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1 Introduction and overview

Magnetic interactions in a metal involving localized magnetic moments give rise to a wealth of
phenomena, ranging from the Kondo effect to magnetic ordering and quantum phase transitions.
We give a brief overview of such phenomena before, in the main part of these lecture notes, we
will focus on a detailed description of the interplay of interactions that tend to quench the local
moments or that tend order them.

When a magnetic ion is placed in a metallic host, the Kondo effect [1, 2] occurs: Conduction
electrons at the Fermi level, i.e., at zero excitation energy, are in resonance with a flip of the
two-fold degenerate spin ground state of the magnetic ion. As the temperature T is lowered,
the electrons become confined to the Fermi surface, so that more and more electrons contribute
to this resonant quantum spin-flip scattering, leading to a diverging spin scattering amplitude.
Hence, when the spin exchange coupling J0 between the localized moments and the itinerant
conduction electrons is antiferromagnetic, a many-body spin-singlet state between the impurity
spin and the conduction electron spins is formed below a characteristic temperature, the Kondo
temperature TK . This, however, means that electrons that do not contribute to the singlet bound
state, experience merely potential scattering rather than spin scattering, i.e., the impurity spin
is effectively removed from the system. This effect is called spin screening. The scattering rate
and other physical quantities thus settle smoothly to constant values, leading to Fermi-liquid
behavior for T � TK [2]. The Kondo temperature is found to be exponentially small in the
exchange coupling, TK = D0 exp[−1/(2N(0)J0)], with the density of states at the Fermi level
N(0) and the conduction band width D0. The entirety of complex phenomena sketched above,
involving the increase of the spin scattering amplitude implying anomalous transport properties,
followed by spin screening and the formation of a narrow, but smooth resonance of width TK
in the electronic spectrum at the Fermi energy, comprises the Kondo effect.

When there are several or many localized magnetic moments in a metal, for instance arranged
on a lattice, the same spin-exchange coupling J0 that induces the Kondo effect, induces also a
magnetic interaction between the localized spins: The local moments can exchange their spins,
mediated by two conduction electrons scattering from and traveling between the impurity sites.
Since this effective, long-range spin-exchange coupling K involves two elementary scattering
events between electron and und impurity spins, it is of order K ∝ N(0)J2

0 . It can be ferro-
or antiferromagnetic due to the long-range, spatial oscillations of the conduction electron den-
sity correlations. This conduction-electron-mediated spin interaction was first considered by
Ruderman and Kittel [3], Kasuya [4] and Yosida [5] and is therefore called RKKY interaction.
The RKKY interaction usually dominates the magnetic dipole-dipole coupling as well as the
direct exchange coupling between neighboring local moments because of the short spatial ex-
tent of these couplings or the exponentially small overlap of the local moment wave functions
on neighboring lattice sites.

In a Kondo lattice, the local Kondo coupling and the RKKY interaction favor different ground
states. The Kondo coupling leads to a paramagnetic Fermi liquid state without local moments.
In this state, the local orbitals, whose spectrum has a Kondo resonance at the Fermi energy,
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Fig. 1: Doniach’s phenomenological phase diagram for the phase transition between an RKKY-
induced, magnetically ordered phase and the Kondo screened, paramagnetic phase. The phase
transition occurs when the RKKY coupling K of a local moment to all surrounding moments
becomes equal to the Kondo singlet binding energy TK (black circle). While the RKKY coupling
is K ∼ N(0)J2

0 , the Kondo energy TK = D0 exp[−1/(2N(0)J0)] is exponentially small in the
bare, local spin exchange coupling J . Therefore, the RKKY coupling always dominates for
small values of J0.

hybridize with each other and eventually become lattice coherent at low temperatures to form
Bloch-like quasiparticle states. As a result, a narrow band crossing the Fermi energy is formed.
Its bandwidth is controlled by the Kondo resonance width TK . It thus gives rise to an exponen-
tially strong effective mass enhancement of roughly m∗/m ≈ exp[1/(2N(0)J0)], which lends
the name “heavy Fermi liquid” to this state [6].
By contrast, the RKKY interaction tends to induce magnetic order of the local moments. It
was pointed out early on by Doniach [7] that, therefore, the Kondo spin screening of the local
moments should eventually break down and give way to magnetic order, when the RKKY cou-
pling energy becomes larger than the characteristic energy scale for Kondo singlet formation,
the Kondo temperature TK , see Fig. 1. Thus, one expects a T = 0 quantum phase transition
(QPT) to occur [6], with the local spin exchange coupling J0 as the control parameter. If and
how the Kondo breakdown occurs at a magnetic QPT is, however, controversial. In fact, several
QPT scenarios in heavy-fermion systems are conceivable.
(1) The heavy Fermi liquid, like any other Fermi liquid, may undergo a spin density-wave
(SDW) instability, leading to critical fluctuations of the bosonic magnetic order parameter but
leaving the fermionic, heavy quasiparticles intact. This scenario is well described by the pio-
neering works of Hertz, Moriya, and Millis [8–10].
(2) The local fluctuations of the magnetization, coupling to the nearly localized, heavy quasi-
particles, may become critical (divergent) and thereby destroy the heavy Fermi liquid (local
quantum criticality) [11, 12].
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(3) At the phase transition the Kondo effect and, hence, the heavy-fermion band vanish, which
leads to an abrupt change of the Fermi surface (Fermi volume collapse). It has been pro-
posed [13] that the Fermi surface fluctuations associated with this change may self-consistently
destroy the Kondo singlet state.
(4) Most recently, a scenario of critical quasiparticles has been put forward, characterized by a
diverging effective mass and a singular quasiparticle interaction which is self-consistently gen-
erated by the nonlocal order-parameter fluctuations of an impending SDW instability [14–16].
Intriguing in its generality and similar in spirit to Landau’s Fermi liquid theory, this scenario
does, however, not invoke Kondo physics and, thus, does not address the specific problems
associated with the Kondo destruction like Fermi volume collapse or the possibility of small,
localized magnetic moments in the magnetically ordered phase.

While the Hertz-Millis-Moriya scenario (1) is described by a critical field theory of the bosonic,
magnetic order parameter alone, the complete understanding of the breakdown scenarios (2),
(3), and (4) would require a field theory for the fermionic degrees of freedom forming the Kondo
effect and the heavy quasiparticles, coupled to the bosonic order parameter field. In lack of such
a complete theory, these scenarios presume that specific fluctuations: (2) local fluctuations, (3)
Fermi surface fluctuations, or (4) antiferromagnetic fluctuations, become soft for certain values
of the system parameters and, thus, dominate the QPT. Therefore, the conditions for these
scenarios to be realized are controversial.

In these lecture notes we consider the interplay of Kondo screening and RKKY interaction
within the Kondo lattice model. We derive the phenomena of the single-impurity Kondo model
in section 2, thereby introducing important concepts and techniques, like the fermionic repre-
sentation spin, universality, and the analytic (perturbative) renormalization group. Section 3
presents the oscillatory RKKY coupling, calculated as a second-order spin exchange process,
mediated by the conduction electrons. In section 4 we show how the Kondo singlet formation
as well as the RKKY interaction can be incorporated on the same footing in an analytic renor-
malization group treatment, leading to a universal Kondo destruction as function of the RKKY
coupling parameter. We conclude in section 5 with a discussion how this theory may set the
stage for a more complete quantum field theory of heavy-fermion QPTs with Kondo breakdown.

2 Kondo effect and renormalization group

In this section we recollect the essential physics of a single Kondo impurity in a metal and
provide the calculational tools for their derivation. We consider the single-impurity Kondo
model

H =
∑
k,σ

εk c
†
kσckσ + J0 Ŝ · ŝ (1)

where ckσ, c†kσ denote the conduction (c-) electron operators with momentum k and dispersion
εk. Ŝ is the impurity spin operator at site x = 0, which is locally coupled to the spins of the
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conduction electrons on that site, ŝ, via a Heisenberg exchange coupling J0. We have

ŝ =
∑

k,k′, σ,σ′

c†kσ σσσ′ ck′σ′ , (2)

with σ = (σx, σy, σz)
T the vector of Pauli matrices

σx =

(
0 1

1 0

)
σy =

(
0 −i
i 0

)
σz =

(
1 0

0 −1

)
. (3)

In Eq. (2) the conduction spin eigenvalue 1/2 has been absorbed in the coupling constant J0,
by convention, and we use units ~ = 1 throughout. The local spins Ŝ will henceforth be termed
f -spins, as they are typically realized in heavy fermion systems by the rare-earth 4f electrons.

2.1 Pseudo-fermion representation of spin

A field theoretical treatment, like the standard functional integral or Wick’s theorem and many-
body perturbation theory, requires that the corresponding field operators obey canonical com-
mutation rules, i.e., their (anti)commutators must be proportional to the unit operator. However,
the spin operators Ŝ obey the SU(2) algebra. In order to overcome this difficulty, we use the
fermionic representation of spin, first introduced by Abrikosov [17]. For each of the basis states
spanning the impurity spin Hilbert space, |σ〉, σ =↑, ↓, fermionic creation and destruction op-
erators f †σ, fσ are introduced according to |σ〉 = f †σ|vac〉, where |vac〉 denotes the vacuum state
(no impurity spin present). The impurity spin operator S then reads,

Ŝ =
1

2

∑
τ,τ ′

f †τ σττ ′ fτ ′ . (4)

That is, the operator on the right-hand side and Ŝ have identical matrix elements in the physical
spin Hilbert space. However, repeated action of the fermionic operators would permit unphysi-
cal double occupancy or no occupancy of the spin states | ↑ 〉, | ↓ 〉. The dynamics are restricted
to the physical spin space by imposing the operator constraint

Q̂ =
∑
σ

f †iτfiτ = 1. (5)

Eqs. (4), (5) constitute the exact pseudo-fermion representation of the spin s = 1/2.
The impurity-spin operator and, hence, the equation of motion with the Hamiltonian (1) are
symmetric under the local U(1) gauge transformation

fτ → e−iφ(t)fτ , i
d

dt
→ i

d

dt
− ∂φ(t)

∂t
, (6)

with an arbitrary, time-dependent phase φ(t). It is closely related to the conservation of the
pseudo-fermion number Q̂.
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Projection onto the physical Hilbert space. The exact projection of the dynamics onto the
physical sector of Fock space with Q = 1, is performed by the following procedure. Consider
first the grand canonical ensemble with respect to Q, defined by the statistical operator

ρ̂G =
1

ZG
e−β(H+λQ), (7)

where ZG = tr[exp{−β(Ĥ + λQ̂)}] is the grand canonical partition function, −λ the associ-
ated chemical potential, and β = 1/kBT the inverse temperature. The trace extends over the
complete Fock space, including summation over Q = 0, 1, 2. The grand canonical expectation
value of an observable Â acting on the impurity spin space is defined as

〈Â〉G(λ) = tr[ρ̂GÂ]. (8)

The physical expectation value of Â, 〈Â〉, must be evaluated in the canonical ensemble with
fixed Q = 1. It can be obtained from the grand canonical expectation value as [17],

〈Â〉 :=
trQ=1

[
Âe−βĤ

]
trQ=1

[
e−βĤ

] = lim
λ→∞

tr
[
Âe−β[Ĥ+λ(Q̂−1)]]

tr
[
Q̂e−β[Ĥ+λ(Q̂−1)]

] = lim
λ→∞

〈Â〉G(λ)
〈Q̂〉G(λ)

(9)

Here, all terms of the grand canonical traces in the numerator and in the denominator with
Q > 1 are projected away by the limit λ → ∞. In the denominator, the operator Q̂ makes all
terms with Q = 0 vanish. In the numerator, the observable Â acts on the impurity spin space
and hence is a power of Ŝ, Eq. (4), which vanishes in the Q = 0 subspace. Therefore, in the
numerator and in the denominator precisely the canonical traces over the physical sector Q = 1

remain, as required. It follows that any impurity-spin correlation function can be evaluated as a
pseudo-fermion correlation function in the unrestricted Fock space, where Wick’s theorem and
the decomposition in terms of Feynman diagrams with pseudo-fermion propagators are valid,
and taking the limit λ → ∞ at the end of the calculation. Note that for the c electron spin,
Eq. (2), the Q = 1 projection is not needed, because for the noninteracting c-electrons doubly
occupied or empty states are allowed.
Diagrammatic rules. We will now show that the limit λ → ∞ translates into simple dia-
grammatic rules for the evaluation of impurity Green and correlation functions. We denote the
local c electron Green function at the impurity site by Gcσ(iωn) and the bare, grand canonical
pseudo-fermion Green function by GG

fσ(iωn)

Gcσ(iωn) =
∑
k

1

iωn − εk
(10)

GG
fσ(iωn) =

1

iωn − λ
, (11)

with the fermionic Matsubara frequencies ωn = π
β
(2n + 1). Consider first limλ→0〈Q̂〉G(λ).

Using standard, complex contour integration, we obtain

〈Q̂〉G(λ) =
∑
σ

1

β

∑
ωn

GG
fσ(iωn) = −

∑
σ

∮
dz

2πi
f(z)GG

fσ(z)

= −
∑
σ

∫ +∞

−∞

dε

2πi
f(ε)

[
GG
fσ(ε+ i0)−GG

fσ(ε− i0)
]
, (12)
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where f(ε) = 1/(eβε + 1) is the Fermi function, and the ε-integral extends along the branch
cut of GG

fσ(z) at the real frequency axis, Im z = 0. We can now perform a specific gauge
transformation of the operators, fτ → e−iλtfτ . It implies, by virtue of Eq. (6), a shift of all
pseudo-fermion energies in a diagram by ε → ε + λ. It eliminates λ from the pseudo-fermion
propagator and casts it into the argument of the Fermi function. Thus, we have

〈Q̂〉G(λ) = −
∑
σ

∫ +∞

−∞

dε

π
f(ε+ λ) ImGfσ(ε+ i0)

λ→∞−→ e−βλ
∑
σ

∫ +∞

−∞

dε

π
e−βε ImGfσ(ε+ i0), (13)

where Gfσ(ε+ i0) ≡ GG
fσ(ε+ λ+ i0) = 1/(ε+ i0) is independent of λ.

The result Eq. (13) can be generalized by explicit calculation to arbitrary Feynman diagrams
involving f - and c-Green functions: (i) Each complex contour integral includes one distribution
function f(z). The integral can be written as the sum of integrals along the branch cuts at the
real energy axis of all propagators appearing in the diagram. (ii) Consider now one term of this
sum. The argument of the distrubution function f(ε) in that term is real and always equal to the
argument ε of that propagatorG along whose branch cut the integration extends. (iii) The above
energy-shift gauge transformation applies to all pseudo-fermion energies ω in the diagram and,
thus, cancels the parameter λ in all pseudo-fermion propagators, GG

fσ(ω) → Gfσ(ω). (iv) If in
the considered term the integral is along a pseudo-fermion branch cut, this gauge transformation
also shifts the argument of the distribution function, f(ε)→ f(ε+ λ), by virtue of (ii), i.e., the
pseudo-fermion branch cut integral vanishes ∼ e−βλ, as in Eq. (13). If the integral is along a
c-electron branch cut, the argument of f(ε) is not affected by the gauge transformation, and the
integral does not vanish.
This derivation can be summarized in the following diagrammatic rules for (Q = 1)-projected
expectation values:

(1) In a diagrammatic part that consists of a product of c- and f -Greens’s functions, only the
integrals along the c-electron branch cuts contribute.

(2) A closed pseudo-fermion loop contains only pseudo-fermion branch cut integrals and thus
carries a factor e−βλ.

(3) Each diagram contributing to the projected expectation value of an impurity spin observ-
able, 〈Â〉, contains exactly one closed pseudo-fermion loop per impurity site, because
the factor of e−βλ cancels in the numerator and denominator of Eq. (9), and higher order
loops vanish by virtue of rule (2).

We note in passing that the pseudo-fermion representation can be generalized in a straight-
forward way to higher local spins than S = 1/2 by choosing in Eq. (4) a respective higher-
dimensional representation of the spin matrices and defining the constraint Q̂ = 1 as before,
with a summation over all possible spin orientations τ . It can also be extended to include local
charge fluctuations by means of the slave boson representation [18–21].
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Fig. 2: Conduction electron-impurity spin vertex γ̂cf of the single-impurity Kondo model up to
2nd order in the spin exchange coupling J0. Conduction electron propagators are denoted by
solid, pseudo-fermion propagators by dashed lines. γ̂2,d and γ̂2,x represent the 2nd-order direct
and exchange terms, respectively. The external lines are drawn for clarity and are not part of
the vertex.

2.2 Perturbation theory

It is instructive to analyze the scattering of a conduction electron from a spin impurity in per-
turbation theory, because this will visualize the physical origin of its singular behavior. The
perturbation theory can be efficiently evaluated with the formalism developed in section 2.1.
With the Kondo Hamiltonian Eq. (1) the conduction-electron–impurity-spin vertex γ̂cf can be
read off from the diagrams in Fig. 2. Denoting the vector of Pauli matrices acting in c-electron
spin space by σ = (σx, σy, σz)T and the vector of Pauli matrices in f -spin space by s =

(sx, sy, sz)T , γ̂cf reads in first and second order of J0

γ̂
(1)
cf =

1

2
J0 (s · σ) (14)

γ̂
(2,d)
cf = −1

4
J2
0

∑
a,b=x,y,z

(
sbσb

)
(saσa)

1

β

∑
ωn

Gc(iωn)Gf (iΩm − iωn)|λ→∞ (15)

γ̂
(2,x)
cf = +

1

4
J2
0

∑
a,b=x,y,z

(
sbσa

) (
saσb

) 1

β

∑
ωn

Gc(iωn)Gf (iΩm + iωn)|λ→∞, (16)

where matrix multiplications in the f - and c-spin spaces are implied, and the sum
∑

a=x,y,z

represents the scalar product in position space. The relative minus sign between γ̂(2,d)cf and γ̂(2,x)cf

arises because of the extra fermion loop in the exchange term γ̂
(2,x)
cf . Note that the order of the

Pauli matrices in Eqs. (15), (16) is crucial. It is determined by their order along the c-electron
or f -particle lines running through the diagram. Thus, in γ̂(2,x)cf the order of c-electron Pauli
matrices is reversed with respect to γ̂(2,d)cf .

The spin-dependent part of γ̂(2,d)cf , γ̂(2,x)cf can be evaluated using the SU(2) spin algebra, σaσb =∑
c=x,y,z iε

abcσc + δab1 for a, b = x, y, z, where 1 is the unit operator in spin space, εabc the
totally antisymmetric unit tensor and δab the Kronecker-δ

d :
∑

a,b=x,y,z

sbsa ⊗ σbσa = −2 s · σ + 31⊗ 1 (17)

x :
∑

a,b=x,y,z

sbsa ⊗ σaσb = 2 s · σ + 31⊗ 1 (18)
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For scattering at the Fermi energy (Ω = 0), the energy-dependent factors in Eqs. (15), (16) are

d :
1

β

∑
ωn

Gc(iωn)G
G
f (−iωn)|λ→∞ =

∮
dz

2πi
[1− f(z)]Gc(z)G

G
f (−z)|λ→∞

= N(0)

∫ D0

−D0

dε
1− f(ε)

ε
(19)

x :
1

β

∑
ωn

Gc(iωn)G
G
f (iωn)|λ→∞ = −

∮
dz

2πi
f(z)Gc(z)G

G
f (z)|λ→∞

= −N(0)

∫ D0

−D0

dε
f(ε)

ε
, (20)

where we have assumed the Fermi energy in the center of the band of half bandwidth D0, with
a flat conduction electron density of states N(0) = ImGc(0 − i0)/π. We see (cf. Fig. 2) that
in the direct term (d) the intermediate electron must scatter into an unoccupied state, 1− f(ε),
while in the exchange term (x) the intermediate electron comes from an occupied state, f(ε)
and then leaves the impurity. Collecting all terms, we obtain γ̂cf = γ̂

(1)
cf + γ̂

(2d)
cf + γ̂

(2x)
cf as

γ̂cf =
1

2
J0 (s · σ)

[
1 +N(0)J0

∫ D0

−D0

dε
1− 2f(ε)

ε
+O(J2

0 )

]
≈ 1

2
J0 (s · σ)

[
1 + 2N(0)J0 ln

(
D0

T

)
+O(J2

0 )

]
(21)

The calculation clearly shows the physical origin of the logarithmic behavior: the presence of
a sharp Fermi edge in the phase space available for scattering, i.e., in the integrals of Eqs. (19),
(20), and quantum spin-flip scattering with the nontrivial SU(2) algebra. If the reversed order
of Pauli matrices in the exchange term would not introduce a minus sign in the spin channel,
Eq. (18), the logarithmic terms would cancel, like in the potential scattering channel, instead of
adding up. It is also important that the impurity is localized, because otherwise an integral over
the exchanged momentum (recoil) would smear the logarithmic singularity.
Eq. (21) exhibits a logarithmic divergence for low temperatures T . It signals a breakdown
of perturbation theory when the 2nd-order contribution to γ̂cf becomes equal to the 1st-order
contribution. This happens at a characteristic temperature scale, which can be read off from
Eq. (21), the Kondo temperature

TK = D0 e
−1/(2N(0)J0). (22)

Below TK perturbative calculations about the weak-coupling state break down. To describe
the complex physics outlined in the introduction, more sophisticated techniques, predominantly
numerical or exact solution methods, are required. The logarithmic behavior of the perturbation
expansion, however, sets the stage for the development of the renormalization group method, to
be developed in the next section, and which is particularly useful for analytically studying the
interplay of Kondo screening and RKKY interaction.
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Fig. 3: Universality and perturbative renormalization group. (a) T-matrix resummation of
the c –f vertex. The sum contains, for each conduction electron-pseudo-fermion bubble (direct
diagram) shown, the exchange diagram, which is not shown for clarity. (b) Scheme for the
cutoff reduction D → D − δD.

2.3 Renormalization group

Since the logarithm is a scale invariant function, there is the possibility that the resummation
of a logarithmic perturbation expansion leads to universal behavior in the sense that variables
like energy ω, temperature T , etc. can be expressed in units of a single scale, TK , in such a
way that all physical quantities are functions of the dimensionless variables, ω/TK , T/TK , etc.
only and do not explicitly depend on the microscopic parameters of the Hamiltonian, like J0,
D0, and N(0). For the Kondo model, this extremely remarkable property can be visualized by a
T-matrix-like, partial resummation of the c –f vertex, as sketched in Fig. 3(a). The resummation
results in a geometric series for the total c –f vertex or the effective coupling constant J̃

N(0)J̃ = 2N(0)J0

[
1 + 2N(0)J0 ln

(
D0

T

)
+

(
2N(0)J0 ln

(
D0

T

))2

+ . . .

]
(23)

=
2N(0)J0

1− 2N(0)J0 ln
(
D0

T

) =
1

ln
(

T
TK

) , (24)

which converges for T > TK . It is seen that, as a consequence of the logarithmic behavior, in
the last expression the microscopic parameters J0, D0, and N(0) indeed conspire to form the
Kondo temperature TK of Eq. (22) as the only scale in the problem. This universal behavior is
inherited by physical quantities, like relaxation rates, transport properties, etc., since they can be
expressed in terms of the total c –f vertex. Although the above is only a heuristic argument and
other contributions, not contained in the partial summation, could break the universality, it has
been shown independently by the Bethe ansatz solution [22] and by numerical renormalization
group (NRG) (for a recent review see [23]) that universality in the above sense indeed holds for
the Kondo problem.
Universality is the starting point for the renormalization group method whose essence we dis-
cuss next. Let all physical quantities An = hn(ω/T

∗, T/T ∗) of a system depend on energy ω
and temperature T in a universal way, with universal functions hn and some (yet unknown)
characteristic scale T ∗, which depends on the microscopic parameters of the Hamiltonian,
J0, D0, N(0). The fact that the An depend on these parameters only implicitly through T ∗
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implies that different values of this parameter set realize the same physical system (defined by
its observables An) if only the different parameter set values lead to the same scale T ∗. In
particular, systems with low and with high values of the conduction bandwidth or cutoff D0

must be equivalent if the coupling constant J0 is adjusted appropriately. In the Kondo problem
we are mostly interested in the low-energy behavior, where the perturbation theory fails. This
regime corresponds to electrons with a low bandwidth, scattering near the Fermi energy. By
virtue of the above argument, this low-energy regime is connected with the high bandwidth
regime, where perturbative calculations are possible. In the renormalization group method,
this relation is established iteratively. Starting from an initial high-energy cutoff D0, the cut-
off is stepwise reduced to low energies, calculating at each step how the coupling constant J
of the Hamiltonian must be changed, such that the physical observables An remain constant,
see Fig. 3(b). This defines a running cutoff D with initial value D0 and a “renormalized” or
“running” coupling constant J(D) with initial value J0. The running coupling constant, as part
of the Hamiltonian, defines a change of the Hamiltonian itself. More generally, the cutoff re-
duction may even generate new types of interaction operators in the Hamiltonian, implied by
the requirement that physical observables be invariant. The repeated operations on the Hamil-
tonian, defined in this way, form a semigroup (without existence of the inverse operation), the
renormalization group (RG). The change of the Hamiltonian by the successive cutoff reduction
is called renormalization group flow.
We can now perform the renormalization of the Kondo Hamiltonian (or coupling constant J)
explicitly in a perturbative way, following Anderson [24]. To that end, it is convenient to intro-
duce the dimensionless, bare coupling g0 = N(0)J0 and running coupling g = N(0)J . We also
define the projector PδD of the conduction electron energy onto the intervals [−D,−D+ δD]∪
[D − δD,D] by which the conduction band is reduced in one RG step as well as the projector
(1−PδD) onto the remaining conduction energy interval, cf. Fig. 3(b). To impose the invariance
of physical quantities under the RG flow, it is sufficient to keep the total conduction-electron–
pseudo-fermion vertex γ̂cf invariant, since all physical quantities are derived from it within the
Kondo model. γ̂cf is defined by the following T-matrix equation

γ̂cf = γ̂
(1)
cf + γ̂

(1)
cf G γ̂cf . (25)

Here, the bare vertex γ̂
(1)
cf is defined as in Eq. (14), G denotes schematically the product of

Gc and Gf propagators connecting two bare vertices γ̂(1)cf in the direct and exchange diagrams
(cf. Fig. 2), and integration over the conduction electron energy in G is implied. Eq. (25) can
be rewritten as

γ̂cf = γ̂
(1)
cf + γ̂

(1)
cf [PδDG] γ̂cf + γ̂

(1)
cf [(1−PδD)G] γ̂cf (26)

= γ̂
(1)
cf + γ̂

(1)
cf [PδDG]

{
γ̂
(1)
cf + γ̂

(1)
cf [(PδD + (1−PδD))G] γ̂cf

}
+ γ̂

(1)
cf [(1−PδD)G] γ̂cf

= γ̂
(1)
cf

′
+ γ̂

(1)
cf

′
[(1−PδD)G] γ̂cf + O(P 2

δD),

with

γ̂
(1)
cf

′
= γ̂

(1)
cf + γ̂

(1)
cf [PδDG] γ̂

(1)
cf =: γ̂

(1)
cf + δγ̂

(1)
cf . (27)
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In the first line of Eq. (26), the integral over the intermediate conduction electron energy has
been split into the infinitesimal high-energy part PδD and the remaining part (1−PδD). In the
second line, the high-energy part of the equation has been iterated once, and in the third line,
only terms up to linear order in PδD have been retained, and all terms have been appropriately
rearranged. As seen from the third line, the total vertex γ̂cf obeys again a T-matrix equation,
however with a reduced conduction bandwidth, (1−PδD). Moreover, γ̂cf remains invariant by
this procedure, exactly if the bare vertex is changed to γ̂(1)cf as defined in Eq. (27). This is the
vertex renormalization we are seeking. Note that this expression is a perturbative, because in
Eq. (26) we have iterated the T-matrix equation only once (1-loop approximation). Higher-
order iterations, leading to higher-order renormalizations in γ̂

(1)
cf are possible. Note that the

vertex renormalization δγ̂(1)cf in Eq. (27) corresponds just to the 2nd-order perturbation theory
expression calculated in Eq. (21), see also Fig. 2. Thus, one can read off from these equations
the renormalization of the dimensionless coupling constant g under cutoff reduction −δD as

dg = − d

dD

[
g2
∫ D

−D
dε

1− 2f(ε)

ε

]
δD = −2g2

D
δD. (28)

Usually one takes the logarithmic derivative which ensures that the differential range −δD by
which the cutoff is reduced is proportional to the cutoff itself: δD = Dd(lnD). Thus

dg

d lnD
= −2g2. (29)

This is the differential renormalization group equation (of 1-loop order). The function on the
right-hand side, β(g) = −2g2, which controls the running coupling constant renormalization,
is called the β-function of the RG. The RG equation can be integrated in a straightforward way
with the initial condition g(D0) = g0 to give

g(D) =
g0

1− 2g0 ln(D/D0)
. (30)

It is seen that this solution becomes again divergent for antiferromagnetic g0 > 0 when the
running cutoff reaches the Kondo scale, D → TK = D0 exp [−1/(2g0)], a consequence of
the perturbative RG treatment above. However, this divergence allows the conclusion that the
ground state of the single-impurity Kondo model is a spin-singlet state between the impurity
spin and the spin cloud of the surrounding conduction electron spins as outlined in the intro-
duction. Moreover, it allows for a more general definition of the Kondo spin screening scale
TK , namely the value of the running cutoff D where the coupling constant diverges and the
singlet starts to be formed. This will be used for the analysis of the Kondo-RKKY interplay in
section 4.

3 RKKY interaction in paramagnetic and half-metals

In this section we derive the expressions for the RKKY interaction. To be general, we will allow
for an arbitrary spin polarization of the conduction band and then specialize for the paramag-
netic case (vanishing magnetization) and the half-metallic case (complete magnetization). Thus,
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we consider now the Kondo lattice Hamiltonian of localized spins Ŝi at the lattice positions ri

H =
∑
k,σ

εk c
†
kσckσ + J0

∑
i

Ŝi · ŝi . (31)

Usually, the static limit is considered in order to derive a Hamiltonian coupling operator. We
will later consider the question of dynamical correlations as well, as it arises in the interplay with
the Kondo effect. The interaction Hamiltonian for the conduction electrons and the localized
f -spin Sj at a site j 6= i,

H
(cf)
j = J0Ŝj · ŝj , (32)

acts as a perturbation for the localized f -spin at a site i (and vice versa). Performing standard
thermal perturbation theory by expanding the time evolution operator in the interaction picture,
T̂ exp[−

∫ β
0
dτHcf

j (τ)] up to linear order in J0, one obtains for the interaction operator of the
f -spin at site i up to O(J2

0 )

H
(2)
ij = J0 Ŝi · ŝi − J2

0 〈(Ŝi · ŝi)(Ŝj · ŝj)〉c
∣∣∣
ω=0

. (33)

Here, 〈(. . . )〉c := trc{e−βH(. . . )}/ZG, denotes the thermal trace over the conduction electron
Hilbert space, and the static limit, ω = 0, has been taken. Using Wick’s theorem with respect
to the conduction electron operators, the second term in Eq. (33) can be written as

HRKKY
ij = −J

2
0

4

∑
α,β=x,y,z

∑
σσ′

Ŝαi σ
α
σσ′σ

β
σ′σ Ŝ

β
j Π

σσ′

ij (0), (34)

where Ŝαi , α = x, y, z, are the components of the impurity spin, σα the Pauli matrices, and
Πσσ′
ij the conduction electron density propagator between the sites i and j as depicted diagram-

matically in Fig. 4(a). It has the general form,

Πσσ′

ij (iω) = − 1

β

∑
εn

Gji σ(iεn + iω)Gij σ′(iεn) . (35)

In the static limit it reads

Πσσ′

ij (0) = −
∫
dε f(ε)[Aij σ(ε)ReGij σ′(ε) + Aij σ′(ε)ReGij σ(ε)] ,

whereAij σ(ε) = −ImGij σ(ε+i0)/π. Performing the spin contractions in Eq. (34) and defining
the longitudinal and the transverse polarization functions, respectively, as

Π
||
ij(0) =

1

2

∑
σ

Πσσ
ij (0) = −

∑
σ

∫
dε f(ε)Aij σ(ε) ReGij σ(ε) (36)

Π⊥ij (0) =
1

2

∑
σ

Πσ−σ
ij (0) = −

∑
σ

∫
dε f(ε)Aij σ(ε) ReGij−σ(ε) , (37)

one obtains the RKKY interaction Hamiltonian,

HRKKY =
∑
i 6=j

HRKKY
ij = −

∑
i,j

[
K
||
ij Ŝ

z
i Ŝ

z
j −K⊥ij

(
Ŝxi Ŝ

x
j + Ŝyi Ŝ

y
j

)]
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Fig. 4: (a) Diagram for the spin-dependent conduction electron polarization functionΠσσ′
ij (ω),

generating the RKKY interaction. The solid lines represent conduction electron propagators.
(b) Oscillatory behavior of Πσσ′

ij (0) in a paramagnetic metal with isotropic dispersion as a
function of distance x = 2kF |ri − rj|, Eq. (45)

where the sums run over all (arbitrarily distant) lattice sites i, j, i 6= j of localized spins Ŝi and

Ŝj , and

K
||
ij =

1

2
J2
0Π
||
ij(0) , K⊥ij =

1

2
J2
0Π
⊥
ij (0) , (38)

are the longitudinal and transverse RKKY couplings, respectively. The spin being a vector op-
erator, the interaction Hamiltonian HRKKY

ij has a tensor structure and is, in general, anisotropic
for a magnetized conduction band, as seen from Eq. (38).
We now present explicitly the expressions for the special cases of a paramagnet and of a half-
metal. For a paramagnetic conduction band we have Gij σ = Gij,−σ, independent of spin.
Hence, the RKKY coupling is isotropic, and we have the paramagnetic RKKY Hamiltonian,

HRKKY
PM = −

∑
(i,j)

KPM
ij Ŝi · Ŝj , (39)

with

KPM
ij = −J

2
0

2

∑
σ

∫
dε f(ε)Aij σ(ε) ReGij σ(ε) . (40)

For a half-metal, i.e., for a completely spin-magnetized conduction band with majority spin
σ =↑ we have Aij ↓(ε) = 0, Thus, the half-metallic RKKY Hamiltonian reads

HRKKY
FM = −

∑
(i,j)

[
K
FM ||
ij Ŝzi Ŝ

z
j +KFM ⊥

ij

(
Ŝxi Ŝ

x
j + Ŝyi Ŝ

y
j

)]
, (41)

with

K
FM ||
ij = −J

2
0

2

∫
dε f(ε)Aij ↑(ε) ReGij ↑(ε) (42)

KFM ⊥
ij = −J

2
0

2

∫
dε f(ε)Aij ↑(ε) ReGij ↓(ε) . (43)
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The missing spin summation in Eqs. (42) and (43) as compared to Eq. (40) indicates that in the
completely magnetized band only the majority spin species contributes to the coupling. Note,
however, that the transverse coupling KFM⊥

ij is still non-zero even in the ferromagnetically
saturated case because of virtual (off-shell) minority spin contributions represented by the real
part ReGij ↓(ε) in Eq. (43).

The RKKY coupling is long-ranged and has in general complex, oscillatory behavior in space,
because it depends on details of the conduction band structure via the position dependent
Green functions Gji σ(ω) in Eq. (35). For an isotropic system in d = 3 dimensions, the re-
tarded/advanced conduction electron Green function Grσ(ε ± i0) and the paramagnetic polar-
ization Πσσ′

r (ω) at temperature T = 0 are calculated in position space as,

Grσ(ε± i0) = −πN(ε)
e±ik(εF+ε)r

k(εF + ε)r
(44)

Πσσ′

r (ω + i0) =

[
N(0)

sin(x)− x cos(x)
4x4

+ O

((
ω

εF

)2
)]

(45)

± i

[
1

π
N(0)

1− cos(x)

x2
ω

εF
+ O

((
ω

εF

)3
) ]

Here, εF and kF are the Fermi energy and Fermi wavenumber, respectively, and r = |ri − rj|,
x = 2kF r. For illustration, Fig. 4(b) shows the static polarization Πσσ′

r (0) as a function of x for
the isotropic case.

4 Interplay of Kondo screening and RKKY interaction

We now turn to the interplay of the two interactions on a Kondo lattice, Eq. (31). First, it is
crucial to remember that the RKKY interaction between different f -spins is not a direct spin
exchange interaction, but mediated by the conduction band [3–5] and generated in second order
by the same spin coupling J0 that is also responsible for the local Kondo spin screening, as
shown in the previous section. The essential difference can be seen from the example of a two-
impurity Kondo system, S1, S2: With a direct impurity-impurity coupling, K S1 ·S2, this model
can exhibit a dimer singlet phase where the dimer is decoupled from the conduction electrons.
The dimer singlet and the local Kondo singlet phase are then separated by a quantum critical
point (QCP), controlled by K [25,26]. By contrast, when the inter-impurity coupling is created
by the RKKY interaction only, i.e. generated by J0, a decoupled dimer singlet phase is not pos-
sible. Instead, the impurity spins must remain coupled to the conduction sea. We show below
that the Kondo singlet formation at T = 0 breaks down at a critical strength of the RKKY cou-
pling even if magnetic ordering is suppressed, i.e. without a 2nd-order quantum phase transition
and without critical fluctuations. If magnetic ordering occurs, critical ordering fluctuations will
be present in addition to, but independently of the RKKY-induced Kondo breakdown.
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Fig. 5: (a) f -spin–c-electron vertex Γ̂cf , composed of the onsite vertex J at site i and the RKKY-
induced contributions from surrounding sites j 6= i to leading order in the RKKY coupling,
γ
(d)
RKKY (direct term) and γ(x)RKKY (exchange term). (b) 1-loop diagrams for the perturbative

RG. Solid lines: electron Green functions Gc, dashed lines: pseudo-fermion propagators Gf of
the local f -spins. The red bubbles represent the full f -spin susceptibility at sites j.

4.1 The concept of a selfconsistent renormalization group

The problem of local Kondo screening or breakdown on a Kondo lattice amounts to calculating
the vertex for scattering of c-electrons from a local f -spin and analyzing its divergence (Kondo
screening of the f -spin, cf. section 2.3) or non-divergence (Kondo breakdown) under RG. In the
case of multiple Kondo sites or a Kondo lattice, this vertex Γ̂cf acquires nonlocal contributions
in addition to the local coupling J0, because a c-electron can scatter from a distant Kondo
site j 6= i, and the spin flip at that site is transferred to the f -spin at site i via the RKKY
interaction. On the other hand, the RKKY vertex Γ̂ff coupling two f -spins has no logarithmic
RG flow, since the recoil (momentum integration) of the itinerant conduction electrons prevents
an infrared divergence of the RKKY interaction. Thus, Γ̂ff remains in the weak coupling
regime, and RKKY-induced magnetic ordering must be a secondary effect, not controlled by
the RG divergence of a coupling constant.

The diagrams contributing to Γ̂cf to leading order in the RKKY coupling are shown in Fig. 5(a).
As seen from the figure, a nonlocal scattering process necessarily involves the exact, local dy-
namical f -spin susceptibility χf (iΩn) on site j. The resulting c –f vertex Γ̂cf has the structure
of a nonlocal Heisenberg coupling in spin space, see Appendix A.1. The exchange diagram,
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γ
(x)
RKKY in Fig. 5(a), contributes only a sub-leading logarithmic term as compared to the direct

term γ
(d)
RKKY , see Appendix A.2. In particular, it does not alter the universal TK(y) suppression

derived below. It can, therefore, be neglected. To leading (linear) order in the RKKY coupling,
Γ̂cf thus reads (in Matsubara representation)

Γ̂cf =
[
Jδi,j + γ

(d)
RKKY (rij, iΩn)

]
Si · sj (46)

=
[
Jδij + 2JJ2

0 (1− δij) Π(rij, iΩn) χ̃f (iΩn)
]
Si · sj ,

where rij = xi−xj the distance vector between the sites i and j, andΩ is the energy transferred
in the scattering process. Π(rij, iΩn) is the c-electron density correlation function between sites
i and j [bubble of solid lines in Fig. 5(a)] and χ̃f (iΩn) := χf (iΩn)/(gLµB)

2, with gL the Landé
factor and µB the Bohr magneton. Note that Eq. (46) contains the running coupling J at site
i which will be renormalized under RG, while at the site j, where the c-electron scatters, the
bare coupling J0 appears, since all vertex renormalizations on that site are already included in
the exact susceptibility χf . Higher order terms, as for instance generated by the RG [see below,
Fig. 5(b)], lead to nonlocality of the incoming and outgoing coordinates of the scattering c-
electrons, xj , xj′ , but the f -spin coordinate xi remains strictly local, since the pseudo-fermion
propagator Gf (iνn) = 1/iνn is local [20]. For this reason, speaking of Kondo singlet formation
on a single Kondo site is well defined even on a Kondo lattice, and so is the local susceptibility
χf of a single f -spin. The corresponding Kondo scale TK on a site j is observable, e.g., as
the Kondo resonance width measured by STM spectroscopy on one Kondo ion of the Kondo
lattice. The temperature dependence of the single-site f -spin susceptibility is known from the
Bethe ansatz solution [22] in terms of the Kondo scale TK . It has a T = 0 value χf (0) ∝ 1/TK
and crosses over to the 1/T behavior of a free spin for T > TK . These features can be modeled
in the retarded/advanced, local, dynamical f -spin susceptibility χf (Ω ± i0) as

χf (Ω ± i0) =
(gLµB)

2W

πTK
√

1 + (Ω/TK)2

(
1± 2i

π
arsinh

Ω

TK

)
(47)

where W is the Wilson ratio, and the imaginary part is implied by the Kramers-Kronig relation.
Deriving the one-loop RG equation for a multi-impurity or lattice Kondo system proceeds as in
section 2.3, however for the c –f vertex Γ̂cf , including RKKY-induced nonlocal contributions.
The one-loop spin vertex function is shown diagrammatically in Fig. 5(b). Using Eq. (46), the
sum of these two diagrams is up to linear order in the RKKY coupling,

Y (rij, iωn) = −J T
∑
iΩm

[
Jδij + γ

(d)
RKKY (rij, iΩm) + γ

(d)
RKKY (rij,−iΩm)

]
(48)

× [Gc(rij, iωn − iΩm)−Gc(rij, iωn + iΩm)] Gf (iΩm).

Here, ω is the energy of incoming conduction electrons and Gc(rij, iωn + iΩm) the single-
particle c-electron propagator from the incoming to the outgoing site.
For the low-energy physics, the vertex renormalization for c-electrons at the Fermi surface is
required. This means setting the energy iω → ω = 0 + i0 and Fourier transforming the total
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vertex Y (rij, iω) with respect to the incoming and outgoing c-electron coordinates, xj , xi, and
taking its Fourier component for momenta at the Fermi surface, kF . Note that at the Fermi
energy Y (kF , 0) is real, even though the RKKY-induced, dynamical vertex γ(d)RKKY (±iΩm) ap-
pearing in Eq. (48) is complex-valued. This ensures the total vertex operator of the renormalized
Hamiltonian to be Hermitian. By analytic continuation, the Matsubara summation in Eq. (48)
becomes an integration over the intermediate c-electron energy from the lower and upper band
cutoff ∓D to the Fermi energy (Ω = 0). The coupling constant renormalization is then ob-
tained by requiring that Y (kF , 0) is invariant under an infinitesimal reduction of the running
band cutoff D (cf. section 2.3). Note that the band cutoff appears in both, the intermediate elec-
tron propagator Gc and in Π . However, differentiation of the latter does not contribute to the
logarithmic RG flow. This leads to the 1-loop lattice RG equation for the local coupling [27]

dg

d lnD
= −2g2

(
1− y g20

D0

TK

1√
1 + (D/TK)2

)
, (49)

with the bare band cutoff D0. The first term in Eq. (49) is the onsite contribution to the β-
function, while the second term represents the RKKY contribution. It is seen that χf , as in
Eq. (47), induces a soft cutoff on the scale TK and the characteristic 1/TK dependence to the
RG flow of this contribution, where TK is the Kondo scale on the surrounding Kondo sites. The
dimensionless coefficient

y = −8W

π2
Im
∑
j 6=i

e−ikF rij

N(0)2
GR
c (rij, Ω = 0)Π(rij, Ω = 0) (50)

arises from the Fourier transform Y (kF , 0) and parameterizes the RKKY coupling strength.
The summation in Eq. (50) runs over all positions j 6= i of Kondo sites in the system. It is
important to note that y is generically positive, even though the RKKY correlations Π(rij, 0)

may be ferro- or antiferromagnetic. For instance, for an isotropic and dense system with lattice
constant a (kFa� 1), the summation in Eq. (50) can be approximated by an integral, and with
the substitution x = 2kF |rij|, y can be expressed as

y ≈ 2W

(kFa)3

∫ ∞
kF a

dx (1− cosx)
x cosx− sinx

x4
> 0 . (51)

As a consequence, the RKKY correlations reduce the g-renormalization in Eq. (49), irrespective
of the sign of Π(rij, 0), as one would physically expect.
The Kondo scale for singlet formation on site i is defined as the running cutoff value where
the c –f coupling g diverges. An important feature of the lattice RG equation (49) is that the
Kondo screening scale on surrounding sites j 6= i appears as a parameter in the β-function for
the renormalization on site i. By equivalence of all Kondo sites, the Kondo scales TK on all
sites i and j must be equal. This leads to the fact that the divergence scale TK of the lattice
RG equation must be determined self-consistently and will imply an implicit equation for the
local screening scale TK = TK(y) on a Kondo lattice, which will depend on the RKKY param-
eter y. The equivalence of the c –f vertices on all Kondo sites is reminiscent of a dynamical
mean-field theory treatment, however, it goes beyond the latter in taking the long-range RKKY
contributions into account.
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Fig. 6: (a) Graphical solution of Eq. (55): black, solid curve: right-hand side of Eq. (55),
blue line: left-hand side for y < yc, red line: left-hand side for y = yc (where red line and
black curve touch). It proves that there is a critical coupling yc beyond which Eq. (55) has
no solution, and TK(yc)/TK(0) = 1/e. (b) Universal dependence of TK(y)/TK(0) on the
normalized RKKY parameter y/yc, solution of Eq. (55). The inset shows the critical RKKY
parameter yc for various single-ion Kondo temperatures TK(0), Eq. (57).

4.2 Integration of the RG equation

The RG equation Eq. (49) is readily integrated by separation of variables,

−
∫ g

g0

dg

g2
= 2

∫ lnD

lnD0

d lnD′ − 2yg20
D0

TK

∫ D/TK

D0/TK

dx

x

1√
1 + x2

, (52)

or
1

g
− 1

g0
= 2 ln

(
D

D0

)
− yg20

D0

TK
ln

(√
1 + (D/TK)2 − 1√
1 + (D/TK)2 + 1

)
, (53)

where we have used D0/TK � 1 in the last expression. The Kondo scale is defined as the value
of the running cutoff D where g diverges, i.e., g →∞ when D → TK . This yields the defining
equation for the Kondo scale TK ≡ TK(y),

− 1

g0
= 2 ln

(
TK(y)

D0

)
− yg20

D0

TK(y)
ln

(√
2− 1√
2 + 1

)
.

Using the definition of the single-impurity Kondo temperature, −1/g0 = 2 ln (TK(0)/D0), the
defining, implicit equation for TK(y) can finally be written as

TK(y)

TK(0)
= exp

(
−y α g20

D0

TK(y)

)
, (54)

with α = ln(
√
2 + 1).

4.3 Universal suppression of the Kondo scale

By the rescaling, u = TK(y)/(yαg
2
0D0), yc = TK(0)/(αeg

2
0D0), Eq. (54) takes the universal

form (e is Euler’s constant),
y

eyc
u = e−1/u . (55)
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Fig. 7: Comparison of the theory (red curve), Eq. (55), with STM spectroscopy experiments
on a tunable two-impurity Kondo system (data points, Ref. [29]). The data points represent the
Kondo scale TK as extracted from the STM spectra by fitting a split Fano line shape of width
TK to the experimental spectra, see [29] for experimental details.

Its solution can be expressed in terms of the LambertW function [28] as u(y) = −1/W (−y/eyc).
Fig. 6(a) visualizes solving Eq. (55) graphically. It shows that Eq. (55) has solutions only for
y ≤ yc. This means that yc marks a Kondo breakdown point beyond which the RG does not
scale to strong coupling, i.e., a Kondo singlet is not formed for y > yc even at the lowest
energies. Using the above definitions, the RKKY-induced suppression of the Kondo lattice tem-
perature reads, TK(y)/TK(0) = u(y)y/(eyc) = −y/[eycW (−y/eyc)]. It is shown in Fig. 6(b).
In particular, at the breakdown point it vanishes discontinuously and takes the finite, universal
value (see Fig. 6(a)),

TK(yc)

TK(0)
=

1

e
≈ 0.368 . (56)

We emphasize that the RKKY parameter y depends on details of the conduction band structure
and of the spatial arrangement of Kondo sites. Sub-leading contributions to Γcf may modify the
form of the cutoff function in the RG Eq. (49) and thus the nonuniversal parameter α. However,
all this does not affect the universal dependence TK(y) on y given by Eq. (55).
The critical RKKY parameter, as defined before Eq. (55), can be expressed solely in terms of
the single-ion Kondo scale,

yc =
4

αe
τK(lnτK)

2 , (57)

with τK = TK(0)/D0. Note that [via TK(0) = D0 exp(−1/2g0) and N(0) = 1/(2D0)] this is
equivalent to Doniach’s breakdown criterion [7], N(0)ycJ

2
0 = TK(0), up to a factor of O(1).

However, the present theory goes beyond the Doniach scenario in that it predicts the behavior
of TK(y).
The present theory applies directly to two-impurity Kondo systems, where magnetic ordering
does not play a role, and can be compared to corresponding STM experiments [29, 30]. In
Ref. [29], the Kondo scale has been extracted as the line width of the (hybridization-split)
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Kondo-Fano resonance. In this experimental setup, the RKKY parameter y is proportional to
the overlap of tip and surface c-electron wave functions and, thus, depends exponentially on the
tip-surface separation z, y = yc exp(−(z − z0)/ξ). Identifying the experimentally observed
breakdown point, z = z0, with the Kondo breakdown point, the only adjustable parameters
are a scale factor ξ of the z coordinate and TK(0), the resonance width at large separation,
z = 300 pm. The agreement between theory and experiment is striking, as shown in Fig. 7.
In particular, at the breakdown point TK(yc)/TK(0) coincides accurately with the prediction,
Eq. (56), without any adjustable parameters.

5 Conclusion

We have derived a perturbative renormalization group theory for the interference of Kondo sin-
glet formation and RKKY interaction in Kondo lattice and multi-impurity systems, assuming
that magnetic ordering is suppressed, e.g. by frustration. Eqs. (54) or (55) represent a mathe-
matical definition of the energy scale for Kondo singlet formation in a Kondo lattice, i.e., of the
Kondo lattice temperature, TK(y). The theory predicts a universal suppression of TK(y) and a
breakdown of complete Kondo screening at a critical RKKY parameter, y = yc. At the break-
down point, the Kondo scale takes a finite, universal value, TK(yc)/TK(0) = 1/e ≈ 0.368, and
vanishes discontinuously for y > yc. In the Anderson lattice, by contrast to the Kondo lattice,
the locality of the f -spin does no longer strictly hold, but our approach should still be valid
in this case. The parameter-free, quantitative agreement of this behavior with different spec-
troscopic experiments [29, 30] strongly supports that the present theory captures the essential
physics of the Kondo-RKKY interplay.
The results may have profound relevance for heavy-fermion magnetic QPTs. In an unfrustrated
lattice, the partially screened local moments existing for y > yc must undergo a second-order
magnetic ordering transition at sufficiently low temperature. This means that the bare c-electron
correlation or polarization functionΠ must be replaced by the full c-correlation function χc and
will imply a power-law divergence of the latter in Eq. (46). We have checked the effect of such
a magnetic instability, induced either by the ordering of remanent local moments or by a c-
electron SDW instability: The breakdown ratio TK(yc)/TK(0) will be altered, but must remain
nonzero. The reason is that the inflection point of the exponential on the right-hand side of
Eq. (55) (see Fig. 6) is not removed by such a divergence and, therefore, the solution ceases
to exist at a finite value of TK(yc). This points to an important conjecture about a possible,
new quantum critical scenario with Kondo destruction: The Kondo spectral weight may vanish
continuously at the QCP, while the Kondo energy scale TK(y) (resonance width) remains finite.
Such a scenario may reconcile apparently contradictory experimental results in that it may fulfill
dynamical scaling, even though TK(yc) is finite at the QCP.
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Appendix

A f -spin – conduction-electron vertex Γ̂cf

Here we present some details on the calculation of the elementary c-electron–f -spin vertex Γ̂cf
It is defined via the Kondo lattice Hamiltonian,

H =
∑
k,σ

εk c
†
kσckσ + J0

∑
i

Ŝi · ŝi , (58)

The direct (d) and exchange (x) parts of the RKKY-induced vertex can be written as the product
of a distance and energy dependent function Λ(d/x)

RKKY and an operator in spin space, Γ̂ (d/x),

γ̂
(d/x)
RKKY = Λ

(d/x)
RKKY (rij, iΩ) Γ̂ (d/x) (59)

A.1 Spin structure

Denoting the vector of Pauli matrices acting in c-electron spin space by σ = (σx, σy, σz)T and
the vector of Pauli matrices in f -spin space by s = (sx, sy, sz)T , the RRKY-induced vertex
contributions read in spin space,

Γ̂
(d)
αβ,κλ =

∑
a,b,c=x,y,z

2∑
γ,δ,µ,ν=1

(
σaδγs

a
κλ

) (
σbγδs

b
νµ

) (
σcαβs

c
µν

)
(60)

Γ̂
(x)
αβ,κλ =

∑
a,b,c=x,y,z

2∑
γ,δ,µ,ν=1

(
σaδγs

a
κλ

) (
σbαδs

b
νµ

) (
σcγβs

c
µν

)
(61)

with c-electron spin indices α, β, γ, δ, and f -spin indices κ, λ, µ, ν, as shown in Fig. 8(a). The
spin summations can be performed using the spin algebra (a, b = x, y, z),

2∑
γ=1

σaαγσ
b
γβ =

∑
c=x,y,z

iεabcσcαβ + δab1αβ , (62)

where 1 is the unit operator in spin space, εabc the totally antisymmetric tensor and δab the
Kronecker-δ. This results in a nonlocal Heisenberg coupling between sites i and j,

Γ̂
(d)
αβ,κλ = 4

∑
a=x,y,z

(
σaαβs

a
κλ

)
(63)

Γ̂
(x)
αβ,κλ = −2

∑
a=x,y,z

(
σaαβs

a
κλ

)
. (64)



Kondo Effect and RKKY Interaction 12.23

(a)

χ
f

j

j

i

RKKY
γ

f
χ jj

i

RKKY

(x)γ

ν
µ

αβ

δ

λ κ

γ

(d)

λ

β α

γ δ

µ

ν

κ (b)

f
χ jj

i

χ
f

j

j

i

ω+Ωω

RKKY
γ

RKKY

(x)
γ

(d)

ε+Ωε

Ω
ε

ω ω+Ω

ε+ω ε+ω+Ω

Fig. 8: Direct (d) and exchange (x) diagrams of the RKKY-induced contributions to the c –f
vertex: (a) spin labelling, (b) energy labelling.

A.2 Energy dependence

With the energy variables as defined in Fig. 8(b), the energy dependent functions in Eq. (59)
read in Matsubara representation

Λ
(d)
RKKY (rij, iΩm) = JJ2

0Π(rij, iΩm)χ̃f (iΩm)

Λ
(x)
RKKY (rij, iωn, iΩm) = −JJ2

0T
∑
iεm

Gc(rij, iωn + iεm)Gc(rij, iωn + iΩm + iεm)χ̃f (iεm)

where

Π(rij, iΩm) = −T
∑
εn

Gc(rij, iεn)Gc(rij, iεn + iΩm) (65)

and χ̃f (iεm) = χf (iεm)/(gLµB)
2, with χf (iεm) the full, single-impurity f -spin susceptibility,

Eq. (47).
For the renormalization of the total c –f vertex for c-electrons at the Fermi energy, the contri-
butions Λ(d)

RKKY , Λ(d)
RKKY must be calculated for real frequencies, iΩ → Ω + i0, iω → ω + i0,

and for electrons at the Fermi energy, i.e., ω = 0. In this limit, only the real parts of Λ(d)
RKKY ,

Λ
(d)
RKKY contribute to the vertex renormalization, as seen below. In order to analyze their im-

portance for the RG flow, we will expand them in terms of the small parameter TK/D0. In the
following, the real part of a complex function will be denoted by a prime ’ and the imaginary
part by a double-prime ”.

Direct contribution. Since in Λ(d)
RKKY , Π(iΩm) and χ̃f (iΩm) appear as a product and χ̃f (Ω)

cuts off the energy transfer Ω at the scale TK � εF ≈ D0, the electron polarization Π(Ω)

contributes only in the limit Ω � εF where it is real-valued, as seen in Eq. (45). Using Eq. (45)
and Eq. (47), the real part of the direct RKKY-induced vertex contribution reads,

Λ
(d)
RKKY

′(rij, Ω + i0) = JJ2
0R(rij)AN(0)

D0

TK

1√
1 + (Ω/TK)2

+ O

((
Ω

D0

)2
)
, (66)

where

R(rij) =
sin(x)− x cos(x)

4x4
, x = 2kF r (67)

is a spatially oscillating function.
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Exchange contribution. In order to analyze the size of Λ(x)
RKKY

′ in terms of TK/D0, it is suf-
ficient to evaluate it for a particle-hole symmetric conduction band and for rij = 0, since the
TK/D0 dependence is induced by the on-site susceptibility χ̃f (iΩ). The dependence on TK/D0

can be changed by the frequency convolution involved in Λ(x)
RKKY

′, but does not depend on de-
tails of the conduction band and distance dependent terms. (The general calculation is possible
as well, but considerably more lengthy.) We use the short-hand notation for the momentum-
integrated c-electron Green function, Gc(r = 0, ω ± i0) = G(ω) = G′(ω) + iG′′(ω), and
assume a flat density of states N(ω), with the upper and lower band cutoff symmetric about εF ,
i.e.,

GR/A′′(ω) = ∓ π

2D0

Θ(D0 − |ω|) (68)

GR/A′(ω) =
1

2D0

ln

∣∣∣∣D0 + ω

D0 − ω

∣∣∣∣ = ω

D2
0

+ O
((

ω

D0

))
. (69)

Furthermore, at T = 0 the Fermi and Bose distribution functions are, f(ε) = −b(ε) = Θ(−ε).
Λ

(x)
RKKY

′(0, 0, Ω + i0) then reads,

Λ
(x)
RKKY

′(rij = 0, ω = 0 + i0, Ω + i0) =

−JJ2
0

{∫
dε

π

[
f(ε)GA′′(ε)GR′(ε+Ω) + f(ε+Ω)GA′(ε)GA′′(ε+Ω)

]
χ̃Rf
′(ε) (70)

−
∫
dε

π

[
f(ε)GR′(ε)GR′(ε+Ω)− f(ε+Ω)GA′′(ε)GA′′(ε+Ω)

]
χ̃Rf
′′(ε)

}
.

With the above definitions, the four terms in this expression are evaluated in an elementary way,
using the substitution εF/TK = x = sinhu,∫

dε

π
f(ε)GA′′(ε)GR′(ε+Ω)χ̃Rf

′(ε)

= AN(0)
TK
D0

1−
√

1 +

(
D0

TK

)2

+
Ω

TK
arsinh

(
D0

TK

)
= AN(0)

[
−1 + Ω

D0

ln

(
D0

TK

)
+ O

(
TK
D0

)]
(71)

∣∣∣∣∫ dε

π
f(ε+Ω)GA′(ε)GA′′(ε+Ω)χ̃Rf

′(ε)

∣∣∣∣
= AN(0)

TK
D0

∣∣∣∣∣∣
√

1 +

(
Ω

TK

)2

−

√
1 +

(
D0 +Ω

TK

)2

∣∣∣∣∣∣
≤ AN(0) + O

(
TK
D0

)
(72)

∫
dε

π
f(ε)GR′(ε)GR′(ε+Ω)χ̃Rf

′′(ε)

= − 4

π2
AN(0)

(
1

2
+

Ω

D0

)
ln

(
D0

TK

)
+ O

((
TK
D0

)0
)

(73)
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∫
dε

π
f(ε+Ω)GA′′(ε)GA′′(ε+Ω)χ̃Rf

′′(ε)

=
π

4
AN(0)

[
−arsinh

(
Ω

TK

)
+ arsinh

(
min

(
Ω

TK
,
D0 +Ω

TK

))]
≤ π

4
AN(0) + O

(
TK
D0

)
. (74)

Comparing Eqs. (70)–(74) with Eq. (66) shows that all terms of Λ(x)
RKKY

′(Ω) are sub-leading
compared to Λ(d)

RKKY
′(Ω) by at least a factor (TK/D0) ln(TK/D0) for all transferred energies

Ω. Hence, it can be neglected in the RG flow. Combining the results of spin and energy
dependence, Eqs. (59), (63), and (66), one obtains the total RKKY-induced c –f vertex as,

γ̂
(d)
RKKY (rij, iΩ) = 2 (1− δij)Π(rij, iΩ)χf (iΩ)Si · sj (75)

or

Reγ̂
(d)
RKKY (rij, Ω + i0) = 2JJ2

0AN(0) (1− δij)R(rij)
D0

TK

1√
1 + (Ω/TK)2

Si · sj. (76)
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[29] J. Bork, Y.-H. Zhang, L. Diekhöner, L. Borda, P. Simon, J. Kroha, P. Wahl, and K. Kern,
Nat. Phys. 7, 901 (2011)
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