Magnetism: from Stoner to Hubbard

Alexander Lichtenstein University of Hamburg

In collaboration with A. Rubtsov, M. Katsnelson

Outline

- Heisenberg, Stoner, and Hubbard
- Many-body approach: D(M)FT functionals
- Correlation effects in electronic structure
- Magnetism of correlated systems

Itinerant ferromagnetism

From Stoner to Hubbard

Stoner mode
$$H_{s} = \sum_{k\sigma} (\varepsilon_{k} + I < n_{-\sigma} >) c_{k\sigma}^{+} c_{k\sigma}$$

Mean Field
 $\Delta h_{\sigma} = U < n_{-\sigma} > n_{\sigma}$
Hubbard mode $H_{h} = \sum_{ij\sigma} t_{ij} c_{i\sigma}^{+} c_{j\sigma} + \sum_{i} U n_{i\uparrow} n_{i\downarrow}$
 $U >> t$
 $J = -2 \frac{t^{2}}{U}$
Heisenberg exchange $H_{e} = -\sum_{ij} J_{ij} \vec{S}_{i} \cdot \vec{S}_{j}$

ij

Magnetism of H₂: Heisenberg vs. Slater

$$\begin{split} \Psi_T &= \frac{1}{\sqrt{2}} (|\uparrow\downarrow\rangle + |\downarrow\uparrow\rangle); \quad |\uparrow\uparrow\rangle; \quad |\downarrow\downarrow\rangle \\ \Psi_S &= \frac{1}{\sqrt{2}} (|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle) \end{split}$$

Exchange interactions: Anderson

ED in subspace $N_{-}=1, N_{+}=1$

Anderson kinetic

$$H = t \sum_{ij=1,2} c_{i\sigma}^{+} c_{j\sigma} + U \sum_{i=1,2} n_{i\uparrow} n_{i\downarrow}$$

U>>t

$$E_T = 0$$

$$E_S = \frac{U}{2}(1 - \sqrt{1 + \frac{16t^2}{U}}) \approx -\frac{4t^2}{U}$$

exchange $J = -\frac{2t^2}{U}$

Exchange: Local force approach

$$h_{\sigma} = t + \frac{1}{2}U\overrightarrow{e}\overrightarrow{\sigma}$$

Spectrum: $\epsilon_i = \pm \frac{1}{2}\sqrt{4t^2 + U^2 \pm Ut}\sqrt{2(1 \mp \cos \theta)}$

Exchange energy: $E_x(\theta) \approx \frac{t^2}{U} \cos \theta = -2JS^2 \overrightarrow{e}_i \overrightarrow{e}_j = -\frac{1}{2}J \cos \theta$

From Atom to Solids

Electrons in solids:

- -Effective potential -Bloch states
- -Pauli principle

Density Functional Theory (DFT) Effective one-particle states Local Density Approximation (LDA)

DFT: KS-equation (1965)

Effective one-electron Schrödinger-like equation:

$$\left(-\frac{\hbar^2}{2m}\nabla^2 - V_{eff}(\vec{r})\right)\psi_i(\vec{r}) = \varepsilon_i\psi_i(\vec{r})$$

Charge density:

Energy Functional:

KS-kinetic energy:

Hartree potential:

Effective potential:

$$n(\vec{r}) = \sum_{i}^{N} |\psi_i(\vec{r})|^2$$

$$E[n] = T_s[n] + V_H[n] + \int n(\vec{r}) V_{ext}(\vec{r}) d\vec{r} + E_{xc}[n]$$

$$T_s[n] = \sum_{i}^{N} \int d\vec{r} \psi_i^*(\vec{r}) \left(-\frac{\hbar^2}{2m} \nabla^2\right) \psi_i(\vec{r})$$

$$V_H[n] = \frac{e^2}{2} \int d\vec{r} \int d\vec{r'} \frac{n(\vec{r})n(\vec{r'})}{|\vec{r} - \vec{r'}|}$$

$$V_{eff}(\vec{r}) = V_{ext}(\vec{r}) + e^2 \int d\vec{r}' \frac{n(\vec{r'})}{|\vec{r} - \vec{r'}|} + \frac{\delta E_{xc}[n]}{\delta n(\vec{r})}$$

Computational Material Science: DFT

CERAN-plate

DFT-theory: LiAISiO₄

A.L, R. O. Jones, H. Xu,P. J. Heaney, Phys. Rev. B **58**, 6219 (1998

Correlation driven MIT

Spectral function: Correlations effects

ARPES

Free electrons

Correlated electrons

Strongly Correlated Electron Systems

Hubbard model for correlated electrons

$$H = \sum_{ij} t_{ij} c_{i\sigma}^{+} c_{j\sigma} + U \sum_{i} n_{i\uparrow} n_{i\downarrow}$$

$$\cdot Ut$$

$$:Ut$$

The Theory of Everything

Hamiltonian for multi-fermionic system in field-operators:

$$H = \sum_{\sigma} \int d\mathbf{r} \, \hat{\psi}_{\sigma}^{\dagger}(\mathbf{r}) \left(-\frac{1}{2} \nabla^{2} + V(\mathbf{r}) - \mu \right) \hat{\psi}_{\sigma}(\mathbf{r}) \\ + \frac{1}{2} \sum_{\sigma\sigma'} \int d\mathbf{r} \int d\mathbf{r}' \, \hat{\psi}_{\sigma}^{\dagger}(\mathbf{r}) \hat{\psi}_{\sigma'}^{\dagger}(\mathbf{r}') \, U(\mathbf{r} - \mathbf{r}') \, \hat{\psi}_{\sigma'}(\mathbf{r}') \hat{\psi}_{\sigma}(\mathbf{r}).$$

Atomic Units: $\hbar = m = e = 1$ Coilomb interaction: $U(\mathbf{r} - \mathbf{r}') = 1/|\mathbf{r} - \mathbf{r}'|$

Second quantisation operators in orthonormal basis:

$$\hat{\psi}(\mathbf{r}) = \sum_{n} \phi_{n}(\mathbf{r}) \hat{c}_{n}$$
$$\hat{\psi}^{\dagger}(\mathbf{r}) = \sum_{n} \phi_{n}^{*}(\mathbf{r}) \hat{c}_{n}^{\dagger}$$

 $n = (im\sigma)$

Wannier Basis: $\phi_n({f r})$ with site, orbital andspins quantum numbers

Hoehnberg and Kohn: DFT

PHYSICAL REVIEW

VOLUME 136, NUMBER 3B

9 NOVEMEBR 1964

Inhomogeneous Electron Gas*

P. HOHENBERG[†] École Normale Superieure, Paris, France

AND

W. KOHN‡ École Normale Superieure, Paris, France and Faculté des Sciences, Orsay, France

Hamiltonian in

Field Operators:

$$H = T + V + U$$

$$T \equiv \frac{1}{2} \int \nabla \psi^*(\mathbf{r}) \nabla \psi(\mathbf{r}) d\mathbf{r},$$

$$V \equiv \int v(\mathbf{r})\psi^*(\mathbf{r})\psi(\mathbf{r})d\mathbf{r},$$
$$U = \frac{1}{2}\int \frac{1}{|\mathbf{r} - \mathbf{r}'|}\psi^*(\mathbf{r})\psi^*(\mathbf{r}')\psi(\mathbf{r}')\psi(\mathbf{r})d\mathbf{r}d\mathbf{r}$$

$$n(\mathbf{r}) \equiv (\Psi, \psi^*(\mathbf{r})\psi(\mathbf{r})\Psi)$$
$$E_v[n] \equiv \int v(\mathbf{r})n(\mathbf{r})d\mathbf{r} + F[n]$$

Path Integrals for Fermions

Short introduction from Alexei Kamenev "Field Theory of Non-Equilibrium Systems" (Cambridge, 2011)

Fermions second-quantization operators (Pauli principle)

$\widehat{c}_i \ket{0}$	=	0	$\widehat{c}^{+}\widehat{c}\left n\right\rangle$	=	$n \ket{n}$
$\hat{c}_i \left 1 \right\rangle$	=	$ 0\rangle$	\hat{c}^2	=	0
$\widehat{c}_{i}^{+}\left 0\right\rangle$	=	$ 1\rangle$	$(\widehat{c}^+)^2$	=	0
$\widehat{c}_{i}^{+}\left 1\right\rangle$	=	0	$\{\widehat{c}, \widehat{c}^+\}$	=	î

Algebra of Grassmann anti-commuting numbers:

```
(\widehat{c}_i^+, \widehat{c}_i) \to (c_i^*, c_i)
```

$$c_i c_j = -c_j c_i$$

$$c_i^2 = 0$$

$$f(c) = f_0 + f_1 c$$

$$f(c^*, c) = f_{00} + f_{10} c^* + f_{01} c + f_{11} c^* c$$

Grassmann numbers anticommute with fermionic operators

$$\{c, \hat{c}\} = \{c, \hat{c}^+\} = 0$$

Grassmann calculus

Differentiation:

$$\frac{\partial c_i}{\partial c_j} = \delta_{ij}$$

N.B. order:

$$\frac{\partial}{\partial c_2}c_1c_2 = -c_1$$

Example:

$$f(c^*, c) = f_{00} + f_{10}c^* + f_{01}c + f_{11}c^*c$$

$$\frac{\partial}{\partial c^*} \frac{\partial}{\partial c} f(c^*, c) = \frac{\partial}{\partial c^*} (f_{01} - f_{11}c^*) = -f_{11} = -\frac{\partial}{\partial c} \frac{\partial}{\partial c^*} f(c^*, c)$$

Integration:

(equivalent to differetition)

$$\int 1dc = 0$$

$$\int cdc = 1$$

$$\int \dots dc \to \frac{\partial}{\partial c} \dots$$

Coherent State

Eigenstate of annihilation operator

 $\hat{c} |c\rangle = c |c\rangle$

Diefinition of coherent states

$$|c\rangle = e^{-c\widehat{c}^+} |0\rangle = (1 - c\widehat{c}^+) |0\rangle = |0\rangle - c |1\rangle$$

Proof

$$\hat{c} |c\rangle = \hat{c} (|0\rangle - c |1\rangle) = -\hat{c}c |1\rangle = c |0\rangle = c |c\rangle$$

Left Coherent State: c^* just another Grassman number

(NOT a complex conjugate)

$$\begin{aligned} \langle c | \, \hat{c}^{+} &= \langle c | \, c^{*} \\ \langle c | &= \langle 0 | \, e^{-\hat{c}c^{*}} = \langle 0 | \, (1 - \hat{c}c^{*}) = \langle 0 | - \langle 1 | \, c^{*} \\ \langle c | \, \hat{c}^{+} &= (\langle 0 | - \langle 1 | \, c^{*}) \, \hat{c}^{+} = - \langle 1 | \, c^{*}\hat{c}^{+} = \langle 0 | \, c^{*} = \langle c | \, c^{*} \end{aligned}$$

Unity operator in coherent states

Overlap of Coherent States (non-orthogonal)

$$\langle c^* | c \rangle = (\langle 0 | - \langle 1 | c^*) (| 0 \rangle - c | 1 \rangle) = 1 + c^* c = e^{c^* c}$$

Resolution of Unity

$$\hat{1} = \int \int dc^* dc e^{-c^* c} \left| c \right\rangle \left\langle c \right|$$

Proof

$$\begin{split} \int \int dc^* dc e^{-c^*c} \left| c \right\rangle \left\langle c \right| &= \int \int dc^* dc \left(1 - c^*c \right) \left(\left| 0 \right\rangle - c \left| 1 \right\rangle \right) \left(\left\langle 0 \right| - \left\langle 1 \right| c^* \right) \right. \\ &= \left. - \int \int dc^* dc c^* c \left(\left| 0 \right\rangle \left\langle 0 \right| + \left| 1 \right\rangle \left\langle 1 \right| \right) = \hat{1} \end{split}$$

Trace of Fermionic Operators

Matrix elements of normally ordered operators

$$\langle \widehat{c^*} | \widehat{H}(\widehat{c}^+, \widehat{c}) | c \rangle = H(c^*, c) \langle c^* | c \rangle = H(c^*, c) e^{c^* c}$$

Trace-formula

$$Tr\left(\widehat{O}\right) = \sum_{n=0,1} \langle n | \,\widehat{O} \, | n \rangle = \sum_{n=0,1} \int \int dc^* dc e^{-c^* c} \langle n | \, c \rangle \, \langle c | \,\widehat{O} \, | n \rangle = \int \int dc^* dc e^{-c^* c} \sum_{n=0,1} \langle -c | \,\widehat{O} \, | n \rangle \, \langle n | \, c \rangle = \int \int dc^* dc e^{-c^* c} \, \langle -c | \,\widehat{O} \, | c \rangle$$

"Minus" due to commutation Left and Right coherent state

$$c^*c = -cc^*$$

$$\left|-c\right\rangle = \left|0\right\rangle + c\left|1\right\rangle$$

Gaussian Path Integrals

Only one analytical path integral:

$$Z[J^*, J] = \int \int \prod_{i=1}^{N} \left[dc_i^* dc_i \right] e^{-\sum_{i,j=1}^{N} c_i^* M_{ij} c_j + \sum_{i=1}^{N} \left[c_i^* J_i + J_i^* c_i \right]} = \det[M] e^{-\sum_{i,j=1}^{N} J_i^* M_{ij}^{-1} J_j}$$

Short notation

$$\int D\left[c^*c\right]e^{-c^*Mc} = \det M$$

Proof - ''det'': expand the exponent only N-th oder is non-zero

$$e^{-\sum_{i,j=1}^{N} c_i^* M_{ij} c_j} = \frac{\left(-\sum_{i,j=1}^{N} c_i^* M_{ij} c_j\right)^N}{N!}$$
 Permutations of c_i^* and c_j gives det M

Examples:

N=1 $\int D[c^*c] e^{-c_1^*M_{11}c_1} = \int D[c^*c] (-c_1^*M_{11}c_1) = M_{11} = \det M$

N=2

$$\int D[c^*c] e^{-c_1^*M_{11}c_1 - c_1^*M_{12}c_1 - c_2^*M_{21}c_1 - c_2^*M_{22}c_2} = \frac{1}{2!} \int D[c^*c] (-c_1^*M_{11}c_1 - c_1^*M_{12}c_1 - c_2^*M_{21}c_1 - c_2^*M_{22}c_2)^2 = M_{11}M_{22} - M_{12}M_{21} = \det M_{11}M_{22} - M_{12}M_{21} = \det M_{11}M_{22} - M_{12}M_{21}$$

Correlation Function: U=0

Change of variables

$$c \to c - M^{-1}j$$

Using: $c^*Mc - c^*j - j^*c = (c^* - j^*M^{-1})M(c - M^{-1}j) - j^*M^{-1}j$

Single-particle correlation function:

$$\left\langle c_i c_j^* \right\rangle = \frac{1}{Z\left[0,0\right]} \frac{\delta Z\left[J^*,J\right]}{\delta J_j \delta J_i^*} |_{J=0} = M_{ij}^{-1}$$

Two-particle correlation function:

$$\langle c_i c_j c_k^* c_l^* \rangle = \frac{1}{Z[0,0]} \frac{\delta Z[J^*, J]}{\delta J_l \delta J_k \delta J_j^* \delta J_i^*} |_{J=0} = M_{il}^{-1} M_{jk}^{-1} - M_{ik}^{-1} M_{jl}^{-1}$$

Path Integral for Everything

Euclidean action

$$Z = \int \mathcal{D}[c^*, c] e^{-S}$$

$$S = \sum_{12} c_1^* (\partial_\tau + t_{12}) c_2 + \frac{1}{4} \sum_{1234} c_1^* c_2^* U_{1234} c_4 c_3$$

One- and two-electron matrix elements:

$$t_{12} = \int d\mathbf{r} \,\phi_1^*(\mathbf{r}) \left(-\frac{1}{2} \bigtriangledown^2 + V(\mathbf{r}) - \mu \right) \phi_2(\mathbf{r})$$
$$U_{1234} = \int d\mathbf{r} \int d\mathbf{r}' \,\phi_1^*(\mathbf{r}) \phi_2^*(\mathbf{r}') \,U(\mathbf{r} - \mathbf{r}') \,\phi_3(\mathbf{r}) \phi_4(\mathbf{r}')$$

Shot notation:

$$\sum_1 \ldots \equiv \sum_{im} \int d\tau ...$$

One- and Two-particle Green Functions

One-particle Green function

$$G_{12} = -\langle c_1 c_2^* \rangle_S = -\frac{1}{Z} \int \mathcal{D}[c^*, c] \, c_1 c_2^* \, e^{-S}$$

Two-particle Green function (generalized susceptibilities)

$$\chi_{1234} = \langle c_1 c_2 c_3^* c_4^* \rangle_S = \frac{1}{Z} \int \mathcal{D}[c^*, c] \, c_1 c_2 c_3^* c_4^* \, e^{-S}$$

Vertex function:

$$X_{1234} = G_{14}G_{23} - G_{13}G_{24} + \sum_{1'2'3'4'} G_{11'}G_{22'}\Gamma_{1'2'3'4'}G_{3'3}G_{4'4}$$

$$\chi = -\chi + \Gamma$$

Baym-Kadanoff functional

Source term

$$S[J] = S + \sum_{ij} c_i^* J_{ij} c_j$$

Partition function and Free-energy:

$$Z[J] = e^{-F[J]} = \int \mathcal{D}[c^*, c] e^{-S[J]}$$

Legendre transforming from J to G:

$$F[G] = F[J] - \operatorname{Tr}(JG) \qquad \qquad G_{12} = \frac{1}{Z[J]} \left. \frac{\delta Z[J]}{\delta J_{12}} \right|_{J=0} = \left. \frac{\delta F[J]}{\delta J_{12}} \right|_{J=0}$$

 $\left[T \right] T$

1

STT[T]

Decomposition into the single particle part and correlated part

$$F[G] = \operatorname{Tr} \ln G - \operatorname{Tr} \left(\Sigma G\right) + \Phi[G]$$

Functional Family

$$F[G] = -Tr \ln[-(G_0^{-1} - \Sigma[G])] - Tr(\Sigma[G]G) + \Phi[G]$$

Exact representation of $\Phi: \bigvee_{ee}^{\alpha} = \alpha \bigvee_{ee}^{\alpha} \bigvee_{ee}^{\alpha} = \frac{1}{2} \int_{0}^{1} d\alpha Tr[V_{ee}^{\alpha} < \psi^{+}\psi^{+}\psi\psi >]$

Different Functionals and constrained field J:

G=ρ G=G(iω) G=G(k,iω) $J=V=V_{h}+V_{xc}$ $J=\Sigma_{loc}(i\omega)$ $J=\Sigma(k,i\omega)$

DFT LDA+DMFT GW++

G. Kotliar et. al. RMP (2006)

Dynamical Mean Field Theory

DMFT: Charge+Spin+Orbital Fluctuations

$$\begin{aligned} & \underset{\Delta}{\text{DMFT time scale}} & \underset{\Delta}{\text{DMFT time scale}} \\ & \underset{\Delta}{\text{DMFT consistensy}} \\ & \underset{\mathbf{k}}{\text{DMFT time scale}} \\ & \underset{\Delta}{\text{DMFT time scale}} \\ & \underset{\alpha}{\text{DMFT time scale}} \\ & \underset{\alpha}{\text{D$$

Analogy with conventional MFT

$$\begin{split} H &= -\sum_{ij\sigma} t_{ij} c_{i\sigma}^+ c_{j\sigma} + U \sum_i n_{i\uparrow} n_{i\downarrow} \\ S_{eff}[G_0] &= -\int \int d\tau d\tau \ c_{0\sigma}^+ \ G_0^{-1} \ c_{0\sigma} + U \int d\tau' \ n_{0\uparrow} n_{0\downarrow} \\ \\ G_0^{-1} &= i\omega_n + \mu - t^2 G(i\omega_n) \\ \\ t_{ij} \sim 1/\sqrt{z} \end{split}$$

$$H = \sum_{ij} J_{ij} S_i S_j$$
$$H_{eff} = (\sum_i J_{0i} S_i) S_0 = z Jm S_0 = h_{eff} S_0$$
$$m = \langle S_0 \rangle = tanh(\beta z Jm)$$
$$J_{ij} \sim 1/z$$

Metal-Insulator Transition

Strong correlation limit and Magnetism

P. Werner, et al, PRB 86, 205101 (2012)

Formation of Local Moments and AFM correlations

What is the Mott transition?

a correlation driven metal-insulator transition Mott '49

cannot be obtained in band theory:

not due to AF (weak coupling effect):

Comparison of LDA and realistic DMFT

LDA+DMFT LDA Density functional **Baym-Kadanoff** functional Green-Function $G(\mathbf{r}, \mathbf{r}', \omega)$ Density $\rho(\mathbf{r})$ Potential $V_{xc}(\mathbf{r})$ Self-energy $\Sigma_i(\omega)$ $\Omega = \Omega_{sp} - \Omega_{dc}$ $E_{tot} = E_{sp} - E_{dc}$ $\Omega_{sp} = -Tr\ln[-G^{-1}]$ $E_{sp} = \sum_{k < k_F} \varepsilon_k$ $E_{dc} = E_H + \int \rho V_{xc} d\mathbf{r} - E_{xc} \quad \Omega_{dc} = Tr \Sigma G - \Phi_{LW}$

DMFT model of ferromagnetism

DOS-peaks

0.35 0.3 AFM 0.25 0.2 Т 0.15 00 0.1 FM 0.05 0 0.5 1.5 2 0 n

D. Vollhardt, et. al., In:Bandferromagnetism, Springer, 2000

Orbital degrees of freedom

Charge transfer TMO insulators

Zaanen-Sawatzky-Allen (ZSA) phase diagram

Phys. Rev. Lett. 55, 418 (1985)

Rotationally invariant LDA+U

LDA+U functional

$$E^{LSDA+U}[\rho^{\sigma}(\mathbf{r}), \{n^{\sigma}\}] = E^{LSDA}[\rho^{\sigma}(\mathbf{r})] + E^{U}[\{n^{\sigma}\}] - E_{dc}[\{n^{\sigma}\}]$$

Local screened Coulomb correlations (Orbital Polarization!)

$$E^{U}[\{n^{\sigma}\}] = \frac{1}{2} \sum_{\{m\},\sigma} \{ \langle m, m'' \mid V_{ee} \mid m', m''' \rangle n^{\sigma}_{mm'} n^{-\sigma}_{m''m'''} +$$

$$+(\langle m,m'' | V_{ee} | m',m''' \rangle - \langle m,m'' | V_{ee} | m''',m' \rangle)n^{\sigma}_{mm'}n^{\sigma}_{m''m'''}\}$$

LDA-double counting term ($n^{\sigma} = Tr(n_{mm0}^{\sigma})$ and $n=n^{-}+n^{+}$): $E_{dc}[\{n^{\sigma}\}] = \frac{1}{2}Un(n-1) - \frac{1}{2}J[n^{\uparrow}(n^{\uparrow}-1) + n^{\downarrow}(n^{\downarrow}-1)],$

Occupation matrix for correlated electrons:

$$n_{mm'}^{\sigma} = -\frac{1}{\pi} \int^{E_F} Im G_{ilm,ilm'}^{\sigma}(E) dE$$

Spin and Orbital moments in CoO

LDA+U+SO+non-collinear

I. Solovyev, A. L., and K. Terakura, PRL 80, 5758 (1998)

Electronic structure of TMO: LDA+U

Slater: Magnetic Transition State

FT: Janak theorem
$$\mathcal{E}_i = \frac{\partial E[n]}{\partial n_i}$$

$$\Delta E = E[n_i = 1] - E[n_i = 0] = \Delta n_i \frac{\partial E[n]}{\partial n_i} \bigg|_{n_i = 1/2} = \varepsilon(n_i = 1/2)$$

Exchange interaction:

D

D

$$J = E[AF] - E[F] = \Delta \varepsilon (n_{\uparrow} = n_{\downarrow} = 1/2)$$

Local Force Theorem: Functionals

$$\Omega^{d} = \Omega_{sp}^{d} - \Omega_{dc}^{d}$$

$$\Omega_{sp}^{d} = -Tr \left\{ \ln \left[\Sigma - G_{0}^{-1} \right] \right\}$$

$$\Omega_{dc}^{d} = Tr \Sigma G - \Phi$$

$$G^{-1} = G_{0}^{-1} - \Sigma$$

$$\delta \Omega = \delta^{*} \Omega_{sp} + \delta_{1} \Omega_{sp} - \delta \Omega_{dc}$$

$$\delta_{1} \Omega_{sp} = \delta \Omega_{dc} = Tr G \delta \Sigma$$

$$\delta\Omega = \delta^* \Omega_{sp} = -\delta^* Tr \ln \left[\Sigma - G_0^{-1} \right]$$

$\begin{array}{l} \textbf{Magnetic Torque} \\ \textbf{\delta} \mathbf{e}_{i} = \delta \boldsymbol{\varphi}_{i} \times \mathbf{e}_{i} \\ \delta \mathbf{e}_{i} = \Sigma_{i}^{c} + \boldsymbol{\Sigma}_{i}^{s} \boldsymbol{\sigma} \qquad \Sigma_{i}^{(c,s)} = \frac{1}{2} \left(\Sigma_{i}^{\uparrow} \pm \Sigma_{i}^{\downarrow} \right) \\ \boldsymbol{\Sigma}_{i} = G_{ij}^{c} + \mathbf{G}_{ij}^{s} \boldsymbol{\sigma} \qquad \Sigma_{i}^{s} = \Sigma_{i}^{s} \mathbf{e}_{i} \end{array}$

Magnetic Force Theorem:

$$\delta \Omega = \delta^* \Omega_{sp} = \mathbf{V}_i \delta \boldsymbol{\varphi}_i$$

Magnetic Torque:

 $\delta \mathbf{e}_i$

$$\mathbf{V}_i = 2Tr_{\omega L} \left[\boldsymbol{\Sigma}_i^s \times \mathbf{G}_{ii}^s \right]$$

Exchange interactions from Functional

Heisenberg exchagne: $\Omega_{spin} = -\sum_{ij} J_{ij} \mathbf{e}_i \cdot \mathbf{e}_j$

Exchange
interactions:
$$J_{ij} = -Tr_{\omega L} \left(\Sigma_i^s G_{ij}^{\uparrow} \Sigma_j^s G_{ji}^{\downarrow} \right)$$

Spin wave spectrum:

$$\omega_{\mathbf{q}} = \frac{4}{M} \sum_{j} J_{0j} \left(1 - \cos \mathbf{q} \mathbf{R}_{j} \right) \equiv \frac{4}{M} [J(0) - J(\mathbf{q})]$$

Non-collinear excitation:

M. Katsnelson and A. L., Phys. Rev. 61, 8906 (2000)

Exchange interactions and Band structure

LDA+Exchange Interactions

Spin-waves T<T_c

$$J_{ij} = \frac{1}{\pi} \int_{-\infty}^{\varepsilon_F} (V^i_{\uparrow} - V^i_{\downarrow}) G^{ij}_{\uparrow} (V^j_{\uparrow} - V^j_{\downarrow}) G^{ji}_{\uparrow} d\varepsilon$$

Curie temperature

$$T_c = \frac{2}{3} \sum_{i} J_{0i}$$

S. Halilov, et. al., PRB 58, 293 (1998)

LDA+Disordered Local Moments

The best first-principle Spin-fluctuation model with classical moments

J. Staunton and B. Gyorffy PRL69, 371 (1992)

Orbital order: KCuF₃

A.L. V. Anisimov and J. Zaanen, Phys. Rev.B 52, R5467 (1995)

1d-AFM in KCuF3

Superexchange interaction

LSDA gave cubic perovskite crystal structure stable in respect to Jahn-Teller distortion of CuF₆ octahedra

LDA+U produces total energy minimum for distorted structure Quadrupolar distortion in KCuF₃

Exchange in Iron: LSDA++

Quantum Impurity Solver

$$Z = \int \mathcal{D}[c^*, c] e^{-S_{simp}},$$

$$S_{simp} = -\sum_{I,J=0}^{N} \int_{0}^{\beta} d\tau \int_{0}^{\beta} d\tau' c_{I\sigma}^{*}(\tau) \left[\mathcal{G}_{\sigma}^{-1}(\tau - \tau') \right]_{IJ} c_{J\sigma}(\tau') + \sum_{I=1}^{N} \int_{0}^{\beta} d\tau U n_{I,\uparrow}(\tau) n_{I,\downarrow}(\tau),$$

What is a best scheme? Quantum Monte Carlo !

Continuous Time Quantum Monte Carlo

Partition function:

$$H = H_0 + V$$

$$Z = \operatorname{Tr}\left[\mathrm{e}^{-\beta H_0} \mathbf{T}_{\tau} \mathrm{e}^{-\int_0^\beta \mathrm{d}\tau V(\tau)}\right]$$

Continuous Time Quantum Monte Carlo (CT-QMC)

$$Z = \sum_{k=0}^{\infty} \int_{0}^{\beta} d\tau_{1} \int_{\tau_{1}}^{\beta} d\tau_{2} \dots \int_{\tau_{k}-1}^{\beta} d\tau_{k} \operatorname{Tr} \left[e^{-\beta H_{0}} e^{-\tau_{k} H_{0}} (-V) \dots e^{-(\tau_{2}-\tau_{1})H_{0}} (-V) e^{-\tau_{1} H_{0}} \right]$$

E. Gull, A. Millis, A.L., A. Rubtsov, M. Troyer, Ph. Werner, Rev. Mod. Phys. 83, 349 (2011)

Weak coupling QMC: CT-INT

Random walks in the k-space

Acceptance ratio

Convergence with Temperature: CT-INT

Maximum: βUN^2

Strong-Coupling Expansion CT-HYB

$$\begin{split} S_{\mathrm{at}} &= \int_{0}^{\beta} d\tau \sum_{\sigma} c_{\sigma}^{*}(\tau) [\partial_{\tau} - \mu] c_{\sigma}(\tau) + U \int_{0}^{\beta} d\tau c_{\uparrow}^{*}(\tau) c_{\uparrow}(\tau) c_{\downarrow}^{*}(\tau) c_{\downarrow}(\tau) \\ S_{\Delta} &= -\int_{0}^{\beta} d\tau' \int_{0}^{\beta} d\tau \sum_{\sigma} c_{\sigma}(\tau) \Delta(\tau - \tau') c_{\sigma}^{*}(\tau') \\ \mathscr{Z} &= \int \mathscr{D}[c^{*}, c] e^{-S_{\mathrm{at}}} \sum_{k} \frac{1}{k!} \int_{0}^{\beta} d\tau'_{1} \int_{0}^{\beta} d\tau_{1} \dots \int_{0}^{\beta} d\tau'_{k} \int_{0}^{\beta} d\tau_{k} \times c(\tau_{k}) c^{*}(\tau'_{k}) \dots c(\tau_{1}) c^{*}(\tau'_{1}) \Delta(\tau_{1} - \tau'_{1}) \dots \Delta(\tau_{k} - \tau'_{k}) \end{split}$$

$$\mathscr{Z} = \mathscr{Z}_{\mathrm{at}} \sum_{k} \int_{0}^{\beta} d\tau_{1}' \int_{\tau_{1}'}^{\beta} d\tau_{1} \dots \int_{\tau_{k-1}}^{\beta} d\tau_{k}' \int_{\tau_{k}'}^{\circ \tau_{k}'} d\tau_{k} \times \\ \times \langle c(\tau_{k})c^{*}(\tau_{k}') \dots c(\tau_{1})c^{*}(\tau_{1}') \rangle_{\mathrm{at}} \det \hat{\Delta}^{(k)} \overset{\uparrow}{\longrightarrow} 0$$

P. Werner, 2006

Strong-Coupling Expansion CT-HYB

$$\begin{split} S_{\mathrm{at}} &= \int_{0}^{\beta} d\tau \sum_{\sigma} c_{\sigma}^{*}(\tau) [\partial_{\tau} - \mu] c_{\sigma}(\tau) + U \int_{0}^{\beta} d\tau c_{\uparrow}^{*}(\tau) c_{\uparrow}(\tau) c_{\downarrow}^{*}(\tau) c_{\downarrow}(\tau) \\ S_{\Delta} &= -\int_{0}^{\beta} d\tau' \int_{0}^{\beta} d\tau \sum_{\sigma} c_{\sigma}(\tau) \Delta(\tau - \tau') c_{\sigma}^{*}(\tau') \\ \mathscr{Z} &= \int \mathscr{D}[c^{*}, c] e^{-S_{\mathrm{at}}} \sum_{k} \frac{1}{k!} \int_{0}^{\beta} d\tau'_{1} \int_{0}^{\beta} d\tau_{1} \dots \int_{0}^{\beta} d\tau'_{k} \int_{0}^{\beta} d\tau_{k} \times c(\tau_{k}) c^{*}(\tau'_{k}) \dots c(\tau_{1}) c^{*}(\tau'_{1}) \Delta(\tau_{1} - \tau'_{1}) \dots \Delta(\tau_{k} - \tau'_{k}) \end{split}$$

$$\mathscr{Z} = \mathscr{Z}_{\mathrm{at}} \sum_{k} \int_{0}^{\beta} d\tau_{1}' \int_{\tau_{1}'}^{\beta} d\tau_{1} \dots \int_{\tau_{k-1}}^{\beta} d\tau_{k}' \int_{\tau_{k}'}^{\circ \tau_{k}'} d\tau_{k} \times \\ \times \langle c(\tau_{k})c^{*}(\tau_{k}') \dots c(\tau_{1})c^{*}(\tau_{1}') \rangle_{\mathrm{at}} \det \hat{\Delta}^{(k)} \overset{\uparrow}{\longrightarrow} 0$$

P. Werner, 2006

Comparison of different CT-QMC

Ch. Jung, unpublished

CT-QMC review: E. Gull et al. RMP (2011)

Magnetism vs. Kondo resonance

Three impurity atoms with Hubbard

repulsion and exchange interaction

$$Un_{i\uparrow}n_{i\downarrow} + J_{ij}\vec{S}_i\vec{S}_j$$

M. Crommie, PRL(2001)

Equilateral and Isosceles Trimers

Density of states at geometry modification of the trimer

Equilateral (ET) and isosceles (IT) trimers

One can see a reconstruction of the Kondo resonance for isosceles trimer at antiferromagnetic exchange interaction

Hybridization function Co on/in Cu(111)

- Hybridization of Co in bulk twice stronger than on surface
- Hybridization in energy range of Cu-d orbitals more anisotropic on surface
- Co-d occupancy: *n*= 7-8
 B. Surer, et al PRB (2012)

Orbitally resolved Co DOS from QMC

Orbitally resolved DOS of the Co impurities in bulk Cu and on Co (111) obtained from QMC simulations at temperature. T = 0.025 eV and chemical potential $\mu = 27$ eV and $\mu = 28$ eV, respectively.

All Co *d*-orbitals contribute to LDOS peak near $E_F=0$

B. Surer, et al, PRB (2012).

Magnetic susceptibility: nanosystems

Bethe-Salpeter Equation: Susceptibility: $\tilde{\chi}^{\sigma\sigma'}(\Omega, \mathbf{q})$

Local correlated nano-system:

$$\chi_{\nu,\nu'}^{-1}(\vec{q},\omega) = \chi_{0,\nu,\nu'}^{-1}(\vec{q},\omega) - \gamma_{\nu,\nu'}(\omega)$$

Spin and Charge susceptibility near impurity

K. Patton, H. Hafermann, et.al PRB (2009)

From Atom to Solid

Atomic physics

Bands effects (LDA)

Spectral Function Fe: ARPES vs. DMFT

SP-ARPES (BESY) J. Sánchez-Barriga, et al, PRL (2010)

Magnetism of metals: LDA+DMFT

- Exchange interactions in metals
- Finite temperature 3d-metal magnetism

A. L., M. Katsnelson and G. Kotliar, PRL87, 067205 (2001)

Interaction of electrons with collective excitations

Magnon

Plasmon

Orbiton

Non-local Coulomb interactions

General non-local action for solids:

$$S = \sum_{i} S_{at}[c_i^{\dagger}, c_i] + \sum_{i \neq j, \nu, \sigma} t_{ij} c_{i\nu\sigma}^{\dagger} c_{j\nu\sigma} + \sum_{i \neq j, \omega} V_{ij} \rho_{i\omega}^* \rho_{j\omega}$$

Atomic action with local Hubbard-like interaction

$$S_{at} = -\sum_{\nu\sigma} (i\nu + \mu) c^{\dagger}_{\nu\sigma} c_{\nu\sigma} + \int_{0}^{\beta} U c^{\dagger}_{\uparrow} c_{\uparrow} c^{\dagger}_{\downarrow} c_{\downarrow} d\tau$$

Bosonic charge and spin variables:

$$\rho_j \equiv \sum_{\sigma\sigma'} c^{\dagger}_{\sigma} s^{j}_{\sigma\sigma'} c_{\sigma'} - \bar{\rho}_{\sigma'}$$

$$s^{j} = (1, \sigma_{x}, \sigma_{y}, \sigma_{z})$$
$$j = \{0, x, y, z\}$$

A. Rubtsov et al, Annals of Physics 327, 1320 (2012)

Efficient DB-perturbation theory

Separate local and non-local effective actions:

$$\begin{split} S &= \sum_{i} S_{imp}[c_{i}^{\dagger},c_{i}] + \sum_{k\nu\sigma} \left(t_{k} - \Delta_{\nu\sigma}\right) c_{k\nu\sigma}^{\dagger} c_{k\nu\sigma} + \sum_{q\omega} \left(V_{q} - \Lambda_{\omega}\right) \rho_{q\omega}^{*} \rho_{q\omega} \\ \\ \text{Imuprity action with fermionic and bosonic bathes (CT-QMC)} \\ S_{imp} &= S_{at} + \sum_{\nu} \Delta_{\nu} c_{\nu}^{\dagger} c_{\nu} + \sum_{\omega} \Lambda_{\omega} \rho_{\omega}^{*} \rho_{\omega} \\ \\ \text{Dual boson-fermion transformation:} \\ c^{\dagger} &= f^{\dagger} \\ \rho^{*} &= \eta^{*} \\ \\ \tilde{S} &= -\sum_{k\nu} \tilde{\mathcal{G}}_{k\nu}^{-1} f_{k\nu}^{\dagger} f_{k\nu} - \sum_{q\omega} \tilde{\mathcal{X}}_{q\omega}^{-1} \eta_{q\omega}^{*} \eta_{q\omega} + \sum_{i} \tilde{U}[\eta_{i}, f_{\text{EDMFT}}] \\ \\ \tilde{S} &= -\sum_{k\nu} \tilde{\mathcal{G}}_{k\nu}^{-1} f_{k\nu}^{\dagger} f_{k\nu} - \sum_{q\omega} \tilde{\mathcal{X}}_{q\omega}^{-1} \eta_{q\omega}^{*} \eta_{q\omega} + \sum_{i} \tilde{U}[\eta_{i}, f_{\text{EDMFT}}] \\ \\ \\ \text{Diagrams:} \\ \tilde{\mathcal{G}}_{0} & \tilde{\mathcal{X}}_{\Omega} & \lambda_{\omega} \\ & \lambda_{\omega} \\ \end{pmatrix}$$

DB-diagrammatic scheme

A. Rubtsov, M.I. Katsnelson, A. L., Annals of Phys. 327, 1320 (2012)

Simple Test: Hubbard lattice

$$U > t$$

$$\lambda_{\Omega\omega} = \chi_{\Omega}^{-1} \left(1 - \sum_{\omega'} \gamma_{\omega,\omega',\Omega} g_{\omega'} g_{\omega'-\Omega} s_{\sigma\sigma'} \right)$$

Fermionic Selfenergy

$$\Pi_{\Omega K}' = \left[\left(\lambda \frac{\tilde{X}_{\Omega K}^{(0)}}{1 - \gamma_{\Omega} \tilde{X}_{\Omega K}^{(0)}} \lambda \right)^{-1} + \chi_{\Omega} \right]^{-1} = \lambda_{\Omega} \tilde{X}_{\Omega K}^{(0)} \lambda_{\Omega}$$

Generalization of Anderson superexchange to frequency-dependent case $J_{ij}=rac{t^2}{U}$

A. Rubtsov, et al, Annals Phys. 327, 1320 (2012)

Plasmon mode in ladder DB

How Mott transition affect plasmon mode?

Summary

- Magnetism of correlation systems can be well described in the LDA+DMFT scheme
- Local correlations efficiently included in CT-QMC impurity solver

Constrain GW calculations of U

Polarisation

F. Aryasetiawanan et al PRB(2004)

$$P(\mathbf{r}, \mathbf{r}'; \omega) = \sum_{i}^{occ} \sum_{j}^{unocc} \psi_{i}(\mathbf{r}) \psi_{i}^{*}(\mathbf{r}') \psi_{j}(\mathbf{r}')$$

$$\times \left\{ \frac{1}{\omega - \varepsilon_{j} + \varepsilon_{i} + i0^{+}} - \frac{1}{\omega + \varepsilon_{j} - \varepsilon_{i} - i0^{+}} \right\}$$

$$W_{r}(\omega) = \left[1 - vP_{r}(\omega)\right]^{-1}v$$

$$W = \left[1 - vP\right]^{-1}v$$

$$= \left[1 - vP_{r} - vP_{d}\right]^{-1}v$$

 $= [(1 - vP_r)\{1 - (1 - vP_r)^{-1}vP_d\}]^{-1}v$

 $= \{1 - (1 - vP_r)^{-1}vP_d\}^{-1}(1 - vP_r)^{-1}v$

 $= [1 - W_r P_d]^{-1} W_r$

Double-Bethe Lattice: exact C-DMFT

bilayer Hubbard model on the Bethe lattice (for coordination z = 3)

A. Ruckenstein PRB (1999)

$$\begin{aligned} H &= -t \sum_{\langle ij \rangle, \sigma} (a_{i\sigma}^{\dagger} a_{j\sigma} + b_{i\sigma}^{\dagger} b_{j\sigma}) - t_{\perp} \sum_{i\sigma} (a_{i\sigma}^{\dagger} b_{i\sigma} + b_{i\sigma}^{\dagger} a_{i\sigma}) \\ &+ U \sum_{i\sigma} (n_{ai\uparrow} n_{ai\downarrow} + n_{bi\uparrow} n_{bi\downarrow}) \end{aligned}$$

Self-consistent condition: C-DMFT

$$\mathcal{G}_{\sigma}^{-1}(i\omega_n) = \begin{pmatrix} i\omega_n + \mu - h\sigma & -t_{\perp} \\ -t_{\perp} & i\omega_n + \mu + h\sigma \end{pmatrix} - t^2 \mathbf{G}_{-\sigma}(i\omega_n) ,$$

AF-between plane

AF-plane

Finite temperature phase diagram

- order-disorder transition at t? / t=p2 for large U
- MIT for intermediate U

H. Hafermann, et al. EPL, 85, 37006 (2009)

Slater parametrization of U

Multipole expansion:

$$\frac{1}{|\mathbf{r} - \mathbf{r}'|} = \sum_{kq} \frac{4\pi}{2k+1} \frac{r_{<}^{k}}{r_{>}^{k+1}} Y_{kq}^{*}(\hat{r}) Y_{kq}(\hat{r}')$$

Coulomb matrix elements in $Y_{\rm Im}$ basis:

$$< mm' ||m''m'''> = \sum_{k} a_{k}(m, m'', m', m''')F^{k}$$

Angular part – 3j symbols

$$a_k(m,m',m''',m''') = \sum_{q=-k}^k (2l+1)^2 (-1)^{m+q+m'} \begin{pmatrix} l & k & l \\ 0 & 0 & 0 \end{pmatrix}^2 \begin{pmatrix} l & k & l \\ -m & -q & m' \end{pmatrix} \begin{pmatrix} l & k & l \\ -m'' & q & m''' \end{pmatrix}$$

Slater integrals:

$$F^{k} = e^{2} \int_{0}^{\infty} r^{2} dr |\varphi_{d}(r)|^{2} \int_{0}^{\infty} (r')^{2} dr' |\varphi_{d}(r')|^{2} \frac{r_{<}^{k}}{r_{>}^{k+1}}$$

CT-HYB: General Interaction

P. Werner and A.J. Millis, PRB 74, 155107 (2006)

creation and annihilation operators for different orbitals

tracing out bath degrees of freedom gives rise to determinant weight as before

CT-HYB: Krylov code

A. M. Läuchli and P. Werner, PRB 80, 235117 (2009)

 $e^{-\Delta \tau H_{loc}} O_k(\tau_k)$ sparse in the occupation number basis

Krylov time evolution

$$\operatorname{Tr}_{d}\left[\ldots\right] = \sum_{|\psi\rangle} \langle \psi| e^{-(\beta - \tau_{k})H_{\operatorname{loc}}} \mathcal{O}_{k}(\tau_{k}) e^{-(\tau_{k} - \tau_{k-1})H_{\operatorname{loc}}} \ldots \mathcal{O}_{1}(\tau_{1}) e^{-\tau_{1}H_{\operatorname{loc}}} |\psi\rangle$$

Idea: compute $e^{-\tau H_{loc}} |\psi\rangle$ using Lanczos recursion

Park and Light, J. Chem. Phys (1986)

construct Krylov subspace $\mathcal{K} = \left\{ |\psi\rangle, \mathcal{H}_{\mathsf{loc}}|\psi\rangle, \mathcal{H}^2_{\mathsf{loc}}|\psi\rangle, ..., \mathcal{H}^p_{\mathsf{loc}}|\psi\rangle \right\}$

efficiently represents $e^{-\tau H_{loc}} |\psi\rangle$ for a small number p τ small $\rightarrow p$ small Hochbruck & Lubich, SIAM J. Numer. Anal. (1997)

CT-QMC-Krylov: performance

Satellite structure in Ni

d-orbital spectral function

PES (LDA) $W_{band} = 3(4) \text{ eV}$ $\Delta E_{ex} = 0.3(0.6) \text{ eV}$ $E_{sat} = -6(?) \text{ eV}$

LDA+DMFT+QMC A. L., M. Katsnelson and G. Kotliar, PRL (2001)

T-Lanczos (5d+10k) J. Kolorenc et al PRB (2012)