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1 Introduction

By definition, a macroscopically homogeneous material is insulating whenever its dc longitudi-
nal conductivity vanishes, i.e., when the real symmetric part of the conductivity tensor σ(+)

αβ (ω)

goes to zero for ω → 0. Here and throughout Greek subscripts are Cartesian indices. For
a d-dimensional system of volume Ld the conductance G equals Ld−2σ. When measured in
klitzing−1 (symbol R−1K ) conductivity is dimensionless in d = 2, while it has the dimensions of
an inverse length in d = 3. We remind that 1 RK = h/e2 ' 25,813 ohm [1].
Longitudinal conductivity is an intensive material property whose most general form can be
written as

σ
(+)
αβ (ω) = Dαβ

[
δ(ω) +

i

πω

]
+ σ

(regular)
αβ (ω) = σ

(Drude)
αβ (ω) + σ

(regular)
αβ (ω), (1)

where the constant Dαβ goes under the name of Drude weight. The insulating behavior of a
material implies that Dαβ = 0 and that the real symmetric part of σ(regular)

αβ (ω) goes to zero for
ω → 0 at zero temperature.
Eqn. (1) will be expressed below using linear-response theory (Kubo formulas); it may include—
at least in principle—disorder and correlation, but does not include any dissipative mechanisms.
The conductivity obeys the f -sum rule∫ ∞

0

dω Re σαα(ω) =
Dαα

2
+

∫ ∞
0

dω Re σ(regular)
αα (ω) =

ω2
p

8
=
πe2n

2m
, (2)

where n is the electron density and ωp is the plasma frequency. For free electrons (a gas of
noninteracting electrons in a flat potential) σ(regular)

αβ (ω) vanishes, while Dαβ assumes the same
value as in classical physics [2], i.e, Dαβ = πe2(n/m) δαβ: this explains the extraordinary
longevity of Drude theory, developed in the year 1900. Given eqn. (2), switching on the poten-
tial (one-body and two-body) has the effect of transferring some spectral weight from the Drude
peak into the regular term.
Dissipation can be included phenomenologically in the Drude term by adopting a single-relax-
ation-time approximation, exactly as in the classical textbook case [2], i.e.,

σ
(Drude)
αβ (ω) =

i

π

Dαβ

ω + i/τ
, (3)

whose τ →∞ limit coincides with first term in the expression (1).
In the special case of a band metal (i.e., a crystalline system of non interacting electrons)
σ
(regular)
αβ (ω) is a linear-response property, which accounts for interband transitions, and is non-

vanishing only at frequencies higher than a finite threshold. Instead, Dαβ is a ground-state
property which accounts for the inertia of the many-electron system in the adiabatic limit, and
provides an effective value of n/m, where the free-electron value is modified by the periodic
potential. After an integration by parts, Dαβ can be equivalently expressed as a Fermi-surface
integral, and acquires then the meaning of an “intraband” term [3]. As said above, the free-
electron Drude weight is an upper limit for the actual value of Dαβ .
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In 1964 Kohn published the milestone paper “Theory of the insulating state” [5], according to
which insulators and metals differ in their ground state. Even before the system is excited by
any probe, a different organization of the electrons is present in the ground state and this is the
key feature discriminating between insulators and metals. Kohn’s theory remained little visited
for many years until the late 1990s, when a breakthrough occurred in electronic structure theory:
the modern theory of polarization (for historical presentations see, e.g., Refs. [6–8]).
The many-body version of polarization theory appeared in 1998 [9]; shortly afterwards—inspired
by the fact that electrical polarization discriminates qualitatively between insulators and metals—
Resta and Sorella [10] provided a definition of many-electron localization rather different from
Kohn’s, and derived by the theory of polarization. Their program was completed soon after
by Souza et al. [11] (hereafter quoted as SWM), thus providing the foundations of the modern
theory of the insulating state, deeply rooted in geometrical concepts. A couple of review papers
appeared in 2002 [12] and in 2011 [13]. We are going to revisit the theory here. The present
viewpoint differs somewhat from the previous one; some of the results given here are original
and published for the first time.

2 Linear response and conductivity

To start with, we fix our conventions about Fourier transforms

f(ω) =

∫ ∞
−∞

dt eiωtf(t) f(t) =
1

2π

∫ ∞
−∞

dω e−iωtf(ω); (4)

different conventions can be found in the literature.
Suppose we have a general input signal finput(t) and the corresponding output foutput(t), which
is due to the response of a time-independent physical system. The most general linear response
is given by a convolution

foutput(t) =

∫ ∞
−∞

dt′ χ(t− t′)finput(t′), (5)

where χ(t) is the generalized susceptibility. It is easily verified that χ(t) can equivalently be
defined as the response an instantaneous δ-like “kick” at t = 0; causality implies that χ(t) = 0

for t < 0. The convolution theorem yields

foutput(ω) = χ(ω) finput(ω). (6)

Within quantum mechanics at zero temperature, we define χ(t) by means of a perturbation in
the Hamiltonian ∆Ĥ = −δ(t)Â (the “kick”), acting on the system in its ground state. The
response is measured as the expectation value of another operator B̂. Without loss of generality
we simplify our notation by assuming that

〈Ψ0|Â|Ψ0〉 = 0, 〈Ψ0|B̂|Ψ0〉 = 0. (7)
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Time-dependent perturbation theory leads to the Kubo formula for the generalized susceptibil-
ity, which we write in the ω domain adopting the compact notation due to Zubarev [14–16]

χ(ω) = −〈〈B̂|Â〉〉ω; (8)

〈〈B̂|Â〉〉ω =
1

~
lim
η→0+

∑
n6=0

′
(
〈Ψ0|B̂|Ψn〉〈Ψn|Â|Ψ0〉

ω − ω0n + iη
− 〈Ψ0|Â|Ψn〉〈Ψn|B̂|Ψ0〉

ω + ω0n + iη

)
, (9)

where ω0n = (En − E0)/~. The positive infinitesimal η ensures causality, and we remind that

lim
η→0+

1

ω ± iη
= P 1

ω
∓ iπδ(ω) , (10)

where P indicates the principal part. We draw attention to the fact that the sign convention
adopted in this chapter agrees with Zubarev [14, 15] and Chandler [17], but is opposite the one
of McWeeny [16] and other textbooks.
We apply the general linear response theory by addressing an interacting N -electron system,
whose most general Hamiltonian we write, in the Schrödinger representation and in Gaussian
units, as

Ĥ(κ) =
1

2m

N∑
i=1

∣∣∣pi +
e

c
A(ri) + ~κ

∣∣∣2 + V̂ ; (11)

the potential V̂ includes one-body (possibly disordered) and two-body (electron-electron) con-
tributions. Equation (11) is exact in the nonrelativistic, infinite-nuclear-mass limit. The velocity
in eqn. (11) is augmented with two terms: A(r) is a vector potential of electromagnetic origin,
and κ, having the dimensions of an inverse length, is called “flux” or “twist”. Setting κ 6= 0

amounts to a gauge transformation. The electrons are confined in a cubic box of volume Ld and
the eigenstates |Ψn(κ)〉 are normalized to one in the hypercube of volume LNd; we will adopt
the simplifying notation |Ψn(κ = 0)〉 = |Ψn〉.
Bulk properties of condensed matter are obtained from the thermodynamic limit: N →∞, L→
∞, with N/Ld constant. Since the following formulas will comprise κ-derivatives evaluated at
κ = 0, it is important to stress that the differentiation is performed first, and the thermodynamic
limit afterwards.
Two kinds of boundary conditions can be adopted for the given Hamiltonian: either periodic
(PBCs) or “open” (OBCs). We briefly address the latter case first: the cubic box confines the
electrons in an infinite potential well, the eigenstates |Ψn(κ)〉 are square-integrable over RNd,
and the position operator r̂ =

∑
i ri is the ordinary multiplicative operator. Within OBCs the

effect of the gauge is easily “gauged away”: the ground-state energy is gauge-independent,
while the ground state is |Ψ0(κ)〉 = e−iκ·r̂|Ψ0〉.
We will come back below (Sec. 7) to OBCs. For the time being we adopt instead Born-von-
Kàrmàn PBCs over each electron coordinate ri independently, whose Cartesian components
ri,α are then equivalent to the angles 2πri,α/L. The potential V̂ enjoys the same periodicity,
which implies that the electric field averages to zero over the sample. As noticed by W. Kohn
in 1964 [5], PBCs violate gauge invariance in the conventional sense: for instance, the ground
state energy E0(κ) actually depends on κ.
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In order to address conductivity it is essential to adopt PBCs: there cannot be any steady state
current within OBCs. Furthermore, since the multiplicative position r̂ is no longer a legitimate
operator within PBCs [9], it is mandatory to adopt the vector-potential gauge for the macro-
scopic electric field E: the perturbation in the Hamiltonian is therefore an ω-dependent vector
potential δA, constant in space.
One key point is that the vector potential modifies the velocity operator. We stick to the symbol
v̂ for the velocity in absence of the perturbation, and at κ = 0: this may include a ground-state
vector potential, but not the perturbing one, i.e.,

v̂ =
1

m

N∑
i=1

[
pi +

e

c
A(ri)

]
. (12)

The current carried by a generic state |Ψ〉 after the perturbation is switched on is therefore

j = − e

Ld
〈Ψ |v̂|Ψ〉 − e2N

mcLd
δA. (13)

Expansion of the Hamiltonian to first order in the perturbing vector potential δA yields

∆Ĥ =
e

c
δA · v. (14)

If we set E and δA along the β direction, the linearly induced current in the α direction is

jα = − e2N

mcLd
δA δαβ −

e

Ld
〈〈 v̂α |

e

c
δA v̂β〉〉ω = − e2

cLd

(
N

m
δαβ + 〈〈v̂α|v̂β〉〉ω

)
δA(ω), (15)

where we are restoring the ω dependence. The term in δA2, being constant in space, has zero
matrix elements; it is also second order in E .
In order to arrive at the conductivity we need to express δA(ω) in eqn. (15) in terms of E(ω). In
the time domain their relationship is E = −1

c
∂δA/∂t; a naive integration would yield δA(ω) =

−icE(ω)/ω, but this violates causality. The correct integration yields:

δA(ω) = cE(ω)

[
1

iω
− πδ(ω)

]
. (16)

Therefore the current, as expressed directly in terms of the field intensity, is

jα(ω) = σαβ(ω) Eβ(ω) = − e
2

Ld

(
N

m
δαβ + 〈〈v̂α|v̂β〉〉ω

)[
1

iω
− πδ(ω)

]
Eβ(ω). (17)

We then write the Kubo formula as

〈〈vα|vβ〉〉ω =
1

~
lim
η→0+

∑
n6=0

′
(
Rn,αβ + i In,αβ
ω − ω0n + iη

− Rn,αβ − i In,αβ
ω + ω0n + iη

)
, (18)

Rn,αβ = Re 〈Ψ0|vα|Ψn〉〈Ψn|vβ|Ψ0〉, In,αβ = Im 〈Ψ0|vα|Ψn〉〈Ψn|vβ|Ψ0〉, (19)

where Rn,αβ is symmetric and In,αβ antisymmetric. The longitudinal conductivity is the sym-
metric part σ(+)

αβ (ω) of the tensor. Upon exploiting eqn. (10) we eventually get

Dαβ =
πe2

Ld

(
N

m
δαβ −

2

~
∑
n6=0

′Rn,αβ

ω0n

)
, (20)
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Re σ(regular)
αβ (ω) =

πe2

~Ld
∑
n6=0

′ Rn,αβ

ω0n

[ δ(ω − ω0n)− δ(ω + ω0n) ], (21)

Im σ
(regular)
αβ (ω) =

2e2

~Ld
∑
n6=0

′ Rn,αβ

ω0n

ω

ω2
0n − ω2

. (22)

The two terms σ(Drude)
αβ (ω) and σ(regular)

αβ (ω) obey the Kramers-Kronig relationships separately;
we also remind that only the longitudinal conductivity σ(+)

αβ (ω) is addressed for the time being.
The transverse conductivity σ(−)

αβ will be addressed in Secs. 6 and 9.
At any finite-size L the spectrum is discrete and the system is gapped, while in a metal the gap
closes in the large-L limit. It is therefore necessary to regularize the singular sums in eqns. (20-
22); this can be done in the following way [18]: One starts assuming a finite value of η in the
Kubo formula, eqn. (9), with η much larger than the level spacing; then one takes the L → ∞
limit first, and the η → 0+ limit afterwards.
The first term in the parenthesis in eqn. (20) yields the free-electron Drude weight, while the
second term accounts for the (always negative) correction due to the one-body potential and
to the electron-electron interaction. We have given here the Kubo formula for a many-body
Hamiltonian; for independent electrons eqn. (18) is easily transformed into a double sum over
occupied and unoccupied orbitals [3].

3 Drude weight

We have arrived at eqn. (20) by means of linear-response theory, while we have stressed above
that Dαβ must be regarded as a ground-state property, which measures the inertia of the many-
electron system in the adiabatic limit. In order to show this, we follow W. Kohn, who in 1964
adopted the “twisted” Hamiltonian, eqn. (11). By expanding E0(κ) to second order one gets

E0(κ) ' N~2

2m
κ2 − ~ κακβ Re

∑
n6=0

′ 〈Ψ0|v̂α|Ψn〉〈Ψn|v̂β|Ψ0〉
ω0n

; (23)

the expansion is essentially the many-body analogue of the elementary k · p expansion for the
band energy, leading to the effective mass.
By comparing eqn. (23) to (20) one immediately gets Kohn’s result:

Dαβ =
πe2

~2Ld
∂2E0(κ)

∂κα∂κβ

∣∣∣∣
κ=0

. (24)

We remind that it is crucial to set κ = 0 in the derivative before the thermodynamic limit is
taken: this ensures that we are following the ground state adiabatically [19]. In insulators the
second derivative is zero: this can be proved in various ways.
In the simple case of a band metal eqn. (24) becomes the Brillouin-zone (BZ) integral [3]:

Dαβ = πe2
∑
j

∫
BZ

[d k] θ(µ− εjk)m−1j,αβ(k), (25)
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where [dk] = dk/(2π)d, µ is the Fermi level, εjk are band energies, and the effective inverse
mass tensor of band j is

m−1j,αβ(k) =
1

~2
∂2εjk
∂kα∂kβ

. (26)

4 The Resta-Sorella approach

We consider a special value κ0 = 2π
L

eα, where eα is the unit vector in any Cartesian direction.
For this special κ0 the effect of the gauge is easily gauged away; in fact the state vector

|Ψ̃0(κ0)〉 = e−iκ0·r̂|Ψ0〉 (27)

obeys PBCs, and is an eigenstate of Ĥ(κ0) with eigenvalue E0, similarly to the OBCs case.
Now the issue is whether |Ψ̃0(κ0)〉 coincides or not with the genuine |Ψ0(κ0)〉, obtained, as
said above, by following the ground state adiabatically while κ is switched on continuously.
Eqn. (24) shows that whenever D 6= 0 the state |Ψ0(κ0)〉 has an energy higher than E0: it is
therefore an excited eigenstate of Ĥ(κ0), orthogonal to |Ψ̃0(κ0)〉. If instead D = 0, then the
state |Ψ0(κ0)〉 coincides—apart for a phase factor—with |Ψ̃0(κ0)〉 (we are assuming a nonde-
generate ground state):

〈Ψ̃0(κ0)|Ψ0(κ0)〉 = 〈Ψ0|eiκ0·r̂|Ψ0(κ0)〉 = 0 , D 6= 0, (28)

〈Ψ̃0(κ0)|Ψ0(κ0)〉 = 〈Ψ0|eiκ0·r̂|Ψ0(κ0)〉 = eiγ, D = 0. (29)

We notice, en passant, that γ is the single-point Berry phase determining the polarization [9];
we are not discussing the issue here.
Replacing now |Ψ0(κ0)〉 with |Ψ0〉 we are approximating eqns. (28) and (29) to order 1/L, i.e.,

|zN | = | 〈Ψ0|eiκ0·r̂|Ψ0〉 | = O(1/L), D 6= 0, (30)

|zN | = | 〈Ψ0|eiκ0·r̂|Ψ0〉 | = 1−O(1/L), D = 0. (31)

The Resta-Sorella [10] localization length is defined for an isotropic system in dimension d as

λ2 = − 1

4π2n2/d
lim
N→∞

N2/d−1 log |zN |2 = − 1

4π2
lim
N→∞

L2

N
log |zN |2, (32)

where n = N/Ld is the density. Owing to eqns. (30) and (31) the localization length diverges
when D 6= 0 and converges to a finite limit otherwise.
A very successful application of this theory concerns the Mott transition in 1-dimensional hy-
drogen chains within PBCs [20, 21]. We reproduce here Fig. 1 from Ref. [20] by Stella et al.
who have performed variational quantum Monte Carlo studies, up to 66 atoms. The crossover
between the weakly correlated (band) metallic regime—at small a—and the strongly correlated
(Mott) insulating regime—at large a—is clearly visible in both panels of Fig. 1, which indicate
the transition at a ' 3.5 bohr. The bottom panel shows that the modulus of the matrix element
in eqns. (30) and (31). Top panel: λ/a. Bottom panel: the modulus of the matrix element
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Fig. 1: Results for chains of H atoms
of different lengths as a function of the
interatomic distance a, after Ref. [20].
Top panel: λ/a. Bottom panel:
the modulus of the matrix element in
eqns. (30) and (31).

switches from zero to one in a narrow a region, the transition becoming sharper with increasing
size. The top panel perspicuously shows that in the Mott-insulating regime λ is size-insensitive,
while in the metallic regime it diverges with size. Unfortunately, the authors have chosen to plot
λ/a instead of λ itself. Therefore the λ value in the large a limit cannot be verified: we expect
that it goes to the isolated-atom limit, i.e., λ = 1 bohr.

5 The Souza-Wilkens-Martin sum rule
(periodic boundary conditions)

The modern theory of the insulating state is also rooted in a sum rule, introduced in 2000 by
SWM [11]. They define the insulating/metallic character of a homogenous material via the
frequency integral

ISWM =

∫ ∞
0

dω

ω
Re σαα(ω); (33)

for the sake of simplicity we address isotropic materials only. ISWM converges in all insula-
tors and diverges in all metals. In fact the integral converges at the upper limit—compare to
eqn. (2)—but it diverges at the lower one whenever Dαα 6= 0 and also whenever Re σ(regular)

αα (0)

is finite. The SWM integral has instead a finite value when the system has either a spectral gap
or a mobility gap. We evaluate ISWM using the regular part only of longitudinal conductivity,
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eqn. (22):

ISWM =
πe2

~Ld
∑
n6=0

′ |〈Ψ0|v̂α|Ψ0〉|2

ω2
0n

. (34)

The SWM integral is related by a sum rule to the quantum metric, defined according to Provost
and Vallee [22], and where the relevant parameter is the twist κ. The metric-curvature tensor at
κ = 0 is

Fαβ =
1

N

(
〈∂καΨ0|∂κβΨ0〉 − 〈∂καΨ0|Ψ0〉〈Ψ0|∂κβΨ0〉

)
, (35)

where we have divided by N in order to get an intensive quantity. This tensor is real symmetric
in time-reversal invariant system, and may be endowed with an antisymmetric imaginary part if
time-reversal invariance is lacking. The latter feature is discussed in the next Section.
The metric tensor at κ = 0 is the real symmetric part of Fαβ:

gαβ =
1

N

(
Re 〈∂καΨ0|∂κβΨ0〉 − 〈∂καΨ0|Ψ0〉〈Ψ0|∂κβΨ0〉

)
; (36)

since gαβ is gauge-invariant, we are going to evaluate it in the parallel-transport gauge, where

|∂καΨ0〉 = ~
∑
n6=0

′
|Ψn〉
〈Ψn|v̂α|Ψ0〉
E0 − En

= −
∑
n6=0

′
|Ψn〉
〈Ψn|v̂α|Ψ0〉

ω0n

, (37)

Fαβ =
1

N

∑
n6=0

′ 〈Ψ0|v̂α|Ψn〉〈Ψn|v̂β|Ψ0〉
ω2
0n

=
1

N

∑
n6=0

′ Rn,αβ + iIn,αβ
ω2
0n

. (38)

From eqns. (34) and (38) we thus get

gαα =
~

πe2n

∫ ∞
0

dω

ω
Re σ(regular)

αα (ω), (39)

where n = N/Ld. We observe that in eqn. (39) the l.h.s. is a ground-state property, while the
r.h.s. concerns the excitations of the system.
In the insulating case σ(regular) coincides with the full conductivity; if εg is either the spectral
gap or the mobility gap, the SWM sum rule reads

gαα =
~

πe2n

∫ ∞
εg/~

dω

ω
Re σαα(ω). (40)

The f -sum rule leads to the inequality:

gαα <
~2

πe2n εg

∫ ∞
εg/~

dω Re σαα(ω) =
~2

2mεg
. (41)

From the above it becomes clear that the PBCs metric, when defined via eqn. (36), does not
discriminate between insulators and metals: in the latter case it misses the (diverging) Drude
contribution to eqn. (33). For instance, eqn. (39) vanishes for the paradigmatic metal: the free
electron gas.
The author has recently shown how to remove this drawback of the PBCs metric, upon defining
it in a somewhat more general way [23]. The novel metric coincides with the established one in
the insulating case, but diverges in metals. The theory is incomplete, in that it only addresses in-
dependent electrons (in both the crystalline and noncrystalline cases). This recent development
is reviewed in Sec. 8.
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6 Many-body Chern number

The celebrated TKNN paper (Thouless, Kohmoto, Nightingale, and den Nijs) [24] explains
the integer quantum Hall effect as the manifestation of a topological invariant of the electronic
ground state in 2d, the integer C1 ∈ Z, called Chern number of the first class. The choice of
the sign of C1 is not uniform across the literature: the one adopted in this Chapter is consistent
with most of the recent papers.
Later Niu, Thouless, and Wu [25] addressed the fractional quantum Hall effect, where the many-
body wavefunction is known to be strongly correlated. They provided a many-body definition
of C1 which, in the notations of the present work, reads:

C1 =
i

2π

∫ 2π/L

0

dκx

∫ 2π/L

0

dκy ( 〈∂κxΨ0(κ)|∂κyΨ0(κ)〉 − 〈∂κyΨ0(κ)|∂κxΨ0(κ)〉 ). (42)

Since the L → ∞ is implicit in the definition, we observed in Ref. [26] that the mean-value
theorem yields

C1 =
i

2π

(
2π

L

)2 (
〈∂κxΨ0|∂κyΨ0〉 − 〈∂κyΨ0|∂κxΨ0〉

)
. (43)

This is clearly proportional to the imaginary part of the metric-curvature tensor, as defined in
eqn. (35):

C1 = −4πn Im Fxy , (44)

where n = N/L2 is the 2d density. A minor detail is worth mentioning: the ground-state
wavefunction is a singlet state in the previous Section, while it is instead spin-polarized in the
quantum-Hall regime.
The main result by Niu, Thouless, and Wu is the expression of the quantized Hall conductivity
in terms of the many-body Chern number C1. From eqns. (17) and (18) one gets

Re σ(−)
xy (ω) = − e2

ωL2
Im 〈〈vx|vy〉〉ω = − 2e2

~L2

∑
n6=0

′ In,xy
ω2 − ω2

0n

, (45)

and from eqns. (38) and (44) the final result is

Re σ(−)
xy (0) =

2e2n

~
Im Fxy = −e

2

h
C1. (46)

7 Bounded samples within open boundary conditions

At variance with the PBCs results presented in Sec. 5, the OBCs metric does carry the infor-
mation to discriminate between insulators and metals. As said above, within OBCs the twist is
easily gauged away and one has |Ψ0(κ)〉 = e−iκ·r̂|Ψ0〉, where r̂ =

∑
i ri is the ordinary position

operator, well defined within OBCs.
It is expedient to adopt a κ-dependent phase factor and write instead:

|Ψ0(κ)〉 = e−iκ·(r̂−d)|Ψ0〉, d = 〈Ψ0|r̂|Ψ0〉. (47)
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The gauge-invariant metric, eqn. (36), takes then the form

g̃αβ =
1

N

(
〈Ψ0|r̂αr̂β|Ψ0〉 − 〈Ψ0|r̂α|Ψ0〉〈Ψ0|r̂βΨ0〉

)
, (48)

where the different symbol emphasizes the different boundary conditions adopted for |Ψ0〉.
eqn. (48) clearly shows that g̃αβ is the second cumulant moment of the position, or equivalently
the ground-state quantum fluctuation of polarization. The basic tenet of the modern theory of
the insulating state is that the OBCs metric, eqn. (48), in the large-N limit diverges in all metals
and converges in all insulators.
We are going to recast g̃αβ in terms of one-body and two body densities, defined as

n(r1) = N
∑
σ1

∫
dx2dx3 . . . dxN |Ψ(x1,x2, . . .xN)|2, (49)

n(2)(r1, r2) = N(N − 1)
∑
σ1σ2

∫
dx3 . . . dxN |Ψ(x1,x2, . . .xN)|2, (50)

where xi ≡ (ri, σi) are the space and spin coordinates of the i-the electron, and a singlet ground
state is assumed. Straightforward manipulations lead to the equivalent form:

g̃αβ =
1

2N

∫
drdr′ (r− r′)α(r− r′)β[n(r)n(r′)− n(2)(r, r′) ], (51)

showing that g̃αβ is the second moment of the exchange-correlation hole, averaged over the
sample.
We have not justified yet why the OBCs metric discriminates between insulators and metals.
In a bounded sample there cannot be a steady-state current, nonetheless an oscillating field
induces charge sloshing and an oscillating macroscopic current. Therefore at ω 6= 0 a linear
relationship of the kind jα(ω) = σ̃αβ(ω)Eβ(ω) holds. The definition of the insulating state,
making reference to large bounded samples, is that even σ̃αβ(ω) vanishes in the ω → 0 limit.
The order of limits is crucial: first N →∞, and then ω → 0. The SWM integral bypasses this
problem of limits: the insulating state requires that

ĨSWM =

∫ ∞
0

dω

ω
Re σ̃αα(ω), (52)

stays finite in the large-N limit. We stress that σ̃αβ(ω) differs from the genuine longitudinal
conductivity σ

(+)
αβ (ω) in two respects: it lacks the Drude peak, and it includes contributions

from the sample boundary. The latter feature enters the Kubo formula by means of the matrix
elements.
We are going to relate ĨSWM to the OBCs metric g̃αβ . To this aim we start converting g̃αβ into a
sum-over-states form. Using again eqn. (37), we get an expression identical in form to eqn. (38),
i.e.,

g̃αβ =
1

N

∑
n6=0

′ 〈Ψ0|v̂α|Ψn〉〈Ψn|v̂β|Ψ0〉
ω2
0n

; (53)
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the key point is that the velocity matrix elements therein are very different, owing to the different
boundary conditions. Addressing once more the extreme case of the free electron gas, all matrix
elements in eqn. (38) vanish (by an obvious selection rule); they don’t vanish for a bounded
sample within OBCs, as in eqn. (53).
Within OBCs we may safely adopt the scalar potential gauge, where σ̃ has the compact expres-
sion

σ̃αβ(ω) = − e
2

L3
〈〈v̂α|r̂β〉〉ω (54)

in Zubarev’s notations. The matrix elements of r̂ are converted into the matrix elements of v̂ by
means of the commutator [Ĥ, r̂], i.e., 〈Ψ0|r̂|Ψn〉 = i〈Ψ0|v̂|Ψn〉/ω0n, to obtain

Re σ̃αα(ω) =
e2π

~L3

∑
n 6=0

′ |〈Ψ0|v̂α|Ψn〉|2

ω0n

[ δ(ω − ω0n) + δ(ω − ω0n) ], (55)

leading to the OBCs version of the SWM sum rule

g̃αα =
~

πe2n

∫ ∞
0

dω

ω
Re σ̃αα(ω). (56)

Once more, eqns. (55) and (56) are identical in form to their PBCs counterpart, eqns. (21) and
(39), but their physical content—as well as their defining quantities—are very different in the
metallic case. For instance, σ̃αβ(ω) by itself obeys the f -sum rule, while σ(regular)

αβ (ω) does not:
see eqn. (2).
In the insulating case, instead, the PBCs conductivity σ(ω) coincides with the OBCs one σ̃(ω).
It follows that the (finite) metric g̃αα coincides with gαα and obeys the SWM sum rule in the
form of eqn. (40). This can be proved in various ways; the basic feature is that the macroscopic
polarization Pα(ω) linearly induced by an oscillating field stays finite for ω → 0 in insulating
materials, and can therefore be evaluated using either OBCs or PBCs, in any gauge.
Finally, we observe that the l.h.s. of eqn. (56) is a ground-state quantum fluctuation, while the
r.h.s. is a property of the system excitations. Eqn. (56) belongs then to the general class of
fluctuation-dissipation theorems.

8 Independent electrons

Owing to eqn. (51), in the noninteracting case the OBCs metric g̃αβ is expressed in terms of the
one-body density matrix as ρ(r, r′) = 2〈r|P|r′〉 as

g̃αβ =
1

N

∫
drdr′ (r− r′)α(r− r′)β |〈r|P|r′〉|2. (57)

As said above, the convergence/divergence of g̃αβ in the large-N limit discriminates between
electrons and metals. For instance, the well known P expression for the free-electron gas [27],
when inserted in eqn. (57), yields a diverging g̃αβ in d = 1, 2, and 3. This is what is expected in
a metal, and is in sharp contrast with the OBCs metric gαβ which—if defined as in eqn. (36)—
vanishes. The difference is to be ascribed to the different order of limits. In this Section we
are going to provide a more general definition of the OBCs metric gαβ , which coincides with
eqn. (36) in the insulating case, but has the virtue of diverging in the metallic case.
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Crystalline systems

Besides the electron-gas case, where P is known analytically, simulations for model noninter-
acting systems within OBCs have indeed demonstrated the large-N divergence of the OBCs
metric g̃, eqn. (58), in the metallic case [28,29]. Simulations and heuristic arguments altogether
suggest that the metallic divergence of g̃ is of order of the linear dimension L of the system in
d = 1, 2, or 3.
The PBCs metric gαβ , as defined so far, does not diverge in the metallic case and requires
therefore a somewhat different definition in order to acquire the same desirable feature. The
novel definition provided here follows Ref. [23].
In the crystalline case the PBCs ground-state projector P is

P = Vcell
∑
j

∫
BZ

[d k] θ(µ− εjk)|ψjk〉〈ψjk|, (58)

where BZ is the Brillouin-zone, |ψjk〉 = eik·r|ujk〉 are the Bloch states (normalized to one over
the unit cell of volume Vcell), εjk are the band energies, µ is the Fermi level, the integration is
over [d k] = dk/(2π)d, and d is the dimension. We recast eqn. (58) in terms of Bloch projectors
Pk as

〈r|P|r′〉 = Vcell

∫
BZ

[d k] eik·(r−r
′)〈r|Pk|r′〉, Pk =

∑
j

θ(µ− εjk)|ujk〉〈ujk|, (59)

and we choose a gauge which makes |ujk〉 smooth on the whole BZ: this is always possible,
even in topologically nontrivial materials. The Bloch projectors Pk are gauge-invariant in the
generalized Marzari-Vanderbilt sense [30, 31], i.e., they are invariant for any unitary transfor-
mation of the occupied |ujk〉 at the given k.
The BZ integrand is smooth in insulators, and only piecewise continuous in metals. In the latter
case, the sharpness of the Fermi surface is responsible for the power-law decay of 〈r|P|r′〉
for |r − r′| → ∞; the decay is instead quasi-exponential (i.e. exponential times a power) in
insulators [32].
The ground-state projector is lattice-periodic, i.e.,

〈r|P|r′〉 = 〈r + R|P|r′ + R〉, (60)

where R is a lattice translation. Therefore in the large-N limit the crystalline form of eqn. (57)
is

g̃αβ =
1

Nc

∫
cell
dr

∫
all space
dr′ (r− r′)α(r− r′)β |〈r|P|r′〉|2, (61)

where Nc is the number of electrons per crystal cell.
Next we are going to address the PBCs metric gαβ , starting with the insulating case, where it
coincides with the OBCs metric g̃αβ and obeys the SWM sum rule in the form of eqn. (40).
The number of occupied bands is Nc/2, independent of k. A well known result, first shown in
Ref. [33], is

gαβ =
2

n

∫
BZ

[d k] Re Fαβ(k), (62)
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where n is the electron density and Fαβ(k) is the k-dependent metric-curvature tensor [22, 30,
31, 33]:

Fαβ(k) =

Nc/2∑
j=1

〈∂kαujk|∂kβujk〉 −
Nc/2∑
j,j′=1

〈∂kαujk|uj′k〉〈uj′k|∂kβujk〉. (63)

The BZ integral in the r.h.s. of eqn. (62) made its first appearance in the Marzari-Vanderbilt
theory of maximally localized Wannier function, where it provides the gauge-invariant term in
the quadratic spread, universally indicated as ΩI in the literature. The relationship is [30, 31]:

ΩI = Vcell

∫
BZ

[d k]
∑
α

Fαα(k) =
Nc

2

∑
α

gαα. (64)

Notice that the original definition of ΩI is not intensive.
Following Ref. [23] the PBCs metric of a band insulator, eqn. (62), can be recast in a compact
trace form, which has the virtue of showing gauge invariance explicitly. A tedious calculation
shows that

Fαβ(k) = Tr {Pk(∂kαPk)(∂kβPk)}. (65)

We may extend the definition of eqns. (62) and (65) to the metallic case as well, noticing that
the k-derivative of the Bloch projector acquires a singular δ-like term at the Fermi level:

∂kαPk = −
∑
j

δ(µ− εjk)∂kαεjk |ujk〉〈ujk|+
∑
j

θ(µ− εjk)(|ujk〉〈∂kαujk|+ |∂kαujk〉〈ujk|).

(66)
In the insulating case the singularity vanishes, and we thus retrieve the previous result, while
the squared δ, when inserted into eqn. (62), provides the sought for divergence.
The second term in eqn. (66) is smooth in insulators; instead it is only piecewise continuous—
and therefore integrable—in metals. If eqn. (62) is evaluated using this term only, we retrieve
the nondivergent SWM sum rule in the PBCs form of eqn. (39).

Noncrystalline systems

The OBCs metric, eqn. (58), has been implemented to study the metal-insulator (Anderson)
transition in disordered systems. It is well known that in 1d any amount of (uncorrelated)
disorder yields an insulating ground state. OBCs simulations over a lattice model in 1d have
shown that the system has no spectral gap but eqn. (58) converges nonetheless to a finite value
in the large-N limit [28].
In 3d matters are different: a genuine metal-insulator transition may occur. The integral in
eqn. (57) converges whenever 〈r|P|r′〉 is exponential in |r− r′| (as in crystalline insulators), as
well as when |〈r|P|r′〉|2 decays as |r − r′|−a, with a > 5. A detailed study of the Anderson
transition on a paradigmatic lattice model, based on eqn. (57), has recently appeared [34]. This
confirms that the OBCs metric is an alternative tool with respect to the ones currently adopted
in the literature. The standard computational methods to address the Anderson transition are
often peculiar to lattice models (recursive methods and the like) [35], while our approach has a
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general ab-initio formulation and could in principle be applied to realistic disordered materials
by standard electronic structure methods.
A novel approach to disordered and macroscopically inhomogeneous systems (such as hetero-
junctions) has been proposed in Ref. [23]. We recast here the PBCs metric in trace form, i.e.,

gαβ =
2

n
Re
∫
BZ

[d k] Tr {Pk(∂kαPk)(∂kβPk)}. (67)

We are going to show that eqn. (67) can be equivalently cast in a form where any explicit
reference to lattice periodicity disappears.
In order to arrive at such a transformation, we start noticing that the integrand in eqn. (58) is
periodical over the reciprocal lattice, and therefore the BZ integral of its k-gradient vanishes:

i(r− r′)〈r|P|r′〉+ Vcell

∫
BZ

[d k] eik·(r−r
′)〈r|∂kPk|r′〉 = 0; (68)

we remind that eqn. (68) is a well behaved expression only in insulators. The first term therein
is i times [r,P ]: a lattice periodic operator (unlike r itself). The trace of eqn. (68) can therefore
be cast as ∫

BZ

[d k] Tr {∂kαPk} = − i

Vcell

∫
cell

dr 〈r| [rα,P ] |r〉 = −iTrV {[rα,P ]}, (69)

where TrV indicates the trace per unit volume in the Schrödinger representation.
Using similar arguments it is not difficult to prove that, for an unbounded sample within PBCs,

gαβ =
2

n
Re
∫
BZ

[d k] Tr {Pk(∂kαPk)(∂kβPk)} = − 2

n
Re TrV {P [rα,P ] [rβ,P ]}. (70)

The second expression on the r.h.s. has two outstanding virtues: (i) it is expressed directly in the
Schrödinger representation, making no reference to reciprocal space, and (ii) it can be adopted
as such for supercells of arbitrarily large size, thus extending the concept of PBCs metric to
noncrystalline systems, such as alloys and liquids. We have not proved yet that such form can
be adopted as it stands even for bounded samples within OBCs.
If we evaluate the trace per unit volume over the whole sample of volume V , eqn. (70) yields

gαβ = − 2

N
Re Tr {P [rα,P ] [rβ,P ]} =

2

N
Tr {PrαrβP} −

2

N
Tr {PαPrβP}. (71)

We have stated above that in insulators the PBCs metric gαβ is finite and coincides with the
OBCs metric g̃αβ: a simple calculation confirms that eqn. (71) is indeed identical to eqn. (57).
Our novel approach reconciles the PBCs metric with the OBCSs one: both metrics yield the
same message even in the metallic case. Looking at eqn. (70), the first expression on the r.h.s.
diverges because of the sharpness of the Fermi surface embedded in eqn. (66), while the diver-
gence of the second expression has been discussed in Sec. 7.
The next issue is whether one may adopt eqn. (70) locally, in order to address inhomogeneous
systems: preliminary results indicate that the answer is affirmative [36]. For an isotropic system
the local marker for the insulating state is the real function

Lαα(r) ∝ Re 〈r| P [rα,P ] [rα,P ] |r〉 : (72)
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when averaged locally in a homogenous region of the sample it detects the insulating vs. metal-
lic character of that region. For instance in a metal/insulator heterojunction it diverges on
the metallic side and converges to a finite value on the insulating side. It therefore provides
a marker complementary to the (commonly used) local density of states; at variance with it,
Lαα(r) probes locally the organization of the electrons in the ground state, the main property
that—according to the outstanding Kohn’s message [5]—discriminates insulators from metals.

9 Geometry in the anomalous Hall effect

On the theory side, the anomalous Hall effect (in both insulators and metals) is closely related
to the theory of the insulating state. In this section we remain at the independent-particle level.
Furthermore, in agreement with the literature on the topic, we adopt a spinless-electron formal-
ism: factors of two here will differ from the previous sections. The metric-curvature tensor for
a band insulator, eqn. (63), is rewritten as

Fαβ(k) =
Nc∑
j=1

〈∂kαujk|∂kβujk〉 −
Nc∑

j,j′=1

〈∂kαujk|uj′k〉〈uj′k|∂kβujk〉. (73)

So far, we have addressed the real symmetric part of Fαβ(k), i.e., the k-space metric first
introduced by Marzari and Vanderbilt in the theory of maximally localized Wannier functions
[30, 31]. The imaginary antisymmetric part (times −2) is the Berry curvature of the occupied
manifold:

Ωαβ(k) = −2 Im Fαβ(k) = i
Nc∑
j=1

(
〈∂kαujk|∂kβujk〉 − 〈∂kβujk|∂kαujk〉

)
. (74)

From eqn. (65) we equivalently get

Ωαβ(k) = iTr {Pk[ ∂kαPk, ∂kβPk ]}. (75)

While this form was used in the past for the insulating case only, we stress that it holds for the
metallic case as well: in fact, the singular term in eqn. (66) disappears after antisymmetrization.
The key difference is that the Berry curvature of the occupied manifold is smooth in insulators
and only piecewise continuous in metals: its BZ integral is well defined and finite in both cases.
The anomalous Hall conductivity (AHC) is by definition the Hall conductivity in zero magnetic
field; it can be nonvanishing only if the Hamiltonian lacks time-reversal symmetry. When
expressed in klitzing−1 it is dimensionless for d = 2, while it has the dimensions of an inverse
length for d = 3. The known expression for the ω = 0 AHC in both metals and insulators is

σ
(−)
αβ (0) =

4πe2

h

∫
BZ

[d k] Im Fαβ(k) = −e
2

h

1

2π

∫
BZ

dk Ωαβ(k), (76)

and this expressions holds for both d = 2 and d = 3; notice the two equivalent forms, where
the integral is either in [d k] = dk/(2π)d or in dk.



Insulating State 3.17

We address the insulating case first: the AHC is quantized, and in natural units it equals minus
the Chern invariant Cγ , usually defined as

Cγ =
1

4π
εγαβ

∫
BZ

dk Ωαβ(k). (77)

In 2d the Chern invariant is a dimensionless integer ∈ Z. The definition of eqn. (77) coincides
indeed with the Chern number C1, as defined in Sec. 6 for a many-body wavefunction [26].
In the metallic case eqn. (76) is nonquantized: the difference owes to the fact that the Berry cur-
vature of the occupied manifold Ωαβ(k) is smooth in insulators and only piecewise continuous
in metals.
In the metallic case eqn. (76) yields only the intrinsic (or geometric) contribution to the AHC;
extrinsic contributions, known as “skew scattering” and “side jump” must be added [37]. We
stress that, instead, extrinsic contributions have no effect in insulators, owing to the robustness
of topological observables.
The same transformation as in eqn. (70) can be carried over for the antisymmetric imaginary
part of Fαβ(k), leading to

σ
(−)
αβ (0) = −4πe2

h
Im TrV {P [rα,P ] [rβ,P ]}, (78)

where we address a possibly disordered sample, although still unbounded within PBCs. If we
try to proceed analogously to what we did for the real symmetric part, by adopting eqn. (78)
even for a bounded sample within OBCs and evaluating the trace over the whole sample, we
get a vanishing result: the tensor entering eqns. (70) and (78) is obviously real symmetric. This
stems from the fact that even the original definition of g̃αβ , eqn. (48), is not endowed with an
antisymmetric term.
The solution of the paradox was found in Ref. [38]. The real function

C(r) = 4π Im 〈r| P [rα,P ] [rβ,P ] |r〉 (79)

carries indeed the information which allows evaluating the AHC locally; but its average has
to be evaluated using an inner region of the bounded sample and not the whole sample. The
boundary provides a compensating contribution. When the bounded sample is a crystallite, one
may integrate C(r) over the central cell; this integral, divided by the cell volume (area in 2d),
provides the AHC value in the large-sample limit.
In the insulating case the function C(r) samples the topological nature of the ground state lo-
cally: it has therefore been dubbed “topological marker” [38]. Simulations on a paradigmatic
lattice model in 2d for bounded samples (crystalline and disordered) and for heterojunctions
have shown that C(r) samples indeed the local Chern number (equal to minus the Hall conduc-
tivity in natural units).
The metallic case differs from the insulating one in two important respects: (i) the macroscopic
current flows across the whole sample, while it only flows at the boundaries in topological
insulators; (ii) the ground-state projector entering eqn. (79) is power-law in |r − r′|, while it
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is quasi-exponential in insulators (including topological insulators). Despite these differences,
simulations reported in Ref. [39] demonstrate that C(r), eqn. (79), provides in the metallic
case a “geometrical marker”, which allows to evaluate the geometrical contribution to the AHC
locally in both homogenous and inhomogeneous samples.
The homogeneous case of a “dirty” metal deserves a comment. The trace per unit volume of
C(r) clearly includes some geometrical effects due to the impurities. It is argued that the AHC
evaluated in this way may yield the sum of the intrinsic and side-jump contributions to the AHC,
while instead it may not include the skew scattering [37, 40].
Ref. [39] also provides a convergence study. Therein, a metallic crystallite is addressed vs.
an insulating one, and the AHC of the material is evaluated, as said above, by averaging the
respective C(r) over the central cell. The convergence to the bulk value is—as expected—
exponential in the insulating case. In the metallic case the convergence is instead of the order
L−3, where L is the linear dimension of the sample. While the actual simulations are in 2d,
it is conjectured that the convergence is of order L−3 in any dimension, in analogy with what
happens to the large-sample metallic divergence of the metric (of order L in any d).
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