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1. Creation and Destruction Operators

Familiar a†, a for quantum harmonic oscillator:
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[p̂, x̂] = −i~ implies commutation relations, [â, â†] = 1.

Quantum Oscillator Hamiltonian:

Ĥ =
1

2m
p̂2 +

1

2
mω2 x̂2 = ~ω ( â†â+
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2
) = ~ω ( n̂+
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)

with ‘number operator,’ n̂ = â† â.

Ground state, | 0 〉:

â| 0 〉 = 0 Ĥ| 0 〉 = ~ω

2
| 0 〉

Excited states, |n 〉:

â†|n 〉 =
√
n+ 1 |n+ 1 〉 Ĥ|n 〉 = ~ω (n+

1

2
) |n 〉



Finite temperature expectation value of quantum mechanical operator Â:

〈 Â 〉 = Z−1 Tr[ Â e−βĤ ]

For Â = n̂, Bose-Einstein distribution function:

〈 n̂ 〉 = 1/(eβ~ω − 1).

â and â†: ‘boson’ creation and destruction operators.

Henceforth, set ~ = 1 and kB = 1.

Hubbard Hamiltonian: ‘fermion’ creation and destruction operators.

Conceptual difference: do not arise from position and momentum operators.

Feynman Nobel Prize acceptance speech (deveopment of meson theory):

“I didn’t have the knowledge to understand the way these were defined in the con-

ventional papers because they were expressed at that time in terms of creation and

annihilation operators, and so on, which, I had not successfully learned. I remem-

ber that when someone had started to teach me about creation and annihilation

operators, that this operator creates an electron, I said, ‘how do you create an

electron? It disagrees with the conservation of charge’, and in that way, I blocked

my mind from learning a very practical scheme of calculation”.



Another different feature for the Hubbard Hamiltonian:

Collection of creation and destruction operators:

ĉ†jσ ( ĉjσ ) create (destroy) electrons of spin σ on site j.

States labeled by multiple occupation numbers:

|n 〉 → |n1↑ n2↑ n3↑ . . . . n1↓ n2↓ n3↓ . . . . 〉.

Operators describe fermions: Anticommutation relations: {Â, B̂} = ÂB̂ + B̂Â.

{ĉjσ, ĉ
†
lσ′} = δj,lδσ,σ′ {ĉ†jσ, ĉ

†
lσ′} = 0 {ĉjσ, ĉlσ′} = 0.

Like bosonic case, c†jσ| 0 〉 = | 1 〉 creates electron from vacuum.

However, ĉ†jσ| 1 〉 = ĉ†jσ ĉ
†
jσ| 0〉 = 0.

Pauli principle! Maximum occupation of a particular site with a given spin is 1.



Anticommutation ĉ†jσ ĉ
†
lσ = −ĉ†lσ ĉ

†
jσ ensures wave function antisymmetry.

Convention required for building states from vacuum: |vac〉 = | 0 0 0 0 0 . . . 〉.
| 1 0 1 0 0 . . . 〉 = ĉ†1 ĉ

†
3 |vac〉; and | 1 0 1 0 0 . . . 〉 = ĉ†3 ĉ

†
1 |vac〉 differ by sign.

Essential that convention chosen be followed consistently!

Example: Arises from periodic boundary conditions, electron moves site 1 ↔ N .

ĉ†1 ĉN| 0 0 1 0 0 . . . 0 0 1 〉 = ĉ†1 ĉNĉ
†
3 ĉ

†
N| vac 〉

= −ĉ†1 ĉ†3ĉN ĉ†N| vac 〉 = −ĉ†1 ĉ†3
(

1− ĉ†N ĉN| vac 〉
= −ĉ†1 ĉ†3| vac 〉 = −| 1 0 1 0 0 . . . 0 0 0 〉

Rule: ‘jump over’ odd number of occupied sites (‘1’) → minus sign.

If convention not followed carefully, things break, e.g. two noninteracting

electrons will not have energy which is sum of single electron energies!



2. The Hubbard Hamiltonian

Ĥ = −t
∑

〈ij〉σ

(c†iσcjσ + c†jσciσ) + U
∑

i

(ni↑ − 1

2
)(ni↓ − 1

2
)− µ

∑

iσ

(niσ + niσ)

• c†iσ (ciσ) are fermion creation(destruction) operators, site i, spin σ =↑, ↓.
• Kinetic energy t describes hopping between near-neighbor sites 〈ij〉.
• Chemical potential µ controls filling.

• Describes qualitative “strong correlation” physics of many-electron materials

Transition metal monoxides, cuprate superconductors, ...

On-site repulsion U sufficiently large → Mott Insulator

Exchange interaction J ∝ t2/U → Antiferromagnetism

Stripes and other charge/spin inhomogeneities.

d-wave superconductivity ???



Mott Insulators and Antiferromagnetism: Qualitative Pictures

Consider a lattice of sites with

“commensurate filling”:

The average number of electrons

is one per site.

“quantum fluctuations” (kinetic energy t)

and thermal fluctuations T , both favor

electrons moving around lattice.

Metal: odd number (one) particle per cell/site.



+U

But what if there were a large

repulsive interaction U between

electrons on the same site?

A Mott Insulator forms.

Basic physics of parent compounds

of cuprate superconductors!



Two ways to destroy Mott Insulator:

∗ Decrease U/t: By applying pressure (MnO)

∗ Shift 〈n〉 6= 1: Dope chemically (cuprate superconductors)

What is optimal spin arrangement?

Hopping of neighboring parallel spins forbidden by Pauli.

Antiparallel arrangement lower in second order perturbation theory.

x t t

∆E(2) = 0 ∆E(2) ∝ −t2/U = −J

Mott insulating behavior and antiferromagnetism go hand-in-hand.

Qualitative picture of cuprate physics before doping.

Still do not fully understand why cuprates superconduct after doping.



3. Non-interacting limit: “band structure” of the Hubbard Hamiltonian

Two alternate (but equivalent) solutions at U = 0.

One works in real space. The other in momentum space.

Start with the real space analysis: (useful in exact diagonalization approach later):

Ĥ commutes with the total number operators N↑ =
∑

j
nj↑ and N↓ =

∑

j
nj↓

Commutator of the kinetic energy on ‘link’ of the lattice with density at vertices:

[c†iσcjσ + c†jσciσ, niσ + njσ] = 0

Handy identity: [AB,C] = A{B,C} − {A,C}B.

Hopping contains creation and annihilation operators in pairs.

Implication: eigenstates of Ĥ come in separate sectors of total N↑ and N↓.

Consider single particle sector where N↑ = 1 and N↓ = 0.

Occupation number basis: |1 0 0 0 0 0 · · · 〉, |0 1 0 0 0 0 · · · 〉, |0 0 1 0 0 0 · · · 〉, · · · .



Examine one-d linear chain. Ĥ moves occupied site to the left or right:

Ĥ |0 1 0 0 0 0 · · · 〉 = −µ |0 1 0 0 0 0 · · · 〉 − t |1 0 0 0 0 0 · · · 〉 − t |0 0 1 0 0 0 · · · 〉

Matrix for Ĥ, use periodic boundary conditions (pbc):

H =



















−µ −t 0 0 · · · 0 −t
−t −µ −t 0 · · · 0 0
0 −t −µ −t · · · 0 0
0 0 −t −µ · · · 0 0
...

...
...

...
...

...
−t 0 0 0 · · · −t −µ



















Mathematical identity: Eigenvalues of NxN tridiagonal matrix

λn = −µ− 2t cos kn kn = 2πn/N n = 1, 2, 3, . . . N.

Proof: use ansatz vl = eikl in eigenvalue equation

−µ vl − t vl−1 − t vl+1 = λ vl.
(

− µ− t e−ik − t e+ik)eikl = λ eikl.

Discretization of k arises from pbc, v0 = vN and vN+1 = v1.



Eigenvalues of U = 0 Hubbard Hamiltonian in one particle sector (1d chain):

“Energy band” : ǫ(k) = −2t cosk

Eigenvectors (~vk)l = eikl are Bloch states.

Two particle sector: N↑ = 2 and N↓ = 0.

N(N − 1)/2 occupation number basis states:

|1 1 0 0 0 0 · · · 〉, |1 0 1 0 0 0 · · · 〉, |1 0 0 1 0 0 · · · 〉, · · · .
Same construction as N↑ = 1: Act with Ĥ on each state. Get the matrix for Ĥ.

Diagonalizing yields N(N − 1)/2 eigenvalues and eigenvectors.

Eigenvalues are sums of pairs of the eigenvalues of N↑ = 1 matrix

with the Pauli Principle restriction (choose distinct eigenvalues).

Similar result for all sectors N↑ = 3, 4, 5, . . .

Interactions turn the Hubbard Hamiltonian into a many body problem.



Second, treatment of U = 0 limit (d = 1). Canonical transformation:

c†kσ =
1√
N

∑

l

eiklc†lσ. c†lσ =
1√
N

∑

k

e−iklc†kσ.

Momentum k discretized: same number of c†kσ as c†lσ.

Inverse relation follows from orthogonality identities:

1

N

∑

l

ei(k−p)l = δk,p
1

N

∑

k

eik(l−j) = δl,j

These are discrete analog of
∫

dk eikx = 2πδ(x).

Anticommutation relations preserved (suppress spin indices):

{

ck, c
†
p} = { 1√

N

∑

l

e−iklcl ,
1√
N

∑

m

e+ipmc†m
}

=
1

N

∑

l,m

e−ikle+ipm{

cl , c
†
m

}

=
1

N

∑

l,m

e−ikle+ipmδl,m =
∑

l

e+i(p−k)mδl,m = δk,p



Transform d = 1 noninteracting Hubbard Hamiltonian to momentum space:

Ĥ = −t
∑

l

(

c†l+1cl + c†l cl+1

)

= −t
∑

l

1

N

∑

k

∑

p

(

eik(l+1)e−ipl + eikle−ip(l+1) )c†kcp

= −t
∑

k

∑

p

1

N

∑

l

eil(k−p)( eik + e−ip )c†kcp

= −t
∑

k

∑

p

δk,p
(

eik + e−ip )c†kcp

= −t
∑

k

(

eik + e−ik )c†kck

Ĥ =
∑

ǫkc
†
kck =

∑

ǫknk

Reproduce energy band ǫk = −2t cosk.

Ĥ resembles quantum oscillator.

Sum of independent (mutually commuting) number operators.

Evident that single particle levels ǫk give solution for all particle sectors.



Once ǫk known, can compute statistical mechanics properties:

Partition function, density, internal energy, free energy, and entropy

of the noninteracting Hubbard Hamiltonian:

Z = Tr
[

e−βĤ
]

=
∏

k

∑

nk=0,1

e−β(nk−µ) =
∏

k

(1 + e−β(ǫk−µ))

ρ = Z−1 Tr
[

∑

k

nke
−βĤ

]

=
∑

k

(1 + e+β(ǫk−µ))−1 =
∑

k

fk

E = Z−1 Tr
[

Ĥ e−βĤ
]

=
∑

k

ǫk (1 + e+β(ǫk−µ))−1 =
∑

k

ǫkfk

S = β (E − F ) = β E − lnZ

with usual Fermi function fk = (1 + e+β(ǫk−µ))−1.

Having computed ǫk, also valuable to obtain the density of states (DOS),

N(E) =
1

N

∑

k

δ(E − ǫk) → (2π)−d

∫

dkδ(E − ǫk).

DOS counts the number of energy levels having a particular value E.

d = 1 chain with ǫk = −2t cos k has N(E) = 1 /
(

π
√
4t2 − E2

)

.



Informative to consider further examples of noninteracting band structure.

Square lattice is generalization of d = 1 chain,

ǫk = −2t (coskx + cosky)

DOS of square lattice has a van Hove singularity at EF = 0 (half-filling).

Fermi surface (contours of constant ǫk) evolves from circles around (kx, ky) = (0, 0)

at low filling, to a rotated square at half-filling ρ = 1.



Cuprate superconductors: copper atoms of CuO2 sheets reside on a square lattice.

Early theories: DOS singularity enhances Tc ∼ ω e−1/V N(EF ) (BCS formula).

FS of square lattice also has unique feature at half-filling: perfect nesting.

Momentum k = (π, π) maps large segments of the FS onto itself.

Suggests k = (π, π) might play a crucial role. Indeed: antiferromagnetic order.



Another example: (d=1) Hubbard Hamiltonian with staggered potential,

Ĥ = −t
∑

l

(

c†l+1cl + c†l cl+1

)

+∆
∑

l

(−1)lc†l cl

Write (−1)l = eilπ and go to momentum space.

∆
∑

l

(−1)l c†l cl = ∆
1

N

∑

l

eiπl
∑

k

e−ikl c†k
∑

p

e+ipl cp = ∆
∑

k

c†kck+π

Ĥ not fully diagonalized: momenta k and k + π mix.

H =
∑

k

(

c†k c†k+π

)

(

−2t cos k ∆
∆ −2t cos (k + π)

)(

ck
ck+π

)

k sum is over the reduced Brillouin zone −π/2 < k < π/2.

Diagonalization of 2x2 matrix yields two bands Ek = ±
√

(−2t cosk)2 +∆2.

Band gap 2∆ opens at reduced Brillouin zone boundaries k = ±π/2.
Analysis of energy bands in staggered potential identical mathematically to study

of antiferromagnetism in mean field treatment of U 6= 0 Hubbard Hamiltonian.

Band gap → Slater gap arising in antiferromagnets below Néel transition.



DOS of the U = 0 triangular lattice Hubbard Hamiltonian (Left).

The DOS of the U = 0 honeycomb lattice Hubbard Hamiltonian (Right).

Honeycomb lattice notable for its Dirac points with ǫk ∼ k and

linearly vanishing DOS at half-filling.



Final example: ‘Lieb lattice’.

More refined picture of the CuO2 planes of cuprate superconductors.

4

2

13

Topologically localized states

|ψ 〉 = ( c†1 − c†2 + c†3 − c†4 ) | vac 〉

K̂|ψ 〉 = 0

Same construction on any equivalent set of four sites on the lattice.

Degenerate set of states all with the same energy E = 0.

Form linear combinations: momentum states have flat energy band ǫk = 0.

Lieb has shown ferromagnetic order in the presence of such flat bands for U 6= 0.

Flat bands also arise in Kagome lattice.



4. Strong coupling limit: Mott gap and moment formation

If t = 0, [Ĥ, njσ] = 0 for each j,

Number operators also commute with each other: [n̂iσ′ , njσ] = 0.

Consider terms in Ĥ = U
∑

i

(

ni↑ − 1
2

)(

ni↓ − 1
2

)

individually (single sites).

Four occupation number states: | 0 〉 | ↑ 〉 | ↓ 〉 | ↑↓ 〉.

Each is already an eigenstate of Ĥ = U
(

n↑ − 1
2

)(

n↓ − 1
2

)

.

Eigenvalues: U/4 − U/4− µ − U/4− µ U/4− 2µ,.

Partition function and occupation,

Z = Tr
[

e−βĤ ]

= e−β U/4 + 2 e−β (−U/4−µ) + e−β (U/4−2µ)

ρ = Z−1 Tr
[

(n↑ + n↓) e
−βĤ ]

= Z−1 ( 2 e−β(−U/4−µ) + 2 e−β(U/4−2µ) )

Note particle-hole symmetry: ρ = 1 at µ = 0 for all βU .



.

As the temperature T decreases, a “Mott Plateau” develops:

Increasing µ initially adds fermions, but ρ gets frozen at ρ = 1.

Chemical potential must jump by ∆µ = U to add a second fermion.

The compressibility κ = ∂ρ/∂µ = 0 in the Mott gap.



.
‘Local moment’

〈m2〉 = 〈(n↑ − n↓)
2〉 = 〈n↑ + n↓〉 − 2〈n↑n↓〉 = ρ− 2D

D = 〈n↑n↓ 〉 is the ‘double occupancy’.

〈m2〉 = 0 if site is empty ( | 0 〉 ) or doubly occupied ( | ↑↓ 〉 ).
〈m2〉 = 1 if the site has a single fermion ( | ↑ 〉 or | ↓ 〉 ).

µ = 0 (half-filling): Local moments develop as T is reduced or U is increased.



5. Exact diagonalization: Mapping to Heisenberg model

Strong coupling (single site): insight into the role of U in

• Moment formation.

• Development of Mott plateau.

Need t 6= 0 for interplay of kinetic and potential energy

• Formation of intersite magnetic correlations.

Examine Hubbard Hamiltonian HH on two spatial sites.

Simplest non-trivial example of powerful exact diagonalization method.

Occupation number basis for two sites: |n1↑ n1↓ n2↑ n2↓ 〉
t 6= 0 gives fermion number (“quantum”) fluctuations on individual sites.

[Ĥ, n1↑] 6= 0 [Ĥ, n1↓] 6= 0 [Ĥ, n2↑] 6= 0 [Ĥ, n2↓] 6= 0

Ĥ still commutes with total up and down occupation:

[Ĥ, n1↑ + n2↑] = [Ĥ, n1↓ + n2↓] = 0



24 = 16 dimensional Hilbert space divides into nine sectors.

(n1↑ + n2↑, n1↓ + n2↓) = (0, 0), (1, 0), (2, 0), (0, 1), (1, 1), (2, 1), (0, 2), (1, 2), (2, 2)

Dimensions 1, 2, 1, 2, 4, 2, 1, 2, 1 respectively.

Ĥ is block diagonal.

Sectors of dimension 1 immediately identify four eigenstates:

Empty lattice, (0,0) sector: |n1↑ n1↓ n2↑ n2↓ 〉 = | 0 0 0 0 〉
Packed lattice (2,2) sector: |n1↑ n1↓ n2↑ n2↓ 〉 = | 1 1 1 1 〉
Two same spin electrons (2,0), (0,2) sectors: |n1↑ n1↓ n2↑ n2↓ 〉 = | 1 0 1 0 〉, | 0 1 0 1 〉
All have zero kinetic energy. Pauli Principle blocks hopping.

Denote by # a site which is doubly occupied, and by ∗ a site that is empty.

| ↑ ↑ 〉, | ↓ ↓ 〉 (2, 0) and (0, 2) energies are −U/2 (remember these).

| ∗ ∗ 〉, |# # 〉 (0, 0) and (2, 2) energies are +U/2.

As seen at t = 0: U favors local moment on each site.

Four sectors (1, 0), (0, 1), (2, 1), (1, 2) of dimension two have eigenenergies ±t.
Single fermion can hop between sites.



(1, 1) sector has dimension four.

Act with Ĥ on four states | ↑ ↓ 〉, | ↓ ↑ 〉, |# ∗ 〉, | ∗ # 〉,. Get matrix

Ĥ =









−U/2 0 −t −t
0 −U/2 −t −t
−t −t U/2 0
−t −t 0 U/2









Eigenvalues are −U/2, U/2, ±
√

4t2 + U2/4.

We have the complete spectrum of the two site Hubbard Hamiltonian.

In contrast to U = 0, cannot infer all eigenenergies from single particle sector.

Low temperature properties determined by the lowest energy eigenstates.

Energies −U/2 (threefold degenerate), and −
√

4t2 + U2/4.

U ≫ t: expand −
√

4t2 + U2/4 ≈ −U/2− 4t2/U



Mapping to the spin-1/2 Heisenberg Hamiltonian when U ≫ t.

Two site, spin-1/2 Heisenberg Hamiltonian

Ĥ = J ~S1 · ~S2 = J/2
(

(~S1 + ~S2)
2 − ~S 2

1 − ~S 2
2

)

,

Spin-1/2: each site can have Sz = ±1/2.

Adding two spin-1/2: spin-0 (‘singlet’) or spin-1 (‘triplet’).

Square of total spin: (~S1 + ~S2)
2 = 0, 2. ~S 2

1 = ~S 2
2 = 3/4.

Solution of two site Heisenberg model:

J ~S1 · ~S2 = J (0− 3/4− 3/4) = −3J/4 (singlet)

J ~S1 · ~S2 = J (2− 3/4− 3/4) = +J/4 (triplet)

Heisenberg Spectrum: one state of energy −3J/4; three states of energy +J/4.

In large U limit, two site Hubbard Hamiltonian has same structure:

One state of energy −U/2− 4t2/U . Three states of energy −U/2.
Hubbard and Heisenberg eigenspectra are identical. Exchange energy J = 4t2/U .

Same J as previously in second order perturbation theory picture.)

With computer, exact diagonalization can be extended to larger numbers of sites.



6. Quick Overview of Related Analytic Treatments

E

N(E)

Eδ
δN= N(E  )F δE “Stoner” Picture of Magnetic Order

Density of states

N(EF ) = δN/δE ∝ 1/t

Interaction energy lowered by polarizing the spins:

δPE = U(N + δN)(N − δN)− UN2 = −U(δN)2 = −UN(EF ) δNδE

Kinetic energy raised by polarizing the spins:

δKE = +δNδE

Total Energy change:

δE = δKE + δPE = [ 1− UN(EF ) ]δNδE

Stoner Criterion: UN(EF ) > 1 δE < 0 → ferromagnetism!



Mean-field theory (MFT); Replace quartic interaction terms by quadratic.

Uni↑ni↓ → U
[

ni↑〈ni↓〉+ 〈ni↑〉ni↓ − 〈ni↑〉〈ni↓〉
]

Because quadratic the same U = 0 ‘band structure’ techniques work.

Antiferromagnetic order in MFT: ansatz 〈ni↑〉 = −〈ni↓〉 = (−1)imaf .

Therefore, MFT treatment identical to ‘staggered potential’ analysis!

Related to Random Phase Approximation for magnetic susceptibility χ,

χ(q, ω) =
χ0(q, ω)

1− Uχ0(q, ω)
χ0(q, ω) =

∑

p

f(ǫk)− f(ǫk+q)

ω − (ǫk − ǫk+q)

Fermi function: f(ǫk) = [eβ(ǫk−µ) + 1]−1.

Interacting χ is increased (1− Uχ0 < 1): Stoner Enhancement.

Generalization of Stoner criterion (1− UN(EF ) < 1) to q 6= 0.

Ordering wavevector q determined by which χ(q, ω = 0) reaches 1/U first.

MFT very useful, but important failure:

Predicts TNeel ∝ U at large U .

Instead, TNeel ∝ J = t2/U at large U .



A graduate student enjoys the Stoner Enhancement.

(Courtesy of Dan Arovas.)


