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Resistivity minimum 

1/5
impmin cT ∝

Measurements of electric resistivity of a metal with dilute concentration 
 of magnetic impurities: 

De Haas & ven den Berg, 1936 

Enhanced scattering at low T 



The Kondo Effect – resistivity minimum  
- upturn of  R(T) at low-T, as opposed to the pure metal behavior:  

R(T) 

  resitivity due to phonons 

experimental curve 

•  Source of extra scattering? 
•  Why is scattering stronger at low temperatures, weaker at high temperatures ? 

… anomalous scattering  due to magnetic impurities? 

- local magnetic moment :  the spin of unpaired electrons in atomic d or f shell. 

T 

anomalous 
contribution 

e.g. 



The ( s-d) Kondo Hamiltonian  

•  Conduction band of  electrons (metal) 

•  Exchange interaction -  
   electron spin density                with impurity spin    :  
 

•  Antiferromagnetic coupling : 

 - Electrons in the presence of dilute magnetic impurities 

!  band-width 

!  linearize spectrum 

- Flat band approximation: (low-E, universal results)  



The resistivity  (Kondo �64) 

•  Scattering amplitude : electron with momentum k and spin   into state 
with momentum k’, impurity remains with spin   :  

- first order 

- second order 

•  Scattering probability 

or 

Flat band approx. 



The resitivity (Kondo �64) 
Finite temperature resistivity –  
consider electron with energy within a window           about the Fermi energy:  

•  For              resistivity increases as T decreases 

•  Combine with phonon contribution to account for resistivity minimum 

•  Correction small at high temperatures but diverges as           

•   The n-order  ~                                       diverges, resummation does not help.  

•  Perturbation theory breaks down at  T   such that                         
-  Kondo temperature:           

•  What to do for                 ?  The Kondo Problem  



Magnetic susceptibility  

- Similar behavior in impurity magnetic susceptibility:  

•  At high temperatures -  free spin 
susceptibility 

•  At low temperatures  -  spin is screened 

- We saw, considering resistivity, that the effect was weak at high temperatures, 
strong at low temperatures  



The Kondo Effect  

●  Perturbation theory breaks down at low temperatures (i.e. in the IR) 
●  Perturbation theory valid at high temperatures  
●  A new low energy scale appears: 
●  Strong coupling IR, weak coupling UV 
●  How to handle such a theory? – The Kondo Problem  

- Resumming leading logs                                    of perturbation theory 

- Resumming sub-leading logs 

 only for J>0 does it diverges as T is lowered 



The Kondo Problem  
  Many approaches to the Kondo Problem: 
 
   - Resummation of the perturbation series (fails) 
   - Variational techniques (fail) 
 
   - Scaling theory – Poor Man’s Scaling (P. W. Anderson) 
   - Renormalization group (K. Wilson) 
 
   - Fermi Liquid theory  of Strong Coupling  (P. Nozieres) 
   - Boundary conformal field theory  (I. Affleck, A. Ludwig) 
   
   - Bosonization (A. Luther, I. Peschel, G. Toulouse) 
 
   - Exact solution -  (N. Andrei, P. Wiegman) 
    



Renormalization Group Approach 
•  Why does perturbation theory fail in the IR? 
•  How to describe Kondo physics at low – T ? 

The Renormalization Group  (Anderson, Wilson  ‘67-’74) 

    Application to the Kondo Problem 

!  Microscopic Hamiltonian written on the scale                     
- describes physics over the full range of the band-width   

!  Construct effective low–E   Hamiltonian 
- describes physics close to the Fermi surface (low – T physics) 

!  Carry out construction step by step ,                             
successively integrating out high energy modes, preserving low- E  

!  In real space e.g.  on the lattice                     (recall                  )  
(      ,     ) (       ,           ) 



Renormalization Group Approach 
RG flow: the successive Hamiltonians                             describe 
same low-E physics, eliminate high energy modes. 

•  Coupling constants are running (depend on scale     )  
•  Is there a fixed point: 

•  Fixed point is scale invariant (conformal invariant) 

•  How to construct RG flow? 
- Eliminate (decimate, integrate) high energy modes 
- Rescale 
- Repeat 

Under RG transformation 
correlation length: 



Renormalization Group Approach 

Contribution of the 
eliminated modes: 

(1) (2) Kondo RG 

generates potential scattering (irrelevant) modifies Kondo coupling 



Renormalization Group Approach 
•  Reduction in band-width  compensated by an increase in coupling constant 

Denoting   

•  Perturbation is IR unstable (J>0) 

we have 

Ferromagnetic 
regime 

Antiferromagnetic 
regime 

Coupling increases – 
where does it flow? 

•  Perturbation is IR 
stable (J<0) 

Coupling flows to zero – 
perturbation thy  IR stable 

The running coupling 

e.g. (neglect!) 



Renormalization Group Approach 

Where does the coupling flow to? 

•  Perturbation theory fails  when  

•  Nonperturbative approaches: 

- Coulomb gas representation  (Andreson, Yuval) 
- Numerical RG (Wilson) 
- Bethe Ansatz  (Andrei, Wiegmann) 

Strongly 
coupled singlet 

•  Screening of impurity spin at low –T: 

Wilson RG 

Bethe-Ansatz 

finite susceptibility          screened spin 



Renormalization Group Approach 

•  The RG flow: 

strong coupling 
regime 

weak coupling 
regime 

repulsive 
fixed point 

attractive 
fixed point 

crossover 

•  The system evolution 
with temperature: 

•  What is the strong coupling fixed point Hamiltonian? (Wilson, Nozieres) 



The Kondo Problem  
  Many approaches to the Kondo Problem: 
 
   - Resummation of the perturbation series (fails) 
   - Variational techniques (fail) 
 
   - Scaling theory – Poor Man’s Scaling (P. W. Anderson) 
   - Renormalization group (K. Wilson) 
 
   - Fermi Liquid theory  of Strong Coupling  (P. Nozieres) 
   - Boundary conformal field theory  (I. Affleck, A. Ludwig) 
   
   - Bosonization (A. Luther, I. Peschel, G. Toulouse) 
 
   - Exact solution -  (N. Andrei, P. Wiegman) 
    



Numerical Renormalization Group Approach 
•  How to characterize the strong coupling fixed point Hamiltonian?  ( Nozieres) 

-  Kondo Hamiltonian on the lattice: 

- Strong coupling                 ground state:      Local 
singlet 

- Electron hopping on site-0 breaks singlet, cost 

- Excluding electrons from site         corresponds  to phase shift  

with , so 

- Strong coupling fixed point Hamiltonian (plus leading marginal op)  -   local FL 

Spin screened, induces 
interaction among electrons 

*~S J t 

1 2 j=0 3 4 



The Kondo Hamiltonian – field theory 

- Field Theory if: 

Route 2: impurity geometry, keep s-waves 

Rewrite the Hamiltonian as 1-dim field theory: 

The Kondo Hamiltonian (unfolded): 

spherical modes 

s-waves 

linearize around 

Fourier transform  

  All scales       Bandwidth D,  universal results, independent of band structure 

- 1-dim theory 

x<o 

Route 1: sum modes, linearize 

x chiral fermions 

(in) (out) 
x>0 

* vF = 1, ⇢ = 1/⇡

universal regime 



Bethe Ansatz Approach 

•  Construct eigenfunctions of     electrons on ring of length     interacting with the  impurity 

Steps in the approach 

•  Identify ground state, excitations 

•  Construct the thermodynamics 

•  Take thermodynamic limit 

•  Take the scaling limit, universality 

 fixed 

fixed, then 

•  Compute susceptibility, specific heat, phase shifts..  

- Fock space of     electrons spanned by  

- Eigenstate equation                       becomes:                     with 

Kondo Hamiltonian 1-Qu 



Bethe Ansatz Approach 

•  For             ,   solve  

where:   (using                                ) 

Solution: 

Thus 

S-matrix 

and 

 Main idea: construct consistently  multi-particle wave functions from 
single-particle wave functions  

h = �i

NX

j=1

@

xj + J

NX

j=1

�(x
j

)~�
j

· ~�0



The Yang-Baxter equation 

•  Consider            particles 

- Divide configuration space into             regions, Q = 1…6,  according to ordering, 

       example: (120) denotes   

- Inside each region       the wave function is: 

- Total wave function 

- Regions connected by S-matrices 

- Is the construction consistent? 

 - Starting from region (120) we can 
reach region (021) via two paths    

-  -  Construction consistent  only if: 

Yang-Baxter equation 



On the nature of a quantum impurity 
•  Do the S-matrices satisfy YBE? 

- The electron-impurity S-matrix: 

- What is the electron-electron S-matrix           ?    

•  First attempt – electrons do not interact so 

- YBE                                                   not satisfied   

-  Why? Quantum Impurity changes its state when an electron crosses 

1  2  0 

1  0  2 0  1  2 0  2  1 

2  1  0 2  0  1 0  2  1 

- As opposed to a potential which does not change its state 

derived from Hamiltonian 



The Bethe basis 
•  what             satisfies YBE?  Answer                      

•  But have we introduced interactions among electrons?                                    
No! We made a choice of basis of eigenstates  for the degenerate subspace 
corresponding to 

- Thus eigenfunction  for any  

- The  linear spectrum 

- For                            we have charge-spin separation  

- The choice                          defines the Bethe basis, the correct  basis to 
turn on interaction from a degenerate level  (                    is the Fock basis) 

degenerate 
levels 

levels split by 
perturbation 

- To perturbe a degenerate level  need choose a 
basis that diagonalizes perturbation – Bethe basis 

- The Bethe basis (unlike Fock basis) separates charge and 
spin since  the Kondo interaction is in the spin channel only 

Infinitely degenarate 



Bethe Ansatz Approach 

- The YBE sufficient for all 

•  For      particles? 

- The consistent wave functions 

!   defined in one reference region                                      (rather than        regions) 

!   same set of          in all regions 

•  Impose PBC,           

•  Determine spectrum                               (Bethe Ansatz equations) 

Next steps 

•  The thermodynamic limit and  the scaling limit,             
universality 

Universal regime 

•  Derive free energy  and the Thermodynamic Bethe Ansatz eqns (TBA)  

Fa1,...,aN (x1, . . . , xj = L/2, . . . , xN ) = Fa1,...,aN (x1, . . . , xj = �L/2, . . . , xN )

F = Ae

P
j kjxj

X

Q

A

a1..aNe
,a0(Q)✓(x

Q

)

Aa1..aNe ,a0(Q)✓(xQ)

N = Ne + 1



Periodic boundary conditions 
•     Impose PBC:           

(Zj)
b1...bN
a1...aN

Ab1...bN (Q) = e�ikjLAa1...aN (Q)

(Zj)
b1...bN
a1...aN

=

✓
P jj�1...P j1P jN ...ei�

Ij0 � icP j0

1� ic
...P jj+1

◆b1...bN

a1...aN

(Zj)
b1...bN
a1...aN

= (Sjj�1...Sj1SjN ...Sjj+1)b1...bNa1...aN

Fa1,...,aN (x1, . . . , xj = L/2, . . . , xN ) = Fa1,...,aN (x1, . . . , xj = �L/2, . . . , xN )

This translates to the condition  

with 

or in our case 

The eigenvalues of the     - matrices yield the momenta      from which the 
spectrum can be determined:  

Zj kj

•  How to diagonalize      ? 

E =
X

kj

Zj

N1

jj � 1 j + 1
j � 2

Sjj�1

Sjj�2



 Algebraic Bethe Ansatz approach 

Skj(↵� �)Ski(↵)Sji(�) = Sji(�)Ski(↵)Skj(↵� �)

1. Define:  S-matrix depending on a continuous variable (spectral 
parameter)  

S(↵) =
↵I � icP

↵� ic
⌘ a(↵)I + b(↵)P

assign            to an electron and             to the impurity (    corresponds to the velocity) ↵ = 1 ↵ = 0 ↵

we have: el-imp                                                     and el-el  Sj0(↵j � ↵0) = Sj0(1) =
1� icP j0

1� ic
Sjl(↵j � ↵l) = Sj0(0) = P jl

- The S-matrices satisfy a continuous  YBE,  

2. Define: Monodromy matrix  

- Each electron  and impurity has a spin space      associated with it.   C2

Define and auxiliary spin space      and  S-matrices        ,  A SjA S0A

M(↵) = S1A(↵� ↵1)S
2A(↵� ↵2)......S

NA(↵� ↵N )



Algebraic Bethe Ansatz Approach 
Explicitely: 

aN

bN

· · ·

· · ·

u vs1 s2 s3 s
N � 1

a1 a2 a3

b1 b2 b3 · · ·

· · ·

(M)b1...bN ,v
a1...aN ,u =

X

s1...sN�1

[M(↵)]b1...bN ,v
a1...aN ,u =

X

s1...sN�1

[S1A(↵� ↵1)]
b1,s1
a1,u [S2A(↵� ↵2)]

b2,s2
a2,s1 ......[S

NA(↵� ↵N )]bN ,v
aN ,sN�1

Represent monodromy matrix in the auxiliary space: 

[M(↵)]b1...bNa1...aN
=


Ab1...bN

a1...aN
(↵) Bb1...bN

a1...aN
(↵)

Cb1...bN
a1...aN

(↵) Db1...bN
a1...aN

(↵)

�



Algebraic Bethe Ansatz Approach 

3. The monodromy matrices satisfy: 

with  
R = S(↵� �) P =

(↵� �)P + icI

(↵� �) + ic

- follows from YBE 

= · · ·
M(�)

M(↵)
R(↵,�)· · ·

M(↵)

M(�)R(↵,�)

= t

x

x

t

1 1 22 33
S23S13S12 = S12S13S23

R(↵� �) (M(↵)⌦M(�)) = (M(�)⌦M(↵)) R(↵� �)

R(↵) =

0

BB@

1 0 0 0
0 ic

↵+ic
↵

↵+ic 0
0 ↵

↵+ic
ic

↵+ic 0
0 0 0 1

1

CCAexplicitly: 

proof 



Algebraic Bethe Ansatz Approach 
4. The commutation relations:  

R(↵� �) (M(↵)⌦M(�)) = (M(�)⌦M(↵)) R(↵� �)We saw 

with 

and 
[M(↵)] =


A(↵) B(↵)
C(↵) D(↵)

�

Hence 

A(↵)B(�) = u(� � ↵)B(�)A(↵) + v(� � ↵)B(↵)A(�)
D(↵)B(�) = u(↵� �)B(�)D(↵) + v(↵� �)B(↵)D(�)

B(↵)B(�) = B(�)B(↵)

A(↵)A(�) = A(�)A(↵)

D(↵)D(�) = D(�)D(↵)
u(↵) =

↵+ ic

↵
v(↵) = � ic

↵

R(↵� �) =

0

BB@

1 0 0 0
0 ic

↵��+ic
↵��

↵��+ic 0

0 ↵
↵��+ic

ic
↵��+ic 0

0 0 0 1

1

CCA



Algebraic Bethe Ansatz Approach 
5. Define:   Transfer matrix  

Explicitly: 

Claim: 

T (↵) = TrA M(↵)

[T (↵)]b1...bNa1...aN
=

X

u

[M(↵)]b1...bN ,u
a1...aN ,u = [A(↵)]b1...bNa1...aN

+ [B(↵)]b1...bNa1...aN

Claim: [T (↵), T (�)] = 0 8 ↵,�

Zj = T (↵j) = A(↵j) +D(↵j)

Recall, we wish to diagonalize Zj = Sjj�1...Sj1SjN ...Sjj+1

B(�) A(↵) +D(↵)

|! >=
NY

j=1

✓
1
0

◆

j

6. Claim:             - creation operator  w.r.t Hamiltonian    
when acting on ferromagnetic vacuum                           ,  up to 
unwanted terms:   

SjA(↵) = (a+
1

2
b)(↵)1j1A +

1

2
b(↵)�j · �A =

✓
(a+ 1

2b)(↵)1j +
1
2b(↵)�

z
j b(↵)��

j

b(↵)�+
j (a+ 1

2b)(↵)1j �
1
2b(↵)�

z
j

◆Write: 

so        is eigenstate of           and of           :      |!i A(↵) D(↵) A(↵)|! >= |! >

D(↵)|! >=
NY

j=1

↵� ↵j

↵� ↵j + ic
|! >



Algebraic Bethe Ansatz Approach 
Consider now the state (with      flipped spin): 

|F (�1...�M ) >⌘ B(�1)...B(�M )|! >=
X

j1...jM

Fj1...jM��
j1
...��

jM
|! >

M

Applying the Hamiltonian                         we find: A(↵) +D(↵)

(A(↵) +D(↵))B(�1)B(�2)|! >=

u(�1 � ↵)u(�2 � ↵)B(�1)B(�2)A(↵)|! > +u(↵� �1)u(↵� �2)B(�1)B(�2)D(↵)|! >

+[u(�1 � ↵)v(�2 � ↵) + v(�1 � ↵)v(�2 � �1)]B(↵)B(�1)A(�2)|! >

+[u(↵� �1)v(↵� �2) + v(↵� �1)v(�1 � �2)]B(↵)B(�1)D(�2)|! >

+v(�1 � ↵)u(�2 � �1)B(↵)B(�2)A(�1)|! > +v(↵� �1)u(�1 � �2)B(↵)B(�2)D(�1)|! >

= �(↵,�1�2)B(�1)B(�2)|! > +�1(↵,�1�2)B(↵)B(�2)|! > +�2(↵,�1�2)B(↵)B(�1)|! >

with 
�(↵,�1�2) = u(�1 � ↵)u(�2 � ↵) +

NY

j=1

↵� ↵j

↵� ↵j + ic
u(↵� �1)u(↵� �2)

�1(↵,�1�2) = v(�1 � ↵)[u(�2 � �1)� u(�1 � �2)
NY

j=1

�1 � ↵j

�1 � ↵j + ic
]

�2(↵,�1�2) = v(�2 � ↵)[u(�1 � �2)� u(�2 � �1)
NY

j=1

�2 � ↵j

�2 � ↵j + ic
]

The eigenvalue 

} Unwanted terms 
– set to zero 

��(↵,�1�2) = 0, � = 1, 2



Algebraic Bethe Ansatz Approach 
7.   Recall we want eigenvalues  of  Zj = Z(↵ = ↵j)

zj = �(↵j ,�1....�M ) =
MY

�=1

�� � ↵j + ic

�� � ↵j

We showed: 

provided that                   satisfy the Bethe Ansatz equations (BAE): �1, ..,�M

MY

�=1,� 6=�

�� � �� + ic

�� � �� � ic
=

NY

i=1

�� � ↵i

�� � ↵i + ic

8. Setting                                   and recalling                         we have:   �� = ⇤� � ic/2 zj = e�ikjL

eikjL =
MY

�=1

⇤� � ↵j � ic/2

⇤� � ↵j + ic/2

MY

�=1,� 6=�

⇤� � ⇤� + ic

⇤� � ⇤� � ic
=

NY

i=1

⇤� � ↵i � ic/2

⇤� � ↵i + ic/2

with                   
solutions of the BAE  

⇤� , � = 1, ..,M

For Kondo: ↵j = 0, 1

For Hubbard ↵j = sin kj
For Yang ↵j = kj



The Solution 

E =
NeX

j=1

kj

kj =
2⇡

L
nj +

1

L

MX

�=1

[⇥(2⇤� � 2)� ⇡], ⇥(x) = �2 tan�1(x/c)

�
MY

�=1

⇤� � ⇤� + ic

⇤� � ⇤� � ic
=

✓
⇤� � 1� ic/2

⇤� � 1 + ic/2

◆Ne ✓
⇤� � ic/2

⇤� + ic/2

◆

- The momenta for state with       spins down,                      spins up: 

with 

=
NeX

j=1

2⇡

L
nj +D

MX

�=1

[⇥(2⇤� � 2)� ⇡],

- with the spin momenta        satisfying: 

A system of       electrons interacting with the  Kondo impurity -     Ne

M Ne + 1�M

- The energy: 

⇤�

or 

Ne⇥(2⇤� � 2) +⇥(2⇤�) = �2⇡I� +
MX

�=1

⇥(⇤� � ⇤�), � = 1....M

S = Sz =
1

2
(Ne + 1)�M- The spin of the system is: 



Extracting the physics 

•  Identify ground state, excitations 

•  Construct the thermodynamics 

•  Take thermodynamic limit 

•  Take the scaling limit, universality                                                                   fixed, 

 fixed 

- the free energy takes the scaling form  

•  Compute susceptibility, specific heat, phase shifts..   

How to extract the physics from these equations  (in five easy steps)?  

- Study high- and low- temperature behavior and the crossover between them 

Universal regime 

D ! 1, J ! 0; TK = De�1/J

F = T f(T/TK , h/T )



Eigenstates 

Ne⇥(2⇤� � 2) +⇥(2⇤�) = �2⇡I� +
MX

�=1

⇥(⇤� � ⇤�), � = 1....M

E =
NeX

j=1

2⇡

L
nj +D

MX

�=1

[⇥(2⇤� � 2)� ⇡],

BAE for an eigenstate with      spins down and                     spins up,   Ne + 1�MM

- Ground state configuration                   is a singlet                             with: 

I�+1 = I� + 1 , occupy all slots  �(Ne �M)/2  I�  (Ne �M)/2

- The integers                    are the quantum numbers of the eigenstates {nj , I�}

{nj}

{I�}

-There is charge spin separation:          determine charge-dynamics, charge Fermi sea  

Determine spin-dynamics,   spin Fermi sea 

{ngs
j , Igs� }

�Ne  nj�(Ne �M)/2  I�  (Ne �M)/2 and                         so                    is the cut-off   D = Ne/L

M = (Ne + 1)/2

Ij = �3,�2,�1, 0,+1,+2,+3
e.g.   Ne = 13

Note: linear spectrum 
requires a cut-off,  �Ne  nj

�2⇡Ne

L

0

•
•

•
•
•

•

2⇡nj

L

Charge 
Fermi sea 



Ground state and excitations 

Excitations:    holes    

�h
1 �h

2

hole hole 

are holes in the   
sequence –  
excitations 

Ij
Jh
lSkipped integers 

⇤1 ⇤2 ⇤3 ⇤4 ⇤5 ⇤6 ⇤7 ⇤8 ⇤9

Ij = �5,�4� 3,�2,�1, ,+1,+2 ,+4,+5,

Jh
1 = 0 Jh

2 = 3

 strings 

�h
1 �h

2

hole hole 

⇤1 ⇤2 ⇤3 ⇤4 ⇤5 ⇤6 ⇤7 ⇤8 ⇤9

Ij = �5,�4� 3,�2,�1, ,+1,+2 ,+4,+5,

e.g.  2-string �± = (�h
1 + �h

2 )/2

I�+1 = I� + 1 , occupy all slots  �(Ne �M)/2  I�  (Ne �M)/2

Ij = �3,�2,�1, 0,+1,+2,+3
e.g.   Ne = 13

- Ground state configuration                  :   with {ngs
j , Igs� } M = (Ne + 1)/2 corresponds to a singlet 



The ground state 
In the thermodynamic limit - interested in the density of solutions:  �(⇤)

                   number of solutions in       , equivalently:             �(⇤)d⇤ d⇤ �(⇤�) = 1/(⇤�+1 � ⇤�)

- Turn BAE into integral equations  for          : �(⇤)

!

Consider  the ground state configuration -  I�+1 = I� + 1

subtract the eqn for  

Ne⇥(2⇤� � 2) +⇥(2⇤�) = �2⇡I� +
MX

�=1

⇥(⇤� � ⇤�)

Ne⇥(2⇤�+1 � 2) +⇥(2⇤�+1) = �2⇡I�+1 +
MX

�=1

⇥(⇤�+1 � ⇤�)

⇤�

⇤�+1from the eqn for 

and expand in 

�gs(⇤) = f(⇤)�
Z

K(⇤� ⇤0)�gs(⇤
0)d⇤0

⇤�+1 � ⇤� ⇠ 1/Ne

f(⇤) =
2c

⇡


Ne

c2 + 4(⇤� 1)2
+

1

c2 + 4⇤2

�
K(⇤) =

1

⇡

c

c2 + ⇤2with                                  and  

- Similarly, for each state          determine the corresponding density    {I�} �{I�}(⇤)



String solutions 
Solutions of the BAE take the form of n-strings: 

• • •
•

• •
•

•
•
•

•
•

1- strings 

•

•

2-strings 3-strings 4-string 

⇤(n)
j = ⇤(n) + i

c

2
(n+ 1� 2j), j = 1, 2, . . . , n.

- They are determined by quantum numbers            which  induce 
densities of solutions                 and of  densities of holes 

I(n)�
�n(⇤) �h

n(⇤)

- The densities satisfy the BAE: 
fn(⇤) = �h

n(⇤) +
1X

m=1

Anm�m(⇤)

Anm = [|n�m|] + 2 [|n�m|+ 2] + · · ·+ 2 [n+m� 2] + [n+m]

fn(⇤) = NeKn(⇤� 1) +Kn(⇤)

[n]f(⇤) =

Z
Kn(⇤� ⇤0)f(⇤0)d⇤0.

Kn(x) =
1

⇡

n

c
2

(n c
2 )

2 + x

2

where: 

with 

The contribution of a n-string to  energy 
                                       

⇥n(x) = ⇥
�
2x/n

�

E =
NeX

j=1

2⇡

L
nj +D

MX

�=1

[⇥(2⇤� � 2)� ⇡],

D
nX

j=1

⇥
⇥(2⇤(n)

j � 2)� ⇡
⇤
=D

⇥
⇥n(⇤

(n) � 1)� ⇡]

with 

recall: 



The thermodynamics 
The thermodynamics of the Kondo model 

E(c)({n}) = 2⇡

L

NeX

j=1

nj

- The partition function = Z(c)Z(s)Z =

X

E

exp


� 1

T
(E � 2µhSz)

�

- The energy  

Charge energy 

Spin energy = D
X

n

Z
d⇤�n(⇤) [⇥n(⇤� 1)� ⇡]

E = E(c)({nj}) + E(s)({I(n)� })

E(s)({In)� }) = D
MX

�=1


⇥(2⇤� � 2)� ⇡

�

Z(c)
=

X

{nj},nj��Ne

exp


� 1

T

NeX

j=1

2⇡

L
nj

�

The charge partition function describes the thermodynamics of            
non-interacting  spinless fermions with linear kinetic energy Ne

= e�F (c)/T

F (c)
= �LT

2⇡

Z 1

�1
dk ln

�
1 + e�

k
T
�
= � ⇡

12

LT 2
+ {infinite constant}

and taking the cut-off to infinity                          we have  D =
Ne

L
! 1

⇥n(x) = ⇥
�
2x/n

�
D

nX

j=1

⇥
⇥(2⇤(n)

j � 2)� ⇡
⇤
= D

⇥
⇥n(⇤

(n) � 1)� ⇡]

with 

 contribution of  n-string to energy 



Thermodynamics, Yang-Yang entropy 
The spin partition function - Sum over all solutions of BAE induced by configurations  {I(n)� }

Z(s)
=

X

{I(n)
� }

exp


� 1

T
[E(s)

(I(n)� ) + 2Mµh]

�
=

X

M

X

{⇤1,...,⇤M}

exp


� 1

T
[E(s)

({⇤}) + 2Mµh]

�

Rewrite in terms of string densities: 

The replacement of summation over  microstates           by summation over 
densities                 requires the introduction of the  Yang-Yang entropy           
which counts the number of  microstates which yield the same densities.    

{I(n)� }
{�n,�

h
n} S({�n,�

h
n})

S({�n,�
h
n}) =

X

n

Z
d⇤[(�n + �h

n) ln(�n + �h
n)� �h

n ln�h
n � �n ln�n].

Claim: 

E(s)({⇤}) + 2µhM =
X

n

Z
d⇤�n(⇤)gn(⇤)

=

Z Y
D�nD�h

n expS({�n,�
h
n}) exp[� 1

T

X

n

Z
d⇤�n(⇤)gn(⇤)]|�0s �solutions of BAE

gn(⇤) = D
⇥
⇥n(⇤� 1)� ⇡

⇤
+ 2µhnwith 

Z(s)



The free energy 

[(�n(⇤) + �h
n(⇤))d⇤]!

[�n(⇤)d⇤]![�h
n(⇤)d⇤]!

- The number of slots for  n-strings in the interval        is,                         of which d⇤ (�n + �h
n)d⇤

�nd⇤ �h
nd⇤        are occupied, while            are empty; thus the number of ways of             

distributing the n-strings among the slots is: 
 
 
Using Stirling's formula, we can simplify this to give 

dSn = ln
[(�n + �h

n)d⇤]!

[�nd⇤]![�h
nd⇤]!

= [(�n + �h
n) ln(�n + �h

n)� �n ln�n � �h
n ln�h

n]d⇤

F (s){�n,�
h
n} = E(s) + 2µhM � TS =

X

n

Z
d⇤


�ngn � T�n ln


1 +

�h
n

�n

�
� T�h

n ln


1 +

�n

�h
n

��

- In thermodynamic limit,                  , we may evaluate         by the method of 
stationary phase approximation, varying the functional, 

Ne ! 1 Z(s)

��h
n = �

X

m

Anm��m

subject to the constraint  (the BAE) 

we obtain the TBA (thermodynamic BA) eqns:   



TBA eqns 

ln ⌘n = G[ ln(1 + ⌘n+1) + ln(1 + ⌘n�1)]

ln ⌘1 = �2D

T
tan�1 e(⇡/c)(⇤�1) +G ln(1 + ⌘2)

Gf(⇤) =
1

2c

Z
d⇤0 1

cosh

⇡
c (⇤� ⇤

0
)

f(⇤0
)

lim
n!1

([n+ 1] ln(1 + ⌘n)� [n] ln(1 + ⌘n+1)) = �2µh

T

⌘n(⇤) =
�h
n(⇤)

�n(⇤)

F (s)
= �T

Z
d⇤

1

2c


Ne

cosh

⇡
c (⇤� 1)

+

1

cosh

⇡
c⇤

�
ln

�
1 + ⌘1(⇤)

�

The TBA eqns: 

where 

and 

Once the               are determined, the spin free energy is:  {⌘n(⇤)}

denote 

Free energy the spin sector of free gas 
of electrons 

Impurity free energy F (imp)



Scaling of the thermodynamics 
-  Scaling properties of the TBA eqns (in the universal regime ):  

Universal 
regime 

In this regime                                            has contribution only for  
                                   

⌘1

Thus: 

TK = De�⇡/cwith ⇣ =
⇡

c
⇤+ ln

TK

T

⇠ exp[�(2D/T ) tan�1 z] z = exp[(⇡/c)(⇤� 1)] ⌧ 1

2D

T
tan�1 e(⇡/c)(⇤�1) ! 2D

T
e(⇡/c)(⇤�1) ! 2TK

T
e(⇡/c)⇤ ! 2e⇣

and 

- Scaling form of the TBA eqns and the impurity free energy 

ln ⌘n = G[ ln(1 + ⌘n+1) + ln(1 + ⌘n�1)]

ln ⌘1 = �2D

T
tan�1 e(⇡/c)(⇤�1) +G ln(1 + ⌘2)

G(⇣ � ⇣ 0) =
1

2⇡

1

cosh(⇣ � ⇣ 0)

ln ⌘n = �2�n,1e
⇣ +G[ ln(1 + ⌘n+1) + ln(1 + ⌘n�1)]

is only scale in the problem, thus in the scaling regime F s = Tf(T/TK , h/T )TK

(                                     ) 

F (imp)
= � T

2⇡

Z
d⇣

1

cosh

�
⇣ � ln

TK
T

�
ln[1 + ⌘1(⇣,

h

T
)]



Some properties 

1.                    is monotonically decreasing in     (fixed  n). 

Some properties of the solutions of the TBA eqns  

⌘n(⇣, h/T ) ⇣

2.                    is monotonically increasing in n  (fixed   ). ⇣

3.                       has finite asymptotic limits: 

⌘n !
⌘�n =

sinh2(n+ 1)µhT
sinh2 µh

T

� 1, as ⇣ ! �1

⌘n(⇣, h/T )

⌘n(⇣, h/T )

⌘+n =
sinh2 nµh

T

sinh2 µh
T

� 1, as ⇣ ! +1

⌘�1

⌘�2

⌘�3

⌘�4

⌘+4

⌘+3

⌘+2

⌘+1

⌘n(⇣)

⇣ ⇣ = 1⇣ = �1

{

Low –T 
regime 

High-T 
regime 

F (imp)
= � T

2⇡

Z
d⇣

1

cosh

�
⇣ � ln

TK
T

�
ln[1 + ⌘1(⇣,

h

T
)]

⇣ ⇠ ln
TK

T
Main 

contribution 



High – T  regime 
- Impurity behavior at high T: 

F (imp)
= � T

2⇡

Z
d⇣

1

cosh

�
⇣ � ln

TK
T

�
ln[1 + ⌘1(⇣,

h

T
)]

T � TK

:  high temperature corresponds to    ⇣ ! �1

F (imp) ! � T

2⇡

Z
d⇣

1

cosh

�
⇣ � ln

TK
T

�
ln[1 + ⌘�1 ] = �T ln(2 cosh

µh

T
)

Therefore:  The free energy of 
an isolated spin in 
a magnetic field h 

How rapidly is this point approached?  Include corrections  1/⇣, 1/ ln ⇣

leading to susceptibility  (obtainable perturbatively) 

In RG language: Weak Coupling fixed point  behavior 

�imp = �@2F imp

@h2

����
h=0

=
µ2

T


1�

✓
1

lnT/TK
+

1

2

ln ln(T/TK)

ln2 T/TK

◆
+

a

ln2(T/TK)
+O

✓
ln2 lnT/Tk

ln3 T/Tk

◆�

F imp ! �T


ln(2 cosh

µh

T
)� 1

2

µh

T
tanh

µh

T

✓
1

lnT/TK
+

1

2

ln ln(T/Tk)

ln

2 T/TK

◆�
+ · · ·

Scale defined up to a constant - set                      , then no                  in O(1/ ln2) �(imp)

We’ll see: universal number 

Twc = eaTK



Low – T regime 

- Impurity behavior at low T: T ⌧ TK

F (imp)
= � T

2⇡

Z
d⇣

1

cosh

�
⇣ � ln

TK
T

�
ln[1 + ⌘1(⇣,

h

T
)] : low temperature corresponds to    ⇣ ! +1

Cannot use same strategy as before -             .  Need study neighborhood of  point.  ⌘+1 = 0

Expand the kernel in the integral 1/ cosh(⇣ + ln t) = 2t exp ⇣(1� t2 exp 2⇣ + t4 exp 4⇣ + · · · ) , t =
T

TK

How to evaluate:                                      ? � T 2

⇡TK

Z
d⇣e⇣ ln

�
1 + ⌘1

�
⇣,

h

T

��

Recall, the total free energy 

F = �⇡LT 2

12

� T

2⇡

Z
d⇣

(
Ne

cosh

⇥
⇣ � ln

TK
T � ⇡

c

⇤
+

1

cosh

⇥
⇣ � ln

TK
T

⇤
)
ln[1 + ⌘1(⇣,

h

T
)],

with the free energy of the electrons at temperature T and magnetic field h 

 in the Bethe basis F el
= �⇡LT 2

12

� T

2⇡

Z
d⇣

(
Ne

cosh

⇥
⇣ � ln

D
T

⇤
)
ln[1 + ⌘1(⇣,

h

T
)]

so F el = �⇡LT 2

12
� TNef

✓
T

D
,
h

T

◆ ����
D!1

F imp = �Tf

✓
T

T0
,
h

T

◆ Same behavior 
at low temp 
FL fixed point 



Low – T regime 
We can also evaluate electron free energy in the Fock basis 

F e

L
= � T

2⇡

 Z 1

�(⇡D�µh)
dk ln(1 + e�k/T ) +

Z 1

�(⇡D�µh)
dk ln(1 + e�k/T )

�

= �⇡T 2

6
� (µh)2

2⇡

comparing with the Bethe basis 
F e

L
= �⇡T 2

12
� T 2

⇡

Z
d⇣e⇣ ln

✓
1 + ⌘1(⇣,

h

T
)

◆
+O

✓
T 4

D2

◆
we have                                                          

Z
d⇣e⇣ ln

✓
1 + ⌘1

�
⇣,

h

T

�◆
=

⇡2

12
+

(µh)2

2T 2

So finally, the  impurity free energy at low temperatures  

F imp = � T 2

⇡T0

Z
d⇣e⇣ ln

✓
1 + ⌘1

�
⇣,

h

T

�◆
= � 1

⇡TK


⇡2

12
T 2 +

1

2
(µh)2

�

Cimp
v =

⇡

6TK
T �imp =

µ2

⇡TK
Hence: while �el =

µ2

⇡Cel
v =

⇡T

3

R =
�imp/�el

Cimp
v /Cel

v

= 2Wilson’s Ratio 

screened impurity FL specific heat 

Interpretation:  
strong coupling-  

FL fixed point 

characterizes the strong coupling fixed point 
Strong coupling scale T sc = TK



The cross-over 
 The cross-over behavior: 

- The magnetization as function of the magnetic field h (at temperature T=0): 

Mi ! µ


1� 1

2 ln µh
Th

+
ln ln h

Th

4 ln2 µh
Th

+ 0
� 1

ln µh
Th

�3
+ · · ·

�

Th =

✓
⇡

e

◆ 1
2

TK

 defined by absorbing 

h � TK

Mi ! µ2

⇡TK
h

h ⌧ TK

 magnetic universal cross-over (weak to strong) number: Wh =
Th

TK
=

r
⇡

e

Strong coupling regime, with scale T sc = TK

1/ ln2(h/Th)

This cross-over is non-perturbative, characterized by Wilson’s 

Weak coupling regime with scale 

Exact analytic expression 
obtained using Wiener-Hopf 

method 



Wilson’s number 
- The cross over in the temperature 

Wish to calculate  Wilson’s temperature cross-over number: W =
Twc

T sc

It was calculated by Wilson and requires full machinery of  NRG to carry out cross-over 

Difficult to obtain directly, requires solution of all  ⌘n

Proceed indirectly:                                   W =
Twc

T sc
=

Twc

Th

Th

T sc

Susceptibility obtained by solving 
TBA eqns numerically 

Th

T sc
=

r
⇡

e
connecting non-perturbatively weak to strong coupling regime  

Twc

Th
=

eC+3/4

⇡
computed exactly - both scales in WC regimes h 

wc sc 

T 

Th

TwcT sc

We find: 
1

4⇡
W =

1

4⇡

e(C+1/4)

p
⇡

= 0.102676... Wilson: 1

4⇡
W = 0.1032± 0.0005



Thermodynamic plots   

•  The impurity specific heat 

High temperature or large magnetic field drives system to weak coupling (asymptotic freedom) 

•  Impurity magnetiztion (T=0)    Impurity susceptibility •

•

•  The impurity specific heat 
(different spins) 



The Kondo Problem -summary 

Strong coupling -         
FL fixed point 

Impurity screened by excess of opposite spins 
(kondo cloud/resonance) 

Impurity weakly coupled to 
electrons - unscreened 

Weak coupling 



Generalizations of the Kondo effect 

•  The multichannel Kondo model (Nozieres and Blandin  ‘80) 

- added a channel (flavor) index               ,  (        is the canonical case) 

-     in any spin-S representation of SU(2)  

•  What is the effect of flavor? 

- weak coupling perturbation theory is unchanged,  weak coupling unstable 

- does it flow to strong coupling? 



Generalizations of the Kondo effect 
•   Stability of the strong coupling fixed point 

-  Kondo Hamiltonian on the lattice: 

- Strong coupling                 ground state:      

*~S J t 

1 2 j=0 3 4 

*~S * *
underscreened screened overscreened 

~S



Generalizations of the Kondo effect 

•  turn on the hopping perturbation - the effective spin                                    
interacts with the electrons  *~S
•  the effective spin interacts with up-spins only and lowers the energy (pert. from gs) 

- Underscreened : 
*~S ferromagnetic interaction - 

stable 

- Screened *

*

~S

antiferromagnetic interaction 
unstable 

- Overscreened 

marginally ferromagnetic 
stable 



Generalizations of the Kondo effect 
•  overscreened: both strong and weak coupling fixed points  unstable              

              intermediate fixed point x 

•  properties  fixed point: (Bethe-Ansatz ‘84 ) 

•  The fixed point is non-FL 

- quasi-particles not fermion-like 

- Solitonic combination rules (origin of irrational entropy) 

(T=0 entropy) 

0, 1, 0 
1, 0, 1 
0, 1, 0 

A= adjacency matrix   
f=2      

1         2         3 
number of minima = f+1 

- Solitons in eff. potential 

⌘�1

⌘�2

⌘�3

⌘�4

⌘n(⇤)

⇤ = �1
⇤ = +1⇤

⌘̄+4

⌘̄+5

⌘�5

⌘̄+3
⌘̄+1
⌘̄+2



Generalizations of the Kondo effect 

•  properties  fixed point: 

•  experimental realizations of multichannel Kondo: 

 results controversial 
Quantum dots  (Oreg,  Goldgaber-Gordon) 

(Cox) 

Boundary CFT (Affleck, Ludwig  ‘92) 

x 

- fixed point characterized by a conformal boundary condition   

- weak coupling fixed point                                                             can be expressed as a 
combination of spin, charge and flavor degrees of freedom 

- in the neighborhood of a fixed point the theory becomes very simple 

Quadrupolar Kondo effect  

charge density spin density flavor density 

- at intermediate fixed point  another rule of combination (fusion hypothesis).                               
To fix it need info from RG or Bathe Ansatz (or other methods that reach fixed point from microscopics)  

- resistivity 

•  system hard to realize: need exact channel symmetry  

for 



Generalizations of the Kondo effect 

•  The underscreened  fixed point: •  The susceptibility? 

•  channel anisotropy  is relevant (around the intermediate fixed point) 

strong coupling fixed points 

channel anisotropy    
is irrelevant 

isotropic line 

1

1

1

1



Bethe Ansatz Approach 



Bethe Ansatz Approach 



Bethe Ansatz Approach 



The Thermodynamics 

⌘�1

⌘�2

⌘�3

⌘�4

⌘+4

⌘+3

⌘+2

⌘+1

⌘n(⇣)

⇣ ⇣ = 1⇣ = �1



The Thermodynamics 
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