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1 Introduction

Dynamical mean field theory (DMFT) [1, 2] has been a breakthrough for describing electronic
correlations in models [3] and – in combination with density functional theory – even in actual
materials [4–6]. This breakthrough has been brought about since DMFT includes a major part
of the electronic correlations, namely the local ones. On the other hand, the arguably most fas-
cinating physical phenomena such as (quantum) criticality, high-temperature superconductivity
and vertex corrections to the conductivity rely on non-local correlations.
Hence, in recent years these non-local correlations have been at the focus of the methodological
development. There are two routes that include the local DMFT correlations but also incor-
porate non-local correlations beyond. On the one hand there are cluster extensions of DMFT,
which take instead of the single site of DMFT a cluster of lattice sites that is embedded in a
dynamical mean field. This way correlations within the cluster are taken into account. For a
review see [7] and for a pedagogical introduction see the lecture by Th. Maier in this School.
Because of numerical limitations the size of the cluster is, however, limited to about 10×10
lattice sites and even less in the case of realistic multi-orbital calculations. This is sufficient
to describe short range correlations; and indeed cluster extensions of DMFT have been highly
successful for describing pseudogaps and d-wave superconductivity in the two-dimensional (2d)
Hubbard model. However long-range correlations as they occur for example in the vicinity of a
phase transition cannot be described in this way.
For including short- and long-range correlations on an equal footing, in recent years, diagram-
matic extensions of DMFT have been developed. This development started with the dynamical
vertex approximation (DΓA) [8] and the dual fermion (DF) approach [9], continuing with a
plethora of further approaches [10–13]. All of these approaches take a local two-particle vertex
as a starting point and from this construct the local DMFT correlations as well as non-local
correlations beyond. The difference lies in the details: which vertex is taken, by which Green
functions these are connected, and which Feynman diagrams are considered. For a review,
see [14]. Successes of these diagrammatic extensions of DMFT include the calculation of criti-
cal exponents in the Hubbard [15,16] and Falicov-Kimball model [17], quantum criticality in the
3d Hubbard [18] and 2d periodic Anderson model [19], the suppression of antiferromagnetism
by spin fluctuations in the 3d and 2d Hubbard model [20, 15, 21], the fate of the Mott-Hubbard
metal-insulator transition for the 2d Hubbard model [22], pseudogaps [23,20,11,24,25,12] and
superconductivity [21, 26] in the 2d Hubbard model.
In the following we first give a brief synopsis of the DΓA approach in Section 2, for further
reading see the Lecture Notes [27] and the review [14]. For an introduction to the DF approach
we refer the reader to the Chapter by H. Hafermann in these Lecture Notes, as well as to [14].
The main focus of the present Lectures Notes is on physical results, starting with the critical
and quantum critical properties of the 3d Hubbard model in Section 3 and 4, respectively. The
quantum critical properties of the 2d periodic Anderson model are discussed in Section 5, before
we turn to superconductivity in the 2d Hubbard model in Section 6. Finally, Section 7 provides
a brief summary and outlook.
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Fig. 1: Dyson equation connecting Green function and self energy. The pair of scissors in-
dicates that these diagrams are one-particle reducible (i.e., cutting one G0 line separates the
Feynman diagram into two parts). From [27].

2 Synopsis: Dynamical vertex approximation

The basic idea of the dynamical vertex approximation (DΓA) is a resummation of Feynman
diagrams, not in order-by-order of the Coulomb interaction as in conventional perturbation
theory, but in terms of their locality. That is, we assume the fully irreducible n-particle vertex to
be local and from this building block we construct further diagrams and non-local correlations.
The first level (n = 1) is then just the DMFT which corresponds to all local Feynman diagrams
for the self-energy Σ. Note that Σ is nothing but the fully irreducible n = 1-particle vertex.
One particle-irreducibility here means that cutting one Green function line does not separate
the Feynman diagram into two pieces. Indeed, such reducible diagrams must not be included
in the self-energy since it is exactly these diagrams that are generated from the Dyson equation
which resolved for G reads

Gνk =
(
1/G0,νk −Σνk

)−1 (1)

for momentum k, Matsubara frequency ν and non-interacting Green function G0,νk. For an
illustration, see Fig. 1, which also explicitly shows how one-particle reducible diagrams are
generated through the Dyson equation; and hence must not be contained in the Σ-diagrams
On the next level, for n=2, we assume the locality of the two-particle fully irreducible vertex Λ.
That is cutting two Green function lines does not separate the diagram into two pieces. There is
a set of exact equations, coined parquet equations [28–30, 14], that allows us to calculate from
a given Λ the full vertex, self-energy, and Green function as well as the irreducible vertices Γ`
in three different channels `.
For understanding how these irreducible vertices Γ` and Λ come about, we consider in Fig. 2
the parquet decomposition of the full vertex F into the fully irreducible vertex Λ and those parts
that are two-particle reducible. There are three distinct such reducible parts Φ`, since say leg
1 may stay connected with leg 2, 3, or 4 when cutting two Green function lines as indicated
in Fig. 2. The irreducible vertex is just the complement: Γ` = F − Φ`. The three possible
channels ` are denoted as particle-hole (ph), transversal particle-hole (ph) and particle-particle
(pp) channel. It is important to note that each reducible diagram is contained in one and only
one of these channels.1

1One can easily show that otherwise cutting lines would result in a diagram with one incoming and two outgoing
lines, which is not possible because of the conservation of (fermionic) particles.
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Fig. 2: Parquet decomposition of the full (reducible) vertex F into the fully irreducible vertex Λ
and two-particle reducible diagrams Φr in the three channels. The two pairs of scissors indicate
the reducibility of the three Φ`’s. From [27].

There is a set of 6 “parquet” equations: (1) the actual parquet equation (Fig. 2); (2-4) the Bethe-
Salpeter equation in the three channels (in the following we only reproduce the ph channel2

with r ∈ {d, s} for a symmetric/antisymmetric spin combination)3

F νν′ω
r,kk′q = Γ νν′ω

r,ph,kk′q +
∑
k1ν1

Γ νν1ω
ph,r,kk1q

Gk1ν1 G(k1+q)(ν1+ω) F
ν1ν′ω
r,k1k′q

; (2)

the (5) Dyson Eq. (1); and (6) the Schwinger-Dyson equation which in a four vector notation
k = (ν,k) reads

Σk = −U
∑
k′,q

(
F k,k′q
c − F k,k′q

s

)
Gk+q Gk′ Gk′+q (3)

and connects Σ and F (here for a single-orbital and local interaction U ).4 This set of 6 parquet
equations allows us to determine the six quantities F, Φr, Σ, and G if we know Λ — or if we
approximate it by a local Λ in DΓA. This local Λ can be calculated by solving an Anderson
impurity model, similar as in DMFT but on the two-particle level.
In principle, one can then further turn to the n = 3-particle level etc.; and for n → ∞ DΓA
recovers the exact solution. As a matter of course determining the n=3-particle vertex becomes
already cumbersome. But it may serve at least for estimating the error if one is truncating the
scheme at the two-particle vertex level. Such an error estimate has been done already for the
DF approach [31]. A similar calculation for DΓA is more difficult because one first needs to
determine the n=3-particle fully irreducible vertex, whereas the DF approach is based on the
full vertex F, which is readily obtained from continuous-time quantum Monte-Carlo simulations
[32–34], but a diagrammatically less compact object.
Let us finally mention a simplified ladder DΓA scheme. Here, instead of a local Λ, one starts
with a local Γph and Γph and uses the Bethe-Salpeter ladder Eq. (2) in these channel to obtain

2The frequency-momentum convention is such that the four legs in Fig. 2 have frequency-momentum k1 = k,
k4 = k′, k2 = k + q, and, because of energy-momentum conservation, k3 = k′ + q.

3We assume a proper normalization of the momentum and frequency sums with respect to the number of k-
points and β, i.e.,

∑
k 1 = 1 and

∑
ν =̂ 1

β

∑
ν .

4There is an additional Hartree(-Fock) term not shown.
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F. This way, fluctuations in the particle-particle (Cooperon) channels are neglected. But if
we are close to half-filling, or, more specifically, if no superconducting fluctuations nor weak
localization is to be expected, the dominant non-local correlations are included in this simplified
ladder DΓA. The advantage is that if we do not couple the ladders through the parquet equations,
the ladder only depends on a single frequency-momentum q instead of three (q,k,k′). Hence
numerically much lower temperatures (finer frequency grids) and much larger momentum grids
are feasible. Going further into details would require a chapter on its own, and we refer the
reader to [14] and for a pedagogical introduction of DΓA to [27]; for properties of the local
two-particle vertex cf. [35].

3 Criticality in the 3d Hubbard model

Let us start with the Hamiltonian of the Hubbard model

H = −t
∑
ij,σ

c†iσcjσ + U
∑
i

ni↑ni↓, (4)

consisting of two terms: a nearest-neighbor hopping amplitude t and a local Coulomb repulsion
U . Here c†iσ (ciσ) creates (annihilates) an electron on site i with spin σ, and niσ = c†iσciσ.
For the study of critical properties in the paramagnetic phase, in particular the behavior of the
susceptibility5 χ and the correlation length ξ is relevant. In the vicinity of the critical tempera-
ture Tc, the diverging behavior of χ and ξ is described by critical exponents γ and ν, respectively

χω=0
Q ∼ (T − Tc)−γ; (6)

ξ ∼ (T − Tc)−ν . (7)

Here, the static (ω = 0) susceptibility is taken for that momentum q = Q at which the first
divergence occurs at Tc, signaling the emergence of, e.g., ferromagnetic, Q = (0, 0, . . .), or
antiferromagnetic, Q = (π, π, . . .), order.
In practice the DΓA (or DF) susceptibility is calculated from the full two-particle vertex which
describes the connected part of the two-particle Green function. The latter term (often referred
to as vertex corrections) in turn together with the disconnected “bubble” diagram yields the
susceptibility.6 This full two-particle vertex includes non-local correlation effects, while the
irreducible vertex acting as a building block is local in DΓA.

5For the sake of completeness, let us define χ as the Fourier-transform of the spin-spin correlation function
from imaginary time τ and lattice sites R to frequency ω and momentum q (β = 1/T : inverse temperature)

χωq =

∫ β

0

dτ
∑
R

〈SzR(τ)Sz0(0)〉 e−iqR eiωτ . (5)

6Note that the DMFT calculation of the susceptibility takes the local irreducible vertex in the particle-hole chan-
nel and from this constructs the particle-hole ladder [3]. The difference to the ladder DΓA or DF is that the con-
necting Green functions are recalculated self-consistently or, to mimic this self-consistency effect, a Moriyaesque
λ-correction is employed, see [14, 20, 27, 36]. Further, the transversal particle-hole channel is taken into account
on an equal footing. In parquet DΓA, additionally, particle-particle vertex corrections couple into the particle-hole
and transversal particle hole channel.
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Fig. 3: Left: Inverse antiferromagnetic susceptibility χ−1
Q=(π,π,π) (top) and correlation length ξ−1

(bottom) as a function of temperature T for the 3d Hubbard model at half-filling and U ≈ 12.2t
in DΓA. Right: Extracted critical exponents obtained in DΓA (from the fits in the left panel)
and DF (also for the Falicov-Kimball model) compared to mean-field, 3d Heisenberg and 3d
Ising critical exponents. From Refs. [14–16].

That is, if we plot the susceptibility χω=0
q as a function of momentum q, it has a maximum at a

certain q = Q of value χω=0
Q . The width around this maximum on the other hand is given by

the inverse correlation length ξ−1 according to the Ornstein-Zernike [37] relation

χω=0
q ∼ 1

(q−Q)2 + ξ−2
. (8)

This relation was found to hold even in a quite large q-region around the maximum Q so that,
in practice, ξ is actually obtained from a fit according to Eq. (8).
Fig. 3 (left panels) plots the thus obtained DΓA susceptibility and correlation length as a func-
tion of temperature. There is a clear deviation from a mean-field behavior [γ = 1, ν = 0.5,
see Fig. 4 (a)]. For the temperatures of Fig. 3 (left), γ ≈ 1.4, ν ≈ 0.7 is obtained from the
indicated numerical fit [15], with the error bar in Fig. 3 (right) corresponding to the deviation to
a second fit omitting one temperature point. Within the error bars, this agrees with the critical
exponents obtained for the Heisenberg model [γ ≈ 1.39, ν ≈ 0.705, see Fig. 4 (b)] for large
scale simulations [38]. Indeed universality tells us that the two models should have the same
critical exponents since the dimension is the same (3d), as is the symmetry of the order param-
eter: O(3) since we have rotational symmetry as regards the possible orientation of the ordered
magnetic moment.
Let us also note that the two exponents are connected through the Fisher relation [39] as

γ/ν = 2− η (9)
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Fig. 4: Inverse susceptibility χ−1 and correlation length ξ−1 as a function of temperature T .
Left: Classical critical point with a finite critical temperature TN , comparing a) Gaussian
fluctuations and b) the 3d Heisenberg model. Right: Quantum critical point with a phase
transition at T = 0, comparing c) conventional Hertz-Millis-Moriya theory and d) the Kohn-
line universality class. From Ref. [18].

with the critical exponent η describing the decay of spatial correlations at T = Tc. The exponent
η vanishes above the upper critical dimension, and is typically very small η ≈ 0 in 3D and even
in 2D. Hence, we will further consider η = 0 in these Lecture Notes.
While the deviation from mean-field exponents is obvious, one should always keep in mind that
the fitting procedure to extract critical exponents from numerical as well as from experimental
data has a large degree of uncertainty [40, 41]. Further there is, necessarily, some distance of
the numerical data to the critical temperature.7 Hence “last minute” changes of the curvature
in the immediate vicinity of the critical temperature might be missed in a numerical fit. For
the attractive Hubbard model, whose superconducting phase transition out of half-filling should
have the universality class of the XY model, it was found [42] that the critical exponents might
also be consistent with γ = 2, ν = 1 close to Tc. At the same time, other groups obtained the
same critical 3d Heisenberg exponents using the DF approach [16], and different ones for the
Falicov-Kimball model [17]. which has an Ising universality class, see Fig. 3 (right panel).

7As the correlation length keeps increasing to thousands and ten thousands of lattice sites, we need a larger
and larger numerical resolution in Fourier, i.e. k, space. Doing reliable calculations significantly closer to Tc than
shown is hardly possible.
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4 Quantum criticality in the 3d Hubbard model

A quantum critical point (QCP) is a critical point at zero temperature, T = 0. In this case,
besides the classical fluctuations with long-range correlations in space, an additional dimension,
time, becomes relevant. At any finite temperature, these correlations in time are not relevant
since they are cut-off at a scale β = 1/T . Maybe one can best understand this in imaginary
time τ as it is restricted to the interval τ ∈ [0, β].
For a classical critical point at finite T , the correlation length in time will hence eventually
exceed β = 1/T if we are close enough to the phase transition. At this point, correlations in time
are cut off, and not relevant any longer close enough to the phase transition. Consequently, the
critical exponents are only determined by the number d of spatial dimensions and the symmetry
of the order parameter.
This changes for a quantum phase transition at T = 0. Here, also a divergent correlation length
in time becomes relevant. The effective dimension is hence deff = d + z. With the above
argument, one might assume one extra dimension, i.e., z = 1. However, fluctuations in time
can also lead to other values of the dynamical critical exponent z. This is because the spatial
correlation length diverges as ξ ∼ T ν at a QCP whereas the correlation length in time behaves
as ξτ ∼ T zν . Depending on the kind of ordering and the dimension, z may vary. For example,
we have z = 1 for an insulating and z = 2 for a metallic antiferromagnetic QCP. For a review
see [43].
The standard theory for quantum critical points and exponents is the Hertz-Millis-Moriya the-
ory [44–46], based on weak coupling ladder diagrams in a perturbative renormalization group.
Experimentally, on the other hand, quantum criticality is best studied in heavy fermion systems.
That is, in strongly correlated electron systems with f -electrons for which a weak coupling
theory is certainly not sufficient. This has led to different proposals and further theories. One
theory that takes strong electronic correlations into account and the breakdown of the f -electron
Fermi surface is the so-called local quantum criticality, see e.g. [47]. This theory is based on
the extended DMFT [48, 49] which considers the local correlations and self-energy emerging
from non-local interactions, here considered to arise from non-local spin fluctuations.
Diagrammatic extensions of DMFT such as the DΓA take both kinds of physics into account:
similar diagrams as in Hertz-Millis-Moriya theory but with the local vertex instead of a bare
interaction as a starting point so that DMFT effects of strong correlations are automatically
included; and they inherently allow us to describe breakdowns of Fermi surfaces as well.
Let us now turn to quantum criticality in the 3d Hubbard model. Because of perfect nesting we
have an antiferromagnetic ground state for all interactions U at half-filling. Thus, we need to
find another way to realize a quantum critical point. One possibility is to dope the system as
shown in Fig. 5. With doping the antiferromagnetic order is suppressed so that we eventually
arrive at a quantum critical point (QCP) at n ≈ 0.8. A further complication arises however: The
second order phase transition is only towards a commensurate Néel antiferromagnetic ordering
with wave vector Q = (π, π, π) close to half filling (open triangles in Fig. 5). With further
doping and at the QCP it is towards an incommensurate antiferromagnetic ordering with Q =
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Fig. 5: Phase diagram of the 3d Hubbard model at U = 4
√

6t ≈ 9.8 t, showing the antiferro-
magnetic critical temperature as a function of electron filling n in DMFT (green dashed line)
and DΓA (red triangles). Inset: The antiferromagnetic ordering wave vector Q is commensu-
rate with Qz = π (open triangles in the main panel) around half-filling and incommensurate
with Qz < π ordering at larger doping (full triangles in the main panel). The dashed line of the
main panel indicates the possible crossover between commensurate and incommensurate Qz in
the ordered phase. From Ref. [18].

(π, π, π− δ) (filled triangles in Fig. 5). Besides this interesting aspect of the changing Q vector
(cf. inset of Fig. 5), we also see that the spin fluctuations taken into account in the DΓA suppress
the critical temperature compared to the DMFT solution.

In Fig. 6 we study the critical exponents again for both, the susceptibility χ and correlation
length ξ. For n = 1 and n = 0.87 we are far away from the QCP in Fig. 5, and within the
numerical error bars our fit suggests the classical critical exponents of the Heisenberg model
(ν ≈ 0.7, γ ≈ 1.4). The dopings n = 0.805 and n = 0.79 are just below and above the QCP in
Fig. 5. Here, the critical exponent for the correlation length ξ clearly shows a different exponent;
within the error bars we obtain ν ≈ 1. Only at the lowest temperature there is a deviation to
a smaller ξ−1 for n = 0.805, signaling the eventual finite-temperature antiferromagnetic phase
transition as we are still to the left of the QCP in Fig. 6. At n = 0.79, on the other hand, we are
to the right of the QCP. That is, eventually the correlation length must saturate because of the
paramagnetic ground state. Indeed, here the value at the lowest T in Fig. 6 indicates a deviation
to a larger ξ−1.
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Fig. 6: Inverse correlation length (ξ−1, upper panels) and susceptibility (χ−1, lower panels)
vs. T in DΓA for different n. Solid lines: fits for extracting the critical exponents γ and ν from
the green points. Insets: zoom in to the lowest temperature points. From Ref. [18].

The result ν ≈ 1 was quite a surprise at first. Since our effective dimensions is deff = d + z =

3 + 2 > 4 we are above the upper critical dimension four8 and one should expect the behavior
of a bosonic mean-field theory with ν = (d + z − 2)/(2z) = 3/4 according to Hertz-Millis-
Moriya theory, see Fig. 4c). By analytical calculations in the random phase approximation
(RPA) it was shown [18] that one obtains the exponents of a different universality class instead.
This is caused by peculiarities of the Fermi surface. More specifically, there are Kohn-lines on
the Fermi surface of the doped Hubbard model which are separated by an incommensurate wave
vector and have opposite Fermi velocities, see Fig. 7. These lines give rise to the so-called Kohn
anomalies in the phonon spectrum [50] if we take phonons and the electron-phonon coupling
into account.

In the case of a QCP they give rise to particularly strong transversal spin fluctuations which
eventually lead to the exponents ν = 1 and γ = 0.5, see Fig. 4d) [18]. Note, that their ratio
(ν = 2γ) is just the opposite, as to be expected from the Fisher relation Eq. (9) which for η ≈ 0

yields ν = γ/2. While the numerical error bar for determining γ in Fig. 6 is considerably larger
than for ν,9 it is save to say that also numerically ν > γ in DΓA instead of the expected behavior
ν = γ/2 < γ without Kohn lines.

In case of a finite temperature classical critical point, the Kohn anomalies are not relevant be-
cause the Fermi surface effect is broadened out by a finite self-energy at the Fermi energy. If we
add a finite next-nearest neighbor hopping t′ on the other hand, there are no full Kohn lines any
longer. But individual Kohn points with opposite Fermi velocities still occur quite generically.
We expect such points to lead to a further, different, universality class for the critical exponents
(γ = ν = 1).

8The marginal case of deff = 4 requires special considerations.
9as can be seen from the somewhat different fitted values for n = 0.805 and n = 0.79



Quantum Criticality and Superconductivity 14.11

Fig. 7: Left: Visualization of the parallel Kohn lines (black lines) on the Fermi surface of the
3d Hubbard model with nearest neighbor hopping. Right: Two-dimensional cut as indicated in
the left panel, showing the connecting wave vector Q0 (black arrow) and the opposite Fermi
velocities vF (red arrows). From Ref. [18].

5 Quantum criticality in the 2d periodic Anderson model

With the additional dimensions z brought about by the temporal correlations, it is not that
simple to remain below the upper critical dimension d = 4. Hence, we next study the 2d case
and another model, the periodic Anderson model (PAM)

H =
∑
k,σ

εk d
†
kσdkσ + εf

∑
iσ

f †iσfiσ + U
∑
i

nf,i↑nf,i↓ + V
∑
i,σ

(
d†iσfiσ + f †iσdiσ

)
. (10)

This Hamiltonian can be considered as the simplest model for an f -electron system where
we have two different kinds of electrons: Localized f -electrons with creation (annihilation)
operators f †iσ (fiσ), and nf,iσ = f †iσfiσ. These interact by a local Coulomb repulsion U and feel
a local one-particle potential εf . Further, there are itinerant d-electrons [d†iσ (diσ)] with hopping
t from site to site, or alternatively with an energy-momentum dispersion relation εk. Finally,
there is a hybridization V between both kinds of electrons. The difference to the single impurity
Anderson model is that there is not only a single site of interaction but a periodic array of sites.
If we consider the strong coupling limit U � V of the periodic Anderson model in the particle-
hole symmetric case of half-filling (µ = 0, εf = −U/2), we have an average filling of one
f - and d-electron per site. Because of the strong interaction, the f -sites are single-occupied,
i.e., they can be considered as a spin. In second order perturbation theory there is a coupling
J = 4 V 2/U between this localized spin and the spin-operator for the conduction electrons.
That is, we can map the periodic Anderson model onto a Kondo lattice model in the strong
coupling limit.
This Kondo lattice model and hence the periodic Anderson model has two competing phases:
On the one hand there is the Kondo effect that we also know from the (single-site) Kondo model.
At high temperatures, we have free spins and a Curie susceptibility χ ∼ T−1. Below the Kondo
temperature, TK an additional Abrikosov-Suhl resonance develops at the Fermi energy, and the
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spin is screened. In the particle-hole symmetric case of half-filling, this Kondo resonance is
however somewhat special: We have a renormalization of the following (non-interacting) situ-
ation: There is a flat f -band at the Fermi energy EF in the middle of the dispersive conduction
band. If we now switch on the hybridization a gap opens at the band crossings at EF . This
hybridization gap at EF leads to an insulator not only for the non-interacting model, but also if
we have a renormalized picture thereof due to the Kondo effect. This phase is hence called a
Kondo insulator.
For the (single-site) Kondo model

TK ∼ e−1/(2ρ(0)J) (11)

with non-interacting density of states ρ(0) [51], and also for the PAM we get a Kondo tem-
perature of similar magnitude, in particular an exponential scaling; see e.g. [52] for DMFT
calculations revealing an actually somewhat enhanced TK in the PAM.
Competing with the Kondo effect is a magnetic phase. For understanding this magnetic or-
dering, we can envisage the magnetic Ruderman-Kittel-Kasuya-Yosida (RKKY) coupling in
perturbation theory: An f -electron spin is coupling with amplitude J to the conduction elec-
trons. These are however not immobile and carry the spin information to neighboring sites
with an amplitude given by the (non-interacting) susceptibility χ0. On another site, the conduc-
tion electron couples again with the localized f -spin on that site, so that we altogether get the
following coupling strength or critical temperature for the magnetic ordering:

TRKKY ∼ J2χω=0
0,Q . (12)

In our case, the maximal coupling is for the antiferromagnetic wave vector Q = (π, π) and this
magnetic ordering opens a gap at εF so that we have an insulating antiferromagnetic phase.
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Fig. 9: Schematics of the quantum critical region with a scaling χ ∼ T−2 above the quantum
critical point of Fig. 8. From [19].

Since TK is exponentially small for small J , cf. Eq. (11), TRKKY > TK and we get an antifer-
romagnetic insulator at small J . But with increasing J , at some point the Kondo effect wins,
and there is a phase transition to a Kondo insulator without long-range order at TK ≈ TRKKY .
Plotting TRKKY and TK vs. V , one obtains the famous Doniach [53] phase diagram.

In Fig. 8, we show the corresponding phase diagram as obtained using DMFT10 and DΓA. Note
that in DMFT, TRKKY ∼ J2 ∼ V 4 only holds for small V ; for larger values of V this second
order result is no further applicable. If the DMFT Kondo temperature11 TK becomes of the
order of the DMFT antiferromagnetic ordering temperature, antiferromagnetism breaks down,
and we have a Kondo insulator instead at a finite critical Vc. That is, we have a quantum critical
point between a Kondo insulator at large V and an antiferromagnetic insulator at small V .

The DΓA phase diagram in Fig. 8 is distinctively different. Non-local correlations, i.e., specif-
ically antiferromagnetic spin fluctuations, suppress the antiferromagnetic ordering. Since we
are in 2d, this suppression is particularly strong and DΓA respects the Mermin-Wagner theo-
rem [55]: long-range antiferromagnetic order only survives at T = 0.12 Nonetheless, we have a
QCP which we further analyze in the following.

Above the QCP, there is a quantum critical region where exponents of the susceptibility and
correlation length are governed by the QCP, i.e., temporal fluctuations are relevant, see Fig. 9.
For the QCP of a 2d antiferromagnetic insulator we expect the same exponents as for the 2d

Heisenberg model, i.e., χ ∼ T−2, γ = 2 (and with Eq. (9) ν = γ/2 = 1 for η ≈ 0) [56]. In
contrast, for high temperatures we expect the Curie behavior χ ∼ T−1 for free spins.

10For the DMFT phase diagram of the Kondo lattice model see [54].
11determined from the maximum of the local susceptibility as a function of T
12Cf. [20] for the fulfillment of the Mermin-Wagner theorem for the 2d Hubbard model in DΓA.



14.14 Karsten Held

10
0

10
1

10
2

10
3

 0.001  0.01  0.1

χ
D

M
F

T
(ω

=
0

,q
=

(π
,π

))

T-TN
DMFT

tdf=0.5

10
0

10
1

10
2

10
3

 0.001  0.01  0.1

T-TN
DMFT

tdf=0.9

10
0

10
1

10
2

10
3

 0.001  0.01  0.1

T-TN
DMFT

tdf=0.91

10
0

10
1

10
2

10
3

 0.001  0.01  0.1

T-TN
DMFT

tdf=1.0

10
0

10
1

10
2

10
3

 0.0001  0.001  0.01  0.1

T-TN
DMFT

tdf=1.09

10
0

10
1

10
2

10
3

10
4

10
5

10
6

 0.001  0.01  0.1

χ
D

Γ
A

(ω
=

0
,q

=
(π

,π
))

T

tdf=0.5

10
0

10
1

10
2

10
3

10
4

10
5

10
6

 0.001  0.01  0.1

T

tdf=0.9

10
0

10
1

10
2

10
3

10
4

10
5

10
6

 0.001  0.01  0.1

T

tdf=0.91

10
0

10
1

10
2

10
3

10
4

10
5

10
6

 0.001  0.01  0.1

T

tdf=1.0

10
0

10
1

10
2

10
3

10
4

10
5

10
6

 0.001  0.01  0.1

T

tdf=1.09

Fig. 10: Magnetic susceptibilities vs. temperature on a double logarithmic plot in DMFT (top
panels, green) and DΓA (bottom panels, red) for different hybridization strengths tdf = V .
The black solid and blue dotted lines indicate a χ ∝ T−1 and χ ∝ T−2 behavior, respectively.
From [19].

The behavior of the susceptibility χ ∼ T−γ ∼ T−2 and related correlation length ξ ∼ T−ν ∼
T−1 in the quantum critical region can be rationalized as follows: First, the conjectured mapping
onto a non-linear σ model [57] and quantum Monte Carlo data for the Heisenberg model [58]
suggest a dynamical critical exponent z = 1. Further, in the quantum critical region, tempera-
ture sets a cut-off 1/T to the correlation length in time: ξτ . 1/T . Finally with ξ ∼ T−ν and
ξτ ∼ T−zν , we have ξ ∼ ξ

1/z
τ ∼ T−1 for z = 1.

Fig. 10 shows that DΓA is indeed able to resolve such a complex behavior and the quantum
critical exponent γ = 2 with a crossover towards γ = 1 at high temperatures. DMFT does not
include spatial correlations and hence shows a χ ∼ T−1 (i.e., γ = 1) behavior in the whole
temperature range.

For low T and V < VC eventually antiferromagnetic order sets in. While true long range
antiferromagnetic order only sets in at T = 0, we have already an exponentially large correlation
length and susceptibilities at finite T . These will eventually dominate, setting an end to the
quantum critical region. Indeed for such parameters the DΓA results of Fig. 10 show a deviation
to even larger susceptibilities at the lowest temperature.

For low T and V > VC , on the other hand, eventually a Kondo insulating phase develops
(quantum disordered phase in Fig. 9). Because this is a gapped (renormalized) band insulator
with a hybridization gap, we expect that here the susceptibility eventually vanishes. Indeed for
such parameters the DΓA results of Fig. 10 show a deviation to smaller susceptibilities at lower
temperatures. A full suppression of the susceptibility because of the Kondo gap was only found
at larger V (not shown); but it is also expected at tdf = V = 1.09 but only for even lower
temperatures.
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6 Superconductivity in the 2d Hubbard model

In this section we would like to leave the question of critical exponents behind and discuss
instead the prospects of superconductivity in the 2d Hubbard model. There are different ways
how superconductivity might arise. But non-local correlations are the key; DMFT cannot de-
scribe d-wave superconductivity. One possibility is through antiferromagnetic spin fluctuations.
These do not only lead to a pseudogap in diagrammatic extensions of DMFT [23, 20, 25] but
may also act as a pairing glue for superconductivity [59].
Since antiferromagnetic spin fluctuations emerge from the particle-hole channel and supercon-
ductivity is an instability of the particle-particle channel,13 one needs in principle the parquet
equations for describing this interplay. The drawback is that solving these equations requires
a much larger effort than solving the ladder equation in a specific channel. This restricts the
available temperature range, and even if it is called “high-temperature” superconductivity the
typical Tc is still quite low compared to room temperature. We will later present such parquet
DΓA calculations, but here the lowest possible temperatures are actually not low enough to
unambiguously identify a phase transition into a superconducting phase. Such parquet DΓA
can yield, however, the leading superconducting instability and the trend that superconductivity
prevails over antiferromagnetism for large enough dopings.
Before turning to these parquet results, let us instead first discuss a poor man’s variant of such a
parquet equation [60]. Here, from a local vertex Γ ν,ν′,ω

σσ′ , irreducible in the particle-hole channel,
first the non-local vertex F k,k′,q

σσ′ is calculated via the Bethe-Salpeter ladder in the particle-hole
and transversal particle-hole channel. This F includes spin-fluctuation; and is in turn also used
to calculate Σk. Up to this point it is a conventional ladder DΓA calculation.
But in the next step we use this F to calculate a non-local vertex irreducible in the particle-
particle channel: Γ k,k′,q=0

pp ≡ F k′,−k,k−k′ − Φν,ν′,ω=0
pp , where all particle-particle reducible dia-

grams Φpp of F are subtracted and again a four-vector notation is used. With this Γpp we solve
the particle-particle ladder or the simplified linearized gap (Eliashberg) equation

λvk = −
∑
k′

Γ k,k′,q=0
pp Gk′ G−k′ vk′ , (13)

where λ and vk are the eigenvalue and eigenvector in the particle-particle channel, respectively.
This is like a single parquet step, where we insert one channel (the particle-hole and transversal
particle-hole) into another (the particle-particle). In a full parquet we would also turn back from
the particle-particle to the particle-hole channel.
Physically Eq. (13) is akin to the standard random phase approximation (RPA) ladder which
yields

χ = χ0/(1 + Uχ0) (14)

but with the momentum and frequency dependent Γ k,k′,q=0
pp instead of U . If the leading eigen-

value λ of −Uχ0 [or here of −Γppχ0] approaches one [λ → 1], Eq. (14) diverges and super-
conductivity sets in.

13also coined Cooperon channel
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as in (a). From [60].

Fig. 11 shows the leading superconducting eigenvalue which is of d-wave symmetry and ap-
proaching λ = 1 at Tc . 0.01t for nearest-neighbor hopping (t) only [Fig. 11(a)]. At this Tc

the superconducting susceptibility diverges. If next- (t′) and next-next-nearest neighbor hop-
pings (t′′) are included with parameters adjusted to the bandstructure of Hg-based cuprates we
get a somewhat larger Tc ≈ 0.015t [Fig. 11(b)]. If we translate this into Kelvin, by taking a
typical hopping parameter t ≈ 0.45 eV, this corresponds to Tc ≈ 50 − 80 K for a filling of
n = 0.80 − 0.95. These are very reasonable Tc values for cuprates, in particular if one takes
into account that no further optimization with respect to t′ and t′′ has been done.

Fig. 11 also reveals a superconducting dome. This is the consequence of two opposing effects:
On the one hand, stronger antiferromagnetic spin fluctuations towards half-filling increase the
superconducting pairing glue Γ k,k′,q=0

pp in Fig. 11(d) so that Tc would increase towards half-
filling. But at the same time the spin-fluctuations suppress the Green function which also enters
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(a) (b)

(c) (d)

Fig. 12: (a) Eigenvalue λ against the frequency range nvertex over which the local vertex struc-
ture of in the magnetic channel Γm(νn, νn′ , ω = 0) (shown in panel b) is considered. (c) Full
vertex Fm,Q=(π,π)(νn, νn′ , ω = 0) and (d) pairing interaction Γpp,Q=(π,π)(νn, νn′ , ω = 0). The
parameters are: U = 6t, t′ = t′′ = 0, n = 0.825 and T/t = 0.040, 0.067. From [60].

in the Eliashberg Eq. (13). Eventually this leads even to the development of a pseudogap, but
for the parameters of Fig. 11(c) only a suppression of |Gk| towards half-filling is visible. This
Green function effect suppresses Tc. The balance of both effects yields the dome-like structure.
A superconducting dome has also been reported in e.g. [61, 62, 26, 63], but not in the dual-
fermion approach [64, 21] or in Ref. [65].
Kitatani et al. [60] were further able to point out that the dynamics of the vertex, i.e., its fre-
quency structure plays a pivotal role for Tc. That is, the vertex dynamics suppresses Tc by one
order of magnitude. Without this suppression room temperature superconductivity would be
possible.
Fig. 12(b) shows the local vertex Γm that serves as starting point for the DΓA calculation.
Clearly, it is suppressed at the lowest frequencies. This low frequency suppression is also seen
in the non-local full vertex Fm,Q that is calculated from Γm and shown in Fig. 12(c). That is,
antiferromagnetic spin fluctuations are suppressed for small frequencies. Not surprisingly also
the superconducting pairing glue, i.e., the non-local vertex irreducible in the particle-particle
channel in Fig. 12(d) is suppressed.
Fig. 12(a) shows the values of the superconducting eigenvalue λ that we had without this sup-
pression of the vertex. More precisely, the λ that we would have if we replaced the local vertex
of Fig. 12(b) by its static limiting value Γ νn,νn′ ,ω=0

m = −U for Matsubara frequencies |νn|, |νn′ |,
|ω| > nvertex. For nvertex = 0, we have Γ νn,νn′ ,ω=0

m = −U at all frequencies and an order of
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Fig. 13: Left part of the diagram: a typical RPA ladder diagram in the particle-hole channel
with building block U (red wavy line) and χ0 (two blue Green functions with fermionic frequen-
cies ν1 and ν1 + ω). Right part of the diagram: Local (second-order) vertex correction δΓm

with a particle-particle bubble. From [60].

magnitude larger λ in Fig. 12(a); for nvertex →∞ we recover the proper DΓA result. Not only
λ is enhanced but along with it also Tc from about 0.01t to 0.13t.
In this situation it is imperative to identify the physical processes that are responsible for the
suppression of Γm in Fig. 12(b). Analyzing diagrams order by order, Kitatani et al. [60] found
that already the second order particle-particle diagram as displayed in Fig. 13 (right part) is the
main driving force for the suppression of Γm in Fig. 12(b). From Fig. 13 we also see that the
particle-particle bubble becomes maximal for ν + ν ′ + ω ≈ 0. Note that ω = 0 in Fig. 12(b),
so that the suppression is maximal at ν = −ν ′ in Fig. 12(b). These particle-particle screening
processes explain the substantial suppression of the local Γm and hence of antiferromagnetic
spin fluctuations and the superconducting pairing glue Γpp for lowest frequencies.
Having identified this oppressor of high temperature superconductivity, a screening of antifer-
romagnetic spin fluctuations by local particle-particle bubbles, gives us some hope to find new
ways of enhancing Tc, possibly to room temperature and beyond. However, this is only the
first step, getting rid of (a large) particle-particle screening is not at all trivial, and remains a
challenge for the future.

Superconductivity in parquet DΓA

Finally, we would like to turn to the more complete parquet DΓA. As already mentioned, this
means that we have to do calculations at higher temperatures, considerably above Tc. Fig. 14
shows the parquet DΓA result for a filling n = 0.85 where we have d-wave superconductivity
in Fig. 12. Indeed, in this parameter range Kauch et al. find that d-wave superconductivity is
the leading instability in the (superconducting) particle-particle channel, seemingly surpassing
the magnetic instability at lower temperatures. For this doping, the magnetic susceptibility is
still peaked at Q = (π, π) in Fig. 14 (left). This antiferromagnetic wave vector Q = (π, π)

naturally connects the positive [at k = (±π, 0)] and negative [at k = (0,±π)] regions of the
superconducting d-wave eigenvector in Fig. 14 (middle panels), as is needed for the Eliashberg
Eq. (13) to realize an eigenstate for a repulsive interaction. Fig. 14 (right) displays the same
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Fourier-transformed to lattice space (in units of lattice vector a = 1). From [66].

superconducting eigenvector in real space, showing that the eigenvector describes a nearest-
neighbor plus-minus structure, i.e., dx2−y2 , alternation.
Fig. 15 shows the same kind of analysis but now deeply in the overdoped regime, i.e., for
n = 0.72. Here, the magnetic susceptibility is peaked at an incommensurate wave vector
Q1 = (π+ δ, π) [and symmetrically related Q2 = (π, π+ δ) etc.] similar as in Fig. 5 for the 3d

Hubbard model. For the finite momentum clusters of parquet DΓA, δ can, as a matter of course,
only take values congruent with the momentum grid. In this incommensurate case, the leading
superconducting eigenvalue is not d-wave anymore but a higher-order s̄-wave.
Fig. 15 (left-middle) shows the momentum dependence of this s̄-wave, which becomes more
obvious if we project onto the Fermi surface (right-middle). Because of the incommensurability,
Q1 does not link the antinodal points (0,±π) and (±π, 0) any longer as for n = 0.85 in Fig. 14.
Instead Q1 and Q2 connect the points of the Fermi surface which are close to the antinodal
points (0,±π) and (±π, 0) and have a large negative component of the eigenvector vs̄ to points
that are in-between the nodal and antinodal point on the Fermi surface and have a large positive
component of the eigenvector vs̄, see the Q1 and Q2 arrows in Fig. 15. In other words, the
incommensurate antiferromagnetic ordering is not compatible with d-wave superconductivity
any longer, but requires an even more complex k-dependence of the order parameter (eigen-
vector for λ = 1). This complex k-dependence is dominated by terms cos(nkx) cos(nky) with
n = 3, 4.
Fig. 15 (right) shows the eigenvector contributions in real space. This Figure makes clear why
we call it an s-wave: all neighbors of the same shell of neighbors contribute with the same sign.
In contrast, in Fig. 14 we have an alternating (d-wave) sign. Further, in Fig. 15 (right) it is
not a next-nearest or local s-wave component that dominates. Instead the leading contribution
stems from a relative lattice vector further away along the diagonal [R = (n, n) with n = 3, 4

in Fig. 15 (right)]. Kauch et al. hence coin it higher-order s̄-wave: If we expand the angular
dependence of vs̄ in terms of s, d-wave etc. it is an angular s-wave14; but it is of higher order

14More precise (but less common) would be to call it a a1g-wave because the eigenvector belongs to this irre-
ducible representation of the square lattice symmetry; there is no continuous rotational symmetry as s-wave might
suggest.
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Fig. 15: Parquet DΓA for a 6× 6 (top) or 8× 8 (middle) cluster, and simplified calculation on
a larger cluster with DMFT susceptibility as a starting point (bottom). Left column: Magnetic
susceptibility χm(q, ω = 0) vs. qx and qy at U = 5t, β = 15/t, n = 0.72. Left-middle
column: Eigenvector vs̄(k, ν = π/β) corresponding to the dominant eigenvalue in the particle-
particle channel. Right-middle column: Projection of vs̄(k, ν = π/β) onto the Fermi surface
as obtained by multiplying with |G|2 at the lowest Matsubara frequency. Right: Eigenvector
vs̄(r, ν = π/β) in real (lattice) space. From [66].

in the radial expansion (couples further away neighbors). How far apart the coupled sites are
depends on the specific incommensurable wave vector and is also influenced by the finite cluster
size. But the auxiliary calculations, starting from the DMFT susceptibility on a large cluster
[Fig. 15 (bottom)] further confirm that such a higher-order s̄-wave phase naturally develops if
the magnetic spin fluctuations are incommensurable.

7 Conclusion and outlook

To sum up, we have briefly recapitulated the DΓA method before reviewing recent highlights
obtained with it: the calculation of critical exponents, quantum criticality, and superconductiv-
ity. In the following we will focus only on the latter two aspects. Quite generally, the advantage
of diagrammatic extensions of DΓA is that they are able to describe short- and long-range cor-
relations as well as temporal correlations, which become relevant at a quantum critical point.
In Section 4, we have seen that particular lines on the Fermi surface of the 3d Hubbard model
with nearest-neighbor hopping, so-called Kohn-lines, lead to a new universality class of critical
exponents.
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For studying a situation with d+ z < 4, in Section 5 we turned to the periodic Anderson model
in d = 2 at half-filling. This model describes a phase transition from an antiferromagnetic in-
sulator to a Kondo insulator (z = 1). Here a quantum critical region could be identified, where
the susceptibility shows a χ ∼ T−2 behavior, whereas at higher temperatures χ ∼ T−1. For
a hybridization strength smaller than the QCP and for temperatures below the quantum critical
region we eventually find an even stronger increase of χ. This is to be expected since even
though there is no long-range antiferromagnetic order for T > 0 there is still an exponentially
strong increase of the susceptibility and correlation length at low temperatures. For a hybridiza-
tion strength larger than the QCP and for temperatures below the quantum critical region we
are in the Kondo insulating regime so that eventually χ → 0 because of the (renormalized)
single-particle excitation gap.
In Section 6 we turned to superconductivity in the 2d Hubbard model. We find d-wave super-
conductivity with a dome-like Tc-structure as a function of doping and a reasonable Tc ≈ 50 K.
Most interestingly, an order of magnitude larger Tc’s, i.e., room temperature superconductivity,
would be possible if the vertex would not be screened at low frequencies by particle-particle di-
agrams. Understanding this suppression of Tc gives us hope for identifying new routes towards
higher Tc’s. At large doping levels, we find a high-order s̄-wave superconductivity to be the
dominant superconducting channel, which is a natural consequence of having incommensurate
antiferromagnetic spin fluctuations.
Up to now, the focus of diagrammatic extensions of DMFT has been on method development
and applications to simple models such as the Hubbard, the periodic Anderson, and Falicov
Kimball model. As a first step such model calculations are crucial for better understanding
physics. In the future we will see many more applications to non-equilibrium and real materi-
als. First realistic materials calculations [67] have already been performed for SrVO3 using ab
initio DΓA [67]. This AbinitoDΓA (ADGA) code for solving multi-orbital ladder DΓA equa-
tions including non-local interactions is made available via Gnu Public license [68]. For the
model Hamiltonians studied in these lecture notes, instead, the one-orbital ladder DΓA code
(ladderDGA [69]) with Moriyaesque λ correction and the victory code [70] for solving
the parquet equations have been used.
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