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1 Introduction

Correlated electron compounds exhibit very distinct behavior on different energy and length
scales. Collective phenomena emerge at scales far below the bare energy scales of the mi-
croscopic Hamiltonian. For example, in high-temperature superconductors one bridges three
orders of magnitude from the highest scale, the bare Coulomb interaction, via the intermediate
scale of short-range magnetic correlations, down to the lowest scale of d-wave superconductiv-
ity and other ordering phenomena (see Fig. 1). This diversity of scales is a major obstacle to a
direct numerical solution of microscopic models, since the most interesting phenomena emerge
only in large systems at low temperatures. It is also hard to tackle by conventional many-body
methods if one tries to treat all scales at once and within the same approximation, for example
by summing a subclass of Feynman diagrams. Perturbative approaches which do not separate
different scales are plagued by infrared divergences and are therefore often inapplicable even at
weak coupling.

It is thus natural to treat degrees of freedom with different energy or length scales step by step.
This is the main idea behind all renormalization group (RG) schemes. Using a functional in-
tegral representation this strategy can be implemented by integrating out degrees of freedom
(bosonic or fermionic fields) successively, following a suitable order of scales. One thus gener-
ates a one-parameter family of effective actions that interpolates smoothly between the bare ac-
tion of the system, as given by the microscopic Hamiltonian, and the final effective action from
which all physical properties can be extracted. The Green or vertex functions corresponding to
the effective action at scale Λ obey a hierarchy of differential flow equations. This hierarchy
is exact and involves the flow of functions of generally continuous variables. For these reasons
this approach is frequently referred to as “exact” or “functional” RG [1–3].

The exact hierarchy can be solved exactly only in special cases, where the underlying model
can also be solved exactly (and more easily) by other means. However, the functional RG is a
valuable source for devising powerful new approximation schemes, which can be obtained by
truncating the hierarchy and/or by a simplified parametrization of the Green or vertex functions.
These approximations have several distinctive advantages: i) they have a renormalization group
structure built in; that is, scales are handled successively and infrared singularities are thus
treated properly; ii) they can be applied directly to microscopic models, not only to effective
field theories that capture only some asymptotic behavior; iii) they are physically transparent;
for example, one can see directly how and why new correlations form upon lowering the scale;
iv) one can use different approximations at different scales. Small steps from a scale Λ to
a slightly smaller scale Λ′ are much easier to control than an integration over all degrees of
freedom in one shot.

This lecture provides a concise introduction to the functional RG in the context of interacting
Fermi systems. To illustrate the method at work, I review applications of the functional RG to
the two-dimensional Hubbard model. A more detailed presentation and many other applications
can be found in the recent review article Ref. [3]. In the last part I present the very recent idea [4]
of using the DMFT solution as a non-perturbative starting point for a functional RG flow.
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Fig. 1: Energy scales in cuprate high-temperature superconductors. Magnetic interactions and
superconductivity are generated from the kinetic energy and the Coulomb repulsion. Figure
taken from Ref. [3].

2 Functional RG for Fermi systems

Already in the 1970s, various RG methods were used to deal with infrared singularities arising
in one-dimensional Fermi systems [5]. Renormalization group approaches dealing with inter-
acting fermions in higher dimensions were developed much later. Due to the extended (not
point-like) geometry of the Fermi surface singularity in dimensions d > 1, the renormaliza-
tion group flow cannot be reduced to a small number of running couplings, even if irrelevant
interactions are discarded. Aiming at a mathematical control of interacting Fermi systems,
Feldman and Trubowitz [6], and independently Benfatto and Gallavotti [7], formulated a rig-
orous fermionic version of Wilson’s momentum-shell RG [8] for interacting fermions in di-
mensions d > 1. Important rigorous results for two-dimensional systems have indeed been
obtained [9, 10]. An essential message from these results is that no hitherto unknown instabil-
ities or non-perturbative effects occur in Fermi systems with sufficiently weak interactions, at
least in the absence of special features such as van Hove singularities at the Fermi level.
The Wilsonian RG for interacting Fermi systems was popularized among physicists by Shankar
[11] and Polchinski [12], who presented some of the main ideas in a pedagogical style. In
particular, they discussed an intuitive RG perspective of Fermi liquid theory.
The Wilsonian RG is not only useful for a rigorous understanding of interacting fermion sys-
tems. A specific variant of Wilson’s RG known as exact or functional RG turned out to provide a
valuable framework for computational purposes. Approximations derived from exact functional
flow equations play an increasingly important role in the theory of interacting Fermi systems [3].
Exact flow equations describe the evolution of a generating functional for all many-particle cor-
relation or vertex functions as a function of a flow parameter Λ, usually a cutoff. They can be
easily derived from a functional integral representation.
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For computational purposes, the exact flow equation for the effective action ΓΛ, first derived
in the context of bosonic field theories by Wetterich [13], turned out to be most convenient.
The effective action is the generating functional for one-particle irreducible vertex functions,
which are obtained by taking derivatives with respect to the source fields. The flow parameter Λ
describes a regularization of the bare action, which regularizes infrared divergencies in pertur-
bation theory. The regularization is removed at the end of the flow, say for Λ → 0. The initial
regulator (for Λ = Λ0) can be chosen such that ΓΛ0 is given by the bare action. The flow of ΓΛ

then provides a smooth interpolation between the bare action of the system and the final effec-
tive action Γ , from which any desired information can be extracted. This flow is determined by
an exact functional differential equation [13]. Expanding in the fields one obtains a hierarchy
of flow equations for the one-particle irreducible vertex functions.
The expression functional RG stems from the feature that the exact flow equations describe
the flow of a functional or (equivalently) of a hierarchy of functions. An important difference
compared to Wilson’s original formulation is that a complete set of source fields is kept in the
flowing generating functionals, not only those corresponding to scales below Λ. Hence, the full
information on the properties of the system remains accessible, not only the low energy or long
wavelength behavior.
In the remainder of this section, I present the exact flow equations and their expansion in the
source fields. The first subsection summarizes the standard functional integral formalism as
described, for example, in the excellent textbook by Negele and Orland [14].

2.1 Generating functionals

A system of interacting fermions can be represented by Grassmann fields ψ, ψ̄, and an action
of the form

S[ψ, ψ̄] = −(ψ̄, G−1
0 ψ) + V [ψ, ψ̄] , (1)

where V [ψ, ψ̄] is an arbitrary many-body interaction, and G0 is the propagator of the non-
interacting system. The bracket (., .) is a shorthand notation for the sum

∑
K ψ̄K (G−1

0 ψ)K ,
where (G−1

0 ψ)K =
∑

K′ G
−1
0 (K,K ′)ψK′ . The Grassmann field index K collects the quantum

numbers of a suitable single-particle basis set and the Matsubara frequency. The K-sums in-
clude integrals over continuous variables, and normalization factors such as temperature and
volume. In particular, for spin-1/2 fermions with a single-particle basis labeled by momentum k

and spin orientation σ, one has K = (k0,k, σ), where k0 is the fermionic Matsubara frequency.
If the bare part of the action is translation and spin-rotation invariant, the bare propagator has
the diagonal and spin-independent form G0(K,K ′) = δKK′G0(K) with

G0(K) =
1

ik0 − ξk
, (2)

where ξk = εk−µ is the single-particle energy relative to the chemical potential. A two-particle
interaction has the general form

V [ψ, ψ̄] =
1

4

∑
K1,K2,K′

1,K
′
2

V (K ′1, K
′
2;K1, K2) ψ̄K′

1
ψ̄K′

2
ψK2ψK1 . (3)
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The generating functional

G[η, η̄] = − log

∫ ∏
K

dψKdψ̄K e
−S[ψ,ψ̄] e(η̄,ψ)+(ψ̄,η) , (4)

yields connected m-particle Green functions via derivatives with respect to the source fields,
that is,

G(2m)(K1, . . . , Km;K ′1, . . . , K
′
m) = −〈ψK1 . . . ψKmψ̄K′

m
. . . ψ̄K′

1
〉c

= (−1)m
∂m

∂η̄K1 . . . ∂η̄Km

∂m

∂ηK′
m
. . . ∂ηK′

1

G[η, η̄]

∣∣∣∣
η=η̄=0

, (5)

where 〈. . .〉c is the connected average of the product of Grassmann variables between the brack-
ets. The one-particle Green function G(2) is the propagator of the interacting system, which is
usually denoted without the superscript as G.
Legendre transforming G[η, η̄] yields the effective action

Γ [ψ, ψ̄] = (η̄, ψ) + (ψ̄, η) + G[η, η̄] , (6)

where ψ = −∂G/∂η̄ and ψ̄ = ∂G/∂η . The effective action is the generating functional for
one-particle irreducible vertex functions,

Γ (2m)(K ′1, . . . , K
′
m;K1, . . . , Km) =

∂2mΓ [ψ, ψ̄]

∂ψ̄K′
1
. . . ∂ψ̄K′

m
∂ψKm . . . ∂ψK1

∣∣∣∣∣
ψ,ψ̄=0

. (7)

The Legendre correspondence between the functionals G and Γ yields relations between the
Green functions G(2m) and the vertex functions Γ (2m). In particular,

Γ (2) = G−1 = G−1
0 −Σ , (8)

where Σ is the self-energy. The two-particle Green function is related to the two-particle vertex
by

G(4)(K1, K2;K ′1, K
′
2) =

∑
P1,P2,P ′

1,P
′
2

G(K1, P
′
1)G(K2, P

′
2)

× Γ (4)(P ′1, P
′
2;P1, P2)G(P1, K

′
1)G(P2, K

′
2) . (9)

Generally, the m-particle Green functions are obtained by adding all trees that can be formed
with vertex functions of equal or lower order and G-lines [14].
The effective action obeys the reciprocity relations

∂Γ

∂ψ
= −η̄ , ∂Γ

∂ψ̄
= η . (10)

The second functional derivatives of G and Γ with respect to the fields are also reciprocal. We
define the matrices of second derivatives at finite fields

G(2)[η, η̄] =


− ∂2G
∂η̄K∂ηK′

∂2G
∂η̄K∂η̄K′

∂2G
∂ηK∂ηK′

− ∂2G
∂ηK∂η̄K′

 = −
(
〈ψKψ̄K′〉 〈ψKψK′〉
〈ψ̄Kψ̄K′〉 〈ψ̄KψK′〉

)
, (11)



11.6 Walter Metzner

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

−π

−π 0 π

0

k y

k x

π

Fig. 2: Momentum space region around the Fermi surface excluded by a sharp momentum cutoff
in a two-dimensional lattice fermion system. Figure taken from Ref. [3].

and

Γ(2)[ψ, ψ̄] =


∂2Γ

∂ψ̄K′∂ψK

∂2Γ

∂ψ̄K′∂ψ̄K
∂2Γ

∂ψK′∂ψK

∂2Γ

∂ψK′∂ψ̄K

 , (12)

where the matrix elements in the second matrix of the last equation are just a more conventient
notation for those in the first matrix. The reciprocity relation for the second derivatives reads

Γ(2)[ψ, ψ̄] =
(
G(2)[η, η̄]

)−1
. (13)

Note that anomalous components are involved as long as the source fields are finite. Only at
η = η̄ = 0 and ψ = ψ̄ = 0, and in the absence of U(1) charge symmetry breaking one has the
simple relation Γ (2) = G−1.

2.2 Exact flow equation

We now endow the bare propagator G0 with a dependence on a flow parameter Λ. Usually Λ
is a cutoff suppressing contributions from fields with a single-particle energy or a Matsubara
frequency below the scale Λ in the functional integral. For example, in a translation invariant
system this may be done by modifying G0(K) to

GΛ
0 (K) =

ΘΛ(k)

ik0 − ξk
, (14)

where ΘΛ(k) is a function that vanishes for |ξk| � Λ and tends to one for |ξk| � Λ. In this
way the infrared singularity of the propagator at k0 = 0 and ξk = 0 is cut off at the scale Λ. The
simplest choice for ΘΛ is a step function, ΘΛ(k) = Θ(|ξk| − Λ), such that momenta in a shell
around the Fermi surface are strictly excluded (see Fig. 2).
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In the first applications of the functional RG to interacting Fermi systems a momentum cutoff
was used, but later a frequency cutoff became more popular, since the latter does not interfere
with Fermi surface shifts, and particle-hole excitations with a small momentum transfer are
captured smoothly by the flow [15]. Moreover, a frequency cutoff can also be used in systems
without translation invariance, such as systems with impurities [16].
The generating functionals constructed with GΛ

0 instead of G0 depend on the flow parameter
and will be denoted by GΛ[η, η̄] and ΓΛ[ψ, ψ̄]. The original functionals G and Γ are recovered
in the limit Λ → 0. The evolution of ΓΛ[ψ, ψ̄] as a function of Λ is described by an exact
functional flow equation,

d

dΛ
ΓΛ[ψ, ψ̄] = −

(
ψ̄, ∂ΛQ

Λ
0ψ
)
− 1

2
Tr
[(
∂ΛQΛ

0

) (
Γ(2)Λ[ψ, ψ̄]

)−1
]
, (15)

where

QΛ
0 =

(
QΛ

0 (K,K ′) 0

0 −QΛ
0 (K ′, K)

)
(16)

with QΛ
0 = (GΛ

0 )−1, and Γ(2)Λ[ψ, ψ̄] is the matrix of second derivatives of ΓΛ at finite fields,

Γ(2)Λ[ψ, ψ̄] =


∂2ΓΛ

∂ψ̄K∂ψK′

∂2ΓΛ

∂ψ̄K∂ψ̄K′

∂2ΓΛ

∂ψK∂ψK′

∂2ΓΛ

∂ψK∂ψ̄K′

 . (17)

The trace on the right hand side of the flow equations includes a sum over the Grassmann field
index K. Note that the inversion of Γ(2)Λ[ψ, ψ̄] in Eq. (15) is not merely an inversion of a 2× 2

matrix, since it involves also the additional matrix structure coming from the dependence on
the Grassmann field indices K and K ′. A derivation of the functional flow equation (15) is
presented in Appendix A.
Alternative definitions of the effective action ΓΛ, differing by interaction-independent terms,
have also been used. A frequently used variant is [1]

ΓΛ
R [ψ, ψ̄] = ΓΛ[ψ, ψ̄] + (ψ̄, RΛψ) , (18)

where RΛ = QΛ
0 −Q0. The additional quadratic term cancels the first term in the flow equation

(15) for ΓΛ, and one obtains the equivalent flow equation

d

dΛ
ΓΛ
R [ψ, ψ̄] = −1

2
Tr

[(
∂ΛRΛ

) (
Γ

(2)Λ
R [ψ, ψ̄] + RΛ

)−1
]
, (19)

where RΛ = diag
(
RΛ(K,K ′),−RΛ(K ′, K)

)
. The functional ΓΛ

R and its anologue for bosonic
fields is known as effective average action in the literature [1]. Both ΓΛ

R and ΓΛ tend to the
same effective action Γ in the limit Λ→ 0, where RΛ vanishes.
Choosing the initial cutoffΛ0 such thatGΛ0

0 is identically zero, all contributions to the functional
integral are suppressed. For a sharp momentum cutoff this is achieved by choosing Λ0 larger
than maxk |ξk|, while for a frequency cutoff one has to start with Λ0 = ∞ to eliminate all
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modes. At the initial scale Λ0, one then has the simple initial condition ΓΛ0
R [ψ, ψ̄] = S[ψ, ψ̄],

while

ΓΛ0 [ψ, ψ̄] = −(ψ̄, QΛ0
0 ψ) + V [ψ, ψ̄] = SΛ0 [ψ, ψ̄] = S[ψ, ψ̄]− (ψ̄, RΛψ) . (20)

Hence, ΓΛ
R interpolates smoothly between the (unregularized) bare action S and the final effec-

tive action Γ , while ΓΛ interpolates between the regularized bare action SΛ0 and Γ . The initial
“regularization” with QΛ0

0 = ∞ amounts to a complete suppression of all contributions to the
functional integral, not just a regularization of divergent contributions.

2.3 Expansion in the fields

Expanding the functional flow equation (15) for the effective action in powers of the fields
yields a hierarchy of flow equations for the m-particle vertex functions. To expand the inverse
of Γ(2)Λ[ψ, ψ̄], we split

Γ(2)Λ[ψ, ψ̄] = (GΛ)−1 − Σ̃Λ[ψ, ψ̄] , (21)

where

GΛ =
(

Γ(2)Λ[ψ, ψ̄]
∣∣
ψ=ψ̄=0

)−1

=

(
GΛ(K,K ′) 0

0 −GΛ(K ′, K)

)
, (22)

and Σ̃Λ[ψ, ψ̄] contains all contributions which are at least quadratic in the fields. Now the
inverse of Γ(2)Λ[ψ, ψ̄] can be expanded in a geometric series,(

Γ(2)Λ[ψ, ψ̄]
)−1

=
(
1−GΛΣ̃Λ[ψ, ψ̄]

)−1
GΛ

=
[
1 + GΛΣ̃Λ[ψ, ψ̄] + (GΛΣ̃Λ[ψ, ψ̄])2 + . . .

]
GΛ . (23)

Inserting this into the functional flow equation yields

d

dΛ
ΓΛ[ψ, ψ̄] =− Tr

[
(∂ΛQ

Λ
0 )GΛ

]
−
(
ψ̄, ∂ΛQ

Λ
0ψ
)

+
1

2
Tr
[
SΛ(Σ̃Λ[ψ, ψ̄] + Σ̃Λ[ψ, ψ̄]GΛΣ̃Λ[ψ, ψ̄] + . . . )

]
, (24)

with the single scale propagator

SΛ = −GΛ
(
∂ΛQΛ

0

)
GΛ =

d

dΛ
GΛ
∣∣
ΣΛ fixed

. (25)

The latter usually has its main support at the scale Λ. For example, for a sharp momentum
cutoff acting on ξk as in Eq. (14), SΛ has a delta-peak at |ξk| = Λ and vanishes elsewhere.
Expanding ΓΛ[ψ, ψ̄] and Σ̃Λ[ψ, ψ̄] in powers of ψ and ψ̄, and comparing coefficients in Eq. (24),
one obtains the flow equations for the self-energy ΣΛ = QΛ

0 − Γ (2)Λ, the two-particle vertex
Γ (4)Λ, and all other m-particle vertices. The first three equations of this hierarchy are repre-
sented diagrammatically in Fig. 3. Note that only one-particle irreducible one-loop diagrams
contribute, and internal lines are dressed by the self-energy. Contributions with several loops
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S

G
Λ

+

Λ
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=
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+
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Fig. 3: Diagrammatic representation of the flow equations for the self-energy, the two-particle
vertex, and the three-particle vertex. Lines with a dash correspond to the single-scale propaga-
tor SΛ, and the other lines to the full propagator GΛ. Figure taken from Ref. [3].

are generated only indirectly upon inserting the flow of higher order vertices into lower order
flow equations. The flow equation for the self-energy has the simple form

d

dΛ
ΣΛ(K ′, K) =

∑
P,P ′

SΛ(P, P ′)Γ (4)Λ(K ′, P ′;K,P ) . (26)

The flow equation for the two-particle vertex reads

d

dΛ
Γ (4)Λ(K ′1, K

′
2;K1, K2) = −

∑
P1,P ′

1

∑
P2,P ′

2

GΛ(P1, P
′
1)SΛ(P2, P

′
2)

×
{
Γ (4)Λ(K ′1, K

′
2;P1, P2)Γ (4)Λ(P ′1, P

′
2;K1, K2)

−
[
Γ (4)Λ(K ′1, P

′
2;K1, P1)Γ (4)Λ(P ′1, K

′
2;P2, K2) + (P1 ↔ P2, P

′
1 ↔ P ′2)

]
+
[
Γ (4)Λ(K ′2, P

′
2;K1, P1)Γ (4)Λ(P ′1, K

′
1;P2, K2) + (P1 ↔ P2, P

′
1 ↔ P ′2)

]}
−
∑
P,P ′

SΛ(P, P ′)Γ (6)Λ(K ′1, K
′
2, P

′;K1, K2, P ) . (27)

There are several contributions that are quadratic in Γ (4)Λ, corresponding to the particle-particle,
direct particle-hole, and crossed particle-hole channel, respectively.
The one-particle irreducibility is a convenient feature of flow equations derived from the ef-
fective action ΓΛ[ψ, ψ̄]. Flow equations derived from other functionals, such as the Polchinski
equations [17] and their Wick ordered variant [9], contain also one-particle reducible contribu-
tions.
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Fig. 4: Hubbard model with nearest and next-to-nearest neighbor hopping on a square lattice.

The full hierarchy of flow equations does not close at any finite order, since the flow of each
Γ (2m)Λ receives a contribution from a tadpole diagram with Γ (2m+2)Λ. Exact solutions of the
flow equation hierarchy are possible only for relatively simple models, such as the Luttinger
model [18], the reduced BCS model [19], or other mean-field models [20, 21], which can
also be solved more directly by other methods. Usually the hierarchy of flow equations has
to be truncated by neglecting effective interactions of higher order, and by using a simplified
parametrization of the functional dependence of the remaining interactions on momenta, fre-
quencies, et cetera. Truncations of the hierarchy at some finite order can be justified in case
of sufficiently weak interactions, or if higher order terms are suppressed due to small phase
space volumina [22]. Geometrical phase space restrictions are typically stronger in multi-loop
integrals. A simplified parametrization of effective interactions can be obtained by neglecting
dependences which become irrelevant in the low-energy limit.

3 Two-dimensional Hubbard model

Shortly after the discovery of high-temperature superconductivity in several cuprate compounds,
Anderson [23] pointed out that the essential physics of the electrons in the copper-oxide planes
of these materials could be described by the two-dimensional Hubbard model. The model
describes tight-binding electrons with inter-site hopping amplitudes tij and a local repulsion
U > 0, as specified by the Hamiltonian (see also Fig. 4)

H =
∑
i,j

∑
σ

tij c
†
iσcjσ + U

∑
j

nj↑nj↓ . (28)

Here c†iσ and ciσ are creation and annihilation operators for spin-1/2 fermions with spin orienta-
tion σ on a lattice site i, and njσ = c†jσcjσ. The number of lattice sites will be denoted by L. A
hopping amplitude −t between nearest neighbors and an amplitude −t′ between next-nearest
neighbors on a square lattice leads to the dispersion relation

εk = −2t(cos kx + cos ky)− 4t′(cos kx cos ky) (29)
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Fig. 5: Schematic shape of the gap function ∆k with dx2−y2-wave symmetry, for k tracing the
Fermi surface.

for single-particle states. This dispersion relation has saddle points at k = (0, π) and (π, 0),
which entail logarithmic van Hove singularities in the non-interacting density of states at the
energy εvH = 4t′.
In agreement with the generic phase diagram of the cuprates, the Hubbard model exhibits anti-
ferromagnetic order at half-filling, and has been expected to become a d-wave superconductor
away from half-filling in two dimensions for quite some time [24]. The exchange of antifer-
romagnetic spin fluctuations has been proposed as a plausible mechanism leading to d-wave
pairing [25–27]. In this picture, the BCS effective interaction Vkk′ is roughly proportional to
the spin correlation function χs(k−k′). Close to half-filling, χs(q) has a pronounced maximum
at or near the antiferromagnetic wave vector (π, π). As a consequence, the BCS gap equation

∆k = −
∫

d2k′

(2π)2
Vkk′

∆k′

2Ek′
(30)

with Ek = (ξ2
k + |∆k|2)1/2 has a solution with dx2−y2-wave symmetry such that the gap ∆k

has maximal modulus but opposite sign near the points (π, 0) and (0, π) in the Brillouin zone
[24], as illustrated in Fig. 5. This intuitive argument has been corroborated by a self-consistent
perturbative solution of the two-dimensional Hubbard model within the so-called fluctuation-
exchange approximation [28, 29].
The spin-fluctuation mechanism for pairing might be spoiled by other contributions to the BCS
interactions and also by spin density wave instabilities. It turned out to be very hard to detect
superconductivity in the Hubbard model by exact numerical computation [24, 30] as a conse-
quence of finite size and/or temperature limitations. Fortunately, the tendency toward antiferro-
magnetism and d-wave pairing is already captured by the two-dimensional Hubbard model at
weak coupling. Conventional perturbation theory breaks down for densities close to half-filling,
since competing infrared divergences appear as a consequence of Fermi surface nesting and van
Hove singularities. A controlled and unbiased treatment of these divergences is achieved by a
renormalization group analysis, which takes into account the particle-particle and particle-hole
channels on equal footing.
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Early RG studies of the two-dimensional Hubbard model started with simple scaling approaches,
very shortly after the discovery of high-Tc superconductivity [31–33]. These studies focused on
dominant scattering processes between the van Hove points in k-space, for which a small num-
ber of running couplings could be defined and computed on a one-loop level. Spin-density and
superconducting instabilities were identified from divergences of the corresponding correlation
functions.
A complete treatment of all scattering processes in the Brillouin zone is more complicated since
the effective interactions cannot be parametrized accurately by a small number of variables,
even if irrelevant momentum and energy dependences are neglected. The tangential momentum
dependence of effective interactions along the Fermi surface is strong and important in the low-
energy limit. Hence, one has to deal with the renormalization of functions. This problem is
treated most naturally by the functional RG.

3.1 Stability analysis at weak coupling

To detect instabilities in the weak-coupling limit, one can truncate the infinite hierarchy of
flow equations at second order in the effective two-particle interaction and discard all vertices
of higher order, and also self-energy corrections. The flow of the two-particle vertex is then
fully determined by the first contribution in the second line of Fig. 3. In the absence of self-
energy corrections, the internal lines are given by the bare propagatorGΛ

0 and its scale derivative
SΛ0 = d

dΛ
GΛ

0 .
Due to translation invariance on the lattice, GΛ

0 is diagonal in the momentum representation,
that is, GΛ

0 (K,K ′) = δKK′GΛ
0 (K), where K = (k, σ) with k = (k0,k). Hence, the truncated

(without Γ (6)Λ) flow equation (27) for the two-particle vertex can be written as
d

dΛ
ΓΛ(K ′1, K

′
2;K1, K2) = − 1

βL

∑
P,P ′

d

dΛ

[
GΛ

0 (P )GΛ
0 (P ′)

]
×

[ 1

2
ΓΛ(K ′1, K

′
2;P, P ′)ΓΛ(P, P ′;K1, K2)

−ΓΛ(K ′1, P
′;K1, P )ΓΛ(P,K ′2;P ′, K2)

+ΓΛ(K ′2, P
′;K1, P )ΓΛ(P,K ′1;P ′, K2)

]
. (31)

Here and in the following, we denote the two-particle vertex as ΓΛ, and we now write tempera-
ture (β = 1/T ) and volume factors explicitly. The three terms on the right-hand side correspond
to the particle-particle (PP), the direct particle-hole (PH) and the crossed particle-hole (PH’)
channel, respectively, see Fig. 6.
Due to spin rotation invariance, the spin structure of the two-particle vertex is relatively simple.
One can express the vertex by a single function V Λ depending only on momenta and Matsubara
frequencies [22],

ΓΛ(K ′1, K
′
2;K1, K2) = V Λ(k′1, k

′
2; k1, k2) δσ1σ1′δσ2σ2′ − V Λ(k′2, k

′
1; k1, k2) δσ1σ2′δσ2σ1′ . (32)

Alternatively, one may decompose the vertex in singlet and triplet components [34],

ΓΛ(K ′1, K
′
2;K1, K2) = ΓΛ

s (k′1, k
′
2; k1, k2)Sσ′

1,σ
′
2;σ1,σ2 + ΓΛ

t (k′1, k
′
2; k1, k2)Tσ′

1,σ
′
2;σ1,σ2 , (33)
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Fig. 6: One-loop flow equation for the two-particle vertex ΓΛ with the particle-particle channel
(PP) and the two particle-hole channels (PH and PH’) written explicitly.

where

Sσ′
1,σ

′
2;σ1,σ2 = 1

2

(
δσ1σ′

1
δσ2σ′

2
− δσ1σ′

2
δσ2σ′

1

)
,

Tσ′
1,σ

′
2;σ1,σ2 = 1

2

(
δσ1σ′

1
δσ2σ′

2
+ δσ1σ′

2
δσ2σ′

1

)
. (34)

Of course, one can easily compute ΓΛ
s and ΓΛ

t from V Λ and vice versa [21]. The singlet vertex
is symmetric, and the triplet vertex is antisymmetric under exchanges k1 ↔ k2 or k′1 ↔ k′2.
We now outline the steps made to cast the one-loop flow equations in a form amenable to a
numerical solution. To be specific, we use the singlet-triplet decomposition of the vertex and a
momentum cutoff. Carrying out the spin sum in the flow equation one obtains

∂ΛΓ
Λ
α (k′1, k

′
2; k1, k2) =−

∑
i=s,t

∑
j=s,t

[
CPP
αijβ

PP
ij (k′1, k

′
2; k1, k2)

+ CPH
αijβ

PH
ij (k′1, k

′
2; k1, k2) + CPH′

αij β
PH′

ij (k′1, k
′
2; k1, k2)

]
(35)

for α = s, t, where CPP
αij etc. are simple numerical coefficients [34] and

βPP
ij (k′1, k

′
2; k1, k2) =

1

2βL

∑
k,k′

∂Λ
[
GΛ

0 (k)GΛ
0 (k′)

]
ΓΛ
i (k′1, k

′
2; k, k′)ΓΛ

j (k, k′; k1, k2) ,

βPH
ij (k′1, k

′
2; k1, k2) = − 1

βL

∑
k,k′

∂Λ
[
GΛ

0 (k)GΛ
0 (k′)

]
ΓΛ
i (k′1, k; k1, k

′)ΓΛ
j (k′, k′2; k, k2) ,

βPH′

ij (k′1, k
′
2; k1, k2) = −βPH

ij (k′2, k
′
1; k1, k2) . (36)

It is clearly impossible to solve the flow equations with the full energy and momentum depen-
dence of the vertex function, since ΓΛ has three independent energy and momentum variables.
However, the flow equations can be simplified considerably by ignoring dependences which
are irrelevant (in the RG sense) in the low-energy limit, that is, the energy dependence and the
momentum dependence normal to the Fermi surface [3, 11].
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Neglecting the energy dependence, we approximate

ΓΛ
α (k′1, k

′
2; k1, k2) ≈ ΓΛ

α (k′1,k
′
2; k1,k2) . (37)

Choosing an energy independent cutoff function ΘΛ(k) as in Eq. (14), the Matsubara sums on
the right hand side of the flow equations can be performed analytically, yielding

∂ΛΓ
Λ
α (k′1,k

′
2; k1,k2) =−

∑
i=s,t

∑
j=s,t

[
CPP
αijβ

PP
ij (k′1,k

′
2; k1,k2)

+ CPH
αijβ

PH
ij (k′1,k

′
2; k1,k2) + CPH′

αij β
PH′

ij (k′1,k
′
2; k1,k2)

]
(38)

for α = s, t, where the β-functions are now energy independent and read

βPP
ij (k′1,k

′
2; k1,k2) =

1

2L

∑
k,k′

∂Λ
[
ΘΛ(k)ΘΛ(k′)

]
× f(−ξk)− f(ξk′)

ξk + ξk′
ΓΛ
i (k′1,k

′
2; k,k′)ΓΛ

j (k,k′; k1,k2) ,

βPH
ij (k′1,k

′
2; k1,k2) =− 1

L

∑
k,k′

∂Λ
[
ΘΛ(k)ΘΛ(k′)

]
× f(ξk)− f(ξk′)

ξk − ξk′
ΓΛ
i (k′1,k; k1,k

′)ΓΛ
j (k′,k′2; k,k2) ,

βPH′

ij (k′1,k
′
2; k1,k2) =− βPH

ij (k′2,k
′
1; k1,k2) , (39)

with the Fermi function f(ξ) =
[
eβξ + 1

]−1. Note that momentum conservation implies that k

and k′ are related by k+k′ = k1 +k2 in the particle-particle channel and by k+k′1 = k′+k1 in
the direct particle-hole channel. Hence, only one independent momentum variable needs to be
summed. For a sharp momentum cutoffΘΛ(k) = Θ(|ξk|−Λ) one has ∂ΛΘΛ(k) = −δ(|ξk|−Λ),
so that the two-dimensional momentum integral can be reduced to a one-dimensional integral.
The flow equation can be solved only if the momentum dependence of the vertex function is
simplified. At least for weak coupling (in practice also for moderate ones), the vertex function
acquires strong momentum dependences only for momenta close to the Fermi surface. Note
that for the Hubbard model the bare vertex function ΓΛ0 does not depend on momentum at all.
Weak coupling instabilities are signalled by divergencies of the vertex function ΓΛ, which are
driven by momenta close to the Fermi surface. Hence, we will focus on the flow of the vertex
function with momenta close to the Fermi surface. For arbitrary momenta, we approximate the
vertex by

ΓΛ
α (k′1,k

′
2; k1,k2) ≈ ΓΛ

α (k′F1,kF1 + kF2 − k′F1; kF1,kF2) (40)

where kF1 etc. are projections of k1 etc. on the Fermi surface (see Fig. 7). Strong momen-
tum dependences of the effective vertex are built up only by contributions with intermediate
momenta k and k′ (on the right hand side of the flow equations) which are close to the Fermi
surface, because for such momenta the ratios f(∓ξk)−f(ξk′ )

ξk±ξk′
in Eq. (39) can be big. Hence, for

the most important momenta, the error made by the projection is relatively small (even if Λ
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Fig. 7: (a) Flow of the singlet component of the two-particle vertex ΓΛ
s as a function of Λ for

several choices of the Fermi momenta kF1, kF2 and k′F1, which are labeled according to the
projection in the figure on the right. The model parameters are U = t and t′ = 0, the chemical
potential is µ = −0.02t, and the temperature is zero. (b) Left: Flow of the ratio of interacting
and non-interacting susceptibilities, χΛ/χΛ0 , for the same parameters as in (a). Right: Ground
state phase diagram for t′ = 0 and µ ≤ 0 (at and below half-filling), as obtained from divergent
susceptibilities. Figures taken from Ref. [34].

is not small), because these momenta are close to their projected counterparts. The projected
vertex function can be parameterized by three angles φ1, φ2, φ3 associated with kF1, kF2 and
k′F1, respectively, i.e.

ΓΛ
α (k′F1,kF1 + kF2 − k′F1; kF1,kF2) = ΓΛ

α (φ1, φ2, φ3) (41)

The angular dependence turns out to be strong for small Λ and cannot be neglected. The re-
maining tangential momentum dependence is discretized (see again Fig. 7). Equivalently, one
can view this parametrization as a discretization of momentum dependences corresponding to a
partition of the Brillouin zone in ”patches” or ”sectors” [35, 36].
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The flow of the two-particle vertex in the ground state of the two-dimensional Hubbard model
has been computed for many different model parameters t′/t and U/t (t just fixes the absolute
energy scale) and densities near half-filling [35, 34, 36, 37]. In all cases the vertex develops a
strong momentum dependence for small Λ with divergences for several momenta at some crit-
ical scale Λc > 0, which vanishes exponentially for U → 0. To see which physical instability
is associated with the diverging vertex function, several susceptibilities have been computed,
in particular commensurate and incommensurate spin susceptibilities χS(q) with q = (π, π),
q = (π − δ, π) and q = (1− δ)(π, π), where δ is a function of density [38]; the commensurate
charge susceptibility χC((π, π)); and singlet pair susceptibilities with s-wave and d-wave form
factors. Some of these susceptibilities diverge together with the vertex function at the scale Λc.
Depending on the choice of U , t′ and µ, the strongest divergence is found either for the com-
mensurate or incommensurate spin susceptibility, or for the pairing susceptibility with dx2−y2
symmetry.

Fig. 7 shows a typical result for the flow of the two-particle interactions and susceptibilities in
the ground state of the two-dimensional Hubbard model, as obtained from the Wick ordered
version of the functional RG [34]. Within the lowest order truncation for the two-particle ver-
tex, the results obtained from different functional RG versions do not deviate significantly from
each other. Only the singlet part of the vertex is plotted, for various choices of two incoming
momenta and one outgoing momentum on the Fermi surface. The triplet part of the vertex flows
generally more weakly than the singlet part. Note the threshold at Λ = 2|µ| below which the
amplitudes for various scattering processes, especially umklapp scattering, renormalize only
very slowly. The flow of the antiferromagnetic spin susceptibility is cut off at the same scale.
The infinite slope singularity in some of the flows at scale Λ = |µ| is due to the van Hove sin-
gularity being crossed at that scale. The pairing susceptibility with dx2−y2-symmetry diverges
at the scale Λc, at which also the two-particle interaction diverges in the Cooper channel.

Following the flow of the vertex function and susceptibilities, one can see that those interaction
processes which enhance the antiferromagnetic spin susceptibility (especially umklapp scat-
tering) also build up an attractive interaction in the dx2−y2 pairing channel. This confirms the
spin-fluctuation route to d-wave superconductivity. Running the flow for various choices of µ/t
and U/t one obtains an educated guess for the ground state phase diagram from the dominant
divergences of the vertex and susceptibilities.

The static approximation of the vertex with a discretized momentum dependence as described
above is sufficient for a weak coupling stability analysis. However, near the scale Λc, where
the vertex diverges, this crude parametrization does not capture the momentum and energy
dependence of the emerging singularities, and the power-counting argument invoked for its
justification breaks down. Recently, an improved parametrization of the two-particle vertex
based on an additive decomposition in charge, magnetic, and pairing channels has been estab-
lished [15,39,40]. In this channel decomposition, singular momentum and energy dependences
are isolated in a single bosonic momentum and energy variable, corresponding to a sum or
difference of fermionic variables, which can then be parametrized much more accurately.
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3.2 Spontaneous symmetry breaking

Within the one-loop truncation the effective two-particle interaction ΓΛ always diverges in some
momentum channels at a finite energy scale Λc, even for a small bare interaction U . Hence, one
is always running into a strong coupling problem in the low-energy limit. The one-loop trunca-
tion breaks down, and also the simplified parametrization of the two-particle vertex described
above cannot be justified in the presence of singular momentum and energy dependences.

If the vertex function diverges only in the Cooper channel, driven by the particle-particle con-
tribution to the flow, the strong coupling problem emerging in the low-energy region can be
controlled by exploiting Λc as a small parameter [41]. The formation of a superconducting
ground state can then be described essentially by a BCS theory with renormalized input param-
eters. In the Hubbard model, the pure Cooper channel instability is always realized for µ 6= εvH

at sufficiently small U . In that regime, one can safely infer superconductivity with a d-wave
order parameter from the divergence of the one-loop pairing susceptibility. At finite tempera-
ture, the off-diagonal long-range order will of course turn into the quasi long-range order of a
Kosterlitz-Thouless phase.

In general, the one-loop calculation can produce divergences of the vertex function in various
momentum channels, with large contributions from both particle-particle and particle-hole di-
agrams. This can happen even in the weak coupling limit U → 0, namely when the chemical
potential approaches the van Hove singularity. In that case, different possible instabilities can
compete in a complicated way. Besides spin density wave and pairing instabilities, one has
to deal with ferromagnetism (at moderate |t′/t| in the Hubbard model) [42–44] and a d-wave
Pomeranchuk instability of the Fermi surface [45] as alternative or coexisting candidates.

A complete theory of the effective strong coupling problem emerging from strong particle-
particle and particle-hole fluctuations has not yet been achieved. For weak bare coupling, one
may again try to exploit the smallness of the scale Λc where strong fluctuations appear to con-
struct a tractable effective low-energy theory. Spontaneous symmetry breaking can be handled
within the functional RG framework by adding an infinitesimal symmetry breaking term at the
beginning of the flow, which is then promoted to a finite order parameter at the scale Λc [19,20].
The calculations are complicated by the appearance of anomalous interaction vertices, and, in
case of continous symmetries, by singularities associated with Goldstone modes. Nevertheless,
fermionic functional RG flows with spontaneous symmetry breaking were computed for the
superconducting ground state of the attractive [46, 47] and repulsive [48] Hubbard model. In
systems with a metastable phase, e.g., near a first order transition, a shift of the initial conditions
by a counter term is needed to drive the flow into the stable symmetry broken phase [49]. Order
parameter fluctuations are most conveniently treated by introducing appropriate bosonic fields,
as first discussed for antiferromagnetic order in the half-filled Hubbard model [50].

In case of competing order parameters, such as antiferromagnetism and d-wave superconductiv-
ity near half-filling, a full RG treatment of spontaneous symmetry-breaking and order parameter
fluctuations is a rather ambitious long-term goal [51]. As a simpler alternative one may ne-
glect low-energy fluctuations and combine the RG with a mean-field (MF) theory of symmetry-
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coexistence of orders are compared to purely magnetic and purely superconducting solutions.
The amplitudes are plotted in units of t. Figure taken from Ref. [53].

breaking [52,53]. In such a RG+MF approach, the one-loop flow is stopped at a scale ΛMF that
is small compared to the band width but still safely above the scale Λc where the two-particle
vertex diverges. At this point the vertex has already developed a pronounced momentum depen-
dence, reflecting in particular magnetic and superconducting correlations. The integration over
the remaining modes, below ΛMF, is treated in a mean-field approximation allowing, in partic-
ular, antiferromagnetic and superconducting order, where the effective interactions entering the
mean-field equations are extracted from ΓΛMF . At zero temperature, this approach should yield
a decent approximation for the order parameters, since order parameter fluctuations usually do
not play a crucial role for the gross features of the ground state. Results obtained for the ampli-
tudes of the antiferromagnetic and superconducting gap functions in the ground state of the 2D
Hubbard model, as obtained from a functional RG + MF calculation [53], are shown in Fig. 8.
The amplitudes are defined as the maxima ∆AF = maxk∆

AF
k and ∆SC = maxk∆

SC
k of the gap

functions. There is an extended region of coexistence of magnetic and superconducting order,
which occurs naturally due to pairing of electrons near the reconstructed Fermi surface (pock-
ets) in the antiferromagnetic state. In Fig. 9, the momentum dependence of the gap functions
is shown for four distinct densities at and below half-filling. The superconducting gap function
has the expected d-wave symmetry, while the antiferromagnetic gap has s-wave symmetry with
a relatively weak momentum dependence.

4 Leap to strong coupling: DMFT as a booster rocket

A truncation of the functional RG hierarchy of flow equations can be justified only for weak
interactions, with the exception of mean-field models where phase space restrictions suppress
higher order contributions [19]. Although bare interactions are usually two-particle interac-
tions, m-particle effective interactions with m > 2 are generated by the flow and affect the
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effective two-particle interaction and the self-energy. For example, an effective three-particle
interaction Γ (6)Λ is generated by a contribution of third order in the two-particle vertex Γ (4)Λ,
which then feeds back into the flow of Γ (4)Λ, as can be seen in Fig. 3. For strong bare inter-
actions, these contributions from effective interactions beyond the two-particle level become
important already at relatively high energy scales, that is, at scales well above the critical scales
for instabilities.

For systems with short-range interactions such as the Hubbard model, the correlations at high
and intermediate energy scales are well described by the dynamical mean-field theory (DMFT)
and its quantum cluster extensions, since long-range correlations emerge only at low energy
scales [54]. In particular, the DMFT captures non-perturbative phenomena such as the Mott-
Hubbard metal-insulator transition, which is a consequence of strong local correlations [55].

The DMFT is based on a local approximation for the fermionic self-energy, which is exact in
the limit of infinite lattice dimensionality [56]. In that limit, irreducible m-particle vertices
are local, too. It is thus natural to use the DMFT solution as a starting point, and include
non-local correlations subsequently by expanding around the DMFT vertices and self-energy
[57]. Several such extensions of the DMFT, involving various types of resummed perturbation
expansions for non-local corrections, have already been proposed [58–60].

Most recently, it was shown that the DMFT can be used as a non-perturbative starting point for
a functional RG flow [4]. The DMFT vertices and self-energy set the initial condition of the
flow. In the remainder of this section, I will describe the fusion of DMFT and functional RG
to the non-perturbative DMF2RG, and discuss first results for the two-dimensional Hubbard
model.
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4.1 Dynamical mean-field theory

The DMFT was developed in two steps. First, it was shown that models of interacting lattice
fermions have a non-trivial infinite dimensionality d → ∞ limit [56], where local correlations
survive, while non-local contributions to one-particle irreducible quantities such as the self-
energy vanish [56, 61]. Second, it was shown that a lattice fermion system with a local self-
energy can be mapped to a quantum impurity problem with a self-consistency condition [62,
63]. The resulting equations are a dynamical variant of the static Weiss mean-field theory for
magnets [62] – hence the name “dynamical mean-field theory” commonly used since 1995.
For the Hubbard model, the DMFT equations can be derived on the back of an envelope as
follows. The propagatorG is related to the bare propagatorG0 and the self-energyΣ by Dyson’s
equation, G−1(k0,k) = G−1

0 (k0,k)−Σ(k0). Non-local (in real space) contributions to the self-
energy are discarded in the DMFT, so thatΣ(k) depends only on frequency. This approximation
becomes exact in the limit d → ∞ [56, 61]. In a one-particle irreducible skeleton expansion,
the local part of the self-energy is a functional of the local propagator

Gloc(k0) =

∫
k

G(k0,k) , (42)

where
∫

k
=
∫

ddk
(2π)d

. The same skeleton expansion yields the self-energy of the purely local
action

Sloc[ψ, ψ̄] = −
∑
k0,σ

ψ̄k0,σG−1
0 (k0)ψk0,σ + U

∫ β

0

dτ ψ̄↑(τ)ψ↑(τ)ψ̄↓(τ)ψ↓(τ) , (43)

where τ denotes imaginary time and ψσ(τ) and ψ̄σ(τ) are the Fourier transforms of ψk0,σ and
ψ̄k0,σ, respectively. The dynamical Weiss field G−1

0 is determined by the self-consistency condi-
tion requiring that the local propagator and the self-energy of the lattice electrons coincide with
the propagator and the self-energy of Sloc, that is,

G−1
loc(k0) = G−1

0 (k0)−Σ(k0) . (44)

The main difficulty is to compute the self-energy as a functional of G0 from the action Sloc. In-
troducing an auxiliary bath of non-interacting conduction electrons, this problem can be mapped
to a well-known quantum impurity problem, the single-impurity Anderson model [62, 63], for
which efficient non-perturbative numerical algorithms exist. Once a self-consistent G0 has been
determined, one can also compute DMFT vertices from Sloc [64].

4.2 From infinite to finite dimensions

We now set up a flow which starts from the local self-energy and local vertices as given by the
DMFT, and builds up non-local correlations successively [4]. Without truncations, the exact
non-local quantities would be obtained at the end of the flow. There is no double-counting of
contributions. One way of defining such a flow, which is associated with an intuitive picture, is
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Fig. 10: Illustration of the flow from a DMFT solution to the solution of the d-dimensional (here
d = 2) lattice system. Figure taken from Ref. [4].

to flow from infinite dimensions, where the DMFT is exact, to the actual dimensionality of the
system.
To be specific, let us consider a d-dimensional hypercubic lattice with nearest neighbor hopping,
supplemented by d̄ additional auxiliary dimensions with d̄→∞. The flow equations derived in
Sec. 2 are valid for an arbitrary scale dependence of the bare propagator. To flow from infinite
to d dimensions, we introduce scale dependent hopping amplitudes in the physical and auxiliary
directions, denoted by tΛ and t̄Λ, respectively. The initial hopping amplitudes are tΛ0 = 0 and
t̄Λ0 = (d/d̄)1/2 t. The scaling with d̄−1/2 is required for a proper limit d̄ → ∞ [56]. At the
end of the flow, for Λ→ 0, the hopping amplitude in the auxiliary dimensions are switched off,
t̄Λ→0 = 0, while the real hopping amplitude is turned on, tΛ→0 = t.
The corresponding scale dependent bare propagator has the form

GΛ
0 (k0,k, k̄) =

1

ik0 + µ− εΛk − ε̄Λk̄
, (45)

with the scale dependent dispersion relations

εΛk = −2tΛ (cos k1 + · · ·+ cos kd) ,

ε̄Λk̄ = −2t̄Λ
(
cos k̄1 + · · ·+ cos k̄d̄

)
. (46)

For d̄ → ∞, only the part of the propagator which is local in the auxiliary dimensions con-
tributes to the self-energy and vertices. That local part is given by a k̄-integration,

GΛ
0 (k0,k) =

∫
k̄

GΛ
0 (k0,k, k̄) =

∫
dε̄

ρ̄Λ(ε̄)

ik0 + µ− εΛk − ε̄
, (47)

where ρ̄Λ(ε̄) is the density of states for ε̄Λ
k̄

. The latter is a normalized Gaussian distribution with
a width that shrinks to zero for Λ→ 0, so that GΛ→0

0 (k0,k) = (ik0 + µ− εk)−1.
GΛ

0 defines a flow that interpolates smoothly between the DMFT solution for the infinite di-
mensional model at Λ0 and the solution of the d-dimensional system for Λ → 0, as illustrated
schematically in Fig. 10. The flow equations derived in Sec. 2 apply without any modification.
However, the initial condition for the flow is not given by bare quantities, but by the self-energy
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Fig. 11: Truncation of flow equations in DMF2RG applied to the 2D Hubbard model.

and vertices as obtained from the DMFT, that is, ΣΛ0 = ΣDMFT and Γ (2m)Λ0 = Γ
(2m)
DMFT. Hence,

non-perturbative local correlations effects, such as the Mott-Hubbard transition, are built in al-
ready at the starting point. The DMFT thus becomes a “booster rocket” for the flow.
The infinite dimensionality limit served as a guide to develop the idea of setting up a flow that
starts with the DMFT. However, the DMFT is usually applied as an approximation for a finite
dimensional system, without introducing extra dimensions. In the same spirit, one can also
define a flow with the DMFT as a starting point, while staying entirely in the d-dimensional
physical space. A particularly simple choice for the scale dependence of the bare propagator is
given by [4] [

GΛ
0 (k0,k)

]−1
= ΛG−1

0 (k0) + (1− Λ)G−1
0 (k0,k) , (48)

with Λ0 = 1. This choice is very simple but certainly not optimal. In particular, it does not
regularize infrared singularities. Better choices obeying additional requirements besides the
correct boundary conditions can be constructed on demand.

4.3 Application to the 2D Hubbard model

Since the DMF2RG has been proposed very recently, there is only one concrete application, for
the two-dimensional Hubbard model with pure nearest neighbor hopping at half-filling [4]. Due
to perfect nesting, the ground state is antiferromagnetically ordered for any U > 0 in that case.
In that first application, relativly crude approximations were made to compute the flow. The
calculation was done directly in two dimensions, with the DMFT solution as starting point, and
the flow was defined byGΛ

0 as in Eq. (48). The flow was truncated by discarding Γ (6)Λ, such that
ΓΛ = Γ (4)Λ and ΣΛ are determined by a closed system of one-loop flow equations, see Fig. 11,
with the DMFT self-energy ΣDMFT and two-particle vertex ΓDMFT as initial condition. The
rationale behind this truncation is that the strongest local correlations are already included by the
DMFT starting point, and that the effect of three-particle correlations on non-local correlations
can be expected to be less important. Clearly, this needs to be checked in the future. The
frequency dependence of the vertex was parametrized by using a channel decomposition as
in Refs. [15, 40] with only one important frequency dependence in each channel. The latter
can be discretized accurately, as can the frequency dependence of the self-energy. However,
the channel decomposition does not capture certain structures appearing in the DMFT vertex
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Fig. 12: Imaginary part of the fermionic self-energy as a function of Matsubara frequency for
the half-filled 2D Hubbard model at U = 4t and T = 0.4t. The DMFT result (k-independent)
is compared to the result from the DMF2RG, where the color coding of k is defined in the inset.
Note that the results for k = (0, 0) and k = (π, π) coincide due to particle-hole symmetry.
Figure taken from Ref. [4].

at strong coupling [64], which limited the calculations to interaction strengths below the Mott
insulator regime. The momentum dependence was discretized with a few patches.

A result for the self-energy of the half-filled 2D Hubbard model obtained from the DMF2RG

as described above is shown in Fig. 12, and compared to the DMFT solution. The discretization
of momentum space is shown in the inset. A relatively high temperature T = 0.4t was chosen
so that the flow could be carried out until Λ = 0 without running into divergences associated
with the antiferromagnetic instability. The DMF2RG result deviates significantly from the mo-
mentum independent DMFT solution only at the lowest Matsubara frequencies. There, a pro-
nounced momentum dependence emerges. The trend of a large enhancement of the self-energy
at momenta near (π, 0) and (0, π), related to a pseudogap formation, agrees with results from
cluster extensions of the DMFT [65]. The results also agree qualitatively with those obtained
from a plain one-loop functional RG calculation, confirming that a weak coupling expansion
is still reasonable at moderate coupling strengths as U = 4t. Clearly, qualitative differences
between weak-coupling truncations of the functional RG and the non-perturbative DMF2RG

are to be expected at interaction strengths comparable to the band width and beyond. To apply
the DMF2RG at large U , a suitable parametrization of the complex frequency and momentum
dependence of the two-particle vertex at strong coupling needs to be developed.
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5 Conclusion

The functional RG has become a valuable source of new approximation schemes for interact-
ing Fermi systems [3]. The method is based on an exact flow equation, which describes the
flow of the effective action as a function of a suitable flow parameter. From the final effec-
tive action, at the end of the flow, any desired information about the system can be obtained.
Approximations are constructed by truncating the effective action. In many cases, rather sim-
ple truncations turned out to capture rather complex many-body phenomena. Compared to the
traditional resummations of perturbation theory, these approximations have the advantage that
infrared singularities are treated properly due to the built-in RG structure. Unlike other RG
methods, approximations derived in the functional RG framework can be applied directly to
microscopic models, not only to renormalizable effective field theories. Remarkably, the func-
tional RG reviewed here as a computational tool is very similar to RG approaches used by
mathematicians to derive general rigorous results for interacting Fermi systems.
Applications of the functional RG to the two-dimensional Hubbard model have improved our
understanding of its instabilities. In particular, the existence of d-wave superconductivity in that
model was conclusively established.
With the very recent fusion of DMFT and functional RG [4], where the DMFT is used as a
non-perturbative starting point for the functional RG flow, a promising route has been opened
to capture all aspects of strongly interacting Fermi systems, such as the 2D Hubbard model at
large U , over all energy scales in one framework.
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Appendix

A Derivation of functional flow equation

Here we describe the derivation of the functional flow equation (15) for the effective action
ΓΛ. Introducing a scale-dependent bare propagator GΛ

0 = (QΛ
0 )−1 in the functional integral

representation (4) of the generating functional for connected Green functions, one can write

e−G
Λ[η,η̄] =

∫ ∏
K

dψKdψ̄K e
(ψ̄,QΛ0 ψ) e−V [ψ,ψ̄] e(η̄,ψ)+(ψ̄,η) . (49)

Taking a Λ-derivative on both sides yields

−(∂ΛGΛ[η, η̄]) e−G
Λ[η,η̄] =

∫ ∏
K

dψKdψ̄K (ψ̄, ∂ΛQ
Λ
0ψ) e(ψ̄,QΛ0 ψ) e−V [ψ,ψ̄] e(η̄,ψ)+(ψ̄,η)

= −(∂η, ∂ΛQ
Λ
0 ∂η̄) e

−GΛ[η,η̄] , (50)

which leads directly to a flow equation for GΛ,

d

dΛ
GΛ[η, η̄] =

(
∂GΛ
∂η

,
dQΛ

0

dΛ

∂GΛ
∂η̄

)
+ Tr

(
dQΛ

0

dΛ

∂2GΛ
∂η̄∂η

)
. (51)

The effective action is the Legendre transform

ΓΛ[ψ, ψ̄] = GΛ[ηΛ, η̄Λ] + (ψ̄, ηΛ) + (η̄Λ, ψ) . (52)

Note that ηΛ and η̄Λ are Λ-dependent functions of ψ and ψ̄, so that

d

dΛ
ΓΛ[ψ, ψ̄] =

d

dΛ
GΛ[ηΛ, η̄Λ] + (ψ̄, ∂Λη

Λ) + (∂Λη̄
Λ, ψ) . (53)

The total derivative acts also on the Λ-dependence of ηΛ and η̄Λ. Using the relations ∂GΛ/∂η̄ =

−ψ , and ∂GΛ/∂η = ψ̄, all terms arising from the Λ-dependence of ηΛ and η̄Λ cancel, yielding

d

dΛ
ΓΛ[ψ, ψ̄] =

d

dΛ
GΛ[ηΛ, η̄Λ]

∣∣∣∣
ηΛ,η̄Λ fixed

. (54)

The flow equation (15) for ΓΛ now follows directly from Eq. (51) and the reciprocity relation
Γ(2)Λ[ψ, ψ̄] =

(
G(2)Λ[ηΛ, η̄Λ]

)−1.
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