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Introduction

LDA calculations often do not reproduce the single-particle spectra of correlated insulators like NiO
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Preliminaries

We consider a solid as a periodic array of orbitals

i j

α

β

Unit cell

We introduce Fermion operators c†i,α/ci,α for electrons in these - α is shorthand for ‘orbital type’ and spin

The number of orbitals per unit-cell is norb

The Fourier transform of these operators is

c†k,α =
1√
N

∑

i

eik·(Ri+rα) c†i,α,



Hamiltonian

In terms of these the Hamiltonian reads

H0 =
∑

k

∑

α,β

tα,β(k) c†k,α ck,β

H1 =
1

2

∑

k,k′,q

∑

α,β,γ,δ

Vα,β,δ,γ(k,k′,q) c†k+q,α c†
k′−q,β ck′,γ ck,δ

The matrix t(k) has dimension 2norb × 2norb (factor 2 for spin) and its eigenvalues En(k) give the

noninteracting band structure

(in the absence of spin-orbit coupling and magnetic field all En(k) are twofold degenerate)



The Green’s function

The time ordered imaginary time Green’s function is defined as

Gi,α,j,β(τ ) = −Θ(τ ) 〈 ci,α(τ ) c†j,β 〉th + Θ(−τ ) 〈 c†j,β ci,α(τ ) 〉th

ci,α(τ ) = eτ(H−µN)/~ ci,α e−τ(H−µN)/~

It can be shown that this is well defined only for τ ∈ [−β~, β~] and that it is antiperiodic: G(τ+β~) = −G(τ )

Accordingly G can be expanded in a Fourier series with the Matsubara frequencies ων

G(τ ) =
1

β~

∞
∑

ν=−∞
e−iωντ G(iων)

ων =
(2ν + 1)π

β~

The Fourier transform G(ω) is an analytic function in the complex ω-plane with the exception of the real-axis

The poles of G(ω) on the real axis give the ionization/affinity energies i.e. the ‘quasiparticle band structure’

G(ω ± i0+) (with ω real) gives the retarded/advanced real-time Green’s function



The imaginary-time Green’s function can also be expanded in Feynman diagrams

This allows to introduce the self-energy Σ (sum of all one-particle-irreducible diagrams with two ‘plugins’)...

Σ = .... + + ....

... and derive the Dyson equation

Σ Σ ΣG = + + + ....

Gα,β = G
(0)
α,β + G(0)

α,µ Σµ,ν G
(0)
ν,β + G(0)

α,µ Σµ,ν G
(0)
ν,λ Σλ,ρ G

(0)
ρ,β + . . .

= G(0)
α,ν

(

(1 − Σ G(0))−1
)

ν,β

G = (G(0))−1 − Σ)−1



The Dyson equation

G(k, ω) =

(

ω − 1

~
( t(k) − µ ) − Σ(k, ω)

)−1

Note: G(k, ω), t(k) and Σ(k, ω) are matrices of dimension 2norb × 2norb - this is a true matrix inversion!

For a single band we can write

G(k, ω) =
1

ω − 1
~

(ǫk − µ) − Σ(k, ω)

The poles of G(k, ω) give the ionization/affinity energies → the equation for the excitation energies thus is

~ω − (ǫk − µ) = ~Σ(k, ω)

On the few next pages we omit µ and ~ for simplicity then

ω − ǫk = Σ(k, ω)
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G(k, ω) =

(

ω − 1

~
( t(k) − µ ) − Σ(k, ω)

)−1

Note: G(k, ω), t(k) and Σ(k, ω) are matrices of dimension 2norb × 2norb - this is a true matrix inversion!

For a single band we can write

G(k, ω) =
1

ω − 1
~

(ǫk − µ) − Σ(k, ω)

The poles of G(k, ω) give the ionization/affinity energies → the equation for the excitation energies thus is

~ω − (ǫk − µ) = ~Σ(k, ω)

On the few next pages we omit µ, ~ and k for simplicity:

ω − ǫk = Σ(k, ω)



Luttinger has shown (J.M. Luttinger, Phys. Rev. 121, 942 (1961)) that the self-energy has a simple analytic

structure (with η, σi,ζi real, σi > 0)

Σ(ω) = η +
∑

i

σi

ω − ζi

A real constant (=‘potential’) plus a sum of terms which have poles on the real axis

To see the implications of this let us consider just a single pole:

Σ(ω) =
σ

ω − ζ

The equation for poles of the Green’s function (=energies of electron states) reads: ω − ǫk = Σ(ω)
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Reminder: Band Theory vs Experiment

-8

-6

-4

-2

0

2
E

ne
rg

y 
[e

V
]

Ni3d

O2p

S
pe

ct
ra

l w
ei

gh
t

NiO

Energy

Fermi energy

G. A. Sawatzky and J. W. Allen

Phys. Rev. Lett. 53, 2239 (1984).

A self-energy with a single strong pole could resolve a good deal of the discrepancy



Outline

In 1961 Luttinger and Ward prooved a famous theorem which is the basis of many important developments in

the field theory of condensed matter systems

They showed that the Grand Canonical Potential Ω of an interacting Fermi system can be expressed as a

functional of its self-energy Σ which is stationary with respect to variations of Σ at the exact Σ

When we apply this theorem for actual calculations we face a similar situation as in density functional theory:

Density functional theory Self-energy functional theory

E0 = E0[ρ] Ω = Ω[Σ]

δE0

δρ = 0 δΩ
δΣ = 0

In both cases the actual form of the functional is unknown (or impossible to actually evaluate)

In both cases one must therefore find a way to ‘evaluate’ the functional at least approximately

In the case of Self-energy functional theory one way to do this is the Variational Cluster Approximation invented

by M. Potthoff (Eur. Phys. J. B 32, 429 (2003))



The Grand Canonical Potential

The Grand Canonical Potential Ω is defined in terms of the Grand Partition Function Z

Ω = − 1

β
log(Z)

Z = trace
(

e−β(Ĥ−µN̂)
)

• Ĥ : Hamiltonian, N̂ operator of particle number

• β = 1/(kBT )

• kB: Boltzmann constant, T : Temperature, µ: chemical potential

If we know a complete set of eigenstates |i〉

Ĥ|i〉 = Ei|i〉

N̂ |i〉 = Ni|i〉

we obtain

Z =
∑

i

e−β(Ei−µNi)



Ω can be evaluated analytically for some systems

Noninteracting Bloch electrons

Ω = − 1

β

2norb
∑

n=1

∑

k

ln
(

1 + e−β(En(k)−µ)
)

• norb number of orbitals per unit cell, 2norb the number of bands

• En(k): Dispersion of nth band

• Gives for example: Cv ∝ T

But: No way to calculate this for an interacting system of macroscopic size



The Grand Canconical Potential of interacting Fermions

Luttinger and Ward have derived an expression for the Grand Canonical Potential of interacting Fermions

(J.M. Luttinger and J.C. Ward, Phys. Rev. 118, 1417 (1960))

Ω′ = − lim
η→0+

1

β

∑

k,ν

eiωνη
[

ln det
(

−G−1(k, iων)
)

+ trace (G(k, iων) Σ(k, iων))
]

+ Φ [G].

• ων = (2ν+1)π
~β

: Matsubara Frequencies

• G: Green’s Function, Σ: Self-Energy

• Φ[G]: The Luttinger-Ward functional:

Φ[ G] = + + + + ....



We now want to proove that Ω′ = Ω thereby following the original proof by Luttinger and Ward

• We replace H → H0 + λH1

• We show Ω′ = Ω for λ = 0 (the case of noninteracting electrons)

• We calculate λ∂λ Ω

• We calculate λ∂λ Ω′ and show that it is equal to λ∂λ Ω

Obviously this prooves the equality of Ω′ and Ω



The case λ = 0: Noninteracting Fermions

The Grand Canonical potential of free Bloch electrons is

Ω = − 1

β

2norb
∑

n=1

∑

k

ln
(

1 + e−β(En(k)−µ)
)

The expression by Luttinger and Ward is

Ω′ = − lim
η→0+

1

β

∑

k,ν

eiωνη
[

ln det
(

−G−1(k, iων)
)

+ trace (G(k, iων) Σ(k, iων))
]

+ Φ[G]



The case λ = 0: Noninteracting Fermions

The Grand Canonical potential of free Bloch electrons is

Ω = − 1

β

2norb
∑

n=1

∑

k

ln
(

1 + e−β(En(k)−µ)
)

The expression by Luttinger and Ward is

Ω′ = − lim
η→0+

1

β

∑

k,ν

eiωνη
[

ln det
(

−G−1(k, iων)
)

+ trace (G(k, iων) Σ(k, iων))
]

+ Φ[G]

For noninteracting electrons we have Σ = 0 and Φ = 0:

Φ[ G] = + + + + ....



The case λ = 0: Noninteracting Fermions

The Grand Canonical potential of free Bloch electrons is

Ω = − 1

β

2norb
∑

n=1

∑

k

ln
(

1 + e−β(En(k)−µ)
)

The expression by Luttinger and Ward is

Ω′ = − lim
η→0+

1

β

∑

k,ν

eiωνη ln det
(

−G−1(k, iων)
)

+trace (G(k, iων) Σ(k, iων)) +Φ[G]

For noninteracting electrons we have Σ = 0 and Φ = 0:

Φ[ G] = + + + + ....



We had

Ω′ = − lim
η→0+

1

β

∑

k,ν

eiωνη ln det
(

−G−1(k, iων)
)

Theorem: The determinant of a matrix A is equal to the product of its eigenvalues an

det A =
∏

n

an → ln det A =
∑

n

ln(an)

For noninteracting Fermions we have

G−1(k, ω) = ω − 1

~
( t(k) − µ )

an = ω − 1

~
( En(k) − µ )



We had

Ω′ = − lim
η→0+

1

β

∑

k,ν

eiωνη ln det
(

−G−1(k, iων)
)

Theorem: The determinant of a matrix A is equal to the product of its eigenvalues an

det A =
∏

n

an → ln det A =
∑

n

ln(an)

For noninteracting Fermions we have

G−1(k, ω) = ω − 1

~
( t(k) − µ )

gn = ω − 1

~
( En(k) − µ )

→ Ω′ = − lim
η→0+

1

β

∑

k,ν

eiωνη

2norb
∑

n=1

ln

(

−iων +
1

~
( En(k) − µ )

)



Intermezzo: Sum over Matsubara-frequencies

Consider the Fermi function

f(ω) =
1

eβ~ω + 1

This has a pole (zero of the denominator) if eβ~ω = −1 or β~ω = iπ + ν · 2πi (ν integer) or

ω = i
(2ν + 1)π

β~
= iων

The Fermi function has poles at all Matsubara frequencies

To obtain the residuum: set ω = iων + z

f(ω) =
1

eβ~ω + 1

=
1

eiβ~ων eβ~z + 1

=
1

(−1) (1 + β~z) + 1

= − 1

β~

1

z

All poles have the same residuum: −1/β~



Intermezzo: Sum over Matsubara-frequencies

The Fermi function f(ω) has poles at all Matsubara

frequencies iων each with residuum −1/β~

Therefore if g(ω) is an analytic function

∮

C
dω f(ω) g(ω) = 2πi

∑

ν

(− 1

β~
) g(iων)

→ − 1

β

∑

ν

g(iων) =
~

2πi

∮

C
dω f(ω) g(ω)

Re(   )ω

Im(   )ω Matsubara
frequencies



We had

Ω′ = − lim
η→0+

1

β

∑

ν

∑

k

eiωνη

2norb
∑

n=1

ln

(

−iων +
1

~
( En(k) − µ )

)

Now use

− 1

β

∑

ν

g(iων) =
~

2πi

∮

C
dω f(ω) g(ω)



We had

Ω′ = − lim
η→0+

1

β

∑

ν

∑

k

eiωνη

2norb
∑

n=1

ln

(

−iων +
1

~
( En(k) − µ )

)

Now use

− 1

β

∑

ν

g(iων) =
~

2πi

∮

C
dω f(ω) g(ω)

and obtain

Ω′ = lim
η→0+

~

2πi

∮

C
dω f(ω)

∑

k

eωη

2norb
∑

n=1

ln

(

−ω +
1

~
( En(k) − µ )

)



Deforming the Contour

Consider the following three contours:

The integrand

f(ω) eωη
∑

k

2norb
∑

n=1

ln

(

−ω +
1

~
( En(k) − µ )

)

The integral along the closed contour vanishes
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2norb
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n=1

ln

(
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1

~
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1
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Deforming the Contour

Consider the following three contours:

The integrand

f(ω) eωη
∑

k

2norb
∑

n=1

ln

(

−ω +
1

~
( En(k) − µ )

)

The integral along the left arc vanishes

∝ e−η|ℜω|



Deforming the Contour

Consider the following three contours:

The integrand

f(ω) eωη
∑

k

2norb
∑

n=1

ln

(

−ω +
1

~
( En(k) − µ )

)

→
∮

C
dω · · · =

∮

C′
dω



We now have

Ω′ = lim
η→0+

∑

k

~

2πi

∮

C′
dω f(ω) eωη

2norb
∑

n=1

ln

(

−ω +
1

~
( En(k) − µ )

)



We now have

Ω′ = lim
η→0+

∑

k

~

2πi

∮

C′
dω f(ω) eωη

2norb
∑

n=1

ln

(

−ω +
1

~
( En(k) − µ )

)

Next we use

f(ω) = − 1

β~

d

dω
ln
(

1 + e−β~ω
)

= − 1

β~

−β~ e−β~ω

1 + e−β~ω

and integrate by parts



We now have

Ω′ = lim
η→0+

∑

k

~

2πi

∮

C′
dω f(ω) eωη

2norb
∑

n=1

ln

(

−ω +
1

~
( En(k) − µ )

)

Next we use

f(ω) = − 1

β~

d

dω
ln
(

1 + e−β~ω
)

= − 1

β~

−β~ e−β~ω

1 + e−β~ω

and integrate by parts

Ω′ =
1

β
lim

η→0+

∑

k

1

2πi

∮

C′
dω ln

(

1 + e−β~ω
) d

dω

[

eωη

2norb
∑

n=1

ln

(

−ω +
1

~
( En(k) − µ )

)

]



We had

Ω′ =
1

β
lim

η→0+

∑

k

1

2πi

∮

C′
dω ln

(

1 + e−β~ω
) d

dω

[

eωη

2norb
∑

n=1

ln

(

−ω +
1

~
( En(k) − µ )

)

]

= lim
η→0+

1

β

1

2πi

∑

k

2norb
∑

n=1

∮

C′
dω ln(1 + e−β~ω) eηω 1

ω − 1
~
(En(k) − µ)

+ 0(η)



We had

Ω′ =
1

β
lim

η→0+

∑

k

1

2πi

∮

C′
dω ln

(

1 + e−β~ω
) d

dω

[

eωη

2norb
∑

n=1

ln

(

−ω +
1

~
( En(k) − µ )

)

]

= lim
η→0+

1

β

1

2πi

∑

k

2norb
∑

n=1

∮

C′
dω ln(1 + e−β~ω) eηω 1

ω − 1
~
(En(k) − µ)

+ 0(η)



We had

Ω′ =
1

β
lim

η→0+

∑

k

1

2πi

∮

C′
dω ln

(

1 + e−β~ω
) d

dω

[

eωη

2norb
∑

n=1

ln

(

−ω +
1

~
( En(k) − µ )

)

]

= lim
η→0+

1

β

1

2πi

∑

k

2norb
∑

n=1

∮

C′
dω ln(1 + e−β~ω) eηω 1

ω − 1
~
(En(k) − µ)

+ 0(η)

Equation for pole: ~ωpole = En(k) − µ

→ Residuum is

ln
(

1 + e−β~ωpole
)

= ln
(

1 + e−β(En(k)−µ)
)

Ω′ = − 1

β

∑

k

2norb
∑

n=1

ln
(

1 + e−β(En(k)−µ)
)

= Ω



We now want to proove that Ω′ = Ω thereby following the original proof by Luttinger and Ward:

• We replace H → H0 + λH1

• We show Ω′ = Ω for λ = 0 (the case of noninteracting electrons)

• We calculate λ∂λ Ω

• We calculate λ∂λ Ω′ and show that it is equal to λ∂λ Ω

Obviously this prooves the equality of Ω′ and Ω



Calculation of λ ∂Ω
∂λ

The definition of Ω

Ω = − 1

β
ln Z

= − 1

β
ln
(

trace e−β(H0+λH1−µN)
)

Here we use

λ
∂

∂λ
Ω(λ) = − 1

β
λ

∂

∂λ
ln
(

trace
(

e−β(H0+λH1−µN)
))

=
1

Z
trace

(

λH1 e−β(H0+λH1−µN)
)

= 〈λH1〉λ

〈...〉λ: thermal average at interaction strength λ



Calculation of 〈λH1〉λ

This can be obtained from the equation of motion of the Green’s function

〈λH1〉λ = −1

2
lim

τ→0−

∑

k

trace

(

~
∂

∂τ
− µ + t(k)

)

Gλ(k, τ ),

Now: Use the Dyson equation
(

iων +
1

~
µ − 1

~
t(k) − Σλ(k, iων)

)

Gλ(k, iων) = 1



Calculation of 〈λH1〉λ

This can be obtained from the equation of motion of the Green’s function

〈λH1〉λ = −1

2
lim

τ→0−

∑

k

trace

(

~
∂

∂τ
− µ + t(k)

)

Gλ(k, τ ),

Now: Use the Dyson equation
(

iων +
1

~
µ − 1

~
t(k) − Σλ(k, iων)

)

Gλ(k, iων) = 1

Its Fourier transform is
(

− ∂

∂τ
+

1

~
µ − 1

~
t(k)

)

Gλ(k, τ ) −
∫ β~

0

Σλ(k, τ − τ ′) Gλ(k, τ ′)dτ ′ = δ(τ )

(

−1

~

) (

~
∂

∂τ
− µ + t(k)

)

Gλ(k, τ ) −
∫ β~

0

Σλ(k, τ − τ ′) Gλ(k, τ ′)dτ ′ = δ(τ ).



Calculation of 〈λH1〉λ

This can be obtained from the equation of motion of the Green’s function

〈λH1〉λ = −1

2
lim

τ→0−

∑

k

trace

(

~
∂

∂τ
− µ + t(k)

)

Gλ(k, τ ),

Now: Use the Dyson equation
(

iων +
1

~
µ − 1

~
t(k) − Σλ(k, iων)

)

Gλ(k, iων) = 1

Its Fourier transform is
(

− ∂

∂τ
+

1

~
µ − 1

~
t(k)

)

Gλ(k, τ ) −
∫ β~

0

Σλ(k, τ − τ ′) Gλ(k, τ ′)dτ ′ = δ(τ )

(

−1

~

) (

~
∂

∂τ
− µ + t(k)

)

Gλ(k, τ ) −
∫ β~

0

Σλ(k, τ − τ ′) Gλ(k, τ ′)dτ ′ = δ(τ )



Calculation of 〈λH1〉λ

This can be obtained from the equation of motion of the Green’s function

〈λH1〉λ = −1

2
lim

τ→0−

∑

k

trace

(

~
∂

∂τ
− µ + t(k)

)

Gλ(k, τ ),

Now: Use the Dyson equation
(

iων +
1

~
µ − 1

~
t(k) − Σλ(k, iων)

)

Gλ(k, iων) = 1

Its Fourier transform is
(

− ∂

∂τ
+

1

~
µ − 1

~
t(k)

)

Gλ(k, τ ) −
∫ β~

0

Σλ(k, τ − τ ′) Gλ(k, τ ′)dτ ′ = δ(τ )

(

−1

~

) (

~
∂

∂τ
− µ + t(k)

)

Gλ(k, τ ) −
∫ β~

0

Σλ(k, τ − τ ′) Gλ(k, τ ′)dτ ′ = δ(τ )

Using limτ→0− δ(τ ) = 0:
(

~
∂

∂τ
− µ + t(k)

)

Gλ(k, τ ) = −~

∫ β~

0

Σλ(k, τ − τ ′) Gλ(k, τ ′)dτ ′



Calculation of 〈λH1〉λ

This can be obtained from the equation of motion of the Green’s function

〈λH1〉λ = −1

2
lim

τ→0−

∑

k

trace

(

~
∂

∂τ
− µ + t(k)

)

Gλ(k, τ ),

We found....
(

~
∂

∂τ
− µ + t(k)

)

Gλ(k, τ ) = −~

∫ β~

0

Σλ(k, τ − τ ′) Gλ(k, τ ′)dτ ′

= −~
1

β~

∑

ν

e−iωντ Σλ(k, iων) Gλ(k, iων)

... so that the end result is

λ
∂

∂λ
Ω(λ) = 〈λH1〉λ =

1

2β

∑

k,ν

trace Σλ(k, iων) Gλ(k, iων)



We now want to proove that Ω′ = Ω thereby following the original proof by Luttinger and Ward:

• We replace H → H0 + λH1

• We show Ω′ = Ω for λ = 0 (the case of noninteracting electrons)

• We calculate λ∂λ Ω

• We calculate λ∂λ Ω′ and show that it is equal to λ∂λ Ω

Obviously this prooves the equality of Ω′ and Ω



The Precise Definition and Properties of the Luttinger-Ward Functional Φ[G]

Reminder: The Luttinger-Ward functional is defined in terms of Feynman diagrams

Φ[ G] = + + + + ....

The diagrams which are included into Φ are

• Closed (no open ends)

• Connected (no subdiagrams with no lines connecting them)

• Skeleton diagrams (no self-energy parts in any Green’s function line)



Excluded diagrams

Open ends! Disconnected! Self−energy insertion!



Short disgression: Self-energy diagrams can be reduced uniquely to skeleton diagrams



Short disgression: Self-energy diagrams can be reduced uniquely to skeleton diagrams

unique reduktion

Each self-energy diagram can be reduced uniquely to a skeleton diagram by removing all self-energy insertions



This also goes the other way round

....

.... + + + ....

+ ++

=

By drawing all skeleton-diagrams for the self-energy and ‘translating’ Green’s function lines into the full Green’s

function instead of the noninteracting one the total self-energy is obtained



The Precise Definition and Properties of the Luttinger-Ward Functional Φ[G]

Reminder: The Luttinger-Ward functional is defined in terms of Feynman diagrams

Φ[ G] = + + + + ....

The diagrams which are included into Φ are

• Closed (no open ends)

• Connected (no subdiagrams with no lines connecting them)

• Skeleton diagrams (no self-energy parts in any Green’s function line)



The Diagrams are Converted into Multiple Sums using the Standard Feynman Rules....

Gα β

α β

δ γ

Vα β δ γ

βα
α 1

β1
γ1δ1

q

q

k’−q

k’

k+q

k

α
β γδ

( −1

β~2N

)2

(−1)2
∑

k,k′,q

∑

α,β,γ,δ

∑

α1,β1,γ1,δ1

∑

ν,ν′,µ

Vα,β,δ,γ(k,k′,q) Vδ1,γ1,α1,β1
(k + q,k′ − q,−q)

Gα1,α(k + q, iων + ωµ) Gδ,δ1
(k, iων) Gβ1,β(k′ − q, iων′ − iωµ) Gγ,γ1

(k′, iων′)



.... but there is one crucial difference!

Gα β

α β

δ γ

Vα β δ γ

βα
α 1

β1
γ1δ1

q

q

k’−q

k’

k+q

k

α
β γδ

( −1

β~2N

)2

(−1)2
∑

k,k′,q

∑

α,β,γ,δ

∑

α1,β1,γ1,δ1

∑

ν,ν′,µ

Vα,β,δ,γ(k,k′,q) Vδ1,γ1,α1,β1
(k + q,k′ − q,−q)

Gα1,α(k + q, iων + ωµ) Gδ,δ1
(k, iων) Gβ1,β(k′ − q, iων′ − iωµ) Gγ,γ1

(k′, iων′)

The Green’s function in the algebraic expression corresponding to a given diagram is not the noninteracting

Green’s function G
(0) but the Green’s function G which is the argument of the functional: Φ[G]!



Reminder: using the full Green’s function instead of the noninteracting one is precisely the same idea as in the

skeleton-diagram expansion of the self-energy!

....

.... + + + ....

+ ++

=



The properties of the system under study enter only at one point

Gα β

α β

δ γ

Vα β δ γ

βα
α 1

β1
γ1δ1

q

q

k’−q

k’

k+q

k

α
β γδ

( −1

β~2N

)2

(−1)2
∑

k,k′,q

∑

α,β,γ,δ

∑

α1,β1,γ1,δ1

∑

ν,ν′,µ

Vα,β,δ,γ(k,k′,q) Vδ1,γ1,α1,β1
(k + q,k′ − q,−q)

Gα1,α(k + q, iων + ωµ) Gδ,δ1
(k, iων) Gβ1,β(k′ − q, iων′ − iωµ) Gγ,γ1

(k′, iων′)

The only property of the system which enters the functional Φ therefore are the interactions lines -

that means the matrix elements of the interaction

This implies in particular that the elements of the single-particle Hamiltonian H0 appear nowhere in the

Luttinger-Ward functional



Symmetry factors

In addition to the factors from the Feynman rules the expression for each diagram is multiplied by

− 1

βS

where the integer S is the symmetry factor of the diagram

In simplest terms S gives the number of ways in which the diagram can be ‘deformed’ such that it is

identical to itself



Example

4

6

3

4 3

6 5

1

3

21 2
5

4

56

2 1 2 1

6

4 3

5

The final diagram looks exactly like the original one - including direction of all arrows - but the Green’s function

lines are permuted!



Determination of the Symmetry Factors S

• We label the lines on the diagram by integers ∈ {1 . . . n}
• We imagine that the diagram can be ‘taken off the paper’ and is completely flexible

• We deform the diagram but without breaking any line or changing the direction of any arrow on a Green’s

function line - this means we maintain the connectivity properties of the diagram

• If the resulting diagram looks exactly the same as the original one but with permuted labels we call this

a symmetry operation of the diagram

• The symmetry factor S of a diagram is the number of different symmetry operations

(including the ‘unit deformation’)

• All Green’s function lines then can be grouped into classes such that the members of a class are permuted

amongst themselves

• If two lines i and j belong to the same class the diagram can be deformed such that it looks completely

the same but i and j have switched their positions

• We call all lines of a class symmetry equivalent



Example

4

6

3

4 3

6 5

1

3

21 2
5

4

56

2 1 2 1

6

4 3

5

For this diagram there are no further symmetry operations → the diagram has S = 2 (we include identity!)

The classes of equivalent Green’s function lines are (1, 2), (3, 6) and (4, 5)



Another example

1 2

3 4

1 2

3 4

34

2 1 2 1

34

21

3 4

Above we show two symmetry operations corresponding to the permutations (2, 1, 4, 3) and (3, 4, 1, 2) - there

is a third operation corresponding to the product of these two permutations namely (4, 3, 2, 1) → the diagram

has S = 4, there is only one class comprising all lines



Further discussion

• An nth order diagram - i.e. a diagram with n interaction lines - has 2n Green’s function lines

• Assume that the diagram has symmetry factor S

• This means the classes of equivalent Green’s function have S members each

• The number of classes - therefore is 2n
S (which of course better be an integer...)

• If two lines - say i and j - belong to the same class it means that the diagram can be redrawn such that

it looks completely the same but with line j in place of line i



The real defining property of the Luttinger-Ward functional

The Luttinger-Ward functional is the generating functional of the self-energy

∂Φ[G]

∂Gα,β(k, iων)
=

1

β
Σβ,α(k, iων)

To see this we need to consider the change of a given diagram contributing to Φ under a change of G:

Gαβ(k, iων) → Gαβ(k, iων) + δGαβ(k, iων)



Let us consider the variation of Φ under a variation Gαβ(k, iων) → Gαβ(k, iων) + δGαβ(k, iων)

G+δG

G+δG
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G+δG

G

G

G

G

Gδ

Gδ Gδ
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Gδ

Gδ

Gδ Gδ
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G

G

G

G

G

G

−

G

G

G

G G

G

G

G G

G

G

G

G

G G G

+ + +

+ + +......

−=



What is the meaning of the ‘substituted’ diagrams?

Gα β

α β

δ γ

Vα β δ γ

βα
α 1

β1
γ1δ1

δG

q

q

k’−q

k’

k+q
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∑
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∑
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∑
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Gα1,α(k + q, iων + ωµ) δGδ,δ1
(k, iων) Gβ1,β(k′ − q, iων′ − iωµ) Gγ,γ1

(k′, iων′)



Let us consider the variation of Φ under a variation Gαβ(k, iων) → Gαβ(k, iων) + δGαβ(k, iων)
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Let us consider the variation of Φ under a variation Gαβ(k, iων) → Gαβ(k, iων) + δGαβ(k, iων)
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Let us consider the variation of Φ under a variation Gαβ(k, iων) → Gαβ(k, iων) + δGαβ(k, iων)

G+δG
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Gδ

Gδ Gδ
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Let us consider the variation of Φ under a variation Gαβ(k, iων) → Gαβ(k, iων) + δGαβ(k, iων)

G+δG

G+δG

G+δG

G+δG

G

G

G

G

Gδ

− =

G

G

G

G G

G

G

G G

G

G

G

+ + +



Forming the derivative

∂Φ

∂Gα,β(k, iων)

means ‘opening’ one of the Green’s function lines in the diagrams contributing to Φ

The ‘opened’ diagrams then indeed ‘look like’ self-energy diagrams:

The question is: Do we have the correct prefactors so as to fulfill

∂Φ

∂Gα,β(k, iων)
=

1

β
Σβ,α(k, iων) ?



Factoring out the variation δG ‘fixes’ the momentum, frequency and band indices of the remaining diagram

Gα β

α β

δ γ

Vα β δ γ

βα
α 1

β1
γ1δ1

δG

q

q

k’−q

k’

k+q

k

α
β γδ

δGδ,δ1
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Vα,β,δ,γ(k,k′,q) Vδ1,γ1,α1,β1
(k + q,k′ − q,−q)

Gα1,α(k + q, iων + ωµ) δGδ,δ1
(k, iων) Gβ1,β(k′ − q, iων′ − iωµ) Gγ,γ1

(k′, iων′)



Factoring out the variation δG ‘fixes’ the momentum, frequency and band indices of the remaining diagram

Gα β

α β

δ γ

Vα β δ γ

βα
α 1

β1
γ1

δ1 q

q
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k’

k+q

α
β γ

δk

k

δGδ,δ1
(k, iων)

( −1

β~2N

)2

(−1)2
∑
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∑
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∑
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∑
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(k + q,k′ − q,−q)

Gα1,α(k + q, iων + ωµ) δGδ,δ1
(k, iων) Gβ1,β(k′ − q, iων′ − iωµ) Gγ,γ1

(k′, iων′)



Factoring out the variation δG ‘fixes’ the momentum, frequency and band indices of the remaining diagram

Gα β

α β

δ γ

Vα β δ γ

βα
α 1

β1
γ1

δ1 q

q

k’−q

k’

k+q

α
β γ

δk

k

δGδ,δ1
(k, iων)

( −1

β~2N

)2

(−1)2
∑

k,k′,q

∑

α,β,γ,δ

∑

α1,β1,γ1,δ1

∑

ν,ν′,µ

Vα,β,δ,γ(k,k′,q) Vδ1,γ1,α1,β1
(k + q,k′ − q,−q)

Gα1,α(k + q, iων + ωµ) Gβ1,β(k′ − q, iων′ − iωµ) Gγ,γ1
(k′, iων′)

• The incoming and outgoing momentum and frequency are k and ων

• There is still momentum/frequency conservation at each vertex and all remaining momenta, frequencies,

band indices keep on being summed over - exactly as in the true expression for Σ(k, ω)



Factoring out the variation δG ‘fixes’ the momentum, frequency and band indices of the remaining diagram

Gα β

α β

δ γ

Vα β δ γ

βα
α 1

β1
γ1

δ1 q

q

k’−q

k’

k+q

α
β γ

δk

k

δGδ,δ1
(k, iων)

( −1
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)2

(−1)2
∑
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∑

α1,β1,γ1,δ1

∑

ν,ν′,µ

Vα,β,δ,γ(k,k′,q) Vδ1,γ1,α1,β1
(k + q,k′ − q,−q)

Gα1,α(k + q, iων + ωµ) Gβ1,β(k′ − q, iων′ − iωµ) Gγ,γ1
(k′, iων′)

• The remaining diagram has band index δ on its incoming entry and δ1 on its outgoing entry

• This is exactly as in the true expression for Σδ1,δ(k, ω)



Factoring out the variation δG ‘fixes’ the momentum, frequency and band indices of the remaining diagram

Gα β

α β

δ γ

Vα β δ γ

βα
α 1

β1
γ1

δ1 q

q

k’−q
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k+q

α
β γ

δk

k

δGδ,δ1
(k, iων)

( −1
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)2

(−1)2
∑
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∑

α,β,γ,δ

∑

α1,β1,γ1,δ1

∑

ν,ν′,µ

Vα,β,δ,γ(k,k′,q) Vδ1,γ1,α1,β1
(k + q,k′ − q,−q)

Gα1,α(k + q, iων + ωµ) Gβ1,β(k′ − q, iων′ − iωµ) Gγ,γ1
(k′, iων′)

• The order n (number of interaction lines) is not changed by opening a Fermion line

( −1

β~2N

)n

remains correct



Factoring out the variation δG ‘fixes’ the momentum, frequency and band indices of the remaining diagram
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Vα β δ γ
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δ1 q

q

k’−q
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k+q

α
β γ
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δGδ,δ1
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( −1

β~2N

)2

(−1)2
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k,k′,q

∑

α,β,γ,δ

∑

α1,β1,γ1,δ1

∑

ν,ν′,µ

Vα,β,δ,γ(k,k′,q) Vδ1,γ1,α1,β1
(k + q,k′ − q,−q)

Gα1,α(k + q, iων + ωµ) Gβ1,β(k′ − q, iων′ − iωµ) Gγ,γ1
(k′, iων′)

• Opening one Green’s function lines reduces the number of Fermion loops F by 1 → the factor (−1)F

changes sign - the extra (-1) in the prefactor takes care of this:

− 1

βS



What about the factor 1/S?

• Let us consider an nth order Φ-diagram with symmetry factor S

• The symmetry factor S was the number of ways in which the diagram could be deformed into itself

• Then there are 2n/S classes, each containing S Green’s function lines, which are symmetry equivalent to

each other

• Symmetry equivalence means that the diagram can be deformed such that it looks exactly the same but

with the two symmetry equivalent Green’s function exchanged

•
This means that if two symmetry equivalent lines are opened the resulting self-energy diagrams also can

be deformed into each other and thus are completely identical

•
All S Green’s function lines in one class therefore give exactly the same self-energ diagram when they are

opened

• Since we have 2n/S classes with S lines in each class the Φ-diagram gives 2n/S Σ-diagrams and each is

produced S times

•
This factor of S exactly cancels the factor of 1/S in the prefactor of the diagram



Example

4

6

3

4 3

6 5

1

3

21 2
5

4

56

2 1 2 1

6

4 3

5

For this diagram there are no further symmetry operations → the diagram has S = 2 (we include identity!)

The classes of equivalent Green’s function lines are (1, 2), (3, 6) and (4, 5)



Example, cont’d

1

12

23

3



Example, cont’d

1

12

23

3



Example, cont’d

1

12

23

3



Example, cont’d

1

12

23

3



Example, cont’d
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Example, cont’d
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Example, cont’d
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Example, cont’d
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Example, cont’d
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12
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3



Example, cont’d

1

12

23

3

• The diagram has n = 3 and S = 2 → 3 classes with 2 members each

• By successively opening the lines we get 3 different self-energy diagrams

• Each of them is produced 2 times



We have seen that the derivative

∂Φ[G]

∂Gα,β(k, iων)

gives precisely all skeleton diagrams for Σβ,α(k, iων) but with the the Green’s function G used for all Green’s

function lines (and a prefactor 1/β)

If G is the exact Green’s function this is the exact self-energy

Therefore: If G is the exact Green’s function we have

∂Φ[G]

∂Gα,β(k, iων)
=

1

β
Σβ,α(k, iων)



This also goes the other way round

....

.... + + + ....

+ ++

=

By drawing all skeleton-diagrams for the self-energy and ‘translating’ Green’s function lines into the full Green’s

function instead of the noninteracting one the total self-energy is obtained



We have seen that the derivative

∂Φ[G]

∂Gα,β(k, iων)

gives precisely all skeleton diagrams for Σβ,α(k, iων) but with the the Green’s function G used for all Green’s

function lines (and a prefactor 1/β)

If G is the exact Green’s function this is the exact self-energy

Therefore: If G is the exact Green’s function we have

∂Φ[G]

∂Gα,β(k, iων)
=

1

β
Σβ,α(k, iων)



We saw that Σ(k, ω) can be obtained from Φ[G] by ‘opening’ Green’s function lines

The question is then: can this be reversed, that means:

Can Φ[G] be obtained from Σ(k, ω) by ‘reconnecting’ the two entry points by a Green’s function?



Factoring out the variation δG ‘fixes’ the momentum, frequency and band indices of the remaining diagram
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Factoring out the variation δG ‘fixes’ the momentum, frequency and band indices of the remaining diagram
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The correct operation to ‘undo’ the opening of a line therefore is something like

Φ(n)[G] ∝ 1

β

∑

ν,k

∑

α,β

Gα,β(k, iων)Σ
(s,n)
β,α (k, iων)

=
1

β

∑

ν,k

trace G(k, iων) Σ(s,n)(k, iων)

Φ(n) is the sum of all nth order diagrams for Φ: closed, linked skeleton diagrams, with Green’s function lines

standing for the full Green’s function G

Σ
(s,n)
β,α (k, iων) is the sum of all nth order skeleton diagrams for the self-energy with Green’s function lines

standing for the full Green’s function G

We include only skeleton-diagrams for Σ because we only want skeleton diagrams for Φ

However, again we need to be careful about prefactors!



We consider nth-order diagrams for Φ and Σ

This shows

Φ(n) =
1

2nβ

∑

ν,k

trace G(k, iων) Σ(s,n)(k, iων)

2n

S

2n

S

2n

S

S1 S1 S1 S2 S3 S3 S3

1
βS1

1
βS2

1
βS3

S3

2n

S

2n

S

2n

S

1
β

βS
2n

βS
2n

βS
2n

1 2 3

1 2 3

1 2 3



Summary of the properties of the Luttinger-Ward functional

• The Luttinger Ward functional involves only the interaction matrix elements Vαβγδ of the Hamiltonian,

but not the single particle matrix elements tαβ

• The Luttinger-Ward functional is the generating functional of the self-energy, which is obtained by opening

Green’s function lines

∂Φ

∂Gα,β(k, iων)
=

1

β
Σβ,α(k, iων)

• The Luttinger-Ward functional can also be written by ‘closing’ the open ends in the self-energ - however,

there is an extra factor of 1/2n (n is the order of the self-energy diagram) which makes resummation

impossible

Φ =
∑

n

Φ(n)

=
1

β

∑

n

1

2n

∑

ν,k

trace G(k, iων) Σ(s,n)(k, iων)

Σ(s,n) is the nth order ‘skeleton self-energy’



Calculation of λ ∂Ω′
∂λ

Ω′ = − lim
η→0+

1

β

∑

k,ν

eiωνη
[

ln det
(

−G−1(k, iων)
)

+ trace (G(k, iων) Σ(k, iων))
]

+ Φ [G].

Reminder: we replaced H → H0 + λH1 - a variation λ → λ + δλ has two different effects

• The self-energy Σ will change

• The interaction lines in the Luttinger-Ward functional will change

(since H1 → λ H1 they carry a factor of λ!)

Φ[ G] = + + + + ....

We treat these two variations separately and first consider the variation of Ω′ under a change Σ → Σ + δΣ



Calculation of ∂Ω′
∂Σ

To avoid calculations with many indices we treat only the case of a single spinless band

(see the notes for the full multi-band case)

Ω′ = − lim
η→0+

1

β

∑

k,ν

eiωνη
[

ln det
(

−G−1(k, iων)
)

+ trace (G(k, iων) Σ(k, iων))
]

+ Φ [G]

then becomes

Ω′ = − lim
η→0+

1

β

∑

k,ν

eiωνη
[

ln
(

−G−1(k, iων)
)

+ G(k, iων) Σ(k, iων)
]

+ Φ [G]

• We need to differentiate this with respect to Σ(k, iων)

• The first two terms are a sum over terms with different k and iων - only one term contributes

• All G and Σ in this term have the same argument (k, iων) - we omit this for simlicity



Ω′ = − lim
η→0+

1

β

∑

k,ν

eiωνη
[

ln
(

−G−1(k, iων)
)

+ G(k, iων) Σ(k, iων)
]

+ Φ [G]

Then we have

∂Ω′

∂Σ
= − 1

β

[

1

(−G−1)

∂(−G−1)

∂Σ
+

∂G

∂Σ
Σ + G

]

+
∂Φ

∂G(k, iων)

∂G(k, iων)

∂Σ(k, iων)

Now we use the Dyson equation

−G−1(k, iων) = −iων +
1

~
(E(k) − µ) + Σ(k, iων)

→ ∂(−G−1)

∂Σ
= 1

So that

∂Ω′

∂Σ
= − 1

β

[

−G +
∂G

∂Σ
Σ + G

]

+
∂Φ

∂G(k, iων)

∂G(k, iων)

∂Σ(k, iων)



We had

∂Ω′

∂Σ
= − 1

β

∂G

∂Σ
Σ +

∂Φ

∂G(k, iων)

∂G(k, iων)

∂Σ(k, iων)

Now we use the fact that Φ is the generating functional of Σ

∂Φ

∂G(k, iων)
=

1

β
Σ(k, iων)

Then we have

∂Ω′

∂Σ
= − 1

β

∂G

∂Σ
Σ +

1

β
Σ

∂G

∂Σ
= 0

Ω′ is stationary under variations of the self-energy

Once we have shown that Ω′ = Ω this prooves a variational principle of central importance: The Grand

Canonical Potential of an interacting Fermi system is stationary with respect to variations of its self-energy



Calculation of λ ∂Ω′
∂λ

Ω′ = − lim
η→0+

1

β

∑

k,ν

eiωνη
[

ln det
(

−G−1(k, iων)
)

+ trace (G(k, iων) Σ(k, iων))
]

+ Φ [G].

Reminder: we replaced H → H0 + λH1 - a variation λ → λ + δλ has two different effects

• The self-energy Σ will change - but the corresponding first order change of Ω′ is zero!

• The interaction lines in the Luttinger-Ward functional will change

(since H1 → λ H1 they carry a factor of λ!)

Φ[ G] = + + + + ....

Accordingly we study the change of Φ under a change of λ (prefactor of all interaction lines) when Σ is kept

fixed



This is in fact a rather simple calculation: we again split the Luttinger-Ward functional

Φ =
∑

n

Φ(n)

whereby Φ(n) is the sum of diagrams with n interaction lines - which is proportional to λn

But:

λ
∂λn

∂λ
= nλn

It follows that (Σ(s,n) denotes all nth order self-energy skeleton diagrams)

λ
dΩ′

dλ
= λ

dΦ

dλ
=
∑

n

n Φ(n)

=
∑

n

n
1

2βn

∑

ν,k

trace Gλ(k, iων)Σ
(s,n)
λ (k, iων)

=
1

2β

∑

ν,k

trace Gλ(k, iων)

(

∑

n

Σ
(s,n)
λ (k, iων)

)

=
1

2β

∑

ν,k

trace Gλ(k, iων) Σλ(k, iων) = λ
dΩ

dλ

This is precisely the same result we obtained for λ∂λ Ω!



Summary of the Proof

• The Grand Canonical Potential of an interacting Fermi system is given by

Ω = − lim
η→0+

1

β

∑

k,ν

eiωνη
[

ln det
(

−G−1(k, iων)
)

+ trace (G(k, iων) Σ(k, iων))
]

+ Φ [G]

• Ω is stationary with respect to variations of the self-energy

∂Ω

∂Σαβ(k, iων)
= 0

• The Luttinger-Ward functional is the generating functional of the self-energy

∂Φ

∂Gα,β(k, iων)
=

1

β
Σβ,α(k, iων)

• The Luttinger-Ward functional is a sum over infinitely many Feynman diagrams - hard to evaluate....

• The Luttinger-Ward functional involves only the matrix elements of H1 and is independent of the

noninteracting part of the Hamiltonian Hamiltonian H0

• This implies in particular that two systems with the same H1 but different H0 have the same Luttinger-

Ward functional Φ[G] - this will be of major importance in a moment!



The properties of the system under study enter only at one point

Gα β

α β

δ γ

Vα β δ γ

βα
α 1

β1
γ1δ1

q

q

k’−q

k’

k+q

k

α
β γδ

( −1

β~2N

)2

(−1)2
∑

k,k′,q

∑

α,β,γ,δ

∑

α1,β1,γ1,δ1

∑

ν,ν′,µ

Vα,β,δ,γ(k,k′,q) Vδ1,γ1,α1,β1
(k + q,k′ − q,−q)

Gα1,α(k + q, iων + ωµ) Gδ,δ1
(k, iων) Gβ1,β(k′ − q, iων′ − iωµ) Gγ,γ1

(k′, iων′)

The only property of the system which enters the functional Φ therefore are the interactions lines -

that means the matrix elements of the interaction

This implies in particular that the elements of the single-particle Hamiltonian H0 appear nowhere in the

Luttinger-Ward functional



Summary of the Proof

• The Grand Canonical Potential of an interacting Fermi system is given by

Ω = − lim
η→0+

1

β

∑

k,ν

eiωνη
[

ln det
(

−G−1(k, iων)
)

+ trace (G(k, iων) Σ(k, iων))
]

+ Φ [G]

• Ω is stationary with respect to variations of the self-energy

∂Ω

∂Σαβ(k, iων)
= 0

• The Luttinger-Ward functional is the generating functional of the self-energy

∂Φ

∂Gα,β(k, iων)
=

1

β
Σβ,α(k, iων)

• The Luttinger-Ward functional is a sum over infinitely many Feynman diagrams - hard to evaluate....

• The Luttinger-Ward functional involves only the matrix elements of H1 and is independent of the

noninteracting part of the Hamiltonian Hamiltonian H0

• This implies in particular that two systems with the same H1 but different H0 have the same Luttinger-

Ward functional Φ[G] - this will be of major importance in a moment!



Some remarks

• The theorem is the basis for various important developments in field theory: the Luttinger theorem and

the ‘conserving approximations’ (GW, FLEX)

• The proof above assumes a continouous evolution of the system as H1 is switched on - which is highly

questionable in a correlated insulator....

• However, Potthoff has recently given a non-perturbative proof of the existence of a functional with all

properties listed above (reference in the notes)



The Legendre transform of the Luttinger-Ward functional

Reminder:

∂Φ[G]

∂Gα,β(k, iων)
=

1

β
Σβ,α(k, iων)

Now define the Legendre transform

F [Σ] = Φ[G[Σ]] −
∑

k,ν

∑

α,β

∂Φ

∂Gαβ(k, iων)
Gαβ(k, iων)

= Φ[G[Σ]] − 1

β

∑

k,ν

∑

α,β

Σβα(k, iων) Gαβ(k, iων)

= Φ[G[Σ]] − 1

β

∑

k,ν

trace G(k, iων) Σ(k, iων).

We had

Ω = − lim
η→0+

1

β

∑

k,ν

eiωνη
[

ln det
(

−G−1(k, iων)
)

+ trace (G(k, iων) Σ(k, iων))
]

+ Φ [G]

= − lim
η→0+

1

β

∑

k,ν

eiωνη
[

ln det
(

−G−1(k, iων)
) ]

+ F [Σ]



We had

Ω = − lim
η→0+

1

β

∑

k,ν

eiωνη
[

ln det
(

−G−1(k, iων)
) ]

+ F [Σ]

= − lim
η→0+

1

β

∑

k,ν

eiωνη

[

ln det

(

−iων +
1

~
(t(k) − µ) + Σ(k, iων

) ]

+ F [Σ]

In this way we have expressed Ω as a functional of Σ which is stationary at the exact Σ:

δΩ

δΣ
= 0

We could now try to derive the Euler-Lagrange equation for Σ (i.e. the analogue of the Kohn-Sham equations

in DFT) or use a ‘trial Σ’ with a number of variational parameters

Σ(ω) = η +
∑

i

σi

ω − ζi

The problem: We do not know the functional F [Σ]



Basic Idea of the VCA

Let us assume that we are interested in the 2D Hubbard model on an infinite square lattice

H =
∑

i,j

tij c†iσcjσ + U
∑

i

ni↑ni↓

We partition the square lattice into finite clusters - say 2 × 2

−tU U−t

The Hamiltonian for the 2 × 2 clusters is

H̃ =
∑

{i,j}∈Cluster

t̃ij c†iσcjσ + U
∑

i

ni↑ni↓



Basic Idea of the VCA

Let us assume that we are interested in the 2D Hubbard model on an infinite square lattice

H =
∑

i,j

tij c†iσcjσ + U
∑

i

ni↑ni↓

We partition the square lattice into finite clusters - say 2 × 2

−tU U−t

The Hamiltonian for the 2 × 2 clusters is

H̃ =
∑

{i,j}∈Cluster

t̃ij c†iσcjσ + U
∑

i

ni↑ni↓

Both systems have the same interaction part → they have the same Luttinger-Ward functional



• The 2 × 2 clusters can be solved exactly by exact diagonalization

• This means all eigenstates |i〉 and their energies Ei and particle number Ni are known

• We can therefore evaluate the Grand Partition Function Z̃ and Ω̃ = −kB T log(Z̃)

Z̃ =
∑

i

e−β(Ei−µNi)

(it is actually sufficient to know all eigenstates with E−µN within ≈ 10kBT above the GS so that rather

large clusters can be treated by Lanczos)

• Moreover we can evaluate the Green’s function G̃ij(ω) (i, j ∈ {1, 4})

• For given ω we can invert the matrix G̃ij(ω) numerically and obtain Σ̃ij(ω) from the Dyson equation

• Now we can revert the Luttinger-Ward expression for Ω̃ and obtain the numerical value of F [Σ̃]

F [Σ̃] = Ω̃ + lim
η→0+

1

β

∑

ν

eiωνη

[

ln det

(

−ω − 1

~
µ +

1

~
t̃ + Σ̃(iων)

) ]

This gives us the self-energy Σ̃(ω) and the numerical value of its Luttinger-Ward functional F [Σ̃]



Now we use the self-energy Σ̃(ω) as a trial self-energy for the infinite system

−tU U−t

G′(k, ω) =

(

ω +
1

~
µ − 1

~
t(k) − Σ̃(k, ω)

)−1

Ωlatt = − lim
η→0+

1

β

∑

k,ν

eiωνη
[

ln det
(

−G′(k, iων)
−1
) ]

+ F [Σ̃],

(Note: this will obviously introduce an artificial supercell structure into the infinite system)



How do we perform a variation of the self-energy?

G′(k, ω) =

(

ω +
1

~
µ − 1

~
t(k) − Σ̃(k, ω)

)−1

Ωlatt = − lim
η→0+

1

β

∑

k,ν

eiωνη
[

ln det
(

−G′(k, iων)
−1
) ]

+ F [Σ̃],

Reminder: the Hamiltonian of the cluster was

H̃ =
∑

{i,j}∈Cluster

t̃ij c†iσcjσ + U
∑

i

ni↑ni↓

The only requirement on H̃ was that the interaction part is the same as the lattice system

There is nothing that fixes the the single-particle matrix elements t̃ij

On the other hand changing the t̃ij will change Σ̃(ω) and therefore Ωlatt: Ωlatt = Ωlatt(t̃ij)

We therefore replace

δΩlatt

δΣ
= 0 → ∂Ωlatt

∂t̃ij
= 0

This is the basic idea of the VCA



This means we are seeking the best approximation to the self-energy of the infinite lattice amongst ‘cluster-

representable’ ones that means self-energies which can be generated as exact self-energies of a finite cluster

The problem that we do not know the functional form of F [Σ] is bypassed by evaluating this numerically



Remarks

• The system of clusters which is used to generate the ‘trial self-energies’ has been termed the

reference system by Potthoff

• There is considerable freedom in choosing the reference system - for example one may include noninter-

acting ‘bath sites’

−tU U−t

• The problem with the artificial supercell can be solved: there is also a ‘periodized’ version of the VCA

which is translationally invariant (W. Koller and N. Dupuis, J. Phys.: Condens. Matter 18 9525 (2006))



Remark on ‘bath’ sites

A ‘bath’ site is an orbital ρ without any interaction, i.e. the interaction term

H1 =
1

2

∑

k,k′,q

∑

α,β,γ,δ

Vα,β,δ,γ(k,k′,q) c†k+q,α c†
k′−q,β ck′,γ ck,δ

does not contain any matrix element involving the orbital ρ

Obviously this implies that Σρ,α = Σα,ρ = 0 for any α: the self-energy has no matrix elements involving ρ

 β

Σ βν

ν



Example: Metal-Insulator Transition in a Dimer (M. Potthoff, Eur. Phys. J. B36, 335 (2003))

We consider a particle-hole symmetric Hubbard model (with ni = c†i↑ci↑ + c†i↓ci↓)

H − µN =
∑

i,j,σ

tij c†i,σcj,σ +
U

2

N
∑

i=1

(ni − 1)(ni − 1) − N
U

2

=
∑

i,j,σ

tij c†i,σcj,σ + U
N
∑

i=1

ni,↑ ni,↓ −
U

2

N
∑

i=1

ni

Under the transformation c† ↔ c we have ni − 1 → 1 − ni → the interaction term does not change

The kinetic term changes sign: tij → −tij (assuming tii = 0)

If the lattice is bipartite and the hopping tij connects only sites on different sublattices this can be compensated

by a gauge transformation on one sublattice c†i,σ → −c†i,σ

At half-filling (1 electron/site) this transformation exchanges photoemission and inverse photoemission spec-

trum and implies µ = U/2.



As reference system we decorate each lattice site by a noninteracting ‘bath orbital’ and obtain an array of

dimers

ε bU −t U

V
U

The Hamiltonian for one dimer is (with nc = c†↑c↑ + c†↓c↓)

H̃ − µN = −V
∑

σ

(c†σbσ + b†σcσ) + (ǫb −
U

2
)
∑

σ

b†σbσ +
U

2
(nc − 1)(nc − 1) − U

2

The transformation c† ↔ c, b† ↔ −b transforms H̃ − µN into itself except for the second term.

If we put ǫb = U
2
→ this term vanishes - the only remaining parameter to be varied is V :

H̃ − µN = −V
∑

σ

(c†σbσ + b†σcσ) +
U

2
(nc − 1)(nc − 1) − U

2



H̃ − µN = −V
∑

σ

(c†σbσ + b†σcσ) +
U

2
(nc − 1)(nc − 1) − U

2

All eigenstates for 0 → 4 electrons can be obtained easily and Ω̃ be calculated

We assume that the lattice Hamiltonian has a semi-elliptical density of states

(Width 4, which defines the energy scale)

ρ0(ǫ) =
1

2π

√

4 − ǫ2

At T = 0 the self-energy of the ‘Hubbard orbital’ can be evaluated analytically

Σ(ω) =
U

2
+

U2

8

(

1

ω + 3V
+

1

ω − 3V

)

The k-integrated Green’s function of the lattice then is (remember: µ = U
2 )

∑

k

G(k, ω) =

∫ 2

−2

dǫ
ρ0(ǫ)

ω + U
2
− ǫ − Σ(ω)

∑

k

ln
(

−G−1(k, ω)
)

=

∫ 2

−2

dǫ ρ0(ǫ) ln

(

−ω − U

2
+ ǫ + Σ(ω)

)



The resulting Ωlatt(V ) curve at T = 0 then looks like this
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Reminder: the equation we need to solve is

∂Ωlatt

∂V
= 0

For U ≈ 5.85 (remember: the width of the noninteracting band was W = 4) there is a phase transition

finite V → V = 0 - this is the metal insulator transition



Noninteracting density of states

ρ0(ǫ) =
1

2π

√

4 − ǫ2.

Self-energy of the dimer

Σ(ω) =
U

2
+

U2

8

(

1

ω + 3V
+

1

ω − 3V

)

.

The spectral function is

A(ω) = −ℑ G(ω + i0+)

=

∫ 2

−2

dǫ
ρ0(ǫ)

ω + U
2
− ǫ − Σ(ω + i0+) + i0+

-4 -2  0  2  4

A(ω)
Im Σ(ω)

-4 -2  0  2  4

-4 -2  0  2  4
ω

V=0.4

V=0.2

V=0.0

The density of states at the Fermi surface drops to zero exactly when the two peaks merge, i.e. V = 0



The resulting Ωlatt(V ) curve at T = 0 then looks like this
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Reminder: the equation we need to solve is

∂Ωlatt

∂V
= 0

For U ≈ 5.85 (remember: the width of the noninteracting band was W = 4) there is a phase transition

finite V → V = 0 - this is the metal insulator transition



This is exactly the scenario for the metal-insulator transition familiar from DMFT calculations - but here

obtained from a dimer

The critical value Uc where the transition occurs is suprisingly accurate:

Dimer-VCA: Uc = 5.85

DMFT : Uc = 5.84 (G. Moeller et al. Phys. Rev. Lett. 74, 2082 (1995))



At finite temperature the VCA shows a more complicated behaviour
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Finite region of coexistence of metallic and insulating solution with 1st order transition between the two



Electronic structure calculations for transition metal compounds

LDA band structure calculations often do not reproduce the single-particle spectra of correlated insulators
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Experiment: G. A. Sawatzky and J. W. Allen, Phys. Rev. Lett. 53, 2239 (1984).



The cluster method

Angle integrated photoemission spectra of TM oxides can be described very well by exact diagonalization

of a single TM-Ion in a ‘cage’ of oxygen ligands (cluster)

Example: Valence band photoemission spectrum of NiO (Fujimori and Minami, Phys. Rev. B 30, 957 (1984))
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Crucial ingredient: the full Coulomb interaction in the 3d-shell

m=−2 m=−1 m=0 m=1 m=2

• Electrons in a partially filled shell scatter from each other due to their Coulomb interaction

• This amounts to a redistribution of the electrons within the partially filled shell

• For Lz to be conserved the scattering electrons must ‘move along the m-ladder’ in exactly opposite ways



Calculation of the Coulomb matrix element

V =

∫

dr dr′ Ψ∗
1(r)Ψ

∗
2(r

′)
1

|r − r′| Ψ3(r)Ψ4(r
′)

Now insert (l1 = l2 = l3 = l4 = 2)

Ψ∗
1(r)Ψ

∗
2(r

′) = Rd(r) Y ∗
l1,m1(Θ, φ) Rd(r

′) Y ∗
l2,m2(Θ

′, φ′)

1

|r − r′| =
∑

l,m

Y ∗
l,m(Θ, φ)

rl
<

rl+1
>

Yl,m(Θ′, φ′)

Ψ3(r)Ψ4(r
′) = Rd(r) Yl3,m3(Θ, φ) Rd(r

′) Yl4,m4(Θ
′, φ′)

and obtain

V =
∑

l,m

∫

dΩ Y ∗
l1,m1(Θ, φ) Y ∗

l,m(Θ, φ) Yl3,m3(Θ, φ)

∫

dΩ′ Y ∗
l2,m2(Θ

′, φ′) Yl,m(Θ′, φ′) Yl4,m4(Θ
′, φ′)

∫ ∞

0

dr

∫ ∞

0

dr′ Rd(r)Rd(r
′)

rl
<

rl+1
>

Rd(r)Rd(r
′)

• Expressible in terms of Gaunt coefficients (tabulated) and Slater integrals Il (easily computed)



The cluster:

Ni O

The Hamiltonian:

H =
1

2

∑

i,j,k,l

V (νi, νj, νk, νl) c†νi
c†νj

cνk
cνl

+
∑

i,j

VCEF (νi, νj) c†νi
cνj

+
∑

i,j

(

tνi,µj
c†νi

lµj
+ H.c.

)

+
∑

j

ǫµj
l†µj

lµj
+
∑

i

ǫνi
c†νi

cνi

This comprises the Coulomb interaction in the TM 3d-shell, the Crystalline electric field, the charge transfer

between TM 3d-shell and ligands, and the orbital energies of transition metal d-orbitals and ligands



The cluster method

Angle integrated photoemission spectra of TM oxides can be described very well by exact diagonalization

of a single TM-Ion in a ‘cage’ of oxygen ligands (cluster)

Example: Valence band photoemission spectrum of NiO (Fujimori and Minami, Phys. Rev. B 30, 957 (1984))

Experiment

Binding Energy [eV]

Cluster diagonalization
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VCA treatment of transition metal compounds

Reminder: In the dimer-VCA of the Hubbard model we used simple dimers to generate self-energies

ε bU −t U

V
U

The most obvious generalization is to use octahedral clusters with 10 orbitals instead of the dimers

V

bε

U

Ni
BathBath

Hubbard



Some technical points

The noninteracting t(k) is obtained by an LCAO-fit (bottom) to an LDA band structure (top)
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Some technical points

The Slater integral I0 is strongly screened in the solid

The orbital energy ed obtained by fit to the LDA-bandstructure ‘contains’ the d − d Coulomb interaction

(Hartree potential plus Vxc)

On the other hand the Hartree-Fock-potential is contained in the self-energy of the cluster:

Σ(ω) = VHF +
∑

ν

Aν

ω − Bν

To avoid double counting ed must be corrected for (a mixture of) VHF and Vxc

For simplicity I0 and the ‘bare’ d-level energy ǫ̃d were adjusted to match the position of the satellite and the

insulating gap!



Some technical points

Ni Bath

The octahedral cluster allows for a total of 6 parameters

• 2 energies of d-levels (eg and t2g)

• 2 energies of bonding Ligand combinations (eg and t2g)

• 2 d-Level - Ligand combination hybridization integrals (eg and t2g)

It turned out that there is a kind of ‘saturation’

Optimization of more than 4 parameters leads to extremely small change of δΩ ∝ 10−4 eV and ‘almost

stationary’ directions in parameter-space → at most 4 parameters were optimized



Comparison with experiment: Angle integrated valence band photoemission spectra of NiO, CoO and MnO
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Character of states: photon energy dependence of photoelectron spectra

The mechanism of the smoother variation

is the photon energy dependence of the

photoionization cross section 

Photon energy

NiO

Cross

section 2p

3d

Data from Eastman & Freeouf, PRL 34, 395 (1975)



Rule of thumb

Features which increase in intensity with decreasing photon energy are O2p-derived

Features which decrease in intensity with decreasing photon energy are metal 3d-derived



Comparison with experiment: Angle integrated valence band photoemission spectra of NiO, CoO and MnO
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Experimental band structure of NiO (Z. X. Shen et al., Phys. Rev. B 44, 3604 (1991))



Experimental band structure of NiO (Z. X. Shen et al., Phys. Rev. B 44, 3604 (1991))
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Summary of bandstructure results for NiO along (1, 0, 0)
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ARPES: Z.X. Shen et al., Phys. Rev. B 44, 3604 (1991)

DMFT: Q. Yin et al., Phys. Rev. Lett. 100, 066406 (2008)



Summary

• The Grand Canonical Potential of an interacting Fermi system can be expressed as a functional of its

self-energy

• This functional is stationary at the true self-energy but contains the Luttinger-Ward functional which is

impossible to evaluate for a given self-energy

• In the Variational Cluster Approximation due to Potthoff this problem is circumvented by generating self-

energies by exact diagonalization of small clusters and calculate the Luttinger-Ward functional numerically

• Combining the VCA with the cluster method for transition metal oxides allows to calcuate reasonably

accurate photoemisison spectra etc



A Self-energy with more than one pole

Σ(ω) = η +
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Calculation of 〈λH1〉λ

This can be obtained from the equation of motion of the Green’s function

Gi,α,j,β(τ ) = −Θ(τ ) 〈 ci,α(τ ) c†j,β 〉th + Θ(−τ ) 〈 c†j,β ci,α(τ ) 〉th

We assume τ < 0, temporarily replace (i, α) → α and write H − µN → K

Gα,α(τ ) = 〈c†α cα(τ )〉

= 〈c†α e
τ
~
K cα e−

τ
~
K 〉

→ −~
∂Gα,α(τ )

∂τ
= 〈c†α e

τ
~
K [cα, K] e−

τ
~
K 〉

→ lim
τ→0−

(

−~
∂Gα,α(τ )

∂τ

)

= 〈c†α [cα, K] 〉

lim
τ→0−

∑

i

trace

(

−~
∂Gi,α,i,α(τ )

∂τ

)

=
∑

i,α

〈c†i,α [ci,α, H − µN ] 〉 = 〈H0 − µN〉 + 2〈H1〉


