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1 Introduction

The Full Configuration Interaction Quantum Monte Carlo (FCIQMC) technique is a stochastic
method to compute the ground-state energy (and expectation values over two-particle operators
of the ground state) of extremely large many-body Hamiltonians, usually in the context of ‘Full
CI’ methods: that is to say electronic wavefunctions expanded in Slater determinant spaces
comprising of all possible determinants constructable from a given spatial orbital basis. Intro-
duced in 2009 [1], it has been developed in a number of ways which greatly extends the scope
of the methodology: the initiator method [2], introduced in 2010, enables much larger Hilbert
spaces to be accessed with a relatively small number of walkers, albeit at the cost of a system-
atically improveable bias, followed in 2012 the development of the semi-stochastic FCIQMC
method (S-FCIQMC) [3, 4], which greatly reduces the stochastic error bars for a given amount
of computer effort, resulting in ∼1000-fold increase in efficiency. In 2014, the replica method
to compute reduced-density matrices (1- and 2-body) was introduced [5], which has enabled
other developments, including property calculations [6], stochastic CASSCF [6, 7], and F12
corrections [8], and finally the method was extended to excited states [9–13]. FCIQMC has
also led to stochastic techniques for solving other types of quantum chemical equations: the
Coupled-Cluster Monte Carlo technique [14], and the density matrix QMC method [15], re-
spectively.

The scope of this short tutorial lecture cannot possibly cover all of the above aspects. We will
limit ourselves to the description of the algorithm, together with its semi-stochastic variant, as
well as some illustrative examples using the Hubbard model. It should be pointed out, however,
that the FCIQMC has proven most useful for quantum chemical systems, often characterized
by large basis sets (i.e., a large ratio of the number of orbitals to the number of electrons), and
in which the full CI eigenvector is very sparse in comparison to the size of the Hilbert space.
FCIQMC manages to perform an efficient sampling of such sparse solutions without a priori
knowledge of the wavefunction, and importantly, without encountering a severe sign problem.
In other words, the signal-to-noise ratio of the simulations are perfectly stable and manageable,
and does not deteriorate with time as the simulation proceeds. However, where sparsity does
not exist in the wavefunction, in other words where the entire Hilbert space is relevant to the
description of the wavefunction, it is inevitable that the computational effort of the FCIQMC
simulation involves sampling the whole (exponentially large) space. This is found to be the case
for the Hubbard model, where, depending on the strength of the Hubbard U , the exact solution
can be either sparse or dense, the latter being the case for example in the Hubbard model as U/t
becomes large (in a plane-wave basis). In this case, FCIQMC is not much more efficient than
conventional exact diagonalization. It does raise the question of representation, though. At very
large U (which by numerical experimentation is found to be around 30t) it is more efficient to
use a real-space representation to express the FCI solution, whereas at smaller U plane-waves
are more efficient. However for the intermediate U regime, i.e., from 4-12, we have not found
any representation to be efficient, and the FCI solution appears to be quite dense in both real
and reciprocal space.
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Nevertheless, the important property of the FCIQMC method rests on its intrinsic ability to
locate the important parts of the wavefunction, and to entangle them correctly. In other words
the correct linear combination of Slater determinants emerges from the simulation, without the
need to perform any explicit diagonalization, or similar numerical procedure. In order to do this,
the key step is the walker-annihilation step of the algorithm, which will be discussed later on.
It turns out that this process can be done in a local manner, in an O(Nw) process, i.e., scaling
linearly with the number of walkers, without the need to invoke global processes involving the
entire walker population or Hilbert space, which would be intractable. Furthermore, this allows
for massive parallelization, which is without doubt one of the key strengths of the technique. It
gives it an exciting future perspective.

2 FCIQMC

Given a second-quantized Hamiltonian of the type

Ĥ =
∑
pq

hpqc
†
pcq +

∑
pqrs

vpqrsc
†
pc
†
qcscr (1)

defined over a set of spin-orbitals {ϕ1, ...ϕp, ..., ϕq, ...., ϕ2M} with

hpq = 〈ϕp|h|ϕq〉 (2)

vpqrs = 〈ϕpϕq|r−112 |ϕrϕs〉 , (3)

the object is to solve for the lowest-energy eigenstate of such an Hamiltonian for an N -electron
system

Ĥ|Ψ0〉 = E0|Ψ0〉 . (4)

FCIQMC can be considered as a stochastic minimization of the energy with respect to a sampled
full configuration interaction wavefunction expansion. This wavefunction is a simple linear
combination of all Slater determinants that can be constructed from distributing the available
electrons within the (orthonormalized) single-particle orbitals spanning the space, as

|Ψ0〉 =
∑
i

Ci|Di〉, (5)

where |Di〉 represents a Slater determinant, labeled by the orbital-occupation string i. The
linear coefficients of this expansion are the objects that are stochastically sampled using a delta
function or walker representation: given an ensemble ofNw walkers distributed over the Hilbert
space, each with a sign s = ±1 and Slater determinant i

{s1i1, s2i2, ...., sNw iNw} (6)

the number of walkers on each determinant is

ni =
Nw∑
w

swδ(iw − i). (7)
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The FCIQMC algorithm is then a population dynamics of such an assembly of walkers with the
aim that in a long-time (β) simulation, the expectation value of the ni becomes proportional to
the Ci

〈ni〉β ∝ Ci . (8)

The stochastic, iterative equations that govern this dynamics are given by

∆ni(β + τ) = −τ

[∑
j6=i

Hij nj(β)

]
− τ(Hii − S)ni(β) , (9)

where ∆ni(β) represents the change in ‘walker’ population/weight on determinant |Di〉 in the
time step β → β + τ . This leads to population dynamics of a set of walkers which occupy
determinants connected to each other in this many-electron Hilbert space. This dynamics can
be achieved by a set of local, stochastically realized, Markov-chain processes as follows:
The first is a ‘spawning’ step, which is performed for each occupied determinant, and a number
of times proportional to the walker weight at that determinant (ni). A single or double excitation
is randomly chosen, with normalized probability pgen(j|i) for the excitation from |Di〉 to |Dj〉.
The walker amplitude on |Dj〉 is then augmented with a signed probability given by

pspawn = −
τHij

pgen(j|i)
. (10)

Finally, a ‘death’ step is performed, by which the amplitude on each determinant, |Di〉, is (gen-
erally) reduced with probability τ(Hii − S)ni. Taken together, these two steps simulate the
dynamic in Eq. (9). However, an additional ‘annihilation’ step is essential in order to overcome
an exponential increase in noise and other features associated with the Fermion sign prob-
lem [1]. In this step, walkers of opposite signs on the same determinant are removed from the
simulation.
The energy of the QMC-sampled wavefunction can be extracted from a projected estimator, the
simplest of which is

EProj =
〈DHF|Ĥ|Ψ〉
〈DHF|Ψ〉

, (11)

where the projection is done onto the Hartree-Fock determinant DHF. This is a reasonable
projection as long as DHF has a non-negligible overlap with the ground-state wavefunction Ψ .
In case of wavefunctions with multi-reference character, it is better to perform a projection onto
a multi-determinantal trial wavefunction ΨT =

∑
{i}C

T
i |Di〉, so that

ET =
〈ΨT |Ĥ|Ψ〉
〈ΨT |Ψ〉

. (12)

For a well-chosen ΨT , so that the denominator stays far from zero (which can be generated
on the fly during the FCIQMC simulation), this leads to a significantly better behaved energy
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estimator with smaller bias and smaller stochastic errors. In the NECI code, ΨT is generated by
diagonalizing H is a sub-space containing a specified number of leading determinants obtained
from an FCIQMC simulation.
The value of the shift S is varied throughout the simulation in order to maintain a constant,
desired weight of walkers. At convergence, this value should fluctuate about the energy of
the system, providing an alternative estimator for the energy based on the total growth rate of
all the walkers in the system. More details on the specific implementation of these steps, and
the derivation of this dynamic from the imaginary-time Schrödinger equation can be found in
Refs. [1, 16, 3]. Furthermore, the systematically improvable initiator approximation is almost
always used (sometimes denoted i-FCIQMC to distinguish it from the full method). This in-
volves a dynamically truncated Hamiltonian operator, where spawning events to unoccupied
determinants are constrained to be only allowed if they come from a determinant with a walker
weight greater than nadd. This approximation can be systematically improved as the number
of walkers increases, as increasing numbers of determinants fulfil the criteria, and the sampled
Hamiltonian therefore approaches the exact Hamiltonian. More details and benchmarking of
this approximation can be found in Refs. [2, 17].

3 Semi-stochastic FCIQMC

The FCIQMC wave function is represented by a collection of walkers which have a weight
and a sign and reside on a particular basis state, sometimes referred to as a site. The total
signed weight of walkers on a site is interpreted as the amplitude of that basis state in the
(unnormalized) FCI wave function expansion. The FCIQMC algorithm consists of repeated
application of the projection operator

P̂ = 1− τ(Ĥ − S1) (13)

to some initial state, where Ĥ is the Hamiltonian operator, τ is some small time step and S is an
energy offset (‘shift’) applied to the Hamiltonian to control the total walker population. With
sufficiently small τ , exact repeated application of P̂ will project the initial state to the ground
state of Ĥ [18]. In FCIQMC, P̂ is applied such that the correct projection is only performed on
average, thus leading to a stochastic sampling of the ground state wave function.
The projection operator can be expanded in the chosen FCI basis as

P̂ =
∑
ij

Pij|i〉〈j|. (14)

In the semi-stochastic adaptation the set of basis states is divided into two sets, D and S. We
refer to the space spanned by those basis states in D as the deterministic space, and refer to the
basis states themselves as deterministic states. The terms in Eq. (14) can then be divided into
two separate operators,

P̂ = P̂D + P̂ S, (15)
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where P̂D refers to the deterministic projection operator,

P̂D =
∑

i∈D,j∈D

Pij|i〉〈j|, (16)

and P̂ S is the stochastic projection operator containing all other terms. In semi-stochastic
FCIQMC, P̂D is applied exactly by performing an exact matrix multiplication, while P̂ S is
applied using the stochastic FCIQMC spawning steps as usual.1

In order to perform an exact projection in the deterministic space, the walkers weights must
be allowed to be non-integers. This differs from most previous descriptions of the FCIQMC
algorithm thus far. To be clear in notation, we use Ci to refer to the signed amplitude on a site,
and Ni to refer to the unsigned amplitude (and so |Ci| = Ni), which we refer to as the weight
on the site.
A complete iteration of semi-stochastic FCIQMC is performed as follows, where we use the
notation T̂ = −(Ĥ − S1):

1. stochastic projection: Loop over all sites. Perform χi spawning attempts from site |i〉,
where χi is specified below. For each spawning attempt, choose a random connected site
|j〉 with probability pij, where connected means that Hij = 〈i|H|j〉 6= 0 and i 6= j. The
attempt fails if both |i〉 and |j〉 belong to D, otherwise a new walker on site |j〉 is created
with weight |Tji| sign(Ci) τ/pij.

2. deterministic projection: New walkers are created on sites in D with weights equal to
τTDCD, where CD is the vector of amplitudes currently on sites in D.

3. death/cloning: Loop over all sites in S. For each site create a spawned walker with
weight and sign given by TiiCi τ .

4. annihilation: Combine all newly spawned walkers with walkers previously in the simu-
lation by summing together the weights of all walkers on the same site.

χi is chosen probabilistically such that the expectation value E[χi] = Ni. Although other
approaches have been used [3], in this work we set

χi = dNie with probability Ni − bNic, (17)

= bNic otherwise. (18)

If integer weights are used, then this reduces to χi = Ni, as used in previous work [1].
In order to reduce the memory demands of having a large number of sites occupied with a low
weight, a minimum occupation threshold, Nocc, is defined. After all annihilation has occurred,
any walkers with a weight less than Nocc are rounded up to Nocc with probability Ni/Nocc or
otherwise down to 0. In practice, we always choose Nocc = 1. The occupation threshold is not
applied to deterministic states such that the deterministic projection is applied exactly.

1If the deterministic space is the entire FCI space, then the algorithm reduces to the power method without
explicit normalization; FCIQMC can be viewed as a stochastic version of this approach.
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We further use a modification to the initiator adaptation to FCIQMC [2, 19] by allowing all
spawnings both from and to the deterministic space to survive. This effectively forces all deter-
ministic states to be initiators, which is sensible since these states should be selected by their
importance (i.e. weight). We note that this is different from the more complicated adaptation
made by Petruzielo et al. [3], where the initiator threshold is allowed to vary based on the num-
ber of steps since a walker last visited the deterministic space. We note that it is not necessary to
use both the initiator and semi-stochastic adaptations together; the benefits from both extensions
are largely independent of each other.
Using non-integer weights can have a significant memory impact compared to integer weights
due to the large number of additional spawned walkers, which also increases time demands due
to expensive extra processing and communication steps. We therefore apply an unbiased proce-
dure to stochastically remove walkers with very small weights, similar to that above. Following
the notation of Overy et al. [5], we use a spawning cutoff, κ, where κ = 0.01 unless stated
otherwise. A spawning of weight Nj < κ is rounded up to κ with probability Nj/κ or otherwise
down to 0. Spawned walkers with weights greater than κ are left unaltered.

4 Choosing the deterministic space

The key to reducing the stochastic error is to choose D such that most of the weight of the true
FCI wave function is in this space. For a given number of basis states in the deterministic space,
|D|, it is expected that the best possible deterministic space (the one which reduces noise the
most) is obtained by choosing the |D| most highly weighted basis states in the exact expansion
of the ground-state wave function. Achieving this optimal space requires knowledge of the
exact wave function and so is not feasible in general.
A sensible choice for D in many systems would be a configuration interaction (CI) or complete
active space (CAS), generally regarded as being effective at describing situations where dynam-
ical and static correlation, respectively, are important. We have found from experience that such
spaces are useful and lead to a large reduction in stochastic noise. This leads to the question:
can one find a better deterministic space, at least in common cases?
Petruzielo et al. [3] describe an iterative method for choosing the deterministic space. First the
space connected to the space from the previous iteration is generated and the ground state of the
Hamiltonian in this subspace is calculated. The most significant basis states in this ground-state
expansion are kept (according to a criterion on the amplitude of coefficients). The initial space
contains (e.g.) the Hartree–Fock determinant. This process is repeated for some number of
iterations. This approach has been demonstrated to give much greater improvements than by
simply using the space connected to the Hartree–Fock state, even with a reduced size for D, as
it can contain the chemically-relevant basis states [3].
In the NECI code we use a different method of generating the deterministic space. Inspired by
the spirit of FCIQMC, we allow the deterministic space to emerge from the calculation itself: we
simply perform a fully-stochastic FCIQMC calculation (or a semi-stochastic calculation with
a simple deterministic space, such as a CISD space) until the ground state is deemed to have
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been reached, and then choose the most populated basis states in the FCIQMC wave function
to form D. In this initial FCIQMC calculation, it is not necessary to employ a large number
of walkers, as its purpose is simply to identify determinants which are likely to be important
in the converged solution. The generation of the deterministic subspace is therefore extremely
rapid. This approach has the benefit that it does not require performing an exact ground-state
diagonalization within a (potentially large) subspace, which can be very expensive. The only
parameter is the desired size of the deterministic space and it is therefore considerably more
black-box like. Since the initial FCIQMC calculation need not be limited to low-order exci-
tations (such as the double excitations of a reference determinant), but can develop significant
walker population on some determinants deep in the Hilbert space (on quadruple, sextuple and
higher excitation levels) our procedure can select close-to-optimal deterministic spaces in a very
inexpensive and rapid manner.
Although the FCIQMC wave function is only a stochastic snapshot of the true ground state, the
most significant basis states in the expansion will tend to remain highly occupied throughout
the simulation with weights fluctuating about their exact values. It is therefore not surprising
that our approach works well. For very large deterministic spaces, states with the minimum
occupation weight, may be included in the space. In this case there is some redundancy in how
D is chosen, and the choice of D will probably not be optimized fully, although we still find
this approach to work very well. It is simple to include a cutoff to avoid this if desired, although
we do not do so in the calculations presented here.
We emphasize that we prefer our approach to the iterative scheme of Petruzielo et al. because
it avoids large ground-state calculations which, for large systems and values of |D|, can take
up a significant amount of time and memory. If the size of the space at the start of an iteration
in this iterative scheme is given by X , and the average number of connections to each state is
nc (which, in general, grows quadratically with system size), then one will have to perform a
ground-state calculation in a space of size ∼ Xnc. For many cases, including those consid-
ered in this article, such a space is extremely, if not prohibitively, large. Indeed, as FCIQMC
is applied to increasingly larger systems, such an approach will become less feasible. Already,
FCIQMC has been applied to systems where the number of connections to the Hartree–Fock
state is O[105 − 106] [20,6]. In these cases, it might be possible to apply the iterative scheme if
only a small number of states are kept in each iteration, but in this case the final space would be
unoptimized. Another approach would be to generate the final space by finding the connections
to the previous (small) space but not performing a ground-state calculation, but again the gen-
erated space would be unoptimized. We therefore feel that our approach is an altogether more
black box and scalable approach to generating an effective deterministic space.

5 An application of FCIQMC to the Hubbard model

The Hubbard model Hamiltonian is usually expressed in a real-space lattice as

Ĥ = −t
∑
〈p,q〉,σ

(
c†pσcqσ + h.c.

)
+ U

∑
p

np↑np↓ , (19)
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Fig. 1: The 18-site Hubbard model on a tilted lattice. (a) Real-space lattice. (b) Reciprocal
space lattice, showing the occied Fermi ‘square’ at half-filled occupancy

where npσ = c†pσcpσ is the number operator on site p for σ-spin electrons. The sum 〈p, q〉 is
taken over nearest-neighbor lattice sites p and q and periodic boundary conditions are applied.
Twisted periodic boundary conditions can also be applied, in order to reduce finite size effects
and to perform “twist-averaging”, but in the numerical examples below this is not done.
For the purposes of FCIQMC, it is more convenient to work in a plane-wave, reciprocal space,
representation in which the orbitals are unitarily transformed as

|k〉 = 1√
Ω

∑
p

e−ik.rp|p〉, (20)

where Ω is the number of sites in the lattice and rp is the position of lattice site p. In this
momentum basis, the Hubbard Hamiltonian takes the form

Ĥ =
∑
k,σ

εkc
†
k,σck,σ +

U

Ω

∑
k,q,Q

c†k+Q↑c
†
q−Q,↓ck↑cq↓ . (21)

The precise form of εk depends on the lattice vectors of the lattice being studied. For this
study we shall use the tilted 2-dimensional square lattice shown in Fig. 1, with super-cell lattice
vectors

T1 =

(
L

L

)
and T2 =

(
−L
L

)
, (22)

where L is an odd integer. This leads to a supercell containing Ω =
√
2L ×

√
2L sites. The

dispersion relation for εk can be expressed in terms of the reciprocal lattice vectors of T1,T2,
namely b1,b2

b1 =
π

L

(
1

1

)
and b2 =

π

L

(
1

−1

)
(23)
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Fig. 2: The number of walkers in a non-initiator FCIQMC calculation, showing a plateau for
the (18,18) U/t = 4 system at ≈ 62 × 106 walkers. The second plateau corresponds to the
onset of variable-shift mode, in which the walker population is stabilized at 108 walkers. The
Hilbert space corresponds to≈ 131×106 determinants. The number of walkers on the reference
determinant is 127000, and is barely visible on this plot. The plot on the right shows the same
information on a logarithmic scale.

with allowable k = kn,m as follows:

kn,m = nb1 +mb2 (24)

εk = −2t
(
cos

π(n+m)

L
+ cos

π(n−m)

L

)
(25)

We are aware of exact diagonalization results for the half-filled 18-site (L = 3) model to which
we will compare the FCIQMC results [21], which we shall refer to as the (18, 18) system.
This system has a Hilbert space of NFCI ≈ 1

18

(
18
9

)2 ≈ 131 × 106 Slater determinants. The
calculations have been done with τ = 0.001 for a range of U/t = 1 – 4. We have also performed
calculations on the Hubbard model with 2 holes (maintaining zero momentum and zero total
spin), i.e., the (18, 16) system, to exhibit the effect of moving off half-filling on the FCIQMC
method.
We first perform a non-initiator FCIQMC calculation, which exhibits a plateau in the walker
growth when the shift is held fixed at S = 0 (Fig. 2). This plateau occurs when roughly 50%
of the Hilbert space has been populated by walkers. For smaller values of U , the plateau height
decreases linearly, vanishing when U < 1 (Fig. 3). This implies that for such values of U , it
is possible to sample the Hilbert space with a vanishingly small number of walkers [22] even
without the initiator method.
Figure 4 shows the error in the projected energy as a function of imaginary time for the (18,18)
Hubbard model with U/t = 4 using FCIQMC without the initiator method. With the initiator
method, it can be seen that a small but systematic bias is induced at small walker population,
which diminishes with increasing number of walkers. Even with a small number of walkers,
the simulations are stable with a constant signal to noise ratio in the long time limit. This is
shown in Fig. 5 for the (18,18) and the (18,16) Hubbard model, both with U/t = 4. The cost
of the initiator runs is however much lower. Fig. 6 shows the time per iteration for each of the
runs, including the 108 walker non-initiator run. The time per iteration is linear in the number
of walkers, and there additional overhead associated with the initiator method compared to the
full method.
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Fig. 3: The ratio of plateau heights to the size of the Hilbert space as a function of U for the
18-electron and 16-electron (2-hole) system. As the value of U decreases, an off-set linear
decrease in the plateau height is observed, vanishing at U = 1. The 2-hole system exhibits
slightly higher values of the plateau as a ratio of the Hilbert space, presumably because of the
more multi-reference nature of the ground state wavefunction.
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Fig. 4: The error in the projected energy as a function of imaginary time for the (18,18) Hubbard
model at U/t = 4. The initiator method is not used, leading to a plateau in the walker-growth
of the simulation (see Fig. 2). The initial value of the energy is the Hartree-Fock energy (−14 t),
which is 3.25239 t above the exact energy of −17.25239 t. All energy plots are shown relative
to this exact energy. It is evident that after propagation of ≈ 2 units of imaginary time (τ =
0.001 t), the simulation has converged, and crucially, the energy stable, i.e., there is no growth
in noise as the simulation proceeds.
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Fig. 5: Error of different initiator runs of varying number of walkers for the Hubbard model
with U/t = 4. Left: Half-filled (18,18) system. The initiator error is seen to decrease as the
walker population is increased. The signal to noise ratio of the initiator simulations is also
stable in the long time limit, even with low walker population. Right: 2-hole doped (18,16)
system. The behavior is very similar to the half-filled case, indicating that the severity of the
sign-problem is not increased when moving away from half-filling. Indeed the convergence of
the initiator bias is faster, owing presumably to the smaller Hilbert space of the 2-h system.
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Fig. 6: Time per iteration on one node (20 core) as a function of the number of walkers. The
three runs at 100k, 1M, and 10M walkers were initiator simulations, whilst the run with 108

walkers is a non-initiator simulation.

6 Future perspectives

Although the FCIQMC technique has thus far been formulated in a Slater determinant basis,
its ideas can be extended to other more general types of basis functions which span the same
Hilbert space. A notable example are configuration state functions (CSFs), each one of which
preserves the total spin S quantum number, in addition to the spin-polarization quantum num-
ber MS . Spaces of CSFs are typically an order of magnitude smaller than the corresponding
Slater determinant basis, but the matrix element calculations between CSFs is more complex.
Development of fast algorithms capable of handing CSFs would greatly help in the study of
systems with small spin-gaps (which includes Hubbard models in the intermediate U range),
and we believe this to be an important area of research. Another important question is to un-
derstand the factors that govern the rate of convergence of the initiator method, with the aim to
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try to improve it. In the study of quantum chemical systems, and of the uniform electron gas,
it is frequently found that the initiator method works extremely well, so that Hilbert spaces as
large as 10108 have been sampled with∼ 109 walkers [23]. However for the 2D Hubbard model,
particularly in the ‘interesting’ range of U/t = 4−12 one observes much larger initiator biases.
Is this inevitable? In other words, is the complexity of the ground-state wavefunction such that,
no matter which technique is employed, the convergence is governed by the complete Hilbert
space? This is unclear. Perhaps some fusion of FCIQMC with other types of wavefunction rep-
resentations, such as matrix product states or tensor networks could be envisaged. But there is
at present no equivalent projector method to FCIQMC in such representations which does so –
only variational methods or fixed-node approximations. These are indeed extremely important
questions to be addressed in the future.
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