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Introduction to the Hubbard Hamiltonian

Creation and Destruction Operators

The Hubbard Hamiltonian

Non-interacting limit: “band structure” of the Hubbard Hamiltonian
Strong coupling limit: Mott gap and moment formation

Exact diagonalization: Mapping to Heisenberg model

2N

Quick Overview of Related Analytic Treatments
Main goal: Insight into Hubbard Hamiltonian via solution in simple limits.

Find me any time to chat/ask questions about the book chapter, etc!
Or contact via email: scalettar@physics.ucdavis.edu.
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1. Creation and Destruction Operators

Familiar a', a for quantum harmonic oscillator:

Y L Sy at= /™ s s/ L
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[p, ] = —ih implies commutation relations, [a, dT] — 1.

Quantum Oscillator Hamiltonian:

with ‘number operator,” i = &' a.

Ground state, | 0):

. ) hw
al0) =0 H[0) = —-10)
Excited states, |n):
. ~ 1
a'lny=vn+1|n+1) Hin)=hw(n+=)|n)



Finite temperature expectation value of quantum mechanical operator A:
(AY=Z""Te[Ae "]
For A = n, Bose-Einstein distribution function:
A hw
(A) =1/("™ —1).
a and a':  ‘boson’ creation and destruction operators.
Henceforth, set h = 1 and kg = 1.
Hubbard Hamiltonian: ‘fermion’ creation and destruction operators.
Conceptual difference: do not arise from position and momentum operators.

Feynman Nobel Prize acceptance speech (deveopment of meson theory):

“I didn’t have the knowledge to understand the way these were defined in the con-
ventional papers because they were expressed at that time wn terms of creation and
annihilation operators, and so on, which, I had not successfully learned. I remem-
ber that when someone had started to teach me about creation and annihilation
operators, that this operator creates an electron, I said, ‘how do you create an
electron? It disagrees with the conservation of charge’, and in that way, I blocked
my miand from learning a very practical scheme of calculation”.



Another different feature for the Hubbard Hamiltonian:
Collection of creation and destruction operators:

AJTU (¢, ) create (destroy) electrons of spin o on site j.

States labeled by multiple occupation numbers:

|n> — \annmngT....n1¢n2¢n3¢....>.

A

Operators describe fermions: Anticommutation relations: {A, B} = AB + BA.

{ _]o”clo'}_ Jl(so'o' {JO'7CIO'}_O {éjd7élo’/}:
Like bosonic case, c |0) =]1) creates electron from vacuum.

At ot 4l
However, ¢&,|1) = |0) = 0.

Jo .]J

Pauli principle! Maximum occupation of a particular site with a given spin is 1.



Anticommutation é}a é;ra = —é;ra éJ.Ta ensures wave function antisymmetry.
Convention required for building states from vacuum: |vac) =[00000 .. .).

110100 ...) =&l él|vac); and [10100...) =&l él [vac) differ by sign.
Essential that convention chosen be followed consistently!

Example: Arises from periodic boundary conditions, electron moves site 1 <> V.

el éeg]00100...001) =él egeéléli|vac)

= —¢l eley el vac) = —él 6;(1 — &y x| vac)
= ¢l él|vac) = —[10100...000)

Rule: ‘jump over’ odd number of occupied sites (‘1’) — minus sign.
If convention not followed carefully, things break, e.g. two noninteracting

electrons will not have energy which is sum of single electron energies!



2. The Hubbard Hamiltonian

__tz Cio JO‘+CJO'CIO' —I_UZ(an_% MZTL —|—’I'L

(ij)o

o cl
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(¢;,) are fermion creation(destruction) operators, site i, spin o =1, J..
e Kinetic energy t describes hopping between near-neighbor sites (ij).
e Chemical potential y controls filling.
e Describes qualitative “strong correlation” physics of many-electron materials
Transition metal monoxides, cuprate superconductors, ...
On-site repulsion U sufficiently large — Mott Insulator
Exchange interaction J o< t° /U — Antiferromagnetism
Stripes and other charge/spin inhomogeneities.
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Mott Insulators and Antiferromagnetism: Qualitative Pictures

Consider a lattice of sites with
“commensurate filling”:

The average number of electrons
1S one per site.

“quantum fluctuations” (kinetic energy t)

and thermal fluctuations 71", both favor
electrons moving around lattice.

Metal: odd number (one) particle per cell/site.



But what if there were a large
repulsive interaction U between
electrons on the same site?

A Mott Insulator forms.
Basic physics of parent compounds
of cuprate superconductors!



Two ways to destroy Mott Insulator:
x Decrease U/t: By applying pressure (MnO)
« Shift (n) # 1: Dope chemically (cuprate superconductors)

What is optimal spin arrangement?
Hopping of neighboring parallel spins forbidden by Pauli.

Antiparallel arrangement lower in second order perturbation theory.

t t

R

AE® =0 AE® o« —t2 /U = —J

Mott insulating behavior and antiferromagnetism go hand-in-hand.
Qualitative picture of cuprate physics before doping.

Still do not fully understand why cuprates superconduct after doping.



3. Non-interacting limit: “band structure” of the Hubbard Hamiltonian

Two alternate (but equivalent) solutions at U = 0.

One works in real space. The other in momentum space.
Start with the real space analysis: (useful in exact diagonalization approach later):
H commutes with the total number operators Ny = ZJ. ns+ and N = ZJ. Nl

Commutator of the kinetic energy on ‘link’ of the lattice with density at vertices:

T T —

[Ciacja + cjacia7 o + nJO'] =0

Handy identity: [AB,C] = A{B,C} —{A,C}B.

Hopping contains creation and annihilation operators in pairs.
Implication: eigenstates of H come in separate sectors of total Ny and N;.

Consider single particle sector where Ny =1 and N} = 0.
Occupation number basis: [100000---), [010000---), |[001000---),



Examine one-d linear chain. H moves occupied site to the left or right:
ﬁ]OlOOOO---> = —u]010000---) —¢|100000---) —¢|001000---)

Matrix for H, use periodic boundary conditions (pbc):

—u -t 0 0 0 —t \
—t —p -t 0 0 0
0O -t —u —t 0 0
H = 0 0 —t —pu 0 O
\ —t 0 0 0 —t —pu )

Mathematical identity: Eigenvalues of NxN tridiagonal matrix

An = —p — 2t cos ky, kn =2mn/N n=123,...N.

kl

Proof: use ansatz v; = e'™" in eigenvalue equation

—puvy —tv—1 —tver = Avy.
(_ y— ik _ te—i—z’k)eikl _ ) iR

Discretization of k arises from pbc, vo = vy and vn4+1 = v1.



Eigenvalues of U = 0 Hubbard Hamiltonian in one particle sector (1d chain):

“Energy band” : e(k) = —2t cosk

Eigenvectors (v ); = e'*! are Bloch states.

T'wo particle sector: N4y =2 and N; = 0.
N(N — 1)/2 occupation number basis states:
110000---), [101000---), [100100---),
Same construction as Ny = 1: Act with H on each state. Get the matrix for H.
Diagonalizing yields N(N — 1)/2 eigenvalues and eigenvectors.
Eigenvalues are sums of pairs of the eigenvalues of N+ = 1 matrix
with the Pauli Principle restriction (choose distinct eigenvalues).
Similar result for all sectors Ny = 3, 4, 5, ...

Interactions turn the Hubbard Hamiltonian into a many body problem.



Second, treatment of U = 0 limit (d = 1). Canonical transformation:

1 : 1 .

T 2 : ikl 7 T 2 : —ikl 7
C = — e C;, _. C = —— e C, .
ko /_N ; lo lo /_N - ko

Momentum k discretized: same number of CLU as czra.

Inverse relation follows from orthogonality identities:

1 1(k—p)l 1k (l—
NZG( p):(;k’p _Z (I—3) _ L
l

These are discrete analog of [ dk e = 27§(x).

Anticommutation relations preserved (suppress spin indices):

1 —1 1 pm
{Ckncy];}: \/—Nzl:e klczy\/—N;Ger In
= % Ze_ikleJripm{Cl,Cjn}

_ N Ze—zkl —i—zpm6 = Ze—l—z(p k)m5 = 5l€,p

I,m



Transform d = 1 noninteracting Hubbard Hamiltonian to momentum space:
H= —tzl: (cLlcl + czclﬂ)
_ —tZ% Z Z (6ik(l—|—1)€—z’pl 4 gihlg=ip(+D) )CLCP
l ko p
=t Y S (g e ),
k l
= —¢ Z zp:ék,p(eik e P )chp
k
— Z (:ik 4k )czck
k
A=Y ccle, =3 e

Reproduce energy band ¢, = —2t cosk.
H resembles quantum oscillator.
Sum of independent (mutually commuting) number operators.

Evident that single particle levels €x give solution for all particle sectors.



Once € known, can compute statistical mechanics properties:
Partition function, density, internal energy, free energy, and entropy

of the noninteracting Hubbard Hamiltonian:

7 — Tr {e—ﬁﬁ} — H Z e—ﬁ(nk—ﬂ) — H<1 + 6—5(6k—ﬂ)>

k nk=0,1 k
Tk k
E=271'Tr ﬁe_ﬁﬁ} :ZGk(1+e+B(ek_“))_ :Zékfk
; k k

S=8(E—F)=BE—-InZ

with usual Fermi function fx = (1 + 6+B(€k_“))_1

Having computed ek, also valuable to obtain the density of states (DOS),

— %Zé(E —e) — (2m)7 ¢ /dk5(E — €x).

DOS counts the number of energy levels having a particular value E.

d =1 chain with e, = —2tcosk has N(E) =1/ (7V4t?> — E?).




Informative to consider further examples of noninteracting band structure.

Square lattice is generalization of d = 1 chain,
ex = —2t (cosky + cosky)
DOS of square lattice has a van Hove singularity at Er = 0 (half-filling).

Fermi surface (contours of constant ey ) evolves from circles around (kz, k) = (0, 0)

at low filling, to a rotated square at half-filling p = 1.

EaN
2
=)
g
N
e
(g



Cuprate superconductors: copper atoms of CuQOs sheets reside on a square lattice.

Early theories: DOS singularity enhances T, ~ we™/VNEr) (BCS formula).

F'S of square lattice also has unique feature at half-filling: perfect nesting.
Momentum k = (7, ) maps large segments of the F'S onto itself.

Suggests k = (7, w) might play a crucial role. Indeed: antiferromagnetic order.



Another example: (d=1) Hubbard Hamiltonian with staggered potential,
tz cl+1cl —|—clclJrl —|—AZ )ele,

tlm

Write (—1)" = €™ and go to momentum space.

AZ<_ ) Clcl —ANZ m‘rlz —1kl Ck Z —|—zpl _ ZC]LC]%_HT

l k
H not fully diagonalized: momenta k and k + 7 mix.

H = Z Chim )( _ZtACOSk —2tcosA(k+7T) ) ( N )

Ck—l—ﬂ'

k sum is over the reduced Brillouin zone —7/2 < k < 7/2.

Diagonalization of 2x2 matrix yields two bands Ey = i\/ —2t cosk)? + A2,
Band gap 2A opens at reduced Brillouin zone boundaries k = +m/2.

Analysis of energy bands in staggered potential identical mathematically to study
of antiferromagnetism in mean field treatment of U # 0 Hubbard Hamiltonian.

Band gap — Slater gap arising in antiferromagnets below Néel transition.



DOS of the U = 0 triangular lattice Hubbard Hamiltonian (Left).
The DOS of the U = 0 honeycomb lattice Hubbard Hamiltonian (Right).
Honeycomb lattice notable for its Dirac points with € ~ k£ and

linearly vanishing DOS at half-filling.
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Final example: ‘Lieb lattice’.

More refined picture of the CuO2 planes of cuprate superconductors.

o) 0 o O
O——0O—0—0—0—0—@ . .
Topologically localized states

o) o) 0 O
O—e—0 2 o—eo—0—e [9) = (] —cf + e} —cl)|vac)
0 3¢ ol 0 K1) =0
O——0O—0—0—0—0—@

A
O O O O

Same construction on any equivalent set of four sites on the lattice.

Degenerate set of states all with the same energy E = 0.

Form linear combinations: momentum states have flat energy band ex = 0.

Lieb has shown ferromagnetic order in the presence of such flat bands for U # 0.

Flat bands also arise in Kagome lattice.



4. Strong coupling limit: Mott gap and moment formation
Ift =0, [ﬁ,nja] — 0 for each j,
Number operators also commute with each other: [nj,/, nj,| = 0.
Consider terms in H = U > (nit — 2) (niyy — %) individually (single sites).
Four occupation number states: [0) |1) |1) | Tl).
1

Each is already an eigenstate of H = U (nT — %) (n 1 — 5).
Eigenvalues: u/4a -U/d—pu —-U/d—pn U/d—2pu,.

Partition function and occupation,
Z =Tr [e_ﬁﬁ} — o BU/ | 9 =AU/ dmp) | —B(U/4=2p)

p = Z_l Tr [(’I’LT + fn’i) G_ﬂﬁ} — Z_l (26—5(_U/4—H) + 26_B(U/4_2“))

Note particle-hole symmetry: p =1 at u = 0 for all SU.



t=0 U=4

"Mott Plateau"

\
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As the temperature 1" decreases, a “Mott Plateau” develops:
Increasing p initially adds fermions, but p gets frozen at p = 1.
Chemical potential must jump by Au = U to add a second fermion.

The compressibility kK = 0p/0u = 0 in the Mott gap.



‘Local moment’

(m®) = {(nt —ny)°) = (ny +ny) = 2{nyny) = p— 2D

D = (nqyny ) is the ‘double occupancy’.

(m?) = 0 if site is empty (|0)) or doubly occupied (| 11)).
(m?) = 1 if the site has a single fermion (| 1) or | })).
1-
L 10 T=2
ST ;
A 0.8 1 A0
0.7 1 Vo
0.6 :
o, 0
U T

= 0 (half-filling): Local moments develop as T is reduced or U is increased.



5. Exact diagonalization: Mapping to Heisenberg model

Strong coupling (single site): insight into the role of U in

e Moment formation.

e Development of Mott plateau.

Need t # 0 for interplay of kinetic and potential energy

e Formation of intersite magnetic correlations.

Examine Hubbard Hamiltonian HH on two spatial sites.

Simplest non-trivial example of powerful exact diagonalization method.
Occupation number basis for two sites: | n14+ M1y Mot noy )

t # 0 gives fermion number (“quantum”) fluctuations on individual sites.

[[:Iaan] # 0 [I:[,TLLL] 7é 0 [ﬁ7n2T] # 0 [IA{,?’LQJ/] # 0

A

H still commutes with total up and down occupation:

[H,n1t 4 not] = [H,n1y +nay] =0



2* = 16 dimensional Hilbert space divides into nine sectors.

(n1r + n2p, 1y +n2y) = (0,0),(1,0),(2,0), (0,1),(1,1),(2,1),(0,2),(1,2), (2, 2)
Dimensions 1, 2, 1, 2, 4, 2, 1, 2, 1 respectively.

H is block diagonal.

Sectors of dimension 1 immediately identify four eigenstates:

Empty lattice, (0,0) sector: |nisniynarng ) =0000)

Packed lattice (2,2) sector: |niynignerne;)=|1111)

Two same spin electrons (2,0), (0,2) sectors: |ni4+niynarne; ) =11010), [0101)
All have zero kinetic energy. Pauli Principle blocks hopping.

Denote by # a site which is doubly occupied, and by * a site that is empty.
T 1), |4 1) (2,0) and (0, 2) energies are —U /2 (remember these).

| % %), | H# H#) (0,0) and (2, 2) energies are +U/2.

As seen at t = 0: U favors local moment on each site.

Four sectors (1,0), (0,1),(2,1),(1,2) of dimension two have eigenenergies +t.

Single fermion can hop between sites.



(1,1) sector has dimension four.

Act with H on four states L)L ), # %), |+ #),. Get matrix

~U/2 0 -t -t

- 0o -U/2 -t -t
H=1t"  Z up o

St —t 0 U2

Eigenvalues are —U/2, U/2, +/4t2 + U2 /4.
We have the complete spectrum of the two site Hubbard Hamiltonian.
In contrast to U = 0, cannot infer all eigenenergies from single particle sector.

Low temperature properties determined by the lowest energy eigenstates.

Energies —U/2 (threefold degenerate), and —+/4t2 + U2 /4.
U>t: expand —/4t24+U2/4 ~ —U/2—4t"/U




Mapping to the spin-1/2 Heisenberg Hamiltonian when U > t.
Two site, spin-1/2 Heisenberg Hamiltonian
H=J5 -8 =J/2((S1+ %) -8 —57),
Spin-1/2: each site can have S, = +1/2.
Adding two spin-1/2: spin-0 (‘singlet’) or spin-1 (‘triplet’).
Square of total spin: (51 + 52)2 =0, 2. S2 =57 = 3/4.
Solution of two site Heisenberg model:
JS) - Sy =J(0—3/4—3/4) = —3.J/4 (singlet)
JS1- Sy =J(2—3/4—3/4) = +.J/4 (triplet)
Heisenberg Spectrum: one state of energy —3.J/4; three states of energy +.J/4.
In large U limit, two site Hubbard Hamiltonian has same structure:
One state of energy —U//2 — 4t*/U. Three states of energy —U /2.
Hubbard and Heisenberg eigenspectra are identical. Exchange energy J = 4t°/U.

Same J as previously in second order perturbation theory picture.)

With computer, exact diagonalization can be extended to larger numbers of sites.



6. Quick Overview of Related Analytic Treatments

E
A
5E ON=N(E;) dE “Stoner” Picture of Magnetic Order
Density of states
* + N(Er) =6N/6F x 1/t
>
N(E)

Interaction energy lowered by polarizing the spins:
SPE =U(N +6N)(N —6N) —UN? = —U(§N)> = ~-UN(Er) §NSE
Kinetic energy raised by polarizing the spins:

OKE = +0NJOE

Total Energy change:
SE = 6KE +6PE = [1 — UN(EF)]6NSE
Stoner Criterion: UN(FEr) > 1 0F < 0 — ferromagnetism!



Mean-field theory (MFT); Replace quartic interaction terms by quadratic.

Unitni, — U nig(nig) + (nip)nig — (nig) (nig) |

Because quadratic the same U = 0 ‘band structure’ techniques work.
Antiferromagnetic order in MFT: ansatz (n:) = —(ni.) = (=1)" mat.
Therefore, MF'T treatment identical to ‘staggered potential’ analysis!

Related to Random Phase Approximation for magnetic susceptibility x,

x(q,w) =

xo(q,w) Z f(er) — flentq)

1 —Uxo(q,w) — (€k — €ktq)
Fermi function: f(ex) = [e?(+=#) 4+ 1],

Interacting x is increased (1 — Uxo < 1): Stoner Enhancement.

Generalization of Stoner criterion (1 — UN(EFr) < 1) to g # 0.
Ordering wavevector ¢ determined by which x(q,w = 0) reaches 1/U first.

MFT very useful, but important failure:
Predicts TNeelt < U at large U.
Instead, TNeel < J = t2/U at large U.



A graduate student enjoys the Stoner Enhancement.

(Courtesy of Dan Arovas.)



