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1 Introduction

All we know about a physical system stems either from its effects on other physical systems
or from its response to external forces [1–3]. Making sense out of this information is a very
difficult task. First of all, what do we actually mean by physical system? Typically we are
interested in crystals. A sample of a crystal is an object with unique characteristics, a specific
number of atoms or defects, a certain surface, a given weight. What we are interested in,
however, are its general properties, i.e., those common to all possible samples. This idealized
crystal is the one we have in mind [4, 5] with the word system or material. How do we unravel
the mechanisms behind its properties? The first step is constructing the Hamiltonian. The latter
should be abstract enough to indeed describe the ideal crystal only, but it should retain enough
details to actually distinguish it from other systems, i.e., it should be material-specific. At a first
glance, constructing such a material-specific Hamiltonian appears straightforward. All of solid-
state physics stems from the Coulomb interaction, attractive between nuclei and electrons and
repulsive between electrons; we can therefore, in principle, just choose a complete one-electron
basis and, in the Born-Oppenheimer approximation, write down in second quantization the
electronic Hamiltonian for a given ideal crystal Ĥe. To make progress, we then have to solve the
eigenvalue problem ĤeΨ = EΨ . Here trouble starts, since the Schrödinger equation defined by
Ĥe cannot, in general, be solved exactly, and even if we knew the exact solution, with Ne →∞
electrons, it would be very hard to make sense out of it. For the ground state, a very powerful
tool to attack such a many-body problem is density-functional theory (DFT), which shifts the
focus from finding the ground-state wavefunction to finding the ground-state electronic density.
Remarkably, this can be achieved via the solution of a reference auxiliary one-electron problem,
a much simpler task than solving the original problem. Although DFT is an exact ground-state
theory, in practice only approximated forms of the DFT universal functional are known, the
most popular of which is perhaps the local-density approximation (LDA). DFT, in the LDA
or its simple extensions, is very successful in describing and even predicting the properties
of various classes of materials, to the extent that it can be considered the standard model of
solid-state physics [5–7]. For strongly correlated systems, those on which we focus in this
lecture, the LDA and its simple extension fail even qualitatively, however. Thus, if we want to
understand correlated materials we have to revisit the first step, the Hamiltonian. We can change
the perspective; if the full many-body problem cannot be solved, the best approach is perhaps to
reduce the number of degrees of freedom to the essential by integrating out high-energy ones in
the spirit of the Wilson renormalization group. Hence, we have to construct low-energy minimal
material-specific models. Systematically downfolding the high-energy states of the full many-
body problem, although desirable in theory, is basically impossible in practice [8]. It turns
out, however, that we can exploit the successes of DFT to build ab-initio Wannier functions
spanning the low-energy bands [9, 10]; via these Wannier functions, we can construct effective
many-body models, minimal and materials-specific, suited to describe the low-energy part of
the spectrum. But we are still not at the end of the story; with few exceptions, even these
minimal models cannot be solved exactly, and finding powerful and flexible solution techniques
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Fig. 1: A silverweed: Schematic view of color patterns as seen by the human eye (left) and as
might be seen by the eyes of a bee (right, false colors).

is therefore crucial. Typically this involves making a series of approximations, which, together
with the model, have at the end to be put to a test. To this end a big step forward was the
development, started 25 years ago, of the dynamical mean-field theory (DMFT) [11–15] and
shortly after of the LDA+DMFT method [16, 17], which combines density-functional theory
and dynamical mean-field theory. The LDA+DMFT technique quickly proved very successful.
Through this method, we have learned that details do matter; for example we understood that a
crystal-field splitting much smaller than the band-width can play an important role in the metal-
insulator transition of correlated transition-metal oxides [10]. The LDA+DMFT approach was
key in identifying the nature of important phenomena such as, e.g., the origin of orbital ordering
in paradigmatic correlated transition-metal systems [18]. Various of the striking LDA+DMFT
success stories are told in the lecture notes in this book. Thanks to its successes, LDA+DMFT
is nowadays the method of choice for strongly-correlated materials.

A central issue remains to be discussed at this point. Once we have built a material specific
model and solved it within a given set of approximations, e.g., using the LDA+DMFT approach,
how do we actually test our theory against experiments? To make this connection we have to
calculate the quantity actually measured, the response of the system to external perturbations.
This is a challenge on its own. Methods or approximations that work well for the ground state
can, e.g., perform badly for the excitation spectrum, the knowledge of which is crucial for ob-
taining response functions – examples are the Hartree-Fock or static mean-field approximation
or the LDA itself. Furthermore, experiments let us see a system only through a distorting glass,
and our task is to reconstruct the original image. Perhaps some part of the energy spectrum is
invisible to us, because the transition probability from the ground state to certain excited states
is forbidden by symmetry. If the response of a system to a given perturbation is zero in a certain
energy window, e.g., filtered away, we have no chance of seeing what is there. Our eyes filter
the ultraviolet, and thus we cannot see the beautiful color patterns that attract insects to flowers



6.4 Eva Pavarini

such as silverweeds, for us monochromatic (Fig. 1). Response theory therefore plays a crucial
role in our comprehension of Nature. Typically, the external force used in experiments is small
with respect to the internal ones in a crystal, so that the system is weakly perturbed. Thus,
the dominant term is the linear response function. If we are able to disentangle it, the linear-
response function returns us information on the ground state and the excitation spectrum, their
symmetry properties, the strength of correlations. In this lecture, I will present the basics of
linear response theory [1–3] together with some representative examples for strongly correlated
materials, using for the latter LDA+DMFT as theoretical approach.
To set the stage, let us introduce the basics of the LDA+DMFT method, different aspects of
which will be used in the whole lecture. Let us start with the electronic Hamiltonian. In the
Born-Oppenheimer approximation, the non-relativistic electronic Hamiltonian for an ideal crys-
tal Ĥe can then be written as the sum of a one-electron part Ĥ0 and an interaction part ĤU

Ĥe = Ĥ0 + ĤU . (1)

In a complete basis of Wannier functions ψinσ(r), the one-electron term is given by

Ĥ0 = −
∑

σ

∑

ii′

∑

nn′

ti,i
′

n,n′c
†
inσci′n′σ,

where c†inσ (cinσ) creates (destroys) an electron with spin σ in orbital n at site i. The on-site
(i = i′) terms yield the crystal-field matrix while the i 6= i′ contributions are the hopping
integrals. This part of the Hamiltonian describes the attraction between electrons and nuclei,
the latter forming an ideal lattice. The electron-electron repulsion ĤU is instead given by

ĤU =
1

2

∑

ii′jj′

∑

σσ′

∑

nn′pp′

U iji′j′

np n′p′c
†
inσc

†
jpσ′cj′p′σ′ci′n′σ.

Although the Hamiltonian (1) is very general, for a given system, the material-specific hopping
and crystal-field parameters can be obtained ab-initio using, e.g., Wannier functions constructed
from first principles via density-functional theory [19, 20]. Then

ti,i
′

n,n′ = −
∫
drψinσ(r)

[
−1

2
∇2 + vR(r)

]
ψi′n′σ(r),

where vR(r) is the self-consistent one-electron LDA reference potential. The bare Coulomb
integrals can be expressed in terms of Wannier functions as well

U iji′j′

np n′p′ =

∫
dr1

∫
dr2 ψinσ(r1)ψjpσ′(r2)

1

|r1 − r2|
ψj′p′σ′(r2)ψi′n′σ(r1).

Here we have to be careful, however. The LDA includes in vR(r) also Coulomb effects, via
the long-range Hartree term and the exchange-correlation contribution; if we use LDA Wannier
functions as one-electron basis, to avoid double counting we have to subtract from ĤU the
effects already included in the LDA. This means that we have to replace

ĤU → ∆ĤU = ĤU − ĤDC,
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where ĤDC is the double-counting correction. Unfortunately we do not know which correlation
effects are exactly included in the LDA, and therefore the exact expression of ĤDC is also
unknown.1 The remarkable successes of the LDA suggest, however, that in many materials the
LDA is overall a good approximation, and therefore, in those systems at least, the term∆ĤU can
be neglected. What about strongly correlated materials? Even in correlated systems, most likely
the LDA works rather well for the delocalized electrons or in describing the average or the long-
range Coulomb effects. Thus one can think of separating the electrons into uncorrelated and
correlated; only for the latter we do take the correction ∆ĤU into account explicitly, assuming
furthermore that∆ĤU is local or almost local [19]. Typically, correlated electrons are those that
partially retain their atomic character, e.g., those that originate from localized d and f shells;
for convenience in this lecture we assume that in a given system they stem from a single atomic
shell l (e.g., d for transition-metal oxides or f for heavy-fermion systems) and label their states
with the atomic quantum numbers l and m = −l, . . . , l of that shell. Thus

U iji′j′

np,n′p′ ∼
{
U l
mαmβm′αm

′
β

iji′j′ = iiii npn′p′ ∈ l
0 iji′j′ 6= iiii npn′p′ /∈ l

and ∆ĤU is replaced by ∆Ĥ l
U = Ĥ l

U − Ĥ l
DC, where Ĥ l

DC is, e.g., given by the static mean-
field contribution of Ĥ l

U . There is a drawback in this procedure, however. By splitting elec-
trons into correlated and uncorrelated we implicitly assume that the main effect of the latter
is the renormalization or screening of parameters for the former, in particular of the Coulomb
interaction. The calculation of screening effects remains, unfortunately, a challenge to date.
Approximate schemes are the constrained LDA and the constrained random-phase approxima-
tion (RPA) methods [6]. Nevertheless, we have now identified the general class of models for
strongly-correlated systems, namely the generalized Hubbard model

Ĥe = ĤLDA + Ĥ l
U − Ĥ l

DC. (2)

It is often convenient to integrate out or downfold empty and occupied states and work directly
with a set of Wannier functions spanning the correlated bands only. The LDA term in Ĥe is then
given by

ĤLDA = −
∑

ii′

∑

σ

∑

mαm′α

ti,i
′

mα,m′α
c†imασci′m′ασ =

∑

k

∑

σ

∑

mαm′α

[
HLDA
k

]
mα,m′α

c†kmασckm′ασ,

where the right-hand side is rewritten using as a one-electron basis Bloch functions ψkmασ
constructed from the Wannier functions ψimασ. The local screened Coulomb interaction is
instead given by

Ĥ l
U =

1

2

∑

i

∑

σσ′

∑

mαm′α

∑

mβm
′
β

Umαmβm′αm′βc
†
imασ

c†imβσ′cim′βσ′
cim′ασ.

1A more detailed discussion of the double-counting correction can be found in the lectures of Tim Wehling and
Alexander Lichtenstein.
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More details on building realistic models can be found, e.g., in the lecture notes of previous
schools [5–7], in particular in the chapters listed in Refs. [19–22]. The simplest version of
Hamiltonian (2) is the one-band Hubbard model

ĤHubbard = −
∑

ii′

∑

σ

ti,i
′

1,1c
†
iσci′σ

︸ ︷︷ ︸
Ĥ0

+ εd
∑

iσ

niσ + U
∑

i

ni↑ni↓

︸ ︷︷ ︸
ĤU

, (3)

where εd is the crystal-field level, ti,i
′

1,1 is the hopping integral between electrons at site i and i′,
U the on-site Coulomb repulsion, and niσ = c†iσciσ. Since in this model only the correlated or-
bital (mα = 1) appears, the double-counting correction amounts to a mere shift of the chemical
potential, and therefore does not have to be included explicitly. The one-band Hubbard model
describes, at least in first approximation, the low-energy states of high-temperature supercon-
ducting cuprates (HTSCs), characterized by a partially filled Cu d x2−y2-like band at the Fermi
level. In these systems the most relevant hopping integrals are the one between nearest neigh-
bors, t, and the one between next-nearest neighbors, t′; the ratio t′/t ranges from 0.1 to 0.4 [9].
At half-filling, the one-band Hubbard model describes the physics of the Mott metal-insulator
transition. In the atomic limit (U/t→∞), it is a collection of decoupled one-electron atoms

ĤHubbard ∼ ĤU = εd
∑

iσ

niσ + U
∑

i

ni↑ni↓. (4)

In the non-interacting limit (U/t→ 0) it describes instead a metallic half-filled band

ĤHubbard ∼ Ĥ0 = −
∑

ii′

∑

σ

ti,i
′

1,1c
†
iσci′σ =

∑

σ

∑

k

εknkσ. (5)

In this lecture we will use the half-filled Hubbard model (3) for most examples. In particular,
we will discuss its magnetic linear-response function; the microscopic mechanisms leading to
magnetism in the Hubbard model – and in correlated systems in general – are discussed in detail
in my lecture of last year’s school [22], which is complementary to the present one.
Although apparently simple, even Hamiltonian (3) cannot be solved exactly except than in
special cases. The state-of-the art method for solving Hubbard-like models is, as discussed,
dynamical mean-field theory. The latter maps the correlated lattice problem described by the
Hubbard model onto a correlated single-impurity problem [14,15], i.e., onto an effective model
describing a correlated site ic coupled via hybridization to a bath of non-correlated electrons.
This effective single impurity model has to be solved self-consistently in the spirit of mean-field
theories. The DMFT self-consistency loop is shown in Fig. 2. The impurity Green function
G(ω), in general a matrix in spin-orbital space, is obtained by solving the quantum-impurity
problem for a given bath. Next, the Dyson equation yields the self-energy

Σ(ω) = G−1(ω)−G−1(ω),

where G(ω) is the bath Green-function matrix; the self-energy matrix Σ(ω) is then used to
calculate the local Green-function matrix

Gic,ic(ω) =
1

Nk

∑

k

[
ω −HLDA

k −Σ(ω)
]−1

ic,ic
,
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Fig. 2: The LDA+DMFT self-consistency loop. The LDA Hamiltonian HLDA
k is built in the ba-

sis of Bloch states obtained from localized Wannier functions. The set {ic} labels the equivalent
correlated sites inside the unit cell. The local Green-function matrix is at first calculated using
an initial guess for the self-energy matrix. The bath Green-function matrix is then obtained
via the Dyson equation and used to build an effective quantum-impurity model. The latter is
solved via a quantum-impurity solver, here quantum Monte Carlo (QMC), yielding the impurity
Green-function matrix. Through the Dyson equation the self-energy is then obtained, and the
procedure is repeated till self-consistency is reached.

where Nk is the number of k points. Self-consistency is reached when the impurity Green
function G(ω) equals the actual local Green function Gic,ic(ω) of the system. The main ap-
proximation adopted is that the self-energy is local; the self-energy becomes indeed local in the
infinite-coordination-number limit [11,12]. The combination of DMFT with density-functional
theory, just described above in short, defines the LDA+DMFT approach [17]. In this lecture we
will not further discuss this technique, except for the specific aspects related to the calculation
of linear-response functions. These include the local-vertex approximation, used to obtain from
DMFT calculations the q-dependent linear-response function χ(q;ω) and the quantum-impurity
model and its solution; the latter yields the local impurity Green-function matrix and the local
linear response function χ(ω). A more detailed description of the DMFT and LDA+DMFT
methods and their development can be found in the lecture notes of Dieter Vollhardt, Gabriel
Kotliar, Antoine Georges, and Alexander Lichtenstein.
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2 Linear response theory

2.1 The linear susceptibility χ(r, r′; t, t′)

Let us consider a system described by the Hamiltonian Ĥ and a space- and time-dependent
perturbation h(r, t), for example a magnetic field. How does the system react to the external
perturbation? If the perturbation is weak and we can calculate the change in the Hamiltonian to
linear order, the response of the system can be given in terms of retarded correlation functions
calculated at equilibrium, even if the perturbation has brought the sample out of equilibrium.
The linear correction to the Hamiltonian can be expressed as

Ĥ → Ĥ +
∫
dr Ĥ1(r; t) + . . .

Ĥ1(r; t) = −∑ν Ôν(r; t)hν(r; t),
(6)

where Ô(r; t) is an operator that describes the system property affected by the perturbation;
often this operator is a vector, thus we indicate with ν = x, y, z its components along the
Cartesian axes. If the perturbation is an external magnetic field, Ô(r; t) could be the magnetic
moment density, M̂ (r; t). It is convenient to express Ô(r; t) in the Heisenberg representation

Ôν(r; t) = ei(Ĥ−µN̂)tÔν(r)e−i(Ĥ−µN̂)t,

where µ is the chemical potential and N̂ the electron number operator. The perturbation h(r; t)

can display very different forms, depending on the experiment. It could have been, e.g., initially
switched on adiabatically at t = −∞; this can be expressed mathematically by multiplying
the perturbation by the prefactor eεt, where here ε is an infinitesimally small positive number,
h(r; t) → eεth(r; t), and taking later the limit ε → 0. The perturbation could also be a sharp
impulse at t = t0 and therefore have the form h(r; t) = h(r)δ(t − t0), or have been switched
on or off suddenly at a certain time t = t0.
Whatever its form, let us consider the effect of the time-dependent perturbation h(r; t) on a
specific system property, described by the operator P̂ (r; t), also expressed in the Heisenberg
representation; in general P̂ (r; t) can be a different operator than Ô(r; t), but in many common
cases it is proportional to it. To linear order in the perturbation, at a given temperature the
expectation value of P̂ (r; t) is modified as follows

〈P̂ν(r; t)〉 = 〈P̂ν(r)〉0 + 〈δP̂ν(r; t)〉0,

〈δP̂ν(r; t)〉0 = −i
∫
dr′
∫ t

−∞
dt′
〈[
∆P̂ν(r; t), ∆Ĥ1(r′; t′)

]〉
0
.

Here 〈P̂ν(r)〉0 is the (equilibrium) thermal average in the absence of the perturbation. For a
given operator Â, the latter is defined as

〈Â〉0 =
1

Z
Tr
[
e−β(Ĥ−µN̂)Â

]
,
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where β = 1/kBT , and Z is the partition function

Z = Tr e−β(Ĥ−µN̂).

The difference

∆Â(r; t) = Â(r; t)− 〈Â(r)〉0,

measures the deviation with respect to the thermal average in the absence of perturbation; in
most common cases 〈Â(r)〉0 = 0. Let us consider as an example the case in which the per-
turbation is a magnetic field and P̂ν(r; t) the ν-component of the magnetic density operator
M̂ν(r; t); for a paramagnetic system the equilibrium expectation value 〈M̂ν(r)〉0 is zero and
∆M̂ν(r; t) = M̂ν(r; t). Finally, for a given operator Â(r), the expectation value 〈∆Â2(r)〉0
yields the mean-square fluctuation of the quantity Â(r).
By replacing the operator ∆Ĥ1(r′; t′) in the commutator with its expression obtained from
Eq. (6), we can express the linear correction to 〈P̂ν(r; t)〉0 as

〈δP̂ν(r; t)〉0 = i
∑

ν′

∫
dr′
∫ t

−∞
dt′
〈[
∆P̂ν(r; t), ∆Ôν′(r

′; t′)
]〉

0
hν′(r

′; t′).

The linear response function or linear susceptibility is then given by

χP̂νÔν′ (r, r
′; t, t′) ≡ lim

hν′→0

∂〈P̂ν(r; t)〉
∂hν′(r′; t′)

.

The equation

χP̂νÔν′ (r, r
′; t, t′) = i

〈[
∆P̂ν(r; t), ∆Ôν′(r

′; t′)
]〉

0
Θ(t− t′), (7)

is known as the Kubo formula. In order to respect causality, a perturbation can only modify the
system after it has been switched on. Thus, if the perturbation is switched on at time t′, the
linear response function can only have finite value for t > t′, and it has to vanish for t < t′;
in other words, the response function is retarded. This cause-and-effect principle is included in
Eq. (7) through the Heaviside step function Θ(t− t′), defined as

Θ(t− t′) =

{
1 if t− t′ > 0

0 if t− t′ < 0.

It is worth pointing out that the Kubo formula Eq. (7) yields the response function in terms of
the correlation function

SP̂νÔν′ (r, r
′; t, t′) = 〈∆P̂ν(r; t)∆Ôν′(r

′; t′)〉0. (8)

The latter expresses the joint probability of having a finite ∆P̂ν at position r and time t if there
was a finite ∆Ôν′ at position r′ and time t′. This relation between linear response function and
correlation function will turn out to be very important, as we will see in Sec. 2.5.
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2.2 The Fourier transform χ(q;ω)

Let us consider the case in which the Hamiltonian Ĥ of the system is time-independent and thus
also invariant under time translations. Then the linear response function depends only on time
differences, t− t′, and we can rewrite it as follows

χP̂νÔν′ (r, r
′; t, t′) = χP̂νÔν′ (r, r

′; t− t′).

Thus the linear correction to the expectation value of P̂ν(r; t) becomes

〈δP̂ν(r; t)〉0 = i
∑

ν′

∫
dr′
∫ +∞

−∞
dt′ χP̂νÔν′ (r, r

′; t− t′)hν′(r′; t′). (9)

Many perturbations are periodic in time after they have been switched on. It is therefore con-
venient to Fourier transform Eq. (9) with respect to time (see Appendix for definitions and
conventions on Fourier transforms adopted in this lecture), obtaining

〈δP̂ν(r;ω)〉0 =
∑

ν′

∫
dr′χP̂νÔν′ (r, r

′;ω)hν′(r
′;ω),

where h(r′;ω) is the Fourier transform of the perturbation and χP̂νÔν′ (r, r
′;ω) the Fourier

transform of the susceptibility. The latter is given by

χP̂νÔν′ (r, r
′;ω) =

∫ ∞

−∞
dt χP̂νÔν′ (r, r

′; t)eiωt =

∫ ∞

0

dt χP̂νÔν′ (r, r
′; t)eiωt.

It is also convenient to Fourier transform Eq. (9) with respect to r; for a system with full spatial
translational invariance symmetry, i.e., for which the momentum is conserved,

χP̂νÔν′ (r, r
′;ω) = χP̂νÔν′ (r − r

′;ω),

and thus we have

〈δP̂ν(q;ω)〉0 =
∑

ν′

∫
dq′

(2π)3
χP̂νÔν′ (q,−q

′;ω)hν′(q
′;ω) (10)

=
∑

ν′

χP̂νÔν′ (q;ω)hν′(q;ω),

where

χP̂νÔν′ (q,−q
′;ω) =

∫
dr eiq·r

∫
dr′ e−iq

′·r′ χP̂νÔν′ (r, r
′;ω)

=

∫
dr′
[∫

dr eiq·(r−r
′) χP̂νÔν′ (r − r

′;ω)

]
e−i(q

′−q)·r′

= (2π)3χP̂νÔν′ (q;ω) δ(q − q′),

χP̂νÔν′ (q;ω) =

∫
dr′′ eiq·r

′′
χP̂νÔν′ (r

′′;ω).
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An ideal crystal has only lattice translational invariance, however. How does relation (10)
change in this case? It turns out that it is still valid, but we have to express χP̂νÔν′ (q,−q

′;ω)

differently. Let us see how. For simplicity, we consider a lattice of Bravais type (one atom per
unit cell); we define as Ti the lattice vector which identifies site i. Let us assume that ∆P̂ν(r)

is the one-body operator Φ†(r)∆P̂ν Φ(r), where Φ†(r) is the fermionic field creation operator.
The term ∆P̂ν(r) can then be expressed as follows

∆P̂ν(r) =
∑

ii′

∑

αα′

ψiα′(r)ψi′α(r)︸ ︷︷ ︸
ρi,i

′
α′α(r)

c†iα′ [∆P̂ν ]αα′ ci′α︸ ︷︷ ︸
∆P̂i,i

′
ν,αα′

=
∑

ii′

∑

αα′

ρi,i
′

α′α(r)∆P̂ i,i′ν,αα′ ,

where {ψiα(r)} is a complete set of orthonormal one-electron wavefunctions and α a collective
index for its quantum numbers (for example α = mασ). If we now choose for {ψiα(r)} a set
of localized Wannier functions, to first approximation the overlap of two ψiα(r) centered at
different sites is small and can be neglected; this means that ρi,i

′

αα′(r) is only sizeable for i = i′,
and therefore

∆P̂ν(r) ∼
∑

i

∑

αα′

ρi,iα′α(r)∆P̂ iν,αα′ ,

i.e., ∆P̂ν(r) is approximatively a weighted sum of the site operators ∆P̂ iν,αα′ . A similar ap-
proximation holds for ∆Ôν(r),

∆Ôν(r) ∼
∑

i

∑

γ′γ

ρi,iγ′γ(r)∆Ôiν,γγ′ .

Let us introduce the tensorial components of the linear-response function for the site operators

χαα
′γγ′

P̂ i
ν
Ôi
′
ν′

(t− t′) = i
〈[
∆P̂ iν,αα′(t− t′), ∆Ôi

′

ν′,γγ′(0)
]〉

0
Θ(t− t′).

The Fourier transform of χαα
′γγ′

P̂ i
ν
Ôi
′
ν′

(t− t′) in time is given by χαα
′γγ′

P̂ i
ν
Ôi
′
ν′

(ω); furthermore

χαα
′γγ′

P̂ν Ôν′
(q,−q′;ω) =

∑

ii′

eiq·Ti−iq
′·Ti′χαα

′γγ′

P̂ i
ν
Ôi
′
ν′

(ω) =
∑

i′

ei(q−q
′)·Ti′

︸ ︷︷ ︸
Ns

∑
G δq′,q+G

∑

i

eiq·Ti χαα
′γγ′

P̂ i
ν
Ô0
ν′

(ω)

︸ ︷︷ ︸
χαα

′γγ′

P̂ν Ôν′
(q;ω)

,

whereNs is the number of lattice sites. In terms of these components, the term χP̂νÔν′ (q,−q
′;ω)

in Eq. (10) is given by

χP̂νÔν′ (q,−q
′;ω) = Ns

∑

αα′γγ′

∑

G

ρα′α(q)ργ′γ(−q′) δq′,q+G χαα
′γγ′

P̂ν Ôν′
(q;ω).

where ρα′α(q) =
∫
dr eiq·rρi0,i0α′α (r). Long-range order instabilities are typically at qC vectors

that correspond to deformations commensurate with the lattice. To study them, one can, e.g.,
perturb the system at q′ = qC , or possibly use experimental techniques that have access to the
q-dependent response function.
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Let us now consider as an example the case in which the perturbation is a magnetic field oriented
along z and the operators ∆P̂ν(r) and ∆Ôν(r) are both equal to M̂z(r) = Φ†(r)σ̂zΦ(r), the
magnetic density at position r; the operator σ̂z is the z Pauli matrix. Let us derive the magnetic
response for a strongly correlated system with a partially filled l shell; for simplicity, we focus
on the l electrons and choose as a basis the set of Wannier functions ψimασ(r) spanning the
corresponding l bands. Then M̂z(r) can be expressed as follows

M̂z(r) ∼ −gµB
∑

i

∑

mαm′α

ρmαm′α(r)
1

2

∑

σσ′

c†imασ [∆M̂z]σσ′ cim′ασ′ ,

where [∆M̂z]σσ′ = 〈σ|σ̂z|σ′〉. If our low-energy model includes only a single orbital we can
drop the indices {mα}; in this case we obtain the simple expression

M̂z(r) ∼ −gµBρ(r)
∑

i

Ŝiz. (11)

The Fourier transform of M̂z(r) is then given by M̂z(q) ∼ −gµBρ(q)Ŝz(q) with

Ŝz(q; 0) =
1

2

∑

k

∑

σ

c†kσ〈σ|σ̂z|σ〉ck+qσ.

Finally, to linear order the change in 〈M̂z(q;ω)〉0 can be expressed as

〈δM̂z(q;ω)〉0 ∼ (gµB)2|ρ(q)|2
∑

ii′

e−iq·(Ti−Ti′ )
∑

σσ′

σσ′χσσσ
′σ′

ŜizŜ
i′
z

(ω) hz(q;ω)

= (gµB)2|ρ(q)|2χŜzŜz(q;ω)hz(q;ω),

where σ = 1 for spin up and σ = −1 for spin down and

χŜzŜz(q;ω) = i

∫
dt eiωt

〈[
Ŝz(q; t), Ŝz(−q; 0)

]〉
0
Θ(t).

Later in the lecture we will discuss the case of the one-band Hubbard model; we will focus
on the response function for site operators, χŜizŜi′z (ω) and its Fourier transform χŜzŜz(q;ω) and
do not further discuss the prefactor ρ(q). For multi-orbital systems with well-defined localized
spins but quenching of the angular momentum, e.g., 3d transition-metal oxides that are Mott
insulators [22], the magnetization density can still be expressed via Eq. (11). We have, however,
to replace ρ(r) with the normalized spin density at the atomic site, ρs(r), originating from the
unpaired electrons in the l shell. Thus

M̂z(r) ∼ −gµBρs(r)
∑

i

Ŝiz.

Then we have

〈δM̂z(q;ω)〉0 ∼ (gµB)2|ρs(q)|2
∑

ii′

e−iq·(Ti−Ti′ )
∑

σσ′

σσ′χσσσ
′σ′

ŜizŜ
i′
z

(ω)hz(q;ω)

= (gµB)2|ρs(q)|2χŜzŜz(q;ω)hz(q;ω).

The Fourier transform of the spin density ρs(q) is the so-called atomic form factor and can be
probed via, e.g., neutron scattering experiments.
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2.3 Analytic properties of χ(q;ω)

The Fourier transform of χP̂νÔν′ (r; t) to momentum space can be written as

χP̂νÔν′ (q; t) = i
〈[
∆P̂ν(q; t), ∆Ôν′(−q; 0)

]〉
0
Θ(t).

Let us assume that {ΨNn } is the full set of eigenvectors of the Hamiltonian Ĥ for N electrons
and that the corresponding eigenenergies are {EN

n }. Let us also define the matrix elements

P nm
ν (q) = 〈ΨNn |∆P̂ν(q; 0)|ΨNm 〉,

Omn
ν′ (q) = 〈ΨNm |∆Ôν′(q; 0)|ΨNn 〉.

We can then rewrite χP̂νÔν′ (q; t) as follows

χP̂νÔν′ (q;ω) =
i

Z

∫ ∞

0

dt eiωt Tr
{
e−β(Ĥ−µN̂)

[
∆P̂ν(q; t), ∆Ôν′(−q; 0)

]}

=
i

Z

∑

nm

∫ ∞

0

dt e−β(ENn −µN)ei(ω+ENn −ENm)t P nm
ν (q)Omn

ν′ (−q)

− i

Z

∑

nm

∫ ∞

0

dt e−β(ENn −µN)ei(ω+ENm−ENn )t Onm
ν′ (−q)Pmn

ν (q)

=
i

Z

∑

nm

Fnm

∫ ∞

0

dt ei(ω−E
N
m+ENn )t P̂ nm

ν (q)Ômn
ν′ (−q),

where Fnm = e−β(ENn −µN) − e−β(ENm−µN). The time integral can be obtained from the formula

I(x) =

∫ ∞

0

eixt dt =
i

x+ iδ
,

where δ is a positive infinitesimal; we thus arrive to the final expression

χP̂νÔν′ (q;ω) =
1

Z

∑

nm

e−β(ENn −µN) − e−β(ENm−µN)

EN
m − EN

n − ω − iδ
P nm
ν (q)Omn

ν′ (−q). (12)

This equation shows that the complex function χP̂νÔν′ (q; z), obtained from χP̂νÔν′ (q;ω) replac-
ing ω with the complex variable z, thanks to the positive infinitesimal δ, is analytic in the upper
half and has poles in the lower half of the complex plane. The fact that the response function is
analytic is a direct consequence of causality; the fact that it is analytic in the upper instead than
in the lower half of the complex plane is a consequence of our conventions on the signs of the
exponents in the Fourier transform.
Up to now we did not make any assumption on the properties of the operators Ôν and P̂ν ; if,
however, they are Hermitian, one can show, starting from Eq. (12), that

χP̂νÔν′ (q;ω) =
[
χP̂νÔν′ (−q;−ω)

]∗
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Re z

Im z

Fig. 3: The semicircular contour C in the upper complex plane.

Therefore if we split the response function into a real and an imaginary part,

χP̂νÔν′ (q;ω) = Re
[
χP̂νÔν′ (q;ω)

]
+ i Im

[
χP̂νÔν′ (q;ω)

]
,

the two components should satisfy the relations

Re
[
χP̂νÔν′ (q;ω)

]
= Re

[
χP̂νÔν′ (−q;−ω)

]
,

Im
[
χP̂νÔν′ (q;ω)

]
= −Im

[
χP̂νÔν′ (−q;−ω)

]
.

Thus the real part of the linear response function is even and the imaginary part is odd in ω.

2.4 Kramers-Kronig relations and sum rules

The Kramers-Kronig relations are valid for any retarded response function χ(q;ω). They follow
from the fact that the complex function χ(q; z) is analytic in the upper half of the complex
plane, a property that we have just proved, and vanishes in the limit |z| → ∞. Let us consider
the integral on the real axis

IR =

∫ +∞

−∞

χ(q;ω′)

ω′ − ω + i δ
dω′,

where δ is an infinitesimally small positive number. The integrand is a complex analytic func-
tion in the upper part of the complex plane, and therefore, because of the Cauchy integral
theorem, the integral on any closed contour C in that half-plane has to vanish

IC =

∮

C

χ(q; z)

z − ω + i δ
dz = 0.
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Let us take as contour C the semicircle shown in Fig. 3. If χ(q; z) vanishes as 1/|z| or faster for
|z| → ∞, from IC = 0 it also follows that IR = 0. To ensure that indeed this condition is met,
we subtract from the real part2 of the susceptibility its infinite frequency limit Re [χ(q;∞)].
Next, we rewrite IR by using the Sokhotski-Plemelj formula

1

ω + i δ
= P 1

ω
− iπδ(ω)

where P is the Cauchy principal value
∫ ∞

−∞
P 1

ω
dω =

∫ −ε

−∞

1

ω
dω +

∫ ∞

ε

1

ω
dω,

and δ(ω) the Dirac delta function. Thus we obtain the Cauchy relation

IR = P
∫ +∞

−∞

χ(q;ω′)− Re[χ(q;∞)]

ω′ − ω dω′ − iπ {χ(q;ω)− Re[χ(q;∞)]}

As a consequence the real and imaginary part of the susceptibility are the Hilbert transform of
each other, hence they satisfy the so-called Kramers-Kronig relations

Re [χ(q;ω)]− Re [χ(q;∞)] =
1

π
P
∫ +∞

−∞

Im [χ(q;ω′)]

ω′ − ω dω′,

Im [χ(q;ω)] = − 1

π
P
∫ +∞

−∞

Re [χ(q;ω′)]− Re [χ(q;∞)]

ω′ − ω dω′.

The first Kramers-Kronig relation yields the sum rule

Re [χ(q;ω = 0)]− Re [χ(q;∞)] =
1

π
P
∫ +∞

−∞

Im [χ(q;ω′)]

ω′
dω′. (13)

In the q = 0 limit, Eq. (13) is known as thermodynamic sum rule and

χνν′(0; 0) = lim
hν′→0

∂〈Pν〉
∂hν′

,

is the response to a static and uniform perturbation, hν′ = hν′(0; 0).

Finally, if Ôν′ ∝ ˆ
P †ν and thus the product P nm

ν (q)Omn
ν′ (−q) is real, by using (12) for the left-

hand side and the invariant properties of the trace under cyclic permutations for the right-hand
side, one can show that

2

π

∫ ∞

0

ω Im
[
χP̂νÔν′ (q;ω)

]
dω =

〈[
[P̂ν , Ĥ], Ôν′

]〉
0
,

a relation known as Thomas-Reich-Kuhn or f-sum rule.

2For Hermitian operators the real part of the function χ(q;ω) is even in ω; thus, the infinite frequency limit of
χ(q;ω) could, in principle, be a constant.
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2.5 Fluctuation-dissipation theorem

The fluctuation-dissipation theorem is a relation between the correlation function S(q;ω), which
essentially describes fluctuations at equilibrium, and the linear response function χ(q;ω), which
describes dissipative effects or relaxation phenomena as well. To derive it, let us start from the
spatial Fourier transform of the correlation function

SP̂νÔν′ (q; t) =
〈
∆P̂ν(q; t)∆Ôν′(−q)

〉
0
.

This equation, together with the definition of the susceptibility, yields the relation

χP̂νÔν′ (q; t) = i[SP̂νÔν′ (q; t)− SÔν′ P̂ν (−q;−t)]Θ(t). (14)

Let us now take the time Fourier transform of the correlation function and express it in term of
a full set of eigenvectors of the Hamiltonian, as we have previously done for the susceptibility

SP̂νÔν′ (q;ω) =

∫ ∞

−∞
dt eiωt〈∆P̂ν(q; t)∆Ôν′(−q; 0)〉0

=
1

Z

∑

nm

∫ ∞

−∞
dt ei(ω+ENn −ENm)te−β(ENn −µN)P nm

ν (q)Omn
ν′ (−q)

=
2π

Z

∑

nm

e−β(ENn −µN)P nm
ν (q)Omn

ν′ (−q) δ(ω − EN
m + EN

n ).

If we exchange first the order of the operators and later the indices n and m in the sum, we find

SÔν′ P̂ν (q;ω) =
2π

Z

∑

nm

e−β(ENm−µN)P nm
ν (−q)Omn

ν′ (q)δ(ω − EN
n + EN

m).

The correlation function therefore satisfies the principle of detailed balance

SÔν′ P̂ν (−q;−ω) = e−βωSP̂νÔν′ (q;ω).

The relation above can be understood as follows. If ω > 0, the correlation function SP̂νÔν′ (q;ω)

describes the probability Pn→m ∝ n(En)[1 − n(Em)] that the system is excited from an initial
state with energyEn to a final state with higher energyEm = En+ω. Instead, SP̂νÔν′ (−q;−ω),
describes the probability Pm→n ∝ n(Em)[1− n(En)] that the system goes from the initial state
with energy Em to a final state with lower energy En = Em−ω. The probability Pm→n is lower
than Pn→m by the factor e−βω.
We are now ready to Fourier transform Eq. (14). To do this, first we replace the step function
with its Fourier representation

Θ(t) = i

∫ ∞

−∞

dω′′

2π
e−iω

′′t 1

ω′′ + iδ
,

and do the same with the correlation function,

SP̂νÔν′ (q; t) =

∫
dω′

2π
e−iω

′tSP̂νÔν′ (q;ω′);
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next we Fourier transform in t the left- and right-hand side of Eq. (14), obtaining

χP̂νÔν′ (q;ω) = −
∫ ∞

−∞

dω′

2π

SP̂νÔν′ (q;ω′)− SÔν′ P̂ν (−q;−ω′)
ω − ω′ + iδ

.

Finally, via the principle of detailed balance we arrive at the expression

χP̂νÔν′ (q;ω) = −
∫ ∞

−∞

dω′

2π
SP̂νÔν′ (q;ω′)

1− e−βω′

ω − ω′ + iδ
.

Thus, if SP̂νÔν′ (q;ω′) is real, as happens when Ôν′ ∝ P̂ †ν , the following relation holds

SP̂νÔν′ (q;ω) = 2(1 + nB)Im[χP̂νÔν′ (q;ω)], nB(ω) =
1

eβω − 1
.

This is the fluctuation-dissipation theorem. The left-hand side yields the spectrum of sponta-
neous fluctuations and the right-hand side the energy dissipation. When kBT is large, it follows
from the first Kramers-Kronig relation, Eq. (13), and the fluctuation-dissipation theorem that

Re[χP̂νÔν′ (q;ω = 0)]− Re[χP̂νÔν′ (q;∞)] ∼ 1

kBT
SP̂νÔν′ (q; t = 0).

2.6 Single-particle Green function
2.6.1 Definitions

In the non-interacting limit or within certain approximations, the susceptibility can be written
in terms of single-particle Green functions. It is therefore important to introduce the latter and
their properties. Let us first define the Green function or propagator

Gαα′(t, t
′) = −i

〈
T cα(t)c†α′(t

′)
〉

0
,

where T is the time-ordering operator, which orders the operators in decreasing time from left
to right. The indices α and α′ are flavors, and c†α(cα) is a fermionic creation (annihilation)
operator. When the Hamiltonian is time-independent,

Gαα′(t, t
′) = Gαα′(t− t′).

It is useful to express the Green function using a full set of eigenvectors {ΨNn } of the Hamilto-
nian, as we have done for the susceptibility and the correlation function. We obtain

Gαα′(t) = − i

Z

∑

Nnm

e−β(ENn −µN)





ei(E
N
n −E

N+1
m +µ)t〈ΨNn |cα|ΨN+1

m 〉〈ΨN+1
m |c†α′ |ΨNn 〉 t > 0

−ei(−ENn +EN−1
m +µ)t〈ΨNn |c†α′ |ΨN−1

m 〉〈ΨN−1
m |cα|ΨNn 〉 t < 0

Let us define Cnm
α = 〈ΨNn |cα|ΨN+1

m 〉 and Cnm
α′ = 〈ΨN+1

m |c†α′|ΨNn 〉. If, for negative times, we
replace N with N + 1 and exchange m and n, we obtain

Gαα′(t) = − i

Z

∑

Nnm

e−β(ENn −µN) Cnm
α′ C

nm
α ei(E

N
n −E

N+1
m +µ)t

[
Θ(t)− e−β(EN+1

m −ENn −µ) Θ(−t)
]
.
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The Fourier transform with respect to time yields

Gαα′(ω) =
1

Z

∑

Nnm

e−β(ENn −µN)Cnm
α′ C

nm
α

×
{

1

ω − EN+1
m + EN

n + µ+ iδ
+

e−β(EN+1
m −ENn −µ)

ω − EN+1
m + EN

n + µ− iδ

}
.

Let us define the function

Aαα′(ω) =
2π

Z

∑

Nnm

e−β(ENn −µN)Cnm
α′ C

nm
α [1 + e−βω]δ(ω − EN+1

m + EN
n + µ).

In terms of Aαβ(ω), the Green function takes the simpler form

Gαα′(ω) =

∫ +∞

−∞

dω′

2π

[
1− n(ω′)

ω − ω′ + iδ
+

n(ω′)

ω − ω′ − iδ

]
Aαα′(ω

′).

This expression is known as Lehmann representation, and Aαβ(ω) is called spectral function. It
is often useful to introduce the retarded and advanced Green functionsGR

αα′(t, t
′) andGA

αα′(t, t
′).

The first is given by

GR
αα′(t, t

′) = −iΘ(t− t′)
〈[
cα(t), c†α′(t

′)
]〉

0
,

and the latter by

GA
αα′(t, t

′) = iΘ(t′ − t)
〈[
cα(t), c†α′(t

′)
]〉

0
.

If we Fourier transform them in time we have

GR
αα′(ω) =

∫ +∞

−∞
dω′

1

2π

[
1

ω − ω′ + iδ

]
Aαα′(ω

′),

GA
αα′(ω) =

∫ +∞

−∞
dω′

1

2π

[
1

ω − ω′ − iδ

]
Aαα′(ω

′),

and therefore

Aαα′(ω) = i
[
GR
αα′(ω)−GA

αα′(ω)
]
.

2.6.2 Temperature Green function

To build a consistent many-body perturbation theory at finite temperature it is convenient to
introduce an imaginary time variable, τ . The imaginary-time Green function, given by

Gαα′(τ ) = −〈T cα(τ1)c†α′(τ2)〉0 = − 1

Z
Tr
[
e−β(Ĥ−µN̂)T cα(τ1)c†α′(τ2)

]
,

is known as the temperature or Matsubara Green function. In this expression, T is again the
time-ordering operator; the imaginary time fermionic operators o(τ) = c(τ), c†(τ) are given by

o(τ) = eτ(Ĥ−µN̂)o e−τ(Ĥ−µN̂).
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The vector τ is defined as τ = (τ1, τ2). Writing explicitly the action of T , we obtain

Gαα′(τ ) = −Θ(τ1 − τ2)〈cα(τ1)c†α′(τ2)〉+Θ(τ2 − τ1)〈c†α′(τ2)cα(τ1)〉.

If the Hamiltonian is time-independent,

Gαα′(τ ) = Gαα′(τ1 − τ2).

The imaginary-time Green function is well defined only in the interval −β < τ1 − τ2 = τ < β.
This can be seen by writing it explicitly in a basis of eigenvectors of the Hamiltonian, {ΨNn }

Gαα′(τ) =
1

Z

∑

Nnm

〈ΨNn |cα|ΨN+1
m 〉〈ΨN+1

m |c†α′ |ΨNn 〉e−β(ENn −µN)





−e(ENn −E
N+1
m +µ)τ τ > 0

e−(ENn −E
N+1
m +µ)(−β−τ) τ < 0

For imaginary times outside the interval −β < τ < β, the high energy states would give
divergent contributions. Either from the expression above or from the definition of Gαα(τ) and
the invariance of the trace under cyclic permutation of operators, one can show that Gαα′(τ) has
the following symmetry property

Gαα′(τ) = −Gαα′(τ + β) for − β < τ < 0.

Finally, if nα is the number of electrons for flavor α, one can show that

Gαα(τ → 0+) = −1 + nα, Gαα(τ → β−) = −nα.

For negative times, we have

Gαα(τ → 0−) = nα, Gαα(τ → −β−) = 1− nα.

Thus, Gαα(τ) is discontinuous at τ = 0 because of time ordering. It is at this point convenient
to introduce a generalized imaginary-time Green function G̃αα′(τ ) defined for any τ ,

G̃αα′(τ1 ± n1β, τ2 ± n2β) ≡ (−1)n1+n2Gαα′(τ1, τ2),

where n1 and n2 are integers. The Green function G̃αα′(τ1, τ2) = G̃αα′(τ1− τ2) is, by construc-
tion, antiperiodic with period β in both τ1 and τ2 and in the time difference τ = τ1 − τ2. From
now on we will work with G̃αα′(τ), and therefore for simplicity we rename it Gαα′(τ). Thanks
to its periodicity, Gαα′(τ) can be written as the Fourier series

Gαα′(τ) =
1

β

+∞∑

n=−∞

e−iνnτGαα′(iνn),

where the frequency νn is given by 2π multiplied by an integer multiple of the inverse period,
1/2β. For fermionic Green functions only the odd Matsubara frequencies, νn = π(2n + 1)/β,
for which e±iνnβ = −1, yield finite Fourier coefficients, given by

Gαα′(iνn) =
1

2

∫ β

−β
dτeiνnτGαα′(τ) =

1

2
(1− e−iνnβ)

∫ β

0

dτeiνnτGαα′(τ) =

∫ β

0

dτeiνnτGαα′(τ).
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gr(τ ;x) gr(νn;x) =
∫ β

0
eiνnτgr(τ ;x)dτ

g0(τ ;x) = e−xτ [iνn − x]−1 [nσ(x)− 1]−1

g1(τ ;x) = τe−xτ βnσ(x) [iνn − x]−1 [nσ(x)− 1]−1 − [iνn − x]−2 [nσ(x)− 1]−1

gr(τ ;x) = τ re−xτ βrnσ(x)g0(iνn;x)− r [iνn − x]−1 gr−1(iνn;x)

Table 1: Some of the most common Matsubara Fourier transforms (fermionic case). The
function nσ(x) is the Fermi-Dirac distribution function nσ(x) = 1/(1 + exβ); the parameter x
is a real number. For fermionic Matsubara frequencies eiνnβ = −1.

It is interesting to point out the relation between the imaginary-time Green function and the
actual retarded and advanced Green functions. One can show that they correspond to different
analytic continuations to the real axis

GR
αα′(ω) = Gαα′(iνn)|iνn→ω+iδ

GA
αα′(ω) = Gαα′(iνn)|iνn→ω−iδ.

The odd or fermionic Matsubara frequencies iνn are also the poles of the Fermi-Dirac distribu-
tion function. The even or bosonic Matsubara frequencies, iωm = π(2m)/β, are, correspond-
ingly, the poles of the Bose-Einstein distribution function.

2.6.3 One-band Hubbard model: Non-interacting limit

Let us now consider as a representative case the one-band Hubbard model. In the non-interacting
limit the Hubbard Hamiltonian is given by Eq. (5), which we rewrite here for convenience

Ĥ0 =
∑

σ

∑

k

εknkσ.

For high-temperature superconducting cuprates, the dispersion εk describing the Cu d x2 − y2

band crossing the Fermi level is

εk = −2t(cos kxa+ cos kya) + 4t′ cos kxa cos kya+ . . . , (15)

where a is the lattice constant, t the nearest neighbor hopping integral and t′ the next-nearest
neighbor hopping integral [9].
The imaginary-time Green function for the Hamiltonian Ĥ0 can be calculated analytically

Gkσ(τ) = −
〈
T
[
ckσ(τ)c†kσ(0)

]〉
0

= −Θ(τ)
1

Z
Tr
[
e−β(Ĥ0−µN̂)ckσ(τ)c†kσ(0)

]
+Θ(−τ)

1

Z
Tr
[
e−β(Ĥ0−µN̂)c†kσ(0)ckσ(τ)

]

= − [Θ(τ) (1− nσ(εk))−Θ(−τ)nσ(εk)] e−(εk−µ)τ , (16)



Linear Response Functions 6.21

-1

-0.5

 0

 0.5

 1

-1 -0.5  0  0.5  1

G
( τ

)

τ/β

n(ε)

n(ε)-1 -n(ε)

1-n(ε)

-1

-0.5

 0

 0.5

 1

-1 -0.5  0  0.5  1

G
( τ

)

τ/β

n(ε)

n(ε)-1 -n(ε)

1-n(ε)

-1

-0.5

 0

 0.5

 1

-1 -0.5  0  0.5  1

G
( τ

)

τ/β

n(ε)

n(ε)-1 -n(ε)

1-n(ε)

Fig. 4: The function Gkσ(τ) defined in Eq. (16) for a state well below the Fermi level (red) and
at the Fermi level (blue) and β = 2 eV−1. The green line shows the atomic Green function G(τ)
from Eq. (19) calculated for U = 6 eV.

where nσ(εk) is the Fermi-Dirac distribution function

nσ(εk) =
1

1 + eβ(εk−µ)
.

The Matsubara Fourier transform of Gkσ(τ) is simple to obtain since
∫ β

0

e(iνn−x)τdτ =
1

iνn − x
[
e(iνn−x)β − 1

]
= − 1

iνn − x
[
e−xβ + 1

]
=

1

iνn − x
1

nσ(x)− 1
.

This result, together with other useful Matsubara Fourier transforms, can be found in Tab. 1.
Thus

Gkσ(iνn) =
1

iνn − εk + µ
.

It is often necessary to perform sums of Green functions or of product of Green functions over
the Matsubara frequencies. To see how these can be calculated, let us consider the integral

IC =
1

2πi

∮

C
Fkσ(z)nσ(z)ezτdz, (17)

where 0 < τ < β and nσ(z) is the Fermi function, which has poles for z = iνn. We assume
that Fkσ(z) is a complex function, analytic everywhere except at some poles {zp}, which differ
from the Fermionic Matsubara frequencies; for example, Fkσ(z) could be the Green function
Gkσ(z). We define the contour C (see Fig. 5) as a circle in the full complex plane, centered at
the origin and including the poles of the integrand. The integral IC is zero because the integrand
vanishes exponentially for |z| → ∞. Using Cauchy’s integral theorem we then have

1

β

∑

n

eiνnτFkσ(iνn) =
∑

zp

Res [Fkσ(zp)]nσ(zp)e
zpτ , (18)



6.22 Eva Pavarini

Re z

Im z

Fig. 5: The contour C used to perform the integral IC defined by Eq. (17). The blue circles
represent poles of the Fermi function, i.e., Matsubara frequencies, and the green circles are
representative poles of the function Fkσ(z). Since the integral vanishes for |z| → ∞, the sum
of the contributions from all the poles must add up to zero for an infinitely large contour C.

where we used the fact that Res [nσ(iνn)] = − 1
β

. Let us now apply this result in some typical
cases. If Fkσ(z) = Gkσ(z), remembering thatGαα(0−) = nα andGαα(0+) = nα−1, we obtain

1

β

∑

n

e−iνn0−Gkσ(iνn) = Gkσ(0−) = nσ(εk),

1

β

∑

n

e−iνn0+Gkσ(iνn) = Gkσ(0+) = nσ(εk)− 1.

In a similar way we can show that

1

β

∑

n

eiνn0+Gkσ(iνn)Gkσ(iνn) =
dnσ(εk)

dεk
= βnσ(εk) [−1 + nσ(εk)] ,

1

β

∑

n

eiνn0+Gkσ(iνn)Gk+qσ(iνn + iωm) =
n(εk+q)− n(εk)

iωm + εk+q − εk
,

where in the last relation ωm = 2mπ/β is a bosonic Matsubara frequency. In Tab. 2 we dis-
play some of the inverse Fourier transforms involving one-particle Green functions for a non-
interacting system.
It is important to point out that, using Matsubara frequencies, the Lehmann representation takes
the simple form

Gkσ(iνn) =

∫ +∞

−∞
Akσ(ω′)

1

iνn − ω′
dω′,

where the spectral function satisfies the relation

1

2π

∫ +∞

−∞
Akσ(ω′)dω′ = 1.
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gα(νn;x, y) gα(τ ;x, y) = 1
β

∑
n e
−iνnτgα(νn;x, y)

ga(νn;x, y) = [iνn − x]−1 [nσ(x)− 1]e−xτ

gb(νn;x, y) = [iνn − x]−2 nσ(x)(τ − βnσ(x))e−x(τ−β)

gc(νn;x, y) = [iνn − x]−1 [iνn − y]−1 −
[
e−x(τ−β)nσ(x)− e−y(τ−β)nσ(y)

]
[x− y]−1

gd(νn;x, y) = [iνn − x]−1 [iνn + x]−1 [ga(τ ;x, y)− ga(τ ;−x, y)]/2x

Table 2: Some of the most common Matsubara Fourier transforms (fermionic case), obtained
from Eq. (18). The function nσ(x) is the Fermi-Dirac distribution function nσ(x) = 1/(1+exβ).
The parameters x and y are real numbers. For τ we consider the interval (0, β).

Furthermore the normalized spectral function, Ãkσ(ε) = Akσ(ε)/2π = − 1
π
Im [Gkσ(ε)] is re-

lated to the density of states as follows

ρσ(ε) =
1

Nk

∑

k

Ãkσ(ε).

These relations between Ãkσ(ε) and the density of states or the Green function are also valid
for the interacting Hubbard model. In the non-interacting case

Ãkσ(ε) = δ(ω − εk).

2.6.4 One-band Hubbard model: Atomic limit

Let us consider now the half-filled one-band Hubbard model in the atomic (t = 0) limit. Since
the lattice sites are decoupled, we can focus on a single site and rewrite the Coulomb interaction
in terms of the spin operator Ŝz = 1

2
[n↑ − n↓] and the electron number operator N̂ = n↑ + n↓.

We obtain

ĤU = εd
∑

σ

nσ + U

(
N̂2

4
− Ŝ2

z

)
.

This Hamiltonian describes an idealized single-level atom. This system has four states, |0〉,
c†↑|0〉, c†↓|0〉, c†↑c†↓|0〉, with expectation values of the operator ĤU − µN̂ equal to 0,−U/2, −U/2
and 0 respectively. We can calculate the imaginary-time Green function for such a system ana-
lytically; it is sufficient to perform the calculation in the interval (0, β), since we can reconstruct
the Green function in the interval (−β, 0) by using the antiperiodic properties. For 0 < τ < β

Gσ(τ) = −1

2

1

1 + eβU/2
[
eτU/2 + e(β−τ)U/2

]
. (19)
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The Matsubara Fourier coefficients can be obtained via the integrals in Tab. 1. We find

Gσ(iνn) =
1

2

[
1

iνn + U/2
+

1

iνn − U/2

]
. (20)

Thus the atomic Green function, as the non-interacting Green function, is the sum of functions
with first order poles; the corresponding retarded Green function on the real axis can be obtained
by analytic continuation replacing iνn with ω + iδ, with δ > 0. To obtain Gσ(τ) from Gσ(iνn)

one can use the Matsubara sums in Tab. 2.

2.7 Two-particle Green function
2.7.1 Generalized imaginary time Green function

The temperature Green function can also be defined for quadratic operators; this generaliza-
tion is relevant for calculating the elements of the linear-response tensor. Let us consider the
operators ∆P̂αα′(τ1, τ2) and ∆Ôγγ′(τ1, τ2), with

∆P̂αα′(τ1, τ2) = c†α′(τ2)cα(τ1)− 〈T c†α′(τ2)cα(τ1)〉,
∆Ôγγ′(τ3, τ4) = c†γ′(τ4)cγ(τ3)− 〈T c†γ′(τ4)cγ(τ3)〉.

where α, α′ and γ, γ′ are, as usual, flavors. We define the temperature Green function for these
operators as the two-particle Green function

χαα
′

γγ′ (τ ) = 〈T ∆P̂αα′(τ1, τ2)∆Ôγγ′(τ3, τ4)〉, (21)

where τ = (τ1, τ2, τ3, τ4). From the invariance of the trace under cyclic permutation of operators
one can show that, for a time-independent Hamiltonian,

χαα
′

γγ′ (τ ) = χαα
′

γγ′ (τ14, τ24, τ34, 0),

where τji = τj − τi. In analogy with what we have seen in the single-particle case, the two-
particle Green function at negative times (−β < τj4 < 0) can be obtained from the two-particle
Green function at positive times (0 < τj4 < β). For example, if −β < τ14 < 0

χαα
′

γγ′ (τ14 + β, τ24, τ34, 0) = −χαα′γγ′ (τ14, τ24, τ34, 0),

and similar relations hold for −β < τ24 < 0 or −β < τ34 < 0. This can be shown using,
once more, the invariance of the trace under cyclic permutation of the operators. As for the
one-particle Green function, we can extend the two-particle Green function to any time interval
by defining it periodic in each τj4 with period β.
It is often convenient to express χαα′γγ′ (τ ) as a function of the three independent variables τ12,
τ23 and τ34. We then rewrite it as follows

χαα
′

γγ′ (τ ) = T Tr
e−β(Ĥ−µN̂)

Z

[
eτ14(Ĥ−µN̂)cαe

−τ12(Ĥ−µN̂)c†α′e
−τ23(Ĥ−µN̂)cγe

−τ34(Ĥ−µN̂)c†γ′
]
,

with τ14 = τ12 + τ23 + τ34, and χαα′γγ′ (τ ) = χαα
′

γγ′ (τ12, τ34; τ23). From this expression and the sym-
metry properties discussed above, it follows that the two-particle Green function is antiperiodic
with period β in τ12 and τ34 and periodic with period β in τ23 (see Fig. 6 as example).
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Fig. 6: The function χ(τ12, 0
+; τ23) = −Gαα(τ12 + τ23 + 0+)Gαα(−τ23) for a non-interacting

system with n ∼ 0.8 electrons; β = 30 eV−1. It is antiperiodic in τ12 and periodic in τ23.

2.7.2 The Fourier transform χαα
′

γγ′ (ν) and its symmetry properties

The Fourier transform of the imaginary-time two-particle Green function is given by

χαα
′

γγ′ (ν) =
1

16

∫∫∫∫
dτ eiν·τχαα

′

γγ′ (τ ), (22)

where the frequency vector is ν = (ν1, ν2, ν3, ν4), and the imaginary times are chosen in the
interval (−β, β). From the fact that χαα′γγ′ (τ ) = χαα

′

γγ′ (τ14, τ24, τ34, 0) we obtain ν4 = −ν1−ν2−ν3

(energy conservation), and thus only three frequencies are actually independent. Let us define
ν = (νn,−νn − ωm, νn′ + ωm,−νn′) where ωm is a bosonic frequency. Then

χαα
′

γγ′ (ν) = χαα
′γγ′

n,n′ (iωm) =
β

8

∫∫∫
dτ ei[−ωmτ23+νnτ12+νn′τ34] χαα

′

γγ′ (τ ),

where τ = (τ14, τ24, τ34) and all integrals go from −β to β. By using the antiperiodicity of
the two-particle Green function in imaginary times we can further simplify this expression,
obtaining

χαα
′γγ′

n,n′ (iωm) = β

∫ β

0

dτ14

∫ β

0

dτ24

∫ β

0

dτ34 e
i[−ωmτ23+νnτ12+νn′τ34] χαα

′

γγ′ (τ14, τ24, τ34, 0).

Let us now analyze the symmetry properties of χαα
′γγ′

n,n′ (iωm). For simplicity, we consider here
only the case in which the one-electron basis can be chosen such that χαα′γγ′ (τ14, τ24, τ34, 0) is
real; indeed, this is the case for most strongly-correlated 3d transition metal-oxides, since their
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Hamiltonian has typically time-reversal and even inversion symmetry and the spin-orbit inter-
action can be neglected. The complex conjugate is then given by

[
χαα

′γγ′

n,n′ (iωm)
]∗

= χαα
′γγ′

−n−1,−n′−1(−iωm),

where ν−n−1 = −νn, and ν−n′−1 = −νn′ . Furthermore, if in the integral (22) we replace
χαα

′

γγ′ (τ ) with its complex conjugate and then exchange τ1 ↔ −τ4 and τ2 ↔ −τ3, we find

χαα
′γγ′

n,n′ (iωm) = χγ
′γα′α
n′,n (iωm),

and hence, if α = γ′, α′ = γ, νn = ν ′n is a reflection axis for the absolute value

∣∣∣χαα′α′αn,n′ (iωm)
∣∣∣ =

∣∣∣χαα′α′αn′,n (iωm)
∣∣∣ .

An additional reflection axis can be found by first shifting the frequency νn = νl − ωm

χαα
′γγ′

l,n′ (iωm) =
1

16

∫∫∫∫
dτ ei(−ωmτ13+νlτ12+νn′τ34)χαα

′

γγ′ (τ ).

Since χαα′γγ′ (τ ) is invariant under particle exchange, if we exchange in the integrand τ1 ↔ τ3 and
τ2 ↔ τ4, we have

χαα
′γγ′

l,n′ (iωm) = χγγ
′αα′

n′,l (−iωm),

so that, if α = γ and α′ = γ′, νn+m = −νn′ is a mirror line for the absolute value

∣∣∣χαα′αα′n+m,n′(iωm)
∣∣∣ =

∣∣∣χαα′αα′−n′−1,−n−m−1(iωm)
∣∣∣ .

2.7.3 Non-interacting case: Wick’s theorem

For a non-interacting system Wick’s theorem holds. It states that high-order Green functions can
be factorized into products of lower-order Green function. For the two-particle Green function
Wick’s factorization yields

χαα
′

γγ′ (τ ) = −〈T cα(τ1)c†γ′(τ4)〉〈T cγ(τ3)c†α′(τ2)〉 = −Gαγ′(τ14)Gγα′(−τ23). (23)

If the two-particle Green function is written in this form, its periodicty properties can be directly
derived from those of the one-particle Green function. For example, using as independent
variables τ12, τ23, and τ34, since τ14 = τ12 + τ23 + τ34, one can verify that the susceptibility
is periodic in the time associated with the bosonic frequency, τ23. As the single-particle Green
function, the two-particle Green function has discontinuities associated with the jump coming
from the time ordering operator. In Fig. 6 we see such jumps, e.g., along the line τ12 = −τ23

(for which τ14 = 0+) and τ12 = −τ23 ± β (for which τ14 = β+ or τ14 = β−).
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Fig. 7: Top: Real (left) and imaginary (right) part of χααααn,n′ (0) for a non-interacting system,
calculated for an energy level ε well above the Fermi level and β = 30 eV−1. Bottom: Real
(left) and imaginary (right) part of the mean-field contribution. To better show the symmetries
the center is shifted by (1/2, 1/2). In all the plots the colors range from blue (minimum negative
value) through green and yellow to red (maximum positive value).

3 The dynamical susceptibility

3.1 The magnetic susceptibility

For a system made of well defined localized spins, as we have seen, the magnetic linear response
function is proportional to the site susceptibility

χi,i
′

zz (τ ) = χi,i
′

zz (τ) = 〈T M̂ i
z(τ)M̂ i′

z (0)〉0 − 〈M̂ i
z〉0〈M̂ i′

z 〉0,

where M̂ i
z = −gµBŜiz is the magnetization for lattice site i. Its Fourier transform is

χzz(q; iωm) =
∑

ii′

eiq·(Ti−Ti′ )
∫
dτ eiωmτχi,i

′

zz (τ)

= 〈M̂z(q;ωm)M̂z(−q; 0)〉0 − 〈M̂z(q)〉0〈M̂z(−q)〉0, (24)

where ωm is a bosonic Matsubara frequency. In actual calculations it is, however, often nec-
essary to work with the full two-particle Green function tensor. Let us consider explicitly
the case of the one-band Hubbard model; the tensor elements χαα′γγ′ (τ ) that are relevant for the
magnetic susceptibility are those for which α = k1σ, α′ = k2σ, γ = k3σ

′, and γ′ = k4σ
′. Each
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Fig. 8: Left: Absolute value of χσσn,n′(0) (top) and χσσn,n′(iω10) (bottom) for a non-interacting
system for an energy level ε well above the Fermi level and β = 30 eV−1. Right: Absolute value
of the corresponding mean-field contribution. The white lines show symmetry axes. To better
show the symmetries the center is shifted by (1/2, 1/2). The colors range from blue (minimum
value, here zero) through green and yellow to red (maximum positive value).

flavor has a momentum ki associated, but, as we have seen for the frequencies, only three of the
four ki vectors are independent (momentum conservation). Let us set α = kσ, α′ = k + qσ,
γ = k′ + qσ′ and γ′ = k′σ′ and write the tensor as a 2Nk × 2Nk matrix whose elements are
defined as

[χ(q; τ )]kσ,k′σ′ = χαα
′

γγ′ (τ ) = 〈T ckσ(τ1)c†k+qσ(τ2)ck′+qσ′(τ3)c†k′σ′(τ4)〉0 (25)

− 〈T ckσ(τ1)c†k+qσ(τ2)〉0〈T ck′+qσ′(τ3)c†k′σ′(τ4)〉0.

The magnetic susceptibility is then given by

χzz(q; τ ) = (gµB)2 1

4

∑

σσ′

σσ′ χqσσ
′
(τ ), (26)

where σ = 1 or −1 for up and down, respectively, and

χqσσ
′
(τ ) =

1

β

1

N2
k

∑

kk′

[χ(q; τ )]kσ,k′σ′ . (27)
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After we Fourier transform with respect to imaginary time and sum over the fermionic Matsub-
ara frequencies, we obtain the actual magnetic response function

χzz(q; iωm) = (gµB)2 1

4

∑

σσ′

σσ′
1

β2

∑

nn′

χqσσ
′

n,n′ (iωm), (28)

where

χqσσ
′

n,n′ (iωm) = χqσσ
′
(ν) =

β

8

∫∫∫
dτ eiν·τχqσσ

′
(τ ).

3.1.1 One-band Hubbard model: Non interacting limit

In the non-interacting limit we can use Wick’s theorem. It follows that the elements of the two-
particle Green function tensor vanish if k 6= k′, and that, in the paramagnetic case, Eq. (26)
becomes

χzz(q; τ ) = −(gµB)2 1

4

1

β

1

Nk

∑

k

∑

σ

Gkσ(τ14)Gk+qσ(−τ23).

For the frequency-dependent magnetic susceptibility Eq. (28) we have instead

χzz(q; iωm) = (gµB)2 1

4

1

β2

∑

nn′

∑

σ

χqσσn,n′(iωm),

where
∑

σ

χqσσn,n′(iωm) = −β 1

Nk

∑

k

∑

σ

Gkσ(iνn)Gk+qσ(iνn + iωm)δn,n′ . (29)

The static susceptibility is given by

χzz(q; 0) = − (gµB)2 1

4

1

Nk

∑

k

∑

σ

nσ(εk+q)− nσ(εk)

εk+q − εk
.

Finally, in the q → 0 and T → 0 limit we recover as expected the Pauli susceptibility

χzz(0; 0) =
1

4
(gµB)2 ρ(εF ),

ρ(εF ) = −
∑

σ

1

Nk

∑

k

dnσ(εk)

dεk

∣∣∣∣
T=0

.

If we consider the HTSCs dispersion relation Eq. (15) and assume t′ = 0, at half filling the
non-interacting static susceptibility exhibits a divergence at q = Γ = (0, 0, 0); this is due to
the van Hove singularity in the density of states at the Fermi level. It also diverges at, e.g.,
X = (π/a, 0, 0) because of perfect nesting, εk+X = −εk. More details about the magnetic
susceptibility of the non-interacting half-filled one-band Hubbard model with dispersion given
by Eq. (15) can be found in Ref. [22].
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3.1.2 One-band Hubbard model: Atomic limit

Let us now consider the opposite case, the atomic limit. First we use a simple approach, we
directly calculate the right-hand side of Eq. (24) by summing up the contributions of the atomic
states, |0〉, c†↑|0〉, c†↓|0〉, c†↑c†↓|0〉; since the atoms are decoupled, only on-site terms i = i′ con-
tribute. The magnetic susceptibility, normalized to a single atom, is given by

χzz(q; 0) = (gµB)2 1

4kBT

eβU/2

1 + eβU/2
. (30)

The same expression can be obtained from the two-particle Green function tensor χαα′γγ′ (τ ),
defined in Eq. (25) for the Hubbard model. In the atomic limit it is better to work directly in
real space; since only i = i′ terms contribute, carrying out the k sums in Eq. (27) we find

χqσσ
′
(τ ) =

1

β

∑

i

χiσ iσiσ′iσ′(τ ).

As we have seen in Sec. 2.7.2, it is sufficient to calculate χiσ iσiσ′iσ′(τ ) for positive times 0 <

τj4 < β. Because of the time ordering operator we have, however, to distinguish the various
imaginary-time sectors. Let us consider first the case τj4 > τj+1 4 and label the corresponding
τ -vector as τ+. Calculating the trace we obtain

χiσ iσiσ′iσ′(τ
+) =

1

2(1 + eβU/2)

(
eτ12U/2+τ34U/2 + δσσ′e

(β−τ12)U/2−τ34U/2
)
.

For a paramagnetic system the mean-field terms Gσ(τ12)Gσ′(τ34) cancel out in the actual sus-
ceptibility; thus we dropped them in the expression above. For a single atom, the imaginary-
time magnetic susceptibility in the τ+ sector is then given by

χzz(τ
+) = (gµB)2 1

4

1

β

∑

σσ′

σσ′χiσ iσiσ′iσ′(τ ) =
(gµB)2

4β

1

(1 + eβU/2)
e(β−τ12−τ34)U/2.

The terms corresponding to the remaining imaginary-time sectors can be obtained in a simi-
lar way (see Appendix); summing up the various contribution to Eq. (28), i.e., to the Fourier
transform χσσ

′

n,n′(iωn) we recover the initial expression Eq. (30).
In the atomic limit, χzz(q; 0) decreases for large temperatures as 1/kBT , i.e., it has a Curie
behavior. This is very different from what we find in the U = 0 limit. The non-interacting Pauli
susceptibility χzz(0; 0) is weakly temperature-dependent; for the HTSCs dispersion relation,
at half-filling the temperature dependence of χzz(0; 0) is enhanced for t′ = 0, i.e., when the
logarithmic van-Hove singularity is at the Fermi level [22].

3.2 The generalized susceptibility

In this section, we generalize what we have seen in the previous one to the case of the multi-
band Hubbard model defined in (2); furthermore, we consider the linear response to a non-
specified external field, not necessarily a magnetic field. Let us start from the site susceptibility
in imaginary time

χP̂ i
ν
Ôi
′
ν′

(τ ) = 〈T ∆P̂ i
ν(τ1, τ2)∆Ôi′

ν′(τ3, τ4)〉0,
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where the site operators P̂ i
ν and Ôi′

ν′ are defined as

P̂ i
ν(τ1, τ2) =

∑

α

pνα c
†
iα′(τ2)ciα(τ1),

Ôi′

ν′(τ3, τ4) =
∑

γ

oν
′

γ c†i′γ′(τ4)ci′γ(τ3).

The labels α = (α, α′), γ = (γ, γ′) are, as usual, collective flavors, and for the multi-band
Hubbard model include spin (σ) and orbital (m) quantum number, plus a fractional vector iden-
tifying a correlated basis atom in the unit cell (ic). The weight factors oνα and pν′γ , in general
complex numbers, identify the type of response we calculate. The imaginary-time site suscep-
tibility is then given by

χP̂ i
ν
Ôi
′
ν′

(τ ) =
∑

αγ

vαγ χ
αi
γi′

(τ ),

where vαγ = pναo
ν′
γ , αi = (iα, iα′), and γi′ = (i′γ, i′γ′). The function χαiγi′ (τ ) is defined

in Eq. (21) and its Fourier transform in time, χαiγi′ (ν), in Eq. (22). If we perform the Fourier
transform in both time and lattice vectors we find

χ(q;ν) =
∑

αγ

vαγ
∑

ii′

ei(Ti−Ti′ )·qχαiγi′ (ν) =
∑

αγ

vαγ
1

N2
k

∑

kk′

χαk
γk′

(ν)

=
∑

αγ

vαγ [χ(q; iωm)]Lα,Lγ ,

where αk = (αk1, α
′k2) and γk′ = (γk3, γ

′k4); as in the case of the magnetic susceptibility
for the one-band Hubbard model, k1 = k, k2 = −k−q, k3 = k′+q and k4 = −k′. The terms
χαk
γk′

(ν) build a square matrix

χαk
γk′

(ν) ≡ [χ(q; iωm)]kLα,k′Lγ

whose elements are labeled for convenience by the collective indices kLα = (αkn, α′kn) and
k′Lγ = (γk′n′, γ′k′n′); by summing over k and k′ we obtain [χ(q;ωm)]Lα,Lγ . Finally, the
actual linear response function is given by the sum over the fermionic Matsubara frequencies

χP̂ν Ôν′ (q; iωm) =
∑

αγ

vαγ
1

β2

∑

nn′

[χ(q;ωm)]Lα,Lγ . (31)

In the single-orbital case (α = α′ = σ and γ = γ′ = σ′) when P̂ i
ν = M̂ i

z = Ôi
ν we have

ozα = −gµB〈σ|σ̂z|σ〉, pzα = −gµB〈σ′|σ̂z|σ′〉,

and we recover the magnetic susceptibility for the one-band Hubbard model.
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Fig. 9: Diagram contributing to the linear susceptibility for a non-interacting system. The red
lines indicates that the creator/annihilator is originally from the operator P̂ν′ and the green lines
indicate that the creator/annihilator is from the operator Ôν . The corresponding frequencies
and momenta are explicitly assigned.

3.3 The generalized susceptibility in DMFT

The linear response function is nothing more than a generalized many-particle retarded Green
function. Thus we can use, in principle, all standard many-body techniques for deriving a per-
turbation series for it. Let us consider a system described by the multi-band Hubbard model (2),
which we write here as Ĥe = Ĥ0 + ĤU , where Ĥ0 is the non-interacting part. Let us now for-
mally construct a perturbation series for χP̂ν Ôν′ (q;ωm) in the interaction ĤU . The first step is
to calculate the zero-order contribution, i.e., the linear response function for the non-interacting
term Ĥ0. Since for Ĥ0 the Wick’s theorem holds, we have

[χ0(q; iωm)]kLα,k′Lγ = −βNkGkαγ′(iνn)Gk′+qα′γ(iνn′ + iωm)δn,n′δk,k′ . (32)

The Feynman diagram corresponding to [χ0(q;ωm)]Lα,Lγ is shown in Fig. 9. Once we switch
on the interaction, many-body perturbation theory leads to the Bethe-Salpeter (BS) equation,
pictorially shown in Fig. 10. Mathematically, it can be written in a matrix form as follows

[χ(q; iωm)]Lα,Lγ =
1

N2
k

∑

kk′

[
χ0(q; iωm) +

1

N2
k

χ0(q; iωm)Γ (q; iωm)χ(q; iωm)

]

kLα,k′Lγ

,

where the external sums on k vectors are explicitly written. For systems for which dynamical
mean-field is a good approximation, however, it is more convenient to construct a diagrammatic
series starting from the DMFT linear response function rather than from the non-interacting
term. If we do so, χ0(q;ωm) in the Bethe-Salpeter equation is given by Eq. (32) with G replaced
by the DMFT Green function matrices

[χ0(q; iωm)]Lα,Lγ = −βδnn′
1

Nk

∑

k

GDMFT
αγ′ (k; iνn)GDMFT

α′γ (k + q; iνn + iωm).

There is a catch, however. How do we calculate the vertex matrix [Γ (q;ωm)]kLα,k′Lγ? In the
infinite dimension limit it has been shown that, in the BS equation, the vertex can be replaced
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Fig. 10: Diagrammatic representation of the Bethe-Salpeter equation for the linear susceptibil-
ity. The red lines indicates a creator/annihilator stemming from the operator P̂ν and the green
lines from the operator Ôν′ . The box labeled with Γ is the vertex function, the one labeled with
χ the full susceptibility, and χ0 is the pair-bubble term.

by a local quantity [15,23,24]; assuming that, in the spirit of the dynamical mean-field approx-
imation, for a real 3-dimensional system we can still do the same, the BS equation becomes

[χ(q; iωm)]Lα,Lγ = [χ0(q;ωm) + χ0(q; iωm)Γ (iωm)χ(q; iωm)]Lα,Lγ .

By solving it formally we find
[
χ−1(q; iωm)

]
Lα,Lγ

=
[
χ−1

0 (q; iωm)− Γ (iωm)
]
Lα,Lγ

. (33)

To actually obtain χ(q; iωm) from this equation we still need the local vertex. The latter can be
calculated by means of a further approximation, i.e., assuming that (33) is also satisfied if we
replace the q-dependent susceptibilities with their local counterparts, defined as

[χ0(iωm)]Licα ,Licγ =
1

Nq

∑

q

[χ0(q; iωm)]Licα ,Licγ ,

[χ(iωm)]Licα ,Licγ =
1

Nq

∑

q

[χ(q; iωm)]Licα ,Licγ .

Since the local response function is the same for all equivalent correlated basis sites ic we
work with the matrix block of a given site; to make this explicit we renamed the corresponding
elements Lα as Licα . The local term χ(iωm) is obtained via the quantum impurity solver in the
final iteration of the DMFT self-consistency loop. By inverting the local BS equation we have
the vertex

[Γ (iωm)]Lα,Lγ =
[
χ−1

0 (iωm)
]
Lα,Lγ

−
[
χ−1(iωm)

]
Lα,Lγ

. (34)
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Replacing Γ (iωm) obtained via Eq. (34) into Eq. (33) yields the q-dependent susceptibility. It
has to be noticed that, although the two equations (33) and (34) look innocent, solving them
numerically is a delicate task because the local susceptibility is in general not diagonal in n, n′

and does not decay very fast with the frequencies. There are, however, various ways around
based on extrapolations [25] or using auxiliary polynomials [26] or other methods.

3.4 The χ0(q;ω) diagram

It is tempting to stop at the first term in the expansion, χ0(q;ω). In the non-interacting case,
χ0(q;ω) is the exact solution by construction; for small U we can expect that χ0(q;ω) is a
reasonable approximation. Can we use it as an approximated linear response function more in
general, i.e., also for intermediate or even large U? Unfortunately the answer is no. In the large
U limit χ0(q;ω) is very different from the exact susceptibility. To understand this point let us
calculate the static large U magnetic susceptibility for the half-filled one-band Hubbard model.
We consider two cases, the atomic limit and the insulating regime (small t/U limit); for the
latter we use an approximate expression for the self-energy.

3.4.1 One-band Hubbard model: Atomic limit

In the atomic limit, using the atomic Green function instead of G in Eq. (32), we obtain

χσσ
′

n,n′(0) = −βδnn′δσσ′
1

4

[
1

iνn + U/2
+

1

iνn − U/2

] [
1

iνn + U/2
+

1

iνn − U/2

]
.

By performing the Matsubara sums

χ0
zz(0) =

1

4
(gµB)2

∑

σ

1

β2

∑

n

χσσn,n(0) =
1

4
(gµB)2 βeβU/2

1 + eβU/2

[
1

1 + eβU/2
+

1

Uβ

(
1− e−βU

1 + e−βU/2

)]

If we assume thatU is finite, for very large temperatures (βU → 0) we find χ0
zz(0) ∼ β(gµB)2/8.

In realistic cases, however, the temperature is in the range 0-1000 K and U is of the order of few
eV; under these conditions the atomic spin S = 1/2 is well defined. In such a large βU limit
χ0
zz(0) ∼ (gµB)2/4U , i.e., the term χ0

zz(0) does not exhibit the Curie behavior. The approxi-
mated susceptibility χ0

zz(0) should be compared with the actual magnetic susceptibility of our
idealized atom which, as we have seen in Sec. 3.1, is given by

χzz(0) = (gµB)2 1

4

[
βeβU/2

1 + eβU/2

]
βU→∞∼ (gµBS)2

kBT
.

3.4.2 One-band Hubbard model: Mott-insulating regime

Let us now consider the half-filled Hubbard model with HTCSs dispersion; the latter is defined
in Eq. (15). For simplicity, we assume that all hopping integrals except t are zero. In the atomic
limit (t = 0) we can rewrite the atomic Green function as

G(iνn) =
1

iνn + µ−Σ(iνn)
,
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Fig. 11: Graphical solution of the equation ω + ε + Σ(ω) = 0 yielding the poles E+ and E−

of the Green function defined in Eq. (36).

where µ = U/2 and the self-energy is given by

Σ(iνn) = µ+
U2

4

1

iνn
. (35)

In the Mott insulating regime, i.e., for small but finite t/U , we can assume that the self-energy
can be still written in the form given in Eq. (35), with µ replaced by the actual chemical potential
and U2/4 by a quantity which plays the role of a dimensionless order parameter [24] for the
insulating phase rU U2/4, defined as

1

rU

4

U2
=

∫ +∞

−∞
dε

ρ(ε)

ε2
,

where ρ(ε) is the density of states per spin; the integral 4/rUU
2 diverges in the metallic phase.

The Green function can then be rewritten as

Gk(iνn) =
1

iνn −Σ(iνn)− εk
=

1

E+
k − E−k

[
E+
k

iνn − E+
k

− E−k
iνn − E−k

]
(36)

where E+
k and E−k are the two roots of the equation ω −Σ(ω)− εk = 0,

E±k =
1

2
εk ±

1

2

√
ε2
k + rU U2.

By performing the Matsubara sums, one finds

χ0
zz(q; 0) = (gµB)2 1

4

∑

σ

1

β2

∑

n

χσσn,n(0)

= (gµB)2 1

2

1

Nk

∑

k


−I++

k,q − I−−k,q︸ ︷︷ ︸
Ak,q

+ I+−
k,q + I−+

k,q︸ ︷︷ ︸
Bk,q

,




where, setting α = ± and γ = ±,

Iαγk,q =
Eα
k E

γ
k+q

(E+
k − E−k )(E+

k+q − E−k+q)

n(Eα
k )− n(Eγ

k+q)

Eα
k − Eγ

k+q

.
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In the q → 0 limit we find

Ak,0 = β

[
(E+

k )2

ε2
k + rU U2

n(E+
k )[1− n(E+

k )] +
(E−k )2

ε2
k + rU U2

n(E−k )[1− n(E−k )]

]

Bk,0 =
rU U

2

2(ε2
k + rU U2)3/2

[
n(E−k )− n(E+

k )
]
.

In the large βU limit, the Ak,0 term, proportional to the density of states at the Fermi level,
vanishes exponentially; the Bk,0 term yields the dominant contribution

χ0
zz(0; 0) ∼ (gµB)2 1

4

1

Nk

∑

k

rU U
2

[ε2
k + rU U2]3/2

∼ (gµB)2 1

4
√
rU U

[
1− 3

2

1

Nk

∑

k

ε2
k

rU U2
+ . . .

]
.

The right-hand side is equal to the atomic χ0
zz(0) minus a correction; hence the term χ0

zz(0; 0)

for a Mott insulator has basically the same defects as χ0
zz(0) for an idealized one-level atom.

What about the q-dependence of χ0
zz(q; 0)? The one-band Hubbard model has an antiferromag-

netic instability in the Mott-insulating regime due to superexchange [22, 27]. Let us therefore
calculate χ0

zz(q) at the q vector associated with antiferromagnetic order, qC = (π/a, π/a, 0).
Since at qC the band dispersion satisfies the perfect nesting condition (εk+qC = −εk) we find

Ak,qC =
1

2

rU U
2

ε2
k + rU U2

n(E+
k − εk)− n(E+

k )

εk

Bk,qC =
1

2

ε2
k

ε2
k + rU U2

n(E+
k − εk)− n(E+

k )

εk
− 1

2

1√
ε2
k + rU U2

[
n(E+

k )− n(E−k )
]
,

and therefore

χ0(qC ; 0) ∼ (gµB)2 1

4
√
rUU

[
1− 1

2

1

Nk

∑

k

ε2
k

rUU2

]
.

Thus χ0(q; 0) is larger at q = qC than at q = 0; it does not exhibit, however, Curie-Weiss
instabilities. The latter appear as soon as we take the vertex into consideration. In line with the
results above, we express χ0(q; 0) as

χ0(q; 0) ∼ (gµB)2 1

4
√
rUU

[
1− 1

2

J0√
rUU

− 1

4

Jq√
rUU

]
,

where Jq = 2J [cos qx + cos qy] with J ∝ t2/U . Next we take the exact atomic susceptibility in
the large βU limit as local term and calculate the vertex as

Γ ∼
[

1

χ0
zz(0)

− 1

χzz(0)

]
∼ 1

(gµB)2

[
4
√
rUU

(
1 +

1

2

J0√
rUU

)
− 4kBT

]
.

Therefore,

χzz(q; 0) =
1

[χ0
zz(q; 0)]−1 − Γ ∼ (gµB)2 1

4

1

kBT + Jq/4
=

(gµB)2

kB

1

4

1

T − Tq
.

Thus, including the vertex correction we recover the Curie-Weiss behavior expected for a system
with coupled localized spins; we also correctly find the antiferromagnetic instability, since qC
is the vector for which Tq is largest. In conclusion, we have seen that Γ is essential to properly
describe the magnetic response function of strongly-correlated systems.
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3.5 The local susceptibility χ(ω)

The local susceptibility can be obtained in various ways. Here we briefly recollect the essential
steps for calculating it via a quantum Monte Carlo approach. A more detailed description of
quantum Monte Carlo approaches can be found in the lecture of Fakher Assaad.

3.5.1 Hirsch-Fye QMC quantum impurity solver

For the one-band Hubbard model, the typical quantum-impurity problem used in DMFT calcu-
lations is the Anderson Hamiltonian

Ĥ =
∑

σ

εdndσ + Und↑nd↓

︸ ︷︷ ︸
Ĥloc

+
∑

σ

∑

k

εknkσ

︸ ︷︷ ︸
Ĥbth

+
∑

σ

∑

k

[
Vkc

†
kσcdσ + h.c.

]

︸ ︷︷ ︸
Ĥhyb

.

This Hamiltonian describes a correlated site, e.g., site i = 0 in the original lattice Hubbard
model, whose states are labeled with d, coupled to a non-correlated bath, whose states have for
quantum numbers the momentum k and the spin σ, via the hybridization Vk. The Anderson
model was originally introduced in the context of the single-impurity Kondo problem [28].
The Hirsch-Fye quantum Monte Carlo approach [29] is based on imaginary-time discretization.
To calculate a physical observable a crucial ingredient is the partition function

Z = Tr e−β(Ĥ−µN̂).

If all eigenvalues and eigenvectors were known, the partition function would be of course also
known. How do we calculate a physical observable without this information? If we split the
interval τ = [0, β] in time steps ∆τ = β/L we can rewrite the partition function as follows

Z = Tr
L∏

l=1

e−∆τ(Ĥ−µN̂). (37)

In the Anderson model, the interaction term is Ĥloc; we therefore rewrite the Hamiltonian Ĥ as
Ĥ = Ĥ0 + ĤU , where Ĥ0 = Ĥbth + Ĥhyb and ĤU = Ĥloc. If ∆τ is small, we can approximate
the partition function via the Trotter decomposition

Z = Tr
L∏

l=1

e−∆τ(Ĥ0−(µN̂−µdN̂d))e−∆τ(ĤU−µdN̂d) +O(∆τ 2), (38)

where N̂d = nd↑ + nd↓ is the impurity electron number operator, and µdN̂d yields a shift. The
equivalence between Eq. (37) and Eq. (38) up to first order can be verified, e.g., by performing
a first-order Taylor expansion of both expressions and comparing the results. Remarkably,
Eq. (38) can be rewritten in a simpler form using the Hubbard-Stratonovich transformation.
Taking µd = εd + U/2 we obtain, for a given ∆τ

e−∆τ [Ĥloc−µdN̂d] = e−∆τU [nd↑nd↓− 1
2

(nd↑+nd↓)] =
1

2

∑

s=±1

esλ(nd↑−nd↓)
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where s is an auxiliary Ising variable and can take two values, s = −1 or s = +1, and coshλ =

e∆τU/2. One can verify this relation by applying the left and right operator to the basis states.
The result is summarized in the table below

e−∆τU [nd↑nd↓− 1
2

(nd↑+nd↓)] 1
2

∑
s=±1 e

sλ(nd↑−nd↓)

|0〉 1 1

c†σ|0〉 e∆τU/2 coshλ

c†d↑c
†
d↓|0〉 1 1

Thus, via the auxiliary-field decoupling we replaced the two-particle term Und↑nd↓ with two
single-particle terms, much easier to handle. If we introduce one Ising spin per∆τ interval, i.e.,
L in total, {si} = s1, . . . sL, the partition function becomes

Z =
1

2L

∑

{si}

Tr
L∏

l=1

e−∆τ(Ĥ0−µN̂+µdN̂d)+λsl(nd↑−nd↓) +O(∆τ 2).

For a specific configuration of Ising spins, i.e., for a given set of values for the variables {si},
the contribution to the partition function of the auxiliary model has the form

Z{si} = Det[O↑{si}]Det[O↓{si}],

Taking the inverse of Oσ
{si} yields the Green function matrix Gσ

{si}. The latter has dimension
NL × NL where N is the total number of sites (bath plus impurity) and satisfies the Dyson
equation

Gσ
{sj} = [Aσ]−1Gσ

{si}, Aσ = 1 +
[
1−Gσ

{si}
] [
e
V{si}−V{sj} − 1

]
,

where {sj} and {si} are two different configurations and the matrix V{si} = λσsi(l)|d〉〈d| is
a potential acting only on the impurity site. Since the potential is local, the impurity Green
function Gd satisfies the Dyson equation

[Gσ
d ]{sj} = [Aσd ]−1[Gσ

d ]{si}, Aσd = 1 +
[
1− [Gσ

d ]{si}
] [
e
V{si}−V{sj} − 1

]
.

By summing over all possible configurations, we have

Z =
∑

{si}

Z{si}, Gσ
d =

∑

{si}

w{si}[G
σ
d ]{si}

where

w{si} =
Z{si}∑
{si} Z{si}

.

Thus, if w{si} were positive definite, it could be used as Boltzmann weight for importance
sampling. Unfortunately the ratio of determinants can be negative for some configurations,
giving rise to the minus-sign problem. Still, we can define |w{si}| as Boltzmann weight and
keep track of the sign of the product of determinants.
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Remarkably, the ratio of the ‘Boltzmann weights’ of two different configurations

w{sj}

w{si}
=

DetO↑{sj}DetO↓{sj}

DetO↑{si}DetO↓{si}
= R↑R↓.

can be obtained via the Dyson equation; in particular, if we flip a spin at time slice l

Rσ = 1 +
[
1−

[
[Gσ

d ]{si}
]
l,l

] [
e−2λsi(l) − 1

]
.

Thus, we do not need to calculate the determinants. If a new configuration is accepted we have,
however, to recalculate the Green function. In conclusion, the Green function can be obtained
as

Gσ
d ∼

∑
{c}〈Gσ

d〉c sign(wc)∑
{c} sign(wc)

,

where {c} are the visited configurations. The linear response function χα is obtained similarly

χα ∼
∑
{c}〈χα〉c sign(wc)∑
{c} sign(wc)

.

Since the Wick theorem holds for a given configuration, we have 〈χα〉c = 〈Gα,γ′〉c〈Gγ,α′〉c.
The Hirsch-Fye algorithm can be generalized to more complex local interactions, such as the
density-density Coulomb interaction in the multi-orbital Hubbard model, by introducing addi-
tional Ising fields s and correspondingly additional parameters λ.

3.5.2 CT-HYB QMC quantum impurity solver

In continuous-time QMC [30] the partition function is expanded in either the hybridization
(CT-HYB) or the interaction (CT-INT). Here we discuss shortly the first algorithm, in which
the expansion series is in powers of Ĥhyb. We follow the notation of Ref. [31]. Since for this
algorithm we do not need to specify the form of the local interaction, let us consider the most
general quantum-impurity Hamiltonian Ĥ = Ĥloc + Ĥbth + Ĥhyb, where

Ĥloc =
∑

αᾱ

ε̃αᾱc
†
αcᾱ +

1

2

∑

αα′

∑

ᾱᾱ′

Uαα′ᾱᾱ′c
†
αc
†
α′cᾱ′cᾱ,

Ĥbth =
∑

γ

εγb
†
γbγ,

Ĥhyb =
∑

γ

∑

α

[
Vγ,αc

†
αbγ + h.c.

]
.

This is a generalized Anderson model that describes a multi-orbital correlated impurity, e.g.,
site i = 0 in the original multi-band Hubbard model (2), coupled to a bath; it is the typical
local impurity model which we have to solve in a realistic DMFT calculation. The combined
index α = mσ labels spin and orbital degrees of freedom. For the bath we can use, without
loss of generality, the basis that diagonalizes Ĥbth, with quantum numbers γ. Finally, we define
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ε̃αᾱ = εαᾱ−∆εDC
αᾱ , where εαᾱ is the crystal-field matrix and ∆εDC

αᾱ is the double-counting
correction. We work in the interaction picture, and therefore

Ĥhyb(τ) = eτ(Ĥbth+Ĥloc)Ĥhybe−τ(Ĥbth+Ĥloc).

By expanding the partition function in powers of Ĥhyb we obtain the series

Z = Tr
[
e−β(Ĥbth+Ĥloc)T e−

∫ β
0 dτĤhyb(τ)

]
=

∞∑

m=0

(−1)m
∫ (m)

dτ Tr T
[

e−β(Ĥbth+Ĥloc)

1∏

i=m

Ĥhyb(τi)

]
,

where T is again the time-ordering operator, τ = (τ1, τ2, . . . τm) with τi+1 ≥ τi and
∫ (m)

dτ ≡
∫ β

0

dτ1 . . .

∫ β

τm−1

dτm.

In the trace, only terms containing an equal number of creation and annihilation operators in
both the bath and impurity sector, i.e., only even expansion orders m = 2n, yield a finite
contribution. Introducing the bath partition function Zbth = Tr e−βĤbth , the partition function
can be factorized as

Z

Zbth
=
∞∑

n=0

∫ (n)

dτ

∫ (n)

dτ̄
∑

αᾱ

z
(n)
α,ᾱ(τ , τ̄ ) , (39)

with z(n)
α,ᾱ(τ , τ̄ ) = t

(n)
α,ᾱ(τ , τ̄ ) d

(n)
ᾱ,α(τ , τ̄ ) . The first factor is the trace over the impurity states

t
(n)
α,ᾱ(τ , τ̄ ) = Tr T

[
e−β(Ĥloc−µN̂)

1∏

i=n

cαi(τi)c
†
ᾱi(τ̄i)

]
,

where c(†)
α (τ) = eτ(Ĥloc−µN̂)c

(†)
α e−τ(Ĥloc−µN̂) and N is the total number of electrons on the im-

purity. For expansion order m = 2n, the vector α = (α1, α2 . . . αn) gives the flavors αi
associated with the n annihilation operators on the impurity at imaginary times τi, while the
ᾱ = (ᾱ1, ᾱ2 . . . ᾱn) are associated with the n creation operators at τ̄i. The second factor is the
trace over the non-interacting bath, which is given by the determinant

d
(n)
ᾱ,α(τ , τ̄ ) = det[F

(n)
ᾱ,α(τ , τ̄ )]

of the n × n square hybridization-function matrix with matrix elements [F
(n)
ᾱ,α(τ , τ̄ )]i′,i =

Fᾱi′αi(τ̄i′ − τi) given by

Fᾱα(τ) =
∑

γ

Vγ,ᾱV̄γ,α
1 + e−βεγ

×




−e−εγτ τ > 0

e−εγ(β+τ) τ < 0.

On the fermionic Matsubara frequencies, ωn, its Fourier transform

Fᾱα(ωn) =
∑

γ

Vγ,ᾱV̄γ,α
iωn − εγ
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is related to the bath Green-function matrix G by

Fᾱα(ωn) = iωnδᾱα−ε̃ᾱα−(G)−1
ᾱα(ωn),

as can be shown by downfolding the original multiband Hubbard model, Eq. (2), to the impurity
block (say, the i = i0 site)

(G)−1(ωn) =




iωnIi0 −Hi0 V1,i0 V2,i0 . . .

V̄1,i0 iωn − ε1 0 . . .

V̄2,i0 0 iωn − ε2 . . .
...

...
... . . .



.

Here the matrix elements of Hi0 and Ii0 are given by (Hi0)αᾱ = ε̃αᾱ and (Ii0)αᾱ = δα,ᾱ, while
(Vi0,i)ᾱi = Vᾱ,i, and

(
V̄i,i0

)
iα

= V̄i,α. The partition function defined in Eq. (39) can be seen as
the sum over all configurations c = {αiτi, ᾱiτ̄i, n} in imaginary time and flavors. In a compact
form, similar to the case of the Hirsch-Fye algorithm, we have

Z =
∑

c

〈Z〉c =
∑

c

wc ∼
∑

{c}

sign(w{c}) ,

where in the last term the sum is over a sequence of configurations {c} sampled by Monte Carlo
using |wc| as the probability of configuration c.
Finally, a generic observable O can then be obtained as the Monte Carlo average

O ∼
∑
{c}〈O〉c sign(wc)∑
{c} sign(wc)

where 〈O〉c is the value of the observable for configuration c. The average expansion order
increases linearly with the inverse temperature.
The Green function matrix can, e.g., be obtained as the Monte Carlo average with

〈O〉c = 〈Gαᾱ〉c =
n∑

ij=1

∆(τ, τj−τ̄i)[M (n)]jiδαjαδᾱiᾱ.

Here M (n) = [F (n)]−1 is the inverse of the hybridization-function matrix, updated at each
accepted move, and ∆ is given by

∆(τ, τ ′) = − 1

β





δ (τ − τ ′) τ ′ > 0

−δ (τ − (τ ′ + β)) τ ′ < 0,

where the δ-function is discretized. Alternatively, we can calculate the Green function matrix
from its Legendre coefficients [26], i.e., use the Fourier-Legendre series. The Legendre poly-
nomials {Pl(x)} form a complete orthogonal system over the interval [−1, 1] and therefore the
Green function may be expanded in terms of them as

Gαᾱ(τ) =
∞∑

l=0

√
2l + 1

β
Pl(x(τ))Gl

αᾱ, (40)
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with x(τ) = 2τ/β − 1. The first four Legendre polynomials are

l = 0 l = 1 l = 2 l = 3

Pl(x) 1 x 1
2
(3x2 − 1) 1

2
(5x3 − 3x)

The coefficients of the expansion are given by

Gl
αᾱ =

√
2l + 1

∫ β

0

dτ pl(x(τ))Gαᾱ(τ). (41)

This can be verified by replacing (40) into (41) and then using the orthogonality property of the
Legendre polynomials

∫ 1

−1

dx Pl(x)Pl′(x) dx =
2

2l + 1
δl,l′ .

We can then sample directly the Legendre coefficients; for a given configuration

〈Gl
αᾱ〉c =

n∑

i,j=1

P̃l(τj − τ̄i)[M (n)]j,iδαjαδᾱiᾱ

P̃l(τ) = −
√

2l + 1

β
×
{

Pl(x(τ)), τ > 0

−Pl(x(τ + β)), τ < 0

Since the coefficients Gl decay fast for large l, it is often convenient to work with the Legendre
rather than with the Matsubara representation, or with a mixed representation. In particular, the
Bethe-Salpeter equation can be rewritten in terms of Legendre coefficients for the susceptibility.
Let us first start from the Green function matrix

Gαγ(νn) =

∫ β

0

dτ12 e
iνnτ12 Gαγ(τ12) =

∑

l

Tn,lG
l
αγ

Tn,l =

√
2l + 1

β

∫ β

0

dτ12 e
iνnτ12 pl(x(τ12)).

We can now express the non-interacting susceptibility in terms of the transformation matrices
Tn,l and the Legendre coefficients χl,l

′

0 (ωm)

[χ0(ωm)]n,n′ =
1

16

∫∫∫∫
dτ ei[νnτ12+νn′τ34] χαα

′

γγ′ (τ )e−iωmτ23

= − 1

16

∫∫∫∫
dτ ei[νnτ12+νn′τ34] Gαγ′(τ14)Gγα′(−τ23)e−iωmτ23

=
∑

ll′

Tn,l χ
ll′

0 (ωm) T ∗n′,l.

A similar relation holds for the full susceptibility [χ(ωm)]n,n′ =
∑

ll′ Tn,l χ
ll′(ωm) T ∗n′,l.
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4 Conclusion

In this lecture, I have introduced some of the fundamental aspects of linear-response theory,
with focus on strongly correlated materials. Along the way, we have seen an important theo-
rem connecting the linear susceptibility and the correlation function, the fluctuation-dissipation
theorem; we have discussed the analytic and symmetry properties of the linear susceptibility
tensor; we have introduced the thermodynamic- and the f-sum rule. In the second part of the
lecture, we have seen how to calculate the susceptibility using dynamical mean-field theory, the
state-of-the art approach for strongly correlated materials. Within this method, the local suscep-
tibility is obtained via the quantum-impurity solver; the q-dependent susceptibility can, instead,
be calculated solving the Bethe-Salpeter equation in the local-vertex approximation. We have
seen that the vertex in the Bethe-Salpeter equation plays a crucial role. As representative exam-
ples we have used the one-band Hubbard model and when possible the generalized multi-band
Hubbard model. Finally, we have presented two impurity solvers, the Hirsch-Fye QMC and the
hybridization-expansion continuous-time QMC method.
Linear response functions are of fundamental importance when we want to compare our theory
of a given phenomenon to experiments. In addition, the linear susceptibility tensor is a key
ingredient of extensions of DMFT such as, e.g., the dual-fermion and the dual-boson approach.
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Appendix

Atomic units

In this lecture, formulas are expressed in atomic units unless specified otherwise. The unit of
mass m0 is the electron mass (m0 = me), the unit of charge is the electron charge (e0 = e), the
unit of length is the Bohr radius (a0 = aB ∼ 0.52918 Å), and the unit of time t0 = 4πε0~a0/e

2.
In these units, the numerical value of the Bohr radius aB, of the electron charge e, of the electron
mass me, of 1/4πε0, and of ~ is 1. Furthermore, the speed of light is c = 1/α ∼ 137, the Bohr
magneton µB = 1/2, and the unit of energy is the Hartree (1 Ha∼ 27.211 eV).

Fourier transforms

We use the following conventions for the Fourier transforms. su For the direct and inverse
Fourier transform in frequency and time

f(ω) =

∫ ∞

−∞
dt f(t) eiωt

f(t) =

∫ ∞

−∞

dω

2π
f(ω) e−iωt.

For the direct and inverse transform in spatial/momentum coordinates

g(q) =

∫
dr g(r) eiq·r

g(r) =

∫
dq

(2π)3
g(q) e−iq·r.

For ideal lattices and k vectors in the first Brillouin Zone

1

Ns

∑

k

e−ik·T = δT ,0,

1

Ns

∑

T

eik·T =
∑

G

δk,G,

where Ns is the number of lattice sites.

Dirac delta function

The Dirac delta function is defined as

δ(x) =

∫ ∞

−∞

dω

2π
e−iωx.



Linear Response Functions 6.45

Some of the properties of the delta function:

∫
f(x)δ(x− b)dx = f(b),

δ(x) = δ(−x),

δ(ax) =
1

|a|δ(x),

δ(r) = δ(x)δ(y)δ(z).

Heisenberg representation

Real time:

Â(t) = ei(Ĥ−µN̂)tÂe−i(Ĥ−µN̂)t.

Imaginary time:

Â(τ) = e(Ĥ−µN̂)τ Âe−(Ĥ−µN̂)τ ,

[Â(τ)]† = e−(Ĥ−µN̂)τ Â†e(Ĥ−µN̂)τ = Â†(−τ)

Fermi-Dirac distribution function

The Fermi-Dirac distribution function is defined as

n(ε) =
1

1 + eβε
.

In the lecture we used the following relations

1− n(ε) =
eβε

1 + eβε
= n(−ε),

n(ε)[1− n(ε)] =
eβε

(1 + eβε)2
= − 1

β

dn(ε)

dε
,

dn(ε)

dε
= −dn(−ε)

dε
.

Futhermore

lim
T→0

βn(ε)[1− n(ε)] = δ(ε),

lim
∆→0

1

∆
[n(ε)− n(ε+∆)] = δ(ε).
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Analytic functions

Here, we shortly summarize the properties of complex functions which have been used in the
lecture. A complex function is said to be analytic on a domain D in the complex plane if it is
differentiable at every point inside D. If f(z) is analytic at all points within and on a closed
path C (traversed in anti-clockwise direction) the Cauchy integral theorem holds

∮

C
f(z)dz = 0. (42)

The points on which a function f(z) is not analytic are called singularities. There are two types
of singularities, isolated (i.e., at some specific z = z0) and extended singularities. If a function
f(z) has an isolated singularity in z = z0 and there is an integer n such that for m ≥ n the
function (z − z0)mf(z) is analytic in z0, then z0 is said to be a pole of order n of the function
f(z). Apart from poles, other types of isolated singularities are essential singularities, loga-
rithmic singularities and removable singularities. Let us consider some examples of complex
functions that we have used in this lecture. The function

f(z) =
1

z − z0

has a single pole in z0; this pole is of first order. The Fermi-Dirac distribution function

f(z) =
1

1 + eβz

has instead infinite poles, all the fermionic Matsubara frequencies z = iνn = i(2n+ 1) π/β. In
a similar way the Bose distribution function

f(z) =
1

eβz − 1

has infinite poles at the bosonic Matsubara frequencies z = iωm = i2m π/β.
If within the contour C a function f(z) is analytic except for a set of poles {zn} of order one,
the residue theorem holds

∮

C
f(z)dz = 2πi

∑

{zn}

Res[f(zn)],

Res[f(zn)] = lim
z→zn

f(z)(z − zn),

where the term Res[f(zn)] is called residue of the function f(z) at the point zn.
Extended singularities are of two types, natural boundaries and branch cuts. The latter are
curves (e.g., lines or segments) in the complex plane across which a multi-valued function is
discontinuous. Let us consider as example the function f(z) =

√
z; this function is double-

valued, for example, in z = 1 it can take both the values ±1. Let us define the principal value
of the function

√
z as the positive square root (+1), and let us rewrite z = |z|eiφ; the function√

z has then a branch cut at φ = 2π, i.e., along the line y ≥ 0.
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Spin and magnetization operators

The spin operators Ŝν are defined as

Ŝν =
1

2

∑

σσ′

c†σσνcσ′ ,

where ν = x, y, z and σ̂ν are the Pauli matrices

σ̂x =

(
0 1

1 0

)
σ̂y =

(
0 −i
i 0

)
σ̂z =

(
1 0

0 −1

)
.

The magnetization operators M̂ν are defined as M̂ν = −gµBŜν .

Useful formulas

• Sokhotski-Plemelj formula

1

ω + i δ
= P 1

ω
− iπδ(ω)

• Cauchy principal value

∫ ∞

−∞
P 1

ω
dω =

∫ −ε

−∞

1

ω
dω +

∫ ∞

ε

1

ω
dω,

• Fourier representation of Θ(t) function

Θ(t) = i

∫ ∞

−∞

dω′′

2π
e−iω

′′t 1

ω′′ + iδ
,

• Integral of imaginary exponential

I(x) =

∫ ∞

0

eixtdt =
i

x+ iδ
, δ = 0+.

Atomic magnetic susceptibility

Let us consider an idealized single-level atom described by the Hamiltonian ĤU = Un↑n↓. The
eigenstates of this system, |ΨNi 〉, as well as the expectation values Ei = 〈ΨNi |ĤU − µN̂ |ΨNi 〉 at
half-filling, are given in the table below

|ΨNi 〉 N Ei = 〈ΨNi |ĤU − µN̂ |ΨNi 〉
|0〉 0 0

c†σ|0〉 1 −U/2
c†↑c
†
↓|0〉 2 0
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The magnetic susceptibility in Matsubara space is given by

[χzz]nn′ (iωm) = β
1

4
(gµB)2

∑

P

sign(P )fP

fP (iωP1 , iωP2 , iωP3) =

∫ β

0

dτ14

∫ τ14

0

dτ24

∫ τ24

0

dτ34 e
iωP1τ14+iωP2τ24+iωP3τ34fP (τ14, τ24, τ34)

where P = A,B, . . . are the six possible permutations of the indices (123) and

fP (τ14, τ24, τ34) =
1

Z

∑

σσ′

σσ′Tr e−β(Ĥ−µN̂)
[
ôP1(τ14)ôP2(τ24)ôP3(τ34)c†σ′

]

=
1

Z

∑

σσ′

σσ′
∑

ijkl

e−βEi〈i|ôP1|j〉〈j|ôP2|k〉〈k|ôP3|l〉〈l|c†σ′|i〉

×
[
e∆Eijτ14+∆Ejkτ24+∆Eklτ34

]
,

where ∆Eij = Ei − Ej . For the identity permutation the operators are ôP1 = cσ, ôP2 = c†σ, and
ôP3 = cσ′ and the frequencies are ω1 = νn, ω2 = −ωm − νn, ω3 = ωm + νn′ . This expression
can be used to calculate the magnetic susceptibility of any one-band system whose eigenvalues
and eigenvectors are known, e.g., via exact diagonalization. In the case of our idealized atom

fE(τ14, τ24, τ34) =
1

(1 + eβU/2)
eβU/2 e−(τ12+τ34)U/2 =

1

(1 + eβU/2)
gE(τ14, τ24, τ34).

The frequencies and functions fP (τ14, τ24, τ34) for all permutations are given in the table below

ωP1 ωP2 ωP3 gP (τ14, τ24, τ34) sign(P )

E(123) νn −ωm − νn ωm + νn′ eβU/2 e−(τ12+τ34)U/2 +

A(231) −ωm − νn ωm + νn′ νn −eβU/2 e−(τ12+τ34)U/2 +

B(312) ωm + νn′ νn −ωm − νn −e+(τ12+τ34)U/2 +

C(213) −ωm − νn νn ωm + νn′ −eβU/2e−(τ12+τ34)U/2 −
D(132) νn ωm + νn′ −ωm − νn −e+(τ12+τ34)U/2 −
F (321) ωm + νn′ −ωm − νn νn e+(τ12+τ34)U/2 −

The missing ingredient is the integral

IP (x,−x, x;iωP1 , iωP2 , iωP3) =

∫ β

0

dτ14

∫ τ14

0

dτ24

∫ τ24

0

dτ34 e
iωP1τ14+iωP2τ24+iωP3τ34ex(τ14−τ24+τ34)

= +

∫ β

0

dτ14

∫ τ14

0

dτ

∫ τ14−τ

0

dτ ′ e(iωP1+iωP2+iωP3+x)τ14−i(ωP2+ωP3 )τe−(iωP3+x)τ ′

= +
1

iωP3 + x

1

−iωP2 + x

[
1

iωP1 + x

1

n(x)
+ βδωP1+ωP2

]

+
1

iωP3 + x

1− δωP2+ωP3

i(ωP2 + ωP3)

[
1

iωP1 + x
− 1

i(ωP1 + ωP2 + ωP3) + x

]
1

n(x)

+ δωP2+ωP3

1

iωP3 + x

{[
1

(iωP1 + x)

]2
1

n(x)
− β

[
1

(iωP1 + x)

]
1− n(x)

n(x)

}
.

where x = ±U/2, depending on the permutation. The general expression of the integral
IP (∆Eij, ∆Ejk, ∆Ekl; iω1, iω2, iω3) can be found in Refs. [32, 33].
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