
Al-Hassanieh et al., PRL (2005)

NRG with Bosons - Jülich, 25 Sep 2015 1

NRG with Bosons

Kevin Ingersent (U. of Florida)

Supported by NSF DMR-1107814 (MWN-CIAM)

Si et al., Nature (2001)

S. Tornow (unpub.)



NRG with Bosons - Jülich, 25 Sep 2015 2

Outline

• Quantum impurity problems couple

a local degree of freedom to an

extended, noninteracting host:

• The NRG provides controlled nonperturbative solutions of 

problems involving fermions (T. Costi’s talk).

• Extension of the NRG to problems involving bosons …

‣ Inclusion of local bosons – Anderson-Holstein model

‣ Formulation for bosonic hosts – spin-boson model

‣ Combined approach for fermionic + bosonic hosts –

Bose-Fermi Kondo model

impimphosthost HHHH  



• The NRG was developed for problems with fermionic 

hosts, e.g.,

where

• A fundamental challenge of the Kondo model is the equal 

importance of spin-flip scattering of band electrons on 

every energy scale  on the range –D    D.

• Poor man’s scaling attempts to tackle this, but it is 

perturbative in the renormalized Kondo coupling and thus 

limited to temperatures T > TK (A. Nevidomskyy’s talk).

• The NRG was conceived to reliably reach down to T = 0.
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I. Review: Fermionic NRG
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• Any noninteracting host can be mapped exactly to a tight-

binding form on one or more semi-infinite chains:

‣ Start with                               host state entering Hhost-imp

‣ Since

reach only host states given by repeated action of Hhost

‣ Lanczos (1950):

etc
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Chain mapping of any host
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• Any noninteracting host can be mapped exactly to a tight-

binding form on one or more semi-infinite chains:

• The conduction band in the Kondo model maps to

• Since the basis grows by a factor of 4 for each chain site, 

we would like to diagonalize H on finite chains. But …

‣ Coefficients en, tn are all of order the half-bandwidth.

‣ No useful truncations: Ground state for chain length L is 

not built just from low-lying states for chain length L – 1.
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Chain mapping of a conduction band
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• Wilson (~1974) introduced a

logarithmic discretization of

the conduction band:

• Approximation: The impurity

couples to just one state per bin:

• Now apply Lanczos to the

discretized band:
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NRG’s key feature: Band discretization
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• Wilson’s artificial separation of bin energy scales

gives exponential decaying tight-binding coefficients:

(not a       decay!)

• Allows iterative solution on chains of length L = 1, 2, 3, ...
‣ Ground state for chain length L is mainly built from low-

lying states for chain length L – 1.

‣ Thus, can truncate the Fock space after each iteration.
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NRG iterative solution
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• Start with

e.g., Kondo

• Extend:

Diagonalize in a product basis                                   .

Truncate to                          eigenstates of lowest energy.

• Repeat until reach a scale-invariant RG fixed point:

spectrum of HN = Λ1/2×(spectrum of HN-1).
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NRG iterative solution
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• The solutions of Hhost,Λ can be used to calculate the value 

Xhost of a bulk property in the pure host (without impurity).

• Solutions of

give the value Xtotal in the full system with the impurity.

• Both Xhost and Xtotal vary strongly with the discretization Λ.

• But the value of

varies only weakly with Λ.

• Can use 2 Λ  10 to estimate the physical (Λ = 1) value.
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What does NRG give?

hosttotalimp XXX 

impimphosthost, HHHH  
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II. Fermionic NRG with Local Bosons

• Now want to extend the method to problems with bosons.

• Simplest: Impurity couples to a single local boson mode 

(e.g., an optical phonon).

• Example: the Anderson-Holstein model
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Anderson-Holstein model

1. Haldane (1977) proposed the model to describe mixed-

valent rare-earth compounds, e.g. CeAl3, YbAl2.

Local boson describes fast changes in 3d charge 

distribution in response to slower fluctuations in 4f
occupancy, e.g. Ce 4f0 (4+)  4f1 (3+).

2. It is also a one-impurity version of a model (Anderson, 

1975) for enhanced superconductivity due to “negative-

U” centers in amorphous semiconductors.

Local boson describes oscillations of a covalent bond 
length. 

  ††
0Anderson 1 aanaaHH d  
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Anderson-Holstein model

3. Over the last 20 years, the model has been applied to 

quantum dots (Li et al., 1995, and many since) and 

single-molecule devices.

• “Anderson-Holstein” name: Hewson and Meyer (2002).

  ††
0Anderson 1 aanaaHH d  

Roch et al., Nature (2008) Parks et al., PRL (2007)
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Decoupled limit

• Let’s specialize to the symmetric case .

Then can rewrite

• Consider the decoupled limit of zero hybridization V = 0. 

Now nd is fixed and can use a displaced oscillator mode

to write                                   

where
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Decoupled limit

• Since only states with           can benefit from the bosonic 

coupling, get a reduction in the effective on-site repulsion:

• For                            , decoupled impurity has a charge-

doublet ground state 

1dn

2/00 U 

./2 0
2

eff UU

.2,0dn
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Decoupled limit

• How many bosons are there in the ground state?

• From

it is obvious that in the displaced oscillator basis

• What about the original bosons                                  ?

• P(na) is a Poisson distribution with mean              and 

standard deviation 
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Full problem

• For  V > 0, nd is no longer fixed. Tunneling of an electron 

to/from the band creates & destroys a cloud of bosons as 

the oscillator adjusts to the new dot occupancy:

[Lang & Firsov (1962)].

•Adiabatic limit : Bosons can’t adjust 

to changes in nd, so don’t affect the Kondo physics of 

Anderson model.

• Instantaneous limit : Bosons are always relaxed 

w.r.t. instantaneous value of nd . For . , recover 

Anderson model physics with                                     and, 

for             ,                               .                                     

• The most interesting regime for quantum dots,             and 

.            , is not susceptible to algebraic analysis.
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NRG treatment of local bosons

• Since a local boson has a finite energy 0, it can be 

included in

leaving untouched both Hhost-imp and Hhost.

• Now Himp has an infinite-dimensional Fock space that 

precludes exact diagonalization.

• But if we can find the right finite subset of eigenstates of

we should be able to use the conventional NRG approach 

to incorporate the conduction-band degrees of freedom.

  ,1 ††
0imp aanaannUnH ddddd 




Hewson & Meyer (2002)
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NRG treatment of local bosons

• Based on the decoupled limit, expect the system to relax 

after each change in nd toward a ground state with

• To capture these states, Hewson & Meyer used a bosonic 

basis consisting of eigenstates of         spanning

• To reach

need
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NRG treatment of local bosons

• In summary, can follow standard NRG iterative procedure

with a more complicated H0 whose basis has dimension

• This poses no fundamental problem for                  (say), 

which allows access to the most interesting regime:

and

.444 0U
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Results: Spin Kondo to charge Kondo crossover

Conventional spin Kondo effect evolves smoothly with 

increasing  into a charge Kondo effect where the impurity 

charge is collectively screened by band electrons.

 01~ cs,cs, TT 

2/0D

1.02
1

0
2
0  U

TK from entropy

Plot shows:

Note rapid fall of 

TK for  > 0
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Results: Spin Kondo to charge Kondo crossover

In a quantum-dot, linear conductance
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Results: Spin Kondo to charge Kondo crossover

In a quantum-dot, linear conductance
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II. Bosonic NRG

• Goals: Nonperturbative solutions of impurity problems 

with a gapless continuum of bosonic modes:

• Typically, impurity couples to oscillator displacements:

• Again seek energy separation to allow iterative solution:

• Every bosonic chain site has an infinite basis, so …

basis choice and state truncation likely to be crucial.
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Spin-boson model

• A canonical model for coupling of a local degree of 

freedom to a dissipative environment:

• and      enter only through

the bath spectral function
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NRG discretization and chain mapping

• Define logarithmic bins.

• Retain one bath state in each bin:

so that

• The impurity interacts with all bins

in a “star” configuration.

• Lanczos starting from

maps to a “chain” configuration.
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Separation of energy scales

• Chain coefficients decay faster than for band electrons:

⇒ Discretization achieves the desired energy separation.

• Iterative solution of chains of length L = 1, 2, 3, …. should 

work if can restrict each chain site to just Nb basis states.

)(J
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Does bosonic chain-NRG work?

• The method has been tested very carefully on the spin-

boson model [Bulla et al. (2003, 2005)]:

with bath

using a basis of the Nb lowest eigenstates of          .

• As expected from other approaches,

‣ for 0 < s < 1, there is a quantum-

critical point at  = c()
‣ for s = 1,  instead have a Kosterlitz-

Thouless quantum phase transition.
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Does bosonic chain-NRG work?

• In the delocalized phase and at the critical point (  c),

results are stable and insensitive to choice of Nb.

• In the localized phase ( > c) with s < 1,              diverges 

for large n, and bosonic chain-NRG fails.
nn bb†
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21
†
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Bosonic star-NRG

• In the limit  = 0, Sz provides a static potential for the 

bosons. Under the star formulation,

with

• Can transform to displaced oscillators (for   1)

such that

• Then                                            diverges for s < 1.
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Bosonic star-NRG

• For   0, don’t know exact oscillator shifts, but can use 

variational optimization of basis, then work with small Nb.

• Main conclusion: bosonic-star NRG works well in 

localized phase, but not in delocalized phase.

Translated back to 

chain language,    

converges rapidly 

with increasing Nb.

nn bb†
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Bosonic NRG: Successes and limitations

• With reasonable computational effort, bosonic NRG yields 

thermodynamics, dynamics, phase boundaries that are 

well-converged w.r.t. boson basis per site Nb and number 

of retained states Ns .
• Results are non-perturbative: not limited to small values of 

any model parameter.

• However, choice of bosonic basis is crucial:

‣ Proper basis depends on location in phase diagram.

‣ NRG described here is inefficient at basis optimization.

‣ Variational product state NRG (Weichselbaum et al.) has 

advantages here.

• Critical behavior remains challenging (see lecture notes).
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III: Bose-Fermi NRG

• Bose-Fermi Kondo model describes a spin-half S coupled 

to a conduction band and to 1-3 dissipative baths.

• Isotropic model has the Hamiltonian

where (for                )

• Most studies have focused on one-bath case:
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Bose-Fermi Kondo model: Bath spectra

• Take a flat conduction

band density of states:

• Assume a power-law

bosonic spectrum:

• Dimensionless couplings:

  0  for D

 sKB cc  /)( 2
0
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One-bath Bose-Fermi Kondo model

For any sub-Ohmic bath exponent 0 < s < 1, one-bath BFK 

model

has a nontrivial critical point governing the boundary 

between Kondo and localized phases:

bathband HuSgHJH zz  sS

Embodies critical 

destruction of the Kondo 

effect, c.f. heavy fermions.
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Bose-Fermi NRG

• Seek an NRG that treats simultaneously fermionic and 

bosonic degrees of freedom of the same energy.

• Guided by spin-boson model, use the chain NRG.

• Slightly complication: different  dependences of 

fermionic and bosonic tight-binding coefficients.

‣ Could use different discretizations, fermions = 2
bosons .

‣ Instead, we add a bosonic site at every other iteration:

Glossop and KI (2005)
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Testing the Bose-Fermi NRG

• The Ising-symmetry Bose-Fermi Kondo model is a good 

test ground: bosonization of the fermions maps problem 

onto the spin-boson model with an asymptotic bath 

spectrum

QPT should lie in the

universality

class (studied via bosonic NRG).

• BF-NRG reproduces spin-boson

results, including their flaws.

.
),1min()( sB  

),1min(bosonspin ss 
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Bose-Fermi NRG beyond the BFK model

• Bose-Fermi NRG has been applied to a range of other 

problems:

‣ Self-consistent Bose-Fermi Kondo model arising in the 

EDMFT treatment of the Kondo lattice.

‣ Problems with a singular

fermionic density of states

as well as a sub-Ohmic bath

(see lecture notes).

Si et al. (2001)
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NRG with bosons: A scorecard

• The good: With appropriate choices of bosonic basis, 

NRG provides robust, non-perturbative solutions to a 

variety of interesting problems.

• The bad: NRG with bosons is not a “black-box” tool that 

can be applied indiscriminately, because the basis must 

be chosen appropriately for the regime of interest. May be 

fundamental problems near some critical points.

• The computationally ugly: With bosons, the basis grows 

very rapidly upon NRG iteration.

Impedes extension to multi-impurity and multi-bath 

models, may be problematic for time-dependent studies.

• Key direction for future work: optimization of the bosonic 

basis.


