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8.2 Florian Gebhard

1 Introduction
Density Functional Theory (DFT) is the workhorse of electronic structure theory. Based on the
Hohenberg-Kohn and Kohn-Sham theorems [1], the ground-state properties of an interacting
many-electron system are calculated from those of an effective single-particle problem that can
be solved numerically. An essential ingredient in DFT is the so-called exchange-correlation
potential which, however, is unknown and sensible approximations must be devised, e.g., the
local (spin) density approximation, L(S)DA. In this way, the electronic properties of metals
were calculated systematically [2]. Unfortunately, the L(S)DA leads to unsatisfactory results
for transition metals and their compounds. The electrons in the narrow 3d, or 4f/5f , bands
experience correlations that are not covered by current exchange-correlation potentials.
For a more accurate description of electronic correlations in narrow bands, Hubbard-type mod-
els [3, 4] have been put forward. However, simplistic model Hamiltonians can describe limited
aspects of real materials at best, while, at the same time, they reintroduce the full complexity
of the many-body problem. Recently, new methods were developed that permit the (numerical)
analysis of multi-band Hubbard models and, moreover, can be combined with DFT, specifi-
cally, the LDA+U method [5], the LDA+DMFT (Dynamical Mean-Field Theory) [6,7], and the
Gutzwiller variational approach [8–11]. The LDA+U approach treats atomic interactions on a
mean-field level so that it is computationally cheap but it ignores true many-body correlations.
The DMFT becomes formally exact for infinite lattice coordination number, Z → ∞, but it
requires the self-consistent solution of a dynamical impurity problem that is numerically very
demanding. The Gutzwiller DFT is based on a variational treatment of local many-body corre-
lations. Expectation values can be calculated for Z → ∞ without further approximations, and
the remaining computational problem remains tractable.
In this chapter, we present a formal derivation of the Gutzwiller DFT as a generic extension of
the DFT. Our formulae apply for general Gutzwiller-correlated wave functions and reproduce
expressions used previously [9, 10] as special cases. We provide results for nickel in the face-
centered cubic (fcc) structure and for iron in its body-centered cubic (bcc) ground state. The
Gutzwiller DFT results for the lattice constant, the magnetic spin-only moment, and the bulk
modulus agree very well with experiments. Moreover, the quasi-particle bandstructure from
Gutzwiller DFT is in satisfactory agreement with data from Angle-Resolved Photo-Emission
Spectroscopy (ARPES). As found earlier [8–10], the Gutzwiller DFT overcomes the limitations
of DFT for the description of transition metals.
In Sect. 2 we recall the derivation of Density Functional Theory (DFT) as a variational approach
to the many-body problem and its mapping to an effective single-particle reference system
(Kohn-Sham scheme). In Sect. 3 we extend our derivation to many-particle reference systems.
We formulate the Gutzwiller density functional whose minimization leads to the Gutzwiller–
Kohn-Sham Hamiltonian. The theory is worked out in the limit of large coordination number,
Z → ∞, where explicit expressions for the Gutzwiller density functional are available. In
Sect. 4 we present results for fcc nickel (Z = 12) and for bcc iron (Z = 8). Summary and
conclusions, Sect. 5, close our presentation. Some technical details are deferred to the appendix.
This work is based on Refs. [12, 13]. Further on, excerpts are taken without explicit citations.



Gutzwiller DFT 8.3

2 Density Functional Theory

We start our presentation with a concise derivation of Density Functional Theory that can readily
be extended to the Gutzwiller Density Functional Theory.

2.1 Many-particle Hamiltonian and Ritz variational principle

The non-relativistic many-particle Hamiltonian for electrons with spin σ =↑, ↓ reads (~ ≡ 1)

Ĥ = Ĥband + Ĥint ,

Ĥband =
∑
σ

∫
dr Ψ̂ †σ(r)

(
−∆r

2m
+ U(r)

)
Ψ̂σ(r) ,

Ĥint =
∑
σ,σ′

∫
dr

∫
dr′ Ψ̂ †σ(r)Ψ̂ †σ′(r

′)V (r− r′) Ψ̂σ′(r
′)Ψ̂σ(r) (1)

with

V (r− r′) =
1

2

e2

|r− r′|
. (2)

The electrons experience the periodic potential of the ions, U(r), and their mutual Coulomb
interaction, V (r − r′). The total number of electrons is N = N↑ + N↓. According to the Ritz
variational principle, the ground state of a Hamiltonian Ĥ can be obtained from the minimiza-
tion of the energy functional

E [{|Ψ〉}] = 〈Ψ |Ĥ|Ψ〉 (3)

in the subset of normalized states |Ψ〉 in the Hilbert space with N electrons, 〈Ψ |Ψ〉 = 1.

2.2 Levy’s constrained search

The minimization of the energy functional (3) is done in two steps, the constrained search [14],
Sect. 2.2.1, and the minimization of the density functional, Sect. 2.2.2. To this end, we consider
the subset of normalized states |Ψ (n)〉 with fixed electron densities nσ(r),

nσ(r) = 〈Ψ (n)|Ψ̂ †σ(r)Ψ̂σ(r)|Ψ (n)〉 . (4)

In the following we accept ‘physical’ densities only, i.e., those nσ(r) for which states |Ψ (n)〉 can
actually be found. For the subset of states |Ψ (n)〉 we define the electronic Hamiltonian

Ĥe = Ĥkin + V̂xc , (5)

Ĥkin =
∑
σ

∫
dr Ψ̂ †σ(r)

(
−∆r

2m

)
Ψ̂σ(r) , (6)

V̂xc =
∑
σ,σ′

∫
dr

∫
dr′ V (r− r′)

[
Ψ̂ †σ(r)Ψ̂ †σ′(r

′)Ψ̂σ′(r
′)Ψ̂σ(r)

−Ψ̂ †σ(r)Ψ̂σ(r)nσ′(r′)− Ψ̂ †σ′(r
′)Ψ̂σ′(r

′)nσ(r) + nσ(r)nσ′(r′)
]
. (7)
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Here, we extracted the Hartree terms from the Coulomb interaction Hint in eq. (1) so that V̂xc

contains only the so-called exchange and correlation contributions. In the subset of normalized
states |Ψ (n)〉 we define the functional

F
[
{nσ(r)} ,

{
|Ψ (n)〉

}]
= 〈Ψ (n)|Ĥe|Ψ (n)〉 . (8)

For fixed densities nσ(r), the Hamiltonian Ĥe defines an electronic problem where the periodic
potential of the ions and the Hartree interaction are formally absent.

2.2.1 Constrained search

The formal task is to find the minimum of the energy functional F in (8) with respect to |Ψ (n)〉,

F̄ [{nσ(r)}] = Min{|Ψ (n)〉}F
[
{nσ(r)} ,

{
|Ψ (n)〉

}]
. (9)

Recall that the electron densities nσ(r) are fixed in this step. We denote the resulting optimal
many-particle state by |Ψ (n)

0 〉. Thus, we may write

F̄ [{nσ(r)}] = F
[
{nσ(r)} ,

{
|Ψ (n)

0 〉
}]

= 〈Ψ (n)
0 |Ĥe|Ψ (n)

0 〉 . (10)

For later use, we define the corresponding functionals for the kinetic energy

K [{nσ(r)}] = 〈Ψ (n)
0 |Ĥkin|Ψ (n)

0 〉 (11)

and the exchange-correlation energy

Exc [{nσ(r)}] = 〈Ψ (n)
0 |V̂xc|Ψ (n)

0 〉 (12)

so that
F̄ [{nσ(r)}] = K [{nσ(r)}] + Exc [{nσ(r)}] . (13)

2.2.2 Density functional, ground-state density, and ground-state energy

After the constrained search as a first step, we are led to the density functional that determines
the ground-state energy and densities (Hohenberg-Kohn theorem [1])

D [{nσ(r)}] = F̄ [{nσ(r)}] + U [{nσ(r)}] + VHar [{nσ(r)}]
= K [{nσ(r)}] + U [{nσ(r)}] + VHar [{nσ(r)}] + Exc [{nσ(r)}] (14)

with the ionic and Hartree energy contributions

U [{nσ(r)}] =
∑
σ

∫
dr U(r)nσ(r) ,

VHar [{nσ(r)}] =
∑
σ,σ′

∫
dr

∫
dr′ V (r− r′)nσ(r)nσ′(r′) . (15)

According to the Ritz variational principle, the ground-state energy E0 is found from the mini-
mization of this functional over the densities nσ(r),

E0 = Min{nσ(r)}D [{nσ(r)}] . (16)

The ground-state densities n0
σ(r) are those where the minimum of D [{nσ(r)}] is obtained.
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2.3 Single-particle reference system

We consider the subset of single-particle product states |Φ(n)〉 that are normalized to unity,
〈Φ(n)|Φ(n)〉 = 1. As before, the upper index indicates that they all lead to the same (physical)
single-particle densities nsp

σ (r),

nsp
σ (r) = 〈Φ(n)|Ψ̂ †σ(r)Ψ̂σ(r)|Φ(n)〉 . (17)

As our single-particle Hamiltonian we consider the kinetic-energy operator Ĥkin, see eq. (6).
For fixed single-particle densities nsp

σ (r) we define the single-particle kinetic-energy functional

Fsp

[
{nsp

σ (r)} ,
{
|Φ(n)〉

}]
= 〈Φ(n)|Ĥkin|Φ(n)〉 . (18)

2.3.1 Constrained search

As in Sect. 2.2, we carry out a constrained search in the subset of states |Φ(n)〉. The task
is the minimization of the kinetic-energy functional Fsp

[
{nsp

σ (r)} ,
{
|Φ(n)〉

}]
. We denote the

optimized single-particle product state by |Φ(n)
0 〉 so that we find the density functional for the

kinetic energy as

F̄sp [{nsp
σ (r)}] = 〈Φ(n)

0 |Ĥkin|Φ(n)
0 〉 ≡ Ksp [{nsp

σ (r)}] . (19)

2.3.2 Single-particle density functional

As the density functional Dsp [{nsp
σ (r)}] that corresponds to the single-particle problem we

define

Dsp [{nsp
σ (r)}] = Ksp [{nsp

σ (r)}] + U [{nsp
σ (r)}] + VHar [{nsp

σ (r)}] + Esp,xc [{nsp
σ (r)}] (20)

with the kinetic energy term from (19), the contributions from the external potential and the
Hartree terms U [{nsp

σ (r)}] and VHar [{nsp
σ (r)}] from eq. (15), and a single-particle exchange-

correlation potential Esp,xc [{nsp
σ (r)}] that we will specify later. The functional (20) defines our

single-particle reference system.

2.3.3 Noninteracting V -representability

In order to link the many-particle and single-particle approaches we make the assumption of
non-interacting V -representability [1]: For any given (physical) density nσ(r) we can find a
subset of normalized single-particle product states |Φ(n)〉 with N electrons such that

nsp
σ (r) = nσ(r) . (21)

Moreover, we demand that the density functionalsD [{nσ(r)}] (14) for the interacting electrons
and Dsp [{nσ(r)}] (20) for the single-particle problem agree with each other [15],

Dsp [{nσ(r)}] = D [{nσ(r)}] . (22)
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Then, the single-particle problem leads to the same ground-state density n0
σ(r) and ground-state

energy E0 as the interacting-particle Hamiltonian because the density variation is done with the
same density functional (Kohn-Sham theorem) [1].
The condition (22) is equivalent to

Ksp [{nσ(r)}] + Esp,xc [{nσ(r)}] = K [{nσ(r)}] + Exc [{nσ(r)}] (23)

because the interaction with the external potential and the Hartree term only depend on the
densities that are presumed equal for the interacting problem and the non-interacting reference
system, see eq. (21). Eq. (23) then leads to an exact expression for the single-particle exchange-
correlation energy

Esp,xc [{nσ(r)}] = K [{nσ(r)}]−Ksp [{nσ(r)}] + Exc [{nσ(r)}] . (24)

This is our defining equation for Esp,xc [{nσ(r)}] in eq. (20).

2.4 Kohn-Sham Hamiltonian

In the following we address the single-particle energy functional directly, i.e., the Ritz varia-
tional problem without a prior constrained search,

E [{nσ(r)} , {|Φ〉}] = 〈Φ|Ĥkin|Φ〉+ U [{nσ(r)}] + VHar [{nσ(r)}] + Esp,xc [{nσ(r)}] . (25)

For the extension to the Gutzwiller Density Functional Theory in Sect. 3, we expand the field
operators in a basis,

Ψ̂σ(r) =
∑
i

〈r|i, σ〉ĉi,σ , Ψ̂ †σ(r) =
∑
i

ĉ†i,σ〈i, σ|r〉 , (26)

where the index i represents a combination of site (or crystal momentum) index and an orbital
index. For a canonical basis we must have completeness and orthogonality,∑

i,σ

|i, σ〉〈i, σ| = 1̂ , 〈i, σ|j, σ′〉 = δi,jδσ,σ′ . (27)

When we insert (26) into (6), we obtain the operator for the kinetic energy in a general single-
particle basis,

Ĥkin =
∑
i,j,σ

Ti,j;σ ĉ
†
i,σ ĉj,σ , (28)

where the elements of the kinetic-energy matrix T̃σ are given by

Ti,j;σ =

∫
dr ξ∗i,σ(r)

(
−∆r

2m

)
ξj,σ(r) , (29)

with ξi,σ(r) = 〈r|i, σ〉.
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2.4.1 Energy functional

We introduce the single-particle density matrix ρ̃. Its elements in the general single-particle
basis read

ρ(i,σ),(j,σ) = 〈Φ|ĉ†j,σ ĉi,σ|Φ〉 ≡ ρi,j;σ . (30)

Then, the densities are given by

nσ(r) =
∑
i,j

ξ∗i,σ(r)ξj,σ(r)ρj,i;σ . (31)

Using these definitions, we can write the energy functional in the form

E [{nσ(r)} , ρ̃] =
∑
i,j

∑
σ

Ti,j;σρj,i;σ +U [{nσ(r)}] + VHar [{nσ(r)}] +Esp,xc [{nσ(r)}] . (32)

The fact that |Φ〉 are normalized single-particle product states is encoded in the matrix relation

ρ̃ · ρ̃ = ρ̃ . (33)

This is readily proven by using a unitary transformation between the operators ĉi,σ and the
single-particle operators b̂k,σ that generate |Φ〉, see appendix A.1.1.
When we minimize E [{nσ(r)} , ρ̃] with respect to ρ̃ we must take the condition (33) into ac-
count using a matrix Ω̃ of Lagrange multipliers Ωl,m;σ. Moreover, we use the Lagrange multi-

pliers κσ(r) to ensure eq. (31). Altogether we address GDFT ≡ GDFT

[
ρ̃, Ω̃, {nσ(r)} , {κσ(r)}

]
GDFT = E [{nσ(r)} , ρ̃]−

∑
l,m,σ

Ωl,m;σ

(∑
p

ρl,p;σρp,m;σ − ρl,m;σ

)
−
∑
σ

∫
dr κσ(r)

(
nσ(r)−

∑
i,j

ξ∗i,σ(r)ξj,σ(r)ρj,i;σ

)
. (34)

2.4.2 Minimization

When we minimize GDFT in eq. (34) with respect to nσ(r) we find

κσ(r) = U(r) + VHar(r) + vsp,xc,σ(r) , (35)

VHar(r) ≡
∑
σ′

∫
dr′ 2V (r− r′)n0

σ′(r′) , (36)

vsp,xc,σ(r) ≡ ∂Esp,xc [{nσ′(r′)}]
∂nσ(r)

∣∣∣∣
nσ(r)=n0

σ(r)

=
∂
[
K
[
{nσ′(r′)}

]
−Ksp

[
{nσ′(r′)}

]
+ Exc

[
{nσ′(r′)}

]]
∂nσ(r)

∣∣∣∣∣∣
nσ(r)=n0

σ(r)

, (37)

where VHar(r) is the Hartree interaction and vsp,xc,σ(r) is the single-particle exchange-correla-
tion potential.
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The minimization with respect to ρ̃ is outlined in appendix A.1.2, see also Ref. [16]. It leads to
the Kohn-Sham single-particle Hamiltonian

ĤKS =
∑
i,j,σ

TKS
i,j;σ ĉ

†
i,σ ĉj,σ , (38)

where the elements of the Kohn-Sham Hamilton matrix T̃KS
σ are given by

TKS
i,j;σ =

∂E [{nσ(r)} , ρ̃]

∂ρj,i;σ
+

∫
dr κσ(r)ξ∗i,σ(r)ξj,σ(r) . (39)

Explicitly,

TKS
i,j;σ =

∫
dr ξ∗i,σ(r)hKS

σ (r)ξj,σ(r) , (40)

hKS
σ (r) ≡ −∆r

2m
+ V KS

σ (r) , (41)

V KS
σ (r) ≡ κσ(r) = U(r) + VHar(r) + vsp,xc,σ(r) . (42)

Here, we defined the ‘Kohn-Sham potential’ V KS
σ (r) that, in our derivation, is identical to the

Lagrange parameter κσ(r).
The remaining task is to find the basis in which the Kohn-Sham matrix T̃KS

σ is diagonal, for
a translationally invariant system, see appendix A.1.3. This gives the dispersion εn(k) of the
Kohn-Sham quasi-particles.

3 DFT for many-particle reference systems

The Kohn-Sham potential (37) cannot be calculated exactly because the functionals in eq. (24)
are not known. Therefore, assumptions must be made about the form of the single-particle
exchange-correlation potential, e.g., the Local Density Approximation [1]. Unfortunately, such
approximations are often not satisfactory, e.g., for transition metals. Consequently, more so-
phisticated many-electron approaches must be employed to improve the Kohn-Sham approach.

3.1 Hubbard Hamiltonian and Hubbard density functional
3.1.1 Multi-band Hubbard model

A better description of transition metals and their compounds can be achieved by supplementing
the single-particle reference system resulting from Ĥkin in Sect. 2.3 by a multi-band Hubbard
interaction. Then, our multi-band reference system follows from

ĤH = Ĥkin + V̂loc − V̂dc , (43)

where V̂loc describes local interactions between electrons in Wannier orbitals on the same site R.
The local single-particle operator V̂dc accounts for the double counting of their interactions in
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the Hubbard term V̂loc and in the single-particle exchange-correlation energy Esp,xc. We assume
that V̂loc and V̂dc do not depend on the densities nσ(r) explicitly.
For the local interaction we set

V̂loc =
∑
R

V̂loc(R) ,

V̂loc(R) =
1

2

∑
(c1,σ1),...,(c4,σ4)

U
(c1,σ1),(c2,σ2)
(c3,σ3),(c4,σ4) ĉ

†
R,c1,σ1

ĉ†R,c2,σ2 ĉR,c3,σ3 ĉR,c4,σ4 . (44)

Note that only electrons in the small subset of correlated orbitals (index c) experience the two-
particle interaction V̂loc: When there are two electrons in the Wannier orbitals φR,c3,σ3(r) and
φR,c4,σ4(r) centered around the lattice site R, they are scattered into the orbitals φR,c1,σ1(r)

and φR,c2,σ2(r), centered around the same lattice site R; for the definition of basis states, see
appendix A.1.3. Typically, we consider c = 3d for the transition metals and their compounds.
The interaction strengths are parameters of the theory; for a comprehensive symmetry analysis,
see Ref. [17]. Later, we shall employ the spherical approximation so that U ······ for d-electrons can
be expressed in terms of three Racah parameters A, B, and C. Fixing C/B makes it possible
to introduce an effective Hubbard parameter U and an effective Hund’s-rule coupling J , see
Sect. 3.4 and appendix A.2. Due to screening, the effective Hubbard interaction U is smaller
than its bare, atomic value. In general, U and J are chosen to obtain good agreement with
experiment, see Sect. 4.

3.1.2 Hubbard density functional

According to Levy’s constrained search, we must find the minimum of the functional

FH

[
{nσ(r)} ,

{
|Ψ (n)〉

}]
= 〈Ψ (n)|ĤH|Ψ (n)〉 (45)

in the subset of normalized states with given (physical) density nσ(r), see eq. (4). The minimum
of FH

[
{nσ(r)} ,

{
|Ψ (n)〉

}]
over the states |Ψ (n)〉 is the ground state |Ψ (n)

H,0〉 of the Hamiltonian
ĤH for fixed densities nσ(r). In analogy to Sect. 2.3, we define the Hubbard density functional

DH [{nσ(r)}] = KH [{nσ(r)}] + U [{nσ(r)}] + VHar [{nσ(r)}]
+Vloc [{nσ(r)}]− Vdc [{nσ(r)}] + EH,xc [{nσ(r)}] , (46)

where

KH [{nσ(r)}] = 〈Ψ (n)
H,0|Ĥkin|Ψ (n)

H,0〉 , Vloc/dc [{nσ(r)}] = 〈Ψ (n)
H,0|V̂loc/dc|Ψ (n)

H,0〉 , (47)

and EH,xc [{nσ(r)}] is the exchange-correlation energy for ĤH. As in Sect. 2.3, the Hubbard
density functional agrees with the exact density functional if we choose

EH,xc [{nσ(r)}] = K [{nσ(r)}]−KH [{nσ(r)}] + Exc [{nσ(r)}]
− (Vloc [{nσ(r)}]− Vdc [{nσ(r)}]) . (48)

Then, the Hubbard approach provides the exact ground-state densities and ground-state energy
of our full many-particle Hamiltonian (Hohenberg-Kohn–Hubbard theorem). Of course, our
derivation relies on the assumption of Hubbard V -representability of the densities nσ(r).



8.10 Florian Gebhard

3.1.3 Hubbard single-particle potential

When we directly apply Ritz’ principle, we have to minimize the energy functional

E [{nσ(r)} , {|Ψ〉}] = 〈Ψ |ĤH|Ψ〉+ U [{nσ(r)}] + VHar [{nσ(r)}] + EH,xc [{nσ(r)}] . (49)

We include the constraints eq. (4) and the normalization condition using the Lagrange parame-
ters κσ(r) and E0 in the functional GH ≡ GH [{|Ψ〉} , {nσ(r)} , {κσ(r)} , E0]

GH = E [{nσ(r)} , {|Ψ〉}]−E0 (〈Ψ |Ψ〉 − 1)−
∑
σ

∫
dr κσ(r)

(
nσ(r)− 〈Ψ |Ψ̂ †σ(r)Ψ̂σ(r)|Ψ〉

)
.

(50)
As in Sect. 2.4, see eqs. (35) and (42), the variation of GH with respect to nσ(r) gives the
single-particle potential

V H
σ (r) ≡ U(r) + VHar(r) + vH,xc,σ(r) ,

vH,xc,σ(r) ≡ ∂EH,xc [{nσ′(r′)}]
∂nσ(r)

∣∣∣∣
nσ(r)=n0

σ(r)

. (51)

The Hubbard-model approach is based on the idea that typical approximations for the exchange-
correlation energy, e.g., the local-density approximation, are better suited for the Hubbard
model than for the Kohn-Sham approach,

EH,xc [{nσ(r)}] ≈ ELDA,xc [{nσ(r)}] . (52)

Indeed, as seen from eq. (48), in the Hubbard exchange-correlation energy EH,xc the exchange-
correlation contributions in the exact Exc are reduced by the Hubbard term Vloc [{nσ(r)}] −
Vdc [{nσ(r)}], reflecting a more elaborate treatment of local correlations.
Unfortunately, the minimization of (49) with respect to |Ψ〉 constitutes an unsolvable many-
particle problem. Indeed, the ground state |Ψ0〉 is the solution of the many-particle Schrödinger
equation with energy E0, (

Ĥ0 + V̂loc − V̂dc

)
|Ψ0〉 = E0|Ψ0〉 (53)

with the single-particle Hamiltonian

Ĥ0 =
∑
σ

∫
dr Ψ̂ †σ(r)

(
−∆r

2m
+ U(r) + VHar(r) + vH,xc,σ(r)

)
Ψ̂σ(r) . (54)

The ‘Kohn-Sham–Hubbard equations’ (53) can be used as starting point for further approxi-
mations, for example, the Dynamical Mean-Field Theory (DMFT). In the following we will
address the functional in eq. (49) directly.

3.2 Gutzwiller density functional

In the widely used LDA+U approach [5], the functional in eq. (49) is evaluated and (approxi-
mately) minimized by means of single-particle product wave functions. However, this approach
treats correlations only on a mean-field level. In the more sophisticated Gutzwiller approach,
we consider the functional in eq. (49) in the subset of Gutzwiller-correlated variational many-
particle states.
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3.2.1 Gutzwiller variational ground state

In order to formulate the Gutzwiller variational ground state [4,8], we consider the atomic states
|Γ 〉R that are built from the correlated orbitals. The local Hamiltonians take the form

V̂loc/dc(R) =
∑
Γ,Γ ′

E
loc/dc
Γ,Γ ′ (R)|Γ 〉RR〈Γ ′| =

∑
Γ,Γ ′

E
loc/dc
Γ,Γ ′ (R)m̂R;Γ,Γ ′ , (55)

where |Γ 〉R contains |ΓR| electrons. Here, we introduced

E
loc/dc
Γ,Γ ′ (R) = R〈Γ |V̂loc/dc(R)|Γ ′〉R (56)

and the local many-particle operators m̂R;Γ,Γ ′ = |Γ 〉RR〈Γ ′|.
The Gutzwiller correlator and the Gutzwiller variational states are defined as

P̂G =
∏
R

∑
Γ,Γ ′

λΓ,Γ ′(R)m̂R;Γ,Γ ′ , |ΨG〉 = P̂G|Φ〉 . (57)

Here, |Φ〉 is a single-particle product state, and λΓ,Γ ′(R) defines the matrix λ̃(R) of, in general,
complex variational parameters.

3.2.2 Gutzwiller functionals

We evaluate the energy functional (49) in the restricted subset of Gutzwiller variational states,

E [{nσ(r)} , {|ΨG〉}] =
∑

R,b,R′,b′,σ

T(R,b),(R′,b′);σρ
G
(R′,b′),(R,b);σ + V G

loc − V G
dc

+U [{nσ(r)}] + VHar [{nσ(r)}] + EH,xc [{nσ(r)}] ,

V G
loc/dc =

∑
R

∑
Γ,Γ ′

E
loc/dc
Γ,Γ ′ (R)mG

R;Γ,Γ ′ . (58)

Note that we work with the orbital Wannier basis, see appendix A.1.3,

T(R,b),(R′,b′);σ =

∫
dr φ∗R,b,σ(r)

(
−∆r

2m

)
φR′,b′,σ(r) . (59)

The elements of the Gutzwiller-correlated single-particle density matrix are

ρG
(R′,b′),(R,b);σ =

〈ΨG|ĉ†R,b,σ ĉR′,b′,σ|ΨG〉
〈ΨG|ΨG〉

=
〈Φ|P̂ †Gĉ

†
R,b,σ ĉR′,b′,σP̂G|Φ〉
〈Φ|P̂ †GP̂G|Φ〉

, (60)

and the densities become

nσ(r) =
∑

R,b,R′,b′

φ∗R,b,σ(r)φR′,b′,σ(r)ρG
(R′,b′),(R,b);σ . (61)

The expectation values for the atomic operators are given by

mG
R;Γ,Γ ′ =

〈ΨG|m̂R;Γ,Γ ′|ΨG〉
〈ΨG|ΨG〉

=
〈Φ|P̂ †Gm̂R;Γ,Γ ′P̂G|Φ〉
〈Φ|P̂ †GP̂G|Φ〉

. (62)
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The diagrammatic evaluation of ρG
(R′,b′),(R,b);σ and of mG

R;Γ,Γ ′ shows that these quantities are
functionals of the non-interacting single-particle density matrices ρ̃, see eq. (30), and of the
variational parameters λΓ,Γ ′(R). Moreover, it turns out that the local, non-interacting single-
particle density matrix C̃(R) with the elements

Cb,b′;σ(R) ≡ ρ(R,b),(R,b′);σ (63)

plays a prominent role in the Gutzwiller energy functional, in particular, for infinite lattice
coordination number. Therefore, we may write

E [{nσ(r)} , {|ΨG〉}] ≡ EG
[
ρ̃,
{
λ̃(R)

}
, {nσ(r)} ,

{
C̃(R)

}]
. (64)

In the Lagrange functional we shall impose the relation (63) with the help of the Hermitian
Lagrange parameter matrix η̃ with entries η(R,b),(R,b′);σ. Lastly, for the analytical evaluation of
eq. (64) it is helpful to impose a set of (real-valued) local constraints (l = 1, 2, . . . , Ncon)

gl,R

[
λ̃(R), C̃(R)

]
= 0 , (65)

which we implement with real Lagrange parameters Λl(R); explicit expressions are given in
eqs. (74) and (75).
In the following, we abbreviate i = (R, b) and j = (R′, b′). Consequently, in analogy with
Sect. 2.4, we address

GG
DFT ≡ GG

DFT

[
ρ̃, {nσ(r)} ,

{
C̃(R)

}
,
{
λ̃(R)

}
Ω̃, {κσ(r)} , {η̃(R)} , {Λl(R)}

]
(66)

as our Lagrange functional,

GG
DFT = EG

[
ρ̃,
{
λ̃(R)

}
, {nσ(r)} ,

{
C̃(R)

}]
−
∑
l,m,σ

Ωl,m;σ (ρ̃ · ρ̃− ρ̃)m,l;σ

−
∑
σ

∫
dr κσ(r)

(
nσ(r)−

∑
i,j

φ∗i,σ(r)φj,σ(r)ρG
j,i;σ

)
(67)

+
∑
l,R

Λl(R)gl,R −
∑

R,b,b′,σ

ηb,b′;σ(R)
(
Cb′,b;σ(R)− ρ(R,b′),(R,b);σ

)
,

cf. eq. (34). Here, we took the condition (61) into account using Lagrange parameters κσ(r) be-
cause the external potential, the Hartree term and the exchange-correlation potential in eq. (58)
depend on the densities.

3.2.3 Minimization of the Gutzwiller energy functional

The functional GG
DFT in eq. (67) has to be minimized with respect to nσ(r), C̃(R), λ̃(R), and

ρ̃. The variation with respect to the Lagrange parameters κσ(r), η̃(R), Λl(R), and Ω̃ gives the
constraints (61), (63), (65), and (33), respectively.
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1. As in the derivation of the exact Schrödinger equation (53), the variation of GG
DFT with

respect to nσ(r) generates the single-particle potential,

κσ(r) = V H
σ (r) , (68)

see eqs. (42) and (51).

2. The minimization with respect to C̃(R) gives

ηb,b′;σ(R) =
∂EG

∂Cb′,b;σ(R)
+
∑
l

Λl(R)
∂gl,R

∂Cb′,b;σ(R)

+
∑
i,j,σ′

∫
dr V H

σ′ (r)φ∗i,σ′(r)φj,σ′(r)
∂ρG

j,i;σ′

∂Cb′,b;σ(R)
. (69)

3. The minimization with respect to the Gutzwiller correlation parameters λ̃(R) results in

0 =
∂EG

∂λΓ,Γ ′(R)
+
∑
l,m,σ

∫
dr V H

σ (r)φ∗l,σ(r)φm,σ(r)
∂ρG

m,l,σ

∂λΓ,Γ ′(R)

+
∑
l

Λl(R)
∂gl,R

∂λΓ,Γ ′(R)

=
∑
l,m,σ

h0
l,m;σ

∂ρG
m,l,σ

∂λΓ,Γ ′(R)
+
∂
(
V G

loc − V G
dc

)
∂λΓ,Γ ′(R)

+
∑
l

Λl(R)
∂gl,R

∂λΓ,Γ ′(R)
, (70)

h0
l,m;σ ≡

∫
dr φ∗l,σ(r)

(
−∆r

2m
+ U(r) + VHar(r) + vH,xc,σ(r)

)
φm,σ(r) (71)

for all λΓ,Γ ′(R). Note that, in the case of complex Gutzwiller parameters, we also have to
minimize with respect to (λΓ,Γ ′(R))∗. Using these equations we calculate the Lagrange
parameters Λl(R) that are needed in eq. (69).

4. The minimization of GG
DFT with respect to ρ̃ generates the Landau–Gutzwiller quasi-

particle Hamiltonian, see appendix A.1.2,

ĤG
qp =

∑
i,j,σ

hG
i,j;σ ĉ

†
i,σ ĉj,σ (72)

with the entries

hG
i,j;σ =

∂EG

∂ρj,i;σ
+
∑
l,m,σ′

∫
dr V H

σ′ (r)φ∗l,σ′(r)φm,σ′(r)
∂ρG

m,l,σ′

∂ρj,i;σ
+
∑

R,b,b′,σ′

ηb,b′;σ′(R)
∂ρ(R,b′),(R,b);σ′

∂ρj,i;σ

=
∑
l,m,σ′

h0
l,m;σ′

∂ρG
m,l,σ′

∂ρj,i;σ
+
∂
(
V G

loc − V G
dc

)
∂ρj,i;σ

+
∑
R,b,b′

δj,(R,b′)δi,(R,b)ηb,b′;σ(R), (73)

where we used eqs. (58) and (71).

The single-particle state |Φ〉 is the ground state of the Hamiltonian (72) from which the
single-particle density matrix ρ̃ follows.
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The minimization problem outlined in steps (i)–(iv) requires the evaluation of the energy EG

in eq. (58). In particular, the correlated single-particle density matrix ρ̃G, eq. (60), must be
determined.
All equations derived in this section are completely general. They can, at least in principle,
be evaluated by means of a diagrammatic expansion method [18–21]. The leading order of the
expansion corresponds to an approximation-free evaluation of expectation values for Gutzwiller
wave functions in the limit of large lattice coordination number. This limit, also known as
“Gutzwiller Approximation”, will be studied in the rest of this chapter.

3.3 Gutzwiller density functional for infinite lattice coordination number

For Z → ∞, the Gutzwiller-correlated single-particle density matrix and the Gutzwiller prob-
abilities for the local occupancies can be calculated explicitly without further approximations;
for a formal proof, see Ref. [21]. In this section we make no symmetry assumptions (transla-
tional invariance, crystal symmetries). Note, however, that the equations do not cover the case
of spin-orbit coupling; for the latter, see Refs. [22, 23].

3.3.1 Local constraints

As shown in Refs. [8, 24] it is convenient for the evaluation of Gutzwiller wave functions to
impose the following (local) constraints∑

Γ,Γ1,Γ2

λ∗Γ,Γ1
(R)λΓ,Γ2(R)〈m̂R;Γ1,Γ2〉Φ = 1 (74)

and ∑
Γ,Γ1,Γ2

λ∗Γ,Γ1
(R)λΓ,Γ2(R)〈m̂R;Γ1,Γ2 ĉ

†
R,b,σ ĉR,b′,σ〉Φ = 〈ĉ†R,b,σ ĉR,b′,σ〉Φ , (75)

where we abbreviated 〈Â〉Φ ≡ 〈Φ|Â|Φ〉. Note that, for complex constraints, the index l in (65)
labels real and imaginary parts separately.

3.3.2 Atomic occupancies

In the limit of infinite lattice coordination number, the interaction and double-counting energy
can be expressed solely in terms of the local variational parameters λ̃(R) and the local density
matrix C̃(R) of the correlated bands in |Φ〉,

V G
loc/dc =

∑
R

∑
Γ1,...,Γ4

λ∗Γ2,Γ1
(R)E

loc/dc
Γ2,Γ3

(R)λΓ3,Γ4(R)〈m̂R;Γ1,Γ4〉Φ . (76)

The remaining expectation values 〈m̂R;Γ1,Γ4〉Φ are evaluated using Wick’s theorem. Explicit
expressions are given in Refs. [8, 25].
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3.3.3 Correlated single-particle density matrix

The local part of the correlated single-particle density matrix is given by

ρG
(R,b′),(R,b);σ =

∑
Γ1,...,Γ4

λ∗Γ2,Γ1
(R)λΓ3,Γ4(R)〈m̂R;Γ1,Γ2 ĉ

†
R,b,σ ĉR,b′,σm̂R;Γ3,Γ4〉Φ ≡ CG

b′,b;σ(R). (77)

It can be evaluated using Wick’s theorem. As can be seen from eq. (77), it is a function of the
variational parameters λΓ,Γ ′(R) and of the local non-interacting single-particle density matrix
C̃(R).
For R 6= R′, we have for the correlated single-particle density matrix

ρG
(R′,b′),(R,b);σ =

∑
a,a′

qa,σb,σ (R)
(
qa

′,σ
b′,σ (R′)

)∗
ρ(R′,a′),(R,a);σ (78)

with the orbital-dependent renormalization factors qa,σb,σ (R) for the electron transfer between
different sites. Explicit expressions in terms of the variational parameters λ̃(R) and of the local
non-interacting single-particle density matrix C̃(R) are given in Refs. [8, 25].

3.3.4 Implementation for translational invariant systems

For a system that is invariant under translation by a lattice vector and contains only one atom per
unit cell, all local quantities become independent of the site index, e.g., λΓ,Γ ′(R) ≡ λΓ,Γ ′ for
the Gutzwiller variational parameters. Since k from the first Brillouin zone is a good quantum
number, we work with the (orbital) Bloch basis, see appendix A.1.3.
The minimization of the energy functional with respect to the single-particle density matrix
leads to the Gutzwiller–Kohn-Sham Hamiltonian. In the orbital Bloch basis φk,b,σ(r), see ap-
pendix A.1.3, the corresponding quasi-particle Hamiltonian reads,

ĤG
qp =

∑
k,b,b′,σ

hG
b,b′;σ(k)ĉ†k,b,σ ĉk,b′,σ , (79)

see eq. (72). The Landau-Gutzwiller quasi-particle dispersion εG
n,σ(k) follows from the diago-

nalization of hG
b,b′;σ(k). For explicit expressions for hG

b,b′;σ(k) and the actual numerical imple-
mentation within QUANTUMESPRESSO, see Refs. [12, 13].

3.4 Local Hamiltonian and double counting for transition metals

For a Gutzwiller DFT calculation we need to specify the Coulomb parameters in the local
Hamiltonian and the form of the double-counting operator in eqs. (43) and (44).

3.4.1 Cubic symmetry and spherical approximation

In many theoretical studies one uses a local Hamiltonian with only density-density interactions,

V̂ dens
loc =

1

2

∑
c,σ

U(c, c)n̂c,σn̂c,σ̄ +
1

2

∑
c(6=)c′

∑
σ,σ′

Ũσ,σ′(c, c′)n̂c,σn̂c′,σ′ . (80)
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Here, we introduced ↑̄ =↓ (↓̄ =↑) and Ũσ,σ′(c, c′) = U(c, c′)− δσ,σ′J(c, c′), where U(c, c′) and
J(c, c′) are the local Hubbard and Hund’s-rule exchange interactions. An additional and quite
common approximation is the use of orbital-independent Coulomb parameters,

U(c, c) ≡ U , and U(c, c′) ≡ U ′, J(c, c′) ≡ J for c 6= c′. (81)

For a system of five correlated 3d orbitals in a cubic environment as in nickel and iron, however,
the Hamiltonian (80) is incomplete [26]. The full Hamiltonian reads

V̂ full
loc = V̂ dens

loc + V̂ n.dens.
loc , (82)

where

V̂ n.dens.
loc =

1

2

∑
c( 6=)c′

J(c, c′)
(
ĉ†c,↑ĉ

†
c,↓ĉc′,↓ĉc′,↑ + h.c.

)
+

1

2

∑
c(6=)c′;σ

J(c, c′)ĉ†c,σ ĉ
†
c′,σ̄ ĉc,σ̄ ĉc′,σ

+

[∑
t;σ,σ′

(T (t)− δσ,σ′A(t))n̂t,σ ĉ
†
u,σ′ ĉv,σ′

+
∑
t,σ

A(t)
(
ĉ†t,σ ĉ

†
t,σ̄ ĉu,σ̄ ĉv,σ + ĉ†t,σ ĉ

†
u,σ̄ ĉt,σ̄ ĉv,σ

)
+

∑
t( 6=)t′(6=)t′′

∑
e,σ,σ′

S(t, t′; t′′, e)ĉ†t,σ ĉ
†
t′,σ′ ĉt′′,σ′ ĉe,σ + h.c.

]
. (83)

Here, t = ζ, η, ξ and e = u, v are indices for the three t2g orbitals with symmetries ζ = xy,
η = xz, and ξ = yz, and the two eg orbitals with symmetries u = 3z2 − r2 and v = x2 −
y2, respectively. The parameters A(t), T (t), S(t, t′; t′′, e) in eq. (83) are of the same order
of magnitude as the exchange interactions J(c, c′) and, hence, there is no a-priori reason to
neglect V n.dens.

loc . Of all the parameters U(c, c′), J(c, c′), A(t), T (t), S(t, t′; t′′, e) only ten are
independent in cubic symmetry, see appendix A.2 and Ref. [17].
When we assume that all 3d-orbitals have the same radial wave-function (‘spherical approxi-
mation’), all parameters are determined by, e.g., the three Racah parameters A,B,C, see ap-
pendix A.2. For comparison with other work, we introduce the average Coulomb interaction
between electrons in the same 3d-orbitals, U =

∑
c U(c, c)/5 = A + 4B + 3C, the average

Coulomb interaction between electrons in different orbitals, U ′ =
∑

c<c′ U(c, c′)/10 = A −
B +C, and the average Hund’s-rule exchange interaction, J =

∑
c<c′ J(c, c′)/10 = 5B/2 +C

that are related by the symmetry relation U ′ = U − 2J , see appendix A.2. Due to this symme-
try relation, the three values of U , U ′, and J do not determine the Racah parameters A,B,C
uniquely. Therefore, we make use of the relation C/B = 4 which is a reasonable assumption
for metallic nickel [8, 26]. In this way, the three Racah parameters and, consequently, all pa-
rameters in V̂ full

loc are functions of U and J , A = U − 32J/13, B = 2J/13, C = 8J/13. This
permits a meaningful comparison of our results for all local Hamiltonians.

3.4.2 Double counting corrections

There exists no systematic (let alone rigorous) derivation of the double-counting corrections in
eq. (43). A widely used form for this operator has first been introduced in the context of the
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LDA+U method. Its expectation value is given by

V G
dc =

U

2
n̄(n̄− 1)− J

2

∑
σ

n̄σ(1− n̄σ) , (84)

where n̄σ ≡
∑Nc

c=1C
G
c,c;σ, n̄ ≡ n̄↑ + n̄↓, and Nc is the number of correlated orbitals (Nc = 5 for

nickel). Moreover, U = (U + 4U ′)/5 and J = U − U ′ + J . Here,

CG
c,c;σ =

〈ΨG|ĉ+
R,c,σ ĉR,c,σ|ΨG〉
〈ΨG|ΨG〉

= 〈Φ|ĉ+
R,c,σ ĉR,c,σ|Φ〉 (85)

is the σ-electron density for the correlated 3d orbital c in the Gutzwiller wavefunction. Note
that the second equality only holds in the limit of infinite dimensions for our eg-t2g orbital
structure [12].

3.4.3 Size of optimal atomic parameters

Before we proceed, we briefly comment on our optimal Coulomb parameters for nickel and
iron because they are substantially larger than the parameters used in other studies [27–31].
For example, for iron the values U = 2 eV . . . 3 eV and J = 0.8 eV . . . 1.0 eV are used, e.g., to
describe the high-temperature regime with the transition from fcc iron to bcc iron and the Curie
transition from non-magnetic to magnetic bcc iron, while more recent LDA+DMFT studies
employ larger values, Ū = 4.3 eV, J̃ = 1.0 eV [32].
First of all, we note that the large spread of values of (U, J) in the literature is due to the strong
sensitivity of these parameters to the energy window used for projecting, or downfolding, the
full electronic structure to an effective many-body model [33]. It is well known that the bare
Hubbard parameters U are of the order of 20 eV, or larger [3]. They apply for instantaneous
charge excitations of an isolated atom, which are strongly screened in a solid. In Fe, for ex-
ample, the screening reduces U to ∼ 3 eV for d-only models [34, 35]. Our self-consistent DFT
method is based on a projective technique to construct Wannier functions. In the present cal-
culations, we chose a large energy window, which ensures a very good localization of the 3d

orbitals, and a minimal dependence of the basis set on atomic positions. This large energy win-
dow translates into larger values of U, J [36]. Other calculations can typically afford to retain
fewer bands.
Second, we note that the Hubbard-U in our Gutzwiller treatment parameterizes the interac-
tion of two electrons in the same orbital, see appendix A.2. In other approaches, this quantity
describes some orbital average. For example, Pourovskii et al. [32] use the Slater-Condon pa-
rameter F (0) = Ū , where Ū = (U + 4U ′)/5, and U ′ = A−B+C = U − 2J is the inter-orbital
Coulomb repulsion. Naturally, the intra-orbital U is larger than an average over intra-orbital
and inter-orbital Coulomb repulsions. Likewise, we work with the average Hund’s-rule coupling
J = 5B/2+C, see appendix A.2, whereas J̃ ≡ (F (2) +F (4))/14 = 7B/2+7C/5 = 7J/5 [32].
Therefore, F (0) = 4.3 eV and J̃ = 1.0 eV correspond to J = 0.71 eV and U = Ū + 8J̃/7 =

5.4 eV with J/U = 0.13. We note in passing that we work with C/B = 4 whereas others use
F (2)/F (4) = 8/5 which corresponds to C/B = 175/47 ≈ 3.7 [37].
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Lastly, in our Gutzwiller calculations, we use parameters such as U and J to ‘match’ selected
experimental quantities. In this way, we compensate approximations in the model setup, e.g.,
the neglect of non-local correlations in Hubbard-type models, and in the model analysis, e.g.,
the limit of infinite dimensions or an approximate variational ground state. For example, in
Gutzwiller calculations, the optimal Coulomb parameters must be chosen somewhat smaller
when the full atomic interaction is replaced by density-density interactions only [35]. Similarly,
larger U -values are found to be optimal when the impurity solver in Quantum-Monte-Carlo is
rotationally invariant [27]. Our substantial Hubbard interaction leads to noticeable bandwidth
renormalizations and an increase of the quasi-particle masses at the Fermi energy, as seen in
experiment [38, 39].

4 Results for transition metals

In this section we compile recent results for nickel and iron as obtained from the Gutzwiller
DFT [12, 13].

4.1 Nickel

As a variational approach, the Gutzwiller DFT is expected to be most suitable for the calcula-
tion of ground-state properties such as the lattice constant, the magnetic moment, or the Fermi
surface of a Fermi liquid. Although more speculative than the ground-state calculations, it is
also common to interpret the eigenvalues of the Gutzwiller–Kohn-Sham Hamiltonian εG

n,σ(k) as
the dispersion of the single-particle excitations [40].

4.1.1 Lattice constant, magnetic moment, and bulk modulus of nickel

In Fig. 1, we show the lattice constant and the magnetic moment as a function of U (1 eV ≤
U ≤ 14 eV) for four different values of J/U (J/U = 0, 0.05, 0.075, 0.10). As is well known,
the DFT-LDA underestimates the lattice constant, aLDA

0 = 6.47 aB is considerably smaller
than the experimental value of a0 = 6.66 aB where aB = 0.529177 Å is the Bohr radius.
Fig. 1 shows that the Hubbard interaction U increases the lattice constant whereby the Hund’s-
rule exchange J diminishes the slope. Apparently, a good agreement with the experimental
lattice constant requires substantial Hubbard interactions, U > 10 eV. The increase of the
lattice parameter as a function of the Hubbard interaction is readily understood because the 3d

bandwidth is reduced by electronic correlations so that the 3d electrons contribute less to the
metallic binding.
Fig. 1 shows the well-known fact that DFT-LDA reproduces the experimental value for the spin-
only magnetic moment mso very well, mLDA

so = 0.58µB vs. mexp
so = 0.55µB. However, when

the DFT-LDA calculation is performed for the experimental value of the lattice constant, the
magnetic moment is grossly overestimated. As seen in Fig. 1, the Gutzwiller DFT allows us
to reconcile the experimental findings both for the lattice constant and the magnetic moment if
we work in the parameter range 11 eV < U < 14 eV and 0.05 < J/U < 0.07. Note that a
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Fig. 1: Lattice constant (left) and magnetic moment (right) of nickel as a function of U , for four
different values of J/U ; dashed horizontal lines: experimental values.

‘fine-tuning’ of parameters is not required to obtain a reasonable agreement between theory and
experiment for the lattice constant and spin-only magnetic moment.
For nickel, detailed information about the quasi-particle bands is available. The quasi-particle
dispersion at various high-symmetry points in the Brillouin zone is more sensitive to the precise
values of U and J . As we shall show below in more detail, we obtain a satisfactory agreement
with ARPES data for the choice (Uopt = 13 eV, Jopt = 0.9 eV) with an uncertainty of±1 in the
last digit. For our optimal values we show in Fig. 2 the ground-state energy per particleE(a)/N

as a function of the fcc lattice constant a together with a second-order polynomial fit. The
minimum is obtained at a0 = 6.63aB, in good agreement with the experimental value aexp

0 =

6.66aB. For the magnetic spin-only moment we obtain mso = 0.52µB, in good agreement with
the experimental value mexp

so = 0.55µB.
From the curvature of E(a)/N at a = a0 we can extract the bulk modulus. The bulk modulus
at zero temperature is defined as the second-derivative of the ground-state energy with respect
to the volume,

K = V0
d2E(V )

dV 2

∣∣∣∣
V=V0

. (86)

This implies the Taylor expansion E(V ) = E(V0) + (KV0/2)(V/V0− 1)2 + . . . for the ground-
state energy as a function of the volume V = a3 (Birch-Murnaghan fit). For the ground-state
energy per particle we can thus write E(a)/N = E(a0)/N + e2(a/aB − a0/aB)2 + . . . with

e2 =
9

8
Ka3

B(a0/aB) , (87)

where we took into account that the fcc unit cell hosts four atoms, V0 = Na3
0/4. The fit leads

to K = 169 GPa, in good agreement with the experimental value, K = 182 GPa [41]. It is
a well-known fact that the DFT-LDA overestimates the bulk modulus of nickel. Indeed, DFT-
LDA gives KLDA = 245 GPa.
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Fig. 2: Ground-state energy per particle E0(a)/N relative to its value at a = 6.63aB as a func-
tion of the fcc lattice parameter a/aB in units of the Bohr radius aB for (Uopt = 13 eV, Jopt =
0.9 eV). Full line: second-order polynomial fit.

4.1.2 Quasi-particle bands of nickel

In Fig. 3 we show the quasi-particle band structure of fcc nickel for (Uopt = 13 eV, Jopt =

0.9 eV). The most prominent effect of the Gutzwiller correlator is the reduction of the 3d

bandwidth. From a paramagnetic DFT-LDA calculation one can deduce W LDA = 4.5 eV [42–
44], whereas we find W = 3.3 eV, in agreement with experiment.
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Fig. 3: Quasi-particle band structure of fcc nickel along high-symmetry lines in the first Bril-
louin zone for (Uopt = 13 eV, Jopt = 0.9 eV). Left: majority spin; Right: minority spin. The
Fermi energy is at EG

F = 0.
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Symmetry Experiment Gutzwiller-DFT
〈Γ1〉 8.90± 0.30 8.95[0.08]
〈Γ25′〉 1.30± 0.06 1.51[0.65]
〈Γ12〉 0.48± 0.08 0.73[0.15]
〈X1〉 3.30± 0.20 3.37[0.27]
〈X3〉 2.63± 0.10 2.87[0.68]
X2↑ 0.21± 0.03 0.26
X2↓ 0.04± 0.03 0.14
X5↑ 0.15± 0.03 0.32

∆eg(X2) 0.17± 0.05 0.12
∆t2g(X5) 0.33± 0.04 0.60
〈L1〉 3.66± 0.10 3.49[0.61]
〈L3〉 1.43± 0.07 1.58[0.38]
L3↑ 0.18± 0.03 0.37
〈L2′〉 1.00± 0.20 0.14[0.06]
〈Λ3;1/2〉 0.50[0.21± 0.02] 0.64[0.30]

Table 1: Quasi-particle band energies for fcc nickel with respect to the Fermi energy in eV at
various high-symmetry points (counted positive for occupied states). 〈. . .〉 indicates the spin
average, error bars in the experiments without spin resolution are given as ±. Theoretical
data show the spin average and the exchange splittings in square brackets. Λ3;1/2 denotes the
point half-way on the Λ-line that links the points Γ and L. The first column gives experimental
data compiled in [8], the second column gives the result from Gutzwiller DFT at (Uopt =
13 eV, Jopt = 0.9 eV).

A more detailed comparison of the quasi-particle band structure with experiment is given in ta-
ble 1. The overall agreement between experiment and theory is quite satisfactory. In particular,
only one hole ellipsoid is found at the X-point, in agreement with experiment and in contrast to
the DFT-LDA result [8].

We comment on two noticeable discrepancies between theory and experiment. First, the energy
of the band L2′ at the L-point deviates by a factor of five. This is an artifact that occurs already
at the DFT-LDA level and is not cured by the Gutzwiller approach. Since the level has pure
3p character around the L point, the origin of the discrepancy is related to the uncertainties in
the partial charge densities n3d, n3p,3s in the 3d and 3p/3s bands. Second, the Gutzwiller DFT
prediction for the exchange splitting ∆t2g(X5) of the t2g bands at the X-point is a factor of two
larger than in experiment. This deviation is related to the fact that, quite generally, all bands
are slightly too low in energy. This can be cured by decreasing U and increasing J but this
deteriorates the values for the lattice constant and the magnetic moment. We suspect that the
deviations are partly due to the use of a heuristic double-counting correction and the neglect
of the spin-orbit coupling. Moreover, we expect the results for the band structure to improve
when we replace the “poor-man’s Wannier” orbitals for the correlated 3d electrons by more
sophisticated localized wave functions.
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4.2 Iron

The ground state of iron poses a difficult problem because the local-density approximation to
density functional theory predicts a face-centered cubic (fcc) or a hexagonal closed-packed
(hcp) ground state [45, 46]. Gutzwiller-DFT finds the correct (magnetic) body-centered cubic
crystal structure without resorting to generalized gradient corrections (GGA) [47, 48].

4.2.1 Lattice constant, magnetic moment, and bulk modulus of iron

When we use (U = 9 eV, J = 0.54 eV) for iron, we find the lattice parameter a = 5.39aB =

2.85 Å and the magnetic moment m = 2.24µB that agree very well with the experimental
values, aexp = 5.42aB = 2.87 Å [49] and µexp = 2.22µB [50]. In Fig. 4 we show the ground-
state energy per atom, e(v) = E(V )/N , as a function of the unit-cell volume v = V/N = a3/2

in the vicinity of the optimal value v0 = a3/2 = 78.3a3
B = 11.6 Å

3
.

As is seen, the magnetic bcc iron phase is energetically favorable over the non-magnetic hcp
phase, as found experimentally. Within the Gutzwiller DFT this effect is seen to be the con-
sequence of electronic correlations, not of generalized gradient corrections (GGA) to the LDA
functional. Moreover, Fig. 4 suggests that a transition from magnetic bcc iron to non-magnetic
hcp iron is possible upon reducing the lattice volume. Such a pressure-induced first-order phase
transition is indeed observed experimentally at pexp

c = 10 . . . 15 GPa [51] at room temperature.
In Gutzwiller-DFT the critical pressure is higher, pc ≈ 40 GPa, where entropy effects from
magnons and phonons are not included.
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Fig. 4: Energy per atom e(v) in units of eV as a function of the unit-cell volume v in units of
a3

B for non-magnetic and ferromagnetic bcc iron and non-magnetic hcp iron for U = 9 eV and
J = 0.54 eV, and ambient pressure. The energies are shifted by the same constant amount.
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Fig. 5: Comparison between DFT(GGA) bands (black, dashed lines) and bands from
Gutzwiller-DFT (red, full lines) for (U = 9.0 eV, J = 0.54 eV) for ferromagnetic bcc iron.
For clarity, we do not discriminate between majority and minority spin bands. The Fermi en-
ergy is at EF = 0 (dashed horizontal line).

In Gutzwiller-DFT we find a bulk modulus of B = 165 GPa, in very good agreement with the
experimental value, Bexp = (170 ± 4) GPa [52, 49]. The LDA+Gutzwiller value substantially
improves the DFT(LDA) value of BLDA = 227 GPa, it is slightly better than the values from
DFT(GGA) studies,BGGA = (190±10) GPa [49], and agrees with the value obtained in DMFT
calculations, BDMFT = 168 GPa [32].

4.2.2 Quasi-particle bands of ferromagnetic bcc iron

We show the bandstructure for ferromagnetic bcc iron from Gutzwiller-DFT for (U = 9.0 eV,
J = 0.54 eV) in comparison with those from (scalar relativistic) DFT(GGA) calculations in
Fig. 5. The DFT(GGA) provides the same equilibrium lattice parameter as used in Gutzwiller-
DFT, a = 5.39aB. The correlations in the Gutzwiller approach lead to an additional bandwidth
reduction of the d bands across the Brillouin zone. The uncorrelated, 4sp-type parts of the
quasi-particle bands deep below the Fermi energy do not differ much, e.g., the lowest 4sp-type
majority bands at the Γ point, about 9 eV below the Fermi energy.
The bandwidth reduction in iron is not as strong as in nickel. Nevertheless, for selected symme-
try points, the discrepancies between the quasi-particle bands from DFT and Gutzwiller-DFT
are quite large, see Fig. 5. For example, at the H-point in the Brillouin zone we find a bandwidth
reduction for the majority band by 36%, from HLDA

low,↑ = 5.38 eV down to HG-DFT
low,↑ = 3.94 eV,

in good agreement with experiment, Hlow,↑ = 3.8 eV [53]. Likewise, at the N-point in the
Brillouin zone there is a majority spin band at Nlow,↑ = 4.5 eV below the Fermi energy in ex-
periment [53], in comparison with NLDA

low,↑ = 5.47 eV in DFT(LDA) and NG-DFT
low,↑ = 3.90 eV in

Gutzwiller-DFT. A comparison of the Landau-Gutzwiller quasi-particle bands and experimental
ARPES data close to the Fermi energy can be found in Ref. [13].
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5 Summary and outlook
In this work, we presented a detailed derivation of the Gutzwiller Density Functional The-
ory. Unlike previous studies, our formalism covers all conceivable cases of symmetries and
Gutzwiller wave functions. Moreover, our theory is not based on the ‘Gutzwiller approxima-
tion’ which corresponds to an evaluation of expectation values in the limit of infinite lattice
coordination number. It is only in the last step that we resort to this limit.
In particular, our derivation consists of three main steps.

1. The density functional of the full many-particle system is related to that of a reference sys-
tem with local Coulomb interactions in the correlated orbitals. This generalizes the widely
used Kohn-Sham scheme, where a single-particle reference system is used, to the Kohn-
Sham–Hubbard approach that may be analyzed by sophisticated many-particle methods.

2. In this work, the energy functional of the Hubbard-type reference system is (approxi-
mately) evaluated by means of Gutzwiller variational wave functions.

3. Analytical results for the Gutzwiller energy functional are derived in the limit of large
coordination number.

We studied the electronic properties of ferromagnetic nickel and iron. The Gutzwiller DFT
resolves the main deficiencies of DFT(LDA) in describing ground-state properties such as the
lattice constant, the magnetic moment, or the bulk modulus of nickel and iron. In particular,
Gutzwiller-DFT gives the proper bcc ground-state structure for iron, without resorting to gener-
alized gradient corrections. Note that our approach requires relatively large values for the local
Coulomb interaction, U = O(10 eV), to obtain good agreement with experiments.
Our results for the quasi-particle band structure are satisfactory. A perfect agreement with
ARPES data would be surprising because we calculate these quantities based on Fermi-liquid
assumptions that are strictly valid only in the vicinity of the Fermi surface. The quasi-particle
energies strongly depend on the orbital occupations that are influenced by the double-counting
corrections. We consider the arbitrariness of the double-counting corrections as the main short-
coming of the Gutzwiller DFT in its present form that should be addressed in future studies.
The method presented in this work can be developed further in various directions. On the level
of the Gutzwiller approximation, a number of implementations is still on the agenda, e.g., the
inclusion of spin-orbit coupling or the study of phonons. To tackle unconventional supercon-
ductivity as seen, e.g., in the cuprates, one has to go beyond the Gutzwiller approximation, see
Refs. [18–20] for the single-band model and Ref. [21] for multi-band models. These approaches
can be combined with the DFT as explained in Sect. 3. Finally, a time-dependent Gutzwiller
method can be used for the calculation of two-particle Green functions, see Refs. [54–56],
and references therein. As a long-term perspective, a combination of these methods and the
Hubbard-Kohn-Sham Hamiltonian would permit a first-principles calculation of important ex-
perimental quantities such as the magnetic susceptibility.
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A Appendix

A.1 Single-particle systems
A.1.1 Single-particle density matrix

With the help of a single-particle basis |k〉 in which a given single-particle operator Ĥsp is
diagonal, an eigenstate can be written as

|Φ〉 =
∏
k

′
b̂†k|vac〉 , (88)

where the prime indicates that N single-particle states are occupied in |Φ〉. The single-particle
density matrix is diagonal in |Φ〉,

ρk,k′ ≡ 〈Φ|b̂†kb̂k′ |Φ〉 = δk,k′fk , (89)

and the entries on the diagonal obey f 2
k = fk because we have fk = 0, 1. Therefore, we have

shown that
ρ̃ · ρ̃ = ρ̃ . (90)

Since the operators ĉ†i for any other single-particle basis and the operators b̂†k are related via a
unitary transformation, eq. (33) holds generally for single-particle density matrices for single-
particle product states.

A.1.2 Minimization with respect to the single-particle density matrix

We consider a general real functionE(ρ̃) of a non-interacting density matrix ρ̃with the elements

ρi,j = 〈Φ|ĉ†j ĉi|Φ〉 . (91)

The fact that ρ̃ is derived from a single-particle product wave function |Φ〉 is equivalent to the
matrix equation (90). Hence, the minimum of E(ρ̃) in the ‘space’ of all non-interacting density
matrices is determined by the condition

∂

∂ρj,i
L(ρ̃) = 0 , (92)

where we introduced the ‘Lagrange functional’

L(ρ̃) ≡ E(ρ̃)−
∑
l,m

Ωl,m

(∑
p

ρm,pρp,l − ρm,l
)

(93)

and the matrix Ω̃ of Lagrange parameters Ωl,m. Eq. (92) leads to the matrix equation

H̃ = ρ̃ · Ω̃ + Ω̃ · ρ̃− Ω̃ (94)

for the ‘Hamilton matrix’ H̃ with the elements

Hi,j =
∂

∂ρj,i
E(ρ̃) . (95)
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Equation (94) is satisfied if eq. (90) holds and if

[H̃, ρ̃] = 0 . (96)

Hence, H̃ and ρ̃ must have the same basis of (single-particle) eigenvectors and, consequently,
we find an extremum of E(ρ̃) if we choose |Φ〉 as an eigenstate of

Ĥsp =
∑
i,j

Hi,j ĉ
†
i ĉj . (97)

Usually, |Φ〉 can be chosen as the ground state of Ĥsp.

A.1.3 Basis sets

In the following we assume that the potential is lattice periodic,

V KS
σ (r) = U(r) + VHar(r) + vsp,xc,σ(r) = V KS

σ (r + R) , (98)

where R is a lattice vector. The Fourier components are finite for reciprocal lattice vectors G
only,

V KS
G,σ =

1

V

∫
dr V KS

σ (r)e−iG·r , (99)

where V is the crystal volume. As a consequence of the lattice periodicity, the crystal momen-
tum k from the first Brillouin zone is a good quantum number.
As seen from eq. (41), the Kohn-Sham Hamiltonian is diagonalized for the single-particle states
ψk,n,σ(r) = 〈r|k, n, σ〉 that obey the Kohn-Sham equations [1] (n: band index)

hKS
σ (r)ψk,n,σ(r) = εn,σ(k)ψk,n,σ(r) . (100)

In its eigenbasis, the Kohn-Sham Hamiltonian takes the form

ĤKS =
∑
k,n,σ

εn,σ(k)b̂†k,n,σ b̂k,n,σ . (101)

Its ground state is given by
|Φ0〉 =

∏
σ

∏
k,n

′
b̂†k,n,σ|vac〉 , (102)

where the N levels lowest in energy are occupied as indicated by the prime at the product,
εn,σ(k) ≤ EF,σ. Then,

fk,n,σ = 〈Φ0|b̂†k,n,σ b̂k,n,σ|Φ0〉 = Θ (EF,σ − εn,σ(k)) (103)

is unity for occupied levels up to the Fermi energy EF,σ, and zero otherwise.
From eq. (26), the field operators read

Ψ̂σ(r) =
∑
k,n

ψk,n,σ(r)b̂k,n,σ , Ψ̂ †σ(r) =
∑
k,n

ψ∗k,n,σ(r)b̂†k,n,σ . (104)
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Therefore, the ground-state density is readily obtained as

n0
σ(r) = 〈Φ0|Ψ̂ †σ(r)Ψ̂σ(r)|Φ0〉 =

∑
k,n

fk,n,σ|ψk,n,σ(r)|2 = 〈r|
∑
k

ρ̂(0)
σ (k)|r〉 ,

ρ̂(0)
σ (k) =

∑
n

fk,n,σ|k, n, σ〉〈k, n, σ| , (105)

see also eq. (31). Since this quantity enters the Kohn-Sham Hamiltonian, its solution must be
achieved self-consistently.
In order to make contact with many-particle approaches based on Hubbard-type models, we
need to identify orbitals that enter the local two-particle interaction. Implemented plane-wave
codes provide the transformation coefficients F(k,n),(R,b);σ from Bloch eigenstates |k, n, σ〉 to
orbital Wannier states |R, b, σ〉,

|R, b, σ〉 =
∑
k,n

F(k,n),(R,b);σ|k, n, σ〉 , F(k,n),(R,b);σ = 〈k, n, σ|R, b, σ〉 . (106)

The Wannier orbitals
φR,b,σ(r) = 〈r|R, b, σ〉 (107)

are maximal around a lattice site R and the orbital index b resembles atomic quantum numbers,
e.g., b = 3s, 3p, 3d. In the orbital Wannier basis the field operators are given by

Ψ̂ †σ(r) =
∑
R,b

φ∗R,b,σ(r)ĉ†R,b,σ , Ψ̂σ(r) =
∑
R,b

φR,b,σ(r)ĉR,b,σ , (108)

and the Kohn-Sham Hamiltonian in the orbital Wannier basis becomes

ĤKS =
∑

R,b,R′,b′,σ

TKS
(R,b),(R′,b′);σ ĉ

†
R,b,σ ĉR′,b′,σ (109)

with the overlap matrix elements

TKS
(R,b),(R′,b′);σ =

∫
dr φ∗R,b,σ(r)hKS

σ (r)φR′,b′,σ(r) , (110)

see eq. (41). These matrix elements appear in a tight-binding representation of the kinetic
energy in Hubbard-type models.
We also define the orbital Bloch basis,

φk,b,σ(r) =

√
1

L

∑
R

eik·RφR,b,σ(r) ,

φR,b,σ(r) =

√
1

L

∑
k

e−ik·Rφk,b,σ(r) , (111)

where k is from the first Brillouin zone and L is the number of lattice sites. The field operators
are given by

Ψ̂ †σ(r) =
∑
k,b

φ∗k,b,σ(r)ĉ†k,b,σ , Ψ̂σ(r) =
∑
k,b

φk,b,σ(r)ĉk,b,σ . (112)
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In the orbital Wannier basis, the Kohn-Sham single-particle Hamiltonian reads

ĤKS =
∑

k,b,b′,σ

TKS
b,b′;σ(k)ĉ†k,b,σ ĉk,b′,σ ,

TKS
b,b′;σ(k) =

∫
dr φ∗k,b,σ(r)hKS

σ (r)φk,b′,σ(r) . (113)

A.2 Atomic Hamiltonian in cubic symmetry

We choose the Hubbard parameters U(u, v), U(ζ, ζ), U(ξ, η), U(ζ, u), U(ζ, v), the four Hund’s-
rule couplings J(u, v), J(ξ, η), J(ζ, u), J(ζ, v), and the two-particle transfer matrix element
S(η, ξ; ζ, u) as our ten independent Coulomb matrix elements in cubic symmetry. The other
matrix elements in eq. (83) can be expressed as [26, 17]

U(u, u) = U(v, v) = U(u, v) + 2J(u, v) ,

U(ξ, u) = U(η, u) = (U(ζ, u) + 3U(ζ, v))/4 ,

U(ξ, v) = U(η, v) = (3U(ζ, u) + U(ζ, v))/4 ,

J(ξ, u) = J(η, u) = (J(ζ, u) + 3J(ζ, v))/4 ,

J(ξ, v) = J(η, v) = (3J(ζ, u) + J(ζ, v))/4 ,

T (η;u, v) = −T (ξ;u, v) =
√

3(U(ζ, u)− U(ζ, v))/4 ,

A(η;u, v) = −A(ξ;u, v) =
√

3(J(ζ, u)− J(ζ, v))/4 ,

S(ξ, η; ζ, u) = S(η, ξ; ζ, u) ,

S(ζ, ξ; η, u) = −2S(η, ξ; ζ, u) ,

S(ξ, η; ζ, v) = −
√

3S(η, ξ; ζ, u) ,

S(ζ, ξ; η, u) =
√

3S(η, ξ; ζ, u) . (114)

If we further assume that the radial part of the t2g-orbitals and the eg-orbitals are identical
(‘spherical approximation’), we may express all matrix elements in terms of three parameters,
e.g., the Racah parameters A, B, and C that are related to the Slater-Condon parameters by
A = F (0)−F (4)/9, B = (F (2)−5F (4)/9)/49, and C = 5F (4)/63; inversely, F (0) = A+7C/5,
F (2) = 49B + 7C, F (4) = 63C/5. In particular,

U(u, v) = A− 4B + C ,

J(u, v) = 4B + C ,

U(ζ, ζ) = A+ 4B + 3C ,

U(ξ, η) = A− 2B + C ,

J(ξ, η) = 3B + C ,

U(ζ, u) = A− 4B + C ,

U(ζ, v) = A+ 4B + C ,

J(ζ, v) = C ,

J(ζ, u) = 4B + C ,

S(η, ξ; ζ, u) = −
√

3B . (115)
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The average Coulomb interaction between electrons in same orbitals is given by

U =
1

5

∑
c=ξ,η,ζ,u,v

U(c, c) = A+ 4B + 3C , (116)

the average Coulomb interaction between electrons in different orbitals is given by

U ′ =
1

10

∑
c,c′=ξ,η,ζ,u,v;c<c′

U(c, c′) = A−B + C , (117)

and the average Hund’s-rule coupling becomes

J =
1

10

∑
c,c′=ξ,η,ζ,u,v;c<c′

J(c, c′) =
5

2
B + C . (118)

These three quantities are not independent but related by the symmetry relation U ′ = U −
2J . This means that by choosing two of these parameters (e.g., U and J) the three Racah
parameters, and therefore all the parameters in Eq. (80) are not uniquely defined. Hence, we use
the additional relation C/B = 4 which is a reasonable assumption for transition metals [26]. It
corresponds to F (2)/F (4) = 55/36 = 1.53, in agreement with the estimate F (2)/F (4) ≈ 1.60 =

8/5 by de Groot et al. [37].
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