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7.2 Eva Pavarini

1 Introduction

The term orbital ordering (OO) indicates the emergence of a broken symmetry state in which
localized occupied orbitals form a regular pattern, in a similar way as spins do in magnetically
ordered structures. Orbital ordering phenomena typically occur in Mott insulators with orbital
degrees of freedom; for transition-metal compounds, the main focus of this lecture, the latter
stem from the partially filled d shells of the transition metal. The perhaps most representative
case is the perovskites KCuF3, shown in Fig. 1. In first approximation KCuF3 is cubic (Oh

point group) with Cu2+ at the center of a regular octahedron of F− ions (anions), enclosed in
a cage of K+ (cations). Due to Oh symmetry at the Cu site, the d manifold, 5-fold degenerate
for free Cu2+, splits into a t2g triplet (xz, yz, xy), lower in energy, and a eg doublet (x2 − y2

and 3z2 − r2); the electronic configuration of the Cu2+ ion is thus t62ge
3
g (one hole). The t2g

states are completely filled and do not play any active role in OO; instead, electrons in the e3g
configuration have orbital degeneracy d = 2. Making an analogy with spin degrees of freedom,
they behave as an effective τ = 1/2 pseudospin; in this view, one of the two eg states, say
|x2 − y2〉, plays the role of the pseudospin up, | ↗ 〉, and the other one, |3z2 − r2〉, of the
pseudospin down, | ↘ 〉. The two pseudospin states are degenerate and, by symmetry, one
could expect them to be equally occupied. In reality the symmetry is broken and KCuF3 is
orbitally ordered with the orbital structure shown in Fig. 1; depicted are the empty (hole) eg
states at each Cu site. Furthermore, the system exhibits a co-operative Jahn-Teller distortion,
also shown in Fig. 1, with long and short Cu-F bonds alternating in the ab plane. Indeed, the two
phenomena – electronic orbital ordering and structural Jahn-Teller distortion – are concurrent;
it is therefore difficult to say which one is the cause and which one is, instead, the effect. The
second paradigmatic system showing OO is LaMnO3 (ion Mn3+, configuration 3d4), the mother
compound of colossal magnetoresistance manganites, also a perovskite. Due to the Hund’s rule
coupling J , the actual electronic configuration of Mn3+ is t32ge

1
g. The half-filled t32g state has

no orbital degeneracy; the only orbital degrees of freedom are, as for KCuF3, those associated
with eg electrons. Again, the system is orbitally ordered and orbital ordering goes hand in hand
with the co-operative Jahn-Teller distortion. Among t2g systems, i.e., materials with partially
filled t2g shells, classical examples of orbitally-ordered crystals are the perovskites LaTiO3 and
YTiO3 (configuration t12g), LaVO3 and YVO3 (t22g), and Ca2RuO4 (t42g); in these cases the t2g
electrons behave as a orbital pseudospin τ = 1. Although this is not a prerequisite for orbital
ordering, as we have seen, many orbitally-ordered materials are perovskites; for this reason in
the present lecture we will use the perovskite structure as representative.

The origin of orbital ordering has been investigated for decades. One of the problems in clari-
fying its nature is that, while magnetic order can be directly probed, e.g., via neutron scattering
experiments, orbital ordering is typically only indirectly observed. Indeed, its principal hall-
mark is the presence of the co-operative Jahn-Teller distortion itself. Identifying the origin of
orbital ordering is thus intimately related to finding the cause of the co-operative Jahn-Teller
distortion. In this lecture I will illustrate the two main mechanisms [1, 2] which have been pro-
posed as possible explanation for OO phenomena, the classical Jahn-Teller effect [1], perhaps
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Fig. 1: Crystal structure, distortions, and orbital order in KCuF3. Cu is at the center of F
octahedra enclosed in a K cage. The conventional cell is tetragonal with axes a, b, c. The
pseudocubic axes x, y, z pointing towards neighboring Cu are shown in the corner. Short (s)
and long (l) CuF bonds alternate between x and y along all pseudocubic axes (co-operative
Jahn-Teller distortion). The distortions are measured by δ = (l− s)/(l+ s)/2 and γ = c/a

√
2.

R is the experimental structure (γ = 0.95, δ = 4.4%), Rδ (γ = 0.95) and Iδ (γ = 1) two
ideal structures with reduced distortions. In the I0 structure the cubic crystal-field at the Cu
site splits the 3d manifold into a t2g triplet and a eg doublet. In the R structure, site symmetry is
lowered further by the tetragonal compression (γ < 1) and the Jahn-Teller distortion (δ 6= 0).
The figure shows the highest-energy d orbital. From Ref. [3].

enhanced by Coulomb repulsion [4], and Kugel-Khomskii superexchange [2]. Kanamori well
illustrated the first mechanism in an influential work [1] in 1960; the main idea is that electron-
phonon coupling yields a static Jahn-Teller distortion, which lowers the symmetry of the system
and produces a crystal-field splitting. As a consequence, electrons preferably occupy the lower
energy states, giving rise to a periodic pattern of occupied orbitals. This is self-evident in the
limit in which the crystal-field splitting is very large, let us say, larger than the bandwidth;
the lower-energy states at each site will be clearly the first ones to be occupied. If, however,
the bandwidth is large in comparison with the crystal-field splitting, the hopping integrals can
strongly reduce such a tendency to orbital ordering. A natural question thus arises at this point.
How large should the crystal-field splitting be to give rise to a orbitally-ordered state? To answer
this question we have to remind ourselves that transition-metal systems with partially filled d
shells are also typical examples of strongly-correlated materials. Their low-energy properties
are believed to be well described by a generalized multi-band Hubbard model

Ĥ = Ĥ0 + ĤU ,
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the sum over a one-electron term Ĥ0 describing the transition-metal d bands and a Coulomb
electron-electron repulsion term ĤU . The one-electron term is

Ĥ0 = −
∑
ii′

∑
σ

∑
mm′

ti,i
′

mm′ c
†
imσcim′σ ,

where c†imσ creates an electron at site i with spin σ and orbital quantum number m, and the
parameter ti,i

′

mm′ are the hopping integrals (i 6= i′) or the crystal-field splittings (i = i′). The
Coulomb repulsion can be written as

ĤU =
1

2

∑
i

∑
σσ′

∑
mαm

′
α

∑
mβm

′
β

Umαmβm′
αm

′
β
c†imασc

†
imβσ

′cim′
βσ

′cim′
ασ
.

The elements the Coulomb interaction tensor, Umαmβm′
αm

′
β
, can be expressed in terms of the

Slater integrals1 labeled as F0, F2 and F4. Here we will restrict the discussion to the eg or t2g
manifolds only. In this case, in the basis of real harmonics, the Hubbard model takes the form

Ĥ=−
∑
ii′

∑
σ

∑
mm′

ti,i
′

mm′ c
†
imσcim′σ + U

∑
i

∑
m

n̂im↑n̂im↓

+
1

2

∑
i

∑
σσ′

∑
m6=m′

(U − 2J − Jδσ,σ′) n̂imσn̂im′σ′

−J
∑
i

∑
m6=m′

[
c†im↑c

†
im↓cim′↑cim′↓ + c†im↑cim↓c

†
im′↓cim′↑

]
, (1)

where m,m′ are here either t2g or eg states, Umm′mm′ = Um,m′ = U − 2J(1 − δm,m′) and, for
m 6= m′, Umm′m′m = Jm,m′ = J . The last two terms describe the pair-hopping and spin-flip
processes (Ummm′m′ = Jm,m′ if we use a basis of real harmonics, while for spherical harmonics
Ummm′m′ = 0). Finally, U = U0 and J = J1 (t2g electrons) or J = J2 (eg electrons), with

U0 =F0 +
8

5
Javg

Javg =
5

7

1

14
(F2 + F4)

J1 =
3

49
F2 +

20

9

1

49
F4

J2 =− 2Javg + 3J1 .

In strongly correlated systems described by a Hamiltonian of type (1) it turns out that a small
crystal-field splitting, a fraction of the bandwidth, is sufficient to produce orbital order even at
high temperature. This happens because the Coulomb repulsion effectively enhances it, while
suppressing orbital fluctuations [4]. Hence, the mechanism illustrated by Kanamori becomes
very efficient in the presence of strong correlations (small t/U limit, the typical limit for Mott
insulators; here t is an average hopping integral). This is, however, not the end of the story:

1For a pedagogical introduction see, e.g, Ref. [5], or the lecture of Robert Eder in the present book.
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Fig. 2: The unit cell of a cubic perovskite ABC3 and its symmetry axes; the lattice con-
stant is a. The transition metal B (red) is at (0, 0, 0); the ligands C (green) are located
at (±a/2, 0, 0), (0,±a/2, 0),(0, 0,±a/2) and form an octahedron; the cations A are located
at (±a/2,±a/2,±a/2), (±a/2,∓a/2,±a/2), (∓a/2,±a/2,±a/2), (±a/2,±a/2,∓a/2) and
form a cube. The bottom figures illustrate the rotational symmetries of the cell.

Coulomb electron-electron interaction provides, in addition, an alternative explanation of the
origin of orbital ordering. In a seminal work, Kugel and Khomskii [2] have shown in 1973 that,
in the presence of orbital degeneracy, many-body effects can produce orbital ordering even in
the absence of a static distortion, i.e., of a crystal-field splitting. This happens via electronic
spin-orbital superexchange, the effective low-energy interaction which emerges, in the small
t/U limit, from the orbitally-degenerate Hubbard model. In this picture, the co-operative Jahn-
Teller distortion is rather the consequence than the cause of orbital order. The predictions of the
two theories for what concerns, e.g., the final broken-symmetry structure, are basically identi-
cal; thus it is very hard to determine which of the two mechanisms, Jahn-Teller effect or Kugel-
Khomskii superexchange, dominates in real systems. In the last part of the lecture we will see
how the problem was recently solved [3, 6] by using a new theoretical approach based on the
local-density-approximation + dynamical mean-field theory (LDA+DMFT) [7, 8] method. For
the representative materials KCuF3 and LaMnO3, it was shown that Kugel-Khomskii superex-
change alone, although strong, cannot explain the presence of the Jahn-Teller distortion above
350 K (KCuF3) [3] and 650 K (LaMnO3) [6]; experimentally, however, the distortion persists
in both systems basically up to the melting temperature. This leads to the conclusion that a
mechanism directly generating a static crystal-field splitting, such as the standard Jahn-Teller
effect, is necessary to explain the experimental findings.
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2 Cubic crystal-field splitting

Let us consider a system with the ideal cubic perovskite structure ABC3, shown in Fig. 2, where
B is the transition metal with partially filled d shell. The site symmetry at a B site is cubic; as we
mentioned before, d states split into eg and t2g at a site with cubic symmetry. Let us understand
how exactly this happens. For a free ion, the potential vR(r) which determines the one-electron
energies is rotationally invariant, i.e., it has symmetry O(3). This means that all one-electron
states within a given l shell are degenerate, as it happens in the case of hydrogen-like atoms.
When the same ion is inside a molecule or a solid, vR(r) has in general lower symmetry, the
symmetry corresponding to a finite point group.2 Thus one-electron states within a given shell l,
degenerate for the free atom, can split. The symmetry reduction arises from the crystal field; the
latter has two components, the Coulomb potential generated by the surrounding charged ions,
dominant in ionic crystals, and the ligand field due to the bonding neighbors. In this section
we will analyze the first contribution; the covalent contribution to the crystal-field splitting is
discussed in the next section. Both effects give rise to a similar splitting of levels, and which
contribution dominates depends on the system.
Let us thus assume that the crystal is perfectly ionic and that the ions can be treated as point
charges qα (point-charge model). Then, the one-electron potential can be written as

vR(r) =
∑
α

qα
|Rα − r|

= v0(r) +
∑
α6=0

qα
|Rα − r|

= v0(r) + vc(r), (2)

where Rα are the positions of the ions and qα their charges. The term v0(r) is the ionic central
potential at site R0, and has spherical symmetry. The term vc(r) is the electric field generated
at a given siteR0 by all the surrounding ions in the crystal and it is called crystal-field potential.
For the perovskite structure ABC3 we are interested in the crystal-field potential at the site
of the transition metal, B. Let us first assume that only the contribution of nearest neighbors
(the negative C ions, typically oxygens or fluorines) is relevant. The six C ions are located
at positions (±dC , 0, 0), (0,±dC , 0), (0, 0,±dC) and have all the same charge qC , while the B
ion is at (0, 0, 0); in terms of a, the cubic lattice constant, dC = a/2. Then we can write the
potential around ion B as

vR(r) =
qB
r

+
qC
dC

[
∆v

(
x

dC
;
r

dC

)
+∆v

(
y

dC
;
r

dC

)
+∆v

(
z

dC
;
r

dC

)]
where

∆v(ξ; ρ) =
1√

1 + ρ2

 1√
1 + 2ξ

1+ρ2

+
1√

1− 2ξ
1+ρ2

 .
Via the Taylor expansion

1√
1 + η

∼ 1− 1

2
η +

3

8
η2 − 5

16
η3 +

35

128
η4 + . . .

2For a concise introduction to group theory see, e.g., Ref. [9], chapter 6.
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we can find the approximate expression of ∆v(ξ; ρ) for small ξ, i.e., close to ion B; the first
contribution with less than spherical symmetry is

voct(r) =
35

4

qC
d5

(
x4 + y4 + z4 − 3

5
r4
)

= D

(
x4 + y4 + z4 − 3

5
r4
)
.

We can rewrite this potential as

voct(r) =
7
√
π

3

qC
d5
r4

[
Y 4
0 (θ, φ) +

√
5

14

(
Y 4
4 (θ, φ) + Y 4

−4(θ, φ)
)]
, (3)

where

Y 4
0 (θ, φ) =

3

16

1√
π

(
35 cos4 θ − 30 cos2 θ + 3

)
=

3

16

1√
π

35z4 − 30z2r2 − 3r4

r4
,

Y 4
±4(θ, φ) =

3

16

√
35

2π
sin4 θe±4iφ =

3

16

√
35

2π

(x± iy)4

r4
.

To obtain the crystal field due to the cubic cage of cations A (with charge qA), shown in Fig. 2
we repeat the same calculation; the main difference is that there are eight A ions, located at po-
sitions of type (±dA,±dA,±dA),(∓dA,±dA,±dA), (±dA,∓dA,±dA), (±dA,±dA,∓dA) with
dA = a/2. By following the same procedure that we used for B octahedron, one can show that

vcube(r) = −8

9

qA
qC

(
dA
dC

)5

voct(r),

i.e., vcube(r) has the same form as voct(r); this happens because a cube and an octahedron are
dual polyhedra3 and have therefore the same symmetry properties. If qA/qC > 0, vcube(r) has
opposite sign than voct(r); in the case of a perovskite, however, A positions are occupied by
cations, i.e., positive ions; thus the crystal field due to the A cage has the same sign of the crystal
field generated by the B octahedron.
The crystal-field potential vc(r) lowers the site symmetry and can therefore split the (2l+1)-fold
degeneracy of the atomic levels. To calculate how the l manifold splits, we use two approaches.
The first is exact and based on group theory. We assume for simplicity that the symmetry is only
O (group of the proper rotations which leave a cube invariant); using the full symmetry group
of the cube, Oh = O ⊗ Ci (where Ci is the group made by the identity and the inversion) does
not change the result, because the spherical harmonics are all either even or odd. The character
table of group O is given by

partner functions O E 8C3 3C2 6C ′2 6C4

(x2 + y2 + z2) A1 1 1 1 1 1

A2 1 1 1 −1 −1

(x2 − y2, 3z2 − r2) E 2 −1 2 0 0

(Rx, Ry, Rz) (x, y, z) T1 3 0 −1 −1 1

(xy, xz, yz) T2 3 0 −1 1 −1

(4)

3Every polyhedron has a dual which can be obtained by exchanging the location of faces and vertices.
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Let us explain this table. The first line yields the group, here O, and the symmetry operations
of the group, collected in classes Ck, here {E}, {C3}, {C2}, {C ′2}, {C4}. For each class only a
representative element is given and the number Nk in front of this element yields the number
of operations in the class; for example 8C3 indicates 8 symmetry operations in class {C3}. The
symmetry operation Cn is an anticlockwise rotation of an angle α = 2π/n. For a finite group
with h elements, the h group operations {O(g)} can be expressed as h matrices {Γ (g)} acting
on an invariant linear space; the basis of this space, {|m〉}, can be, for example, a finite set of
linearly independent functions, such as the spherical harmonics with angular quantum number
l. The collection of matrices {Γ (g)} is a representation of the group; the dimension of the
invariant linear space yields also the dimension of the matrices, i.e., the dimensionality of the
representation. Each group has infinitely many possible representations, but some sets are spe-
cial and play the role of an orthonormal basis in a space of vectors; they are called irreducible.
If G is the group of operations which leave the Hamiltonian invariant, the irreducible represen-
tations of G can be used to classify all eigenstates of the Hamiltonian; eigenstates which build a
basis for different irreducible representations are mutually orthogonal and have typically (leav-
ing the cases of accidental degeneracy and hidden symmetry aside) different energies. The
irreducible representations Γi of group O are listed in the first column of Table 4, below the
group name; they are A1 (trivial representation, made of 1-dimensional identity matrices), A2,
also 1-dimensional, E, two-dimensional, and T1 and T2, both three-dimensional. The numbers
appearing in Table 4 are the characters χi(g), defined as

χi(g) = Tr Γi(g) =
∑
m

〈m|Γi(g)|m〉 =
∑
m

Γmm
i (g) .

For a given representation (corresponding to a line of Table 4) the character for a specific ele-
ment can be found below the corresponding class label (columns of Table 4); all elements in the
same class have the same character. Thus the second column of the character table, showing the
character of the identity, yields also the dimensionality di of the representation itself. Next we
calculate the characters of the matrix representation Γ l constructed using spherical harmonics
with angular quantum number l as a basis. An easy way to do this is to assume that the rotation
axis is also the axis of quantization, i.e., ẑ; the characters do not depend on the actual direction
of the quantization axis but only on the angle α of rotation. Thus for O(g) = Cα we have

Cα Y
l
m(θ, φ) =Y l

m(θ, φ− α) = e−imα Y l
m(θ, φ)

Γ l
mm′(Cα) =δmm′e−imα.

This yields the following expression for the character

χl(Cα) =
l∑

m=−l

e−imα =
sin(l + 1

2
)α

sin α
2

.
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The characters for representations Γ l are therefore

O E 8C3 3C2 6C2 6C4

Γ 0 = Γ s 1 1 1 1 1

Γ 1 = Γ p 3 0 −1 −1 1

Γ 2 = Γ d 5 −1 1 1 −1

Γ 3 = Γ f 7 1 −1 −1 −1

In spherical symmetry (group O(3)) representations Γ l are irreducible. In cubic symmetry
(group O), instead, the Γ l can be reducible, i.e., they can be written as the tensorial sum ⊕
of irreducible representations of the group O. The various components can be found by using
the orthogonality properties of irreducible representations, which lead to the decomposition
formula

Γ l =
⊕
i

aiΓi with ai = 〈Γi|Γ l〉 =
1

h

∑
g

[χi(g)]∗χl(g) , (5)

where h, the number of elements in the group, is 24 for group O. Hereafter the symmetry
representations of electronic states are written in lower case to distinguish them from capital
letters which we will use later for labeling vibrational modes. We find

Γ s = a1

Γ p = t1

Γ d = e⊕ t2
Γ f = a2 ⊕ t1 ⊕ t2 .

Thus, in cubic symmetry, the s- and the p-functions do not split, because the a1 irreducible rep-
resentation is one-dimensional and the t1 irreducible representation is 3-dimensional. Instead,
d-functions split into a doublet and a triplet, and f -functions into a singlet and two triplets.
To determine which functions {|m〉i} form a basis (a so-called set of partner functions) for a
specific irreducible representation Γi we can, e.g., use the projector for that representation

P̂i =
di
h

∑
g

[χi(g)]∗O(g). (6)

In our case, we can read directly the partner functions {|m〉i} for a given irreducible represen-
tation of the group O in the first column of Table 4, on the left. In short, for representation e
partner functions are (x2−y2, 3z2−r2) and for representation t2 they are (xy, xz, yz). A small
step is still missing: As we already mentioned, the full symmetry of the B site is Oh, and the
groupOh can be obtained as direct product,Oh = O⊗Ci; with respect toO, groupOh has twice
the number of elements and classes, and thus twice the number of irreducible representations.
The latter split into even (a1g, a2g, eg, t1g, t2g) and odd (a1u, a2u, eu, t1u, t2u). All d-functions are
even, and therefore x2−y2 and 3z2− r2 are partners functions for the eg irreducible representa-
tion, while xy, xz, yz are partner functions for the t2g irreducible representation. Summarizing,
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t2g states (xy, xz, and yz) and eg states (x2− y2 and 3z2− r2) have in general (again excluding
the cases of accidental degeneracy and hidden symmetry) different energy.
Group theory tells us if the degenerate 2l + 1 levels split at a given site in a lattice, but not of
how much they do split, and which orbitals are higher in energy. We can, however, calculate
the crystal-field splitting approximately using the potential (3) as a perturbation. This is the
second approach previously mentioned; differently from group theory, it is not exact, but it
gives us an estimate of the size of the effect and the sign of the splitting. For d states we
can calculate the elements of the octahedral potential voct(r) in the basis of atomic functions
ψnlm(ρ, θ, φ) = Rnl(ρ)Y m

l (θ, φ), where Rnl(ρ) is the radial part, ρ = Zr, Z is the atomic
number, Y m

l (θ, φ) a spherical harmonic, and n the principal quantum number (Appendix B).
We obtain

〈ψn20 |v̂oct|ψn20 〉 = +6Dq 〈ψn2±1|v̂oct|ψn2±1〉 = −4Dq

〈ψn2±2|v̂oct|ψn2±2〉 = + Dq 〈ψn2±2|v̂oct|ψn2∓2〉 = +5Dq

where Dq = qC〈r4〉/6d5C and 〈rk〉 =
∫
r2dr rk R2

n2(Zr). The crystal-field splitting between eg
and t2g-states can be then obtained by diagonalizing the crystal-field matrix

HCF =


Dq 0 0 0 5Dq

0 −4Dq 0 0 0

0 0 6Dq 0 0

0 0 0 −4Dq 0

5Dq 0 0 0 Dq

 .

We find two degenerate eg eigenvectors with energy 6Dq

|ψn20〉 = |3z2 − r2〉,
1√
2

[|ψn22〉+ |ψn2−2〉] = |x2 − y2〉,

and three degenerate t2g eigenvectors with energy −4Dq

i√
2

[|ψn22〉 − |ψn2−2〉] = |xy〉,

1√
2

[|ψn21〉 − |ψn2−1〉] = |xz〉,

i√
2

[|ψn21〉+ |ψn2−1〉] = |yz〉.

The total splitting is
∆CF = Eeg − Et2g = 10Dq.

Thus the eg-states are actually higher in energy than the t2g-states. This happens because eg
electrons point towards the negative C ions (see Fig. 3), and will therefore feel a larger Coulomb
repulsion than t2g electrons, which have the lobes directed between the negative C ions.
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Fig. 3: The Cu eg and t2g Wannier orbitals for the cubic perovskite KCuF3, obtained from first
principles calculations, using a Wannier basis that spans all bands.

How general is, however, this result? We obtained it via a truncated Taylor expansion of the
potential close to the nucleus. Does this mean that we have perhaps neglected important higher-
order terms? For a generic lattice, we can expand the crystal-field potential (2) in spherical
harmonics using the exact formula

1

|r1 − r2|
=
∞∑
k=0

rk<
rk+1
>

4π

2k + 1

k∑
q=−k

Y k
q (θ2, φ2)Y

k

q (θ1, φ1),

where r< ( r>) is the smaller (larger) of r1 and r2. The crystal-field potential takes the form

vc(r) =
∞∑
k=0

k∑
q=−k

Bk
qY

k
q , (7)

where Bk
q = (−1)qB̄k

−q. Although the series in (7) is in principle infinite, one can terminate it
by specifying the wavefunctions, since

〈Y l
m|Y k

q |Y l
m′〉 = 0 if k > 2l.

For example, for p electrons k ≤ 2, for d-electrons, k ≤ 4, and f electrons k ≤ 6. Thus, for
d-electrons andOh symmetry, the terms that appear in the potential (3) are actually also the only
ones to be taken into account, because all other terms yield an expectation value equal to zero.
Finally, the derivation of both equations (3) and (7) presented here might let us think that the
first-nearest neighbors are those that determine the crystal field. This is, however, not always
the case, because Coulomb repulsion is a long-range interaction; for example, in some systems
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Fig. 4: Independent Slater-Koster two-center integrals for s, p, and d atomic orbitals (Appendix
B). The label σ indicates that the bonding state is symmetrical with respect to rotations about
the bond axis; the label π that the bond axis lies in a nodal plane; the label δ that the bond axis
lies in two nodal planes.

the first-nearest neighbors yield cubic symmetry at a given site but further neighbors lower the
symmetry.4 Furthermore, the point-charge model discussed in this section is useful to explain
the relation between crystal field and site symmetry, however yields unsatisfactory results for
the crystal-field splitting in real materials. Corrections beyond the point-charge approximation
turn out to be important. In addition, as we will see in the next section, in many systems
the crystal field has a large, sometimes dominant, covalent contribution, the ligand field. The
modern approach to calculate crystal-field splittings including the ligand-field contribution is
based on material-specific potentials obtained ab-initio via density-functional-theory (DFT) and
the associated DFT localized Wannier functions. Nevertheless, it is worth to point out the
remarkable success of the point-charge model in giving qualitatively correct d crystal-field states
in cubic perovskites; such a success relies on the fact that this approach, even if approximate,
yields the exact symmetry of final states, i.e., the same obtained via group theory, and does not
neglect any relevant (e.g., high-order) term.

4This means that, of course, Oh is not the actual symmetry of the site.
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Fig. 5: Illustration of the decomposition of a general s-p two-center integral in terms of Vspσ.

3 Tight-binding eg and t2g bands of cubic perovskites

In this section we will construct the bands of KCuF3 in the cubic limit using tight-binding
theory. Let us first remind ourselves of the crucial steps of this approach. The one-electron
Hamiltonian can be written as

ĥe(r) = −1

2
∇2 +

∑
iα

v(r − Ti −Rα) = −1

2
∇2 + vR(r),

whereRα are the positions of the basis {α} atoms in the unit cell and Ti the lattice vectors. We
take as a basis atomic orbitals with quantum numbers lm (we drop here the principal quantum
number for convenience). For each atomic orbital we construct a Bloch state

ψαlm(k, r) =
1√
N

∑
i

eiTi·k ψlm(r − Ti −Rα), (8)

where N is the number of lattice sites. In the Bloch basis (8), the Hamiltonian and the overlap
matrix are given by

Hα,α′

lm,l′m′(k) = 〈ψαlm(k)|ĥe|ψα
′

l′m′(k)〉,

Oα,α′

lm,l′m′(k) = 〈ψαlm(k)|ψα′

l′m′(k)〉.

These matrices define a generalized eigenvalue problem, the solution of which yields the band
structure. The Hamiltonian matrix is given by

Hα,α′

lm,l′m′(k) = ε0l′α′ O
α,α′

lm,l′m′(k) +∆εαlm,l′m′ δα,α′ − 1

N

∑
iα6=i′α′

ei(Ti′−Ti)·k tiα,i
′α′

lm,l′m′ .

Here ε0lα are the atomic levels, and ∆εαlm,l′m′ the crystal-field matrix elements

∆εαlm,l′m′ =

∫
dr ψlm(r −Rα)

[
vR(r)− v(r −Rα)

]
ψl′m′(r −Rα) , (9)
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Fig. 6: Unit cell of idealized cubic KCuF3 with cubic axes in the left corner.

which are two-center integrals. Finally,

tiα,i
′α′

lm,l′m′ = −
∫
dr ψlm(r −Rα − Ti)

[
vR(r)− v(r −Rα′ − Ti′)

]
ψl′m′(r −Rα′ − Ti′). (10)

The hopping integrals (10) contain two- and three-center terms; if the basis is sufficiently local-
ized we can, however, neglect the three-center contributions and assume tiα,i

′α′

lm,l′m′ ∼ −V iα,i′α′

lm,l′m′ ,

where

V iα,i′α′

lm,l′m′ =

∫
dr ψlm(r −Rα − Ti)v(r −Rα − Ti)ψl′m′(r −Rα′ − Ti′)

is a Slater-Koster two-center integral (Appendix B). A generic Slater-Koster two-center integral
can be expressed as a function of a few independent two-center integrals, shown in Fig. 4 for
s, p, and d-functions. Apart from the σ bond, which is the strongest, other bonds are possible;
the π bonds are made of orbitals which share a nodal plane to which the bond axis belongs,
and the δ bond, for which two nodal planes intersect in the bond axis connecting the two ions.
Fig. 5 shows how to obtain a generic two-center integral involving p and s orbitals.5 Let us
now consider the case of the eg and t2g bands of KCuF3; here we assume for simplicity that the
system is an ideal cubic perovskite, shown in Fig. 6. The primitive cell contains one formula
unit (a single K cube in Fig. 1). The cubic axes are x, y, z, and the lattice constant is a. A Cu
atom at siteRi is surrounded by two apical F atoms, F3 atRi +

1
2
z and F6 atRi− 1

2
z, and four

planar F atoms, F1 and F4 atRi± 1
2
x and F2 and F5 atRi± 1

2
y. In Fig. 7 one can see the effects

of the cubic approximation on the eg bands: the crystal-field splitting of the eg states is zero, the
band width slightly reduced, gaps disappear, and the dispersion relations is sizably modified.
The cubic band structure in Fig. 7 was obtained with a unit cell containing two formula units, in
order to compare it with the band structure of the experimental (Jahn-Teller distorted) structure
of KCuF3; hence we see four (instead of two) eg bands. The band-structure of cubic KCuF3 for

5More details on the tight-binding approach can be found either in Ref. [9] or in the lecture of Matthew Foulkes.



Orbital Ordering 7.15

Fig. 7: LDA eg (blue) and t2g(red) band structure of KCuF3 for the experimental structure (R)
and ideal structures with progressively reduced distortions (see Fig. 1). I0: simple cubic. The
unit cell used in this calculation contains two formula units. The figure is from Ref. [3].

a cell with one formula unit is shown in Fig. 8; in the following we will refer for comparison to
that figure only. Let us take as tight-binding basis the atomic 3d eg orbitals for Cu and the 2p

orbitals for F; we neglect for convenience the overlap integrals (i.e., we assume that our atomic
functions are, approximately, localized Wannier functions). For such a tight-binding basis the
only relevant Slater-Koster parameter is Vpdσ. The |3z2 − r2〉i and |x2 − y2〉i states of the Cu at
Ri can couple via Vpdσ to |zc〉i, the pz orbitals of F3 and F6, to |xa〉i, the px orbitals of F1 and F4

and to |yb〉i, the py orbitals of F2 and F5. From the basis |α〉i of localized atomic functions we
construct the Bloch states |kα〉 = 1√

N

∑
i e
ik·Ri|α〉i, and obtain the tight-binding Hamiltonian

HTB
eg |k zc〉 |k xa〉 |k yb〉 |k 3z2 − r2〉 |k x2 − y2〉

|k zc〉 εp 0 0 −2Vpdσsz 0

|k xa〉 0 εp 0 Vpdσsx −
√

3Vpdσsx
|k yb〉 0 0 εp Vpdσsy

√
3Vpdσsy

|k 3z2 − r2〉 −2Vpdσsz Vpdσsx Vpdσsy εd 0

|k x2 − y2〉 0 −
√

3Vpdσsx
√

3Vpdσsy 0 εd

(11)

where sα = ie−ikαa/2 sin kαa/2, α = x, y, z, εp < εd = εp + ∆pd, and Vpdσ < 0. If |Vpdσ|/∆pd

is small, the occupied bands are F p-like, while the partially filled bands Cu eg-like. We now
calculate the bands along high-symmetry lines.6 Along Γ-Z, the eigenvalues εi (εi ≤ εi+1) of

6Special points: Γ = (0, 0, 0), Z= (0, 0, π/a), X= (π/a, 0, 0), M= (π/a, π/a, 0), R= (π/a, π/a, π/a).
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Fig. 8: LDA band structure of cubic KCuF3. The t2g bands are in red and the eg bands in blue.

HTB
eg are

ε2 = εp
ε3 = εp
ε4 = εd

ε1,5 = εp + 1
2
∆pd ± 1

2

√
∆2
pd + 16V 2

pdσ|sz|2

where ε1 (sign−) is bonding and F z-like, while ε5 (sign +) anti-bonding and Cu 3z2− r2-like.
Along Γ-X, we have instead the dispersion relations

ε2 = εp
ε3 = εp
ε4 = εd

ε1,5 = εp + 1
2
∆pd ± 1

2

√
∆2
pd + 16V 2

pdσ|sx|2

where ε1 is bonding and F x-like, while ε5 anti-bonding and Cu x2 − y2-like. To obtain the
eg-like bands, instead of diagonalizing HTB

eg as we have done above, we can also use the down-
folding procedure, which, for non-interacting electrons, can be carried out exactly. This method
works as follows. We divide the orbitals in passive (F p) and active (Cu d), and write the
eigenvalues equation as[

Hpp Hpd

Hdp Hdd

][
|k p〉
|k d〉

]
= ε

[
Ipp 0

0 Idd

][
|k p〉
|k d〉

]
,

where Hpp (Ipp) is the Hamiltonian (identity matrix) in the p-electron space (3 × 3), and Hdd

(Idd) the Hamiltonian (identity matrix) in the d-electron space (2× 2). By downfolding to the d
sector we obtain the energy-dependent operator Hε

dd, which acts in the d space only

Hε
dd = Hdd −Hdp(Hpp − εIpp)−1Hpd,
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and a correspondingly transformed and energy-dependent basis set for the active space, |k d〉ε.
The operator Hε

dd has the same eigenvalues and eigenvectors as the original Hamiltonian. In the
case of the eg bands (Hε

dd = Hε
eg) of KCuF3

Hε
eg |k 3z2−r2〉ε |k x2−y2〉ε

|k 3z2−r2〉ε ε′d−2tσε [1
4
(cos kxa+cos kya)+cos kza] 2tσε [

√
3
4

(cos kxa−cos kya)]

|k x2−y2〉ε 2tσε [
√
3
4

(cos kxa−cos kya)] ε′d−2tσε [3
4
(cos kxa+cos kya)]

(12)

where the effective parameters are

tσε =
V 2
pdσ

ε− εp
, ε′d = εd + 3tσε .

The downfolding procedure has renormalized the parameters εd of the original model (11),
but also introduced a new interaction: inter-orbital coupling. Furthermore, Hε

dd and the Bloch
basis are now energy dependent. Along ΓZ, the eigenvalues of (12) are given implicitly by
the equations ε = εd + 2tσε − 2tε cos kza (band ε5) and ε = εd (band ε4); in second-order
perturbation theory we find

tσε ∼ tσεd =
V 2
pdσ

∆pd

,

ε5 ∼ εd + 2tσεd − 2tσεd cos kza .

From Hamiltonian (12) it is relatively easy to see that the eg bands are 2-fold degenerate along
direction Γ-R, to find the dispersion along Γ-M and R-M, and to obtain the eg-like bands in
Fig. 8. By Fourier transforming the Bloch states |k 3z2 − r2〉ε and |k x2 − y2〉ε we can build
a set of Wannier functions. They have 3z2 − r2 or x2 − y2 symmetry as the atomic orbitals,
and, additionally, they span, to arbitrary accuracy, the eg bands. These Wannier functions are
by construction longer range than atomic orbitals, since they have p tails on the downfolded
neighboring F sites.
We can now repeat the same calculation for the t2g bands. The minimal tight-binding basis is
of course different with respect to the case of eg bands. The states |xy〉i of the Cu ion located at
Ri are coupled via Vpdπ to the |ya〉i, the py orbitals of F1 and F4 and to |xb〉i, the px orbitals of
F2 and F5; in a similar way, |xz〉i is coupled via Vpdπ to the |za〉i, the pz orbitals of F1 and F4,
and to the |xc〉i, the px orbitals of F3 and F6; finally |yz〉i is coupled via Vpdπ to the |zb〉i, the pz
orbitals of F2 and F5, and to the |yc〉i, the py orbitals of F3 and F6. After constructing for each
|α〉i the corresponding Bloch state, we obtain the tight-binding Hamiltonian. The latter splits
into three decoupled blocks,

HTB
t2g

|k ya〉 |k xb〉 |k xy〉
|k ya〉 εp 0 2Vpdπsx
|k xb〉 0 εp 2Vpdπsy
|k xy〉 2Vpdπsx 2Vpdπsy εd
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and cyclic permutations of x, y, and z (and, correspondingly, of a, b, and c). In the Γ-X direction
we thus find

ε2′(k) =εd

ε5(k) =εp +
∆pd

2
+

√
∆2
pd + 16V 2

pdπ|sx|2

2

∼εd + 2tπεd − 2tπεd cos kxa

where tπεd = V 2
pdπ/∆pd. By downfolding the oxygen states we obtain

Hε
t2g |k yz〉ε |k xz〉ε |k xy〉ε

|k yz〉ε ε′′d − 2tπε (cos kxa+ cos kya) 0 0

|k xz〉ε 0 ε′′d − 2tπε (cos kxa+ cos kza) 0

|k yz〉ε 0 0 ε′′d − 2tπε (cos kya+ cos kza)

where the parameters in the matrix are

ε′′d =εd + 4tπε ,

tπε =
|Vpdπ|2

ε− εp
.

As in the case of the eg bands, we find renormalized energy levels and effective band disper-
sions; since different Cu t2g states couple to different F p states, and we neglected hopping
integral between oxygens, the xy, xz, and yz bands are totally decoupled in our model. We are
now in the position of calculating the (approximate) expression of the covalent contribution to
the eg-t2g crystal-field splitting, i.e., the energy difference

∆CF ∼ ε′d − ε′′d = 3
|Vpdσ|2

∆pd

− 4
|Vpdπ|2

∆pd

> 0. (13)

As we can see, the sign of the covalent crystal-field splitting is the same as that of the ionic
contribution. This happens for two reasons. First, the so-called d bands are the anti-bonding
states of the p-d Hamiltonian, hence both the energy of the eg and t2g states moves upwards due
to the interaction with the p orbitals. Second, σ bonds are stronger than π bonds, hence eg states
shift to sizably higher energy than t2g states.
The tight-binding model we have used so far is oversimplified, but it already qualitatively well
describes the eg and t2g bands in Fig. 8. A more accurate description can be obtained including
other Slater-Koster integrals, such as the hopping to apical F s states, or between neighboring
F p states. With increasing number of parameters, it becomes progressively harder to estimate
them, e.g., from comparison with experiments; furthermore a large number of fitting parameters
makes it impossible to put a theory to a test. Modern techniques allow us, however, to calculate
hopping integrals and crystal-field splittings ab-initio, using localized Wannier functions as
basis instead of atomic orbitals, and the DFT potential vR(r) as one-electron potential; because
Wannier functions are orthogonal, the corresponding overlap matrix is by construction diagonal.
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4 Jahn-Teller effect

In order to introduce the Jahn-Teller effect we have to take a step backwards and start from
the central equation of solid-state physics, the eigenvalue problem ĤΨ = EΨ , defined (in the
non-relativistic limit) by the many-body Hamiltonian

Ĥ = −1

2

∑
i

∇2
i︸ ︷︷ ︸

T̂e

+
1

2

∑
i6=i′

1

|ri − ri′|︸ ︷︷ ︸
V̂ee

−
∑
iα

Zα
|ri −Rα|︸ ︷︷ ︸
V̂en

−
∑
α

1

2Mα

∇2
α︸ ︷︷ ︸

T̂n

+
1

2

∑
α6=α′

ZαZα′

|Rα −Rα′|︸ ︷︷ ︸
V̂nn

.

Here {ri} are the coordinates of the Ne electrons, {Rα} those of the Nn nuclei, Zα the atomic
numbers, and Mα the nuclear masses. The Born-Oppenheimer Ansatz

Ψ({ri}, {Rα}) = ψ({ri}; {Rα}) Φ({Rα}) , (14)

splits the Schrödinger equation ĤΨ = EΨ into the system
Ĥeψ({ri}; {Rα}) = ε({Rα})ψ({ri}; {Rα}),

ĤnΦ({Rα}) = EΦ({Rα}),
(15)

where the Hamilton operator for the electrons (Ĥe) and that for the lattice (Ĥn) are

Ĥe = T̂e + V̂ee + V̂en + V̂nn, (16)

Ĥn = T̂n + ε({Rα}) = T̂n + Ûn, (17)

and where in (17) we neglect non-adiabatic corrections.7 In the electronic Hamiltonian (16)
the atomic positions {Rα} are simple parameters. The electronic eigenvalue ε({Rα}) acts as
potential for the nuclei and defines a Born-Oppenheimer (BO) energy surface. While (16) de-
scribes the electronic structure, (17) yields the equilibrium crystal structure and the vibrational
modes. These equations are impossible to solve in the general case. The first difficulty is
that Hamiltonian (16) describes the electronic quantum many-body problem. The latter can
be solved only approximately, for example the energy of the ground state can be obtained
via density-functional theory using one of the known approximations to the universal func-
tional. For strongly-correlated systems, advanced methods combine density-functional theory
with many-body approaches such as the dynamical mean-field theory [7, 8]. The second issue
is the very high number of atoms, and therefore of {Rα} parameters to explore; finally, even
if we solve the electronic many-body problem exactly, we still have to deal with the nuclear
many-body problem, Hamiltonian (17). Despite all these obstacles, let us assume for a moment
that, for a given system, we did solve the electronic problem for general values of {Rα}. Let us
also assume that the set of positions {Rα} = {R0

α} defines a specific crystal structure, whose

7We neglect the operator Λ̂n, with elements 〈m|Λ̂n|m′〉 = −
∑
α

1
Mα

[
1
2 〈ψm|∇

2
αψm′〉+ 〈ψm|∇αψm′〉 · ∇α

]
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electronic ground state (i.e., the lower energy BO surface) has degeneracy d > 1. We can at this
point ask ourself the question: Is structure {R0

α} actually stable?
The Jahn-Teller theorem states that any electronically degenerate system can lower its energy
by undergoing some structural distortions, and therefore is unstable.8 This is due to the cou-
pling between electrons and lattice. In order to better understand the microscopic origin of this
phenomenon, let us consider a system in a high-symmetry structure, {R0

α}, for which the elec-
tronic ground state has energy ε({R0

α}) with degeneracy d > 1. This means that there are d
Born-Oppenheimer surfaces degenerate for {Rα} = {R0

α},

εm({R0
α}) = ε({R0

α}).

In the rest of the chapter we will take ε({R0
α}) as the energy zero. The corresponding degenerate

electronic wavefunctions are ψm({ri}; {R0
α}). Let us expand the nuclear potential Ûn for one

of these surfaces around the symmetric structure {R0
α}. This leads to the Taylor series

Ĥn = T̂n +
∑
αµ

[
∂Ûn
∂uαµ

]
{R0

α}

uαµ +
1

2

∑
αµ

∑
α′µ′

[
∂2Ûn
∂αµ∂α′µ′

]
{R0

α}

uαµ uα′µ′ + . . . ,

where uα = Rα −R0
α are displacement vectors with respect to the equilibrium position, and

µ = x, y, z. If {R0
α} is an equilibrium structure, the gradient is zero and

Ĥn ∼ T̂n +
1

2

∑
αµ

∑
α′µ′

[
∂2Ûn
∂αµ∂α′µ′

]
{R0

α}

uαµuα′µ′ + · · · = T̂n + ÛPH
n ({R0

α}) + . . . , (18)

The standard procedure to diagonalize (18) consists of two steps. First we change coordinates

ũαµ = uαµ
√
Mα.

Second we introduce the dynamical matrix

Dαµ,αµ′ =
1√
Mα

1√
Mα′

[
∂2Ûn
∂αµ∂α′µ′

]
{R0

α}

,

and diagonalize it. Its Nm eigenvectors are the normal modesQη,

DQη = ω2
ηQη,

Qην =
Nn∑
α=1

∑
µ=x,y,z

aην,αµuαµ,

with η = 1, . . . Nm, and ν = x, y, z. The normal coordinates {Qnν}, together with the associ-
ated canonically-conjugated momenta {Pnν}, bring (18) in the form

Ĥn ∼
1

2

∑
ην

[
P 2
ην + ω2

ηQ
2
ην

]
. (19)

8 The only exceptions are linear molecules and Kramers degeneracy.
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In a crystal, this Hamiltonian yields the phonon energy levels. Let us now determine the pos-
sible Nm normal modes for a cubic perovskite. For simplicity we consider here only a single
octahedron and the modes associated with the vibrations of its atoms. Given that each atom can
move in three directions, and there are 6 atoms of type C and 1 atom of type B, in principle
such a system has 21 degrees of freedom; eliminating global translations (3 degrees of free-
dom) and global rotations (3 degrees of freedom), i.e., displacements which are not vibrations,
15 degrees of freedom are left, hence the system has 15 possible normal modes. In group the-
ory language, assuming again for simplicity that the group is O instead of Oh, one can show
that these modes can be labeled as belonging to irreducible representations A1, E, T1 or T2.
To obtain this result we first build a matrix representation of the group in the linear space of
all possible displacements; this space is 21-dimensional, and so is the associated matrix repre-
sentation Γtot. The latter can be expressed as the direct product Γtot = Γa.s. ⊗ Γvector, where
Γa.s. is the so-called atomic-site representation. Γa.s. has as a basis the original atomic positions
(without displacements); in our case it is has therefore dimensionality 7. The character of Γa.s.

for a given operation is simply the number of sites left invariant by that operation. Finally, in
group O the irreducible representation for a vector is Γvector = T1; this can be seen from the
partner functions (x, y, z) in Table 4. Summarizing all this in a character table, we have

O E 8C3 3C2 6C2 6C4

Γ a.s. 7 1 3 1 3

Γ tot = Γ a.s. ⊗ Γvector 21 0 −3 −1 3

Once we know the characters for representation Γtot, we can split the latter into irreducible
representations of group O via the decomposition formula Eq. (5). After subtracting (ten-
sor subtraction 	) the representations for mere translations (T1) and mere rotations (T1) of
the octahedron,9 we arrive at the final decomposition of the vibrational-modes representation
Γvibrations = Γtot	Γvector	Γrotation = A1⊕E⊕2T1⊕2T2.Normal modes which are a basis for
different irreducible representations have in general different energies. Let us focus on modes
A1 and E. We can obtain mode A1 by using the projector, Eq. (6), for irreducible representation
A1. As a matter of fact, if we assume that atom F1 (Fig. 9) is displaced by u1, by applying the
projector P̂A1 to u1 we generate automatically the linear combination of atomic displacements
(all having the same length) forming the mode of symmetry A1. This leads to

Q0 = u1(q0) + u2(q0) + u3(q0) + u4(q0) + u5(q0) + u6(q0).

9The representation for an improper vector (rotation) is Γrotation = T1, as can be seen from the corresponding
partner functions (Rx, Ry, Rz) in Table 4.
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Fig. 9: Unit cell (top) and vibrational modes Q0, Q1, and Q2 of cubic KCuF3.

Here ui are the (normalized) displacements for the Ci atom (see Fig. 9) which we rewrite as

u1(q0) = 1√
6
q0(1, 0, 0)

u2(q0) = 1√
6
q0(0, 1, 0)

u3(q0) = 1√
6
q0(0, 0, 1)

u4(q0) = − 1√
6
q0(1, 0, 0)

u5(q0) = − 1√
6
q0(0, 1, 0)

u6(q0) = − 1√
6
q0(0, 0, 1)

The potential energy of such a breathing mode is

UPH
n =

1

2
CA1q

2
0 .

The Q0 mode expands or compresses the unit cell, but does not change its symmetry which
remains cubic. Hence, this mode has no influence on the stability of the structure, at most it can
affect the actual value of the lattice constant. More interesting are the two degenerate modes
of type E. These modes can be obtained in a similar way as we have done for Q0, this time
using the projector for irreducible representation E; within the resulting 2-dimensional space,
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we choose as basis the mutually orthogonal modes that transform as the l = 2 partner functions
of E, x2 − y2 and 3z2 − r2. These areQ1 andQ2, shown in Fig. 9. They are defined as

Q1 = u1(q1) + u2(q1) + u4(q1) + u5(q1),

Q2 = u1(q2) + u2(q2) + u3(q2) + u4(q2) + u5(q2) + u6(q2),

where the displacements are

u1(q1) = 1√
4
q1(1, 0, 0) u1(q2) = − 1√

12
q2(1, 0, 0)

u2(q1) = − 1√
4
q1(0, 1, 0) u2(q2) = − 1√

12
q2(0, 1, 0)

u3(q1) = (0, 0, 0) u3(q2) = 2√
12
q2(0, 0, 1)

u4(q1) = − 1√
4
q1(1, 0, 0) u4(q2) = 1√

12
q2(1, 0, 0)

u5(q1) = 1√
4
q1(0, 1, 0) u5(q2) = 1√

12
q2(0, 1, 0)

u6(q1) = (0, 0, 0) u6(q2) = − 2√
12
q2(0, 0, 1)

The corresponding quadratic potential has the form

ÛPH
n =

1

2
CE(q21 + q22).

The normal modes T1 and T2 can be obtained in a similar way; since they are not relevant for
structure stability in the example considered here we do not provide their form explicitly.
Up to now we have assumed that the hypothetical high-symmetry structure {R0

α} is a stationary
point. In general, however, this might or might not be true. The behavior of the BO energy
surfaces close to the point in which they are degenerate allows us to separate them into two
classes, the first one in which {R0

α} is a stationary point for all degenerate electronic states m
(Renner-Teller intersection), and the second in which the surface is not a stationary point at
least for some of the surfaces (Jahn-Teller intersection). The classical Jahn-Teller systems are
those for which ∇Ûn({R0

α}) 6= 0 at least in some direction (see, e.g., Fig. 10). Let us now
calculate the first-order correction to the m degenerate eigenvalues due to a small distortion
around {R0

α}. The electronic Hamiltonian (16) has matrix elements

〈ψm|Ĥe({Rα})|ψm′〉 =
∑
αµ

〈ψm|

[
∂Ĥe

∂uαµ

]
{R0

α}

|ψm′〉uαµ︸ ︷︷ ︸
ÛJT
m,m′

+ · · · = ÛJT
m,m′ + . . . .

The perturbation ÛJT, the Jahn-Teller potential, couples the degenerate BO energy surfaces; it
also couples electrons and lattice vibrations, as we can see from the coordinates uαµ appear-
ing in the expression above. Thus, if there are modes for which ÛJT 6= C Î where Î is the
identity matrix and C a constant, the system gains energy at linear order via a distortion which
lowers the symmetry; the Jahn-Teller theorem states that such modes always exist for electron-
ically degenerate systems (with the exceptions of Kramers degeneracy and linear molecules).
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Fig. 10: Born-Oppenheimer potential-energy surface exhibiting the form of a mexican hat. The
slope of the curve at small distortions q1, q2 yields the Jahn-Teller coupling constant λ.

In order to better understand the effect of the electron-lattice coupling, we generalize the Born-
Oppenheimer Ansatz as follows

Ψ({ri}, {Rα}) =
∑
m

ψm({ri}; {Rα}) Φm({Rα}).

To find the equations for the functions {Φm}, we write the Schrödinger equation HΨ = EΨ ,
multiply on the left by ψm, and integrate over the coordinates of the electrons. We obtain

ĤnΦm({Rα}) =
[
T̂n + ÛPH

n

]
Φm({Rα}) +

∑
m′

ÛJT
m,m′Φm′({Rα}) = EΦm({Rα}). (20)

The dynamics of the system close to the degeneracy point is determined by all degenerate
sheets. The minimization of the new potential energy yields a new structure {R̃0

α} in which the
electronic states are not any more degenerate. The modes that can produce such an instability
should satisfy the condition

[Γm ⊗ Γm] ∩ Γvibrations ⊃ A1,

where Γm is the irreducible representation to which the electronic degenerate states belong, and
[Γm ⊗ Γm] is the symmetric direct product. The trivial representation A1 has to be excluded
because, as already discussed, it does not lower the symmetry. In the case cubic KCuF3 the
relevant normal modes coupling to the degenerate eg electronic states are the E modes; as for
the electronic states, if the group O → Oh, then E → Eg. Thus we can say that KCuF3 is
an example of a eg ⊗ Eg Jahn-Teller system, a system in which an electronic doublet (eg) is
coupled to a doublet of normal modes (Eg). The form of the Jahn-Teller potential ÛJT can be
obtained from the effect of perturbations of type Q1 and Q2 on the crystal-field matrix. As for
the crystal field, there are both a ionic and a covalent contribution. For the ionic contribution,
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we can use once more perturbation theory. In this case, we have to take into account that the
Cu-F distance dC depends on the direction, i.e,

dC → dC + δdµC ,

where µ = x, y, z; the specific δdµC values for each atom are given by the specific vibrational
mode. After summing up all contribution, the first non-cubic correction due to Eg modes is

∆vJT =
qC
d6C

25

14
√

3
〈r4〉

(
q2 q1
q1 −q2

)
.

It is, at this point, useful to introduce pseudo-spin operators acting on the eg states, i.e., operators
τ̂µ with µ = x, y, z and

τ̂z| ↘〉 = −| ↘〉, τ̂x| ↘〉 = +| ↗〉, τ̂y| ↘〉 = −i| ↗〉

τ̂z| ↗〉 = +| ↗〉, τ̂x| ↗〉 = +| ↘〉, τ̂y| ↗〉 = +i| ↘〉

where | ↗〉 = |x2 − y2〉 and | ↘〉 = |3z2 − r2〉. In matrix form these operators can be written
as pseudo-Pauli matrices

τ̂z =

(
1 0

0 −1

)
τ̂x =

(
0 1

1 0

)
τ̂y =

(
0 −i
i 0

)
. (21)

We can then rewrite the Jahn-Teller potential as

∆vJT = λ

[
q1τx + q2τz

]
,

where λ = (qC/d
6
C) (25/14

√
3) > 0. This potential expresses both the essence of the Jahn-

Teller theorem and its relation with orbital order; the systems gains energy at linear order by
making a distortion; the latter produces a crystal-field splitting, which leads to preferential oc-
cupation of the lower energy level. For example, if q1 = 0 and q2 < 0 (tetragonal compression)
the 3z2 − r2 state is higher in energy. Let us now calculate the covalent contribution to the
Jahn-Teller potential. In this case the linear-order correction is

∆εlm,l′m′(0,Rα + u)−∆εlm,l′m′(0,Rα) ∼ ∇∆εlm,l′m′(0,Rα) · u

For eg-states we use for simplicity the following approximations10

∆ε3z2−r2,3z2−r2 ∼
[
n2 − 1

2
(l2 +m2)

]2
Ṽddσ,

∆ε3z2−r2,x2−y2 ∼
√

3

2
(l2 −m2)

[
n2 − 1

2
(l2 +m2)

]
Ṽddσ,

∆εx2−y2,x2−y2 ∼ 3

4
(l2 −m2)2Ṽddσ.

10The crystal-field integrals are also two-center integrals; the table of Slater-Koster integrals in Appendix B is
thus still valid, provided that Vll′α are replaced by the corresponding crystal-field terms, which we indicate as Ṽll′α.
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Fig. 11: Linear combinations of eg-states, |θ〉 = − sin θ
2
|x2 − y2〉 + cos θ

2
|3z2 − r2〉. The

θ = 0o orbital is the excited state in the presence of a tetragonal compression along the z axis,
while θ = ±2π/3 are excited states for a tetragonal compression along x or y. This three-fold
degeneracy (rotation by ±2π/3) is due to cubic symmetry.

By summing up the contributions from all C ions for each mode, we obtain

∆εJT(q1, q2) = λ

(
q2 q1
q1 −q2

)
= λ

[
q1τ̂x + q2τ̂z

]
,

where λ ∼ −
√
3
2
Ṽ ′ddσ > 0. This is the same form of potential that we have obtained for the ionic

contribution. Again, if q1 = 0 and q2 < 0 (tetragonal compression) the 3z2 − r2 is higher in
energy. In conclusion, if we neglect the kinetic energy of the nuclei (limit Mα/me → ∞), the
ground state of the system can be calculated by minimizing a potential energy of the form

Û(q1, q2) = ÛJT + ÛPH
n = λ

(
q2 q1
q1 −q2

)
+

1

2
CE (q21 + q22) Î , (22)

where Î is the 2× 2 identity matrix. To find the minimum of (22), it is convenient to introduce
polar coordinates, which we define as q2 = −q cos θ, q1 = −q sin θ, so that for 0 < θ < π/2 we
have q1 ≤ 0 (compression of x̂ axis) and q2 ≤ 0 (compression of ẑ axis); this corresponds to
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the distortion of the octahedron labeled with number 1 in Fig. 1. In these coordinates

ÛJT = −λq

(
cos θ sin θ

sin θ − cos θ

)
.

The diagonalization of matrix (22) yields two eigenvalues; the lower energy branch

E−(q) = −λq +
CE
2
q2

takes the form of a mexican hat, shown in Fig. 10. The minimum of E−(q) is obtained for
q = q0 = λ/C and has value

EJT = −λ2/2CE;

the quantity EJT is defined as the Jahn-Teller energy of the system. The electronic ground state
can be written as

|θ〉G = − sin
θ − π

2
|x2 − y2〉+ cos

θ − π
2
|3z2 − r2〉.

The excited state (hole orbital), with energy

E+(q) = λq +
CE
2
q2,

is then given by

|θ〉E = − sin
θ

2
|x2 − y2〉+ cos

θ

2
|3z2 − r2〉.

The states |θ〉E with different θ are shown in Fig. 11. In the simple model discussed so far,
all states |θ〉G have the same Jahn-Teller energy. Cubic symmetry, however, only requires that
states

|θ〉, |θ + 2π/3〉, |θ − 2π/3〉
are degenerate. The additional (accidental) degeneracy is removed when we take into account
anharmonic terms, the lowest order of which has the form

Uanh(q1, q2) = A(q32 − 3q2q
2
1) = Aq3(cos3 θ − 3 cos θ sin2 θ) = −Aq3 cos 3θ

and yields the tetragonal distortion as a ground state, with θ = 0,±2π/3 for positiveA and with
θ = π, π ± 2π/3 for negative A. Higher-order terms can make the Q1 Jahn-Teller distortion
(θ = π/2, π/2± 2π/3) more stable [1]. For a periodic lattice, modeQ1 leads to a co-operative
distortion where long and short bonds alternate in the x and y direction; in such a case, the hole
orbital rotates by π/2 if we move from a Cu site to its Cu first-nearest neighbors in the ab plane.
Let us now analyze the different electronic configurations that can occur in perovskites. For
the electronic configuration 3d1 = 3t12g, the procedure is as the one illustrated above, except
that t2g states are 3-fold degenerate and form π bonds, which are weaker, therefore the splitting
introduced by the Jahn-Teller effect is smaller than for eg states. In the case of electronic
configurations 3dn with n > 1, to determine if the ion is Jahn-Teller active one has to consider
the degeneracies of the many-body state, including Coulomb repulsion. Weak Jahn-Teller states
are 3d1 (Ti3+ in LaTiO3) and 3d2 (V3+ in LaVO3), as also 3t42g, 3t52g, 3t42ge

2
g, 3t52ge

2
g; strong

Jahn-Teller configurations are, e.g., 3d9 (Cu2+ in KCuF3) and 3t32ge
1
g (Mn3+ in LaMnO3); the

configurations 3t32g and 3t32ge
2
g are not degenerate and therefore not Jahn-Teller active.
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5 Kugel-Khomskii superexchange

Let us now start from a totally different perspective, from the Hubbard model for a cubic per-
ovskite with partially filled eg shells. The Hamiltonian takes the form Ĥ = Ĥ0 + ĤT + ĤU

where

Ĥ0 =εeg
∑
i

∑
σ

∑
m

n̂imσ

ĤT =−
∑
i6=i′

∑
σ

∑
mm′

ti,i
′

mm′ c
†
imσcim′σ

ĤU =U
∑
i

∑
m

n̂im↑n̂im↓ +
1

2

∑
i

∑
σσ′

∑
m6=m′

(U − 2J − Jδσ,σ′) n̂imσn̂im′σ′

−J
∑
i

∑
m6=m′

[
c†im↑c

†
im↓cim′↑cim′↓ + c†im↑cim↓c

†
im′↓cim′↑

]
,

and where m,m′ = x2 − y2, 3z2 − r2. Kugel and Khomskii have shown that, in the large t/U
limit, this Hamiltonian can be mapped onto an effective generalized superexchange Hamiltonian
with an orbitally-ordered ground state. To understand this, let us simplify the problem and
consider first a system with only two atoms (i = A,B) for which the hopping matrix is diagonal
in the orbitals

ĤT = −t
∑
σ

∑
m

[
c†AmcBm + c†BmcAm

]
.

Furthermore, let us simplify the Coulomb interaction and neglect the spin-flip and pair-hopping
terms

ĤU =U
∑
i=AB

∑
m

n̂im↑n̂im↓ +
1

2

∑
i=AB

∑
σσ′

∑
m6=m′

(U − 2J − Jδσ,σ′) n̂imσn̂im′σ′ .

Finally, we assume that the systems has one electron per atom (quarter filling, e1g configuration).
In the t = 0 or atomic limit there are two types of possible states for this system, those in
which each atom is occupied by one electron, |1, 1〉α, and those in which one atom has two
electrons and the other zero, |2, 0〉α′ . The 16 states of type |1, 1〉α, all degenerate with energy
Eα(1, 1) = 2εeg , can be written as c†AmAσAc

†
BmBσB

|0〉 with α = (mAσA,mBσB); here miσi are
the quantum numbers for the electron at site i = A,B. There are 12 states |2, 0〉α with one atom
occupied by two electrons; they are listed below together with their energies

|2, 0〉α′ Eα′(2, 0)

|2, 0〉i1m = c†im↑c
†
im ↓|0〉 2εeg + U

|2, 0〉i2m = c†im↑c
†
im′↓|0〉 2εeg + U − 2J m′ 6= m

|2, 0〉i3σ = c†imσc
†
im′σ|0〉 2εeg + U − 3J m′ 6= m

The Coulomb repulsion U is positive and J is small with respect to U ; therefore the |1, 1〉α
states define the ground-state manifold. If t is finite but small (t/U � 1), we can treat ĤT as
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Fig. 12: Superexchange energy gain for possible quarter-filling ground states of a two-site
2-fold degenerate Hubbard model with orbital- and spin-diagonal hopping matrices.

a perturbation, and calculate the second-order correction to the energy of states |1, 1〉α. This
correction is always negative (energy gain) and it is given by the matrix

∆Eα1,α2(1, 1) = −
∑
α′

α1〈1, 1|ĤT |2, 0〉α′
1

Eα′(2, 0)− Eα(1, 1)
α′〈2, 0|ĤT |1, 1〉α2

There are four interesting cases, depicted in Fig. 12. The first is the ferro-magnetic (same spin)
and antiferro-orbital (different orbitals) state, first line of the figure. The corresponding second
order energy gain (α1 = α2 = mσ,m′σ) is

∆Eα1,α1(1, 1) = − 2t2

U − 3J
.

For the ferro-magnetic (same spin) and ferro-orbital (same orbital) state (second line in the
figure, α1 = α2 = mσ,mσ) the energy gain is, instead, zero

∆Eα1,α1(1, 1) = 0.

The reason is that no hopping is possible due to the Pauli principle. For the antiferro-magnetic
antiferro-orbital state (third line, α1 = α2 = mσ,m′ − σ), we have

∆Eα1,α1(1, 1) = − 2t2

U − 2J
,

and finally for the antiferro-magnetic ferro-orbital state (α1 = α2 = mσ,m− σ) we find

∆Eα1,α1(1, 1) = −2t2

U
.
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Among these four states, the ferro-magnetic antiferro-orbital state is thus the lowest in energy.
The main message is that the system gains superexchange energy by occupying preferentially
different orbitals with the same spin, although the orbitals are by themselves degenerate. The
16 × 16 matrix of the second-order energy corrections ∆Eα1,α2(1, 1) can be rewritten as the
effective superexchange Hamiltonian

ĤSE =2Γ−+

[
SA · SB − 1

4

] [
OA
z O

B
z +

1

4

]
+ 2Γ+−

[
1

4
+ SAz S

B
z

] [
OA ·OB − 1

4

]
+2Γ−−

[(
SA · SB − SAz SBz

)(
OA ·OB −OA

z O
B
z

)
−
(
SAz S

B
z −

1

4

)(
OA
z O

B
z −

1

4

)]

where Oi = τi/2 are operators acting only on orbital degrees of freedom and τ are the pseudo-
spin operators introduced in the previous section, Eq. (21), and

Γ−+ =
4t2

U
Γ+− =

4t2

U − 3J
Γ−− = − 4t2

U − 2J
.

When the second-order Hamiltonian is written in this form it is immediately clear that, among
the four states we considered, the ferro-magnetic antiferro-orbital state is lower in energy. This
happens because the superexchange coupling Γ+− is the largest. If the orbital degeneracy is
one, we can replace the terms OA ·OB and OA

z OB
z with the ferro-orbital value 1/4; then, the

terms proportional to Γ+− and Γ−− drop out and we recover the Heisenberg superexchange
Hamiltonian, as expected for the one-band Hubbard model.

What about KCuF3 and LaMnO3? If we consider only hopping integrals between neighboring
B sites in the cubic perovskite structure, the hopping integral matrices take the simple form

ti,i±ẑmm′ = tε

(
0 0

0 1

)
ti,i±x̂mm′ = tε

(
3
4

√
3
4

√
3
4

1
4

)
ti,i±ŷmm′ = tε

(
3
4
−
√
3
4

−
√
3
4

1
4

)
. (23)

The structure of these matrices can be obtained by using Slater-Koster two-center integrals. The
only non-zero hopping integral in the ẑ direction is the one between |3z2 − r2〉 states. As we
have previously seen by using the downfolding approach, it is given by tε = V 2

pdσ/(ε− εp).

As in the case of the two-site molecule, for integer filling (n electrons per atom) and in the
large tε/U limit the lattice Hubbard model can be mapped onto an effective superexchange
Hamiltonian by downfolding high-energy states in which some of the atoms have an electron
number larger than n. Only two electronic configurations are relevant for orbital ordering, e1g
(LaMnO3) and e3g (KCuF3). The remaining partially filled state, e2g, is magnetic with S = 1 but,
due to Hund’s rule coupling J , it exhibits no orbital degeneracy (L = 0). After excluding e2g we
can, for simplicity, set J = 0. Let us now construct all atomic states |Ne〉α with Ne electrons.
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For a single atom they are

|Ne〉α Eα′(Ne) d(Ne)

|0〉 E(0) = 0 d(0) = 1

|1〉 = c†mσ|0〉 E(1) = εeg d(0) = 4

|2〉 = c†mσc
†
m′σ′ |0〉 E(2) = 2εeg + U d(0) = 6

|3〉 = c†mσc
†
m′↑c

†
m′↓|0〉 E(3) = 3εeg + 3U d(0) = 4

|4〉 = c†m↑c
†
m↓c

†
m′↑c

†
m′↓|0〉 E(4) = 4εeg + 6U d(0) = 1

The total (spin and orbital) degeneracy of the n-electron sector, d(Ne), is given in the third
column. Let us consider two neighboring sites i and i′ and their states |Ne〉iα and |N ′e〉i

′

α′ , where
α and α′ run over all degenerate states in the Ne-electron sector. We define the collective
state of such a two-site system as |Ne〉iα|N ′e〉i

′

α′ . Let us start from an e1g configuration. In the
large-U limit, at quarter filling (n = 1) the ground state will be within the Ne = N ′e = 1

manifold, |G〉 = {|1〉iα|1〉i
′

α′}. The latter has a degeneracy 4N , where N is the number of
sites, here N = 2; this degeneracy can be partially lifted via virtual excitations to the doubly
occupied states |E〉 = {|2〉iα|0〉i

′}, {|0〉i|2〉i′α′}, which in turn generate an effective low-energy
Hamiltonian ĤSE. We can again calculate ĤSE by treating ĤT as a perturbation.
Let us consider at first only pairs of sites along the ẑ axis. In second-order perturbation theory
in ĤT , we obtain for the lattice the following effective Hamiltonian

Ĥ ẑ
SE ∼ −

1

U

∑
E

ĤT |E〉〈E|Ĥ†T

= − t
2

U

1

2

∑
ii′

∑
σσ′

∑
α

{
c†iτσ|0〉i i〈0|ciτσ′

[
ci′τσ|2〉i

′

α
i′

α〈2|c
†
i′τσ′

]
+ (i←→ i′)

}
δτ,↘

= −2t2

U

1

2

∑
ii′

∑
σσ′

{
(−1)−σ

′−σP i
τσ−σ′P i′

τσ′−σ +
1

2

[
P i
τσσP

i′

−τσ′σ′ + P i
−τσσP

i′

τσ′σ′

]}
δτ,↘,

where we already replaced in the denominator ∆E = E(2) + E(0) − 2E(1) with its value,
U , and where, once more, | ↘ 〉 = |3z2 − r2〉, | ↗ 〉 = |x2 − y2〉. In Hamiltonian Ĥ ẑ

SE we
introduced the operators P i

τσσ′ , which are given by

P i
τσσ′ = c†iτσ|0〉〈0|ciτσ′ = ôzττ

[
ŝzσσ′ + ŝ+σσ′ + ŝ−σσ′

]
.

In this expression on the right-hand side we rewrote P i
τσσ′ as product of an orbital and a spin

term, defined as follows:

ôzττ ′ =
[ni

2
Î + (−1)τOi

z

]
δττ ′ ŝzσσ =

[ni
2
Î + (−1)σSiz

]
δσσ′

ô+ττ ′ =Oi
+(1− δττ ′) ŝ+σσ′ =Si+(1− δσσ′)

ô−ττ ′ =Oi
−(1− δττ ′) ŝ−σσ′ =Si−(1− δσσ′) ,
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where (−1)σ = +1 for spin (pseudospin) up and −1 otherwise; the operator Î is the identity
matrix. Hence, we can express the effective Hamiltonian as

Ĥ ẑ
SE =

Γ

2

∑
ii′

[
Si · Si′ − nini′

4

] [
Oi
z −

ni
2

] [
Oi′

z −
ni′

2

]
+

1

2

[
Oi
zO

i′

z −
nini′

4

]
,

where Γ = 4t2/U > 0. If we drop all processes involving orbital | ↗〉 we recover the usual
superexchange Heisenberg Hamiltonian for the one-band Hubbard model

Ĥ ẑ
SE =

Γ

2

∑
ii′

[
Si · Si′ − nini′

4

]
.

Let us now consider two neighboring sites and the energy of some possible states |G〉 =

{|1〉iα|1〉i
′

α′}. A ferro-magnetic spin configuration has energy

∆Eτ↑,τ ′↑ = −Γ
4

(1− δτ,τ ′),

hence, there is an energy gain if the electrons occupy different orbitals, i.e., if the systems has
antiferro-orbital arrangement. Let us consider now a antiferro-magnetic spin arrangement. The
corresponding energy is

∆Eτ↑,τ ′↓ = −Γ
2
δτ,τ ′δτ,↘ −

Γ

4
(1− δτ,τ ′)

The expression above shows that in the antiferro-magnetic case the system gains more energy if
the occupied state is | ↘〉 at both sites. Up to now we considered magnetically ordered states.
In LaMnO3 and KCuF3, however, orbital order takes place well above the magnetic transition.
Let us then assume that the system is orbitally ordered but paramagnetic, with occupied state

|θ〉i =− sin
θ − π

2
|x2 − y2〉+ cos

θ − π
2
|3z2 − r2〉

at site i and |θ〉i±ẑ = |θ〉i at the neighboring site i′ = i ± ẑ. This choice corresponds to
ferro-orbital order along ẑ, the type of stacking realized in LaMnO3 (see Fig. 13). What is the
value of θ than minimizes the energy? We can calculate it using the variational method. The
superexchange energy gain with respect to a paramagnetic paraorbital state is given by

∆E(θ) =
Γ

16

[
cos2(θ − π) + 2 cos(θ − π)

]
.

This function is minimized for θ = 0, an angle corresponding to a tetragonal compression. To
determine the optimal angle for the three-dimensional system we have in addition to take into
account the effective Hamiltonian stemming from virtual hoppings in the remaining directions.
Due to cubic symmetry, if we rotate the quantization axis, the superexchange Hamiltonian has
the same form in all directions; to sum up all terms we have merely to rotate back the quantiza-
tion axis to ẑ. Hence, we have to make the replacements

Oi
z →︸︷︷︸
ẑ→x̂

− 1

2
Oi
z −
√

3

2
Oi
x

Oi
z →︸︷︷︸
ẑ→ŷ

− 1

2
Oi
z +

√
3

2
Oi
x
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Fig. 13: Orbital order (LDA+DMFT calculations) in the rare-earth perovskite TbMnO3 with
the GdFeO3-type structure. From Ref. [6]. This system has the same structure of LaMnO3.

Let us assume antiferro-orbital order in the plane, again as in the case of LaMnO3, shown in
Fig. 13. This means that, for i′ = i± x̂ or i′ = i± ŷ, the occupied state is

|θ〉i′ = + sin
θ − π

2
|x2 − y2〉+ cos

θ − π
2
|3z2 − r2〉.

We can easily verify that |θ〉i′ = | − θ + 2π〉i. This is state |θ〉i rotated by π/2 (x → y,
y → −x). The total superexchange energy gain with respect to a paramagnetic paraorbital state
is then given by

∆E(θ) =
Γ

16

[
3 cos2(θ − π)− 3

2

]
.

This expression has a minimum for θ = π/2 (Jahn-Teller-likeQ1 distortion). For the e3g config-
uration (KCuF3), due to particle-hole symmetry, we obtain the same result. This can be verified
by observing, first of all, that the eg bands obtained from the hopping-integrals matrices (23) –
bands which we have discussed in detail in Sec. 3 – are symmetric with respect to the Fermi
level for half filling. In addition, the energy difference entering in the denominator of the su-
perexchange Hamiltonian for an e3g ground state, ∆E = E(4) + E(2) − 2E(3), has the same
value (∆E = U ) as in the case of an e1g ground state. The main difference between LaMnO3 (e1g)
and KCuF3 (e3g), for what concerns the results presented in this section, is that the stacking along
ẑ, ferro-orbital for LaMnO3, can be either antiferro- or ferro-orbital for KCuF3; Fig. 1 shows
the case of antiferro-orbital arrangement. Remarkably, the variational energy gain ∆E(θ) is the
same for both types of stacking along ẑ, i.e., for |θ〉i±ẑ = |θ〉i and for |θ〉i±ẑ = | − θ + 2π〉i.
The conclusions of this section are thus identical for LaMnO3 and KCuF3.
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Fig. 14: Orbital order transition in KCuF3. Orbital polarization p as a function of temperature
calculated in LDA+DMFT. R: experimental structure. Circles: idealized structures Rδ and Iδ
with decreasing crystal-field and U = 7 eV. Green/Triangles: U = 9 eV, I0 only. Red/Squares:
two-sites CDMFT. From Ref. [3].

6 The origin of orbital order

As we discussed in the introduction, the hallmark of orbital order is the co-operative Jahn-
Teller distortion. This static distortion gives rise to a crystal field, which splits the otherwise
degenerate eg doublet. Due to Coulomb repulsion, it turns out that even a crystal-field splitting
much smaller than the band width can lead to orbital order. The importance of this effect for real
materials has been realized first for LaTiO3 and YTiO3 [4]. This reduction of orbital fluctuation
is dynamical, but it can be already understood from the static Hartree-Fock contribution to the
self-energy; the latter yields an effective enhancement of the crystal-field proportional to orbital
polarization p. For an eg system p is defined as the difference in occupation between the most
and the least occupied orbital, |1〉 and |2〉, the so-called natural orbitals. Thus p = n1 − n2, and
the Hartree-Fock self-energy correction to the crystal-field splitting is

∆εCF = Σ2(ωn →∞)−Σ1(ωn →∞) ∼ 1

2
(U − 5J)p.

If p > 0, as it happens in the presence of a crystal-field εCF = ε2 − ε1 > 0, this term ef-
fectively increases the crystal-field splitting. This effect is at work not only in LaTiO3 and
YTiO3, but also in several other systems with different electronic structure and even smaller
crystal-field splittings. The case of 3d9 KCuF3 and 3d4 LaMnO3 is extreme: the eg crystal-field
splitting is∼ 0.5−1 eV; with such a large splitting, orbital fluctuations are suppressed up to the
melting temperature. Thus, Coulomb repulsion makes the Jahn-Teller mechanism proposed by
Kanamori very efficient. This result, however, does not clarify which of the two mechanisms,
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Fig. 15: Orbital order transition in LaMnO3. Orbital polarization p (left) and (right) occupied
state |θ〉 = cos θ

2
|3z2 − r2〉 + sin θ

2
|x2 − y2〉 as a function of temperature. Solid lines: 300 K

experimental structure (R11) and 800 K experimental structure. Dots: orthorhombic structures
with half (R6) or no (R0) Jahn-Teller distortion. Pentagons: 2 (full) and 4 (empty) site CDMFT.
Dashes: ideal cubic structure (I0). Circles: U = 5 eV. Diamonds: U = 5.5 eV. Triangles:
U = 6 eV. Squares: U = 7 eV. Crystal field splittings (meV): 840 (R11), 495 (R6), 168 (R800 K

2.4 ),
and 0 (I0). From Ref. [6].

Kugel-Khomskii superexchange or Kanamori electron-phonon coupling, plays the major role
in causing orbital order and stabilizing the distortion. Remarkably, Coulomb repulsion has also
an important effect on structure stabilization. LDA+U total energy calculations have early on
shown that the co-operative Jahn-Teller distortion is stabilized by U [10,11], a result confirmed
recently by LDA+DMFT [12]. This could be – and initially was – taken as an indication that su-
perexchange is the driving mechanism. If this is the case, it is, however, hard to explain why the
magnetic transition temperature (TN ∼ 40 K for KCuF3 and TN ∼ 140 K for LaMnO3), also
determined by superexchange, is relatively low while the co-operative Jahn-Teller distortion
persists up to the melting temperature. On the other hand, if Kugel-Khomskii superexchange is
not the driving mechanism, the associated energy gain should be small with respect to the total
energy gain due to the Jahn-Teller distortion.
To clarify the nature of the dominant mechanism, we disentangled electron-phonon and su-
perexchange effects. To this end we performed LDA+DMFT (single-site and cluster) calcula-
tions for a series of hypothetical structures, in which the distortions (and thus the crystal-field
splitting) are progressively reduced. In the case of KCuF3, these hypothetical structures are
shown in Fig. 1, and the corresponding eg bands are shown in Fig. 7. For each structure we
calculate the order parameter, the orbital polarization p. In Fig. 14 we show p as a function of
temperature. For the experimental structure (R in the figure), we find that p(T ) ∼ 1 up to the
melting temperature. The empty orbitals on different sites make the pattern shown in Fig. 1. For
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Fig. 16: Superexchange energy gain for LaMnO3, ∆E ∼ −TKK/2. From Ref. [6].

the ideal cubic structure I0, we find that p(T ) = 0 at high temperature, but a transition occurs at
TKK ∼ 350 K. This TKK is the critical temperature in the absence of electron-phonon coupling,
i.e., the superexchange critical temperature. Our results show that around 350 K superexchange
alone could indeed drive the co-operative Jahn-Teller distortion; it cannot, however, explain the
presence of a co-operative Jahn-Teller distortion above 350 K. We performed a similar study
fo LaMnO3. For this t32ge

1
g system we have to take into account the Hund’s rule coupling be-

tween eg electrons and t2g spins, St2g . Thus the minimal model to understand orbital order is
the modified Hubbard model [13]

H =−
∑
ii′

∑
σσ′

∑
mm′

ti,i
′

m,m′ u
i,i′

σ,σ′ c
†
imσci′m′σ′ − h

∑
im

(n̂im↑ − n̂im↓)

+U
∑
im

n̂im↑n̂im↓ +
1

2

∑
i

∑
σσ′

∑
m(6=m′)

(U − 2J − Jδσ,σ′) n̂imσn̂im′σ′ .

Here the local magnetic field h = JSt2g describes the Hund’s rule coupling to t2g electrons,
and uiσ,i′σ′ = 2/3(1 − δi,i′) accounts for the disorder in orientation of the t2g spins. By per-
forming the same type of analysis as for KCuF3, we find the impressively large TKK ∼ 700 K
(Fig. 15). There is a small point neglected so far; besides the co-operative Jahn-Teller distor-
tion and tetragonal compression, LaMnO3 exhibits a GdFeO3-type distortion (Fig. 13), which
tends to reduce the eg band width [4]. To account for this we studied the orbital-order tran-
sition for the ideal structure R0, which retains all distortions except for the Jahn-Teller one.
For structure R0 we cannot obtain TKK from p(T ), because, due to the ∼ 200 meV crystal-
field splitting, Coulomb repulsion strongly suppress orbital fluctuations even at 1500 K. We
can, however, study the evolution with temperature of the occupied orbital, here defined as
|θ〉 = cos θ

2
|3z2 − r2〉+ sin θ

2
|x2 − y2〉. For the experimental structure (R11) we find θ ∼ 108o,

in agreement with experiments, while for the I0 structure we obtain θ = 90o. For the R0 struc-
ture we find two regimes: At high temperature the occupied orbital is the lower-energy crystal-
field orbital (θ = 180o). At TKK ∼ 550 K superexchange rotates this θ towards 90o, reaching
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1300 in the zero-temperature limit; this is the actual superexchange transition temperature for
LaMnO3. Such TKK is still remarkably large, however not sufficiently to explain the persistence
of the Jahn-Teller distortion in nanoclusters up to basically melting temperature [14]. Further-
more, the superexchange energy gain associated with orbital order (Fig.16) is small compared
to the total energy gain due to the Jahn-Teller distortion, calculated via LDA+U [10, 11] or
LDA+DMFT [12]. Thus, as in the case of KCuF3, the conclusion is that a static crystal-field
splitting, as the one generated by the electron-lattice coupling, is essential to explain orbital
ordering at high temperature.

7 Conclusion

In this lecture we have studied two mechanisms that can lead to orbital ordering phenomena in
Mott insulators. The first one is well illustrated in the influential paper of Kanamori, Ref. [1].
In this picture, a co-operative Jahn-Teller distortion generates a static crystal-field, which in
turn splits orbitals otherwise degenerate. This mechanism is made more efficient by Coulomb
repulsion; the latter enhances the orbital polarization, leading to a orbitally-ordered state even
if the crystal-field splitting is a mere fraction of the bandwidth [4]. The second mechanism,
proposed by Kugel and Khomskii [2] in 1973, predicts orbital ordering even in the absence of
a static crystal field; in this picture, orbital ordering is due to the superexchange interaction,
the effective interaction emerging from the orbitally-degenerate Hubbard model in the large U
limit. Since both mechanism predict a similar type of order, identifying which one dominates
for real materials is very difficult. Indeed, the origin of orbital order has been a matter of debate
for decades. In the last section we saw how this problem was recently solved by disentangling
the superexchange Kugel-Khomskii interaction from the rest. It was shown for the two most
representative orbitally-ordered materials, KCuF3 and LaMnO3, that although Kugel-Khomskii
superexchange is very efficient, it cannot alone explain the presence of a co-operative Jahn-
Teller distortion up to the melting temperature. An interaction giving directly rise to a crystal-
field splitting, e.g., electron-phonon coupling, is necessary to explain experimental findings.
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Appendices

A Constants and units

In this lecture, formulas are given in atomic units. The unit of mass m0 is the electron mass
(m0 = me), the unit of charge e0 is the electron charge (e0 = e), the unit of length a0 is the
Bohr radius (a0 = aB ∼ 0.52918 Å), and the unit of time is t0 = 4πε0~a0/e2. In these units,
me, aB, e and 1/4πε0 have the numerical value 1, the speed of light is c = 1/α ∼ 137, and the
unit of energy is 1Ha = e2/4πε0a0 ∼ 27.211 eV.

B Atomic orbitals

B.1 Radial functions

The nlm hydrogen-like atomic orbital is given by

ψnlm(ρ, θ, φ) = Rnl(ρ)Y m
l (θ, φ),

whereRnl(ρ) is the radial function and Y l
m(θ, φ) a spherical harmonic, ρ = Zr and Z the atomic

number. In atomic units, the radial functions are

Rnl(ρ) =

√(
2Z

n

)3
(n− l − 1)!

2n[(n+ l)!]3
e−ρ/n

(
2ρ

n

)l
L2l+1
n−l−1

(
2ρ

n

)
,

where L2l+1
n−l−1 are generalized Laguerre polynomials of degree n− l − 1.

The radial function for n = 1, 2, 3 are

R1s(ρ) = 2 Z3/2 e−ρ

R2s(ρ) = 1
2
√
2
Z3/2 (2− ρ) e−ρ/2

R2p(ρ) = 1
2
√
6
Z3/2 ρ e−ρ/2

R3s(ρ) = 2
3
√
3
Z3/2 (1− 2ρ/3 + 2ρ2/27) e−ρ/3

R3p(ρ) = 4
√
2

9
√
3
Z3/2 ρ(1− ρ/6) e−ρ/3

R3d(ρ) = 2
√
2

81
√
15
Z3/2 ρ2 e−ρ/3

where we used the standard notation s for l = 0, p for l = 1 and d for l = 2.

B.2 Real harmonics

To study solids, it is usually convenient to work in the basis of real harmonics. The latter are
defined in terms of the spherical harmonics as follows:

yl0 = Y l
0 , ylm =

1√
2

(Y l
−m + (−1)mY l

m), yl−m =
i√
2

(Y l
−m − (−1)mY l

m), m > 0.
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Fig. 17: The s (first row), py, pz, px (second row), and dxy, dyz, d3z2−r2 , dxz, dx2−y2 (last row)
real harmonics.

Using the definitions x = r sin θ cosφ, y = r sin θ sinφ, z = r cos θ, we can express the
l = 0, 1, 2 real harmonics (Fig. 17) as

s = y00 = Y 0
0 =

√
1
4π

py = y1−1 = i√
2
(Y 1

1 + Y 1
−1) =

√
3
4π

y/r

pz = y10 = Y 0
2 =

√
3
4π

z/r

px = y11 = 1√
2
(Y 1

1 − Y 1
−1) =

√
3
4π

x/r

dxy = y2−2 = i√
2
(Y 2

2 − Y 2
−2) =

√
15
4π

xy/r2

dyz = y2−1 = i√
2
(Y 2

1 + Y 2
−1) =

√
15
4π

yz/r2

d3z2−r2 = y20 = Y 0
2 =

√
15
4π

1
2
√
3

(3z2 − r2)/r2

dxz = y21 = 1√
2
(Y 2

1 − Y 2
−1) =

√
15
4π

xz/r2

dx2−y2 = y22 = 1√
2
(Y 2

2 + Y 2
−2) =

√
15
4π

1
2

(x2 − y2)/r2
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B.3 Slater-Koster integrals

The interatomic Slater-Koster two-center integrals are defined as

Elm,l′m′ =

∫
dr ψlm(r − d)V (r − d)ψl′m′(r).

They can be expressed as a function of radial integrals Vll′α, which scale with the distance d
roughly as d−(l+l′+1) [15], and direction cosines, defined as

l = d · x̂/d, m = d · ŷ/d, n = d · ẑ/d.

The Slater-Koster integrals for s-, p-, and d-orbitals [15] are listed below.

Es,s = Vssσ

Es,x = lVspσ

Ex,x = l2Vppσ +(1− l2)Vppπ
Ex,y = lmVppσ −lmVppπ
Ex,z = lnVppσ −lnVppπ
Es,xy =

√
3lmVsdσ

Es,x2−y2 = 1
2

√
3(l2 −m2)Vsdσ

Es,3z2−r2 = [n2 − 1
2(l2 +m2)]Vsdσ

Ex,xy =
√

3l2mVpdσ +m(1− 2l2)Vpdπ

Ex,yz =
√

3lmnVpdσ −2lmnVpdπ

Ex,zx =
√

3l2nVpdσ +n(1− 2l2)Vpdπ

Ex,x2−y2 =
√
3
2 l[(l

2 −m2)]Vpdσ +l(1− l2 +m2)Vpdπ

Ey,x2−y2 =
√
3
2 m[(l2 −m2)]Vpdσ −m(1 + l2 −m2)Vpdπ

Ez,x2−y2 =
√
3
2 n[(l2 −m2)]Vpdσ −n(l2 −m2)Vpdπ

Ex,3z2−r2 = l[n2 − 1
2(l2 +m2)]Vpdσ −

√
3ln2Vpdπ

Ey,3z2−r2 = m[n2 − 1
2(l2 +m2)]Vpdσ −

√
3mn2Vpdπ

Ez,3z2−r2 = n[n2 − 1
2(l2 +m2)]Vpdσ +

√
3n(l2 +m2)Vpdπ

Exy,xy = 3l2m2Vddσ +(l2 +m2 − 4l2m2)Vddπ +(n2 + l2m2)Vddδ

Exy,yz = 3lm2nVddσ +ln(1− 4m2)Vddπ +ln(m2 − 1)Vddδ

Exy,zx = 3l2mnVddσ +mn(1− 4l2)Vddπ +mn(l2 − 1)Vddδ

Exy,x2−y2 = 3
2 lm(l2 −m2)Vddσ 2lm(m2 − l2)Vddπ 1

2 lm(l2 −m2)Vddδ

Eyz,x2−y2 = 3
2mn(l2 −m2)Vddσ −mn[1 + 2(l2 −m2)]Vddπ +mn[1 + 1

2(l2 −m2)]Vddδ

Ezx,x2−y2 = 3
2nl(l

2 −m2)Vddσ +nl[1− 2(l2 −m2)]Vddπ −nl[1− 1
2(l2 −m2)]Vddδ

Exy,3z2−r2 =
√

3lm[n2 − 1
2(l2 +m2)]Vddσ −2

√
3lmn2Vddπ

√
3
2 lm(1 + n2)Vddδ

Eyz,3z2−r2 =
√

3mn[n2 − 1
2(l2 +m2)]Vddσ +

√
3mn(l2 +m2 − n2)Vddπ −

√
3
2 mn(l2 +m2)Vddδ

Ezx,3z2−r2 =
√

3ln[n2 − 1
2(l2 +m2)]Vddσ +

√
3ln(l2 +m2 − n2)Vddπ −

√
3
2 ln(l2 +m2)Vddδ

Ex2−y2,x2−y2 = 3
4(l2 −m2)2Vddσ +[l2 +m2 − (l2 −m2)2]Vddπ +[n2 + 1

4(l2 −m2)2]Vddδ

Ex2−y2,3z2−r2 =
√
3
2 (l2 −m2)[n2 − 1

2(l2 +m2)]Vddσ +
√

3n2(m2 − l2)Vddπ +1
4

√
3(1 + n2)(l2 −m2)Vddδ

E3z2−r2,3z2−r2= [n2 − 1
2(l2 +m2)]2Vddσ +3n2(l2 +m2)Vddπ

3
4(l2 +m2)2Vddδ
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