ⊗ |φ↓� with |φ↑� = |φ↓�, the structure will be
preserved by the propagation. (In general when there is a twist to the boundary condition, the
symmetry between ↑- and ↓-spins should be of opposite momenta [35].) The overlap of each
walker with a wave function |Ψ0� which observes the same symmetry will be a square and thus
always non-negative. In more general cases, however, walkers do cross N in their propagation
by e−∆τĤ . The sign problem then invariably occurs.
In Fig. 1, we illustrate the space of Slater determinants by a one-dimensional (horizontal) line.
The “node” N is the (red) dot in the middle. Imaginary time (or n) is in the vertical direction
and increases as the arrow suggests. That is, as the walker moves in the horizontal line, we
stretch out continuously “snapshots” of its position along the vertical direction. Now we follow
an initial Slater determinant. With no loss of generality, we assume it has a positive overlap
with |Ψ0�. At time n = 0 it is indicated by the (green) dot on the right. As the random walk
evolves, the walker can reach the node, which is the (red) vertical line. At the instant it lands on
N , the walker will make no further contribution to the representation of the ground state, since

�Ψ0|φ� = 0 ⇒ �Ψ0|e
−βĤ

|φ� = 0 for any β. (31)

Paths that result from such a walker have equal probability of being in either half of the Slater
determinant space. A few of these possible paths are shown by dashed lines. Computed ana-
lytically, they would cancel and not make any contribution in the ground-state wave function,
as indicated by their symmetric placement with respect to the node line. But since the random
walk has no knowledge of N , these paths continue to be sampled (randomly) in the random
walk and become MC noise. Only paths that are completely confined to the right-hand side, as
shown by the solid (green) line, will lead to contributions to the ground state, but the relative
number of such confined paths decreases exponentially with n. Asymptotically in n, the MC
representation of the ground-state wave function consists of an equal mixture of the + and −

walkers, regardless of where the random walks originated. The Monte Carlo signal is therefore
lost. The decay of the signal-to-noise ratio, i.e. the decay of the average sign of �ΨT |φ�, occurs
at an exponential rate with imaginary time.
To eliminate the decay of the signal-to-noise ratio, we impose the constrained-path approxi-
mation. Fahy and Hamann first used [25] such a constraint in the framework of the standard
AFQMC method. However, the non-local nature of such a constraint proved difficult to imple-
ment efficiently in the “path-integral-like” scheme. Here, with the open-ended random walk
formalism, the constraint only needs to be imposed one time-step at a time and is extremely
simple to implement. It requires that each random walker at each step have a positive overlap
with the trial wave function |ΨT �:

�ΨT |φ
(n)

k
� > 0. (32)
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n

Fig. 1: Schematic illustration of the sign problem [19]. The top line represents Slater determi-

nant space; the dot represents the “node” N , where a determinant is orthogonal to the ground

state |Ψ0�. As the projection continues (increasing n), Slater determinants undergo random

walks, tracing out “paths” as shown. When a walker reaches N , its future paths will collec-
tively cancel in their contribution to |Ψ0�, indicated by the symmetric distribution of dashed

paths about the nodal line. The Monte Carlo sampling, with no knowledge of this cancellation,

continues to sample such paths randomly. The relative number of paths with real contributions

(solid paths) decreases exponentially as n increases.

This yields an approximate solution to the ground-state wave function, |Ψ c

0
� =

�
φ
|φ�, in which

all Slater determinants |φ� satisfy (32).
From (31), it follows that the constrained path approximation becomes exact for an exact trial
wave function |ΨT � = |Ψ0�. The overall normalization of walkers remains a constant on the
average, since the loss of walkers at N is compensated by the branching of walkers elsewhere;
that is, the eigenvalue problem with N as boundary has a stable solution.
To implement the constrained-path approximation in the random walk, we define the importance
function (see next section) by:

OT (φ) ≡ max{�ΨT |φ�, 0}. (33)

This prevents walkers from crossing the trial nodal surface N and entering the “−” half-space
as defined by |ΨT �. A walker k in the nth-step is eliminated (assigned weight zero) for the
(n + 1)st-step when its OT (φ

(n+1)

k
) becomes zero. In the limit ∆τ → 0, Eq. (33) ensures

that the walker distribution vanishes smoothly at N and the constrained-path approximation is
properly imposed. With a finite ∆τ , the procedure eliminates walker k when OT (φ

(n+1)

k
) ≤ 0.

The error that results is a form of Trotter error [24] which can be further reduced using what is
known as a mirror correction [20, 24].
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3.3 The constrained path Monte Carlo method

The constrained path Monte Carlo (CPMC) method [19,20,46] incorporates the idea discussed
above into a natural and efficient algorithm. The approach applies to Hubbard-like Hamilto-
nians where the auxiliary-field is real. Even in the case where a twist angle is applied to the
boundary condition and the hopping matrix elements are complex, a simple generalization of
this condition is sufficient [46]. Using (25), we write Eq. (5) as

|Ψ (n+1)
� =

�
dx p(x)B̂(x)|Ψ (n)

�. (34)

In the random walk realization of this iteration, we represent the wave function at each stage by
a finite ensemble of Slater determinants, i.e.,

|Ψ (n)
� ∝

�

k

w(n)

k
|φ(n)

k
�, (35)

where k labels the Slater determinants and an overall normalization factor of the wave function
has been omitted. A weight factor w(n)

k
is introduced for each walker, even though in Eq. (34)

the kernel p is normalized. This is because single-particle orbitals in a Slater determinants cease
to be orthogonal to each other as a result of propagation by B̂. When they are re-orthogonalized
[19, 20], an overall factor appears, which we will view as the w term in the integral equation
Eq. (64) of the appendix.
The structure of the random walk now resembles that of Eq. (64). For each random walker we
sample an auxiliary-field configuration x from the PDF p(x) and propagate the walker to a new
one via Φ(n+1)

k
= B(x)Φ(n)

k
. If necessary, a re-orthogonalization procedure is applied to Φ(n)

k

prior to the propagation: Φ(n)

k
= [Φ(n)

k
]�R, where R is an M×M upper-triangular matrix. [Φ(n)

k
]�

is then used in the propagation instead; the weight of the new walker is w(n+1)

k
= w(n)

k
det(R).

The simple random walk procedure is sufficient and convenient for thinking about many con-
ceptual issues. It is, however, not efficient as a practical algorithm in most cases of interest,
because the sampling of x is completely random with no regard to the potential contribution to
D(X). The idea of importance sampling is to iterate a modified equation with a modified wave
function, without changing the underlying eigenvalue problem of (34). Specifically, for each
Slater determinant |φ�, we define an importance function as given in Eq. (33) that estimates its
overlap with the ground-state wave function. We can rewrite Eq. (34) as

|Ψ̃ (n+1)
� =

�
dxp̃(x)B̂(x)|Ψ̃ (n)

�, (36)

where the modified “PDF” is

p̃(x) =
OT (φ(n+1))

OT (φ(n))
p(x) . (37)

With the new kernel p̃, the probability distribution for x vanishes smoothly as OT (B̂(x)φ(n))

approaches zero, and the constraint is naturally imposed. As expected, p̃(x) is a function of
both the current and the next position in Slater-determinant space. Further, it modifies p(x)
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Fig. 2: Controlling the sign problem with a systematically improvable approximation. The

total energy is plotted vs. imaginary-time for a 4 × 4 Hubbard model with N↑ = N↓ = 7
electrons (i.e., density n = 0.875) and U/t = 8, which is in the regime important for magnetism

and superconductivity, and where the sign problem is severe. The left panel shows the sign

problem in free-projection [15, 22] (yellow), results with constraint [20, 46] (blue), and exact

diagonalization (magenta). The right panel illustrates constraint release [41]. To the left of

the vertical bar, a magnified view is shown of the exact and constrained path results. The error

from the constraint is roughly half of the Trotter error with the typically recommended value of

∆τ = 0.05. Releasing the constraint removes the small bias and converges to the exact answer,

with growing computational cost, as seen on the right.

such that the probability is increased when x leads to a determinant with larger overlap and is
decreased otherwise. It is trivially verified that Eqs. (34) and (36) are identical. If |ΨT � = |Ψ0�,
the normalization

�
p̃(x)dx becomes a constant, which means that the weights of walkers will

remain a constant and the random walk will have no fluctuations, as should be the case with
perfect importance sampling.
In the random walk, the ensemble of walkers { |φ(n)

k
� } now represents the modified wave func-

tion: |Ψ̃ (n)� ∝
�

k
w(n)

k
|φ(n)

k
�. The true wave function is then given formally by

|Ψ (n)
� ∝

�

k

w(n)

k

|φ(n)

k
�

OT (φ
(n)

k
)
, (38)

although in actual measurements it is |Ψ̃ (n)� that is needed and division by OT does not appear.
The random walk process is similar to that discussed for Eq. (34), but with p(x) replaced by
p̃(x). The latter is in general not a normalized PDF, and we denote the normalization constant
for walker k by N(φ(n)

k
) and rewrite the iterative relation as

|φ(n+1)

k
� ← N(φ(n)

k
)

�
dx

p̃(x)

N(φ(n)

k
)
B(x)|φ(n)

k
�. (39)

Thus, for each walker |φ(n)

k
�, one step of the random walk consists of:
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1. sampling an x from the PDF p̃(x)/N(φ(n)

k
). With discrete, Ising-like auxiliary-fields for

a Hubbard interaction, the sampling is achieved by a heatbath-like algorithm, sweeping
through each field xi [20]

2. constructing the corresponding B(x) and then propagating the walker Φ(n)

k
to generate a

new walker

3. assigning a weight w(n+1)

k
= w(n)

k
N(φ(n)

k
) to the new walker.

In contrast with the primitive algorithm in Eq. (34), the weight of a walker does not need to be
modified here when the re-orthogonalization procedure is applied. This is because the upper-
triangular matrix R only contributes to the overlap OT , which is already represented by the
walker weight. After each re-orthonormalization [24, 47], R can simply be discarded [20, 24].
To calculate the expectation value of an observable which does not commute with the Hamil-
tonian, the back-propogation technique [20, 30] is used. The idea is to create two coupled
populations to represent the bra and ket in Eq. (6), respectively. Because the population in the
random walk is importance-sampled, two independent populations which are uncoupled would
lead to large fluctuations in the estimator after the importance functions have been ”undone.”
In back-propagation, we choose an iteration n and store the entire population { |φ(n)

k
� }. As

the random walk proceeds from n, we keep track of the following two items for each new
walker: (1) the sampled auxiliary-field values that led to the new walker from its parent walker
and (2) an integer label that identifies the parent. After an additional m iterations, we carry
out the back-propagation: For each walker l in the (n + m)th (current) population, we initi-
ate a determinant �ψT | and act on it with the corresponding propagators, but taken in reverse
order. The m successive propagators are constructed from the items stored between steps m

and m + l, with exp(−∆τĤ1/2) inserted where necessary. The resulting determinants �φ̄(m)

l
|

are combined with its parent from iteration n to compute �O�BP, in a way similar to the mixed
estimator. The weights are given correctly by w(n+m)

l
, due to importance sampling [30]. The

weight works similarly to that in forward walking in DMC. However, the trial wave function
can be propagated backwards in AFQMC to obtain a population sampling the bra, from which
the entire single-particle Green’s function can be computed with Eq. (15). Thus AFQMC can
compute both diagonal and off-diagonal observables.

3.4 The phaseless formalism for complex auxiliary-fields

When the many-body Hamiltonian leads to a decomposition with λ > 0 in Eq. (20), the resulting
HS transformation will have complex auxiliary-fields. This is the case for the electron-electron
repulsion. (We will sometimes refer loosely to having complex auxiliary-fields. It should be
understood that this means that the propagator resulting from the two-body Hamiltonian is
complex. Incidentally, it is always possible to have real auxiliary-fields, for example by making
a negative shift to the positive potential, but that simply leads to many fluctuating fields to
recover a constant background, and a much more severe sign problem [15,41].) In this situation
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a phase problem arises, as illustrated in Fig. 3. We next describe the formalism to deal with the
problem.
With a continuous auxiliary-field, the importance sampling in step 1 in Sec. 3.3 is achieved with
a force bias [15, 30]. To sketch a derivation we write the two-body propagator as

�
e−x2

/2 ex·v̂ dx , (40)

where v̂ is a vector denoting the collection of one-body operators labeled by γ in Eq. (20), and
the constant

�
−∆τλγ , which is complex if λγ is positive from in Eq. (21), has been absorbed

into the definition of v̂. We introduce a shift in the integral in Eq. (40), which leads to an
alternative propagator �

e−x2
/2 ex·x̄−x̄2

/2 e(x−x̄)·v̂ dx . (41)

The new propagator is exact for any choice of the shift x̄, which can be complex in general.
In free projection, application of the propagator in Eq. (41) to a Slater determinant |φ� would
be similar to that discussed in the previous section. We would sample x from the Gaussian,
propagate |φ� to a new |φ�(x)� by

|φ�(x)� = e(x−x̄)·v̂
|φ�, (42)

and include the extra exponential with x̄ in the weight of the walker.
In the iterative projection, the ground-state wave function that emerges after the equilibration
phase can be written in the following form

|Ψ0� =

�
f(φ)|φ�dφ , (43)

where we assume a criterion has been chosen and is followed consistently to separate the deter-
minant |φ� from its coefficient (e.g., orthonormalization). Because of the over-completeness of
the basis space, the function f(φ) may be different in different steps of the iteration, but in each
step it is uniquely determined. In free projection the function f(φ) is represented by the weights
of the MC samples, and the MC representation of the ground-state wave function is given by
Eq. (35). Omitting the explicit walker index, we have

|Ψ0� =
�

φ

wφ|φ�, (44)

where the sum runs over all walkers and wφ is the weight of walker |φ�. In general, the weight
wφ can be complex (as can the orbitals), which is of course the cause for the phase problem.
Using the idea of importance sampling, we further modify the propagator in Eq. (41)

�
�ΨT |φ

�(x)� e−x2
/2 exx̄−x̄2

/2 e(x−x̄)·v̂ 1

�ΨT |φ�
dx , (45)

where, as before, the trial wave function |ΨT � represents the best guess to |Ψ0� and is the one
used in the mixed estimate for observables. The new propagator means that the walker weights
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now represent, instead of f(φ) in Eq. (43), a modified function f(φ)�ΨT |φ�. In contrast with
Eq. (44), the MC representation of the ground-state wave function with importance sampling is
now given by Eq. (38)

|Ψ0� =
�

φ

wφ

|φ�

�ΨT |φ�
, (46)

where any overall phase of the walker is removed.
We now consider the ratio �ΨT |φ�(x)�/�ΨT |φ� in Eq. (45). Defining

v̄ ≡ −
�ΨT |v̂|φ�

�ΨT |φ�
∼ O(

√
∆τ) (47)

and
v2 ≡

�ΨT |v̂2|φ�

�ΨT |φ�
∼ O(∆τ), (48)

we can evaluate the ratio by expanding the propagator [48] in Eq. (42) to O(τ). The overall
weight factor in Eq. (45) can now be written in the form of an exponential [15, 30]

�ΨT |φ�(x)�

�ΨT |φ�
ex·x̄−x̄2

/2 .
= exp[−(x− x̄) · v̄+

1

2
(x− x̄)2v2−

1

2
(x− x̄)2v̄2+x · x̄− x̄2/2]. (49)

The optimal choice of the shift x̄, which minimizes the fluctuation of Eq. (49) with respect to x,
is therefore x̄ = v̄. With this choice, the weight factor in Eq. (49) is exp[x2v2/2+(1−x2)v̄2/2],
which can be further reduced to exp(v2/2) if we set x2 → 1. Setting x2 to its average value
(with respect to the Gaussian PDF) is justified if v̄ and v2 remain approximately constant within
one imaginary-time step, which holds in the limit ∆τ → 0. (An exception to this is when
the walker |φ� is in the vicinity — say, within a few time steps — of “the origin” as defined
by �ΨT |φ� = 0. We discuss this special case, together with the characteristics of the origin
and its effect on the method below.) The modified propagator in Eq. (45) can then be written
approximately as �

e−x2
/2 e(x−v̄)·v̂ ev

2/2 dx . (50)

We have only included the Ĥ2 terms in the discussion from Eq. (40) up to now. Re-introducing
Ĥ1 into the propagator, we obtain the complete propagator for the Hamiltonian

�
e−x2

/2 exp

�
−
∆τĤ1

2

�
exp[(x− v̄) · v̂] exp

�
−
∆τĤ1

2

�
exp[−∆τEL(φ)] dx , (51)

where the term EL has a similar form to the so-called local energy in real-space DMC

EL(φ) ≡
�ΨT |Ĥ|φ�

�ΨT |φ�
. (52)

Projection with Eq. (51) will in principle lead to the ground-state wave function in the form of
Eq. (38). The weight of the walker is determined by EL, which is independent of any phase
factor of the determinant.
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Fig. 3: Schematic illustration of the phase problem and constraints to control it. The left panel

shows, as a function of projection time β ≡ n∆τ , trajectories of 5 walkers characterized by

the real (Re) and imaginary (Im) parts of their overlap with the ground-state wave function.

The right panel shows the walker distribution integrated over imaginary time, i.e., the differ-

ent frames in the left panel stacked together along β. The phase problem occurs because the

initial phase “coherence” of the random walkers rapidly deteriorates with β, as they become

uniformly distributed in the Re-Im-plane. The idea of the phase constraint [15] is to apply a

gauge transformation such that confining the random walk in the single magenta plane (left) is

a good approximation.

In the limit of an exact |ΨT �, EL is a real constant, and the weight of each walker remains real.
The mixed estimate for the energy from Eq. (7) is phaseless

Ec

0
=

�
φ
wφEL(φ)�
φ
wφ

. (53)

With a general |ΨT � which is not exact, a natural approximation is to replace EL in Eq. (51) by
its real part, ReEL. The same replacement is then necessary in Eq. (53).
With these replacements we arrive at a phaseless formalism for the random walks. We can
summarize each step in this formalism as follows. For each random walker |φ�,

(a) sample x and propagate the walker to |φ��

|φ� → |φ�
� = exp

�
−
∆τĤ1

2

�
exp

�
(x− v̄) · v̂] exp[−

∆τĤ1

2

�
|φ�, (54)

(b) update the weight of the walker

wφ → wφ� = wφ exp
�
−∆τ · Re

�
EL(φ

�) + EL(φ)
�
/2
�
. (55)

Walkers so generated represent the ground-state wave function with importance sampling, in the
sense of Eq. (38). We have also tested a slightly different formalism based on Eq. (45), which
we shall refer to as the hybrid formalism [15, 30]. The same choice for x̄ is used: x̄ = v̄. The
walker is propagated in the same way as in (a) above, with the shifted or force-biased propagator
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in Eq. (51). In (b), however, we explicitly calculate the weight factor on the left-hand side of
Eq. (49) instead of using the local energy:

(b
�
) update the weight of the walker

wφ → wφ� =

�����
�ΨT |φ��

�ΨT |φ�
ex·x̄−x̄2

/2

����� (56)

Conceptually the hybrid form is the same as that of the full local energy. However, it is in
principle correct for any choice of x̄, while in the local-energy form only x̄ = v̄ is correct. If
calculating EL is computationally costly (for example a brute-force calculation of Ĥ2 in a gen-
eral representation in Eq. (2) costs O(N4)), the hybrid form can be a more efficient alternative.
The Trotter errors for finite ∆τ can be different in the two approaches [22].
This formalism is all that is needed to handle the sign problem in the case of a real v̂. For any
v̂ the shift x̄ diverges as a walker approaches the origin in the complex plane shown in the right
panel of Fig. 3, i.e., as �ΨT |φ�� → 0. The effect of the divergence is to move the walker away
from the origin. With a real v̂, ∆θ = 0 and the random walkers move only on the real axis. If
they are initialized to have positive overlaps with |ΨT �, x̄ will ensure that the overlaps remain
positive throughout the random walk. Thus in this case our formalism above reduces to CPMC.
For a general case with a complex v̂, however, the phaseless formalism alone is not sufficient
to remove the phase problem. To illustrate the nature of the problem we consider the phase of
�ΨT |φ�(x− x̄)�/�ΨT |φ�, which we shall denote by ∆θ and which is in general non-zero: ∆θ ∼

O(−x Im(x̄)). This means that the walkers will undergo a random walk in the complex plane
defined by �ΨT |φ��. At large β, they will therefore populate the complex plane symmetrically,
independent of their initial positions. This is illustrated in the right panel of Fig. 3, which shows
�ΨT |φ� for three-dimensional jellium with two electrons at rs = 10 for a total projection time of
β = 250. The distribution of the walkers is seen to be symmetric about the phase angle, and any
signal that the walkers all real initially started with �ΨT |φ(0)� = 1) is lost in the statistical noise.
In other words, for a complex v̂, the random walk is “rotationally invariant” in the complex
plane, and the divergence of x̄ is not enough to prevent the build-up of a finite density at the
origin. Near the origin the local energy EL diverges, which causes diverging fluctuations in
the weights of walkers. To address this we make an additional approximation. We project
the random walk to “one-dimension” and multiply the weight of each walker in each step by
cos(∆θ)

wφ� = wφ� max{0, cos(∆θ)} , (57)

in addition to step (b) [or (b�)] above. For this to be a good approximation, it is important that
the importance sampling transformation has been done to eliminate the leading order in the
overall phase of |φ� in the propagator in Eq. (49).
Several alternative schemes have been tested [15, 31, 49] in place of the Eq. (57). One that
seemed to work just as well was to project with the factor exp{−[Im(x̄)]2/2}, which is the
same as cos(∆θ) in the limit of small values of ∆θ. Another was to impose Re�ΨT |φ�� > 0,
which gave similar results, but with somewhat larger variance.
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Fig. 4: Calculated binding energies [16, 27, 49, 50] of molecules compared with experimental

values. The discrepancy between theory and experiment is plotted. The AFQMC is fed a trial

wave function to start, which is taken directly from DFT [with either LDA or the generalized-

gradient approximation (GGA) functionals] or HF. The corresponding DFT or HF results are

also shown. As can be readily observed, the AFQMC results are in excellent agreement with

experiment and significantly improve upon the values from DFT and HF.

4 Illustrative results

The AFQMC method, including the CPMC for real auxiliary-fields and the phaseless formalism
for complex fields, has been applied to lattice models, to solids (using plane-wave basis and
pseudo potentials), to molecular systems (using Gaussian basis sets), and to down-folded model
Hamiltonians of real materials (using DFT orbitals as basis sets). It has also been applied in
nuclear physics to treat shell models and in neutron matter calculations. Here we briefly mention
a few examples from correlated-electron systems to provide an idea of what can already be done
and the many opportunities for improvements and for breakthroughs.
Accuracy, or predictive power, is a key requirement of a successful paradigm for strongly cor-
related systems. The formulation of AFQMC with Gaussian basis sets and quantum chemistry
applications have been crucial in establishing the method as a general approach that can now
be applied to correlated materials, since direct comparisons can be made with high-level quan-
tum chemistry results. Benchmark calculations to date have included close to 100 systems,
from simple molecules [21,49] and solids [22,51,52] to transition metal systems [53] to energy
storage problems [32].
Figure 4 illustrates the results on molecules using both planewave plus pseudopotentials and
Gaussian basis sets. In these calculations we have operated largely in an automated mode,
inputting only the DFT or HF solutions. The method demonstrated excellent accuracy, being
consistently able to correct errors in the mean-field trial wave function. In molecules, the ac-
curacy of the phaseless AFQMC is found to be comparable to CCSD(T), the gold standard in
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Fig. 5: Accurate calculation [58] of excited states. The seemingly simple C2 molecule is a

significant challenge to many-body methods [59,60]. Potential energy curves calculated by our

QMC method (symbols with error bars) are shown for the three lowest lying singlet states in C2,

compared with exact results [59] (solid lines) in a small basis set. RCCSD(T), the preeminent

many-body quantum chemistry method, does not work well (shown in orange lines).

chemistry [54, 55], near equilibrium geometry.
Bond stretching in molecules and solids mimics increased levels of multi-reference characters
and particle correlation. With single Slater determinants from unrestricted HF as trial wave
function, the AFQMC method generally gives better overall accuracy and a more uniform be-
havior than CCSD(T) in mapping the potential-energy curve [56–58], as can be seen for the
example of the C2 ground state in Fig. 5.
The AFQMC method can be used to study excited states. Prevention of collapse into the ground
state and control of the fermion sign/phase problem are accomplished by the constraint using an
excited state trial wave function [58]. An additional orthogonalization constraint is formulated
to use virtual orbitals in solids for band structure calculations [52]. Using the C2 molecule as
a test case, we calculated the potential energy curves of the ground and two low-lying singlet
excited states in Fig. 5. The trial wave function was obtained by truncating complete active
space wave functions, with no further optimization. The phaseless AFQMC results using a
small basis set were in good agreement with exact calculations, while those using large basis
sets were in excellent agreement with experimental spectroscopic constants [58]. Applications
in solids have included the calculation of the fundamental band gap in wurtzite ZnO [52].
Figure 6 illustrates an application to determine [23, 46] magnetic correlations and collective
modes in the ground state of the two-dimensional repulsive Hubbard model. Using CPMC and
simulating large rectangular supercells (over 1000 lattice sites), we studied the magnetic and
charge properties as a function of density. At intermediate interaction strengths, an incommen-
surate spin density wave (SDW) state is seen, with antiferromagnetic order and essentially ho-
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Fig. 6: Spin-density wave (SDW) states with long wavelength modulation in the 2-D Hubbard

model [23]. The left panel is a 3-D plot of the spin-spin correlation function in the ground

state of 8× 32 lattice with 240 electrons (n = 0.9375) and U/t = 4. Anti-ferromagnetic order

can be seen from the diagonal “lines.” Phase shifts occur at the nodal lines, across which there

is a mismatch of the diagonal lines. The right panel examines the doping dependence. The

staggered spin-spin correlation function is plotted at three different densities. Calculations are

done using a free-electron trial wave function. The long wavelength modulation and nodal lines

(two colors crossing) are clear. As doping is increased, the wavelength of the modulating wave

decreases, as does the amplitude of the SDW.

mogeneous charge correlations. The wavelength of the collective mode decreases with doping
(1 − (M↑ + M↓)/N ), as does its magnitude. The SDW order vanishes beyond a critical dop-
ing. As the interaction is increased, the holes go from a wavelike (delocalized) to a particlelike
(localized) state, and charge ordering develops which eventually evolves into stripe states [61].
This work [23] advanced our understanding of the magnetic properties and provided predictions
for optical lattice experiments.

5 Concluding remarks

We have discussed ground-state auxiliary-field-based methods for correlated-electron systems.
A formalism has been outlined that allows for a systematic understanding of the origin of the
sign/phase problem, and a platform on which to build methods whose computational cost scales
with system size at a low power, and whose accuracy reaches or surpasses the best general
many-body approaches. The AFQMC methods can be used to study both model systems and
realistic Hamiltonians. Applications have included atoms, molecules, solids, and correlated-
electron models, recently including down-folded Hamiltonians.
The original form of the AFQMC method allows essentially exact calculations of ground-state
and finite-temperature equilibrium properties of interacting many-fermion systems. Their ef-
fectiveness, however, was severely limited by the sign problem, which prevents calculations at
large system sizes or low temperatures. Often in the study of correlated models in condensed
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matter or cold atoms in optical lattices, the comment “But there is a sign problem” is made
to imply ”So QMC calculations cannot be used here.” It is hoped that the methods we have
discussed will change this paradigm. Calculations indeed can be done in systems where a sign
problem is present, and often accurate results are within reach by these calculations.
As a QMC method, this framework automatically accounts for particle permutations and allows
easy computations of both diagonal and off-diagonal expectations, as well as imaginary-time
correlations. It has much versatility as a general method, offering, for example, the possibility to
treat heavier elements and spin-orbit coupling, and the potential to embed the AFQMC naturally
and seamlessly in a calculation at the mean-field level. While much work is needed to study
various forms of HS transformations and trial functions |ψT �, and to understand the subtleties
of the method and the constraints because of the non-orthogonal and over-complete nature of
the Slater determinant space involved, we expect the method and the concept brought forth here
to see many applications, and to significantly enhance the applicability of quantum simulations
in interacting fermion systems. There are many opportunities both for further development and
improvement of this framework, and for applications in a variety of problems.

6 Acknowledgments

I am indebted to numerous colleagues and students, whose interactions and collaborations I
have immensely enjoyed and benefitted from. Length restriction does not allow the full list
here, but I would like to thank W. Al-Saidi, J. Carlson, C.-C. Chang, H. Krakauer, F. Ma,
W. Purwanto, and H. Shi. The work covered in these notes would not have been possible without
their contributions. Support from the National Science Foundation (NSF), the Department of
Energy (DOE), and the Army Research Office (ARO) is gratefully acknowledged. Computing
was done on the Oak Ridge Leadership Computing Facilities via an INCITE award, on Blue
Waters at UIUC supported by NSF PRAC, and on CPD at William & Mary.



Auxiliary-Field Quantum Monte Carlo 15.27

Appendices

A A few basics of Monte Carlo techniques

We list a few key elements from standard Monte Carlo (MC) techniques which are important to
our discussions on QMC. For an introduction on MC methods, see, e.g., Ref. [42].
MC methods are often used to compute many-dimensional integrals of the form

G =

�
Ω0

f(x)g(x)dx
�
Ω0

f(x)dx
, (58)

where x is a vector in a many-dimensional space and Ω0 is a domain in this space. We will
assume that f(x) ≥ 0 on Ω0 and that it is normalizable, i.e., the denominator is finite. A
familiar example of the integral in Eq. (58) comes from classical statistical physics, where f(x)
is the Boltzmann distribution.
To compute G by MC, we sample x from a probability density function (PDF) proportional to
f(x): f̄(x) ≡ f(x)/

�
Ω0

f(x)dx. This means to generate a sequence {x1,x2, · · · ,xi, · · · } so
that the probability that any xi is in the sub-domain (x,x+ dx) is

Prob{xi ∈ (x,x+ dx)} = f̄(x)dx . (59)

There are different techniques to sample a many-dimensional function f(x). The most general
and perhaps most commonly used technique to sample f(x), i.e., the PDF f̄(x), is the Metropo-
lis algorithm, which creates a Markov-chain random walk [42] in x-space whose equilibrium
distribution is the desired function. We will also use a branching random walk, in which case
there can be a weight wi associated with each sampled xi. (In Metropolis, wi = 1.) The MC
samples provide a formal representation of f

f(x) ∝
�

i

wiδ(x− xi) . (60)

Given M independent samples from f(x), the integral in Eq. (58) is estimated by

GM =
M�

i=1

wig(xi)/
M�

i=1

wi (61)

The error in the estimate decays algebraically with the number of samples: |GM−G| ∝ 1/
√
M.

Using the results above, we can compute

G� =

�
Ω0

f(x)g(x)h(x)dx
�
Ω0

f(x)h(x)dx
, (62)

if the function h(x) is such that both the numerator and denominator exist. Formally

G�
M =

�M
i=1

wig(xi)h(xi)�M
i=1

wih(xi)
, (63)
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although, as we will see, difficulties arise when h(x) can change sign and is rapidly oscillating.
Integral equations are another main area of applications of MC methods. For example [42], the
integral equation

Ψ �(x) =

�

Ω0

K(x,y) w(y) Ψ(y)dy, (64)

can be viewed in terms of a random walk if it has the following properties: Ψ(y) and Ψ �(x)

can be viewed as PDF’s (in the sense of f in Eq. (58)), w(y) ≥ 0, and K(x,y) is a PDF for x
conditional on y. Then, given an ensemble {yi} sampling Ψ(y), the following two steps will
allow us to generate an ensemble that samples Ψ �(x). First an absorption/branching process is
applied to each yi according to w(yi). For example, we can make int(w(yi) + ξ) copies of yi,
where ξ is a uniform random number on (0, 1). Second we randomly walk each new yj to an
xj by sampling the PDF K(xj,yj). The resulting {xj} are MC samples of Ψ �(x). An example
of this is the one-dimensional integral equation

Ψ(x) =

� ∞

−∞

1
√
π
e−(x−y)

2 √
2e−y

2
/2 Ψ(y)dy, (65)

which has a solution Ψ(x) = e−x
2
/2. The random walks, starting from an arbitrary distribution,

will iteratively converge to a distribution sampling Ψ(x).
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