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6.2 Franca Manghi

1 Introduction

Electrons in solids behave in most cases like independent particles, and that in spite of the strong
interactions between them. The explanation of this apparent paradox relies on the concept
of the Landau quasi-particle: the multiple forces acting on one electron dress it up with an
interaction cloud and these new dressed particles (quasi-particles) are effectively independent
one from the other. The time evolution of the system with one electron removed is what is
measured in experiments and when this state evolves as a coherent superposition of oscillations
of approximately the same frequency it corresponds to the propagation of a quasi-particle with a
reasonably well defined energy and a sufficiently long life-time. In this situation the low-energy
excitations of the interacting electrons can be put into a one-to-one correspondence with those
of non-interacting electrons with renormalized properties (energy and mass) and the measured
spectra can be reduced to a quasi-particle band structure.
From a theoretical point of view, the simplest way to account for the electron-electron inter-
action is to include it as a mean field, where each electron moves independently under the
influence of the average charge distribution of all the others. Materials for which this rudimen-
tary mean-field description is sufficient have broad energy bands associated with large values
of the electron kinetic energy. This implies that the electrons are highly itinerant and there-
fore it is reasonable to describe them using a picture in which interactions become smooth and
can be averaged over. On the contrary when bands are narrower and the associated kinetic en-
ergy smaller, namely when electrons tend to localize around lattice ions, they see each other
as individual point charges and the correlation between their motion becomes important. For
these systems the single-particle picture is inadequate and their electronic properties have to be
described including the multiple pair-wise e-e interaction as a true many-body term.
Strongly correlated electron systems have been one of the most important topics in theoretical
solid state research for more than half a century. The major challenge is that the interesting
physics occurs in the regime of intermediate coupling strength, where perturbation theory does
not apply. The search for non perturbative approaches has been intense in the last decades, lead-
ing to some widely accepted results, the most prominent one being the choice of the Hubbard
model as the general framework to describe strong e-e correlation.
A variety of non-perturbative techniques have been proposed during the years to tackle this
problem, ranging from Dynamical Mean Field Theory (DMFT) [1] to 3-Body Scattering (3BS)
theory [2, 3]. However the agreement between experiments and many-body calculations is still
far from being fully quantitative [4–6] and different theoretical methods are constantly explored.
Recently schemes based on cluster formalisms have been developed. These so-called Quantum
Cluster (QC) theories [7] share the basic idea to solve the problem of many interacting electrons
in an extended lattice by a divide-and-conquer strategy, namely solving first the many-body
problem in a subsystem of finite size and then embedding it within the infinite medium. The
embedding procedure can be variationally optimized as in the Dynamical Cluster Approach
(DCA) [8] and Cellular Dynamical Mean Field Theory (CDMFT) [9]. Even neglecting op-
timization in the embedding procedure the method, that in this case has been called Cluster
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Perturbation Theory (CPT) [10], gives access to non trivial many-body effects, reproducing ex-
actly both the non-interacting band limit and the atomic limit when on-site repulsion exceeds
intersite hopping; for intermediate values of on-site e-e repulsion CPT opens a gap in metallic
systems at half occupation. QC approaches account for the momentum dependence of many-
body corrections more appropriately than other schemes, and for this reason they should provide
a more accurate description of the quasi-particle dispersion. However QC approaches have been
mostly applied to model systems and only few quasi-particle calculations for realistic systems
have been reported up to now [11, 12]. The application of CPT to multi-orbital solids and to
transition-metal oxides in particular will be our focus.

2 CPT for multiorbital systems

In CPT the lattice is seen as a periodic repetition of identical clusters and the Hubbard Hamil-
tonian can be partitioned in two terms, an intra-cluster (Ĥc) and an inter-cluster one (V̂ )

Ĥ = Ĥc + V̂ , (1)

where

Ĥc =
∑
ilα

εilα n̂ilα +
∑
αβ

∑
ijl

tilα,jlβ ĉ
†
ilαĉjlβ +

∑
ilαβ

U i
αβ n̂ilα↑n̂ilβ↓

V̂ =
∑
αβ

∑
ij,l 6=l′

tilα,jl′β ĉ
†
ilαĉjl′β . (2)

Here α, β are orbital indices, εilα are intra-atomic orbital parameters and tilα,jl′β hopping terms
connecting orbitals centered on different sites. Each atom is identified by the cluster it belongs
to (index l) and by its position inside the cluster (index i). The lattice is a collection of L→∞
clusters each of them containing M atoms whose position is identified by the vector Rl+ri.
Each atom in the cluster is characterized by a set of orbitals norb

i per site and K =
∑M

i=1 n
orb
i is

the total number of orbitals per cluster.
Since in the Hubbard model the e-e Coulomb interaction is on-site, the inter-cluster Hamiltonian
V̂ contains only single-particle terms and the many-body part is present in the intra-cluster
Hamiltonian Ĥc only. Of course the complexity of the problem resides in the coexistence of
the two contributions, while in the two limits t � U or U � t the Hamiltonian can be easily
solved: in the first case the many-body term is negligible and Ĥ is reduced to a trivial one-
body Hamiltonian; the second case, the atomic limit, corresponds to Ĥ ' Ĥc , namely to a
Hamiltonian that does not mix the coordinates of electrons belonging to different clusters. In
this case the eigenstates |ΨNn 〉 of the full Hamiltonian for N electrons (N =→∞) becomes

|ΨNn 〉 = |ΦNn 〉 =
L→∞∏
l=1

|φKn (l)〉 (3)

where |φKn (l)〉 are the few-body eigenstates of the l-th isolated cluster that can be calculated
numerically by exact diagonalization.
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The partition of the Hamiltonian into intra-cluster and inter-cluster terms gives rise to some
exact expressions and suggests some relevant approximations. Let us consider the resolvent
operator Ĝ

Ĝ−1(z) ≡ z − Ĥc − V̂ = Ĝc
−1
− V̂ with Ĝc

−1
≡ z − Ĥc (4)

and the Dyson-like equation that is deduced from it Ĝ = Ĝc + Ĝc V̂ Ĝ, where the lattice Green
function and the cluster one are connected by the inter-cluster interaction. The expectation value
of the resolvent operator over the interacting ground state with one removed/added particle,
ĉkn|ΨN0 〉 / ĉ†kn|ΨN0 〉, gives the one-particle propagator for the extended lattice

G(knω) = G+(knω) + G−(knω) (5)

with G±(knω), the particle and hole propagators, given by

G−(knω) = 〈ΨN0 | ĉ
†
kn Ĝ(−ω + EN

0 + iη) ĉkn |ΨN0 〉 (6)

G+(knω) = 〈ΨN0 | ĉkn Ĝ( ω + EN
0 + iη) ĉ†kn |ΨN0 〉 .

Since we are looking for a relationship between the lattice and cluster Green function, it is
useful to introduce a transformation from the localized to the Bloch basis

ĉkn =
1√

K × L

∑
ilα

Cniα(k)eik·(Rl+ri) ĉilα and ĉ†kn =
1√

K × L

∑
ilα

Cniα(k)∗e−ik·(Rl+ri) ĉ†ilα,

where n is a band index and Cniα(k) are the eigenstate coefficients obtained by a band calculation
for a superlattice of L identical clusters. By straightforward substitutions we get

G(knω) = 1

K

∑
ii′αβ

e−ik·(ri−ri′ ) Cniα(k)∗Cni′β(k)Giαi′β(kω) , (7)

where Giαi′β(kω) is the superlattice Green function, namely the Fourier transform of the Green
function in the local basis

Giαi′β(kω) =
1

L

∑
ll′

e−ik·(Rl−Rl′ ) Giαi′β
ll′

(ω) (8)

and

Giαi′β
ll′

(ω) =
〈
ΨN0

∣∣∣ĉ†ilα (Ĝc(ω) + Ĝc(ω)V̂ Ĝ(ω)
)
ĉi′l′β

∣∣∣ΨN0 〉 (9)

+
〈
ΨN0

∣∣∣ĉilα (Ĝc(ω) + Ĝc(ω)V̂ Ĝ(ω)
)
ĉ†i′l′β

∣∣∣ΨN0 〉 .
All the equations written up to now are exact and approximations are needed in order to make
them of practical use. CPT introduces two approximations:

1) |ΨN0 〉 ∼ |ΦN0 〉

2)
∑

m |ΦN−1m 〉〈ΦN−1m | ∼
∑

ilα ĉilα |ΦN0 〉〈ΦN0 | ĉ
†
ilα = 1∑

m |ΦN+1
m 〉〈ΦN+1

m | ∼
∑

ilα ĉ
†
ilα |ΦN0 〉〈ΦN0 | ĉilα = 1



Multi-orbital CPT 6.5

The first one substitutes the unknown ground state |ΨN0 〉 of the full interacting Hamiltonian
with |ΦN0 〉, the ground state of Ĥc defined in Eq. (3). As mentioned above, this choice is fairly
accurate in the regime of U/t > 1 and less correct in the opposite limit. The second assumption
corresponds to an approximate expression of the decomposition of unity in terms of a reduced
basis for the Fock space of N ± 1 particles.
Altogether we obtain for the total (causal) Green function

Giαi′β
ll′

(ω) = 〈φK0 |ĉ
†
ilα Ĝ

c ĉi′l′β|φK0 〉 δll′ + 〈φK0 |ĉilα Ĝc ĉ†i′l′β|φ
K
0 〉 δll′ (10)

+
∑
l′′l′′′

∑
i′′i′′′

∑
γγ′

[
〈ΦN0 |ĉ

†
ilα Ĝ

c ĉi′′l′′γ|ΦN0 〉 δl′′l + 〈ΦN0 |ĉilα Ĝc ĉ†i′′l′′γ|Φ
N
0 〉 δl′′l

]
× 〈ΦN0 |ĉ

†
i′′l′′γ V̂ ĉi′′′l′′′γ′|ΦN0 〉〈ΦN0 |ĉ

†
i′′′l′′′γ′ Ĝ ĉi′l′β|Φ

N
0 〉

= Gciαi′β(ω) δll′

+
∑
l′′l′′′

∑
i′′i′′′

∑
γγ′

Gciαi′β(ω) δll′ 〈ΦN0 |ĉ
†
i′′l′′γ V̂ ĉi′′′l′′′γ′|ΦN0 〉〈ΦN0 |ĉ

†
i′′′l′′′γ′ Ĝ ĉi′l′β|Φ

N
0 〉 ,

where Gciαi′β(ω) = 〈ΦN0 |ĉ
†
ilα Ĝ

c ĉi′l′β|ΦN0 〉 + 〈ΦN0 |ĉilα Ĝc ĉ†i′l′β|ΦN0 〉 is the Green function of a
disconnected cluster. It is calculated in the Lehmann representation in terms of the few-body
states of interacting clusters containing K and K ± 1 electrons

Gciαi′β(ω) =
∑
n

〈φK0 |ĉ
†
iα|φK−1n 〉〈φK−1n |ĉi′β|ΦK0 〉
ω − (EK

0 − EK−1
n )

+
∑
n

〈φK0 |ĉiα|φK+1
n 〉〈φK+1

n |ĉ†i′β|φK0 〉
ω − (EK+1

n − EK
0 )

. (11)

Eq. (10) contains the matrix elements of the inter-cluster potential that are simply calculated
identifying the indices l − l′′′, i− i′′′, γ − γ′ that give a non-zero contribution.
After summation over the cluster positions in Eq. (8), one eventually reaches an explicit equa-
tion for the lattice Green function, namely

Giαi′β(kω) = Gciαi′β(ω) +
∑
i′′′γ′

Biαi′′′γ′(kω)Gi′′′γ′i′β(kω) , (12)

where theK×K matrixBiαi′′′γ′(kω) is the Fourier transform of ĜcV̂ matrix elements involving
neighboring sites that belong to different clusters. Eq. (12) is solved by aK×K matrix inversion
at each k and ω.
The k- and ω-dependent lattice Green function G(knω) is obtained by a final summation over
the intra-cluster site positions modulated by the single-particle band coefficients as in Eq. (7).
The quasi-particle excitation energies correspond to peaks of the k and band-index dependent
spectral function

A(k, n, ω) = ImG(knω). (13)

Examples of quasi-particle band structure obtained by CPT for model systems are reported in
the next section where we start analyzing CPT results for a simplified model system. This
analysis will allow us to identify the main features of CPT and to recognize its pro et contra
with respect to the other many-body approaches. This analysis will constitute a benchmark for
CPT and for its application to realistic systems.
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3 CPT for model systems

3.1 The role of symmetry

We consider a square 2D lattice with one orbital per site and the standard orbital-independent
Hubbard Hamiltonian

Ĥc =
∑
il

εil n̂il +
∑
ijl

til,jl ĉ
†
ilĉjl +

∑
il

U i n̂il↑n̂il↓

V̂ =
∑
ijl 6=l′

til,jl′ ĉ
†
ilĉjl′ (14)

For this lattice we easily identify various possible “tilings”: 4-atom 2×2 square, 4-atom chain,
6-atom rectangle etc. They differ by the number of atoms and also by their symmetry, the
4-atom square being the only one that preserves the full point symmetry of the entire lattice.
The simplest way to check the quality of the main approximation of CPT, the expression of
the lattice Green function in terms of Green functions of decoupled clusters, is to look for a
convergence in the cluster size, comparing results obtained with larger and larger cluster sizes.
This procedure has two serious restrictions that arise i) by the dimensions of Hilbert space
used in the exact diagonalization, dimensions that grow exponentially with the number of sites
and ii) by symmetry requirements. The second restriction, even if clearly stated in the early
developments of Quantum Cluster theories [7], is often overlooked in the implementations.
Independently on the various QC flavors such as plain CPT [10], variational CPT [13], cellular
dynamical mean-field theory [9], the cluster symmetry should be as close as possible to the one
of the lattice.
As we know from elementary solid state theory there is a large arbitrariness in the choice of
the elementary units that describe a crystalline solid: either the primitive cell that contains the
minimum number of atoms, or any larger unit that, via translation invariance, reproduces the
crystalline lattice. So the band structure of non-interacting electrons in a 2D square lattice can
be calculated using unit cells containing a variable number of atoms, 1, 2, 4, 6, etc., providing
exactly the same result, except for a trivial “band folding” that can be easily eliminated by an
“unfolding procedure”, see Fig. 1.1

The situation is quite different for interacting electrons as described by QC theories. In this
case the smallest unit must obviously contain more than one atom but its choice is now far less
arbitrary since the extended system is described as a periodic repetition of units of correlated
electrons and the translation periodicity is preserved only at the superlattice level. In other
words, the e-e interaction affects the electronic states inside the cluster, resulting in a sort of
hopping renormalization, while the inter-cluster hopping is unaffected. For this reason the
cluster symmetry should be as close as possible to the one of the lattice: any significant deviation

1The unfolding procedure corresponds to identifying within the bands obtained with a large unit cell those that
correspond to the primitive cell. The unfolding procedure is used in CPT in order to implement correctly Eq. (7)
where the band index n runs over the number of unfolded bands (n = 1 instead of n = 4 or n = 6 in the present
case) but the eigenstates are to be taken in the larger unit cell basis (i = 1, 4 or i = 1, 6)
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(a) (a) (b) (c) 

(k) (k) 

Fig. 1: Single-particle band structure obtained assuming different unit cells for the 2D square
lattice: the 4-site square (a) and the 6-site rectangle (b) (open circles). The red line is the “un-
folded” band structure obtained assuming the usual 1-site unit cell. Panel (c) shows different
tilings for the 2D square lattice (see text).

from this requirement would induce a wrong behavior of the quasi-particle band dispersion:
quasi-particle energies at k andRk,R being a point group rotation, would be different, violating
a very basic rule of solid state theory.

The influence of cluster symmetry on the quasi-particle band structure is illustrated in Fig. 2
for the square lattice at half occupation. It appears that clusters that are not invariant under
lattice point-group rotations give rise to quasi-particle bands that violate the above mentioned
rule. Quasi-particle energies should be identical at k-points K1 and K2 since K1 and K2 are
connected by a point-group rotation but for the 4-site chain and the 6-site rectangle they are not,
major differences occurring in the first case due to the largest symmetry discrepancies.

Fig. 3 shows a similar comparison for another 2D model system, the honeycomb lattice. In this
case two tilings have been considered: the 6-site hexagon and the elongated 8-site cluster. The
differences are striking and this is due to the fact that the 8-site tiling has a preferred direc-
tion. Hence the dispersions along K–K ′ and K ′–K ′′ appear different. This result is particularly
relevant since it explains some significant discrepancies that are present in the literature on cor-
related electrons in graphene [14, 15]. In fact, in the honeycomb lattice where the Dirac cones
are the consequence of perfect long-range order, theories based on quantum cluster schemes,
regardless of them being variational or not and independent on the details of the specific im-
plementations, give rise to a spurious excitation gap for U → 0. A strategy has been proposed
that seems to overcome this shortcoming, providing for the undistorted honeycomb lattice a
semimetal behavior up to some finite U [16]. The strategy consists in choosing clusters that
break the lattice point C6 symmetry (8- and 10-site clusters). The quasi-particle band disper-
sion that is obtained in this way presents, however, the above mentioned unphysical behavior
which, by the way, is just the origin of the semimetallic behavior at finite U since the gap closes
at one K but not at its rotated counterpart. For this reason breaking the rotational symmetry is
not an allowed strategy to correct the erroneous insulating phase.
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Fig. 2: Spectral functions obtained for the square lattice at half occupation (t = 0.25, U = 2)
reproduced by different tilings, 4-site square (a), 4-site chain (b) and 6-site rectangle (c). In (d)
the 2D square Brillouin Zone is shown.

. . 
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(a) (b) 

(c) (d) 

Fig. 3: Spectral functions obtained for the honeycomb lattice (t = 1, U = 2) at half occupation
using different tilings shown in (c): a 6-site hexagon(a) and an 8-site cluster (b). In (d) the
honeycomb Brillouin Zone is shown.
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3.2 CPT vs. other many-body schemes

The agreement between theory and experiments is the ultimate validation of any theoretical
scheme. Many-body quasi-particle band structure calculations rely, however, on drastic approx-
imations that may work as ad-hoc ingredients that affect the final result: different single-particle
band structures are used as a starting point, different strategies are implemented to take into ac-
count the double-counting of the e-e interaction, etc. It is then interesting to make a comparison
within theory, applying different many-body schemes to the same simplified model. This pro-
vides a sort of benchmark for the various theoretical schemes. We choose again the 2D square
lattice at half occupation as a paradigmatic case.
Among the non-perturbative techniques that have been proposed to augment band theory by
e-e correlations we consider 3-Body Scattering (3BS) theory, a method that shares with other
approaches, DMFT above all, the calculation of Green functions in terms of self-energyΣ(knω)

G(knω) = 1

ω − ekn −Σ(knω)
, (15)

where ekn are the single-particle band eigenvalues.
In the 3BS approach the interacting many-body state is expanded in the configurations ob-
tained by adding electron-hole pairs to the ground state of the single-particle Hamiltonian. The
response of the interacting system to the creation of one hole is then described in terms of in-
teractions between configurations with one hole plus one e-h pair, giving rise to multiple h-h
and h-e scattering. The advantage of 3BS with respect to other approaches is to provide a rather
intuitive interpretation of the effect of electron correlation on one electron removal energies in
terms of Auger-like relaxations. Interestingly, the results of DMFT and 3BS are in many cases
quantitatively very similar [4, 17].
The results obtained by 3BS and CPT for the 2D square lattice with t = 0.25 and U = 2, 3, 4 are
shown in Figs. 4 and 5. Both methods provide, for sufficiently large values of U , an insulating
behavior but in 3BS the gap opens up only at very large U (U ≥ 2W ) while in CPT the
gap is present already at much lower U -values. Indeed, in CPT, at half occupation, the gap
is always present. It has recently been shown [18] that the existence of a gap down to U →
0 is characteristic of all quantum cluster schemes with the only exception of the dynamical
cluster approximation (DCA) [8]. This is due to the aforementioned violation of translational
symmetry in quantum cluster methods. DCA preserves translation symmetry and has been
shown to describe better the small-U regime; it becomes, however, less accurate at large U
values where it overemphasizes the metallic behavior [18]. Aware of this shortcomings we are
comparing here results obtained for relatively large U values where CPT limitations are not
effective: For U � t cluster perturbation theory is expected to provide reliable results.
Other remarkable differences exist between 3BS and CPT results, mainly related to the quasi-
particle k-dispersion. This is essentially due to a limitation of the methods based on self-energy
calculation, since the self-energy is in most cases assumed k-independent. On the contrary, CPT
provides a clear k-dependent energy renormalization and single-particle eigenstates at different
k-points are differently affected by e-e correlation. This is shown more clearly by extracting
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Fig. 4: Quasi-particle band structure obtained by 3BS (upper panel) and CPT (lower panel)
for the 2D square lattice with t = 0.25. Increasing values of Hubbard U (U = 2, 3, 4) are
considered. The k-points are shown in Fig. 2(d).
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E-Ef
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Fig. 5: Quasi-particle density of states obtained by 3BS (left panel) and CPT (right panel) for
the 2D square lattice. Parameter values are the same in Fig. 4.

from CPT a self-energy

Σ(knω) = ω − ekn − G(knω)−1. (16)

CPT self-energies are shown in Fig. 6 at the high symmetry points of the 2D square lattice
showing a well defined k-dependence.
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w 
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M 

Fig. 6: k-dependent CPT self-energy for the 2D square lattice. Parameters as in Fig. 4.

4 Transition-metal oxides

4.1 Preliminaries

We move now to Transition Metal (TM) oxides as an example of the application of CPT to real
materials.
The non interacting contribution to the Hubbard Hamiltonian is a standard Tight-Binding (TB)
Hamiltonian that can be written in terms of Koster-Slater parameters obtained by fitting ab-
initio band structure. Tables 1 and 2 report the Koster-Slater tight-binding parameters of the 3d

transition-metal oxides obtained by least squares fitting of ab-initio band structures calculated
in the DFT-LMTO scheme.
When using TB parameters in the Hubbard Hamiltonian we must take care of the double-
counting issue: the ab-initio band structures, and the TB parameters deduced from it, contain
the e-e Coulomb repulsion as a mean-field that must be removed before including U as a true
many-body term. “Bare” on-site parameters are calculated by subtracting the mean filed value
of the Hubbard term, namely

E∗α = Eα −
∑
i

U i
α 〈niα↑〉〈niα↓〉 . (17)

This definition involves the d occupation inside the cluster that is actually used in exact diago-
nalization and cancels out the energy shift due to double counting within each sub-cluster. Other
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Table 1: On-site Koster-Slater parameters (in eV).

Es(TM) Ep(TM) Et2g(TM) Eeg(TM) Es(O) Ep(O)

MnO 7.313 11.546 -0.763 -0.010 -18.553 -4.806
FeO 8.208 12.232 -0.857 -0.132 -18.489 -4.723
CoO 8.221 12.040 -1.383 -0.734 -18.673 -4.891
NiO 8.6332 12.176 -1.767 -1.165 -18.608 -4.806

Table 2: Inter-site Koster-Slater parameters (in eV).

atom atom ssσ ppσ ppπ ddσ ddπ ddδ spσ sdσ pdσ pdπ
Mn Mn -0.514 1.435 -0.137 -0.353 0.028 0.047 0.486 -0.285 -0.081 0.209
O Mn 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -1.074 -1.243 0.632
O O -0.124 0.519 -0.102 0.0 0.0 0.0 -0.016 0.0 0.0 0.0
Fe Fe -0.529 1.470 -0.128 -0.341 0.023 0.046 0.487 -0.275 -0.083 0.195
O Fe 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -1.083 -1.027 0.640
O O -0.140 0.578 -0.109 0.0 0.0 0.0 -0.015 0.0 0.0 0.0
Co Co -0.537 1.497 -0.109 -0.306 0.015 0.045 0.483 -0.283 -0.123 0.193
O Co 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -1.023 -1.235 0.616
O O -0.145 0.609 -0.112 0.0 0.0 0.0 -0.043 0.0 0.0 0.0
Ni Ni -0.549 1.527 -0.090 -0.280 0.006 0.043 0.488 -0.294 -0.113 0.189
O Ni 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -0.969 -1.209 0.608
O O -0.154 0.656 -0.116 0.0 0.0 0.0 -0.101 0.0 0.0 0.0

Table 3: d-orbital occupations.

MnO FeO CoO NiO
nt2g 4.941 5.770 5.961 5.966
neg 0.599 0.672 1.614 2.556
nd 5.540 6.441 7.575 8.522

definitions of double-counting correction have been proposed in the spirit of LDA+U [12] that
involve the average d-occupation in the solid calculated by single-particle theory. Our choice
should be preferred when using multiple partitions of sites/orbitals: this double-counting cor-
rection in fact amounts to readjusting the “center of mass” of the calculated few-particle states
by realigning the calculated 1

2
(EN+1

0 − EN−1
0 ) to its U = 0 value and to keep the distinction

between filled and empty states.

Fig. 7 reports the local density of states obtained in the non-interacting scheme. We focus in
particular on the TM d-orbital contribution. Crystal field symmetry induces a split of d-orbitals
into t2g/eg-states and according to ab-initio band theory these states have different occupations
(see Table 3). This is a crucial point that will be exploited later in applying CPT to TM oxides.
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Fig. 7: Single-particle Density of States (DOS) for TM oxides of the 3d series. The total DOS is
reported (lower panel) together with the contributions of TM d-orbital (in red and blue t2g and
eg, respectively) and of oxygen sp-orbitals in the upper panels.

4.2 Lattice tiling: a multiple partition strategy

As outlined in the previous sections, the first step of the CPT procedure is the partitioning of
the lattice into clusters. Obviously the choice in not unique but must satisfy some requirements:
the clusters should be connected by inter-site hopping as schematically indicated in Fig. 8(c),
namely they should not overlap; moreover they should contain enough atoms to include the
relevant physics of the interacting system and finally the number of sites/orbitals per cluster
should be tractable in an exact diagonalization procedure. Another relevant criterion is that, as
discussed in Section 3, the cluster symmetry should be as close as possible to the lattice one.
TM oxides of the 3d series (MnO, NiO, CoO, FeO) crystallize in the rocksalt structure. An
octahedral cluster containing one TM atom and 6 nearest-neighbor oxygens has been originally
proposed as the elementary unit containing all the relevant physics of the system; atomic multi-
plet theory applied to this isolated cluster [19] has been used to reproduce some features of the
solid state system, losing, however, the translational symmetry and all k-related quantities. The
same cluster has been used as the basic unit to be embedded in an infinite medium in the spirit
of variational CPT [12]. These clusters, however, do overlap in the rocksalt structure and can-
not be used as elementary unit in CPT calculations. Moreover this cluster contains just one TM
atom and even in variational CPT the resulting self-energy turns out to be k-independent [12].
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(a) (b) 

(c) 

Fig. 8: Building blocks of the 3D Rocksalt structure for a transition-metal mono-oxide: (a) a
dimer of 2 TM atoms (filled black circles); (b) a 2 × 2 plaquette containing the two atomic
species (oxygens as open circles); (c) stacking of plaquette layers reproducing the 3D lattice.
Dotted lines indicate the inter-cluster hopping.

The smallest cluster containing more than one TM atom and reproducing, without overlaps, the
3D rocksalt lattice is the 2 × 2 plaquette of Fig. 8(b) with two TM atoms and two oxygens.
Since the bands of TM oxides around the Fermi energy are described by 9 spd-orbitals for each
TM atom and 4 sp-orbitals for each oxygen, the dimension of the Hilbert space spanned by the
Slater determinants that are obtained by populating in all possible ways the K = 26 orbitals
with P electrons of a given spin (P = 13 . . . 16 from MnO to NiO) is far too big (number of
configurations = ( K!

P !(K−P )!)
)2) for exact diagonalization.

A reduction of the number of sites/orbitals per cluster is mandatory. To this end we may iden-
tify, within a single cluster, two classes of orbitals (centered on different sites and of different
symmetry) that we call A and B; we may then write the cluster Hamiltonian as the sum of
on-site and inter-site terms connecting all kinds of orbitals: A-A, B-B (diagonal terms), and
A-B (off-diagonal terms):

Ĥc = Ĥdiag + V̂AB (18)

with
Ĥdiag = ĤAA

c + ĤBB
c and V̂AB =

∑
αAβB

tilαA,jlβB ĉ
†
ilαA

ĉjl′βB . (19)

Here

ĤAA
c =

∑
ilαA

εilαA
n̂ilαA

+
∑
αAβA

∑
ijl

tilαA,jlβA ĉ
†
ilαA

ĉjlβA +
∑
ilαAβA

U i
αAβA

n̂ilαA↑n̂ilβA↓ (20)

and a similar expression for ĤBB
c .

Correspondingly we have again Ĝc
−1

= z− Ĥc = (Ĝdiag)−1− V̂AB which results, as before, in
a Dyson-like equation

Ĝc = Ĝdiag + Ĝdiag V̂AB Ĝc . (21)
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In the local basis Ĝdiag is block-diagonal and the non-zero elements Ĝdiag
AA and Ĝdiag

BB are obtained
by performing separate exact diagonalizations that include either A or B orbitals. In this basis
Eq. (21) can be solved by matrix inversion.

Ĝc = (I− Ĝdiag V̂AB)
−1 Ĝdiag (22)

with I the unit matrix and indices running over the K = 26 sites/orbitals of the plaquette (9
spd-orbitals on 2 TM atoms and 4 sp-orbitals on 2 oxygens). More explicitly

GAA

GAB

GBA

GBB

 =


1 0 −Gdiag

AA VAB 0

0 1 0 −Gdiag
AA VAB

−Gdiag
BB VBA 0 1 0

0 −Gdiag
BB VBA 0 1


−1 

Gdiag
AA

0

0

Gdiag
BB

 . (23)

Of course this multiple partition – within the lattice and within the cluster – makes the problem
numerically tractable. In this case the CPT prescriptions may be rephrased as follows: chose
a partitioning of the lattice Hamiltonian into a set of non-overlapping clusters connected by
inter-cluster hopping; make a further partition inside each cluster defining a suitable collection
of sites/orbitals; perform separate exact diagonalizations plus matrix inversion to calculate the
cluster Green function in the local basis by Eq. (23) and finally obtain the full lattice Green
function in the Bloch basis by Eq. (12).
This technique can be extended to more than two subsets of sites/orbitals, and, in fact, we have
applied it to a triple partition (subsets A, B and C) as we will show in more detail below. It has
the advantage to replace an unmanageable exact diagonalization with two (or more) separate
ones followed by a matrix inversion. It shares with CPT the assumption about the states of
the cluster interacting electrons φK(r1, r2.., rK) ∼ φA(r1, r2.., rA)φB(r1, r2.., rB)... This is a
drastic approximation whose validity must be verified performing calculations with different
partitions and/or finding explicit and justified rules for the adopted choice. These rules must be
based on clear and sound conjectures and will be inevitably system-dependent.

4.3 Multiple partition for TM oxides

We come now to the practical implementation appropriate for transition-metal oxides. TM ox-
ides of the 3d series differ drastically in d-band occupation; according to single-particle band
theory reported in Tab. 3 and Fig. 7, NiO and CoO have t2g-states fully occupied (nt2g ' 6 in
both cases) while the eg-states are responsible for the metallic behavior; on the contrary, in MnO
and FeO both t2g- and eg-states cross the Fermi level. Since only partially occupied shells are
affected by the e-e interaction this suggests different partitions for the two classes of TM oxides,
NiO, CoO on one side (with only eg-orbitals centered on the two TM atoms in the plaquette)
and FeO, MnO on the other site (with both t2g-eg-orbitals).
Once we have made this assumption we are also able to predict straightaway which TM oxide
will develop in CPT a Mott-Hubbard gap: in exact diagonalization, in fact, only systems at
half occupation exhibit a finite energy separation between hole and particle excitations and
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(a) 

(c) 

(b) 

Fig. 9: CPT results for NiO assuming the multiple partition indicated in (a) (see text). (b):
orbital resolved density of quasi-particle states compared with experimental results (open cir-
cles). Blue (red) line is for TM d (Oxygen sp) orbital contribution. (c): Quasi-particle band
dispersion (blue line) compared with the single-particle result (black asterisks).

we expect NiO and MnO (having 2 eg and 5 t2g-eg electrons respectively) to be well-defined
Mott insulators, while in FeO and CoO, where both t2g and eg are not half occupied, local e-
e repulsion is expected to induce a readjustment of spectral weight but not necessarily a well
defined gap. In the following we will describe how CPT can be implemented to capture gap
opening in MnO and NiO.
The multiple-partition–multiple-embedding procedure for NiO starts from a separation of Ni-d
orbitals into t2g and eg contributions. As already mentioned, in NiO only eg-states are partially
occupied and it is reasonable to expect them to be most affected by e-e interaction. We identify
the set of finite systems shown in Fig. 9(a), namely: i) a Ni dimer containing eg orbitals, ii) a
Ni dimer containing sp-orbitals, iii) a 4-atom plaquette with Ni t2g- and O sp-orbitals. Three
distinct exact diagonalizations are performed assuming for simplicity non-zero on-site repulsion
between Ni d-orbitals only. Three cluster Green functions are calculated within the Lehmann
representation: GAA, GBB, and GCC with A ≡ Ni eg, B ≡ Ni sp, and C ≡ O p Ni t2g. The total
Green function for the plaquette is obtained by putting them together. This is the first embedding
procedure and amounts to solving the matrix equation (23) extended to a triple-partition.
The second embedding procedure corresponds to going from the 2×2 plaquette to the extended
lattice and requires the kind of “periodization” described in Sec. 2, where we go from the cluster
Green function to the lattice Green function by solving again the Dyson-like equation involving
now inter-cluster interactions. In order to implement Eq. (12) one needs first of all to define
for each site ri′ in the plaquette the position of the nearest neighbors ri′′ and the corresponding
lattice vectors Rl′′ connecting the cluster with the neighboring ones. Then the matrix Biαjγ(kω)
is obtained as follows

Biαjγ(kω) =
∑
i′i′′l′′

ti′0αi′′l′′γ e
−ik·Rl′′ Gciαi′γ(ω) δi′′j . (24)
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(a) 

(c) 

(b) 

Fig. 10: CPT results for MnO. (a): multiple partition of orbitals in dimer and 2 × 2 plaquette
(see text). (b): orbital resolved density of quasi-particle states compared with the experimental
data (circles). Blue (red) line is for TM d (Oxygen sp) orbital contribution. (c): quasi-particle
band dispersion (blue line) compared with the single-particle result (black asterisks).

Here ti′0αi′′l′′γ are the inter-site hopping terms previously defined (Eq. (2)) obtained in terms of
Koster-Slater parameters in the usual way.
The on-site e-e interaction involving Ni d-orbitals has the effect of opening a gap between t2g-
states as expected and to turn the NiO into a wide-gap insulator. The Hubbard U is used here as
a tunable parameter to reproduce the experimental gap but its value (U = 11 eV) is within the
current estimates. We notice that, in spite of the drastic approximations, the agreement between
theory and experiment is quite good, not only for the correct gap that is somewhat fixed by the
value of the e-e repulsion, but also for the orbital character of the valence-band edge, largely
involving O 2p-states as known from experiments.
Let us consider now MnO where, according to the previous discussion, we include in the small-
est elementary unit (the dimer) all d electrons (Fig. 10(a)). Then also in this case we will be
dealing with an exact diagonalization at half occupation. The dimension of the Hilbert space
spanned by the Slater determinants is here nconf = ( K!

P !(K−P )!)
)2 = 63 504, so large to require

the band-Lanczos algorithm to obtain ∼ 1000 eigenvalues and eigenvectors EN±1
n , ΦN±1n for

the system with N ± 1 electrons as well as the ground state EN
n , ΦN0 for the N electron system.

Also in this case the dimer problem accounts for both hopping and e-e repulsion on the d-orbitals
of the TM atoms and therefore includes a large part of the relevant physics of the interacting
system. In particular, since also in this case the system is half occupied, we expect the ground
state EN+1

0 to be larger than EN−1
0 with an energy distance growing with U . This is essential in

view of a gap opening in the extended system.
We then proceed as before to embed first the dimer into the plaquette and finally the plaquette
into the extended lattice. Results are shown in Fig. 10. In this case the e-e repulsion is respon-
sible for a complete removal of all Mn d-states around the Fermi level as required for the gap
opening.
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Figure 10(b) shows a comparison between the quasi-particle density of states and the experi-
mental results of Ref. [20]. We observe that the gap value is well reproduced as well as most
of the spectroscopic structures. We do not find evidence of structures below the valence-band
bottom that are observed in photoemission experiments; this might be due to the reduced num-
ber of excited states that are obtained by the Lanczos procedure. We mention however that the
origin of satellite features in MnO has been somewhat controversial in the literature attributing
them either to intrinsic [20] or extrinsic effects [21]. Apart from the satellite structure our results
are comparable with what has been obtained by variational cluster approximation [12] in spite
of a different choice of the cluster, and by a recent DMFT calculations [22]. Since these two
approaches are either variationally optimized or self-consistent, we may identify in the present
CPT scheme the advantage of giving comparable results by a single-shot calculation thanks, we
believe, to our cluster choice.

5 Concluding remarks

In this lecture we have reviewed a possible strategy, based on a multi-orbital extension of the
CPT approach, to include on-site e-e interactions in real materials and we have discussed its
application to the paradigmatic case of transition-metal oxides. The CPT strategy is applied
twice, first to identify a partition of the lattice into non overlapping clusters and secondly to
calculate the cluster Green function in terms of two or more local ones. This procedure has the
advantage of replacing an unmanageable exact diagonalization by two or more separate ones
followed by a matrix inversion. This strategy may be adopted whenever dealing with exceed-
ingly large dimensions of the configuration space, for instance in treating correlated electrons
in low-dimensional systems such as surfaces and interfaces, where the translation invariance
is reduced and the unit cell contains many atoms. Of course there are drastic approximations
involved: in the same way as in the standard single-orbital CPT, writing the lattice Green func-
tion in terms of Green functions of decoupled subunits amounts to identifying the many-electron
states of the extended lattice as the product of cluster few-electron states. In the present case
in particular, choosing the TM dimer as the basic unit we have excluded from the few-electron
eigenstates obtained by exact diagonalization the contribution of oxygen sp-orbitals, treating
the O sp – TM d hybridization by the embedding procedure. The non-interacting part of the
lattice Hamiltonian is described in terms tight-binding parameters deduced by a least-squares
fitting of an ab-initio single-particle band structure, including all the relevant orbitals. To our
purposes, since we do not need any real-space expression of the single-particle wavefunctions,
this tight-binding parametrization is fully equivalent to a representation in terms of maximally
localized Wannier functions. We have applied this method to NiO and MnO as test cases and,
using a single value of the HubbardU , we have found a reasonable agreement with experimental
data and with theoretical results obtained by different methods.
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