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+ 2000: Cluster perturbation theory (CPT)
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Preliminaries

- Hubbard model

H = Zt’.l Cio _/O' T+ Uzn’Tnli
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Preliminaries

- Thermodynamic Green’s function

Gij o = —<TTC,J(T)CJTU>
B




Preliminaries

- Non-interacting (bare) Green’s function
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- Interacting Green’s function and Dyson equation

G(k, iw,) = Go(k, iw,) + Go(k, iw,)X(k, iw,)G(k, iw,)
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Self-energy






Preliminaries
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4N states

The Problem




The finite size solution

416 states




Dynamic Cluster
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Dynamic cluster
approximation

General idea:

Represent bulk system by a reduced number of cluster
degrees of freedom, and use coarse-graining to retain




Coarse-graining of

HEgEs

DMFT: N.=1

1, it k in patch K.
k) =
¢K ( ) { 0, otherwise.
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Momentum sums: > — N > ok(k)
k k



Se
o=

Basic assumption

f-energy is short-ranged/weakly momentum

nendent

2 (k, iwp) ~ X (K, iwp)

and thus is well approximated on a coarse-grid of
cluster K momenta

Y PA(k, iwn) = ok (k)Zc(K, iwn)



Coarse-graining
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DCA algorithm

(2) Coarse-graining

_ N, 1
S t;(K iWwp) = N ; ok (k) jon — ek + 1 — TDCA(K, ,'wng

v

(1) — DCA self-energy (3)— Bare cluster propagator

Iterate to
GDCA(K iwn) =Y ox(K)Z(K, iwn) | self-consistency: tgo(K, iwn) = [G K, iwn) + Zc(K, iw,)] l
K
Znew _ zold




DCA vs. finite size

Y (K, iwn) = X[Go(K, iwp), U]
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QMC cluster solver

Excellent review of continuous-time QMC solvers

E. Gull et al., Continuous-time Monte Carlo methods for guantum
impurity models. Rev. Mod. Phys. 83, 349-404 (2011).

Interaction expansion, hybridization expansion and
auxiliary field algorithms

Continuous-time auxiliary field (CT-AUX) QMC

Employs auxiliary field decoupling of interaction term, then
performs Monte Carlo sampling of expansion in interaction




CT-AUX QMC

Auxiliary field decomposition

BU 1 . 1 si(ni+—njy ) UBNC
L5 2 mm = gt )| = gy 3 T cosn(y) = 14 27

Partition function
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Sum over expansion orders
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Monte Carlo sampling space
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QMC updates

Insertion and removal updates

(X1,T1) (X2,T2)
I
——>—0 :
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Insertion/removal
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Probability for updating configuration x to x’
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Measurement of Green’s function
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Sign problem

- Weights of configurations can be negative

1 [ dAR)Iplsen(x) (A
Z [ dxsgn(x)|p(x)] (sgn)|p)

A= %/dXA(X)p(X)

- Average sign

oy _ S xs8n( Pl Z
M = e Z

p|

- Ratio of Zand Zj| of “bosonic” system with positive weights

- Average sign decreases exponentially with system size,
inverse temperature and U and leads to exponential statistical
errors.



Fermion sign problem

NC=16, U=4t,
=0,<n> = 0.8

DCA/QMC has much weaker sign problem



Typical DCA result for
self-energy

Nc — 4 X 4, U:7t,
(n»=0.94, 1=0.13t

Strong momentum dependence in “pseudogap” region



DCA self-energy

YPA(k, iwn) = ok (k)Zc(K, iwn)

Jump discontinuities and cluster shape/size dependence



Calculation of response
functions (susceptibilities)

- Two approaches

1. Apply symmetry breaking field and calculate “anomalous”
Green'’s function. E.g. for s-wave superconductivity

Filr) = —(Teen(D)ga(0)); o= T2 D= T/NY Flk,iw,)

V=0
2. Calculate susceptibility from two-particle correlation function
8
P.= [ dr(a,(r)al(o)
0

DCA is “thermodynamically consistent” — two approaches give
same result.



Calculation of 2-particle
response functions

Pair-field susceptibility
B
PQO(T):/O dr(A,(T)AL(0)); Z (K)alcly,

k
8d,, ,»(k) = cos ky — cos k,

wo-particle Green'’s functon

G104 (X1, X2 X3, Xa) = —( T, (x1)c,, (x2)cl, (x3)cl, (xa))

Bethe-Salpeter equation = (k,iw,);q = (q, iwm)
Go(k, —k +q,—k' + g, k') = G (k)G (—k + q)dx ——ZGT G, (—k +q)

X [pp(k, —k + q,—k"" + q, k”)Gg(k" —k" +q,—k" +q, k")

Irreducible vertex function T



DCA approximation of
irreducible vertex

+ Cluster approximation

Z¢K Mea(K, K)ok (K')

Bethe-Salpeter equation on cluster
Go,c (K, K') = Get(K)Gey (—K)dk k- ——ZGcT(K)Gw( K)
X e pp(K, K")Goo (K", K')

Determine cluster irreducible vertex

I-c,pp—_N [[G c] 1_[G2C] }



Example: Phase diagram

O 8=0.00N =4 T,=0.041 y=1.32
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Jarrell TAM et al., EPL ‘01



Bethe-Salpeter eigenvalues
and eigenfunctions

Eigenvalue equation in particle-particle channel
0 S Caplk, K)G1 (K) Gy (—K g (K) = Aagia (K)
%

Relation to 2-particle Green’s function

Ga pp(k, k') = za: GT(k)Q(_k)ga(lkzgiik/)

Coarse-grained eigenvalue equation

T
N Z [ c.pp(K, K")X0,pp(K')ga(K") = Aaga(K)
c

X0.00(K) = Ne/N Y ~ ¢ (k)Gr(k) Gy (—k)



BSE eigenvalues and eigenfunctions:
2D Hubbard model
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The Q=(m,rt), S=1 particle-hole channel dominates but saturates at
low T. The leading eigenvalue in the singlet Q=0 particle-particle
channel has d-wave symmetry and increases towards 1 at low T.






The DCAT method

General idea:

Introduce lattice self-energy with continuous
k-dependence and thus reduce its cluster shape and




DCA* self-energy

- DCA self-energy

Y(k) = > ok(k)Zc(K)

- ldentity




(2)

DCA™* algorithm

Coarse-graining

~

J
v

— : N 1
N GK fwn) = T Zk: i ———— % (k, iwn)
> (k, iwy) = NW > ok(k)Z(k, iwn)
\_ k
(1)- DCA* Self—energy lterate to

(3)— Bare cluster propagator

kQO(K, iwn) = [GTHK, iwy) + Z(K, i

wn)]_l l




From cluster to lattice

Te(K) = 16 3 dr(k)E(K)

- Interpolation = (K)— (k)

- Generalized coarse-graining

> (k) = NW S go(k —K)E(K)  dk(k) = dreo(k' — K)

- Expansion of lattice self-energy

Y (k) = ZB;wn(k — k;j)o(k;)

+ Projection

Ne
2 (ki) = Z Pio(k;); Pj = m Z po(k — k;)Bj.,(k — k)
j k



Figenvalues of
projection operator

Inversion only possible if self-energy
contained within the cluster



Interpolation of cluster self-energy
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Deconvolution of interpolated
cluster self-energy

Richardson-Lucy fixed-point iteration
(converges to maximum

likelihood solution):  s(+) k) « (k) [ dK’ ok — k') Zo (k')

[ dk ¢o(k — k")) (k)

—  Re[2y ¢ o Re[2(K)]

— Iml2z] © o Im[S(K)]

T“J”“L....T Ne=32; t=-0.15t, U=7t,

<n>=0.95, T=0.33

Richardson-Lucy iteration




DCA vs. DCA* self-energy

DCAT* gives smooth momentum dependence
and mitigates cluster shape/size dependence



| attice irreducible vertex
function

- DCA vertex

Fa(k k') = ¢x(k)lca(K, K)ok (K)

K,K’

- DCA* relation for lattice vertex

N2
rc,a(Kv K/) — N_; Z ¢K(k)ra(k1 k,)¢K’(k/)
k,k’

- Use interpolation, then inversion to determine lattice

vertex [ x(k k')



Choice of coarse-graining

patch function

Partial occupancies

Y
N\ 4

Star-like patching
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Gull et al.,, PRB ‘10



for L=6:

! | n te rl eave d ! CO a rS e'g r ( Goar() = PHCIG() + PHiCSIG(5

Gbar(5) = Phi(5)G(5) + Phi(-1)G(-1)

-> Gbar(1) = Gbar(b) (with inv. symmetry)

G(K) = ’VW > ok(k)G(k)  GR) =Y $(R+r)G(R

Staar, Jiang, Héihner,
TAM, Schulthess, in
preparation




Coarse-graining and cluster size

d=1.000 U=8 T=0.15 k=(r,0)

0.06 0.08 0.10 0.12 0.14

Effects of coarse-graining gradually diminish
with increasing cluster size



Reduction of QMC sign
problem

DCA* and ¢ (k)

k
DCA and ¢* (k)
DCA* and ¢(k)
DCA and ¢(k)

DCA* with interleaved coarse-graining
significantly reduces sign problem



Applications to




Antiferromagnetism

B
o(d) = / d7 (T, 5%(q, 7)5%(~q,0))

5%(q) = 1/NZ(Ci+qTCkT - CllL-l—q¢Ck¢)
k

&(Tv) = V/Ne

v

A/(B+InN/2)




Pseudogap at T=T7*

U=7t, t=-0.15t, <n>=0.95

(N

N

N.=4
N. =38
N.=1
N. =16
N.=2
N.=2
N.=3

DCA* converges T*(N) faster



dxy2 SUPerconductivity

U=4t <n>=0.9

= 00) =0.0199+0.00187

Consistent with Kosterlitz-Thouless scaling

TC(NC) —

C




dxy2 SUPerconductivity

U=7t,<n>=0.9







Nature of approximation

DCA and DCA+ are cluster dynamical mean-field theories
that map the bulk lattice problem onto a finite size,
periodic cluster embedded in a self-consistent dynamic
mean-field

Correlations on the cluster are treated accurately, those
beyond the cluster at a mean-field level

Approximation assumes short-ranged correlations that do
not extend beyond L./2

Breaks down near classical or quantum phase transition,
where mean-field behavior is generated, but finite size
scaling can give exact results



Causality

Causality requires that ImX(k,w +i07) <0

Causality was a particular challenge in the early
attempts to develop of cluster extensions of DMFT

The DCA can be proven to be causal

Simple interpolations of the cluster self-energy in the
coarse-graining are likely to lead to acausal results

The DCA+ cannot be proven to be causal, but
causalitv violations have not been observed



Thermodynamic consistency

- Thermodynamic consistency implies that a quantity
calculated from the single-particle Green'’s function is

identical to the respective quantity calculated from the
two-particle Green’s function

B
p, = 98 or P.- / dr (A, (1) AL(0))
8\U V=0 0

+ An algorithm is thermodynamically consistent if it is
self-consistent and if

[ = §%[G]/6G

- Both the DCA and DCA* are thermodynamically
consistent



DCA and DCAT as self-energy
functional approximations

Grand potential
Q[G] = Trin[-G] — Tr [(G, ' — G 1)G| + ®[G, U]

Self-energy from Baym-Kadanoff functional

_ 9%[G]
=56
and Dyson equation
G '=G,'-X
imply stationarity

0QIG] _

e 0



Self-energy functional

Grand potential
Q[E] = Trin [(Gy* — X)] — (Lo)[Z]

Legendre transform
(LP)[Z] = ¢ — Tr[=G]

Green’s function




DCA approximation

DCA self-energy
(k) = TP (k) = > ox(k)Zc(K)

reduces degrees of freedom in functional
(LO)E] =&~ 1 > TZ(K)G.(K)]
< K
with cluster Green’s function

GelK) = 5 D2 o(G() = 5 DD on) o

— ¥ DCA(K)

DCA grand potential
QPCAIE, ] = Trin [—((;0—1 _ zDCA)} SO /vﬂ Y THE(K) Ge(K)]
¢ K

IS stationary
5Q[Zc]/5ZC(K) =



DCA

DCA* grand potential

QPAT[E] = Trin [—(Gyt — E)] 4+ & — /vﬂ Z Tr[Xc(K)Ge(K)]

Self-energy relation between cluster and lattice

> (K) = % > ok(k)Z(k)

At stationarity
SQPAT £ (k)] /6 (k) = O

one obtains >
[Go (k) = Z(K)] =) dK(k)Ge(K)

Multiplying both sides with N./N D ¢k (k) gives
k

1
(k) — (k)

Ge(K) = 7€ 3 (k) —



Summary & Outlook

- DCA and DCA+ enable insightful and often
controlled studies of correlated systems

- They allow for the calculation of various single-
particle and two-particle observables to make
contact with experiments

- Studies have been mainly based on single-band
models. Multi-orbital models are challenging but
possible in the near future.



