The Lanczos Method

Erik Koch Computational Materials Science German Research School for Simulation Sciences, Jülich

Why Lanczos?

- Inumerically exact solution
- ☑ efficient for sparse Hamiltonians
- ☑ ground state (T=0) or finite (but low) temperature
- ☑ spectral function on real axis
- O only finite (actually quite small) systems
 - O efficient parallelization to use shared memory
 - O DMFT with optimal bath parametrization

minimal eigenvalue: steepest descent

energy functional

$$E[\Psi] = rac{\langle \Psi | H | \Psi
angle}{\langle \Psi | \Psi
angle}$$

direction (in Hilbert space) of steepest ascent

$$\frac{\delta E[\Psi]}{\delta \langle \Psi|} = \frac{H|\Psi\rangle - E[\Psi]|\Psi\rangle}{\langle \Psi|\Psi\rangle} = |\Psi_a\rangle \in \operatorname{span}\left(|\Psi\rangle, H|\Psi\rangle\right)$$

minimize energy in span $(|\Psi\rangle, H|\Psi\rangle)$

minimal eigenvalue: steepest descent

minimize energy in span $(|\Psi\rangle, H|\Psi\rangle)$

construct orthonormal basis

$$|v_{0}\rangle = |\Psi\rangle / \sqrt{\langle \Psi | \Psi \rangle}$$

$$b_{1} | v_{1} \rangle = |\tilde{v}_{1}\rangle = H | v_{0} \rangle - | v_{0} \rangle \langle v_{0} | H | v_{0} \rangle$$

define: $a_n := \langle v_n | H | v_n \rangle$ $b_1 := \sqrt{\langle \tilde{v}_1 | \tilde{v}_1 \rangle}$ $H | v_0 \rangle = b_1 | v_1 \rangle + a_0 | v_0 \rangle$ $H_{\text{span}(|\Psi\rangle, H|\Psi\rangle)} = \begin{pmatrix} a_0 & b_1 \\ b_1 & a_1 \end{pmatrix}$

diagonalize to find lowest eigenvector

iterate!

convergence

minimize on span $(|\Psi_0\rangle, H|\Psi_0\rangle)$ to obtain $|\Psi_1\rangle$ minimize on span $(|\Psi_1\rangle, H|\Psi_1\rangle) \in \text{span}(|\Psi_0\rangle, H|\Psi_0\rangle, H^2|\Psi_0\rangle)$ minimize on span $(|\Psi_2\rangle, H|\Psi_2\rangle) \in \text{span}(|\Psi_0\rangle, H|\Psi_0\rangle, H^2|\Psi_0, H^3|\Psi_0\rangle)$ etc.

instead of *L*-fold iterative minimization on two-dimensional subspaces minimize energy on *L*+1 dimensional **Krylov space**

$$\mathcal{K}^{L}(\Psi_{0}\rangle) = \operatorname{span}\left(|\Psi_{0}\rangle, H|\Psi_{0}\rangle, H^{2}|\Psi_{0}\rangle, \ldots, H^{L}|\Psi_{0}\rangle\right)$$

more variational degrees of freedom \Rightarrow even faster convergence

convergence to ground state

Lanczos iteration

construct orthonormal basis in Krylov space $b_{n+1}|v_{n+1}\rangle = |\tilde{v}_{n+1}\rangle = H|v_n\rangle - \sum_{i=0}^n |v_i\rangle \langle v_i|H|v_n\rangle$ define: $a_n := \langle v_n|H|v_n\rangle$ $b_n := \sqrt{\langle \tilde{v}_n|\tilde{v}_n\rangle}$ $\langle v_m|: \qquad b_{n+1}\,\delta_{m,n+1} = \langle v_m|H|v_n\rangle - \sum_{i=0}^n \langle v_m|H|v_n\rangle\,\delta_{m,i}$

$$\langle v_m | H | v_n \rangle = \begin{cases} \langle v_m | H | v_n \rangle & \text{for } m < n \\ a_n & \text{for } m = n \\ b_{n+1} & \text{for } m = n+1 \\ 0 & \text{for } m > n+1 \end{cases} \qquad H = \begin{pmatrix} a_0 ? ? ? \cdots ? \\ b_1 a_1 ? ? \\ 0 & b_2 a_2 ? \\ 0 & 0 & a_L \end{pmatrix}$$

H has upper Hessenberg form symmetric/hermitian \Rightarrow tridiagonal

Lanczos iteration

Lanczos algorithm

```
v=init
b0=norm2(v)
scal(1/b0,v)
w=0
w = w + H * v
a[0] = dot(v, w)
axpy(-a[0],v,w)
b[1]=norm2(w)
for n=1, 2, ...
  if abs(b[n])<eps then exit
  scal(1/b[n],w)
  scal( -b[n],v)
  swap(v,w)
  w = w + H * v
  a[n] = dot(v, w)
  axpy(-a[n],v,w)
  b[n+1] = norm2(w)
  diag(a[0]..a[n], b[1]..b[n])
  if converged then exit
end
```

not part of tridiagonal matrix $\mathbf{v} = |v_0\rangle$

 $w = H |v_0\rangle$

$$\mathbf{w} = |\tilde{\mathbf{v}}_1\rangle = H|\mathbf{v}_0\rangle - a_0|\mathbf{v}_0\rangle$$

invariant subspace $w = |v_n\rangle$ $v = -b_n |v_{n-1}\rangle$

$$w = H |v_n\rangle - b_n |v_{n-1}\rangle$$

a[n] = $\langle v_n | H | v_n \rangle - b_n \langle v_n | v_{n-1} \rangle$
w = $|\tilde{v}_{n+1}\rangle$

getting a_{n+1} needs another $H|v\rangle$

convergence of Ritz values

 E_n : eigenvalues of H in ascending order, n=0,...

 $E^{(L)}_n$: eigenvalues of Lanczos matrix $H^{(L)}$ (Ritz values)

Ritz value *n* approaches eigenvalue *n* with increasing *L* from above:

$$E_n \leq E_n^{(L+1)} \leq E_n^{(L)}$$

general basis-set methods: MacDonald's theorem Phys. Rev. **43**, 830 (1933)

spectrum of tridiagonal matrix

toy problem: matrix with eigenvalues -3, -3, -2.5, -2, -1.99, -1.98, ... -0.01, 0

Krylov space cannot contain degenerate states

assume $|\varphi_1\rangle$ and $|\varphi_2\rangle$ are degenerate eigenstates with eigenvalue ε , then their expansion in the orthonormal basis of the Krylov space is

$$\langle v_0 | H^n | \varphi_i \rangle = \varepsilon^n \langle v_0 | \varphi_i \rangle$$

 $\Rightarrow |\varphi_1\rangle$ and $|\varphi_2\rangle$ are identical up to normalization

loss of orthogonality

toy problem: matrix with eigenvalues -3, -3, -2.5, -2, -1.99, -1.98, ... -0.01, 0

convergence to ground state

construction of eigenvectors

let $\check{\psi}_n = (\check{\psi}_{n,i})$ be the *n*th eigenstate of the tridiagonal Lanczos matrix

$$H_{\mathcal{K}^{L}(|v_{0}\rangle)} = \begin{pmatrix} a_{0} & b_{1} & 0 & 0 & & 0 & 0 \\ b_{1} & a_{1} & b_{2} & 0 & \cdots & 0 & 0 \\ 0 & b_{2} & a_{2} & b_{3} & & 0 & 0 \\ 0 & 0 & b_{3} & a_{3} & & 0 & 0 \\ \vdots & & \ddots & \vdots & & \\ 0 & 0 & 0 & 0 & & a_{L-1} & b_{L} \\ 0 & 0 & 0 & 0 & \cdots & b_{L} & a_{L} \end{pmatrix}$$

the approximate eigenvector is then given in the Lanczos basis

$$|\check{\Psi}_n\rangle = \sum_{i=0}^L \check{\psi}_{n,i} |v_i\rangle$$

need all Lanczos basis vectors \Rightarrow need very large memory

instead: rerun Lanczos iteration from same $|v_0\rangle$ and accumulate eigenvector on the fly

spectral function

$$G_{c}(z) = \left\langle \Psi_{c} \left| \frac{1}{z - H} \right| \Psi_{c} \right\rangle = \sum_{n=0}^{N} \frac{\left\langle \Psi_{c} \right| \Psi_{n} \right\rangle \left\langle \Psi_{n} \right| \Psi_{c} \right\rangle}{z - E_{n}}$$

need to calculate entire spectrum?

resolvent / spectral function

$$G_{c}(z) = \left\langle \Psi_{c} \left| \frac{1}{z - H} \right| \Psi_{c} \right\rangle = \sum_{n=0}^{N} \frac{\left\langle \Psi_{c} \left| \Psi_{n} \right\rangle \left\langle \Psi_{n} \right| \Psi_{c} \right\rangle}{z - E_{n}}$$
$$\check{G}_{c}(z) = \left\langle \Psi_{c} \left| \frac{1}{z - \check{H}_{c}} \right| \Psi_{c} \right\rangle = \sum_{n=0}^{L} \frac{\left\langle \Psi_{c} \left| \check{\Psi}_{n} \right\rangle \left\langle \check{\Psi}_{n} \right| \Psi_{c} \right\rangle}{z - \check{E}_{n}}$$

$$z - \check{H}_{c} = \begin{pmatrix} z - a_{0} & -b_{1} & 0 & 0 & \cdots & 0 & 0 \\ -b_{1} & z - a_{1} & -b_{2} & 0 & \cdots & 0 & 0 \\ 0 & -b_{2} & z - a_{2} & -b_{3} & \cdots & 0 & 0 \\ 0 & 0 & -b_{3} & z - a_{3} & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & z - a_{L-1} & -b_{L} \\ 0 & 0 & 0 & 0 & \cdots & -b_{L} & z - a_{L} \end{pmatrix}$$

resolvent / spectral function

$$z - \check{H}_{c} = \begin{pmatrix} z - a_{0} & B^{(1)^{T}} \\ B^{(1)} & z - \check{H}_{c}^{(1)} \end{pmatrix}$$

inversion by partitioning

$$\left[(z - \check{H}_c)^{-1} \right]_{00} = \left(z - a_0 - B^{(1)}{}^T (z - \check{H}_c^{(1)})^{-1} B^{(1)} \right)^{-1}$$
$$= \left(z - a_0 - b_1^2 \left[(z - \check{H}_c^{(1)})^{-1} \right]_{00} \right)^{-1}$$

recursively

$$\check{G}_{c}(z) = \left[(z - \check{H}_{c})^{-1} \right]_{00} = \frac{1}{z - a_{0} - \frac{b_{1}^{2}}{z - a_{1} - \frac{b_{2}^{2}}{z - a_{2} - \cdots}}}$$

downfolding

partition Hilbert space

$$H = \left(\begin{array}{cc} H_{00} & T_{01} \\ T_{10} & H_{11} \end{array}\right)$$

resolvent

$$G(\varepsilon) = (\varepsilon - H)^{-1} = \begin{pmatrix} \varepsilon - H_{00} & -T_{01} \\ -T_{10} & \varepsilon - H_{11} \end{pmatrix}^{-1}$$

inverse of 2×2 block-matrix

$$G_{00}(\varepsilon) = \left(\varepsilon - \left[H_{00} + T_{01}(\varepsilon - H_{11})^{-1}T_{10}\right]\right)^{-1}$$

downfolded Hamiltonian

$$H_{\rm eff} \approx H_{00} + T_{01} (\varepsilon_0 - H_{11})^{-1} T_{10}$$

good approximation: narrow energy range and/or small coupling

convergence: moments

$$\int_{-\infty}^{\infty} d\omega \, \omega^m \check{A}(\omega) = \sum_{n=0}^{L} |\check{\psi}_{n,0}|^2 \check{E}_n^m = \sum_{n=0}^{L} \langle \Psi_c | \check{\Psi}_n \rangle \langle \check{\Psi}_n | \Psi_c \rangle \, \check{E}_n^m = \langle \Psi_c | \check{H}^m | \Psi_c \rangle$$

application to Hubbard model and shared-memory parallelization

dimension of many-body Hilbert space

$$H = -t \sum_{\langle i,j\rangle,\sigma} c_{j,\sigma}^{\dagger} c_{i,\sigma} + U \sum_{i} n_{i,\uparrow} n_{i,\downarrow}$$

solve finite clusters	M	N↑	N_{\downarrow}	dimension of Hilbert space	memory
	2	1	1	4	
	4	2	2	36	
	6	3	3	400	
	8	4	4	4 900	
	10	5	5	63 504	
	12	6	6	853 776	6 MB
	14	7	7	11 778 624	89 MB
$\dim(H) = \begin{pmatrix} M \end{pmatrix} \times \begin{pmatrix} M \end{pmatrix}$	16	8	8	165 636 900	1 263 MB
$\left(N_{\uparrow} \right) \land \left(N_{\downarrow} \right)$	18	9	9	2 363 904 400	18 GB
	20	10	10	34 134 779 536	254 GB
	22	11	11	497 634 306 624	3708 GB
	24	12	12	7 312 459 672 336	53 TB

choice of basis

real space: sparse Hamiltonian

$$H = -t \sum_{\langle i,j \rangle,\sigma} c_{j,\sigma}^{\dagger} c_{i,\sigma} + U \sum_{i} n_{i,\uparrow} n_{i,\downarrow}$$

hopping only connects states of same spin interaction diagonal (even for long-range interaction!)

$$k\text{-space}$$
$$H = \sum_{k\sigma} \varepsilon_k c_{k\sigma}^{\dagger} c_{k\sigma} + \frac{U}{M} \sum_{k,k',q} c_{k\uparrow}^{\dagger} c_{k-q,\uparrow} c_{k'\downarrow}^{\dagger} c_{k'+q,\downarrow}$$

choice of basis

work with operators that create electrons in Wannier orbitals

$$\{n_{i\sigma}\}\rangle = \prod_{i=0}^{L-1} \left(c_{i\downarrow}^{\dagger}\right)^{n_{i\downarrow}} \left(c_{i\uparrow}^{\dagger}\right)^{n_{i\uparrow}} |0\rangle$$

m_\uparrow	bits	state	\mathtt{i}_\uparrow	${\tt m}_{\downarrow}$	bits	state	\mathtt{i}_\downarrow	0		+	
0	000			0	000			1	+		+
1	001			1	001	$c_{0\downarrow}^{\dagger} 0\rangle$	0	2	+	+	\rightarrow
2	010			2	010	$C_{1\downarrow}^{\dagger} 0\rangle$	1	3			, ,
3	011	$c^{\dagger}_{0\uparrow}c^{\dagger}_{1\uparrow} 0 angle$	0	3	011	⊥ ↓ · · ·			ŧ	1 4 	I ≜
4	100			4	100	$c_{2\perp}^{\dagger} 0\rangle$	2	4			\top
5	101	$c^{\dagger}_{0\uparrow}c^{\dagger}_{2\uparrow} 0 angle$	1	5	101	∠√' ′		5	+	+	
6	110	$c_{1\uparrow}^{\dagger}c_{2\uparrow}^{\dagger} 0\rangle$	2	6	110			6	+	+	+
7	111	-, -,		7	111			7	↓		+
								8		+	

sparse matrix-vector product

sparse matrix-vector product: OpenMP

```
w = w + Hv \qquad \qquad H = \sum_{\langle ij \rangle, \sigma} t_{i,j} c_{j,\sigma}^{\dagger} c_{i,\sigma} + U \sum_{i} n_{i,\uparrow} n_{i,\downarrow}
```

```
subroutine wpHtruev(U, v,w)
c --- full configurations indexed by k=(kdn-1)+(kup-1)*Ndnconf+1
!$omp parallel do private(kdn,k,i,lup,ldn,l,D)
      do kup=1,Nupconf
        do kdn=1,Ndnconf
          k=(kdn-1)+(kup-1)*Ndnconf+1
          w(k)=w(k)+U*Double(kup,kdn)*v(k)
        enddo
        do i=1,upn(kup)
          lup=upi(i,kup)
          do kdn=1,Ndnconf
            k=(kdn-1)+(kup-1)*Ndnconf+1
            l=(kdn-1)+(lup-1)*Ndnconf+1
            w(k)=w(k)+upt(i,kup)*v(1)
          enddo
        enddo
        do kdn=1,Ndnconf
          k=(kdn-1)+(kup-1)*Ndnconf+1
          do i=1,dnn(kdn)
            ldn=dni(i,kdn)
            l=(ldn-1)+(kup-1)*Ndnconf+1
            w(k)=w(k)+dnt(i,kdn)*v(1)
          enddo
        enddo
      enddo
      end
```

 $U\sum n_{i,\uparrow}n_{i,\downarrow}$

 $\sum t_{i,j} c_{j,\sigma}^{\dagger} c_{i,\sigma}$ $\langle ij \rangle, \sigma = \uparrow$

 $\sum t_{i,j} C_{j,\sigma}^{\dagger} C_{i,\sigma}$ $\langle ij \rangle, \sigma = \downarrow$

OpenMP on Jump

speed-up

distributed memory

MPI-2: one-sided communication

Hubbard model

$$H = \sum_{\langle ij \rangle, \sigma} t_{i,j} c_{j,\sigma}^{\dagger} c_{i,\sigma} + U \sum_{i} n_{i,\uparrow} n_{i,\downarrow}$$

Idea: matrix transpose of v(i↓,i↑)

Lanczos-vector as matrix: $v(i_{\downarrow}, i_{\uparrow})$

before transpose: ↓-hops local after transpose: ↑-hops local

implementation:

 $\begin{array}{ll} \mathsf{MPI_alltoall} & (N_{\downarrow} = N_{\uparrow}) \\ \mathsf{MPI_alltoallv} & (N_{\downarrow} \neq N_{\uparrow}) \end{array}$

Implementation on IBM BlueGene/P

sites	memory
16	1 GB
18	18 GB
20	254 GB

speed up

Adv. Parallel Computing 15, 601 (2008)

performance on full Jugene?

ile <u>O</u> ption	s Step	60 s	📕 active	5	Search grs30002	Last Update 02/10/11-10:16:26 next in 47 s Source WWW Hel
odes <u>R</u> ur		aiting (XR2200) (XR2200)	202241 202241	X74:MI) (0) X84:MI		used: 100% 29491 1 ⁶ 32 4 ⁸ 6 ⁴ 8 ⁰ 9 ⁶ 1 ¹ 2 1 ² 8 1 ⁴ 4 [‡] jobs (run/wait): CPUSUserid Classbooknodestasksmodetorus cpub wall TEnd 1. 294912 grs30002 m144 2304 73728 294912 S
DITENT				336300		
810-341	<u>521976</u>		5325341 •	324311		
130349						1 68 Immning Imming Industries 100% 75% 3 40 50% 50% 25%
<u>1.60-311</u>	234924			3.442243		Image: Second
3.50-341 3.50-346	1.53936		3333949	334934	E335347 IIII E335347 IIII E335347 E335347 IIII E335347 IIII E3375447	Time: 0.1h of 1:25, ending at 11:35 (A52-H0, 512) (A53-H0, 512) (A53-H0
Room	1.51976) 1.51976	1.0200	3.6376	XG2N	EKSDEL IN EKKSPEL IN EKSDEL EKSDEL IN EKKSPEL IN EKSDEL	9130002 126/571
		83/32/0	9222343 9222343			
3.10-310 3.10-310	1.01974			3.04255		** -ih oh +ih 02/10/11/10:16:26 Job Type color-> muning, blue-> waiting, gray-> nocon #8 updates, started at Thu Feb 10 10:10:34 2011

performance on full Jugene!

speed up

performance on full Jugene!

Spin-Systems

pairwise interaction

 $\sum_{\langle j,k\rangle} J_{jk} \, \mathbf{S}_j \mathbf{S}_k$

spin configurations $\underbrace{100100}_{i_{>}} \underbrace{1100111}_{i_{<}}$ matrix transpose via MPI_alltoallv or systolic algorithm

decoherence: single spin

 $H = \mu_B B_0 S_0^z + \sum_k A_k \mathbf{S}_k \mathbf{S}_0$

decoherence: entanglement fidelity of 2-qubit gates

transpose for spins

43	210	43	210	43	210	43	210				
00	000	01	000	10	000	11	000	0	8	16	24
00	001	01	001	10	001	11	001	1	9	17	25
00	010	01	010	10	010	11	010	2	10	18	26
00	011	01	011	10	011	11	011	3	11	19	27
00	100	01	100	10	100	11	100	4	12	20	28
00	101	01	101	10	101	11	101	5	13	21	29
00	110	01	110	10	110	11	110	6	14	22	30
00	111	01	111	10	111	11	111	7	15	23	31
								MP	I_al	ltoa	11
21	043	21	043	21	043	21	043	MP	I_al	ltoa	11
<mark>21</mark> 00	<mark>043</mark> 000	<mark>21</mark> 01	<mark>043</mark> 000	<mark>21</mark> 10	<mark>043</mark> 000	<mark>21</mark> 11	<mark>043</mark> 000	MP 0	I_al 2	ltoa 4	11 6
<mark>21</mark> 00 00	<mark>043</mark> 000 100	<mark>21</mark> 01 01	<mark>043</mark> 000 100	<mark>21</mark> 10 10	<mark>043</mark> 000 100	<mark>21</mark> 11 11	<mark>043</mark> 000 100	MP 0 1	I_al 2 3	ltoa 4 5	11 6 7
21 00 00 00	<mark>043</mark> 000 100 001	<mark>21</mark> 01 01 01	<mark>043</mark> 000 100 001	<mark>21</mark> 10 10 10	<mark>043</mark> 000 100 001	<mark>21</mark> 11 11 11	043 000 100 001	MP 0 1 8	I_al 2 3 10	ltoa 4 5 12	11 6 7 14
21 00 00 00	<mark>043</mark> 000 100 001 101	<mark>21</mark> 01 01 01 01	043 000 100 001 101	21 10 10 10 10	043 000 100 001 101	<mark>21</mark> 11 11 11 11	043 000 100 001 101	MP 0 1 <mark>8</mark> 9	I_al 2 3 10 11	ltoa 4 5 12 13	11 6 7 14 15
21 00 00 00 00	043 000 100 001 101 010	21 01 01 01 01 01	043 000 100 001 101 010	21 10 10 10 10 10	043 000 100 001 101 010	21 11 11 11 11 11	043 000 100 001 101 010	MP 0 1 <u>8</u> 9 16	I_al 2 3 10 11 18	ltoa 4 5 12 13 20	11 6 7 14 15 22
21 00 00 00 00 00	043 000 100 001 101 010 110	21 01 01 01 01 01 01	043 000 100 001 101 010 110	21 10 10 10 10 10	043 000 100 001 101 010 110	21 11 11 11 11 11 11	043 000 100 001 101 010 110	MP 0 1 8 9 16 17	I_al 2 3 10 11 18 19	ltoa 4 5 12 13 20 21	11 6 7 14 15 22 23
21 00 00 00 00 00	043 000 100 001 101 010 110 011	21 01 01 01 01 01 01	043 000 100 001 101 010 110 011	21 10 10 10 10 10 10	043 000 100 001 101 010 110 011	21 11 11 11 11 11 11	043 000 100 001 101 010 110 011	MP 0 1 8 9 16 17 24	I_al 2 3 10 11 18 19 26	ltoa 4 5 12 13 20 21 28	11 6 7 14 15 22 23 30

bit reordering: 43 210 ---> 21 034 -> 21 430 (mirror i_<)

Heisenberg model on IBM BlueGene/P

speed up

Cell Broadband Engine

1 Power Processor 8 SPE with 256 kB fast local store each

spin models

additional partitioning of local memory

Lanczos on Cell

rotate spin-slice through local store

JUICE report; FZJ-ZAM-IB-13 PARA 2008, Trondheim

DMFT and optimized bath-parametrization

single-site DMFT

Hubbard model $H = -\sum_{ij\sigma} t_{ij} c_{i\sigma}^{\dagger} c_{j\sigma} + U \sum_{i} n_{i\uparrow} n_{i\downarrow}$ $(1) \quad (1) \quad (1)$

$$c_{k\sigma}^{\dagger} = \sum e^{ikr_i} c_{i\sigma}^{\dagger} \Rightarrow H(\mathbf{k}) = \epsilon(\mathbf{k})$$

project to single site: $\int d\mathbf{k} H(\mathbf{k}) = \epsilon_0$

 $H_{\rm loc} = \epsilon_0 + U n_{\uparrow} n_{\downarrow}$

bath parametrization

$$G_{b}^{-1}(\omega) = G_{\text{loc}}^{-1}(\omega) + \Sigma(\omega) = \omega + \mu - \int_{-\infty}^{\infty} d\omega' \, \frac{\Delta(\omega')}{\omega - \omega'}$$

$$G_{\text{And}}^{-1}(\omega) = \omega + \mu - \sum_{I=1}^{N_b} \frac{V_I^2}{\omega - \varepsilon_I}$$

how to determine bath parameters ε_l and V_l ?

$$\mathcal{H}_{And}^{0} = \begin{pmatrix} 0 & V_{1} & V_{2} & V_{3} & \cdots \\ V_{1} & \varepsilon_{1} & 0 & 0 \\ V_{2} & 0 & \varepsilon_{2} & 0 \\ V_{3} & 0 & 0 & \varepsilon_{3} \\ \vdots & & & \ddots \end{pmatrix}$$

$$H_{\text{And}} = \varepsilon_0 \sum_{\sigma} n_{\sigma} + U n_{\uparrow} n_{\downarrow} + \sum_{\sigma} \sum_{l=1}^{N_b} \left(\varepsilon_l n_{l\sigma} + V_l \left(a_{l\sigma}^{\dagger} c_{\sigma} + c_{\sigma}^{\dagger} a_{l\sigma} \right) \right)$$

use Lanczos parameters

Bethe lattice:
$$\int d\omega' \frac{\Delta(\omega')}{\omega - \omega'} = t^2 G_{imp}(\omega)$$

$$t^{2}G^{<}(\omega) + t^{2}G^{>}(\omega) = \frac{t^{2}b_{0}^{<2}}{\omega + a_{0}^{<} - \frac{b_{1}^{<2}}{\omega + a_{1}^{<} - \cdots}} + \frac{t^{2}b_{0}^{>2}}{\omega - a_{0}^{>} - \frac{b_{1}^{>2}}{\omega - a_{1}^{>} - \cdots}}$$

fit on imaginary axis

fictitious temperature: Matsubara frequencies

$$\chi^{2}(\{V_{I},\varepsilon_{I}\}) = \sum_{n=0}^{n_{\max}} w(i\omega_{n}) \left| \mathcal{G}^{-1}(i\omega_{n}) - \mathcal{G}^{-1}_{And}(i\omega_{n}) \right|^{2}$$

weight function $w(i\omega_n)$: •emphasize region close to real axis •make sum converge for $n \rightarrow \infty$ (sum rule)

reminder: single-site DMFT

Hubbard model $H = -\sum_{ij\sigma} t_{ij} c_{i\sigma}^{\dagger} c_{j\sigma} + U \sum_{i} n_{i\uparrow} n_{i\downarrow}$ $(\clubsuit) (\clubsuit) (\clubsuit) (\clubsuit) (\clubsuit) (\clubsuit) (\clubsuit)$ Bloch: $e^{-ik} 1 e^{ik} e^{2ik} e^{3ik} e^{4ik}$ $c_{k\sigma}^{\dagger} = \sum e^{ikr_i} c_{i\sigma}^{\dagger} \Rightarrow H(\mathbf{k}) = \epsilon(\mathbf{k})$

project to single site: $\int d\mathbf{k} H(\mathbf{k}) = \epsilon_0$

 $H_{\rm loc} = \epsilon_0 + U n_{\uparrow} n_{\downarrow}$

$$G_{\text{loc}}(\omega) = \int d\mathbf{k} \left(\omega - \mu - \varepsilon(\mathbf{k}) - \Sigma(\omega)\right)^{-1}$$

$$G_b^{-1}(\omega) = \Sigma(\omega) + G_{\text{loc}}^{-1}(\omega)$$

$$G_b^{-1}(\omega) \approx \omega + \mu - \epsilon_0 - \sum_l \frac{|V_l|^2}{(\omega - \varepsilon_l)}$$

$$H_{\text{And}} = H_{\text{loc}} + \sum_{l\sigma} \varepsilon_{l\sigma} a_{l\sigma}^{\dagger} a_{l\sigma} + \sum_{li,\sigma} V_{li} \left(a_{l\sigma}^{\dagger} c_{i\sigma} + \text{H.c.}\right)$$

$$\Sigma(\omega) = G_b^{-1}(\omega) - G_{\text{imp}}^{-1}(\omega)$$

DMFT for clusters

3-site cluster

$$\mathbf{H}(\tilde{k}) = -t \begin{pmatrix} 0 & e^{i\tilde{k}} & e^{-i\tilde{k}} \\ e^{-i\tilde{k}} & 0 & e^{i\tilde{k}} \\ e^{i\tilde{k}} & e^{-i\tilde{k}} & 0 \end{pmatrix}$$
 0 0 • • • 0 0 0
$$\mathbf{H}_{c} = \frac{3}{2\pi} \int_{-\pi/3}^{\pi/3} d\tilde{k} \, \mathbf{H}(\tilde{k}) = -\frac{3\sqrt{3}}{2\pi} t \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$

translation symmetry coarse-grained Hamiltonian

CDMFT

translation symmetry coarse-grained Hamiltonian no translation symmetry original Hamiltonian on cluster

$$\mathbf{H}(\tilde{k}) = -t \begin{pmatrix} 0 & 1 & e^{-3i\tilde{k}} \\ 1 & 0 & 1 \\ e^{3i\tilde{k}} & 1 & 0 \end{pmatrix}$$
$$\mathbf{H}_{c} = \frac{3}{2\pi} \int_{-\pi/3}^{\pi/3} d\tilde{k} \, \mathbf{H}(\tilde{k}) = -t \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

DCA – CDMFT

$$\tilde{c}_{\mathsf{R}_{i}\sigma}^{\mathsf{CDMFT}}(\tilde{\mathbf{k}}) = \sum_{\tilde{r}} e^{-i\tilde{k}\tilde{r}} c_{\tilde{r}+\mathsf{R}_{i},\sigma}$$
$$\tilde{c}_{\mathsf{R}_{i}\sigma}^{\mathsf{DCA}}(\tilde{\mathbf{k}}) = \sum_{\tilde{r}} e^{-i\tilde{k}(\tilde{r}+\mathsf{R}_{i})} c_{\tilde{r}+\mathsf{R}_{i},\sigma}$$

gauge determines cluster method:

$$\tilde{c}_{\mathsf{R}_{i}\sigma}(\tilde{\mathbf{k}}) = \sum_{\tilde{r}} e^{-i(\tilde{k}\tilde{r} + \boldsymbol{\varphi}(\tilde{k};\mathsf{R}_{i}))} c_{\tilde{r}+\mathsf{R}_{i},\sigma}$$

bath for cluster

$$H_{\text{And}} = H_{\text{clu}} + \sum_{l\sigma} \varepsilon_{l\sigma} a_{l\sigma}^{\dagger} a_{l\sigma} + \sum_{li,\sigma} \left(V_{l,i} a_{l\sigma}^{\dagger} c_{i\sigma} + \text{H.c.} \right)$$
$$\mathbf{G}_{b}^{-1}(\omega) \approx \omega + \mu - \mathbf{H}_{c} - \sum_{l} \frac{\mathbf{V}_{l} \mathbf{V}_{l}^{\dagger}}{\omega - \varepsilon_{l}}$$
$$\mathbf{G}_{b}^{-1}(\omega) = \mathbf{\Sigma}_{c}(\omega) + \left(\int d\tilde{\mathbf{k}} \left(\omega + \mu - \mathbf{H}(\tilde{\mathbf{k}}) - \mathbf{\Sigma}_{c}(\omega) \right)^{-1} \right)^{-1}$$

expand up to $1/\omega^2$: sum-rule

$$\sum_{l} \mathbf{V}_{l} \mathbf{V}_{l}^{\dagger} = \int d\tilde{\mathbf{k}} \mathbf{H}^{2}(\tilde{\mathbf{k}}) - \left(\int d\tilde{\mathbf{k}} \mathbf{H}(\tilde{\mathbf{k}})\right)^{2}$$

hybridization sum-rules: single-site

H with hopping t_n to the $z_n n^{th}$ -nearest neighbors

$$\sum_{l} V_{l}^{2} = \frac{1}{(2\pi)^{d}} \int_{-\pi}^{\pi} d^{d} \mathbf{k} \, \varepsilon_{\mathbf{k}}^{2} = \sum_{n} z_{n} \, t_{n}^{2}$$

special case: Bethe lattice of coordination *z* with hopping t/\sqrt{z}

$$\sum_{l} V_{l}^{2} = t^{2}$$

hybridizations diagonal in the cluster-momenta K:

$$\sum_{I} |V_{I,K}|^2 = \int d\tilde{\mathbf{k}} \, \varepsilon_{K+\tilde{k}}^2 - \left(\int d\tilde{\mathbf{k}} \, \varepsilon_{K+\tilde{k}}\right)^2$$

all terms $V_{I,K}$ $V_{I,K'}$ mixing different cluster momenta vanish

hybridization sum-rules: CDMFT

$$\mathbf{H}(\tilde{k}) = -t \begin{pmatrix} 0 & 1 & e^{-3i\tilde{k}} \\ 1 & 0 & 1 \\ e^{3i\tilde{k}} & 1 & 0 \end{pmatrix}$$

$$\sum_{I} \mathbf{V}_{I} \mathbf{V}_{I}^{\dagger} = \int d\tilde{\mathbf{k}} \mathbf{H}^{2}(\tilde{\mathbf{k}}) - \left(\int d\tilde{\mathbf{k}} \mathbf{H}(\tilde{\mathbf{k}})\right)^{2} = \left(\begin{array}{ccc} t^{2} & 0 & 0\\ 0 & 0 & 0\\ 0 & 0 & t^{2} \end{array}\right)$$

hybridization sum-rules: CDMFT

example: 1-d clusters

symmetry of bath

$$\mathbf{W} = \frac{1}{\sqrt{2}} \left(\begin{array}{rrr} 1 & 0 & 1 \\ 0 & \sqrt{2} & 0 \\ 1 & 0 & -1 \end{array} \right)$$

irreducible representations: A (even), B (odd)

$$\mathbf{W}^{\dagger}\mathbf{G}_{b}^{-1}\mathbf{W} = \begin{pmatrix} G_{b,11}^{-1} + G_{b,13}^{-1} & \sqrt{2}G_{b,12}^{-1} & 0 \\ \sqrt{2}G_{b,21}^{-1} & G_{b,22}^{-1} & 0 \\ 0 & 0 & G_{b,11}^{-1} - G_{b,13}^{-1} \end{pmatrix}$$

block-diagonal

symmetry of bath

$$\mathbf{W} = \frac{1}{\sqrt{2}} \left(\begin{array}{rrr} 1 & 0 & 1 \\ 0 & \sqrt{2} & 0 \\ 1 & 0 & -1 \end{array} \right)$$

irreducible representations: A (even), B (odd)

$$\mathbf{W}^{\dagger}\mathbf{G}_{b}^{-1}\mathbf{W} = \begin{pmatrix} G_{b,11}^{-1} + G_{b,13}^{-1} & \sqrt{2}G_{b,12}^{-1} & 0 \\ \sqrt{2}G_{b,21}^{-1} & G_{b,22}^{-1} & 0 \\ 0 & 0 & G_{b,11}^{-1} - G_{b,13}^{-1} \end{pmatrix}$$

block-diagonal

cluster replica: 2A+B

 $V_{A,1} = (V_1 + V_3)/\sqrt{2}$ $V_{A,2} = V_2$ $V_B = (V_1 - V_3)/\sqrt{2}$

supercells

are they all different?

Hermite normal form

$$\mathbf{\Lambda} = \begin{pmatrix} \lambda_{11} & 0 & 0 & \cdots \\ \lambda_{21} & \lambda_{22} & 0 \\ \lambda_{31} & \lambda_{32} & \lambda_{33} \\ \vdots & & & \ddots \end{pmatrix}$$

$$0 \leq \lambda_{ij} < \lambda_{ii}$$

Euclidean algorithm

$$gcd(a, b) = \begin{cases} |a| & \text{if } b = 0 & (\text{change sign of column}) \\ gcd(b, a) & \text{if } |a| < |b| & (\text{exchange columns}) \\ gcd(a - \lfloor a/b \rfloor b, b) & \text{otherwise} & (\text{add integer multiple of col}) \end{cases}$$

Hermite normal form

HNF

symmetry

enumeration & properties of clusters

	+ 44 www.cond-mat.d	e/sims/cluster/	Bet	ts Criteria	C Reader.
e	List supercells	HNF reduction	LLL reduction	Align primitive vectors	
Number of lattice	ce points N Primitive v	vectors (\vec{a}_1, \vec{a}_2) 1 0 0 1	Betts numbering ✓ Show number	Betts labeling ✓ Show label	

List all supercells

Show all plots

No	Nak	l ₁	l ₂	L ₁	L ₂	√σ ▼	S 🗸	J 🔻	I _F ▼	I _B ▼	hide all
1	8h0	(8,0)	(0,1)	(0,1)	(8,0)	0.50	C _{2v}	19	6		8h0 1 2 3 4 5 6 7 6 → hide
2	8h1	(8,0)	(1,1)	(1,1)	(4,-4)	0.69	C2	9	6	3	

http://www.cond-mat.de/sims/cluster/

supercell: k-point sampling

$$\mathbf{K}_{\mathcal{S}} = (2\pi\mathbf{C}^{-1})^{\mathsf{T}} = \mathbf{G}(\mathbf{L}^{-1})^{\mathsf{T}}$$

supercell

Brillouin zone

supercell: k-point sampling

$$\mathbf{K}_{\mathcal{S}} = (2\pi\mathbf{C}^{-1})^{\mathsf{T}} = \mathbf{G}(\mathbf{L}^{-1})^{\mathsf{T}}$$

supercell

Brillouin zone

Monkhorst-Pack grid

particularly suited for Brillouin-zone integrals

$$\mathbf{L} = \begin{pmatrix} n_1 & 0 & 0 \\ 0 & n_2 & 0 \\ 0 & 0 & n_3 \end{pmatrix} \qquad \qquad \tilde{\mathbf{k}} = \sum_i \frac{(n_i - 1)\mathbf{k}_i}{2n_i}$$

PHYSICAL REVIEW B

VOLUME 13, NUMBER 12

15 JUNE 1976

Special points for Brillouin-zone integrations*

Hendrik J. Monkhorst and James D. Pack Department of Physics, University of Utah, Salt Lake City, Utah 84112 (Received 21 January 1976)

A method is given for generating sets of special points in the Brillouin zone which provides an efficient means of integrating periodic functions of the wave vector. The integration can be over the entire Brillouin zone or over specified portions thereof. This method also has applications in spectral and density-of-state calculations. The relationships to the Chadi-Cohen and Gilat-Raubenheimer methods are indicated.

top cited Phys. Rev. papers

Table 1. Physical Review Articles with more than 1000 Citations Through June 2003								
Publication	# cites	Av. age	Title	Author(s)				
PR 140, A1133 (1965)	3227	26.7	Self-Consistent Equations Including Exchange and Correlation Effects	W. Kohn, L. J. Sham				
<i>PR</i> 136 , B864 (1964)	2460	28.7	Inhomogeneous Electron Gas	P. Hohenberg, W. Kohn				
PRB 23, 5048 (1981)	2079	14.4	Self-Interaction Correction to Density-Functional Approximations for Many-Electron Systems	J. P. Perdew, A. Zunger				
PRL 45, 566 (1980)	1781	15.4	Ground State of the Electron Gas by a Stochastic Method	D. M. Ceperley, B. J. Alder				
PR 108, 1175 (1957)	1364	20.2	Theory of Superconductivity	J. Bardeen, L. N. Cooper, J. R. Schrieffer				
PRL 19, 1264 (1967)	1306	15.5	A Model of Leptons	S. Weinberg				
PRB 12, 3060 (1975)	1259	18.4	Linear Methods in Band Theory	O. K. Anderson				
<i>PR</i> 124 , 1866 (1961)	1178	28.0	Effects of Configuration Interaction of Intensities and Phase Shifts	U. Fano				
<i>RMP</i> 57 , 287 (1985)	1055	9.2	Disordered Electronic Systems	P. A. Lee, T. V. Ramakrishnan				
<i>RMP</i> 54 , 437 (1982)	1045	10.8	Electronic Properties of Two-Dimensional Systems	T. Ando, A. B. Fowler, F. Stern				
PRB 13, 5188 (1976)	1023	20.8	Special Points for Brillouin-Zone Integrations	H. J. Monkhorst, J. D. Pack				
PR, Physical Review; F	PRB, Phy	sical Re	view B; PRL, Physical Review Letters; RMP, Reviews of Modern Physics.					

S. Redner: *Citation Statistics from 110 years of Physical Review* Physics Today June 2005, p. 49

top cited Phys. Rev. papers

Table 1.	Physica	l Revi	ew Art	icles with more	than 1000 Citations Through June 200)3
Publication		# cites	Av. age	Title		Author(s)
<i>PR</i> 140 , A11	33 (1965) 3227	26.7	Self-Consistent Equa	ations Including Exchange and Correlation Effects	W. Kohn, L. J. Sham
<i>PR</i> 136 , B86	64 (1964)	2460	28.7	Inhomogeneous Ele	ctron Gas	P. Hohenberg, W. Kohn
PRB 23 , 504	48 (1981)	2079	14.4	Self-Interaction Corre Many-Electron System	ection to Density-Functional Approximations for ms	J. P. Perdew, A. Zunger
PRL 45 , 566	6 (1980)	1781	15.4	Ground State of the	Electron Gas by a Stochastic Method	D. M. Ceperley, B. J. Alder
PR 108, 117	75 (1957)	1364	20.2	Theory of Supercon	ductivity	J. Bardeen, L. N. Cooper, J. R. Schrieffer
PRL 19 , 126	64 (1967)	1306	15.5	A Model of Leptons		S. Weinberg
PRB 12 , 306	60 (1975)	1259	18.4	Linear Methods in B	Band Theory	O. K. Anderson
<i>PR</i> 124 , 186	(10(1)	1170				
<i>RMP</i> 57 , 28					ed Phys Kev papers	s (july 2007) 📗
<i>RMP</i> 54 , 43		ar	cticle	cites	title	author(s)
PRB 13, 510	1 PR	140 A	A1133	(1965) 4930	Self Consistent Equations	W. Kohn & L. J. Sham
FK, Fliysical	2 PR	136	B864	(1965) 3564	Inhomogeneous Electron Gas	P. Hohenberg & W. Kohn
S Doo	3 PRI	3 23	5048	(1981) 3007	Self-Interaction Correction to	J. P. Perdew & A. Zunger
J. Rec	4 PRI	45	566	(1980) 2514	Ground State of the Electron	D. M. Ceperley & B. J. Alder
Physic	5 PRL	. 77	3865	(1996) 2478	Generalized Gradient Approx	Perdew, Burke, Ernzerhof
	6 PRE	13	5188	(1976) 2277	Special Points for Brillouin	H. J. Monkhorst & J. D. Pack
	7 PRB	54	11169	(1996) 1933	Efficient Iterative Schemes	G. Kresse & J. Furthmuller
	8 PRE	43	1993	(1991) 1776	Efficient Pseudopotentials for	N. Troullier & J.L. Martins
	9 PRE	41	7892	(1990) 1749	Soft Self-Consistent Pseudopotentials.	D. Vanderbilt
	10 PR	108	1175	(1957) 1650	Theory of Superconductivity	Bardeen, Cooper, Schrieffer

S. Redner: A Physicist's Perspective on Citation Analysis Trends in Research Measurement Metrics, Washington DC, Oct 2010 http://physics.bu.edu/~redner/talks/citations-10.pdf

summary

