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1.2 Dieter Vollhardt

1 Introduction

Correlations between the degrees of freedom of d and f electrons lead to a wealth of fasci-
nating phenomena, which include Mott metal-insulator transitions [1–3], the Kondo effect [4],
heavy fermion behavior [5], band-ferromagnetism [6], high-temperature superconductivity [7],
colossal magnetoresistance [8], and other Fermi liquid instabilities [9]. In particular, the very
sensitive dependence of the properties of correlated materials on external parameters such as
temperature, pressure, magnetic field, or doping make them interesting not only for fundamen-
tal research but also for future technological applications, e.g., the construction of sensors and
switches, and the development of electronic devices with novel functionalities [10].
The importance of interactions between electrons in a solid was realized already at the outset
of modern solid state physics. Namely, the report by de Boer and Verwey [11] on the sur-
prising properties of materials with partially filled 3d-bands such as NiO prompted Mott and
Peierls [12] to postulate that theoretical explanations of these properties must include the elec-
trostatic interaction between the electrons. Explicit calculations soon confirmed this conjecture.
At the same time it turned out that theoretical studies of interacting many-fermion systems are
highly demanding. Here the development of the dynamical mean-field theory (DMFT) marks
a methodological breakthrough. Indeed, by replacing the d-dimensional lattice of a correlated-
electron solid by a single quantum impurity, which is self-consistently embedded in a bath
provided by the other electrons, the DMFT opened the way for comprehensive theoretical inves-
tigations of correlation phenomena in electronic lattice models and materials. The starting point
for the development of this powerful new many-body approach was the discovery, 25 years ago,
that diagrammatic perturbation theory for interacting lattice fermions is much simpler in infinite
spatial dimensions than in finite dimensions and, in particular, that the self-energy is then purely
local. The current Autumn School on Correlated Electrons DMFT at 25: Infinite Dimensions
commemorates this anniversary. Starting with a discussion of the properties of the Gutzwiller
variational wave function and the mean-field-type Gutzwiller approximation, which provides a
simplistic but robust, non-perturbative theoretical approach to correlated lattice fermions, I will
describe the steps which eventually led to the formulation of the DMFT.

1.1 Modeling of correlated lattice electrons

The simplest model for interacting electrons in a solid is the one-band Hubbard model, which
was introduced independently by Gutzwiller, Hubbard and Kanamori [13–15]. In this model
the interaction between the electrons is assumed to be strongly screened, i.e., purely local. The
Hamiltonian Ĥ is the sum of two terms, the kinetic energy Ĥkin and the interaction energy ĤI

(here and in the following operators are denoted by a hat):

Ĥ =
∑
Ri,Rj

∑
σ

tij ĉ
†
iσ ĉjσ + U

∑
Ri

n̂i↑n̂i↓ , (1)

where tij is the hopping amplitude, U is the local Hubbard interaction, ĉ†iσ(ĉiσ) is the creation
(annihilation) operator of an electron with spin σ in a Wannier orbital localized at lattice site Ri,
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Fig. 1: Schematic illustration of interacting electrons in a solid described by the Hubbard
model. The ions enter only as a rigid lattice, here represented by a square lattice. The electrons,
which have a mass, a negative charge, and a spin (↑ or ↓), are quantum particles that move
from one lattice site to the next with a hopping amplitude t. The quantum dynamics thus leads
to fluctuations in the occupation of lattice sites as indicated by the time sequence. A lattice site
can either be unoccupied, singly occupied (↑ or ↓), or doubly occupied. When two electrons
meet on a lattice site, which is only possible if they have opposite spin because of the Pauli
exclusion principle, they encounter an interaction U .

and n̂iσ = ĉ†iσ ĉiσ. The Hubbard interaction can also be written as ĤI = UD̂ where D̂ =
∑

Ri
D̂i

is the number operator of doubly occupied sites of the system, with D̂i = n̂i↑n̂i↓ as the local
operator for double occupation. The Fourier transform of the kinetic energy

Ĥkin =
∑
k,σ

εkn̂kσ (2)

is defined by the dispersion εk and the momentum distribution operator n̂kσ. A schematic
picture of the Hubbard model is shown in Fig. 1. For strong repulsion U double occupations
are energetically unfavorable and are therefore suppressed. In this situation the local correlation
function 〈n̂i↑n̂i↓〉 must not be factorized, since otherwise correlation phenomena are eliminated
from the beginning. Therefore Hartree-Fock-type mean-field theories, which do factorize the
interaction, cannot explain the physics of strongly correlated electrons.

The Hubbard model looks deceptively simple. However, the competition between the kinetic
energy and the interaction leads to a complicated many-body problem, which is impossible to
solve analytically except in dimension d = 1 [16]. This model provides the basis for most of
the theoretical research on correlated electrons during the last few decades.
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2 Approximation schemes for correlated electrons

Theoretical investigations of quantum-mechanical many-body systems are faced with severe
technical problems, particularly in those dimensions which are most interesting to us, namely
d = 2, 3. This is due to the complicated quantum dynamics and, in the case of fermions, the
non-trivial algebra introduced by the Pauli exclusion principle.

In view of the fundamental limitations of exact analytical approaches one might hope that, at
least, modern supercomputers can provide detailed numerical insights into the thermodynamic
and spectral properties of correlated fermionic systems. However, since the number of quantum
mechanical states increases exponentially with the number of lattice sites L, numerical solutions
of the Hubbard model and related models are limited to relatively small systems. This shows
very clearly that there is still a great need for analytically tractable approximation methods [17],
in particular for non-perturbative approximation schemes which are applicable for all input
parameters.

2.1 Mean-field theories

In the theory of classical and quantum many-body systems an overall description of the prop-
erties of a model is often obtained within a mean-field theory. Although the term is frequently
used it does not have a precise meaning, since there exist numerous ways to derive mean-field
theories. One construction scheme is based on a factorization of the interaction, as in the case
of the Weiss mean-field theory for the Ising model, or the Hartree-Fock theory for electronic
models. The decoupling implies a neglect of fluctuations (or rather of the correlation of fluctu-
ations; for details see Ref. [18]) and thereby reduces the original many-body problem to a solv-
able problem where a single spin or particle interacts with a mean field provided by the other
particles. Another, in general unrelated, construction scheme makes use of the simplifications
that occur when some parameter is assumed to be large (in fact, infinite), e.g., the magnitude
of the spin S, the spin degeneracy N , the number Z of nearest neighbors of a lattice site (the
coordination number), or the spatial dimension d.1 Investigations in this limit, supplemented, if
possible, by an expansion in the inverse of the large parameter, 2 often provide valuable insight
into the fundamental properties of a system even when this parameter is not large. One of the
best-known approximations obtained in this way is the Weiss mean-field theory for the Ising
model [19]. This is a prototypical “single-site mean-field theory,” which becomes exact not
only in the limit Z → ∞ or d → ∞, but also for an infinite-range interaction. It contains no
unphysical singularities and is applicable for all values of the input parameters, i.e., coupling
parameters, magnetic field, and temperature.

1For regular lattices both a dimension d and a coordination numberZ can be defined. However, there exist other
lattices, such as the Bethe lattice, which cannot be associated with a physical dimension d although a coordination
number Z is well-defined.

2In three dimensions one has Z = 6 for a simple cubic lattice, Z = 8 for a bcc lattice, and Z = 12 for an
fcc-lattice. The parameter 1/Z is therefore quite small already in d = 3.
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2.2 Variational wave functions

Another useful approximation scheme for interacting quantum many-body systems makes use
of variational wave functions. They allow for approximate but explicit and physically intuitive
investigations of correlations among quantum particles and are particularly valuable in situa-
tions where standard perturbation theory fails. Correlation problems where variational wave
functions have been employed include such diverse examples as the quantum liquids Helium-
3 and Helium-4 [20], rotons in superfluid 4He [21], nuclear physics [22], and the fractional
quantum Hall effect [23]. Variational wave functions received renewed attention in the study of
heavy fermions [24, 25] and high-Tc superconductivity [26].
The general strategy is to construct an explicit wave function of the form

|Ψvar〉 = Ĉ|Ψ0〉 (3)

where |Ψ0〉 is a tractable one-particle starting wave function on which a correlation operator
Ĉ(λ1, . . . , λn) acts. The latter depends on variational parameters λi and describes the micro-
scopic interaction between the particles in an approximate way. This wave function is then used
to calculate the expectation value of an operator Ô as

〈Ô〉var =
〈Ψvar|Ô|Ψvar〉
〈Ψvar|Ψvar〉

. (4)

In particular, by calculating and minimizing the ground state energy Evar = 〈Ĥ〉var, where Ĥ
is the Hamiltonian, the variational parameters contained in Ĉ (and perhaps also in |Ψ0〉) can be
determined. These parameters are used to suppress those configurations in |Ψ0〉 which for given
interaction strength are energetically unfavorable. The variational principle guarantees thatEvar

provides a rigorous upper bound for the exact ground state energy.

3 Gutzwiller wave functions

For the Hubbard model, (1), the simplest variational wave function of the form (3) is the so-
called Gutzwiller wave function

|ΨG〉 = gD̂ |FG〉 (5a)

=
∏
Ri

[1− (1− g)D̂i] |FG〉 , (5b)

where gD̂, with 0 ≤ g ≤ 1, is the correlation operator and |FG〉 is the ground state of the non-
interacting Fermi gas. Hence the correlation operator globally reduces the amplitude of those
spin configurations in |FG〉 with too many doubly occupied sites. The limit g = 1 corresponds
to the non-interacting case, while g → 0 describes the limit U → ∞. Indeed, for g → 0 one
finds

gD̂
∣∣∣
g=0

=
∏
Ri

[1− D̂i] ≡ P̂G . (6)
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The projection operator P̂G eliminates all configurations with doubly occupied sites (Gutzwiller
projection). The ground state energy in terms of the Gutzwiller wave function is then given by

EG = 〈Ĥ〉G ≡
〈ΨG|Ĥ|ΨG〉
〈ΨG|ΨG〉

. (7)

By replacing |FG〉 with a more general starting wave function one can also describe states
with broken symmetry; examples are the antiferromagnetic Hartree-Fock wave function (spin
density wave)

|SDW〉 =
∏
k,σ

[ukâ
†
kσ + σvkâ

†
k+Q,σ] |0〉 , (8a)

where Q is half a reciprocal lattice vector and |0〉 is the vacuum, and the BCS wave function [27]

|BCS〉 =
∏
k

[uk + vkâ
†
k↑â
†
−k↓] |0〉 , (8b)

which after projection leads to a resonating valence bond state (RVB) [26].

3.1 Gutzwiller approximation

In addition to introducing the wave function (5a) Gutzwiller constructed a non-perturbative
approximation scheme that allowed him to obtain an explicit expression for the ground state
energy of the Hubbard model [13, 28].3 We will see in Sec. 4.1.1 that this Gutzwiller approxi-
mation yields the exact result for expectation values calculated with Gutzwiller wave functions
in the limit of infinite spatial dimensions (d =∞). The idea behind the Gutzwiller approxima-
tion is easily understood [29,30] and will be illustrated below by calculating the norm 〈ΨG|ΨG〉.
Working in configuration space the ground state of the Fermi gas can be written as

|FG〉 =
∑
D

∑
{iD}

AiD |ΨiD〉, (9)

where |ΨiD〉 is a spin configuration with D doubly occupied sites and AiD the corresponding
probability amplitude. The sum extends over the whole set {iD} of different configurations
with the same D, and over all D. For a system with L lattice sites and Nσ electrons of spin σ
(σ-electrons) the number ND of different configurations in {iD} is given by the combinatorial
expression

ND =
L!

L↑!L↓!D!E!
, (10)

where Lσ = Nσ−D and E = L−N↑−N↓+D are the numbers of singly occupied and empty
sites, respectively. Since |ΨiD〉 is an eigenstate of D̂, the norm of |ΨG〉 reads

〈ΨG|ΨG〉 =
∑
D

g2D
∑
{iD}

|AiD |2. (11)

3By studying lattice electrons with a local Coulomb repulsion Gutzwiller wanted to understand the origin of
ferromagnetism in metals.
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The Gutzwiller approximation effectively amounts to neglecting spatial correlations between
the spins of the electrons. The probability |AiD |2 is then the same for all configurations of elec-
trons on the lattice, i.e., is given by the classical combinatorial result for uncorrelated particles

|AiD |2 = P↑P↓. (12)

Here Pσ = 1/
(
L
Nσ

)
' nNσσ (1 − nσ)L−Nσ , with nσ = Nσ/L, is the probability for an arbitrary

configuration of σ-electrons. In this case (11) reduces to

〈ΨG|ΨG〉 = P↑P↓
∑
D

g2DND. (13)

In the thermodynamic limit the sum in (13) is dominated by its largest term corresponding to a
value D = D̄, where D̄ = Ld̄ is determined by

g2 =
d̄(1− n↑ − n↓ + d̄)

(n↓ − d̄)(n↑ − d̄)
. (14)

Equation (14) has the form of the law of mass action where, however, the correlation parameter
g2 rather than the Boltzmann factor regulates the dynamical equilibrium between the concen-
trations of singly occupied sites on one side of this “chemical reaction” and that of doubly
occupied sites and holes on the other.4 Eq. (14) uniquely relates d̄ and g, such that g may be
replaced by the quantity d̄. The calculation of the expectation values of the kinetic and the in-
teraction energy of the Hubbard model proceeds similarly [30]. The Gutzwiller approximation
for quantum mechanical expectation values, which is based on the counting of classical spin
configurations, belongs to the class of quasiclassical approximations.

3.1.1 Brinkman-Rice transition

The ground state energy per lattice site of the Hubbard model as a function of the variational
parameter d̄(g) is then found as

EG[ d̄(g)]/L =
∑
σ

qσ(d̄, n↑, n↓)ε0,σ + Ud̄, (15)

which is to be minimized with respect to d̄. Here ε0,σ is the energy of non-interacting σ-electrons
and qσ ≤ 1 may be viewed as a reduction factor of the kinetic energy (or the band width) due to
correlations. In particular, for n↑ = n↓ one has qσ ≡ q = 2(1−δ−2d̄)(

√
d̄+ δ+

√
d̄)2/(1−δ2),

where δ = 1−n, with n = n↑+n↓ as the particle density, and ε↑ = ε↓. So one finds that within
the Gutzwiller approximation the correlations only lead to a multiplicative renormalization of
the non-interacting kinetic energy. Brinkman and Rice [32, 33] showed that in the special case
nσ = 1/2 (half-filled band) the minimization of (15) yields

q = 1− U2
, (16a)

d̄ = (1− U)/4, (16b)

E/L = −|ε0| (1− U)2, (16c)
4It is interesting to note that (14), with g2 replaced by the Boltzmann factor e−βU , is the exact result for the

Hubbard model with infinite-range hopping [31].
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where U = U/(8|ε0|) and ε0 = ε0↑ + ε0↓. Eq. (16c) implies that the ground state energy
E, which equals −L |ε0| at U = 0, increases with U and vanishes at a finite critical value
Uc = 8 |ε0|, since the density of doubly occupied sites d̄ (and hence the reduction factor q)
vanishes at this point. The fact that Ekin → 0 and EI → 0 for U → Uc means that the particles
become localized, which implies that a charge current can no longer flow. So the Gutzwiller ap-
proximation actually describes a Mott-Hubbard metal-insulator transition at a finite interaction
strength (Brinkman-Rice-transition). It occurs only for nσ = 1/2. A transition to a localized,
paramagnetic state with E = 0 at a finite value of U clearly does not describe the behavior
of the electrons completely. It is well known that for U � t localized spins couple antiferro-
magnetically, which leads to a lowering of the energy E = 0 by an amount EAF ∝ −t2/U .
This effect is not included in the Gutzwiller approximation, since spatial correlations were ex-
plicitly neglected. On the other hand, the magnetic coupling is an additional effect, which can
be derived within second-order perturbation theory from the localized state. Therefore, as long
as one is not too close to U = Uc the overall results of the Gutzwiller approximation are not
invalidated by the magnetic coupling and give important insight into the correlation-induced
approach to the localized state.

3.2 Connection to Fermi liquid theory

Since the results of the Gutzwiller approximation describe correlated, paramagnetic fermions
with a renormalized kinetic energy one can make contact with Landau’s Fermi liquid theory
[32, 30]. In particular, it turns out that the reduction factor q in (15) describes the discontinuity
of the momentum distribution nk at the Fermi level and may thus be identified with the inverse
effective mass ratio (m∗/m)−1 of the quasiparticles. Since m∗/m = q−1 <∞ for U < Uc, the
system is a Fermi liquid, i.e., a metal. At U = Uc the effective mass diverges and the system
becomes an insulator.
One can use (15) to calculate the spin susceptibility χs = χ0

s (m∗/m)/(1 + F a
0 ) and compress-

ibility κ = κ0 (m∗/m)/(1 + F s
0 ) within the Gutzwiller approximation, where χ0

s and κ0 are the
results for the non-interacting Fermi gas [32,30]. For nσ = 1/2, and assuming Galilei invariance,
one finds [30] m∗/m ≡ 1 + 1

3
F s
1 = 1/(1 − U2

). The corresponding Fermi liquid parameters
are given by

F a
0 = p

(
1

(1 + U)2
− 1

)
, (17a)

F s
0 = p

(
1

(1− U)2
− 1

)
, (17b)

F s
1 =

3U
2

1− U2 , (17c)

where p = 2|ε0|N(0), with N(0) as the density of states at the Fermi energy. For typical
symmetric densities of states one finds p ' 1. Hence, for U → Uc the Landau parameter F a

0

levels off and saturates at ' −3/4, while F s
0 increases much faster than linearly and eventually
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diverges. In particular, for U → Uc the Wilson ratio remains constant:

χs/χ
0
s

m∗/m
=

1

1 + F a
0

→ const. (18)

So the strong increase of χs as a function of U for U → Uc is mainly due to the rapid increase of
the effective mass ratio m∗/m and not due to an incipient ferromagnetic instability [34], which
would demand F a

0 → −1.
As first pointed out by Anderson and Brinkman [35] and discussed in detail in Ref. [30], the be-
havior expressed by (17c) and (18) is indeed observed in the prototypical Fermi liquid Helium-3
(3He). Normal-liquid 3He is an isotropic, strongly correlated fermionic system. The effective
mass m∗ and the spin susceptibility χs of the quasiparticles are strongly enhanced, while the
compressibility κ is strongly reduced. Normal-liquid 3He has therefore been called an almost-
localized Fermi liquid.

4 From the Gutzwiller approximation to infinite dimensions

My 1984 Review of Modern Physics article [30] explained Gutzwiller’s variational approach
to the Hubbard model, the Gutzwiller approximation, and the Brinkman-Rice transition and
thereby drew attention to the usefulness of this non-perturbative investigation scheme for cor-
related fermions. Nevertheless there remained questions about the nature of the Gutzwiller
approximation, whose results are simple and mean-field-like. In fact, the latter feature is one of
the reasons why the results of the Gutzwiller approximation, which originally had been derived
for lattice fermions, are applicable even to liquid 3He [30, 36]. The question was, therefore,
whether the Gutzwiller approximation could also be derived by other, more conventional meth-
ods of quantum many-body theory in some limit. During 1983-84 I discussed this question
with several colleagues, in particular with Andrei Ruckenstein at Bell Laboratories, Murray
Hill, in 1983. At that time, Andrei tried to understand whether it was possible to generalize
the Brinkman-Rice transition to correlated electronic systems in the presence of disorder [37].
This eventually led him and Gabi Kotliar to formulate a functional integral representation of
the Hubbard and Anderson models in terms of auxiliary bosons, whose simplest saddle-point
approximation (slave-boson mean-field theory) reproduces exactly the results of the Gutzwiller
approximation [38]. Thus they had shown that the results of the Gutzwiller approximation could
also be obtained without the use of the Gutzwiller variational wave function. We will return to
this mean-field theory in Section 4.1.1.

4.1 Calculation of expectation values with the Gutzwiller wave function

As mentioned earlier, mean-field theories can be constructed in different ways. In particular,
the Gutzwiller approximation, which was originally based on the quasi-classical counting of
electronic configurations on a real-space lattice [13, 28], had been re-derived as a saddle-point
approximation for electrons expressed in terms of auxiliary bosons [38]. At the same time, the
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question of whether the Gutzwiller approximation could also be derived in a controlled way
by calculating expectation values with the Gutzwiller wave function using conventional many-
body perturbation theory was still open. In 1986, I suggested to Walter Metzner, then a diploma
student of physics at the Technical University of Munich, to calculate the ground-state energy
of the one-dimensional Hubbard model with the Gutzwiller wave function by means of many-
body perturbation theory. It turned out that expectation values of the momentum distribution
and the double occupation can be expressed as power series in the small parameter g2−1, where
g is the correlation parameter in the Gutzwiller wave function (5a).5 The coefficients of the ex-
pansions are determined by diagrams which are identical in form to those of a conventional Φ4

theory. However, lines in a diagram do not correspond to one-particle Green functions of the
non-interacting system, G0

ij,σ(t), but to one-particle density matrices, g0ij,σ = 〈ĉ†iσ ĉjσ〉0. Walter
showed that it was possible to determine these coefficients to all orders in d = 1. This facil-
itated the exact analytic calculation of the momentum distribution and the double occupation,
and thereby of the ground state energy of the Hubbard chain, in terms of the Gutzwiller wave
function [40, 41].
In particular, for n = 1 and U � t the ground state energy obtained with the Gutzwiller wave
function in d = 1 has the form [40, 41]

EG = −
(

4

π

)2
t2

U

1

lnU
, (19)

where U = U/(8|ε0|), with ε0 < 0 as the energy of the non-interacting particles. Hence
the exact result, E ∼ −t2/U , obtained from second-order perturbation theory is found to be
multiplied by a factor which is non-analytic in U . This explained why the ground state energy
EG for the Hubbard model is not very accurate, as noted earlier on the basis of numerical
investigations of one-dimensional rings [42].
Does the result (19) automatically imply that |ΨG〉 is a poor wave function in the strong-coupling
limit? The answer is quite subtle: while it is true that |ΨG〉 is not a very good wave function for
the Hubbard model at U � t, it is nevertheless an excellent wavefunction in d = 1 for the t-J
model, the effective model for large U , where doubly occupied sites have been projected out;
for a more detailed discussion see Section 2.1 of Ref. [43]. This is demonstrated by the results
for the spin-spin correlation function CSS

j , with j ≡ |Rj|. Florian Gebhard, also a diploma
student at the Technical University of Munich at that time, to whom I had suggested to calculate
correlation functions for the Hubbard model in terms of the Gutzwiller wave function using
the technique developed in Refs. [40, 41], was able to analytically evaluate four different cor-
relation functions in d = 1 [44, 45]. The result for the spin-spin correlation function explicitly
showed that in the strong coupling limit (U = ∞) the Gutzwiller wave function describes spin
correlations in the nearest-neighbor, isotropic Heisenberg chain extremely well. For n = 1 and
U =∞ we obtained [44, 45]

CSS
j>0 = (−1)j

Si(πj)

πj

j→∞∼ (−1)j

2j
(20)

5For a more detailed account see Section 2.3 of Ref. [39].
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where Si(x) is the sine-integral. The asymptotic behavior implies a logarithmic divergence at
momentum 2kF , signaling antiferromagnetic fluctuations. Comparison with the exact analytic
result for the spin correlation function of the Heisenberg model for j = 1, 2 and for large j,
where [46, 47] CSS

j ∼ (−1)jj−1(ln j)1/2, shows that the Gutzwiller wave function without
doubly occupied sites (U = ∞) yields excellent results in d = 1 [44, 45]. The same is true
for hole-hole correlations in the limit n . 1 and U = ∞. Shortly afterwards Haldane [48]
and Shastry [49] independently proved that the Gutzwiller wave function for U = ∞ is the
exact solution of the spin-1/2 antiferromagnetic Heisenberg chain for an exchange interaction
Jij which decreases as6 Jij ∼ 1/|i − j|2. Thus the Gutzwiller wave function corresponds [48]
to the one-dimensional version of Anderson’s resonating valence bond (RVB) state [26].

4.1.1 Simplifications in the limit d → ∞

Our results [40, 41, 44, 45] had demonstrated that in d = 1 it was possible to calculate expec-
tation values in terms of the Gutzwiller wave function analytically for all interaction strengths.
However, our attempts to generalize this to dimensions d > 1 failed. To gain insight into the
density dependence of the coefficients of the power series in g2− 1 in dimensions d > 1 Walter
Metzner computed the sums over the internal momenta of the diagrams of many-body pertur-
bation theory by Monte-Carlo integration. The results for the lowest-order contribution to the
correlation energy for d= 1 up to d= 15 led to a surprise. Namely, the plot of the results for the
second-order diagram as a function of d (Fig. 2) showed that for large d the value of this diagram
converged to a simple result which could also be obtained if one assumed that the momenta car-
ried by the lines of a diagram are independent, i.e., that there is no momentum conservation at
a vertex. When summed over all diagrams this approximation gave exactly the results of the
Gutzwiller approximation [40,41]. Thus we had re-derived the Gutzwiller approximation within
conventional many-body perturbation theory! In view of the random generation of momenta in
a typical Monte-Carlo integration over momenta we concluded that the assumed independence
of momenta at a vertex is correct in the limit of infinite spatial dimensions (d → ∞). The
results of the Gutzwiller approximation thus correspond to the evaluation of expectation values
in terms of the Gutzwiller wave function in the limit of infinite dimensions. This provided a
straightforward explanation of the mean-field character of the Gutzwiller approximation.
The drastic simplifications of diagrammatic calculations in the limit d→∞ allow one to calcu-
late expectation values of the kinetic energy and the Hubbard interaction in terms of Gutzwiller-
type wave functions exactly [50,51]. However, these calculations become quite difficult or even
untractable when it comes to calculating with Gutzwiller-correlated wave functions of the more
general form

|ΨG〉 = gD̂ |Ψ0〉 (21)

where |Ψ0〉 is no longer the ground state of the Fermi gas, but a more complicated one-particle
starting wave function. This has to do with the fact that, in spite of the simplifications arising

6This distance dependence of the exchange coupling leads to a partial frustration of the spin orientation whereby
the antiferromagnetic correlations are weaker than in the original Heisenberg model.
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Fig. 2: Value of the second-order diagram for the ground state energy of the Hubbard model (see
insert) as calculated with the Gutzwiller wave function for spatial dimensions d = 1, . . . , 15,
and normalized by the value for d = 1, v(1) = (2/3)(n/2)3, where n is the particle density.
In the limit of high dimensions the normalized values v(d)/v(1) approach the constant 3n/4.
As discussed in the text the same result is obtained within a diagrammatic approximation that
yields the results of the Gutzwiller approximation; from Ref. [41].

from the diagrammatic collapse in d = ∞, the remaining diagrams have to be calculated in
terms of |Ψ0〉. Florian Gebhard [52] showed that this problem can be overcome when |Ψ0〉 in
(21) is written in the form

|Ψ0〉 = g
−

∑
iσ
µiσn̂iσ

|Ψ̃0〉 (22)

where |Ψ̃0〉 is again an arbitrary, normalized one-particle wave function and the local chemical
potentials µiσ are explicit functions of g and the local densities ñiσ = 〈Ψ̃0|n̂iσ|Ψ̃0〉. The operator
in (22) corresponds to a gauge-transformation by which the local chemical potentials can be
chosen such that all Hartree bubbles disappear in d = ∞. With this re-interpretation all dia-
grammatic calculations remain identical to the earlier ones, but vertices are given a new value
and lines correspond to

g̃0ij,σ = g0ij,σ (1− δij), (23)

where now g̃0ii,σ ≡ 0, and henceΣii,σ ≡ 0. Consequently, in d =∞ results are obtained without
the calculation of a single diagram. So what remains in d =∞ at all? First of all one finds that
the “law of mass action”, (14), is valid even locally and for arbitrary states |Ψ̃0〉 (even for states
with long-range order). Secondly, the expectation value of the Hubbard-Hamiltonian in terms
of (21), (22) assumes the following general form for arbitrary |Ψ̃0〉:

〈Ĥ〉 = −t
∑
〈Ri,Rj〉

∑
σ

√
qiσ
√
qjσ g

0
ij,σ + U

∑
i

d̄i, (24)

where 〈Ri,Rj〉 denotes nearest-neighbor sites, d̄i = 〈D̂i〉, and qiσ is given by qσ in (15) with
nσ replaced by ñiσ. In the translationally invariant case |Ψ0〉 ≡ |FG〉 the two wave-functions
|Ψ0〉 and |Ψ̃0〉 are the same up to a trivial factor, and qiσ ≡ qi, whereby (15) is re-derived.
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Fig. 3: Contribution to the irreducible self-energy for the Hubbard model in second-order per-
turbation theory in U and its collapse in the limit d→∞.

Interestingly, the result (24) is identical to the saddle-point solution of the slave-boson mean-
field theory for the Hubbard model [38] mentioned at the beginning of Section 4. In fact,
one finds that in d = ∞ the general set of Gutzwiller-correlated wave functions (21) with (22)
reproduce the full set of static saddle-point equations of the slave-boson approach. This provides
a direct connection between two seemingly different approaches, the slave-boson mean-field
theory and the diagrammatic calculation of expectation values in terms of the Gutzwiller wave
function in the limit d = ∞. It also shows that the slave-boson approach obeys the variational
principle and is valid for an arbitrary starting wave function |Ψ̃0〉; for a brief review see Ref. [53].

Calculations with the Gutzwiller wave function in d = ∞ are thus possible without the calcu-
lation of a single diagram. Later Gebhard and collaborators generalized this approach to multi-
band Hubbard models. This led them to the formulation of a Gutzwiller density-functional
theory which can be used to calculate, for example, the dispersion of quasi-particle excitations
in the Fermi liquid state of transition metals and other materials [54, 55].

4.2 Lattice fermions in infinite spatial dimensions

By studying the Hubbard model with the Gutzwiller wave function Walter Metzner and I had
found that in the limit d → ∞ diagrammatic calculations greatly simplify. Apparently, this
limit was not only useful for the investigation of spin models, but also in the case of lattice
fermions. To better understand this point, we analyzed the diagrams involved in the calculation
of expectation values with the Gutzwiller wave function in more detail. As mentioned earlier,
the form of the diagrams is identical to that of the usual Feynman diagrams in many-body
perturbation theory, but lines correspond to one-particle density matrices, g0ij,σ = 〈ĉ†iσ ĉjσ〉0. We
showed that in the limit d → ∞ diagrams collapse in position space [50, 51], such that only
local contributions remain (Fig. 3). In other words, momentum conservation at a vertex of a
skeleton diagram becomes irrelevant in the limit d → ∞, implying that the momenta carried
by the lines of a graph are indeed independent. In particular, the diagrams contributing to the
proper self-energy are purely diagonal in d =∞.
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4.2.1 Diagrammatic collapse in d = ∞

The reason behind the diagrammatic collapse can be understood as follows. The one-particle
density matrix may be interpreted as the amplitude for transitions between site Ri and Rj . The
square of its absolute value is therefore proportional to the probability for a particle to hop from
Rj to a site Ri. In the case of nearest-neighbor sites Ri, Rj on a lattice with coordination
number Z, this implies |g0ij,σ|2 ∼ O(1/Z). For nearest-neighbor sites Ri, Rj on a hypercubic
lattice (where Z = 2d), one therefore finds for large d

g0ij,σ ∼ O
(

1√
d

)
. (25)

For general i, j one finds [56, 51]

g0ij,σ ∼ O
(

1/d‖Ri−Rj‖/2
)
, (26)

where ‖ R ‖=
∑d

n=1 |Rn| is the length of R in the Manhattan metric.
It is important to bear in mind that, although g0ij,σ ∼ 1/

√
d vanishes for d→∞, the particles are

not localized but are still mobile. Indeed, even in the limit d→∞ the off-diagonal elements of
g0ij,σ contribute, since a particle may hop to d nearest neighbors with reduced amplitude t∗/

√
d.

For non-interacting electrons at T = 0 the expectation value of the kinetic energy is given by

E0
kin = −t

∑
〈Ri,Rj〉

∑
σ

g0ij,σ . (27)

On a hypercubic lattice the sum over the nearest neighbors (NN) leads to a factorO(d). In view
of the 1/

√
d dependence of g0ij,σ it is therefore necessary to scale the NN-hopping amplitude t

t→ t∗√
d
, t∗ = const., (28)

since only then the kinetic energy remains finite for d → ∞. The same result is obtained in a
momentum-space formulation.7

A rescaling of the microscopic parameters of the Hubbard model with d is only required in the
kinetic energy. Namely, since the interaction term is purely local, it is independent of the spatial
dimension. Altogether this implies that only the Hubbard Hamiltonian with a rescaled kinetic
energy

Ĥ = − t∗√
d

∑
〈Ri,Rj〉

∑
σ

ĉ†iσ ĉjσ + U
∑
Ri

n̂i↑n̂i↓ (29)

has a non-trivial d → ∞ limit where both terms, the kinetic energy and the interaction, are of
the same order of magnitude in d.

7This can be seen by calculating the density of states (DOS) of non-interacting particles. For nearest-neighbor
hopping on a d-dimensional hypercubic lattice εk has the form εk = −2t

∑d
i=1 cos ki (here and in the following

we set Planck’s constant ~, Boltzmann’s constant kB , and the lattice spacing equal to unity). The DOS correspond-
ing to εk is given by Nd(ω) =

∑
k δ(ω − εk), which is the probability density for finding the value ω = εk for

a random choice of k = (k1, . . . , kd). If the momenta ki are chosen randomly, εk is the sum of d independent
(random) numbers −2t cos ki. The central limit theorem then implies that in the limit d → ∞ the DOS is given

by a Gaussian, i.e., Nd(ω)
d→∞−→ 1

2t
√
πd

exp
[
−
(

ω
2t
√
d

)2]
. Only if t is scaled with d as in (28) does one obtain a

non-trivial DOS N∞(ω) in d =∞ [57, 50] and thus a finite kinetic energy.
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Fig. 4: Correlation energy E(2)
c = (2U2/|ε0|)e2 of the Hubbard model calculated in second-

order Goldstone perturbation theory in U vs. density n for dimensions d = 1, 3,∞. Here ε0 is
the kinetic energy for U = 0 and n = 1; from Ref. [50].

4.2.2 Simplifications of quantum many-body perturbation theory in the limit d → ∞

Walter and I now wanted to understand to what extent the simplifications that occur in dia-
grammatic calculations with the Gutzwiller wave function in d = ∞ carry over to general
many-body calculations for the Hubbard model. For this purpose, we evaluated the second-
order diagram in Goldstone perturbation theory [58] that determines the correlation energy at
weak coupling [50]. Due to the diagrammatic collapse in d =∞, calculations were again found
to be much simpler.8 Namely, the nine-dimensional integral in d = 3 over the three internal mo-
menta reduces to a single integral in d =∞, implying that in d =∞ the calculation is simpler
than in any other dimension. More importantly, the numerical value obtained in d = ∞ turned
out to be very close to that in the physical dimension d = 3 and therefore provides an easily
tractable, quantitatively reliable approximation (see Fig. 4).

These results clearly showed that microscopic calculations for correlated lattice fermions in d =

∞ dimensions were useful and very promising. Further insights were made quickly: Müller-
Hartmann [59] showed that in infinite dimensions only on-site interactions remain dynamical,

8The one-particle Green function (propagator) G0
ij,σ(ω) of the non-interacting system obeys the same 1/

√
d

dependence as the one-particle density matrix g0ij,σ (see (25)). This follows directly from g0ij,σ = limt→0− G
0
ij,σ(t)

and the fact that the scaling properties do not depend on the time evolution and the quantum mechanical represen-
tation. The Fourier transform of G0

ij,σ(ω) also preserves this property. For this reason the same results as those
obtained in the calculation with the Gutzwiller wave function hold: all connected one-particle irreducible diagrams
collapse in position space, i.e., they are purely diagonal in d =∞.



1.16 Dieter Vollhardt

that the proper self-energy becomes momentum-independent

Σσ(k, ω)
d→∞≡ Σσ(ω) (30a)

and hence is purely local in position space

Σij,σ(ω)
d→∞
= Σii,σ(ω)δij , (30b)

as in the case of diagrams calculated with the Gutzwiller wave function [50, 51], and therefore
typical Fermi liquid features are preserved (Sec. 4.2.5) [60]. Schweitzer and Czycholl [61]
demonstrated that calculations for the periodic Anderson model also become much simpler
in high dimensions.9 In particular, Brandt and Mielsch [65] derived the exact solution of the
Falicov-Kimball model for infinite dimensions by mapping the lattice problem onto a solvable
atomic problem in a generalized, time-dependent external field.10 They also noted that such a
mapping is, in principle, also possible for the Hubbard model.
Due to the property (30), the most important obstacle for actual diagrammatic calculations
in finite dimensions d ≥ 1 – namely, the integration over intermediate momenta – is greatly
simplified in d = ∞. Nevertheless, the limit d → ∞ does not affect the dynamics of the
system. Hence, in spite of the simplifications in position (or momentum) space, the problem
retains its full dynamics in d =∞.

4.2.3 Interactions beyond the on-site interaction

In the case of more general interactions than the Hubbard interaction, e.g., nearest neighbor
interactions such as

Ĥnn =
∑
〈Ri,Rj〉

∑
σσ′

Vσσ′n̂iσn̂jσ′ (31)

the interaction constant has to be scaled, too, in the limit d→∞. In the case of (31), which has
the form of a classical interaction, the “classical” scaling

Vσσ′ →
V ∗σσ′

Z
(32)

is required. Of course, the propagator still has the dependence (26). Due to (32), all contri-
butions, except for the Hartree-term, are found to vanish in d = ∞ [59]. Hence, nonlocal
interactions only contribute through their Hartree approximation, which is purely static. This
gives the Hubbard interaction a unique role: of all interactions for fermionic lattice models only
the Hubbard interaction remains dynamical in the limit d→∞ [59].

9For a more detailed discussion of the simplifications occurring in the investigation of Hubbard-type lattice
models or the t-J model [62, 63] in high dimensions see Ref. [64].

10Alternatively, it can be shown that in the limit Z →∞ the dynamics of the Falicov-Kimball model reduces to
that of a non-interacting, tight-binding model on a Bethe lattice with coordination number Z = 3, which can thus
be solved exactly [66].



From Gutzwiller to DMFT 1.17

4.2.4 One-particle propagator

Due to the k-independence of the irreducible self-energy, (30a), the one-particle propagator of
an interacting lattice fermion system is given by

Gk,σ(ω) =
1

ω − εk + µ−Σσ(ω)
. (33)

Most importantly, the k dependence of Gk(ω) comes entirely from the energy dispersion εk
of the non-interacting particles. This means that in a homogeneous system described by the
propagator

Gij,σ(ω) =
1

L

∑
k

Gk,σ(ω) eik·(Ri−Rj) , (34)

its local part, Gii,σ, is given by

Gii,σ(ω) =
1

L

∑
k

Gk,σ(ω) =

∞∫
−∞

dε
N0(ε)

ω − ε+ µ−Σσ(ω)
, (35)

where N0(ε) is the density of states of the non-interacting system. In the paramagnetic phase
we can suppress site and spin indices and write Gii,σ(ω) ≡ G(ω). The spectral function of the
interacting system (often referred to as the DOS as in the non-interacting case) is then given by

A(ω) = − 1

π
ImG(ω + i0+) . (36)

4.2.5 Consequences of the k-independence of the self-energy: Fermi liquid behavior

We now discuss some further consequences of the k-independence of the self-energy in the
paramagnetic phase as derived by Müller-Hartmann [60]. At T = 0, the one-particle propagator
(33) takes the form (again we suppress the spin index)

Gk(ω) =
1

ω − εk + EF −Σ(ω)
. (37)

In general, even when Σ(ω) is k-dependent, the Fermi surface is defined by the ω = 0 limit of
the denominator of (37) as

εk +Σk(0) = EF . (38a)

According to Luttinger and Ward [67], the volume within the Fermi surface is not changed by
interactions, provided the latter can be treated in perturbation theory. This is expressed by

n =
∑
kσ

Θ
(
EF − εk −Σk(0)

)
, (38b)

where n is the particle density and Θ(x) is the step function. The k-dependence of Σk(0) in
(38a) implies that, in spite of (38b), the shape of the Fermi surface of the interacting system will
be quite different from that of the non-interacting system (except for the rotationally invariant
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case εk = f(|k|). By contrast, for lattice fermion models in d =∞, where Σk(ω) ≡ Σ(ω), the
Fermi surface itself (and hence the volume enclosed) is not changed by interactions. The Fermi
energy is simply shifted uniformly from its non-interacting value E0

F , i.e., EF = E0
F + Σ(0),

to keep n in (38b) constant. Thus the ω = 0 value of the local propagator, G(0), and hence of
the spectral function, A(0) = − 1

π
ImG(i0+), is not changed by interactions. This behavior is

well-known from the single-impurity Anderson model [4]. Renormalizations of N(0) can only
come from a k-dependence of Σ, i.e., if ∂Σ/∂k 6= 0.
For ω → 0 the self-energy has the property

ImΣ(ω) ∝ ω2, (38c)

which implies Fermi liquid behavior. The effective mass of the quasiparticles

m∗

m
= 1− dΣ

dω

∣∣∣∣
ω=0

= 1 +
1

π

∫ ∞
−∞
dω

ImΣ(ω + i0−)

ω2
≥ 1 (38d)

is seen to be enhanced. In particular, the momentum distribution

nk =
1

π

∫ 0

−∞
dω ImGk(ω) (39)

has a discontinuity at the Fermi surface, given by nk−F −nk+F = (m∗/m)−1, where k±F = kF±0+.

5 Dynamical mean-field theory for correlated lattice fermions

The diagrammatic simplifications of many-body perturbation theory in infinite spatial dimen-
sions provide the basis for the construction of a comprehensive mean-field theory for lattice
fermions that is diagrammatically controlled and whose free energy has no unphysical sin-
gularities. The construction is based on the scaled Hamiltonian (29). Since the self-energy is
momentum independent but retains its frequency dependence, i.e., describes the full many-body
dynamics of the interacting system,11 the resulting theory is mean-field-like and dynamical and
hence represents a dynamical mean-field theory (DMFT) for lattice fermions which is able to
describe genuine correlation effects.

5.1 Derivation of the self-consistent DMFT equations

The DMFT equations can be derived in different ways. They all employ the fact that in d =

∞ lattice fermion models with a local interaction reduce to an effective many-body problem
whose dynamics corresponds to that of correlated fermions on a single site embedded in a bath
provided by the other fermions. This is illustrated in Fig. 5.
The single-site action and the DMFT equations were first derived by Václav Janiš [68] within a
generalization of the self-consistent coherent potential approximation (CPA)12 to lattice fermion

11This is in contrast to Hartree-Fock theory where the self-energy is merely a static potential.
12The CPA is a well-known mean-field theory for non-interacting, disordered systems. It becomes exact in the

limit d, Z →∞ [69].



From Gutzwiller to DMFT 1.19

Fig. 5: In the limit Z → ∞ the Hubbard model effectively reduces to a dynamical single-site
problem, which may be viewed as a lattice site embedded in a dynamical mean field. Electrons
may hop from the mean field onto this site and back, and interact on the site as in the original
Hubbard model (see Fig. 1). The local propagator G(ω), i.e., the return amplitude, and the
dynamical self-energy Σ(ω) of the surrounding mean field play the main role in this limit. The
quantum dynamics of the interacting electrons is still described exactly.

models with local interaction and local self-energy, such as the Falicov-Kimball and Hubbard
model in the limit d = ∞; for details see Refs. [68, 70, 18]. Shortly after that Václav joined
me, then at the RWTH Aachen University, on an Alexander-von-Humboldt fellowship. Before
we could start to solve the self-consistency equations [70], I received a preprint from Antoine
Georges and Gabi Kotliar [71] in which they had formulated the DMFT by mapping the lat-
tice problem onto a self-consistent single-impurity Anderson model. This mapping was also
employed by Mark Jarrell [72].
Although the DMFT equations derived within the CPA approach and the single-impurity ap-
proach are identical, the latter was immediately adopted by the community since it is connected
with the well-studied theory of quantum impurities and Kondo problems [4], for whose solution
efficient numerical codes such as the quantum Monte-Carlo (QMC) method [73] had been de-
veloped and were readily available. For this reason the single-impurity based derivation of the
DMFT immediately became the standard approach. For a detailed discussion see the review by
Georges, Kotliar, Krauth, and Rozenberg [74]; for an introductory presentation see the article
by Gabi Kotliar and myself [75].
The DMFT equations are given by
(A) the local propagator Gσ(iωn), which is expressed as a functional integral

Gσ(iωn) = − 1

Z

∫ ∏
σ

Dc∗σDcσ [cσ(iωn)c∗σ(iωn)] e−Sloc (40)
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with the partition function

Z =

∫ ∏
σ

Dc∗σDcσ e
−Sloc (41)

and the local action

Sloc = −
∫ β

0

dτ1

∫ β

0

dτ2
∑
σ

c∗σ(τ1)G−1σ (τ1 − τ2)cσ(τ2) + U

∫ β

0

dτ c∗↑(τ)c↑(τ)c∗↓(τ)c↓(τ). (42)

Here Gσ is the effective local propagator (also called bath Green function, or Weiss mean field)13

which is defined by a Dyson-type equation

Gσ(iωn) =
(

[Gσ(iωn)]−1 +Σσ(iωn)
)−1

. (43)

Furthermore, by identifying the Hilbert transform of the lattice Green function

Gk σ(iωn) =
1

iωn − εk + µ−Σσ(iωn)
(44)

with the local propagator (40) one obtains
(B) the self-consistency condition

Gσ(iωn) =
1

L

∑
k

Gk σ(iωn) =

∞∫
−∞

dε
N(ε)

iωn − ε+ µ−Σσ(iωn)
(45)

= G0
σ(iωn −Σσ(iωn)) . (46)

In (45) the ionic lattice on which the electrons live is seen to enter only through the DOS of the
non-interacting electrons. Eq. (46) illustrates the mean-field character of the DMFT-equations
particularly clearly: the local Green function of the interacting system is given by the non-
interacting Green function G0

σ with a renormalized energy iωn − Σσ(iωn), which corresponds
to the energy iωn measured relative to the energy of the surrounding dynamical fermionic bath,
i.e., the energy of the mean field Σσ(iωn).
The self-consistent DMFT equations can be solved iteratively: starting with an initial value for
the self-energy Σσ(iωn) one obtains the local propagator Gσ(iωn) from (45) and thereby the
bath Green function Gσ(iωn) from (43). This determines the local action (42) that is needed
to compute a new value for the local propagator Gσ(iωn) from (40) and, by employing the old
self-energy, a new bath Green function Gσ, and so on. In spite of the fact that the solution can be
obtained self-consistently, there remains a complicated many-body problem which is generally
not exactly solvable. A generalization of the DMFT equations for the Hubbard model in the
presence of local disorder was derived in Ref. [76].
It should be stressed that although the DMFT corresponds to an effectively local problem, the
propagator Gk(ω) is a momentum-dependent quantity. Namely, it depends on the momentum
through the dispersion εk of the non-interacting electrons. However, there is no additional
momentum-dependence through the self-energy, since it is strictly local within the DMFT.

13In principle, the local functions Gσ(iωn) and Σσ(iωn) can both be viewed as a “dynamical mean field” acting
on particles on a site, since they all appear in the bilinear term of the local action (42).
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5.1.1 Solution of the self-consistent DMFT equations

The dynamics of the Hubbard model remains complicated even in the limit d = ∞ due to the
purely local nature of the interaction. Hence an exact, analytic evaluation of the self-consistent
set of equations for the local propagator Gσ or the effective propagator Gσ(iωn) is not possible.
A valuable semi-analytic approximation is provided by the iterated perturbation theory (IPT)
[71,77]. Exact evaluations become feasible when there is no coupling between the frequencies.
This is the case, for example, in the Falicov-Kimball model [65, 78].
Solutions of the self-consistent DMFT equations require extensive numerical methods, in par-
ticular quantum Monte Carlo simulations [72, 79, 80, 74, 81], the numerical renormalization
group [82–84], exact diagonalization [85–87], and other techniques.
It quickly turned out that the DMFT is a powerful tool for the investigation of electronic sys-
tems with strong correlations [88, 74]. It provides a non-perturbative and thermodynamically
consistent approximation scheme for finite-dimensional systems that is particularly valuable
for the study of intermediate-coupling problems where perturbative techniques fail; for detailed
discussions see Refs. [89, 75, 90, 91, 43].

5.2 The LDA+DMFT approach to correlated materials

The Hubbard model is able to explain important general features of correlated electrons, but it
cannot describe the physics of real materials in any detail. Namely, realistic approaches must
take into account the explicit electronic and lattice structure of the systems.
For a long time the electronic properties of solids were investigated by two essentially separate
communities, one using model Hamiltonians in conjunction with many-body techniques, the
other employing density functional theory (DFT) [92, 93]. DFT and its local-density approxi-
mation (LDA) are ab initio approaches that do not require empirical parameters as input. They
proved to be highly successful techniques for the calculation of the electronic structure of real
materials [94]. Still, it was soon recognized that DFT/LDA is severely restricted in its ability
to describe strongly correlated materials such as f -electron systems and Mott insulators. For
such systems the model Hamiltonian approach is more powerful since there exist systematic
theoretical techniques to investigate the many-electron problem with increasing accuracy. Nev-
ertheless, the uncertainty in the choice of the model parameters and the technical complexity
of the correlation problem itself prevent the model Hamiltonian approach from being flexible
enough to study real materials. The two approaches are therefore largely complementary. In
view of the individual power of DFT/LDA and the model Hamiltonian approach, respectively,
a combination of these techniques for ab initio investigations of real materials is clearly desir-
able. One of the first successful attempts in this direction was the LDA+U method [95, 96],
which combines LDA with a Hartree-like, static mean-field approximation for a multi-band
Anderson lattice model. This method turned out to be a very useful tool in the study of long-
range ordered, insulating states of transition metals and rare-earth compounds. However, the
paramagnetic metallic phase of correlated electron systems clearly requires a treatment which
includes dynamical effects, i.e., the frequency dependence of the self-energy.
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Here the so-called LDA+DMFT approach, whose foundations were laid in the papers by Anisi-
mov, Poteryaev, Korotin, Anokhin, and Kotliar [97] as well as Lichtenstein and Katsnelson
[98], has led to an enormous progress in our understanding of correlated electron materi-
als [97–106,75]. LDA+DMFT is a computational scheme that merges electronic band structure
calculations in the local density approximation (LDA) or generalized-gradient approximations
(GGA) with many-body physics originating from the local Hubbard interaction and Hund’s rule
coupling terms, and then solves the corresponding correlation problem by DMFT. Sometimes
this combined approach is also referred to as DFT+DMFT.
As in the case of the Hubbard model the many-body model constructed within the LDA+DMFT
scheme consists of two parts: a kinetic energy which describes the specific band structure of
the uncorrelated electrons, and the local interactions between the electrons in the same orbital
as well as in different orbitals. It is then necessary to take into account a double counting of the
interaction, since the LDA already includes some of the static contributions of the electronic
interaction; for details, see Refs. [101–106]). This complicated many-particle problem with its
numerous energy bands and local interactions is then solved within DMFT, usually by the ap-
plication of quantum Monte-Carlo (QMC) techniques. By construction, LDA+DMFT includes
the correct quasiparticle physics and the corresponding energetics. It also reproduces the LDA
results in the limit of weak Coulomb interaction U . More importantly, LDA+DMFT correctly
describes the correlation induced dynamics near a Mott-Hubbard metal-insulator transition and
beyond. Thus, LDA+DMFT and related, material-specific dynamical mean-field approaches
that are presently being developed [107–109] are, in principle, able to account for the physics
at all values of the Coulomb interaction and doping.

6 Summary and outlook

By now the DMFT has developed into a powerful method for the investigation of electronic
systems with strong correlations. It provides a comprehensive, non-perturbative and thermody-
namically consistent approximation scheme for the investigation of finite-dimensional systems
(in particular for dimension d = 3), and is particularly useful for the study of problems where
perturbative approaches fail. For this reason, the DMFT has now become the standard mean-
field theory for fermionic correlation problems. The generalization of this approach and its
applications is currently a subject of active research. Here non-local generalizations of the
DMFT play an important role [90, 81]. They make it possible to study and explain even short
range correlation effects which occur on the scale of several lattice constants. Furthermore, in-
vestigations of inhomogeneous bulk systems and of internal and external inhomogeneities, such
as surfaces and interfaces [110–116], lead to an improved understanding of correlation effects
in thin films and multi-layered nanostructures. This is particularly desirable in view of the novel
functionalities of these structures and their possible applications in electronic devices.
The investigation of correlation phenomena in the field of cold atoms in optical lattices is an-
other intriguing field of current research. Within a short time it led to the development of a
versatile instrument for the simulation and investigation of quantum mechanical many-particle
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systems [117–121]. While for electrons in solids the Hubbard model with its purely local inter-
action is a rather strong assumption, it can describe cold atoms in optical lattices very accurately
since the interaction between the atoms is indeed extremely short ranged. Here the DMFT has
once again proved to be extremely useful. Experiments with cold atoms in optical lattices can
even assess the quality of the results of the DMFT. The results obtained in this way show that
the DMFT indeed leads to reliable results even for finite dimensional systems [120].
The study of correlated electrons out of equilibrium within non-equilibrium DMFT [122–128]
has become yet another fascinating new research area. Non-equilibrium DMFT will be able to
explain, and even predict, the results of time-resolved experiments; for an upcoming review, see
Ref. [129].
The combination of the DMFT with methods for the computation of electronic band structures
(LDA+DMFT) has led to a conceptually new theoretical framework for the realistic study of cor-
related materials. In 10 to 15 years from now, DMFT-based approaches can be expected to be as
successful and standardized as the presently available density-functional methods. The devel-
opment of a comprehensive theoretical approach which allows for a quantitative understanding
and prediction of correlation effects in materials, ranging from complex inorganic materials all
the way to biological systems, is one of the great challenges for modern theoretical physics. For
details I refer to the scientific program of the Research Unit FOR 1346 Dynamical Mean-Field
Approach with Predictive Power for Strongly Correlated Materials [130] which is being funded
by the Deutsche Forschungsgemeinschaft since 2010. The Research Unit FOR 1346 initiated
the series of Autumn Schools on correlated materials which are held at the Forschungszentrum
Jülich since 2011. The lecture notes of these Autumn Schools provide an excellent introduction
into this very active field of research [131–134].
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[99] I.A. Nekrasov, K. Held, N. Blümer, A.I. Poteryaev, V.I. Anisimov, and D. Vollhardt,
Eur. Phys. J. B 18, 55 (2000)
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Phys. Rev. B 83, 035307 (2011)

[116] F. Lechermann, L. Boehnke, and D. Grieger, Phys. Rev. B 87, 241101(R) (2013)

[117] D. Jaksch, C. Bruder, J.I. Cirac, C.W. Gardiner, and P. Zoller,
Phys. Rev. Lett. 81, 3108 (1998)

[118] M. Greiner, O. Mandel, T. Esslinger, T.W. Hänsch, and I. Bloch, Nature 415, 39 (2002)
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