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1 Introduction

Spontaneous symmetry breaking is amongst the most important concepts in condensed matter
physics. The fact that a ground or thermal state of a system does not obey its full symmetry
explains most of the well-known phase transitions in solid state physics like crystallization
of a fluid, superfluidity, magnetism, superconductivity, and many more. A standard concept
for investigating spontaneous symmetry breaking is the notion of an order parameter. In the
thermodynamic limit it is non-zero in the symmetry-broken phase and zero in the disordered
phase.
Another concept to detect spontaneous symmetry breaking less widely known but equally pow-
erful is the tower of states analysis (TOS) [1, 2]. The energy spectrum, i.e., the eigenvalues of
the Hamiltonian of a finite system in a symmetry-broken phase, has a characteristic and system-
atic structure: several eigenstates are quasi-degenerate on finite systems and become degenerate
in the thermodynamic limit and possess certain quantum numbers. The TOS analysis deals with
understanding the spectral structure and predicting quantum numbers of the groundstate man-
ifold. Also on finite systems spontaneous symmetry breaking manifests itself in the structure
of the energy spectra which are accessible via numerical simulations. Most prominently the
Exact Diagonalization method [3, 4] can exactly calculate these spectra and quantum numbers
on moderate system sizes. The predictions of TOS analyses are highly nontrivial statements
which can be used to unambiguously identify symmetry-broken phases. Thus TOS analysis is a
powerful technique to investigate many condensed matter systems using numerical simulations.
The goal of these lecture notes is to explain the specific structure of energy spectra and their
quantum numbers in symmetry-broken phases. The anticipated structure is then compared to
several actual numerical simulations using Exact Diagonalization.
These lecture notes have been written at the kind request of the organizers of the Jülich 2016
Autumn School on Correlated Electrons. The notes build on and complement previously avail-
able lecture notes by Claire Lhuillier [2], by Grégoire Misguich and Philippe Sindzingre [5] and
by Karlo Penc and one of the authors [3].
The outline of these notes is as follows: in Section 2 we introduce the tower of states of con-
tinuous symmetry breaking and derive its scaling behavior. We investigate a toy model which
shows most of the relevant features. Section 3 explains in detail how the multiplicities and
quantum numbers in the TOS can be predicted by simple group theoretical methods. To apply
these methods we discuss several examples in Section 4 and compare them to actual numerical
data from Exact Diagonalization.

2 Tower of states

We start our discussion of spontaneous symmetry breaking of continuous symmetries by inves-
tigating the Heisenberg model on the square lattice. Its Hamiltonian is given by

H = J
∑
〈i,j〉

Si · Sj (1)
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and is invariant under global SU(2) spin rotations, i.e., a rotation of every spin on each site with
the same rotational SU(2) matrix. Therefore the total spin

S2
tot =

(∑
i

Si

)2

= Stot(Stot + 1) (2)

is a conserved quantity of this model and every state in the spectrum of this Hamiltonian can
be labeled via its total spin quantum number. The Heisenberg Hamiltonian on the square lattice
has the property of being bipartite: The lattice can be divided into two sublattices A andB such
that every term in Eq. (1) connects one site from sublattice A to sublattice B. It was found out
early [1] that the groundstate of this model bears resemblance with the classical Néel state

|Néel class.〉 = |↑↓↑↓ · · ·〉 (3)

where the spin-ups live on the A sublattice and the spin-downs live on the B sublattice. This
state does not have the total spin as a good quantum number. From elementary spin algebra we
know that it is rather a superposition of several states with different total spin quantum numbers.
For example the 2-site state

|↑↓〉 =
|↑↓〉 − |↓↑〉

2
+
|↑↓〉+ |↓↑〉

2
= |Stot = 0,m = 0〉+ |Stot = 1,m = 0〉 (4)

is the superposition of a singlet (Stot = 0) and a triplet (Stot = 1). Therefore if such a state
were to be a groundstate of Eq. (1) several states with different total spin would have to be
degenerate. It turns out that on finite bipartite lattices this is not the case: The total groundstate
of the Heisenberg model on bipartite lattices can be proven to be a singlet state with Stot = 0.
This result is known as Marshall’s Theorem [6–8]. So how can a Néel state resemble the singlet
groundstate? To understand this we drastically simplify the Heisenberg model and investigate a
toy model whose spectrum we can fully understand analytically.

2.1 Toy model: the Lieb-Mattis model

By introducing the Fourier-transformed spin operators

Sk =
1√
N

N∑
j=0

eik·xjSj , (5)

we can rewrite the original Heisenberg Hamiltonian in terms of these operators as

H = J
∑
k∈B.Z.

ωk Sk · S−k , (6)

where ωk = cos(kx) + cos(ky) and the sum over k runs over the momenta within the first
Brillouin zone. Let k0 = (π, π) be the ordering wavevector which is the dual to the translations
that leave the square Néel state invariant. We now want to look at the truncated Hamiltonian

HLM = 2J
(
S2
(0,0) − Sk0 · S−k0

)
(7)
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where we omit all Fourier components in Eq. (6) except k = (0, 0) and k0. This model is
called the Lieb-Mattis model [7] and has a simple analytical solution. To see this, we notice
that Eq. (7) is given by

HLM =
4J

N

∑
i∈A, j∈B

Si · Sj (8)

in real space where A and B denote the two bipartite sublattices within the square lattice and
each spin is only coupled with spins in the other sublattice. The interaction strength is equal
regardless of the distance between the two spins. Thus this model is not likely to be experi-
mentally relevant. Yet it will serve as an illustrative example how breaking the spin-rotational
symmetry manifests itself in the spectrum of a finite size system. We can write Eq. (8) as

HLM =
4J

N

( ∑
i,j∈A∪B

Si · Sj −
∑
i,j∈A

Si · Sj −
∑
i,j∈B

Si · Sj
)

(9)

=
4J

N
(S2

tot − S2
A − S2

B) (10)

From this it is obvious that the Lieb-Mattis model can be considered as the coupling of two
large spins SA and SB to a total spin Stot.
We find that the operators S2

tot, S
z
tot, S

2
A and S2

B commute with this Hamiltonian and therefore
the sublattice spins SA and SB as well as the total spin Stot and its z-component mtot are good
quantum numbers for this model. For a lattice with N sites (N even) the sublattice spins can be
chosen in the range SA,B ∈ {0, 1, . . . , N/4} and by coupling them

Stot ∈ {|SA − SB|, |SA − SB|+ 1, . . . , SA + SB} (11)

mtot ∈ {−Stot,−Stot + 1, . . . , Stot} (12)

can be chosen.1 A state |Stot,m, SA, SB〉 is thus an eigenstate of the systems with energy

E(Stot,m, SA, SB) =
4J

N
[Stot(Stot + 1)− SA(SA + 1)− SB(SB + 1)] (13)

independent of m, so each state is at least (2Stot + 1)-fold degenerate.

Tower of states We first want to consider only the lowest energy states for each Stot sector.
These states build the famous tower of states and collapse in the thermodynamic limit to a
highly degenerate groundstate manifold, as we will see now.
For a given total spin Stot the lowest energy states are built by maximizing the last two terms in
Eq. (13) with SA = SB = N/4 and

E0(Stot) = E(Stot,m,N/4, N/4) =
4J

N
Stot(Stot + 1)− J

(
N

4
+ 1

)
. (14)

The groundstate of a finite system will thus be the singlet state with Stot = 0.2 On a finite system
the groundstate is, therefore, totally symmetric under global spin rotations and does not break

1This set of states spans the full Hilbert space of the model.
2The groundstate of the Heisenberg model Eq. (1) on a bipartite sublattice with equal sized sublattices is also

proven to be a singlet state Stot = 0 by Marshall’s Theorem [8, 6, 7].
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the SU(2)-symmetry. In the thermodynamic limit N → ∞, however, the energy of all states
scales to zero and all these states constitute the groundstate manifold.
The classical Néel state with fully polarized spins on each sublattice can be built out of these
states by a linear combination of all the Stot levels with mtot = 0 [2]. All other Néel states
pointing in a different direction in spin-space can be equivalently built out of this groundstate
manifold by considering linear combinations with other mtot quantum numbers. In the thermo-
dynamic limit, any infinitesimal small field will force the Néel state to choose a direction and
the groundstate spontaneously breaks the SU(2)-symmetry.
The states which constitute the groundstate manifold in the thermodynamic limit can be readily
identified on finite-size systems as well, where their energy is given by Eq. (14). These states are
called the tower of states (TOS) or also Anderson tower, thin spectrum, and quasi-degenerate
joint states [1, 9–11].

Excitations The lowest excitations above the tower of states can be built by lowering the spin
of one sublattice SA or SB by one, see Eq. (13). Let us set SA = N/4 and SB = N/4− 1 which
implies that Stot ∈ {1, 2, . . . , N/2 − 1}. We can directly compute the energy E1(Stot) of these
excited states for each allowed Stot and the energy gap to the tower of states is constant3

Eexc(Stot) = E1(Stot)− E0(Stot) = J . (15)

As the energy gap is constant, the lowest excitations of the Lieb-Mattis model are static spin-
flips. The next lowest excitations are spin-flips on both sublattices, SA = SB = N/4 − 1 with
excitation energy Eexc2 = 2J and Stot ∈ {0, 1, . . . , N/2 − 2}. We see that the energy gap of
no levels except for the TOS vanishes in the thermodynamic limit, so the TOS indeed solely
contributes to the groundstate manifold.

Quantum Fluctuations When we introduced the Lieb-Mattis model Eq. (7) from the Heisen-
berg model Eq. (6) we neglected all Fourier components except of k = (0, 0) and k = k0. This
was a quite crude approximation and it is not guaranteed that all results for the Lieb-Mattis
model will survive for the short-range Heisenberg model. To get some first results regarding
this question, we can introduce small quantum fluctuations on top of the Néel groundstate of
the Lieb-Mattis model and perform a perturbative spin-wave analysis in first order.4 This ap-
proach does not affect the scaling of the tower of states levels, but it has an important effect
on the excitations. They are not static particles anymore, but are spinwaves (magnons) with
a dispersion, which is linear around the ordering-wave vector k = k0 and k = (0, 0). On a
finite-size lattice the momentum space is discrete with a distance proportional to 1/L between
them, where L is the linear size of the system. The energy of the lowest excitation above the

3This is an artifact of the infinite-range interaction in the Lieb-Mattis model. In the original Heisenberg model
these modes become gapless magnon excitations.

4A more detailed discussion can be found in [2].
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Exact Diagonalization

“Tower of States” spectroscopy

 What are the finite size manifestations of a continuous symmetry breaking ?

 Low-energy dynamics of the order parameter

 Theory: P.W. Anderson 1952, Numerical tool: Bernu, Lhuillier and others, 1992 -
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Fig. 1: Left: Schematic finite-size energy spectrum of an antiferromagnet breaking SU(2) spin-
rotational symmetry. The TOS levels are the lowest energy levels for each total spin S and scale
with 1/N to the groundstate energy. The low-energy magnon excitations are separated from
the TOS and a continuum of higher energy states and scale with 1/L. Right: Energy spectrum
for the Heisenberg model on a square lattice. The TOS levels are connected by a dashed line.
The single-magnon dispersion (green boxes) with Stot ∈ {1, 2, . . . } are well separated from
the TOS and the higher multi-particle continuum. The different symbols represent quantum
numbers related to space-group symmetries and agree with the expectations for a Néel state
(See section 3).

TOS, the single magnon gap, therefore scales as Eexc ∝ J/L to zero.5 As the scaling is, how-
ever, slower for d > 1-dimensional systems than the TOS scaling, these levels do not influence
the groundstate manifold in the thermodynamic limit. Finally, the excitation of two magnons
results in a two-particle continuum above the magnon mode.

The properties of the TOS and its excitations are summarized in Fig. 1. The left figure shows the
general properties of the finite-size energy spectrum which can be expected when a continuous
symmetry group is spontaneously broken in the thermodynamic limit. The right figure depicts
the TOS spectrum for the Heisenberg model on a square lattice with N = 32 sites, obtained
with Exact Diagonalization. One can clearly identify the TOS, the magnon dispersion and the
many-particle continuum. The existence of a Néel TOS was not only confirmed numerically
for the Heisenberg model on the square lattice, but also with analytical techniques beyond the
simplification to the Lieb-Mattis model [1, 10, 11]. The different symbols in Fig. 1 represent
different quantum numbers related to the space-group symmetries on the lattice. In the next
section we will see that the structure of these quantum numbers depends on the exact shape of
the symmetry-broken state and we will learn how to compute them.

5In the thermodynamic limit the single magnon mode is gapless and has linear dispersion around k = k0 and
k = (0, 0). It corresponds to the well-known Goldstone mode which is generated when a continuous symmetry is
spontaneously broken.
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3 Symmetry analysis

In the analysis of excitation spectra from Exact Diagonalization on finite-size simulation clus-
ters the tower of states analysis (TOS) is a powerful tool to detect spontaneous symmetry
breaking. Symmetry breaking implies degenerate groundstates in the thermodynamic limit.
On finite-size simulation clusters this degeneracy is in general not exact. We rather expect a
certain scaling of the energy differences in the thermodynamic limit. We distinguish two cases:

• Discrete symmetry breaking: In this case we have a degeneracy of finitely many states
in the thermodynamic limit. The groundstate splitting ∆ on finite size clusters scales as
∆ ∼ exp(N/ξ), where N is the number of sites in the system

• Continuous symmetry breaking: Here the groundstate in the thermodynamic limit is
infinitely degenerate. The states belonging to this degenerate manifold collapse as ∆ ∼
1/N on finite size clusters as we have seen in section 2. It is important to understand
that these states are not the Goldstone modes of continuous symmetry breaking. Both the
degenerate groundstate and the Goldstone modes appear as low-energy levels on finite
size clusters but have different scaling behaviors.

The scaling of these low-energy states can now be investigated on finite size clusters. More im-
portantly, also the quantum numbers of these low-energy states such as momentum, pointgroup
representation, or total spin can be predicted [2,5,12]. The detection of correct scaling behavior
together with correctly predicted quantum numbers yields very strong evidence that the system
spontaneously breaks symmetry in the way that has been anticipated. This is the TOS method.
In the following we will discuss how to predict the quantum numbers for discrete as well as
continuous symmetry breaking. The main mathematical tool we use is the character-formula
from basic group representation theory.
Lattice Hamiltonians like a Heisenberg model often have a discrete symmetry group arising
from translational invariance, pointgroup invariance, or some discrete local symmetry, like a
spin-flip symmetry. In this chapter we will first discuss the representation theory and the char-
acters of the representations of space groups on finite lattices. We will then see how this helps
us to predict the representations of the degenerate ground states in discrete as well as continuous
symmetry breaking.

3.1 Representation theory for space groups

For finite discrete groups such as the space group of a finite lattice the full set of irreducible
representations (irreps) can be worked out. Let us first discuss some basic groups. Let’s con-
sider an n × n square lattice with periodic boundary conditions and a translationally invariant
Hamiltonian like the Heisenberg model on it. In the following we will set the lattice spacing to
a = 1. The discrete symmetry group we consider is T = Zn × Zn corresponding to the group
of translations on this lattice. This is an Abelian group of order n2. Its representations can be
labeled by the momentum vectors k = (2πi

n
, 2πj
n

), i, j ∈ {0, · · · , n − 1} which just correspond
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to the reciprocal Bloch vectors defined on this lattice. Put differently, the vectors k are the re-
ciprocal lattice points of the lattice spanned by the simulation torus of our n× n square lattice.
The character χk of the k-representation is given by

χk(t) = eik·t (16)

where t ∈ T is the vector of translation. This is just the usual Bloch factor for translationally
invariant systems.
Let us now consider a (symmorphic) space group of the form D = T × PG as the discrete
symmetry group of the lattice where PG is the pointgroup of the lattice. For a model on an
n × n square lattice this could for example be the dihedral group of order 8, D4, consisting of
four-fold rotations together with reflections. The representation theory and the character tables
of these point groups are well-known. Since D is now a product of the translation and the
point group we could think that the irreducible representations of D are simply given by the
product representations (k ⊗ ρ) where k labels a momentum representation and ρ an irrep of
PG. But here is a small caveat. We have to be careful since D is only a semidirect product of
groups since translations and pointgroup symmetries do not necessarily commute. This alters
the representation theory for this product of groups and the irreps of D are not just simply the
products of irreps of T and PG. Instead the full set of irreps for this group is given by (k⊗ ρk)

where ρk is an irrep of the so called little group Lk of k defined as

Lk = {g ∈ PG; g(k) = k} (17)

which is just the stabilizer of k in PG. For example all pointgroup elements leave k = (0, 0)

invariant, thus the little group of k = (0, 0) is the full pointgroup. In general this does not hold
for other momenta and only a subgroup of PG will be the little group of k. In Fig. 4 we show
the k-points of a 6 × 6 triangular lattice together with its little groups as an example. The K
point in the Brillouin zone has a D3 little group, theM point a D2 little group. Having discussed
the representation theory for (symmorphic) space groups we state that the characters of these
representations are just given by

χ(k,ρk)(t, p) = eik·tχρk(p) (18)

where t ∈ T , p ∈ PG and χρk is the character of the representation ρk of the little group Lk.

3.2 Predicting irreducible representations in spontaneous
symmetry breaking

Spontaneous symmetry breaking at T = 0 occurs when the groundstate |ψGS〉 of H in the
thermodynamic limit is not invariant under the full symmetry group G of H . We will call a
specific groundstate |ψGS〉 a prototypical state and the groundstate manifold is defined by

VGS = span
{
|ψiGS〉

}
, (19)
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where |ψiGS〉 is the set of degenerate groundstates in the thermodynamic limit. This groundstate
manifold space can be finite or infinite dimensional depending on the situation. For breaking a
discrete finite symmetry, such as in the example given in section 4.1.2, this state will be finite
dimensional, for breaking continuous SO(3) spin rotational symmetry6 as in section 4.2 this
groundstate manifold is infinite dimensional in the thermodynamic limit. For every symmetry
g ∈ G we denote by Og the symmetry operator acting on the Hilbert space. The groundstate
manifold becomes degenerate in the thermodynamic limit and we want to calculate the quantum
numbers of the eigenstates in this manifold. Another way of saying this is that we want to
compute the irreducible representations of G to which the eigenstates belong. For this we look
at the action Γ of the symmetry group G on VGS defined by

Γ : G → Aut(VGS) (20)

g 7→
(
〈ψiGS|Og|ψjGS〉

)
i,j
. (21)

This is a representation of G on VGS, so every group element g ∈ G is mapped to an invertible
matrix on VGS. In general this representation is reducible and can be decomposed into a direct
sum of irreducible representations

Γ =
⊕
ρ

nρρ . (22)

These irreducible representations ρ are now the quantum numbers of the eigenstates in the
groundstate manifold and nρ are their respective multiplicities (or degeneracies). Therefore
these irreps constitute the TOS for spontaneous symmetry breaking [2]. To compute the multi-
plicities we can use a central result from representation theory, the character formula

nρ =
1

|G|
∑
g∈G

χρ(g) Tr(Γ (g)) , (23)

where χρ(g) is the character of the representation ρ and Tr(Γ (g)) denotes the trace over the
representation matrix Γ (g) as defined in Eq. (20). Often we have the case that

〈ψGS|Og|ψ′GS〉 =

1 if Og |ψ′GS〉 = |ψGS〉
0 otherwise

(24)

With this we can simplify Eq. (23) to what we call the character-stabilizer formula

nρ =
1

|Stab(|ψGS〉)|
∑

g∈Stab(|ψGS〉)

χρ(g) (25)

where
Stab(|ψGS〉) ≡ {g ∈ G : Og |ψGS〉 = |ψGS〉} (26)

is the stabilizer of a prototypical state |ψGS〉. We see that for applying the character-stabilizer
formula in Eq. (25) only two ingredients are needed:

6The actual symmetry group of Heisenberg antiferromagnets is usually SU(2). For simplicity we only consider
the subgroup SO(3) in these notes which yields the same predictions for the case of sublattices with even number
of sites (corresponding to integer total sublattice spin).
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• the stabilizer Stab(|ψGS〉) of a prototypical state |ψGS〉 in the groundstate manifold

• the characters of the irreducible representations of the symmetry group G

We want to remark that in the case of G = D × C where D is a discrete symmetry group, such
as the spacegroup of a lattice, and C is a continuous symmetry group, such as SO(3) rotations
for Heisenberg spins, Eqs. (23) and (25) include integrals over Lie groups additionally to the
sum over the elements of the discrete symmetry group D. Furthermore, also the characters for
Lie groups like SO(3) are known. For an element R ∈ SO(3) the irreducible representations
are labeled by the spin S and its characters are given by

χs(R) =
sin
[
(S + 1

2
)ϕ
]

sin(ϕ/2)
, (27)

where ϕ ∈ [0, 2π] is the angle of rotation of the spin rotation R. We work out several exam-
ples for this case in section 4.2 and compare the results to actual numerical data from Exact
Diagonalization.

4 Examples

4.1 Discrete symmetry breaking

In this section we want to apply the formalism of section 3 to systems, where only a discrete
symmetry group is spontaneously broken and not a continuous one. In this case, the ground-
state of the system in the thermodynamic limit is described by a superposition of a finite number
of degenerate eigenstates with different quantum numbers. On finite-size systems, however, the
symmetry cannot be broken spontaneously and a unique groundstate will be found. The other
states constituting the degenerate eigenspace in the thermodynamic limit exhibit a finite-size
energy gap which is exponentially small in the system size N , ∆ ∝ e−N/ξ. The quantum
numbers of these quasi-degenerate sets of eigenstates are defined by the symmetry-broken state
in the thermodynamic limit.

4.1.1 Introduction to valence-bond solids

In section 2 we have seen that the classically ordered Néel state is a candidate to describe the
groundstate of the antiferromagnetic Heisenberg model Eq. (1) with J > 0 in the thermody-
namic limit on a bipartite lattice. The energy expectation value of this state on each bond is
eNéel = −J/4.
The state which minimizes the energy of a single bond is, however, a singlet state |S = 0〉
formed by the two spins on the bond with energy eVB = −3J/4, called a valence bond (VB) or
dimer. A valence bond covering of an N -site lattice can then be described by a tensor product
of N/2 VBs, where each site belongs to exactly one VB.7 Another possible candidate for the

7The set of all possible valence bond coverings with arbitrary length spans the full Stot = 0 sector of the models
Hilbert space and is overcomplete [13, 14].
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Fig. 2: The four columnar VBS coverings of a square lattice. Valence bonds (spin singlets) are
indicated by blue ellipses.

thermodynamic groundstate of Eq. (1) is then a superposition of all possible VB coverings with
nearest neighbor VBs. Such states do not break the SU(2) spin-rotational symmetry as Stot = 0

and are in general not eigenstates of the Hamiltonian: Acting with the operator Si · Sj between
sites i and j belonging to two different VBs changes the VB configuration.

This classical groundstate manifold is highly degenerate. As the VB coverings are in general
not eigenstates of the Hamiltonian, they encounter quantum fluctuations. The energy correc-
tions due to these fluctuations are usually not equivalent for different coverings, although the
bare energies are identical. The VB coverings with the largest energy gain are selected by the
fluctuations as the true groundstate configurations. If this order-by-disorder mechanism [15,16]
selects regular patterns of VB coverings, the discrete lattice symmetries are spontaneously bro-
ken in the thermodynamic limit, and a valence bond solid (VBS) is formed. Fig. 2 and Fig. 3
show two different VBS states on the square lattice. VBSs show no long-range spin order, but
long-range dimer-correlations 〈(Sa ·Sa′)(Sb ·Sb′)〉 where a, a′ and b, b′ label sites on individual
dimers. In section 4.1.2 we will see how different VBS states can be identified and distinguished
by the quantum numbers of the quasi-degenerate groundstate manifold on finite-size systems.

The groundstate of the Heisenberg model Eq. (1) on the square lattice is not a VBS but a Néel
state, which has already on the classical level a lower variational energy. Nevertheless, several
models in 1- and 2-D are known which feature VBS groundstates [17–21]. Interestingly, in [22]
a model was proposed, which shows a direct continuous quantum phase transition between a
Néel state and a VBS. This transition exhibits very exotic, non-classical behavior and is called
deconfined quantum critical point [23].

4.1.2 Identification of VBSs from finite-size spectra

Columnar valence-bond solid A columnar VBS (cVBS) on a square lattice is shown in
Fig. 2. Four equivalent states can be found, indicating that there will be a four-fold quasi-
degenerate groundstate manifold. A cVBS obviously breaks the translational and point-group
symmetries of an isotropic SU(2)-invariant Hamiltonian on the lattice spontaneously but not the
continuous spin symmetry group.

In the following we use Eq. (25) to compute the symmetry sectors of the groundstate manifold.



8.12 A.M. Läuchli, M. Schuler, and A. Wietek

C4 1 C4 C2 (C4)
3

A +1 +1 +1 +1
B +1 −1 +1 −1
Ea +1 +i −1 −i
Eb +1 −i −1 +i

Table 1: Character table for pointgroup C4.

The discrete symmetry group is
G = D = T × PG (28)

where T = Z2 × Z2 = {1, tx, ty, txty} are the non-trivial lattice translations with translation
vectors

t1 = (0, 0), tx = (1, 0), ty = (0, 1), txy = (1, 1) (29)

and PG = C4 denotes the point-group of lattice rotations.8 To compute the groundstate sym-
metry sectors we do not need to consider the full symmetry group G but only the stabilizer
Stab(|ΨcV BS〉), leaving one of the states in Fig. 2 unchanged. Without loss of generality we
choose the first covering as prototype |ΨcV BS〉. The stabilizer is given by

Stab(|ΨcV BS〉) = {1× 1} ∪ {1× C2} ∪ {ty × 1} ∪ {ty × C2} (30)

where C2 denotes the rotation about an angle π around the center of a plaquette.
The irreducible representations (irreps) of the group of lattice translations T can be labelled by
the allowed momenta k

k ∈ Irreps(T ) = {(0, 0), (π, 0), (0, π), (π, π)}, (31)

and the corresponding characters for an element t ∈ T are

χk(t) = eik·t. (32)

The irreps (usually called A, B and E) and characters for the point-group C4 are given in Tab. 1.
Using Eq. (25) we can now reduce the representation induced by the state |ΨcV BS〉 to irreducible
representations to get the quantum numbers of the quasi-degenerate groundstate manifold. Let
us explicitly consider n(π,0)A/B as an example:

n(π,0)A =
1

|Stab(|ΨcV BS〉)|
∑

d∈Stab(|ΨcV BS〉)

χA(d)χk=(π,0)(d) (33)

=
1

4

[
1 eik·(0,0) + 1 eik·(0,0) + 1 eik·(0,1) + 1 eik·(0,1)

]
= 1 (34)

n(π,0)B =
1

|Stab(|ΨcV BS〉)|
∑

d∈Stab(|ΨcV BS〉)

χB(d)χk=(π,0)(d) (35)

=
1

4

[
1 eik·(0,0) + (−1) eik·(0,0) + 1 eik·(0,1) + (−1) eik·(0,1)

]
= 0 (36)

8The dihedral group D4 is also a symmetry group of the model. For the sake of simplicity we decided to only
consider the subgroup C4 in this section.
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Fig. 3: One of the four identical staggered VBS coverings on the square lattice.

Eventually, the cVBS covering will be described by a four-fold quasi-degenerate groundstate
manifold with the following quantum numbers

χ(|ΨcV BS〉) = (0, 0)A⊕ (0, 0)B⊕ (π, 0)A⊕ (0, π)A . (37)

VBS states are a superposition of spin singlets on the lattice, therefore the spin quantum number
for all levels in the groundstate manifold must be trivial, Stot = 0.

Staggered valence-bond solid The columnar VBS is not the only regular dimer covering of
the square lattice. Another possible regular covering is the staggered VBS (sVBS), where again
four equivalent configurations span the groundstate manifold. One of these configurations is
shown in Fig. 3.
Obviously, also the sVBS spontaneously breaks the translational and point-group symmetries
of an isotropic Hamiltonian, but not the spin-rotational symmetry. Following the same steps
as before we can compute the quantum numbers of the four quasi-degenerate groundstates for
the sVBS. The stabilizer turns out to be different to the case of the cVBS and thus also the
decomposition into irreps yields a different result:

χ(|ΨsV BS〉) = (0, 0)A⊕ (0, 0)B⊕ (π, π)Ea ⊕ (π, π)Eb. (38)

Tab. 2 shows a comparison of the irreducible representations in the groundstate manifold of the
cVBS and sVBS states.
By a careful analysis of the quasi-degenerate states and their quantum numbers on finite systems
it is thus possible to identify and distinguish different VBS phases which spontaneously break
the translational and point-group symmetries in the thermodynamic limit.

Irreps cVBS sVBS
(0 , 0)A 1 1
(0 , 0)B 1 1
(π, 0)A 1 0
(0 , π)A 1 0
(π, π)Ea 0 1
(π, π)Eb 0 1

Table 2: Multiplicities of the irreducible representations in the four-fold degenerate groundstate
manifolds of the columnar and staggered VBS on a square lattice.



8.14 A.M. Läuchli, M. Schuler, and A. Wietek

4.2 Continuous symmetry breaking

In this section we give several examples of systems breaking continuous SO(3) symmetry. We
discuss the introductory example of the Heisenberg antiferromagnet, calculate the irreps in the
TOS and compare this to actual energy spectra from Exact Diagonalization on a finite lattice in
section 4.2.1. Next we discuss three magnetic orders on the triangular lattice and a model where
all of these are stabilized. We show again results from Exact Diagonalizations and compare the
representations in these spectra to the predictions from TOS analysis in section 4.2.2. Finally we
introduce quadrupolar order and show that also this kind of symmetry breaking can be analyzed
using the TOS technique in section 4.2.3.

4.2.1 Heisenberg antiferromagnet on square lattice

We now give a first example how the TOS method can be applied to predict the structure of the
tower of states for magnetically ordered phases. We look at the Néel state of the antiferromagnet
on the bipartite square lattice with sublattices A and B. A prototypical state in the groundstate
manifold is given by

|ψ〉 = |↑↓↑↓ · · ·〉 (39)

where all spins point up on sublattice A and down on sublattice B. The symmetry group G =

D × C of the model we consider is a product between discrete translational symmetry D =

Z2×Z2 = {1, tx, ty, txy} and spin rotational symmetry C = SO(3). We remark that we restrict
our translational symmetry group to D = Z2 × Z2 instead of D′ = Z × Z because the Néel
state transforms trivially under two-site translations (tx)

2, (ty)
2. Thus, only the representations

of D′ trivial under two-site translations are relevant; these are exactly the representations of D.
Put differently we only have to consider the translations in the unitcell of the magnetic structure
which in the present case can be chosen as a 2-by-2 cell. Furthermore, we will for now neglect
pointgroup symmetries like rotations and reflections of the lattice to simplify our calculations.
At the end of this section we give results where also these symmetry elements are incorporated.
The groundstate manifold VGS we consider are the states related to |ψ〉 by an element of the
symmetry group G, i.e.,

VGS = {Og |ψ〉 ; g ∈ G} . (40)

The symmetry elements in G that leave our prototypical state |ψ〉 invariant are given by two sets
of elements:

• No translation in real space or a diagonal txy translation together with a spin rotation
Rz(α) around the z-axis with an arbitrary angle α.

• Translation by one site, tx or ty, followed by a rotation Ra(π) of 180◦ around an axis
a ⊥ z perpendicular to the z-axis.

So the stabilizer of our prototype state |ψ〉 is given by

Stab(|ψ〉) = {1×Rz(α)} ∪ {txy ×Rz(α)} ∪ {tx ×Ra(π)} ∪ {ty ×Ra(π)} . (41)



Studying Continuous Symmetry Breaking with ED 8.15

The representations of the discrete symmetry group can be simply labeled by four momenta
k ∈ {(0, 0), (0, π), (π, 0), (π, π)} with corresponding characters

χk(t) = eik·t.

The continuous symmetry group is the Lie group SO(3). Its representations are labeled by the
total spin S and the character of the spin-S representation is given by

χS(R) =
sin
[
(S + 1

2
)ϕ
]

sin(ϕ/2)

where ϕ ∈ [0, 2π] is the angle of rotation of the element R ∈ SO(3). We see that spin rotations
with different axes but same rotational angle give rise to the same character. The representations
of the total symmetry group G = D × C are now just the product representations of D and C,
therefore also the characters of representations of G are the product of characters of D and C.
We label these representations by (k, S) where k denotes the lattice momentum and S the total
spin. We now apply the character-stabilizer formula, Eq. (25), to derive the multiplicities of the
representations (k, S) in the groundstate manifold. In the case of the square antiferromagnet
this yields

n(k,S) = eik·0
1

4 |Rz(α)|

2π∫
0

dαχS(Rz(α)) + eik·(ex+ey)
1

4 |Rz(α)|

2π∫
0

dαχS(Rz(α)) (42)

+ eik·ex
1

4 |Ra(π)|

2π∫
0

dαχS(Ra(π)) + eik·ey
1

4 |Ra(π)|

2π∫
0

dαχS(Ra(π)) . (43)

We compute

|Rz(α)| = |Ra(π)| =
2π∫
0

dϕ = 2π ,

1

2π

2π∫
0

dαχS(Rz(α)) =
1

2π

2π∫
0

dα
sin
[
(S + 1

2
)α
]

sin(α/2)
=

1

2π

2π∫
0

dϕ
S∑

l=−S

eilϕ = 1 , (44)

and

1

2π

2π∫
0

dϕχS(Ra(π)) =
1

2π

2π∫
0

dϕ
sin
[
(S + 1

2
)π
]

sin(π/2)
= (−1)S. (45)

Putting this together gives the final result for the multiplicities of the representations in the tower
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S Γ.A1 M.A1
0 1 0
1 0 1
2 1 0
3 0 1

Table 3: Multiplicities of irreducible representations in the TOS for the Néel antiferromagnet
on a square lattice.

of states

n((0,0),S) =
1

4

(
1 · 1 + 1 · 1 + 1 · (−1)S + 1 · (−1)S

)
=

{
1 if S even
0 if S odd

(46)

n((π,π),S) =
1

4

(
1 · 1 + 1 · 1− 1 · (−1)S − 1 · (−1)S

)
=

{
0 if S even
1 if S odd

(47)

n((0,π),S) =
1

4

(
1 · 1− 1 · 1 + 1 · (−1)S − 1 · (−1)S

)
= 0 (48)

n((π,0),S) =
1

4

(
1 · 1− 1 · 1− 1 · (−1)S + 1 · (−1)S

)
= 0 (49)

Tab. 3 lists the computed multiplicities of the irreducible representations where additionally
the D4 point group was considered in the symmetry analysis. Comparing this to Fig. 1 we
observe that these are exactly the irreducible representations (momenta and point group irreps)
and multiplicities observed in the tower of states for the Heisenberg model on the square lattice.

4.2.2 Magnetic order on the triangular lattice

On the triangular lattice several magnetic orders can be stabilized. The Heisenberg nearest
neighbor model has been shown to have a 120◦ Néel ordered groundstate where spins on neigh-
boring sites align in an angle of 120◦ [24, 25]. Upon adding further second nearest neighbor
interactions J2 to the Heisenberg nearest-neighbor model with interaction strength J1 it was
shown that the groundstate exhibits stripy order for J2/J1 & 0.18 [26]. Here spins are aligned
ferromagnetically along one direction of the triangular lattice and antiferromagnetically along
the other two. Interestingly, it was shown that there is a phase between these two magnetic
orders whose exact nature is unclear until today. Several articles propose that in this region
an exotic quantum spin liquid is stabilized [27–30]. In a recent proposal two of the authors
established an approximate phase diagram of an extended Heisenberg model with further scalar
chirality interactions JχSi · (Sj × Sk) [31] on elementary triangles. Thus, the Hamiltonian of
the system is given by

H = J1
∑
〈i,j〉

Si · Sj + J2
∑
〈〈i,j〉〉

Si · Sj + Jχ
∑

i,j,k∈4

Si · (Sj × Sk). (50)

Amongst the already known 120◦ Néel and stripy phases an exotic Chiral Spin Liquid and a
magnetic tetrahedrally ordered phase were found. Here we will only discuss the magnetic
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Fig. 4: (Left): Simulation cluster for the Exact Diagonalization calculations. (Center): Bril-
louin zone of the triangular lattice with the momenta which can be resolved with this choice of
the simulation cluster. Different symbols denote the little groups of the corresponding momen-
tum. (Right): TOS for the 120◦ Néel order on the triangular lattice. The symmetry sectors and
multiplicities fulfill the predictions from the symmetry analysis (See Tab. 5). One should note,
that the multiplicities grow with Stot for non-collinear states.

orders appearing in this model. The non-coplanar tetrahedral order has a four-site unitcell where
four spins align such that they span a regular tetrahedron. In this chapter we show the tower of
states for the three magnetic orders in this model.
First of all, Fig. 4 shows the simulation cluster used for the Exact Diagonalization calculations
in [31]. We chose a N = 36 = 6 × 6 sample with periodic boundary conditions. This sample
allows to resolve the momenta Γ , K and M , amongst several others in the Brillouin zone.
The K and M momenta are the ordering vectors for the 120◦, stripy and tetrahedral order.
Furthermore this sample features full six-fold rotational as well as reflection symmetries (the
latter only in the absence of the chiral term). Its pointgroup is therefore given by the dihedral
group of order 12, D6. The little groups of the individual k vectors are also shown in Fig. 4. For
our tower of states analysis we now want to consider the discrete symmetry group

D = T × D6 (51)

where T is the translational group of the magnetic unitcell. The full set of irreducible represen-
tations of this symmetry group is given by the set (k⊗ ρk) where k denotes the momentum and
ρk is an irrep of the little group associated to k. The points Γ , K and M give rise to the little
groups D6, D3 and D2 (the dihedral groups of order 12, 8, and 4), respectively. For the stripy
and tetrahedral order we can choose a 2× 2 magnetic unitcell, and a 3× 3 unitcell for the 120◦

Néel order. The spin rotational symmetry lets us again consider the continuous symmetry group

C = SO(3). (52)

We can therefore label the full set of irreps as (k, ρk, S) where S denotes the total spin S

representation of SO(3). Similarly to the previous chapter we now want to apply the character-
stabilizer formula, Eq. (25), to determine the multiplicities of the representations forming the
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D6 1 2C6 2C3 C2 3σd 3σv
A1 1 1 1 1 1 1
A2 1 1 1 1 −1 −1
B1 1 −1 1 −1 1 −1
B2 1 −1 1 −1 −1 1
E1 2 1 −1 −2 0 0
E2 2 −1 −1 2 0 0

Table 4: Character table for pointgroup D6.

120◦ Néel stripy order tetrahedral order
S Γ .A1 Γ .B1 K.A1 Γ .A1 Γ .E2 M.A Γ .A Γ .E2a Γ .E2b M.A
0 1 0 0 1 1 0 1 0 0 0
1 0 1 1 0 0 1 0 0 0 1
2 1 0 2 1 1 0 0 1 1 1
3 1 2 2 0 0 1 1 0 0 2

Table 5: Multiplicities of irreducible representations in the Anderson tower of states for the
three magnetic orders on the triangular lattice defined in the main text.

tower of states. The characters of the irreps (k, ρk, S) are given by

χ(k,ρk,S)(t, p, R) = eik·tχρk(p)
sin
[
(S + 1

2
)ϕ
]

sin(ϕ/2)
, (53)

where again ϕ ∈ [0, 2π] is the angle of rotation of the spin rotation R. The characters of
the pointgroup D6 are given in Tab. 4. We skip the exact calculations which follow closely
the calculations performed in the previous chapter, although now also pointgroup symmetries
are additionally taken into account. The results are summarized in Tab. 5. We remark that
the tetrahedral order is stabilized only for Jχ 6= 0 where the model in Eq. (50) does not have
reflection symmetry any more since the term Si · (Sj × Sk) does not preserve this symmetry.
Therefore we used only the pointgroup C6 of six-fold rotation in the calculations of the tower
of states for this order.
If we compare these results to Figs. 4 and 5 we see that these are exactly the representations
appearing in the TOS from Exact Diagonalization for certain parameter values J2 and Jχ. This
is a strong evidence that indeed SO(3) symmetry is broken in these models in a way described
by the 120◦ Néel, stripy, and tetrahedral magnetic prototype states.

4.2.3 Quadrupolar order

All examples of continuous symmetry breaking we have discussed so far spontaneously broke
SO(3) symmetry but exhibited a magnetic moment. In the following we will show examples
of phases that do not exhibit any magnetic moment but break spin-rotational symmetry anyway
and discuss the influences on the tower of states. We will only discuss quadrupolar phases
in S = 1 models here, a broader introduction to nematic and multipolar phases can be found
in [32].
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Fig. 5: (Left): TOS for the stripy phase on the triangular lattice. The multiplicities for each
even/odd Stot are constant for collinear phases. (Right): TOS for the tetrahedral order on the
triangular lattice.

Quadrupolar states We denote the basis states for a single spin S = 1 with Sz = 1,−1, 0

as |1〉 , |1̄〉 , |0〉. In contrast to the usual S = 1/2 case not each basis state can be obtained by
a SU(2) rotation of any other basis state. The state |0〉, for example cannot be obtained by a
rotation of |1〉 or |1̄〉 as it has no orientation in spin-space at all, 〈0|Sα|0〉 = 0 [32]. The state
|0〉 can, however, be described as a spin fluctuating in the x-y plane in spin space as

〈0|(Sx)2|0〉 = 〈0|(Sy)2|0〉 = 1, 〈0|(Sz)2|0〉 = 0. (54)

We can thus assign a director along the z-axis to this state. SU(2) rotations will change the
director of such a state, but not its property of being non-magnetic. These states can be detected
by utilizing the quadrupolar operator [32]

Qαβ = SαSβ + SβSα − 2

3
S(S + 1)δαβ (55)

therefore they are identified as quadrupolar states.
To study the possible formation of an ordered quadrupolar phase on a lattice, where the direc-
tors of the quadrupoles on each lattice site follow a regular pattern, we consider the bilinear-
biquadratic model with Hamiltonian

H =
∑
〈i,j〉

J Si · Sj +Q (Si · Sj)2 (56)

and S = 1. The second term in Eq. (56) can be rewritten in terms of the elements of Qαβ which
can be rearranged into a 5-component vector Q such that

Qi ·Qj = 2(Si · Sj)2 + Si · Sj −
4

3
. (57)

The expectation value of Eq. (57) for quadrupolar states on sites i and j can be given in terms
of their directors di,j [32]

〈Qi ·Qj〉 = 2 (di · dj)2 −
2

3
. (58)
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Therefore, the second term in Eq. (56) favors regular patterns of the directors of quadrupoles.
When such states are formed, they spontaneously break the SU(2) symmetry without exhibiting
any kind of magnetic moment. The first term in Eq. (56), on the other hand, favors spin ordering
as we have already discussed in previous sections.
The phase diagram of Eq. (56) on the triangular lattice shows extended ferromagnetic, antifer-
romagnetic (120◦), ferroquadrupolar (FQ), and antiferroquadrupolar (AFQ) ordered phases. In
the FQ phase quadrupoles on each lattice site are formed with all directors pointing in a single
direction, whereas the directors form a 120◦ structure in the AFQ phase. In the following, we
will see that the FQ and AFQ phases can be identified and distinguished from the spin ordered
phases using a tower-of-states analysis on finite clusters.

TOS for quadrupolar phases The TOS for the FQ and AFQ phases can be expected to show
similar behavior as the TOS for magnetically ordered states as both spontaneously break the
spin-rotational symmetry. If we identify the symmetry-broken quadrupolar phases with their
directors pointing in any direction in spin-space we can perform the symmetry analysis of the
TOS levels in a very similar manner as for the spin-ordered systems in the previous sections.
There is, however, one important thing to consider: The directors should not be considered to
be described with vectors, but with axes; a quadrupole is recovered (up to a phase) by rotations
about an angle π around any axis a in the x-y-plane:

eiπS
a |0〉 = − |0〉 . (59)

Thus, the stabilizer in Eq. (25) is different for quadrupolar phases and the TOS shows a different
structure. This property makes it possible to distinguish, e.g., a magnetic 120◦ phase from its
quadrupolar counterpart, the AFQ phase, with a TOS analysis.
A prototype for the FQ phase is a product states of quadrupoles with directors in z-direction,
|Ψ〉 = |0, 0, 0, . . .〉. This state does not break any space-group symmetries, so only the trivial
irreps of the space group, k = Γ = (0, 0).A1, will be present in the TOS. The remaining
stabilizer of the spin-rotation group is a rotation about the z-axis by an arbitrary angle and a
rotation about an arbitrary axis lying in the x-y-plane,

Stab(|Ψ〉) = {Rz(α), Ra(π)}. (60)

The multiplicities in the TOS can then be computed as

nS =
1

2

(
1

|Rz(α)|

∫ 2π

0

dαχS(Rz(α)) + (−1)N
1

|Ra(π)|

∫ 2π

0

daχS(Ra(π))

)
(61)

=
1

2

(
1 + (−1)N(−1)S

)
, (62)

where the integrals have already been computed in Eqs. (44) and (45). The system size de-
pendent factor (−1)N is imposed from Eq. (59). To sum up, the TOS for the FQ phase has
single levels for even (odd) S with trivial space-group irreps and no levels for odd (even) S
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Fig. 6: Tower of states for the ferroquadrupolar (left) and antiferroquadrupolar (right) states
on a triangular lattice with N = 12 sites from Exact Diagonalization. The single-magnon
branch for the FQ phase is highlighted with green boxes.

sectors when N is even (odd).9 The absence of odd (even) S levels is caused by the invariance
of quadrupoles under π-rotation and distinguishes the TOS for a FQ phase from a usual ferro-
magnetic phase. In Fig. 6 the TOS for the model, Eq. (56), in the FQ phase is shown on the
left. It shows the expected quantum numbers and multiplicities in the TOS and also an easily
identifiable magnon branch below the continuum.

The symmetry analysis for the AFQ phase can be performed in a similar manner and shows a
similar structure to the 120◦-Néel phase, but again, levels are deleted for the AFQ. In this case,
however, not all odd levels are deleted but some levels in both, odd and even, S sectors. Tab. 6
shows the multiplicities of irreps in the TOS of the AFQ model in comparison to the magnetic
120◦-Néel state for even N . Fig. 6 shows the simulated TOS for the AFQ phase for the bilinear-
biquadratic model Eq. (56). The symmetry sectors and multiplicities agree with the expected
ones.

AFQ 120◦ Néel
S Γ .A1 Γ .B1 K.A1 Γ .A1 Γ .B1 K.A1
0 1 0 0 1 0 0
1 0 0 0 0 1 1
2 0 0 1 1 0 2
3 0 1 0 1 2 2

Table 6: Irreducible representations and multiplicities for the AFQ phase compared to the
magnetic 120◦-Néel phase.

9For the simple case of the FQ phase one can also easily calculate the decomposition of a state |S = 1,m = 0〉⊗
|S = 1,m = 0〉 ⊗ . . . into states |Stot,m = 0〉 with the use of Clebsch-Gordan coefficients.
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5 Outlook

In the previous sections we have discussed the features of the energy spectrum for states which
spontaneously break the spin-rotational symmetry, SU(2), in the thermodynamic limit. We have
seen that on finite-size systems the energy spectra of such states exhibit a tower of states (TOS)
structure. The tower of states scales as Stot(Stot + 1)/N and generates the groundstate manifold
in the thermodynamic limit N → ∞, which is indispensable to spontaneously break a sym-
metry. The quantum numbers of the levels in the TOS depend on the particular state which is
formed after the symmetry breaking and can be predicted using representation theory.

As a generalization to the SU(2)-symmetric Heisenberg model, Eq. (1), one can introduce
SU(n) Heisenberg models with n > 2. Such models can experimentally be realized by ultra-
cold multicomponent fermions in a optical lattices. When the on-site repulsion is strong enough,
the Hamiltonian can be effectively described by an SU(n)-symmetric permutation model on the
lattice [33]. When the exchange couplings are antiferromagnetic, SU(n) generalized versions
of the Néel state might be realized as groundstates, which then spontaneously break the SU(n)

symmetry of the Hamiltonian. On finite systems this becomes again manifest in the emergence
of a tower of states, where the scaling is found to be proportional to C2(n)/N [34–37, 33].
C2(n) denotes the quadratic Casimir operator of SU(n).10 The symmetry analysis of the lev-
els in the TOS can, in principle, be performed similar to the case of SO(3) discussed in these
notes, but the symmetry group and its characters have to be replaced with the more complicated
group SU(n).

On the other side, it can be also interesting to study models where the continuous symmetry
group is smaller. In real magnetic materials, the isotropic Heisenberg interaction is often accom-
panied by other interactions which, when they are strong enough, might reduce the symmetry
group of spin rotations from SO(3) to O(2); only spin rotations around an axis are a symmetry
of the system and can be spontaneously broken in the thermodynamic limit. This symmetry
group is also interesting in the field of ultracold gases, as BECs spontaneously break an O(2)

symmetry by choosing a phase. Tower of states can also be found in this case and the quantum
numbers and multiplicities of the TOS levels can be computed similar to the SU(2) case [12].

We have seen, that the energy spectrum of Hamiltonians on finite lattices may contain a lot of
information about the system. One can identify groundstates which will spontaneously break
discrete as well as continuous symmetries in the thermodynamic limit and by imposing a classi-
cal state as symmetry-broken state one can even predict the quantum numbers and multiplicities
of the levels in the tower of states or in the quasi-degenerate groundstate manifold. When we
impose an additional interaction to a system with spontaneously broken groundstate, e.g., a
magnetic field, it is possible that a continuous quantum phase transition (cQPT) from the or-
dered state to a disordered state appears for some critical ratio of the couplings. Such cQPTs are
interesting as they can be described by universal features which do not depend on the details of

10For n = 2 the quadratic Casimir operator C2 = Stot(Stot + 1).
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Fig. 7: Universal torus spectrum for a continuous quantum phase transition in the 3D Ising uni-
versality class. Full symbols denote numerical results while empty symbols denote ε-expansion
results. The dashed line shows a dispersion with the speed of light.

the model. Interestingly, the energy spectrum on finite systems can even be used to identify and
characterize cQPTs. It is given by universal numbers times 1/L, where L =

√
N is the linear

size of the lattice. The quantum numbers of the energy levels show universal features and are
related to the operator content of the underlying critical field theory, although the relation be-
tween them is not yet fully understand for non-flat geometries, like a torus [38,39]. The critical
spectrum for the transverse-field Ising model on a torus is shown in Fig. 7. It is a fingerprint for
the 3D Ising cQPT.
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[38] M. Schuler, S. Whitsitt, L.-P. Henry, S. Sachdev, and A.M. Läuchli, arXiv:1603.03042
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