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1 Introduction

Correlated materials are at the heart of modern solid state physics. These strongly interacting
many-body quantum systems can display such diverse phenomena as the Mott transition [1],
non-Fermi-liquid and heavy-Fermion behavior [2], and high-temperature superconductivity [3].

At the same time they pose one of most difficult theoretical challenges. The reason is that they
are in the middle of two extremes. In solids with broad energy bands electrons can largely
avoid each other while moving through the crystal. The properties of such materials are suc-
cessfully described in a picture of nearly-independent electrons moving freely in an effective
potential generated by all other electrons as described by Bloch waves. In such a momentum-
space description the interaction is a perturbation. The framework of density-functional theory
(DFT) provides a very successful and often even quantitative description of the microscopic
properties of such materials, including simple metals like aluminum, or semiconductors and
band-insulating materials. It may even be used to design materials with desired properties.

When electrons cannot avoid each other, the process where an electron hops to a neighboring
occupied orbital may be energetically so unfavorable that electrons will remain localized. Mott
showed that this scenario can be understood in a real-space picture. These Mott insulators are
erroneously predicted to be metallic by band theories, with a classic example being NiO.

Strongly correlated materials are in the middle of these two regimes and exhibit a delicate bal-
ance between the kinetic and potential energy. Their name emphasizes the fact that the motion
of electrons in these materials is correlated in the true sense of the word: they do not move
independently. Neither a real-space nor a momentum-space description appears appropriate – a
situation which may be as hard to grasp as particle-wave duality.

Materials that fall under this category often have open d- or f -electron shells. Examples are the
transition metals V, Fe, Co, Ni, Cu, and their oxides. For example, CuO2 planes determine the
properties of the high-temperature superconductors. Small microscopic changes can have dras-
tic macroscopic effects. These materials are typically very sensitive to externally controllable
parameters, such as pressure and doping, and are therefore promising candidates for applica-
tions. The development of reliable theoretical tools to calculate their material specific properties
therefore remains one of the primary concerns of modern theoretical condensed matter physics.

An exact solution of the many-particle problem is clearly out of reach and we have to resort to
approximate methods. Naturally, certain limiting cases are the most accessible. In the opposite
regimes of weak and strong interaction, diagrammatic perturbation theory allows us to make
quantitative predictions. Importantly, it also provides us with the intuition for the underlying
microscopic processes. We will discuss the foundations of diagrammatic perturbation theory
below. In correlated materials, however, where the kinetic- is of the order of the potential energy,
such a perturbative description necessarily breaks down. In this regime dynamical mean-field
theory (DMFT) has provided important insights [4]. It becomes exact in both the localized
and noninteracting itinerant regimes and in the limit of infinite dimensions or coordination
number [5].
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Correlated materials typically are not close to any of these limits. While DMFT describes the
important strong local temporal correlations, as a mean-field theory it completely neglects spa-
tial correlations. This shortcoming is well illustrated by the fact that DMFT correctly predicts
the temperature dependence of the local moment in the transition metals iron and nickel, but
overestimates their Curie temperatures. Phenomena in which the electrons are qualitatively
affected by the presence of extended collective excitations cannot be described within DMFT.
Because of the complexity of the problem, there is not a single method which gives ’the best’ an-
swer. Instead, we are aiming to study the problem using different approximate methods. These
will have inherent limitations and exhibit limited parameter ranges of applicability. We may
be even unaware of the precise nature of these limitations. It may therefore not be possible to
distinguish true physics from artifacts of the method, so that we risk drawing the wrong conclu-
sions. The approach of the theoretical physicist will therefore be to apply different methods to
obtain complementary viewpoints and, step by step, draw a complete picture of the underlying
physics.
In this lecture, we will concentrate on the so-called diagrammatic extensions of DMFT [6].
These form a relatively recent class of methods which come in different flavors. They never-
theless all build on the common idea to formulate a diagrammatic perturbation theory around
DMFT as the starting point, with the main goal to describe the effect of spatial correlations.
In the following we first describe the Hubbard model, which is believed to capture essential
properties of correlated materials, and briefly introduce the Green function as a probe for its
properties. We then formulate the basic equations of dynamical mean-field theory and sketch
the mathematical foundations of diagrammatic perturbation theory. After a brief introduction
to diagrammatic extensions of DMFT we develop a diagrammatic perturbation theory for cor-
related systems by the example of dual fermions. We conclude this chapter with the discussion
of some illustrative results and an outlook on further developments.

1.1 Hubbard model

The Hubbard model describes electrons hopping from site to site on a lattice as depicted in
Fig. 1, with a probability that is determined by the hopping-integrals t. Whenever two electrons
occupy the same site, their mutual repulsion incurs an energy penalty U . Because of its simplic-
ity it is probably the most widely studied model in this context. For concreteness we consider
the two-dimensional single-band model whose Hamiltonian is given by

H = −t
∑
〈ij〉σ

c†iσcjσ + U
∑
i

ni↑ni↓. (1)

Here the indices label the sites on the lattice and the first sum in the kinetic term is over all pairs
of sites or bonds.
In the absence of interaction, we can simply diagonalize the kinetic energy term in reciprocal
space:

∑
kσ εk c

†
kσckσ. The second, potential energy term is apparently diagonal in the real-

space occupation number basis. In the opposite regimes of large and small interaction, we
can either view the kinetic or potential energy as a perturbation and formulate a diagrammatic
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Fig. 1: Left: Illustration of the Hubbard model showing lattice sites on which electrons interact
with Hubbard interaction U (red) connected by bonds through the hopping integrals t. Right:
DMFT picture of model showing a collection of decoupled sites exerted to an electronic bath,
as indicated by the blue spheres.

perturbation theory. We will however primarily be interested in the case where the interaction
becomes comparable to the bandwidth U ∼ W = 8t, where such a perturbative description
necessarily breaks down.
A complete solution would provide us with the entire spectrum of the Hamiltonian, which would
completely specify the equilibrium thermodynamics of the model and include information even
on many-particle correlations. A much simpler object is the single-particle Green function. The
Matsubara Green function

Gα1α2(τ1 − τ2) = − 1

Z
Tr
(
e−β(Ĥ−µN̂) Tτ cα1

(τ1)c†α2
(τ2)
)
, (2)

where β denotes inverse temperature, completely specifies the thermal single-particle prop-
erties. It can be viewed as a probe of the system: A particle inserted into the system in a
certain state α2 ≡ {iσ} at time τ2 evolves until we remove it in state α1 at a later time τ1.
The Green function is the thermal average of this process and tells us how electrons propagate
in the system. For this reason, it is sometimes called a propagator. The bosonic (fermionic)
Matsubara Green function is a 2β-(anti-)periodic function of imaginary time. As a result, its
Fourier representation is a function of odd νn = (2n+ 1)π/β (fermionic) or even νn = 2mπ/β

(bosonic) discrete Matsubara frequencies. This simplifies calculations significantly. The re-
tarded Green function is obtained from the Matsubara Green function through analytical con-
tinuation ωn → ω + i0+, which allows to compute the density of states. The latter contains a
wealth of information and, for example, tells us whether a system is metallic or insulating.

1.2 Dynamical mean-field theory

DMFT has been an important step towards the understanding of correlated electrons in solids.
One of the challenges is to reconcile two vastly different energy scales to describe the redistribu-
tion of spectral weight through the interaction. DMFT for the first time allowed a simultaneous
description of both the long-lived coherent quasiparticles and the short-lived incoherent high-
energy excitations. The former give rise to the ’quasiparticle peak’ and the latter lead to broad
Hubbard bands in the electronic spectrum.
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DMFT fully accounts for the local, time-dependent quantum fluctuations. We can understand
this by viewing it as the quantum analog of classical mean-field theories, which provides an
intuitive understanding of the approach. The construction of an approximation, in analogy to
the classical case, results in a nontrivial mean-field theory. The mean-field can no longer be
represented by a single number, but rather by a time or frequency-dependent field, hence the
name ’dynamical’.
The electronic self-energy may be expressed as a functional of the Green function. The central
approximation of DMFT is to assume that this functional is purely local and a functional of
the local Green function only: Σ = Σ[Gloc]. Under this assumption, we may write the DMFT
lattice Green function in the form

GDMFT
kν =

1

ıν + µ− εk −Σ[Gloc]
. (3)

The right-hand side is a functional of the local Green function Gloc = 1
N

∑
kG

DMFT
kν . This

is a complicated self-consistent problem. The unknown local Green function determines the
self-energy, which in turn fixes the local Green function.
Even if we knew Gloc, we still had to sum all diagrams for the local self-energy. As shown by
Georges and Kotliar [7], we can introduce a local effective quantum impurity model as a tool to
accomplish this. Often an Anderson impurity model is used whose action reads

Simp[c
∗, c] = −

∑
νσ

c∗νσ
(
ıν + µ−∆ν

)
cνσ+ U

∑
ω

nω↑n−ω↓ ,

where ν are fermionic and ω are bosonic Matsubara frequencies. Here we have introduced
the hybridization function ∆ν , which plays the role of a frequency-dependent Weiss field. In
this description the lattice no longer enters explicitly. Instead we can picture the situation as a
given lattice site immersed in a structureless ’bath’ of conduction electrons. We can imagine
that such a description becomes more and more accurate when the coordination number grows
large. Electrons can hop from the bath onto the impurity and back. Because of the mutual
repulsion when two electrons occupy the same site, the dynamics will strongly depend on the
time spent on the impurity. The Weiss field and Green function will therefore still have a non-
trivial energy dependence. As we can see in the illustration in Fig. 1, however, different lattice
sites are completely decoupled in the DMFT description. The motion of electrons in different
parts of the lattice is no longer correlated. We say that DMFT neglects spatial correlations.
By solving the impurity model for a given hybridization we obtain the impurity self-energy and
Green function, which are related by a form of Dyson’s equation,

gν =
1

ıν + µ−∆ν −Σ[g]
. (4)

We could attempt to do this perturbatively. As for the lattice, this will, however, not work in
the strongly correlated regime we are interested in. Since the problem is local, it is nevertheless
simpler than that of the lattice. Fortunately, sophisticated and accurate methods exist to solve
it efficiently and in particular to compute the impurity Green function gν := −〈cνσc∗νσ〉imp.
Notable examples are continuous-time quantum Monte Carlo methods [8].
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The hybridization function encodes the dynamics generated by all electrons on average and is
a priori unknown. Instead of finding the local lattice Green function, the problem has been
reduced to determining the hybridization self-consistently.
If we identify the impurity self-energy with that of the lattice, the hybridization will determine
the right-hand side of (3). If we additionally identify the local lattice Green function with
the impurity Green function, we obtain the following equation that implicitly determines the
hybridization function

gν =
1

N

∑
k

1

g−1
ν +∆ν − εk

. (5)

This equation is the only place where the structure of the lattice enters in DMFT, namely in the
form of the dispersion εk.
In practice, we obtain the self-consistent solution by repeatedly solving the impurity model.
Starting from an initial guess for the hybridization, we can iteratively update it based on the
solution of the impurity model according to

∆ν ← ∆ν + ξ
(
g−1
ν − (Gloc

ν )−1
)
, (6)

where Gloc is calculated from (3) using the impurity self-energy. A solution is found once the
impurity Green function equals the local lattice Green function: gν = Gloc

ν . ξ ∈ ]0, 1[ is a
parameter to control the convergence speed. The loop typically converges in a few iterations.

2 Diagrammatic perturbation theory

Perturbation theory can be applied when the problem at hand is close, in some sense, to a
solvable reference problem. This implies that it can be described in terms of a small perturbation
of this reference. Often the reference problem is the non-interacting one and the perturbation
series is a series expansion in powers of the interaction. Wick’s theorem allows to express the
result in terms of the interaction and products of the known non-interacting Green function.
If the coupling, U in case of the Hubbard model, is small, the series will converge to the exact
result within any desired accuracy after a finite number of terms. If this is not the case, one may
attempt to obtain an approximation by summing an infinite partial series of dominant terms.
The expressions in the expansion become, however, increasingly difficult to handle with in-
creasing order as we will see in a few examples below. In addition the number of terms grows
factorially. It helps to visualize the expressions in terms of Feynman diagrams, where one as-
signs a symbol to the interaction and depicts non-interacting Green functions as lines. This
yields a diagrammatic perturbation theory. The usefulness of diagrammatic perturbation theory
hinges on the following simplifications.
The linked cluster theorem significantly simplifies the problem, because it allows one to con-
centrate on connected diagrams. Another simplification is obtained by gathering diagrams with
the same structure which yield the same contribution. Finally, one can formulate a set of rules
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which allows one to obtain the analytical expression corresponding to any diagram just from its
structure, without the need to consider the term in the expansion where it came from.
The diagrammatic perturbation theory is often developed in terms of expectation values of time-
ordered second-quantized operators. The theory can equally well be formulated in terms of path
integrals. In case of fermions these are coherent state path integrals. Instead of operators we
integrate over Grassmann variables to capture the fermion statistics. The expressions are for-
mally very similar and it is often straightforward to translate from one description to the other.
The dual fermion approach and the associated perturbation theory are formulated in terms of
coherent state path integrals. We therefore briefly introduce them and formulate the perturba-
tion theory in terms of them. An excellent introduction to coherent states and the coherent state
path integral can be found in [9].

2.1 Coherent state path integrals

For concreteness, we consider systems of fermions. Starting point for the description of the
thermodynamic properties of quantum many-particle systems is the grand canonical partition
function Z = Tr e−β(Ĥ−µN̂), where Ĥ is the Hamiltonian in second quantized form, N̂ is
the operator of the total particle number and the chemical potential µ controls the number of
particles of the grand canonical ensemble.
Let us first recall the properties of coherent states. Coherent states |φ〉 are eigenstates of the
annihilation operator cα with eigenvalue φα: cα |φ〉 = φα |φ〉. For fermions, the eigenvalues
are Grassmann numbers. The most important property of the Grassmann algebra is that its
generators anticommute: φαφβ + φβφα = 0. This implies in particular that φ2

α = 0. It is
straightforward to show that the state

|φ〉 = e−
∑
α φαc

†
α |0〉 =

∏
α

(1− φαc†α) |0〉 (7)

has the desired property. The adjoint of the coherent state is 〈0|∏α(1 + φ∗αcα). The overlap of
two coherent states follows straightforwardly:

〈φ|φ′〉 = 〈0|
∏
α

(1 + φ∗αcα)
∏
α′

(1− φα′c†α′) |0〉 =
∏
α

(1 + φ∗αφα) = e
∑
α φ
∗
αφα . (8)

The matrix element of a normal-ordered operator A[c†α, cα] therefore is given by

〈φ|A[c†α, cα] |φ〉 = 〈φ|φ〉A[φ∗α, φα] = e
∑
α φ
∗
αφαA[φ∗α, φα]. (9)

The following closure relation is essential for the formulation of the fermionic coherent state
path integral: ∫ ∏

α

dφ∗αdφα e
−

∑
α φ
∗
αφα |φ〉 〈φ| = 1. (10)

The coherent states form an over-complete set of states in a generalized Fock space, that is, the
set of linear combinations of states in the Fermion Fock space with coefficients in the Grass-
mann algebra. Any physical Fermion state can be expanded in terms of them.
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Given two states |ψ〉 and |φ〉 in the Fock space, it follows from the anticommutation relations
of Grassmann numbers that 〈ψi|φ〉 〈φ|ψj〉 = 〈−φ|ψj〉 〈ψi|φ〉. For a complete set of states {|n〉}
in the Fock space, the trace of a second quantized operator A can be written

TrA =
∑
n

〈n|A |n〉 =

∫ ∏
α

dφ∗αdφα e
−

∑
α φ
∗
αφα
∑
n

〈n|φ〉 〈φ|A |n〉

=

∫ ∏
α

dφ∗αdφα e
−

∑
α φ
∗
αφα 〈−φ|A

∑
n

|n〉 〈n|φ〉

=

∫ ∏
α

dφ∗αdφα e
−

∑
α φ
∗
αφα 〈−φ|A |φ〉 . (11)

With these prerequisites, the grand canonical partition function can be expressed in the form

Z = Tr e−β(Ĥ−µN̂) =

∫ ∏
α

dφ∗αdφα e
−

∑
α φ
∗
αφα 〈−φ| e−β(Ĥ−µN̂) |φ〉 , (12)

where for fermions, the trace imposes antiperiodic boundary conditions.
We can obtain a coherent state path integral representation of the partition function by viewing
the exponential as an imaginary-time evolution operator describing the evolution of the state
from time zero to β. While its matrix elements cannot be evaluated directly, we can exploit the
fact that the infinitesimal evolution operator can be obtained in normal-ordered form. To this
end, we break the time interval [0, β] intoM time steps of size ε = β/M , such that e−β(Ĥ−µN̂) =

(e−ε(Ĥ−µN̂))M .
The second quantized operator e−ε(Ĥ−µN̂) is in approximate normal-ordered form, up to a cor-
rection of order ε2, e−ε(Ĥ−µN̂) = : e−ε(Ĥ−µN̂) : +O(ε2). Using (9), to evaluate the matrix
elements, we can write the partition function in the limit ε→ 0 in the form

Z =

∫ M∏
k=1

∏
α

dφ∗α,kdφα,k e
−

∑M
k=1

∑
α φ
∗
α,kφα,k

M∏
k=1

〈−φα,k| : e−ε(Ĥ−µN̂) : +O(ε2) |φα,k−1〉

=

∫ M∏
k=1

∏
α

dφ∗α,kdφα,k e
−

∑M
k=1

∑
α(φ∗α,kφα,k−φ

∗
α,kφα,k−1)−ε

∑M
k=1

∑
α(H[φ∗α,k,φα,k−1]−µφ∗α,kφα,k−1)

=

∫ M∏
k=1

∏
α

dφ∗α,kdφα,k e
−S[φ∗α,k,φα,k−1] , (13)

where φα,0=−φα,M because of antiperiodic boundary conditions and we have defined the action

S[φ∗α, φα] = ε

(
M∑
k=1

∑
α

φ∗α,k
φα,k − φα,k−1

ε
− µφ∗α,kφα,k−1 +H[φ∗α,k, φα,k−1]

)
. (14)

In the limit ε→ 0, it is convenient to introduce the notation

φ∗α,k
φα,k − φα,k−1

ε
≡ φ∗α(τ)

∂

∂τ
φα(τ), H[φ∗α,k, φα,k−1] ≡ H[φ∗α(τ), φα(τ)]. (15)
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Splitting the Hamiltonian into a one-body operator and an interaction, H =
∑

α εαφ
∗
αφα +

V [φ∗α(τ), φα(τ)], the path integral can symbolically be written in trajectory notation as

Z =

∫
φα(β)=−φα(0)

D[φ∗α(τ), φα(τ)] e−
∫ β
0 dτ(

∑
α φ
∗
α(τ)( ∂

∂τ
+εα−µ)φα(τ)+V [φ∗α(τ),φα(τ)]) . (16)

Formally, the problem has been reduced to quadrature. We have to integrate over all possible
realizations of paths φα(τ), φ∗α(τ), weighted by the exponential of the action S[φ∗α(τ), φα(τ)].
In general, it amounts to computing high-dimensional integrals, so that Monte Carlo methods
are particularly suitable for this task [9,8]. It must be kept in mind that even though the notation
suggests it, it neither implies continuity nor differentiability of the paths and all quantities are
defined in terms of the discrete expressions (13) and (14).

2.2 Perturbation theory

In the following, we will develop a perturbation theory based on the path integral formulation
of the partition function and the Green function (2),

Gα1α2(τ1 − τ2) = − 1

Z

∫
D[φ∗α(τ), φα(τ)] e−S[φ∗α(τ),φα(τ)]φα1

(τ1)φ∗α2
(τ2). (17)

Given that the fermionic path integral always implies antiperiodic trajectories, we omit the
indication here and in what follows. Furthermore we need not explicitly indicate the time-
ordering, remembering that it is implicit in the construction of the path integral.
We can view Green function as a thermal average over the interacting system, as symbolized by
the following notation: Gα1α2(τ1− τ2) = −

〈
φα1

(τ1)φ∗α1
(τ2)
〉
. We readily obtain a perturbation

expansion of the single-particle Green function in powers of the interaction

Gα1α2(τ1 − τ2) = −Z0

Z

〈
e−

∫ β
0 dτV [φ∗α(τ),φα(τ)]φα1

(τ1)φ∗α2
(τ2)
〉

0
(18)

= −Z0

Z

∞∑
n=0

(−1)n

n!

∫ β

0

dτ ′1 . . . dτ
′
n

〈
V [φ∗α(τ ′1), φα(τ ′1)] . . . V [φ∗α(τ ′n), φα(τ ′n)]φα1

(τα1)φ
∗
α2

(τα1)
〉

0
.

The partition function of the non-interacting system, Z0, is obtained by setting the interacting
V = 0 in (16). It remains to evaluate the non-interacting average over a product of Grassmann
fields arising in above expression. This is accomplished using Wick’s theorem, which allows to
express it in terms of a product of non-interacting Green functions. Wicks’s theorem is usually
formulated in terms of second-quantized operators. In its familiar form it states that the non-
interacting expectation value of a time-ordered product of operators can be written as the sum
over all complete contractions. A contraction of two time-dependent operators is defined as a
symbolic pairing of these operators, which evaluates to their non-interacting expectation value.
In a complete contraction of a set of an even number of fields, each operator is paired with
exactly one other. Having defined thermal expectation values in terms of Grassmann fields, we
can equally well write a contraction in terms of them

φα1
(τ1)φ∗α2

(τ2) :=
〈
φα1

(τ1)φ∗α2
(τ2)
〉

0
= −G0

α1α2
(τ1 − τ2) . (19)
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In terms of Grassmann numbers, Wick’s theorem is based on the following Gaussian integral∫
D[φ∗, φ]φi1φi2 . . . φinφ

∗
jn . . . φ

∗
j2
φ∗j1e

−
∑
ij φ
∗
iMijφj∫

D[φ∗, φ] e−
∑
ij φ
∗
iMijφj

=
∑
σ∈Sn

sgn(σ)M−1
iσ(n),jn

. . .M−1
iσ(1),j1

. (20)

For simplicity we write M−1
ij for the elements of the inverse of M . The left-hand side has the

form of an expectation value over a product of fields. On the right-hand side we have a sum over
the elements of the permutation group Sn, which is the Leibniz formula for the determinant of
the inverse of M .
Before relating this expression to the familiar statement of Wick’s theorem, we prove it by
means of the following generating function

G(J∗, J) :=

∫
D[φ∗, φ] e−

∑
ij φ
∗
iMijφj+

∑
i φ
∗
i Ji+J

∗
i φi∫

D[φ∗, φ] e−
∑
ij φ
∗
iMijφj

= eJ
∗
iM
−1
ij Jj . (21)

The name generating function will become apparent below. Here the sources J∗, J are Grass-
mann numbers and M is a complex matrix with elements Mij . We evaluate the following
derivatives

δ2nG

δJ∗i1 . . . δJ
∗
in
δJjn . . . δJj1

∣∣∣∣
J=J∗=0

= (−1)n
∫
D[φ∗, φ]φi1 . . . φinφ

∗
jn . . . φ

∗
j1
e−

∑
ij φ
∗
iMijφj∫

D[φ∗, φ] e−
∑
ij φ
∗
iMijφj

. (22)

Here we have used that the derivatives anticommute with Grassmann numbers. Applying the
same derivatives to the right-hand side of (21) yields

δ2n

δJ∗i1 . . . δJ
∗
in
δJjn . . . δJj1

(
e
∑
ij J
∗
iMijJj

)∣∣∣∣
J=J∗=0

= (−1)n
δn

δJ∗i1 . . . δJ
∗
in

(∑
kn

J∗knM
−1
kn,jn

)
. . .
(∑

k1

J∗k1M
−1
k1,j1

)(
e
∑
ij J
∗
iMijJj

)∣∣∣∣∣
J=J∗=0

= (−1)n
∑
σ∈Sn

sgn(σ)M−1
iσ(n),jn

. . .M−1
iσ(1),j1

, (23)

which proves the identity (20). It remains to prove the identity for the generating function,
Eq. (21). This is readily accomplished by imposing the linear shift transformation whose Jaco-
bian is unity (summation over repeated indices implied),

φ∗i → φ∗i + J∗jM
−1
ji , φi → φi +M−1

ij Jj , (24)

upon which the exponential on the left-hand side of (21) transforms to

exp
(
− φ∗iMijφj + φ∗iJi + J∗i φi

)
→ exp

(
− φ∗iMijφj + J∗iM

−1
ij Jj

)
. (25)

The term containing the sources J ,J∗ can be taken out of the integral. The numerator is seen to
cancel the denominator, hence proving the identity.
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A first application of Wick’s theorem is the evaluation of the noninteracting Green function. By
inserting the discrete matrix Mij = −(∂τ + εα − µ)−1

ij defined through (14) into Eq. (20) and
replacing φj by φα,k in the matrix elements of the path integral, we obtain

G0
α1α2

(τ1 − τ2) = −
∫
D[φ∗α(τ), φα(τ)] e−

∫ β
0 dτ

∑
α φ
∗
α(τ)( ∂

∂τ
+εα−µ)φα(τ)φα1

(τ1), φ∗α2
(τ2)∫

D[φ∗α(τ), φα(τ)] e−
∫ β
0 dτ

∑
α φ
∗
α(τ)( ∂

∂τ
+εα−µ)φα(τ)

= −(∂τ + εα − µ)−1
α1τ1;α2τ2

= G0
α1

(τ1 − τ2) δα1α2 . (26)

This shows that the non-interacting Green function equals the inverse of the matrix−( ∂
∂τ

+εα−µ)

and allows us to recast the action in the following form

S[φ∗α(τ), φα(τ)] =

β∫
0

dτ

(
−
∑
α

φ∗α(τ)G0
α
−1

(τα1 − τα2)φα(τ) + V [φ∗α(τ), φα(τ)]

)
. (27)

Similarly, withMij = −(∂τ+εα−µ)−1
ij , the left-hand side of Eq. (20) equals the non-interacting

average of fields. The right-hand side evaluates to a sum over products of non-interacting Green
functions, or, by means of Eq. (19), to the sum over all complete contractions. To see this, we
note that the sign of the permutation apparently equals the sign of the permutation that brings
the fields in each contraction next to each other in the desired order.
With Wick’s theorem at hand, we can evaluate the non-interacting expectation values in each
term of the perturbation expansion for the Green function. This allows us to obtain successively
more accurate approximations. The result is expressed in terms of the coupling and the known
non-interacting Green function. As will be shown below, we can depict these elements with
symbols and draw a diagram for each of the resulting expressions to obtain a diagrammatic
perturbation theory.
The right-hand side of Eq. (20) contains a sum over all permutations of indices, so that the
number of terms grows factorially with order. The construction of perturbation expansions in
practice would be hopeless without two major simplifications.
The first simplification is based on the observation that different contractions at a given order
can lead to structurally identical diagrams, which give the same contribution to the overall
result. Instead of enumerating all of them, their multiplicity can be accounted for in terms of
combinatorial factors. Another major simplification is given by the linked-cluster theorem: Any
diagram generated by the perturbation expansion (18) can be decomposed into two parts: one
is a connected part with an incoming and an outgoing line which stems from the contractions
involving φα1(τ1) and φα2(τ2). The second part is a (not necessarily connected) part consisting
of diagrams without external lines contributing to the vacuum amplitude. It is straightforward
to verify that the perturbation expansion of the partition function,

Z

Z0

=
〈
e−

∫ β
0 dτ V [φ∗α(τ),φα(τ)]

〉
0
, (28)

generates all the disconnected vacuum fluctuation graphs that appear in the expansion of the
Green function. The linked-cluster theorem states that the logarithm of the above expectation
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value, or lnZ/Z0, yields the sum over all connected graphs. An important consequence is
that this contribution exactly cancels the factor (Z/Z0)−1 in the expansion of Green function,
Eq. (18). As a consequence, when evaluating the perturbation expansion of G, we only have to
take into account the fully connected diagrams with external lines.

3 Diagrammatic extensions of dynamical mean-field theory

We have seen that diagrammatic perturbation theory is a powerful tool to construct approxi-
mations starting from a solvable reference system. The problem we are facing when dealing
with strongly correlated systems is that neither the non-interacting, nor the localized limit are
appropriate starting points. DMFT, on the other hand, already includes the presumably domi-
nant strong local temporal correlations. It would hence be desirable to include the effects of the
presumably weaker spatial correlations beyond DMFT perturbatively.

It turns out that there are different ways to systematically construct a perturbation expansion
around DMFT. It is crucial, however, that the DMFT reference system is solvable. Here and in
contrast to DMFT solvable means that not only the single-particle Green function, but at least
the two-particle and in principle all many-particle Green functions are assumed to be known.
Fortunately, reasonable approximations can be constructed from the knowledge of the single-
and two-particle Green function only. The need to compute higher-order correlation functions of
an impurity model explains why the first works of this kind appeared only around ten years ago.
To a large extent these developments were driven by the advent of continuous-time quantum
impurity solvers, which allow the efficient and accurate computation of higher-order correlation
functions [8].

The first approaches along these lines were the dynamical vertex approximation (DΓA) [10,11]
and the dual fermion approach [12]. A number of different approaches followed [6]. While
the construction and the justification of necessary approximation differs for the various ap-
proaches, the underlying principle is the same: the propagators and the interaction vertices of
the diagrammatic perturbation theory are obtained from the numerical solution of the impu-
rity model. Non-local processes are described in terms of renormalized propagation between
sites and a local frequency-dependent interaction between particles. Care has to be taken in the
choice of propagators and vertex functions to avoid double counting of contributions that are
already contained in DMFT.

The advantage of such methods is that the diagrammatic expressions are relatively inexpensive
to evaluate numerically, so that it becomes possible to treat truly long-ranged correlations. The
results, however, will be approximate on any scale. On the other hand, the diagrammatic ap-
proach provides intuition about the underlying microscopic origin of the observed effects. We
will discuss some examples in the result section below.
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Fig. 2: Illustration of the dual fermion approach. Spatial correlations neglected in the DMFT
description of Fig. 1 are mediated through dual fermions (green). The dual fermions interact
locally via n-particle interactions.

3.1 Dual fermions

In the following we show how to construct a diagrammatic perturbation theory around DMFT,
based on the idea of dual fermions. We then study the perturbation expansion in detail and
formulate the rules of the diagrammatic perturbation theory.
As in conventional perturbation theory, we separate the problem into a solvable reference system
and a perturbation. The underlying idea is to treat the strong local correlations on the level of the
single-site impurity model and to embrace the presumably weaker coupling between the sites
perturbatively. A diagrammatic extension of DMFT is obtained by setting the hybridization
function equal to its DMFT value.
In the Grassmann path integral formalism, the Hubbard model is described by the action

S[c∗, c] = −
∑
νσ

c∗νσ
(
ıν + µ− εk

)
cνσ + U

∑
ω

nω↑n−ω↓,

We can formally add and subtract an arbitrary hybridization function at each lattice site. The
lattice action can then be expressed in terms of the impurity action as follows

Slatt[c
∗, c] =

∑
i

Simp[c
∗
i , ci]−

∑
kνσ

c∗kνσ
(
∆ν − εk

)
ckνσ . (29)

In this form, the lattice problem can be viewed as a collection of impurity models at each lattice
site, each with their own electronic bath. The sites are spatially coupled by a hybridization- and
dispersion-dependent term. In principle it is possible to develop a perturbation theory around
the impurity model (and around DMFT for a correspondingly chosen hybridization function)
directly from this starting point: We could change the basis to transform the second term to
a sum over sites instead of momenta and expand the path integral Z =

∫
D[c∗, c] exp(−Slatt)

in that second term. The integration over the fields c∗, c could formally be performed and
would give rise to averages of the form

〈
c∗i1cj1 . . . c

∗
incjn

〉
imp

. There is clearly no Wick theorem
in this case, but we could nevertheless compute at least some of these impurity correlation
functions numerically and evaluate the perturbation series. It turns out that the dual fermion
approximation is a clever resummation of diagrams appearing in this approach [13].
To derive it, we first take a somewhat different route. Here we decouple the impurity models
by introducing new fermionic fields f , f ∗, the dual fermions. This is achieved by means of
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a Hubbard-Stratonovich transformation. Formally this transformation is a Gaussian integral
which we can obtain by generalizing (21) using the substitutions

φ∗i → f ∗i , φj → fj, J∗i → c∗jbji, Jj → bijcj, (30)

which yields ∫
D[f ∗, f ] e−

∑
ij f
∗
i Mijfj+

∑
ij f
∗
i bijcj+c

∗
i bijfj∫

D[f ∗, f ] e−
∑
ij f
∗
i Mijfj

= e
∑
ijkl c

∗
i bijM

−1
jk bklcl . (31)

Letting M−1
ij = ∆ν − εk and setting the coupling between the physical and dual fermions to the

local quantity bij = −g−1
ij , we obtain the partition function in the form

Z = Df

∫
D[f ∗, f ] e−

∑
kνσ f

∗
kνσg

−1
νσ (∆νσ−εk)−1g−1

νσ fkνσ

∫
D[c∗, c] e−

∑
i(Simp[c∗i ,ci]+Scf[c

∗
i ,ci;f

∗
i ,fi]).

(32)
Here Df is a determinant which arises from the numerator in Eq. (31) and which will be irrel-
evant for the calculation of expectation values. The term Scf is the local coupling between dual
and physical fermions

Scf[c
∗, c; f ∗, f ] =

∑
νσ

(
f ∗νσ g

−1
νσ cνσ + c∗νσ g

−1
νσ fνσ

)
.

The goal is to arrive at a representation which depends solely on dual variables. We can formally
perform the second integral by expanding the exponential in powers of Scf. We can do this for
each site i separately. For a translationally invariant system, the result will be site-independent∫
D[c∗i , ci]e

−Simp[c∗i ,ci]e−Scf[c
∗
i ,ci;f

∗
i ,fi] =

∞∑
n=0
n even

(−1)n

n!

〈(∑
νσ

(
f ∗νσ g

−1
νσ cνσ + c∗νσ g

−1
νσ fνσ

))n〉
imp

.

Only even orders contribute since the Gaussian integral over an odd number of c and c∗ must
vanish due to particle conservation. Let us exemplify this step for the first non-vanishing term.
We have

1

2

∑
νσ

∑
ν′σ′

〈
f ∗νσ g

−1
νσ cνσc

∗
ν′σ′ g

−1
ν′σ′ fν′σ′ + c∗νσ g

−1
νσ fνσf

∗
ν′σ′ g

−1
ν′σ′ cν′σ′

〉
imp

=
∑
νσ

∑
ν′σ′

g−1
νσ g

−1
ν′σ′ 〈cνσc∗ν′σ′〉imp f

∗
νσfν′σ′ = −

∑
νσ

f ∗νσ g
−1
νσ fνσ, (33)

where in the first line we have used the anticommutation relations to bring the two terms into
the same form. In the second line we have used the definition of the Green function for the
impurity, 〈cνσc∗ν′σ′〉imp = −gνσ δνν′δσσ′ , which is diagonal in spin and frequency.
We can apply the same procedure to the higher order terms. For example, the fourth-order term
involves averages of the form

gσσσ
′σ′

νν′ω :=
〈
cνσc

∗
ν+ω,σcν′+ω,σ′c

∗
ν′σ′

〉
imp
. (34)
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The result of this expansion can be cast into the following form

ln
〈
e−Scf[c

∗
i ,ci;f

∗
i ,fi]
〉

imp =−
∑
νσ

f ∗νσ g
−1
νσ fνσ − Ṽ [f ∗, f ]. (35)

As one might expect from the linked-cluster theorem, the left hand side generates the connected
correlation functions of the impurity model coupled to dual variables. To leading order, the
resulting dual interaction is given by

Ṽ [f ∗, f ] = −1

4

∑
νν′ω σi

γσ1σ2σ3σ4νν′ω f ∗νσ1fν+ω,σ2
f ∗ν′+ω,σ3fν′σ4 + . . . , (36)

where γ is the reducible two-particle vertex of the impurity model

γσσσ
′σ′

νν′ω :=
gσσσ

′σ′

νν′ω − β gνσ gν′σ′ δω + β gνσ gν+ωσ δνν′ δσσ′

gνσ gν+ω,σ gν′+ωσ′ gν′σ′
. (37)

The higher-order terms contain the three-particle (six-leg) and higher-order vertices describ-
ing the interaction between a successively larger number of particles. In terms of the original
Hubbard interaction, the vertices correspond to the sum of many high-order processes.
Combining Eqs. (32) and (35), we see that the action in dual variables is given by

S̃[f ∗, f ] = −
∑
kνσ

f ∗kνσ G̃
0−1

kνσ fkνσ + Ṽ [f ∗, f ] (38)

and the dual Green function is identified from the bilinear terms in the same two equations as

G̃0
kνσ =

(
g−1
νσ + (∆νσ − εk)

)−1 − gνσ. (39)

We have reformulated the problem in terms of a Green function and an interaction which can
be computed given the solution of the impurity model. The interaction, however, is rather
complicated and frequency-dependent. So what have we gained? To see this, we first establish
a connection to DMFT by noting that by means of (3), the bare dual Green function can be
written in the form GDMFT

kνσ − gνσ. While the hybridization function is arbitrary by construction,
see Eq. (29), we can fix it through the self-consistency condition

∑
k G̃

0
kνσ = 0. It apparently

corresponds to the DMFT self-consistency condition discussed in Sec. 1.2.
At this point we have used the bare dual Green function and have not taken the dual interaction
into account. DMFT corresponds to the case of non-interacting dual fermions. This is not
surprising, since in the DMFT description sites are decoupled. It means that even the lowest-
order corrections based on the action (38) will already introduce corrections beyond DMFT.
Once diagrams are taken into account, the hybridization function can be fixed using a similar
condition on the interacting dual Green function,

∑
k G̃kνσ = 0. This corresponds to the sum-

mation of an infinite partial series: all diagrams with a local propagator are eliminated from the
expansion. This property is unique to the dual fermion approach and highlights the fact that
the dual Green function is not a physical, but rather an auxiliary quantity. Since we have used
an exact transformation to introduce the associated field, we can nevertheless establish exact
relations between dual and physical quantities. In particular, the physical self-energy is given
in terms of the dual self-energy Σ̃ by

Σkνσ = Σ imp
νσ +

Σ̃kνσ

1 + Σ̃kνσgνσ
. (40)
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3.2 Perturbation theory for the dual propagator

We are now in the position to construct the diagrammatic perturbation theory for the dual prop-
agator and the dual self-energy. To this end, we explicitly expand the path integral in powers
of the dual interaction and apply Wick’s theorem to evaluate the resulting expressions. We will
show a couple of example diagrams to illustrate the procedure. We then describe the particulari-
ties of the dual perturbation theory, namely the determination of combinatorial prefactors of the
diagrams and how to determine the sign of resulting expressions. Finally we arrive at the gen-
eral Feynman rules for evaluating the expression of any diagram appearing in the diagrammatic
perturbation theory.
To have a more condensed notation, we gather frequency-, spin and other possible indices into
a single Greek index. To emphasize that the diagrams describe non-local corrections, we write
the positions explicitly and use Latin indices for them. To further clearly mark external lines
of a diagram, we use the combined index 1 ≡ {i1, α1}. Even though the three-particle vertex
γ(6) is often neglected in actual calculations, we consider it here to illustrate how the theory
generalizes to higher-order vertices.
We start from the definition of the dual propagator

G̃12 := −〈f1f
∗
2 〉 = − 1

Z̃

∫
D[f ∗, f ] f1f

∗
2 e
−S̃[f∗,f ] , (41)

where the dual action is given by

S̃[f ∗, f ] = −
∑
k, αβ

f ∗α G̃
0−1
αβ fβ +

∑
i

Vi[f
∗
i , fi] . (42)

Formally these equations have the same form as those discussed in the introduction of the
diagrammatic perturbation theory. This means in particular that we can make use of Wick’s
theorem and the linked cluster theorem. We can therefore concentrate on connected diagrams.
Before considering the diagrams, let us first derive some explicit expressions. The perturba-
tion series is generated by expanding the exponential appearing under the path integral in the
interaction

e−
∑
iVi[f

∗
i ,fi] = 1−

∑
i

Vi[f
∗
i , fi]+

1

2!

∑
i,j

Vi[f
∗
i , fi]Vj[f

∗
j, fj]−

1

3!

∑
i,j,k

Vi[f
∗
i , fi]Vj[f

∗
j, fj]Vk[f

∗
k, fk]+

(43)
The zero-order term yields the bare dual Green function

G̃0
12 = − 1

Z̃

∫
D[f ∗, f ] f1f

∗
2 e
−S̃0[f∗,f ], (44)

with S̃0[f ∗, f ] = −∑αβ f
∗
α G̃

0−1
αβ fβ . The next order gives two local contributions for the Green

function G̃12, one from each of the vertices(
−1

4

)∑
i

γ
(4)
iαβγδ

∫
D[f ∗, f ] f1f

∗
2 f
∗
iαfiβf

∗
iγfiδ e

−S̃0[f∗,f ] , (45)(
1

36

)∑
i

γ
(6)
iαβγδεζ

∫
D[f ∗, f ] f1f

∗
2 f
∗
iαfiβf

∗
iγfiδf

∗
iεfiζ e

−S̃0[f∗,f ] . (46)
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The second-order terms (only those involving γ(4) and γ(6)) are

− 1

2!

(
−1

4

)2∑
i,j

γ
(4)
iαβγδ γ

(4)
jκλµν

∫
D[f ∗, f ] f1f

∗
2 f
∗
iαfiβf

∗
iγfiδf

∗
jκfjλf

∗
jµfjν e

−S̃0[f∗,f ] (47)

− 1

2!

(
−1

4

1

36

)∑
i,j

γ
(4)
iαβγδ γ

(6)
jκλµνεζ

∫
D[f ∗, f ] f1f

∗
2 f
∗
iαfiβf

∗
iγfiδf

∗
jκfjλf

∗
jµfjνf

∗
jεfjζ e

−S̃0[f∗,f ] (48)

− 1

2!

(
−1

4

1

36

)∑
i,j

γ
(6)
iκλµνεζ γ

(4)
jαβγδ

∫
D[f ∗, f ] f1f

∗
2 f
∗
iκfiλf

∗
iµfiνf

∗
iεfiζf

∗
jαfjβf

∗
jγfjδ e

−S̃0[f∗,f ] (49)

− 1

2!

(
1

36

)2∑
i,j

γ
(6)
iαβγδεζ γ

(6)
jκλµνρη

∫
D[f ∗, f ] f1f

∗
2 f
∗
iαfiβf

∗
iγfiδf

∗
iεfiζf

∗
jκfjλf

∗
jµfjνf

∗
jρfjη e

−S̃0[f∗,f ]

(50)

Likewise, the third-order term involving only the two-particle vertex γ(4) is the following:

+
1

3!

(
−1

4

)3∑
i,j,k

γ
(4)
iαβγδγ

(4)
jκλµνγ

(4)
kεζρη

∫
D[f ∗, f ] f1f

∗
2 f
∗
iαfiβf

∗
iγfiδf

∗
jκfjλf

∗
jµfjνf

∗
kεfkζf

∗
kρfkη e

−S̃0[f∗,f ]

(51)
The terms quickly grow very complicated and it is hard to see the structure in these expressions.
In the following we show how we can represent the relevant contributions in terms of diagrams.

3.3 Self-energy diagrams

In general we can use the Dyson equation to sum infinite partial series of diagrams. We therefore
concentrate on one-particle irreducible self-energy diagrams in the following. We obtain these
simply from diagrams for the Green function by omitting the contractions corresponding to the
external lines (those connecting f1 and f ∗2 ). With the exception of diagram a), which we include
for illustration, we omit any diagram with a local closed loop on at least one of its vertices. Their
contribution vanishes because the local part of the dual Green function is taken to be zero via
the self-consistency condition. A contraction in the following is defined as f iαf

∗
jβ = −G̃ij αβ .

We simply write G̃ instead of G̃0 because the expressions are also valid when written in terms
of the interacting Green functions.

•Diagram (a)

α β

δ γ

This diagram is derived from (45). The corresponding pairing or contraction is

+f 1f
∗
2f
∗
iαf iβf

∗
iγfiδ =−f 1f

∗
iαf iδf

∗
iγf iβf

∗
2 = (−1)4 G̃1 iαG̃iβ 2G̃iiδγ . (52)

The combinatorial prefactor of a diagram is the prefactor of the contribution times the number
of pairings that lead to the same (topologically equivalent) diagram. Apparently we obtain
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the same diagram if we exchange the ’incoming’ points of the vertex (marked by open circles
in the figure) or the outgoing ones. This yields 4 pairings which result in the same diagram,
which cancels the prefactor 1/4 of the vertex. The corresponding correction to the self-energy
is thus Σ(a)

ii αβ = −γ(4)
iαβγδ G̃iiδγ .

•Diagram (b)

α β

δ γ

µ ν

λ κ

This diagram yields the first non-local correction. The relevant term in the perturbation ex-
pansion is (47). The particular pairing corresponding to this diagram is:

+f 1f
∗
2f
∗
iαf iβf

∗
iγf iδf

∗
jκf jλf

∗
jµfjν = −f 1f

∗
iαf iβf

∗
jµf jλf

∗
iγf iδf

∗
jκf jνf

∗
2

= (−1)6 G̃1 iα G̃ijβµ G̃jiλγ G̃ijδκ G̃iν 2 . (53)

There are 16 different pairings that correspond to the same diagram. We can count them as
follows: Draw two squares corresponding to the two vertices. There are four possibilities
to connect an incoming line (two on each vertex). After attaching the incoming line to say,
α, there are two possibilities to attach the outgoing line, since it must be connected to the
other vertex to yield the desired diagram. Connect this line to ν. Now there are two more
possibilities to draw a directed line connecting the two vertices: A line going from the left to
the right vertex can only be connected to one point on the left vertex, but to two on the right
one. After this line is connected, say from γ to λ, there is only one possibility to connect the
remaining two lines. The number of equivalent pairings is thus 4 · 2 · 2 = 16. The correction
to the self-energy is hence given by

Σ
(b)
ij αν = −1

2
γ

(4)
iαβγδ γ

(4)
jκλµν G̃ijβµ G̃jiλγ G̃ijδκ . (54)

•Diagram (c)

α

ζ
ε

β

γ
δ

ν µ

κ λ

This diagram appears in the two terms (48) and (49), which differ in the order of vertices. The
corresponding pairing is

f 1f
∗
2f
∗
iαf iβf

∗
iγf iδf

∗
iεf iζf

∗
jκf jλf

∗
jµfjν = +f 1f

∗
iαf jλf

∗
iγf iδf

∗
jκf jνf

∗
iεf iζf

∗
jµf iβf

∗
2

= (−1)6G̃1 iαG̃jiλγG̃ijδκG̃jiνεG̃ijζµG̃iβ 2 . (55)
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Counting the number of equivalent pairings as before yields 36. The self-energy correction
therefore reads

Σ
(c)
ii αβ =

(
1

4

)∑
j

γ
(6)
iαβγδεζ γ

(4)
jκλµν G̃jiλγ G̃ijδκ G̃jiνε G̃ijζµ . (56)

•Diagram (d)

α δ µ η

ζ ε λ κ

β γ ν ρ

This diagram stems from (50). It corresponds to the pairing

f1f
∗
iαf iβf

∗
iγf iδf

∗
iεf iζf

∗
jκf jλf

∗
jµf jνf

∗
jρf jηf

∗
2 =f1f

∗
iαf iβf

∗
jρf jνf

∗
iγf iδf

∗
jµf jλf

∗
iεf iζf

∗
jκf jηf

∗
2

=(−1)7G̃1 iαG̃ijβρG̃jiνγG̃ijδµG̃jiλεG̃ijζκG̃jη 2.

(57)

Here the number of equivalent pairings already becomes quite large: 216. The prefactor is
hence given by (1/2)(1/36)2 × 216 = 1/12. The self-energy correction reads

Σ
(d)
ij αη =

(
1

12

)
γ

(6)
iαβγδεζ γ

(6)
jκλµνρη G̃ijβρ G̃jiνγ G̃ijδµ G̃jiλε G̃ijζκ . (58)

•Diagram (e)

α β

δ γ

κ λ

ν µ

ρ η

ζ ε

The diagram stems from (51). The corresponding pairing is

f1f
∗
iαf iβf

∗
iγf iδf

∗
jκf jλf

∗
jµf jνf

∗
kεfkζf

∗
kρfkηf

∗
2 =−f1f

∗
iαf iβf

∗
jκf jνf

∗
iγf iδf

∗
kεf jλf

∗
kρfkζf

∗
jµfkηf

∗
2

=(−1)8G̃1α G̃ijβκ G̃jiνγ G̃ikδε G̃jkλρ G̃kjζµ G̃η2

(59)

and the number of equivalent pairings is: 384. This gives the self-energy correction

Σ
(e)
ik αη = (−1)

∑
j

γ
(4)
iαβγδ γ

(4)
jκλµν γ

(4)
kεζρη G̃ijβκ G̃jiνγ G̃ikδε G̃jkλρ G̃kjζµ . (60)
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•Diagram (f)

α β

δ γ

κ λ

ν µ

ρ η

ζ ε

The diagram stems from the same term as diagram (e). The following pairing:

f1f
∗
iαf iβf

∗
iγf iδf

∗
jκf jλf

∗
jµf jνf

∗
kεfkζf

∗
kρfkηf

∗
2 =−f1f

∗
iαf iβf

∗
jκfkζf

∗
iγf iδf

∗
jµf jλf

∗
kρf jνf

∗
kεfkηf

∗
2

=(−1)8G̃1 iαG̃ijβκG̃kiζγG̃ijδµG̃jkλρG̃jkνεG̃kη 2 ,

(61)

however, leads to a topologically inequivalent diagram, as seen in the figure. The number of
equivalent pairings is also different from diagram (e) and equal to 96. The resulting self-energy
correction reads

Σ
(f)
ik αη =

(
−1

4

)∑
j

γ
(4)
iαβγδ γ

(4)
jκλµν γ

(4)
kεζρη G̃ijβκ G̃kiζγ G̃ijδµ G̃jkλρ G̃jkνε . (62)

We can deform this diagram as shown below by drawing the vertex in a different way. We see
that we have two parallel arrows connecting neighboring vertices. This diagram therefore de-
scribes renormalization of the self-energy by scattering of particle-particle pairs. Diagram (e)
by contrast describes renormalization through particle-hole scattering.

α β

γ δ

κ λ

µ ν

ρ η

ε ζ

3.3.1 Determination of combinatorial prefactors

As we have seen, the determination of the combinatorial prefactors by counting the number
of equivalent pairings becomes cumbersome already for diagrams at moderate orders of the
perturbation theory. It is therefore desirable to have general rules to obtain these prefactors
simply by looking at the structure of a diagram. Fortunately we can derive such rules by the
following analysis:
First consider diagrams which contain no equivalent lines. Equivalent lines are equally directed
lines connecting to the same or same two vertices. This is the case for diagrams (a) and (e).
The prefactor of such a diagram is unity at any order of the perturbation theory. In order to
see this, recall that the prefactor of each vertex is 1/[(n/2)!]2, where n is the number of edges.
This applies to higher-order vertices as well. It is exactly the number of possibilities to permute
equivalent endpoints of each vertex among themselves. For example, the three-particle vertex
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has 3 incoming endpoints, and there are 3! permutations of them. We have the same number
for the outgoing ones, which yields (3!)2 permutations.
An additional factor 1/m! arises from the expansion of the exponential, wherem is the perturba-
tion order. Attaching a label to each vertex of one sort (e.g. two-particle vertices) to make them
distinguishable, one sees that all m! permutations appear in a complete contraction. If vertices
of different sorts are present in a diagram, the factor corresponding to the permutation of these
vertices among themselves explicitly appears in the expansion, for example the 2! terms (48)
and (49) contributing to diagram (c). Hence a diagram corresponds to the sum of 1/[(n/2)!]2m!

contributions with the same value, so that the prefactor exactly cancels.
This only holds if all ways of attaching the lines or permuting the vertices yield a different,
distinguishable diagram. If for example two vertices are connected by k equivalent lines, this
reduces the number of distinguishable diagrams (pairings) by the number of permutations of
these lines, since a permutation yields the identical, distinguishable diagram. Hence the prefac-
tor is cancelled only up to a factor 1/k! for each set of k equivalent lines connecting the same
two vertices. For example, there are two equivalent lines going from left to right and three
parallel lines from right to left in diagram (d). Hence the prefactor is 1/2! · 1/3! = 1/12. Dia-
gram (f) has two sets of two equivalent lines, while diagram (e) does not. This yields a prefactor
of (1/2!)2 = 1/4 for diagram (f) instead of unity for diagram (e).
For vacuum fluctuation diagrams, that is, those with no external lines and no unpaired endpoints,
additional symmetry factors arise. An example is the generic n-th order ring diagram shown
below. In this diagram, 2n cyclic permutations of the sequences (1, 2, . . . n) and (n, . . . , 2, 1)

correspond to the same distinguishable diagram. Hence the symmetry factor of this diagram is
1/(2n). The symmetry factor is obviously unity for self-energy diagrams. The diagrammatic
rules for the dual propagator are similar to those for Hugenholtz diagrams [14].

3.3.2 Determination of the sign

Finally we need rules to determine the sign of a given diagram. For the case where the dual
potential is truncated after the two-particle interaction term, they can be obtained as follows:
A priori, i.e., regardless of the particular pairing, the contribution to a diagram for Green func-
tion or the self-energy has positive sign. A sign of (−1)n, where n is the order or the number of
vertices, arises from the expansion of the exponential. This sign cancels at any order due to the
negative prefactor of−1/4 of each vertex. In each contribution, the Grassmann numbers appear
as −ff ∗f ∗f . . . f ∗f , where the sign is due to the definition of Green function, G̃ = −〈ff ∗〉.
Reversing the order of pairs to form a complete contraction and recalling that a contraction of
two Grassmann numbers is defined as ff ∗ = −G̃, one sees that a diagram has positive sign. An
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overall sign of (−1)nL of a diagram arises due to nL closed fermion loops, as in standard per-
turbation theory. It is, however, not obvious how to count the loops for a given diagram in the
present antisymmetrized technique, where the interaction is fully antisymmetric with respect
to permutation of its endpoints. This can be resolved by comparing with the unsymmetrized
technique, where the interaction has the form Uαβγδ f

∗
αfβf

∗
γfδ = U δαβ δγδ f

∗
αfβf

∗
γfδ, which can

be represented by a wiggly line as in

(63)

Since the order of Grassmann variables is the same for the interaction γαβγδf ∗αfβf
∗
γfδ, the sign

of a diagram is obtained by replacing the square by a wiggly line as in

α β

δ γ

(64)

and counting the number of closed loops (a single loop in this example). The relative orientation
of the line and the square must be kept fixed, e.g., both the line and the square in (64) have been
rotated counterclockwise by π/2 with respect to (63).

3.4 Dual perturbation theory in momentum space

With the above prerequisites, we are now in the position to formulate the dual perturbation
theory in momentum space. The rules to evaluate the expression for a given diagram are:

• draw all topologically distinct connected diagrams involving any n-body interaction γ(2n)

depicted by regular polygons with 2n edges or endpoints, whereof n are outgoing (in-
coming) endpoints, where a directed line originates (terminates)

• connect the vertices with directed lines, compliant with ingoing and outgoing endpoints

• with each line associate a dual Green function G̃kν

• assign a frequency, momentum, orbital and spin label to each endpoint

• sum / integrate over all internal variables taking into account energy-, momentum-, and
spin-conservation at each vertex

• for each tuple of n equivalent lines, associate a factor 1/n!

• multiply the expression by (T/N)mS−1 × s, where m counts independent frequency /
momentum summations and S and s are the symmetry factor and sign described above.
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4 Numerical results

In the following, we describe two important diagrammatic approximations to the dual self-
energy and show results to illustrate their physical content.

4.1 Second-order approximation

We start with the second-order approximation given by diagram (b). We refer to it as DF(2).
Applying the above rules of the perturbation theory, we obtain the following expression

Σ̃kνσ =− 1

2

T 2

N2

∑
k′q

∑
ν′ω

∑
σ′

γσσσ
′σ′

νν′ω G̃k+qν+ωσ G̃k′+qν′+ωσ′ G̃k′ν′σ′ γ
σ′σ′σσ
ν′νω

− 1

2

T 2

N2

∑
k′q

∑
ν′ω

γσσ̄σ̄ σνν′ω G̃k+qν+ωσ̄ G̃k′+qν′+ωσ̄ G̃k′ν′σ γ
σσ̄σ̄σ
ν′νω . (65)

Here we have left out the first-order contribution. Similarly to DMFT, we repeatedly solve the
impurity model. Contrary to DMFT the hybridization is updated to make the local part of the
interacting (instead of non-interacting) dual Green function and the first-order diagram zero.
The hybridization is therefore different from DMFT. In addition, we evaluate the self-energy in
each iteration and renormalize the Green function self-consistently using Dyson’s equation.
Fig. 3 shows results for the spectral function obtained in DF(2) and DMFT just above the critical
interaction at which the model becomes insulating, which is Uc = 9.35t in DMFT, while it is
significantly reduced by spatial correlations to 6.64t in DF(2). The DF(2) value agrees much
better with the cellular DMFT value of Uc = 6.05t, which takes nearest-neighbor correlations
into account [15]. For better comparability the energy axis has been scaled by Uc. We ob-
serve a significantly richer structure in the DF(2) spectral function. While most spectral weight
follows the non-interacting dispersion (red line), we observe relatively broad ’shadow bands’
marked by arrows roughly following the dispersion shifted by the antiferromagnetic nesting vec-
tor q = (π, π) (blue line). These bands originate from short-range dynamical antiferromagnetic
correlations included through the self-energy correction. While the solution is paramagnetic,
spins on neighboring sites favor to align antiferromagnetically on short time scales.

-1 -0.5  0  0.5  1 -1 -0.5  0  0.5  1

PSfrag replacements

ω/Ucω/Uc

A(k, ω)A(k, ω)

Γ

Γ

Γ

Γ

XX

MM

DF(2) DMFT

Fig. 3: Momentum resolved spectral function in DF(2) and DMFT along high-symmetry lines in
the Brillouin zone in the paramagnetic insulator. The DF(2) spectral function exhibits shadow
bands due to short-range antiferromagnetic correlations.
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4.2 Ladder approximation

A more sophisticated approximation is the so-called ladder dual fermion approximation (LDFA)

ΣLDFA = − − 1

2
− −· · · (66)

The diagrams are given with with corresponding signs and prefactors. All higher-order terms
in the expansion have a prefactor of unity. The diagrams look like ladders, with an additional
Green function connecting the left and rightmost vertices to close the diagram. Here the rules
of the diagrammatic perturbation theory are crucial, because they allow us to derive expressions
for every diagram in this infinite partial series without actually carrying out the expansion. To
sum the infinite series in a practical way, we take a detour and first sum all the ladder diagrams
without the closing Green function (see Fig. 4). Applying the rules of perturbation theory and
taking into account all possible spin configurations, we can obtain the following Bethe-Salpeter
equation

Γ̃ σσσ′σ′

qνν′ω = γσσσ
′σ′

νν′ω − T

N

∑
k′′ν′′σ′′

γσσσ
′′σ′′

νν′′ω G̃k′′+qν′′+ωG̃k′′ν′′Γ̃
σ′′σ′′σ′σ′

qν′′ν′ω , (67)

Γ̃ σσ̄σ̄σ
qνν′ω = γσσ̄σ̄σνν′ω −

T

N

∑
k′′ν′′

γσσ̄σ̄σνν′′ω G̃k′′+qν′′+ωG̃k′′ν′′Γ̃
σσ̄σ̄σ
qν′′ν′ω. (68)

Here we have omitted spin labels on the Green functions to emphasize that we consider the
paramagnetic state. The negative sign arises because we have a closed loop in the diagram.
It is easy to see that by repeatedly inserting the left-hand side into the right, we successively
generate the sum over all ladder diagrams. This is illustrated in the left of Fig. 4.
Spin seems to play a particular role here. We have two equations which differ only in the spin
labels. The first equation (67) actually corresponds to two coupled equations, one for each of
the signs of σ = ±1/2. Apparently it mixes different spin components of the vertex (there is a
sum over spins), while the second does not. To understand this, we observe that each vertex γ
has an incoming and outgoing line on the left, as well as on the right. If we interpret an arrow
pointing to the right as a propagating particle, the arrow to the left is a propagating hole. When
we read the diagram from left to right, γ hence describes scattering of particle-hole pairs (the
same is true for processes from top to bottom). γσσσ′σ′νν′ω hence describes a particle with spin σ

ehΓ ehΓ − ...

− ...

γβ

α δ

= γ

δα

β γ

+ γ

α

β κ

λ

γ

δµ

ν

γγ

ε ζ

ηθ

− γ

α

β γ

δ

κ

λ µ

ν

γ−= γ γ

α

β γ

δδα

β γ κ

λ µ

ν

+− ehΓ

ehΓ

+= γ γ + +

γ

γ

+ +

+ ...

+ ...

= γ γ γ

γ

Fig. 4: Left: Bethe-Salpeter equation in the horizontal electron-hole channel and the first terms
in the infinite series it generates. Right: Vertical channel. Diagrams obtained when the vertex
γ is replaced by the Hubbard interaction U (depicted by a wiggly line) are also indicated.
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and a hole with spin σ̄ = −σ entering from the left which scatter into a particle with spin σ′ and
a hole with spin −σ′. The energy of the pair is ω and is conserved in the scattering process. So
is the z-component of the spin: σ−σ = σ′−σ′ = 0. However the total spin is not. By forming

the linear combinations γd(m)
νν′ω = γ↑↑↑↑νν′ω

+

(−) γ↑↑↓↓νν′ω, the two equations decouple. We may say the
scattering processes occur in different ’channels’ which each correspond to a definite value of
the total spin S of the particle hole pair. The plus sign corresponds to the density channel, which
can be made plausible by forming the expectation value 〈nσn↑〉 + 〈nσn↓〉 = 〈nσn〉, while the
minus signs relates to the spin channel, as can be seen from 〈nσn↑〉 − 〈nσn↓〉 = 〈nσSz〉. The
latter therefore corresponds to a total spin of S = 1, while the former has S = 0. With the same
reasoning as above we see that the second equation (68) describes scattering of particle hole
pairs with projections Sz = σ + σ = ±1, so that S = 1. We have found all spin states of the
particle hole pair: S = 0, Sz = 0 and S = 1, Sz = 0,±1. In the paramagnetic case, the results
cannot depend on the spin projection and we have found the useful identity γ↑↑↑↑νν′ω−γ↑↑↓↓νν′ω = γ↑↓↓↑νν′ω.
We have just performed a spin-diagonalization, after which the equations can be written in the
form

Γ̃α
qνν′ω = γανν′ω −

T

N

∑
k′′ν′′

γανν′′ωG̃k′′+qν′′+ωG̃k′′ν′′Γ̃
α
qν′′ν′ω, (69)

where α = d(m) denotes the density (S = 0) or spin (S = 1) channel. The physical content of
this equation is the repeated scattering of particle-hole pairs which describes collective charge or
spin excitations. The self-energy in the ladder approximation describes effects due to scattering
of electrons and these bosonic excitations.
We can solve this equation simply by matrix inversion when viewing the convolution of Green
functions as a matrix in ν and ν ′

[Γ̃α
qω]−1

νν′ = [γαω ]−1
νν′ + (T/N)

∑
k

G̃k+qν+ωG̃kνδνν′ . (70)

We can do this independently for fixed q, ω and S, which are precisely the quantum numbers of
the particle-hole pair and which are conserved in scattering processes.
From the left part of Fig. 4 it would seem that we can obtain the self-energy by simply adding
a closing line on the vertex Γ̃ eh. However we observe a problem here: the second-order contri-
bution would miss the factor 1/2 expected from the diagrammatic rules.
A more systematic way to obtain the ladder self-energy is the Schwinger-Dyson equation (SDE)

ΣLDFA = − − 1

2
γ Γ (71)

It connects the self-energy to the exact two-particle vertex. Here we construct an approximation
to the vertex via the Bethe-Salpeter equations. However, approximating it as Γ̃ ≈ Γ̃ eh with the
horizontal series shown in the left of Fig. 4, we would miss the entire series of vertical diagrams



12.26 Hartmut Hafermann

shown on the right. If the interaction were of Hubbard type, it would be obvious from the
figure that the corresponding diagrams are all valid contributions to the vertex which should be
taken into account. Both series are in fact the diagrams generated by the well-known fluctuation
exchange approximation (FLEX) [16].
On the other hand, if we replace the fully antisymmetric box by wiggly interaction lines,

γ1234 → −U(δ12δ34 − δ14δ32) ,

2 3

1 4

γ = − ,

we see that already the series in the left of Fig. 4 generates all FLEX diagrams. It is hence
plausible that Γ̃ eh and Γ̃ v give the same contribution to the self-energy. We approximate the
vertex as Γ̃ ≈ Γ̃ eh + Γ̃ v− γ, where we subtract γ once because it appears in both series for Γ̃ eh

and Γ̃ v. Inserting Γ̃ into the SDE yields the LDFA self-energy

Σ̃kν =− T 2

N2

∑
k′q

∑
ν′ω

Aα γ
α
νν′ω G̃k+qν+ω G̃k′+qν′+ω G̃k′ν′

(
Γ̃ h,α
ν′νω −

1

2
γαν′νω

)
. (72)

Here Ad = 1, and Am = 3 accounts for the degeneracy (Sz = 0,±1) of the magnetic S = 1

channel. The two equal contributions from Γ̃ eh and Γ̃ v have canceled the prefactor 1/2 of the
second diagram in the SDE, Eq. (71). The double counting correction γ in Γ̃ attains a factor 1/2

and provides the correct prefactor of the second-order contribution in Eq. (66).
Fig. 5 shows results obtained within the ladder approximation for the two-dimensional Hubbard
model. Fig. 5 (a) shows the static (ω = 0), homogeneous (q = 0) spin susceptibility computed
from the vertex. In DMFT the response to a homogeneous field increases as moments form with
decreasing temperature. After a similar increase in LDFA, neighboring spins start to couple
antiferromagnetically. Hence the temperature of the downturn marks the effective exchange
energy scale. We can see that the ladder approximation agrees well with Quantum Monte Carlo
(QMC) results within error bars. We can therefore be confident that we have included the
dominant contributions. Conversely, the entire series of diagrams made up by terms of the form
of diagram (f) describing particle-particle scattering that we have neglected apparently plays
only a minor role in this regime. We can further see a significant size dependence, indicating
that the self-energy corrections are truly long-ranged.
In DMFT the susceptibility diverges at the antiferromagnetic wave vector q = (π, π) (not
shown). We can view the Bethe-Salpeter equation as a generalization of a geometric series∑∞

n=0 q
n = 1/(1− q), where the matrix (T/N)

∑
kν γ

α
νν′ω G̃k+qν+ω G̃kν δνν′ plays the role of q.

The divergence hence appears when the leading eigenvalue of this matrix approaches 1. Here it
has physical significance and indicates a second-order transition to the antiferromagnetic Néel
state as indicated by the vertical line. It is clearly an artifact of the mean-field approxima-
tion, because the Mermin-Wagner theorem forbids breaking of a continuous symmetry in two
dimensions [17].
In LDFA, we account for the long-range fluctuations that are essential to the proof of the the-
orem and which destroy the spurious long-range order. To obtain a finite result in LDFA even
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Fig. 5: (a) Temperature dependence of the static homogeneous susceptibility for U/t = 4 and
different temperatures. (b) Local density of states in DMFT, DF(2) and different orders of the
ladder approximation. All orders contribute to the formation of a pseudogap.

though the series diverges in DMFT is possible by computing the self-energy from Green func-
tions which are self-consistently renormalized by the self-energy itself. Below the DMFT Néel
temperature, this requires a regularization procedure [18].

Fig. 5 (b) shows the local density of states. In DMFT we see the quasi-particle peak and broad
Hubbard bands. In the second-order approximation, the spectral weight at the Fermi level is
reduced. By iterating the Bethe-Salpeter equation, we can compute the results to successively
higher orders. Apparently all orders of the perturbation series contribute to the result. Instead
of a quasi-particle peak, the LDFA spectral function exhibits a pseudogap.
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5 Summary and outlook

In just two examples we have seen that diagrammatic extensions of DMFT can introduce highly
non-trivial effects beyond DMFT and remedy artifacts of the mean-field approximation in par-
ticular in low dimensions. They can give qualitatively different and even quantitative results.
At the same time, the diagrammatic approach allows us to isolate the dominant contributions
and provides us with intuition on the underlying microscopic processes.
In the last ten years of their development, diagrammatic extensions of DMFT have been ap-
plied to a variety of systems and scenarios. They have been used to describe unconventional
superconductivity in the Kondo lattice model, magnetism in frustrated systems, disordered, in-
homogeneous and non-equilibrium systems and even quantum critical behavior in the Hubbard
and Falicov-Kimball models. First simple applications to materials have emerged. New meth-
ods based on different functionals and the fermion-boson vertices and extensions to cluster- and
extended DMFT have been developed. The diagram series has been sampled using diagram-
matic Monte Carlo techniques [19, 20] and even more advanced diagrammatic approximations
like the parquet equations have been considered. All these developments are summarized in
Ref. [6]. For many of the applications the unique ability of the methods to simultaneously
describe the strong local dynamical correlations and extended critical fluctuations is crucial.
Diagrammatic extensions of DMFT provide a complementary viewpoint to results obtained
within other approaches. Most notably within cluster DMFT approaches, in which all diagrams
to the self-energy are summed within the range of the comparatively small clusters [21].
The approaches continue to be developed. Recently more fundamental questions are being in-
vestigated. For example how to construct conserving approximations when the approximations
are made two-particle self-consistent [22], the role of the self-consistency condition in dual
fermion [23, 24], or the role of three-particle vertices [25] in dual fermion and DΓA.
Hopefully this introduction will inspire work in two important research directions: i) the com-
bination of diagrammatic extensions with the functional renormalization group and ii) a merger
with density-functional theory to arrive at a quantitative theory of correlated materials.



Diagrammatic Approaches 12.29

References

[1] N.F. Mott, Rev. Mod. Phys. 40, 677 (1968)

[2] G.R. Stewart, Rev. Mod. Phys. 56, 755 (1984)

[3] E. Dagotto, Rev. Mod. Phys. 66, 763 (1994)

[4] A. Georges, G. Kotliar, W. Krauth, and M.J. Rozenberg, Rev. Mod. Phys. 68, 13 (1996)

[5] W. Metzner and D. Vollhardt, Phys. Rev. Lett. 62, 324 (1989)

[6] G. Rohringer, H. Hafermann, A. Toschi, A.A. Katanin, A.E. Antipov, M.I. Katsnelson,
A.I. Lichtenstein, A.N. Rubtsov, and K. Held, Rev. Mod. Phys. 90, 025003 (2018)

[7] A. Georges and G. Kotliar, Phys. Rev. B 45, 6479 (1992)

[8] E. Gull, A.J. Millis, A.I. Lichtenstein, A.N. Rubtsov, M. Troyer, and P. Werner,
Rev. Mod. Phys. 83, 349 (2011)

[9] J.W. Negele and H. Orland: Quantum Many-Particle Systems (Perseus books, 1998)

[10] A. Toschi, A.A. Katanin, and K. Held, Phys. Rev. B 75, 045118 (2007)

[11] H. Kusunose, J. Phys. Soc. Jpn. 75, 054713 (2006)

[12] A.N. Rubtsov, M.I. Katsnelson, and A.I. Lichtenstein, Phys. Rev. B 77, 033101 (2008)

[13] G. Li, Phys. Rev. B 91, 165134 (2015)

[14] N. Hugenholtz, Physica 23, 481 (1957)

[15] H. Park, K. Haule, and G. Kotliar, Phys. Rev. Lett. 101, 186403 (2008)

[16] N.E. Bickers, D.J. Scalapino, and S.R. White, Phys. Rev. Lett. 62, 961 (1989)

[17] N.D. Mermin and H. Wagner, Phys. Rev. Lett. 17, 1133 (1966)

[18] J. Otsuki, H. Hafermann, and A.I. Lichtenstein, Phys. Rev. B 90, 235132 (2014)

[19] S. Iskakov, A.E. Antipov, and E. Gull, Phys. Rev. B 94, 035102 (2016)

[20] J. Gukelberger, E. Kozik, and H. Hafermann, Phys. Rev. B 96, 035152 (2017)

[21] T. Maier, M. Jarrell, T. Pruschke, and M.H. Hettler, Rev. Mod. Phys. 77, 1027 (2005)

[22] F. Krien, E.G.C.P. van Loon, H. Hafermann, J. Otsuki, M.I. Katsnelson, and
A.I. Lichtenstein, Phys. Rev. B 96, 075155 (2017)

[23] E.G.C.P. van Loon, M.I. Katsnelson, preprint arXiv:1805.08572 (2018)



12.30 Hartmut Hafermann

[24] T. Ribic, P. Gunacker, preprint arXiv:1805.10996 (2018)

[25] T. Ribic, P. Gunacker, S. Iskakov, M. Wallerberger, G. Rohringer, A.N. Rubtsov, E. Gull,
and K. Held, Phys. Rev. B 96, 235127 (2017)


	Introduction
	Hubbard model
	Dynamical mean-field theory

	Diagrammatic perturbation theory
	Coherent state path integrals
	Perturbation theory

	Diagrammatic extensions of dynamical mean-field theory
	Dual fermions
	Perturbation theory for the dual propagator
	Self-energy diagrams
	Dual perturbation theory in momentum space

	Numerical results
	Second-order approximation
	Ladder approximation

	Summary and outlook

