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1 Introduction

The collective behavior of electrons in solids gives rise to a range of different emergent phe-
nomena, including magnetism, the fractional quantum Hall effect, and superconductivity. Of
these, superconductivity is perhaps the most fascinating state that has captivated generations of
physicists over more than a century. When cooled below a critical temperature Tc, supercon-
ductors exhibit conductance without resistance, the property that underlies most applications of
superconductors, including power transmission and generation as well as medical applications.
A second and equally important effect observed in superconductors is the complete expulsion
of an external magnetic field during its transition to the superconducting state (the Meissner-
Ochsenfeld effect). This repulsion of magnetic fields can be stronger than gravity which leads
to levitation, the most fascinating manifestation of superconductivity. Fundamentally, it implies
that the electrons in superconductors behave collectively.
Conceptually, two main ingredients, illustrated in Fig. 1, are necessary to understand the su-
perconducting state [1]: (1) Electrons form boson-like Cooper pairs driven by a net attractive
interaction; (2) These Cooper pairs condense into a coherent macroscopic quantum state anal-
ogous to a Bose-Einstein condensate. The energy required to break up the pairs (also called
energy gap) suppresses the scattering processes from defects and impurities that would other-
wise give rise to electrical resistance in normal conductors.
But why would two negatively charged electrons, which repel each other because of the Coulomb
repulsion, would be attracted to form pairs? For conventional superconductors, which include
many elemental metals such as Hg, Al, and Nb, the attractive force that binds the electrons
arises from the interaction between the negatively charged electrons and the positively charged
ions. The distortion of the ion lattice left behind by the motion of an electron attracts a second
electron and thus results in an effective attractive interaction between the electrons. This at-
traction is local in space, resulting in an s-wave structure of the Cooper pair wave-function and
thus an isotropic s-wave gap in momentum space. But since the ion dynamics is slow compared

Fig. 1: Main conceptual ingredients of the BCS theory of superconductivity: (1) Through
a net attractive interaction, electrons form Cooper pairs and (2) the Cooper pairs become
phase coherent and condense into a single macroscopic quantum state. The binding energy∆E
required to break up a pair suppresses the scattering processes that lead to resistance.
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Fig. 2: Schematic temperature-doping phase diagram of the cuprate high-temperature
superconductors: The d-wave superconducting state below the critical temperature Tc emerges
upon hole doping of the antiferromagnetic parent compound. Upon cooling, it arises from
a normal state that hosts a pseudogap at low doping, where an energy gap is present in the
electronic excitations, or a strange metal non-Fermi liquid phase at higher doping. BCS theory
is not adequate to describe this situation and non-perturbative approaches are necessary to
accurately treat the electron-electron correlations that give rise to these phases.

to the electrons, it is strongly retarded in time, i.e., active at long time scales, where the effec-
tively instantaneous Coulomb repulsion can be overcome. These concepts are well described
and understood within a rigorous theoretical foundation, the BCS (Bardeen-Cooper-Schrieffer)
theory [2, 1], and its extension, the Migdal-Eliashberg theory [3, 4].

Superconductivity in heavy fermion materials, copper-oxygen, and iron-based materials and
other related compounds, however, is thought to arise from a different mechanism than the
electron-phonon mechanism [5]. While the two main conceptual ingredients of BCS theory,
i.e., the formation of Cooper pairs and their condensation into a macroscopic quantum state,
still hold, the pairing mechanism that leads to the attraction of electrons is believed to be dif-
ferent from the electron-phonon mechanism. Because of the strong local Coulomb repulsion
in these systems, local s-wave pairing is energetically unfavorable and the Cooper pair wave
function is found to have a different symmetry; in the cuprates, for example, the pairs are bound
in a dx2−y2-wave state, in which the pair wave function changes sign in momentum space and
which corresponds to pair formation on nearest-neighbor atom positions in the crystal lattice.
Similarly, in the iron-based superconductors, the pairs are believed to form an extended, sign
changing s-wave state, in which the local amplitude is strongly reduced. As we will see, such
a pair structure with a sign change indicates that the pairing interaction is actually repulsive
in momentum space, in marked contrast to the conventional electron-phonon case. It is there-
fore generally accepted that pairing in these “unconventional” superconductors has a different
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origin, and most likely arises from the strong magnetic interactions or fluctuations between
the electron spins that result in an antiferromagnetic phase in the undoped parent compounds.
Moreover, BCS theory assumes that the superconducting state is created from a normal metal-
lic Fermi liquid state with well defined quasiparticles. In contrast, the normal state in many
unconventional superconductors is everything but normal (see Fig. 2). Strong electron-electron
correlations in these systems often lead to non-Fermi liquid behavior and BCS theory is not ad-
equate. One instead needs a non-perturbative approach that can handle the strong correlations
and which does not assume a Fermi liquid normal state as a starting point. Dynamical mean-
field theory (DMFT) [6] and the dynamical cluster approximation (DCA) [7] provide such a
tool, which allows us to study how superconductivity emerges in systems where the normal
state behavior is governed by strong electron correlations.
These lecture notes are concerned with such unconventional systems, in which superconductiv-
ity arises from the strong local Coulomb repulsion between the electrons. Given that supercon-
ductivity requires electrons to form pairs, this seems like a paradox. The goal of this lecture is
to demonstrate how DMFT and DCA calculations have helped us resolve this paradox. Follow-
ing a pedagogical discussion of the DMFT and DCA frameworks to study superconductivity, we
highlight a set of applications that showcase the ability of these approaches to provide important
insight. In this lecture we assume a basic familiarity with BCS, DMFT, and DCA theory.

2 Dynamical mean-field theory and dynamical cluster
approximation

2.1 Preliminary remarks

To keep things simple, we will focus most of these lecture notes on one of the simplest models
of correlated electron systems, the single-band Hubbard model [8]. Its Hamiltonian

H =
∑
ij,σ

tij c
†
iσcjσ + U

∑
i

ni↑ni↓ (1)

is divided into a non-interacting part H0 given by the first term and an interacting part Hint

given by the second term. Here c(†)iσ destroys (creates) an electron on site i with spin σ and
niσ = c†iσciσ is the corresponding number operator. The first (H0) term describes the hopping of
electrons between sites i and j with amplitude tij , and the second (Hint) term raises the energy
by the Coulomb repulsion U when two electrons with opposite spin reside on the same site. If
not otherwise noted, we consider the sites in this model to form a two-dimensional (2D) square
lattice with a hopping tij = −t if i and j are nearest-neighbor sites. Despite its simplicity, this
model is commonly believed to provide a description of the generic physics of the cuprate high-
temperature superconductors [9], in which photoemission experiments find a single electronic
band crossing the Fermi level.
The single-particle dynamics of the Hubbard Hamiltonian at finite temperatures is described
by the thermodynamic Green function and its Fourier-transform to Matsubara frequencies and
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momentum space

Gij,σ = −
〈
Tτciσ(τ)c†jσ

〉
(2)

Gij,σ(iωn) =

∫ β

0

dτ eiωnτ Gij,σ(τ) , ωn = (2n+ 1)πT (3)

Gσ(k, iωn) ≡ 〈〈ckσ; c†kσ〉〉iωn =
1

N

∑
ij

eik(ri−rj)Gij,σ(iωn) . (4)

Here τ is the imaginary time, Tτ the time ordering operator, β = 1/T the inverse temperature
and ωn = (2n + 1)πT are the fermionic Matsubara frequencies. For problems with trans-
lational symmetry in space and time, the Green function becomes diagonal in momentum k

and frequency iωn as stated in Eqs. (3) and (4). The Green function G0 of the non-interacting
system, i.e. H = H0, is given by

G0(k, iωn) =
1

iωn + µ− εk
, (5)

where µ is the chemical potential and εk the dispersion, obtained from a Fourier-transform of
the hopping tij . For our 2D model with only nearest neighbor hopping t, we have

εk = −2t(cos kx + cos ky) (6)

with k = (kx, ky). Finally, the Dyson equation

G(k, iωn) =
1

G−10 (k, iωn)−Σ(k, iωn)
. (7)

defines the self-energy Σ(k, iωn) as the difference between the (inverse) non-interacting Green
function G0 and the fully renormalized Green function G and thus describes the effects of the
interaction term Hint on the single-particle dynamics.

2.2 General framework for the normal state

Calculating the Green functionG and self-energyΣ in the thermodynamic limit is prohibitively
expensive as the problem size grows exponentially in the number of degrees of freedom (sites in
the Hubbard model). The DMFT and DCA approaches reduce this complexity by representing
the infinite-size system by a reduced-size cluster, and use coarse-graining in momentum space
to retain information about the degrees of freedom (sites) not contained on the cluster [7]. In
DMFT the cluster consists only of a single site, called the impurity site, while in DCA the
cluster has several sites. The size of the cluster is controlled by the way the momentum space
is coarse-grained. Fig. 3 shows several examples starting from the single-site (Nc = 1) DMFT
impurity. The DCA is obtained for Nc > 1. It reduces to the DMFT for Nc = 1 and approaches
the exact result for Nc → ∞. Because the DCA includes the DMFT as a limiting case, we
restrict the following discussion to the DCA.
The first Brillouin zone is split into Nc patches of equal size. As illustrated in Fig. 3, each
patch is represented by a cluster momentum K at its center. The basic assumption of the
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Fig. 3: Coarse-graining of momentum space: At the heart of the DCA (and DMFT) methods
is a partitioning of the first Brillouin zone into Nc patches over which the Green function is
coarse-grained (averaged) to represent the system by a reduced number ofNc “cluster” degrees
of freedom. The bulk degrees of freedom not included on the cluster are taken into account as
a mean-field. For Nc = 1, the dynamical mean-field approximation is recovered, while for
Nc → ∞, one obtains the exact result. For a given cluster size Nc, one can have different
locations and shapes of the coarse-graining patches, as illustrated for Nc =16A and 16B.

approximation is that the self-energy is only weakly momentum dependent (or purely local in
DMFT), so that its momentum dependence is well represented by the coarse-grid of cluster
momentaK, i.e.,

Σ(k, iωn) ' Σc(K, iωn) (in DCA) or Σ(k, iωn) ' Σii(iωn) (in DMFT) . (8)

Here, Σc(K, iωn) is the self-energy of a cluster of size Nc, and Σii(iωn) that of a single-site
impurity in DMFT. One then sets up an effective cluster problem to calculate Σc(K, iωn) or
Σii(iωn). To this end, the Green function is coarse-grained over the DCA patches (or the full
Brillouin zone in DMFT)

Ḡ(K, iωn) =
Nc

N

∑
k∈PK

G(k, iωn) =
Nc

N

∑
k∈PK

1

iωn − εk + µ−Σc(K, iωn)
, (9)

where PK is the patch centered at K containing N/Nc momenta k. Note that in DMFT, the
sum runs over the full Brillouin zone and the coarse-grained Green function reduces to the
local Green function. Given Ḡ and Σc, one can then set up an algorithm, such as, for ex-
ample, the quantum Monte Carlo (QMC) algorithms discussed in Refs. [10, 11], to calculate
the cluster Green function. The non-interacting part of the cluster problem is defined by the
cluster-excluded Green function

G(K, iωn) =
(
Ḡ−1(K, iωn) +Σc(K, iωn)

)−1
, (10)

where the cluster self-energy has been added to avoid double counting. While G(K, iωn) is
the Green function of a cluster of size Nc, note that the remaining lattice degrees of freedom
are encoded in G through the use of the coarse-grained Green function Ḡ. Together with the
interacting part of the Hamiltonian, one then sets up the action for the effective cluster problem,
which reads after Fourier-transform to real space

S[φ∗, φ] = −
∫ β

0

dτ

∫ β

0

dτ ′
∑
ij,σ

φ∗iσ(τ)G0,ij,σ(τ−τ ′)φjσ(τ)+

∫ β

0

dτ
∑
i

Uφ∗i↑(τ)φi↑φ
∗
i↓(τ)φi↓(τ) .

(11)
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Here φ and φ∗ are the Grassmann variables corresponding to the operators c and c†, respectively.
From this the cluster Green function

Gc,ij,σ(τ − τ ′) =
1

Z

∫
D[φ∗φ]φiσ(τ)φ∗jσ(τ ′) e−S[φ

∗,φ] , (12)

with
Z =

∫
D[φ∗φ] e−S[φ

∗,φ] (13)

the partition function, is evaluated and used to determine the cluster self-energy

Σc(K, iωn) = G−10 (K, iωn)−G−1c (K, iωn) . (14)

Then, using this new result for Σc(K, iωn) in Eq. (9), these steps are iterated to convergence.
We note that this DCA algorithm was recently extended into the DCA+ method [12] through the
inclusion of a self-energyΣ(k, iωn) with continuous momentum k dependence that replaces the
piecewise constant self-energyΣc(K, iωn) in the coarse-graining step, while leaving the cluster
problem unchanged. This has the benefit that results depend less on the shape of the cluster that
is being used.

2.3 Nambu-Gorkov formalism

In this section we generalize the DCA (and DMFT) formalism to perform calculations in the
symmetry broken superconducting state. This phase is signaled by an order parameter that
describes the finite expectation value for the creation of a pair of electrons in time-reversed
momentum states

∆k = 〈ck↑c−k↓〉 6= 0 for some k . (15)

Here we restrict the discussion to spin singlet pairs and note that ∆k can only be finite for a
grand canonical ensemble in which the particle number is not fixed. This is not a problem
for DMFT or DCA, since these approaches are formulated for the grand canonical ensemble.
The momentum structure of ∆k determines the symmetry of the superconducting state. Exam-
ples are ∆k ∝ 1 (s-wave), cos kx + cos ky (extended s-wave), cos kx − cos ky (dx2−y2-wave),
sin kx sin ky (dxy-wave) or a sin kx + b sin ky (p-wave). Because ∆k is finite in the supercon-
ducting phase, one has, in addition to the normal Green function

G(k, iωn) = 〈〈ck↑; c†k↑〉〉iωn (16)

a finite anomalous Green function

F (k, iωn) = 〈〈ck↑; c−k↓〉〉iωn . (17)

Using the concept of Nambu spinors [1]

Ψ †k =
(
c†k↑, c−k↓

)
, Ψk =

(
ck↑
c†−k↓

)
(18)
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one then defines the Green function matrix in Nambu space [1]

G(k, iωn) = 〈〈Ψk;Ψ †k〉〉iωn =

(
G (k, iωn) F (k, iωn)

F ∗(k,−iωn) −G∗(k, iωn)

)
, (19)

which contains information about both the normal and the anomalous Green function. Note
that the G matrix contains only two independent matrix elements G and F . The elements in
the second row are related to those in the first row by general symmetry relations for Green
functions. In the presence of an external pairing field η(k) = η′(k) + iη′′(k), which couples to
c−k↓ck↑, the non-interacting part of the Hubbard Hamiltonian becomes

H0 =
∑
k

Ψ †k

(
εkσ3 − η′(k)σ1 + η′′(k)σ2

)
Ψk , (20)

where the σi are the Pauli spin matrices

σ0 =

(
1 0

0 1

)
, σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0

0 −1

)
. (21)

With this, the lattice Green function in the superconducting state becomes

G(k, iωn) =
(
iωnσ0 − (εk − µ)σ3 − η′(k)σ1 − η′′(k)σ2 −Σc(K, iωn)

)−1
(22)

with the cluster self-energy matrix

Σc(K, iωn) =

(
Σc (K, iωn) φc (K, iωn)

φ∗c(K,−iωn) −Σ∗c (K, iωn)

)
. (23)

Here, the diagonal parts Σc(K, iωn) describe the usual quasiparticle renormalization, while the
off-diagonal parts φc(K, iωn) contain information about the momentum and frequency depen-
dence of the pairing state. As in the normal state, the coarse-grained Green function

Ḡ(K, iωn) =
Nc

N

∑
k∈PK

G(k, iωn) =

(
Ḡ (K, iωn) F̄ (K, iωn)

F̄ ∗(K,−iωn) −Ḡ∗(K, iωn)

)
(24)

is then used to calculate the corresponding non-interacting (cluster-excluded) Green function
matrix

G0(K, iωn) =
(
Ḡ−1(K, iωn) + Σc(K, iωn)

)−1
. (25)

To calculate Σc(K, iωn), an effective cluster model is set up using G0 together with the inter-
action U

S[Ψ ∗,Ψ ] =−
∫ β

0

dτ

∫ β

0

dτ ′
∑
ij

Ψ †i (τ)G0,ij(τ − τ ′)Ψj(τ ′) (26)

+
U

2

∫ β

0

dτ
∑
i

[Ψ †i (τ)σ3Ψi(τ)][Ψ †i (τ)σ3Ψi(τ)] ,
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where the Ψ †i and Ψi are spinors Ψ †i = (φ∗i↑, φi↓) of Grassmann variables φ†iσ and φiσ which
generate coherent states corresponding to the fermionic operators c†iσ and ciσ, respectively. From
this, the cluster Green function

Gc,ij(τ − τ ′) =
1

Z

∫
D[Ψ ∗Ψ ]Ψi(τ)Ψj(τ

′) e−S[Ψ
∗,Ψ ] (27)

where
Z =

∫
D[Ψ ∗Ψ ] e−S[Ψ

∗,Ψ ] (28)

is the partition function, is calculated using a cluster solver algorithm, such as e.g., a QMC
algorithm [13] or a non-crossing approximation (NCA) [14], and used to determine the cluster
self-energy

Σc(K, iωn) = G−10 (K, iωn)−G−1c (K, iωn) . (29)

Then, just as in the normal state, using this new result for Σc(K, iωn) in Eq. (22), steps (22) to
(29) are iterated to self-consistency. After convergence, the superconducting order parameter

∆̄(K) =
Nc

N

∑
k∈PK

〈ck↑c−k↓〉 = F̄ (K, τ = 0) (30)

is calculated from the coarse-grained anomalous Green function F̄ .
Two notes are in order:

• Usually one is interested in an instability to a superconducting phase in the absence of an
external pair-field, i.e., spontaneous U(1) gauge symmetry breaking. In this case, the cal-
culation is initialized with a finite pair-field η(k) with a given momentum structure. After
the first few iterations, the pair-field is switched off, and the system relaxes. If the calcu-
lation converges to a finite order parameter ∆̄(K), the system is in the superconducting
phase, otherwise it is in the normal state.

• The symmetry of the superconducting order is given by the momentum structure of the
coarse-grained ∆̄(K) and therefore restricted by the cluster size and geometry. In the case
of the DMFT, when Nc = 1, ∆̄(K) = ∆̄ is local, and therefore only superconducting
states with a local contribution such as s-wave or extended s-wave can be described.
Larger clusters are necessary to describe order parameters with a symmetry less than the
lattice symmetry. For example, a 2×2 cluster is the smallest cluster to describe phases
with a dx2−y2-wave symmetry which transforms according to cos kx − cos ky.

As a typical example of such a calculation, Fig. 4 shows DCA results from Ref. [14] for the
superconducting state of a 2D Hubbard model with U = 12t and electron filling 〈n〉 = 0.81

for a temperature T = 0.05t. These results were obtained with a non-crossing approximation
to solve the DCA effective cluster problem on an Nc = 4 site 2×2 cluster [15]. One sees
that the anomalous Green function F̄ (K, ω) ≡ Ḡ12(K, iωn) is finite, switches sign between
K = (π, 0) and (0, π), and vanishes forK = 0 and (π, π). This is exactly what one expects for
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pseudogap in both cases is generated by a large scatter-
ing rate !Im !"k ,0#! at the chemical potential. A unified
picture of the spectral properties of the electron- and
hole-doped cuprates thus emerges from these results if
the interaction strength U is allowed to be doping de-
pendent. To reproduce the experimental observations in
optimally doped cuprates, large values of U seem neces-
sary in hole-doped "U$8t# systems, while smaller values
of U describe the electron-doped systems "U" 6t#
"Sénéchal and Tremblay, 2004#.

4. Superconductivity

It is well known from weak-coupling finite-size FLEX
results "Bickers et al., 1989# and phenomenological theo-
ries "Monthoux et al., 1991; Scalapino, 1999# that antifer-
romagnetic spin fluctuations mediate pairing with
d -wave symmetry and cause a pseudogap in underdoped
systems. Recent numerical renormalization-group stud-
ies "Halboth and Metzner, 2000; Zanchi and Schulz,
2000# in fact show strong evidence that the ground state
of the weak-coupling 2D Hubbard model is supercon-
ducting with a d -wave order parameter at finite doping
when t!=0, and when t! is finite even at half-filling.
Finite-size QMC simulations for the doped 2D Hubbard
model in the intermediate coupling regime U%W sup-
port the idea of a spin-fluctuation driven interaction me-
diating d -wave superconductivity "for a review, see
Scalapino, 1999#. The fermion sign problem, however,
limits these calculations to temperatures too high to
study a possible transition. These calculations are also
restricted to relatively small system sizes, making state-
ments for the thermodynamic limit problematic, and in-
hibiting studies of the low-energy physics. These short-
comings do not apply to embedded-cluster theories
which are built for the thermodynamic limit. Cluster
sizes larger than 1 are necessary, however, to describe a

possible transition to a state with a nonlocal "d -wave#
order parameter as discussed in Sec. II.F.

In optimally doped cuprates, the spin fluctuations are
known to be short ranged, extending over a few lattice
spacings. Hence quantum cluster approaches should
provide an adequate methodology to study supercon-
ductivity in these systems. Pairing in the 2D Hubbard
model was studied using the DCA/NCA by Maier et al.
"2000a#, and with the DCA/QMC approach by Jarrell,
Maier, Hettler, and Tahvildarzadeh "2001#, Jarrell,
Maier, Huscroft, and Moukouri "2001#, and Maier, Jar-
rell, Macridin, and Slezak "2004#. The possible coexist-

FIG. 35. Comparison of different DCA cells:
"a# density of states near the chemical poten-
tial; "b#, "c#, and "d# coarse-grained anomalous
Green’s function Ḡ12"K ,##& F̄"K ,## in the
superconducting state of the 2D Hubbard
model at 19% doping, T=0.047t, U=12t for
different cluster K points calculated with
DCA/NCA for a four-site cluster, Nc=4.
From Maier et al., 2000a.

FIG. 36. Pair-field susceptibilities vs temperature in the even-
frequency s-wave, extended s-wave "xs#, d -wave, and odd-
frequency s-wave channels in the 2D Hubbard model at 5%
doping, U=8t calculated with the DCA/QMC method for a
four-site cluster, Nc=4. Inset: Inverse d -wave pair-field suscep-
tibility vs temperature for different dopings and cluster sizes.
The solid line is a fit to b"T−Tc#$ with Tc=0.084t and $=0.72.
Temperatures are in units of 4t. From Jarrell, Maier, Hettler,
and Tahvildarzadeh, 2001.

1072 Maier et al.: Quantum cluster theories

Rev. Mod. Phys., Vol. 77, No. 3, July 2005

Fig. 4: d-wave superconducting state in a 2D Hubbard model: DCA/NCA calculation for an
Nc = 4 site 2×2 cluster. Density of states near the chemical potential (a), and coarse-grained
anomalous Green function Ḡ12(K, iωn → ω+iδ) ≡ F̄ (K, ω+iδ) (b), (c), and (d) for a system
with electron filling 〈n〉 = 0.81, temperature T = 0.05t and Coulomb repulsion U = 12t for
the different cluster momentaK . Figure from [14].

a dx2−y2-wave order parameter that transforms according to ∆(k) ∝ cos kx − cos ky. Since the
DCA patches aboutK = 0 and (π, π) contain equal parts of positive and negative contributions
of ∆(k), the coarse-grained result averaged over these patches vanishes, while ∆(k) has the
same sign over each of the patches centered at (π, 0) and (0, π) and switches sign between
them. The superconducting gap that arises from the finite pair amplitude is reflected in the
density of states (DOS) shown in the upper left panel, where the lower Hubbard subband of the
full spectrum is shown.

2.4 Pair-field susceptibility

An alternative way to identify an instability towards a superconducting phase (or any symmetry
broken phase for that matter) is to calculate the response of the system to an applied field (pair-
field in the case of superconductivity), i.e., the susceptibility, and then extrapolate that response
to the limit of a vanishing field. Spontaneous symmetry breaking occurs when the susceptibility
diverges in that limit.
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General formalism

In linear response theory, the superconducting response to an external pair-field ηα, where α
specifies the symmetry (s-wave, d-wave, etc.), is given by the pair-field susceptibility

Pα(T ) =

∫ β

0

dτ 〈∆α(τ)∆†α(0)〉 (31)

since the pair-field ηα couples to the pairing operator

∆†α =
1√
N

∑
k

gα(k) c†k↑c
†
−k↓ , (32)

and we are interested in the response ∆α of the system to the pair-field. Here gα(k) is the form-
factor corresponding to the symmetry of interest, i.e., gd(k) = cos kx−cos ky for a dx2−y2 state,
for example. Instead of calculating the correlation function in Eq. (31) directly, the pair-field
susceptibility may be calculated within the formalism described in then previous section 2.3.
This is done by keeping the external pair-field ηα finite throughout the calculation and measuring
the order parameter ∆α at convergence. If this is done for a number of different magnitudes of
the external field ηα, one has information on the ηα dependence of the order parameter ∆α(ηα).
The pair-field susceptibility Pα may then be extracted from the limit of vanishing pair-field as
Pα = d∆α(ηα)

dηα

∣∣∣
ηα→0

.

Alternatively, one may calculate the correlation function in Eq. (31) directly in the normal state
of the system. This does not require the Nambu-Gorkov formalism discussed in Sec. 2.3, i.e., the
calculation may be carried out in the normal state. What is required, however, is a calculation
of the 4-point two-particle Green function [10]

G2,σ1...σ4(x1, x2;x3, x4) = −〈Tτcσ1(x1)cσ2(x2)c†σ3(x3)c†σ4(x4)〉 , (33)

where the combined index xi = (Xi, τi) has both spatialXi and imaginary time τi coordinates.
Fourier-transforming on both the space and time variables gives G2σ1...σ4(k4, k3; k2, k1) with
k = (k, iωn). From this, one may then calculate the pair-field susceptibility as

Pα(T ) =
T 2

N2

∑
k,k′

gα(k)G2,↑↓↓↑(k,−k,−k′, k′) gα(k′). (34)

The way G2 is calculated in the DCA algorithm is similar to the way G is calculated at the
single-particle level. Just as the Dyson equation (7) relates the Green function to the self-
energy, the Bethe-Salpeter equation (BSE) relates G2 to the irreducible particle-particle vertex
function Γ pp(k,−k;−k′, k′). It reads

G2,↑↓↓↑(k,−k,−k′, k′) = G↑(k)G↓(−k)δk,k′ +
T

N

∑
k′′

G↑(k)G↓(−k) (35)

× Γ pp(k,−k,−k′′, k′′)G2,↑↓↓↑(k
′′,−k′′,−k′, k′)
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Fig. 5: Feynman diagrams for the Bethe-Salpeter equation: The two-particle Green function
G2 in the particle-particle channel on the left hand side has a bare contribution (first diagram
on the right-hand side) that describes the propagation of a pair of electrons in time-reversed
momentum and spin states, and a vertex contribution (second diagram) that describes the (re-
peated) scattering of the pair due to the interactions in the Hamiltonian.

and is schematically shown in Fig. 5. This equation describes the propagation of a pair of
electrons in time-reversed momentum and spin states and the repeated scattering of this pair
due to the Coulomb term in the Hamiltonian.
Just as the self-energy Σ(k, iωn) is approximated by the cluster self-energy Σc(K, iωn), the
irreducible vertex function Γ pp is approximated by the corresponding cluster irreducible vertex
function [10]

Γ pp(k,−k,−k′, k′) ≈ Γ pp
c (K,−K,−K ′, K ′), (36)

whereK = (K, iωn) andK ′ = (K ′, iωn′). Just as the self-energy, the cluster irreducible vertex
Γ pp
c is determined from the solution of the cluster problem, i.e., by calculating the cluster two-

particle correlation function

G2c,↑↓↓↑(K,−K,−K ′, K ′) = Gc,↑(K)Gc,↓(−K)δK,K′ +
T

Nc

∑
K′′

Gc,↑(K)Gc,↓(−K) (37)

× Γc,pp(K,−K,−K ′′, K ′′)G2c,↑↓↓↑(K
′′,−K ′′,−K ′, K ′) .

Defining [G2c]K,K′ ≡ G2c,↑↓↓↑(K,−K,−K ′, K ′), [G0
2c]K,K′ = Gc,↑(K)Gc,↓(−K) δK,K′ and

[Γpp
c ]K,K′ = T

Nc
Γ pp
c (K,−K,−K ′, K ′) , and writing Eq. (37) in matrix notation in K,K ′, one

then has
Γc,pp = [G0

2c]
−1 − [G2c]

−1 . (38)

Using the cluster vertex Γ pp
c (K,−K,−K ′, K ′) in the BSE for the lattice G2, one can then

calculate the coarse-grained two-particle Green function for the lattice

Ḡ2,↑↓↓↑(K,−K,−K ′, K ′) =
N2
c

N2

∑
k∈PK

∑
k′∈PK′

G2,↑↓↓↑(k,−k,−k′, k′) (39)

= Ḡ0
2,↑↓(K)δK,K′ +

T

Nc

∑
K′′

Ḡ0
2,↑↓(K)

× Γ pp
c (K,−K,−K ′′, K ′′) Ḡ2,↑↓↓↑(K

′′,−K ′′,−K ′, K ′) .

with the coarse-grained bare propagator

Ḡ0
2,↑↓(K) =

Nc

N

∑
k∈PK

G↑(k)G↓(−k) . (40)
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Here we used the fact the cluster vertex Γ pp
c (K,−K,−K ′, K ′) only depends on the cluster

momenta K and K ′ so that the sum over k′′ in Eq. (35) can be partially carried out over the
patches. The coarse-grained G2 may then be inserted into Eq. (34) to obtain

Pα(T ) =
T 2

N2
c

∑
K,K′

ḡα(K) Ḡ2,↑↓↓↑(K,−K,−K ′, K ′) ḡα(K ′) , (41)

where we have separately coarse-grained the form factor ḡα(K) = Nc/N
∑
k∈PK

gα(k). Note
that one can also take into account the full k dependence of gα(k) by using the modified algo-
rithm discussed in Ref. [10].

Bethe-Salpeter eigenvalues and eigenfunctions

Writing Eq. (39) in matrix form

Ḡ2 = [1− Ḡ0
2,↑↓Γ

pp
c ]−1Ḡ0

2,↑↓ = Ḡ0
2,↑↓[1− Γpp

c Ḡ0
2,↑↓]

−1 (42)

we see that a divergence in Ḡ2 occurs when the term in brackets vanishes. Eq. (42) can be recast
in terms of the left (ΦLα) and right eigenvectors (ΦRα ) of the “pairing matrix” Γpp

c Ḡ0
2,↑↓, where,

for example, ΦRα is determined from [16]

− T

Nc

∑
K′

Γc,pp(K,K
′) Ḡ0

2,↑↓(K
′)φRα (K ′) = λαφ

R
α (K). (43)

By transforming the term in brackets in Eq. (42) onto this eigenbasis of the pairing matrix, one
can write Eq. (42) as

G2,↑↓↓↑(K,K
′) = Ḡ0

2,↑↓(K)
∑
α

φRα (K)φLα(K ′)

1− λα
. (44)

Since the pair-field susceptibility is given by Eq. (41), we see that a superconducting instability
occurs when the leading eigenvalue λα becomes equal to one, and the symmetry of the corre-
sponding state is determined by the momentum and frequency structure of φRα (K) and φLα(K).
This approach is in many ways more powerful than calculating the response function directly,
because here, one does not have to assume a given form factor gα(k) and therefore cannot
“miss” the structure of the dominant correlations.
We note the similarity of Eq. (43) to the familiar BCS gap equation

− 1

N

∑
k′

V (k,k′) tanh
(
β
2
Ek′
)
∆(k′)

2Ek′
= ∆(k′), (45)

where V (k,k′) is the pairing interaction, which is essentially given by the low frequency limit
of Γ pp(k, k′), Ek the Bogoliubov quasiparticle energy that is encoded in the Green function
G(k), and ∆(k) the superconducting energy gap. In fact, Eq. (45) is derived from a Bethe-
Salpeter equation in the superconducting state analogous to the normal state equation (43) under
a number of simplifying assumptions. Hence, we see that the leading eigenvector φlead(K) ≡
φRlead(K) is the normal state analog to the superconducting gap ∆(k). Close to the transition at
T = Tc, they are equivalent.
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3 Superconductivity in the 2D Hubbard model

We now demonstrate how the DMFT and DCA approaches have been used to investigate un-
conventional superconductivity in the simplest model of correlated electron systems, the 2D
Hubbard model given by the Hamiltonian in Eq. (1) on a square lattice. We start by discussing
the attractive model, which has U < 0, and then turn to the repulsive model with U > 0.
While the former should be viewed as a toy model to study pairing, the latter has been studied
extensively in the context of the high-Tc cuprates.

3.1 Attractive Hubbard model

The Hamiltonian of the attractive Hubbard model is given by the Hamiltonian in Eq. (1) with an
attractive local Coulomb interaction U < 0. Since the Coulomb interaction between electrons is
repulsive, i.e. positive, the negative U interaction should be considered an effective interaction
that may result from integrating out other degrees of freedom, such as phonons in the case of the
BCS model. In contrast to this case, however, the interaction U is an instantaneous static inter-
action without frequency dependence. Since the interaction between the electrons is explicitly
attractive, this model provides an interesting toy model and testbed to study the superconducting
phase transition as a function of the electron filling 〈n〉 and interaction strength |U |/t.
In fact, this problem has been studied extensively in the literature (see, e.g., Ref. [17] and refer-
ences therein). As this model does not suffer from the usual fermionic negative sign problem,
large scale quantum Monte Carlo simulations have been used to study the temperature versus
|U | phase diagram. One generally finds a finite temperature phase transition to a superconduct-
ing phase at finite doping 〈n〉 < 1, while at half-filling 〈n〉 = 1, this phase is suppressed to
zero temperature by its degeneracy (due to particle-hole symmetry) with a charge-density wave
(CDW) phase. As one moves away from half-filling, CDW correlations are suppressed and the
superconducting Tc rises sharply. Since the pairing interaction U between electrons is local,
one finds that the superconducting phase has s-wave symmetry, i.e., the Cooper pairs forming
this state are local.
Because we are in 2D, for which the Mermin-Wagner theorem [18] forbids a finite temperature
transition to a phase in which a continuous symmetry is broken, such as the U(1) gauge symme-
try that is broken in the superconducting phase, the instability instead is a Kosterlitz-Thouless
(KT) transition [19,20] to a superconducting state in which the correlations decay algebraically.
DMFT and DCA calculations, however, do not obey the Mermin-Wagner theorem. They ne-
glect the long range, beyond mean-field fluctuations that lead to the destruction of long-range
order at finite temperature, the fundamental reason for this theorem. Due to their mean-field
character, DMFT and DCA instead display mean-field type transitions. In DCA calculations,
however, non-local fluctuations are taken into account up to the size of the cluster, and one may
see KT behavior in a finite region above Tc, where the correlations are limited in range to within
the cluster. Close to Tc, when the correlation length exceeds the cluster size, however, the KT
behavior changes over to mean-field behavior.
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Fig. 6: Superconductivity in the attractive Hubbard model: Transition temperature Tc in
the negative U Hubbard model versus |U | at a filling of 〈n〉 = 0.85 calculated with DCA/QMC.
Tc keeps rising with |U | in the DMFT (Nc = 1) limit, while non-local fluctuations on the 4×4-
cluster DCA calculation start suppressing Tc at larger |U |.

Fig. 6 shows the results of single-site DMFT (Nc = 1) and 4×4-site DCA (Nc = 16) calcula-
tions of Tc in an attractive Hubbard model with nearest-neighbor hopping t and electron filling
〈n〉 = 0.85. Here Tc for the s-wave superconducting state was determined from the temperature
T at which leading eigenvalue λs(T ) of the Bethe-Salpeter equation (43) crosses one. We see
that in both cases, Tc initially rises with increasing |U |. This is expected, since the increasing
pair binding energy ∼ |U | leads to an increasing energy reduction associated with forming a
superconducting phase, so that it occurs at higher temperatures.
At larger |U |, however, one observes different behavior: While Tc keeps rising for Nc = 1, it
already starts to level off a bit. For Nc = 16, one even sees non-monotonic behavior, where Tc
falls again after reaching a maximum for |U | ∼ 6t. How can we understand this behavior, given
the fact that with increasing |U |, the pair-binding energy keeps increasing? This behavior is
known as the BCS-BEC crossover [21], where BEC stands for Bose-Einstein condensation. For
small attractive interactions U , the physics is well described by BCS theory. The Cooper pairs
are weakly bound and their size, determined by the superconducting coherence length∼ 1/|U |,
is large. Therefore, the pairs have large spatial overlap, and as soon as they form, they become
phase coherent. In contrast, in the large |U | regime, the pairs are tightly bound and much more
local objects. Hence, they have a harder time to become phase coherent, since the phase of
individual pairs can fluctuate more easily. In this case, even though the pair-binding energy
is large, Tc is suppressed, since phase coherence does not set in until lower temperatures are
reached. DMFT only describes the spatially local aspect of this physics, i.e., phase fluctuations
in time. Instead, the finite size clusters in the DCA also know about the spatial aspect of this
physics, i.e., phase fluctuations of local pairs on different sites. This explains why Tc is reduced
in the 16-site cluster relative to the single-site results.
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accurately through a finite size scaling procedure. The aim in
this section is to validate the DCA+ framework by reproducing
the temperature versus doping phase diagram of the attractive
Hubbard model with an interaction of U = −4. This model
has been studied in detail by Paiva et al. [17], using finite size
determinantal QMC calculations [24,25] of large clusters for
which accurate results for Tc were obtained.

We will use two complementary procedures to determine
the exact (infinite cluster size) KT transition temperature TKT
as follows. (1) We will use the same finite size scaling analysis
of the cluster s-wave pair-field susceptibility that was used
in Ref. [17]. This procedure avoids the determination of the
lattice vertex function through interpolation and deconvolution
of the cluster vertex function. (2) We will determine the
superconducting transition temperature Tc(Nc) for a given
cluster size Nc by calculating the leading eigenvalue of the
lattice Bethe-Salpeter equation in Eq. (11) as outlined in
Sec. II C and then obtain an estimate for TKT by fitting Tc(Nc)
with the expected KT form. We will show that both procedures
result in the same estimate for TKT.

We start with a finite size scaling analysis of the s-wave
cluster pair-field susceptibility

Ps =
∫ β

0
dτ ⟨#†(τ )#(0)⟩, (23)

with

#† = 1√
Nc

∑

K⃗

c
†
K⃗↑c

†
−K⃗↓. (24)

Note that Ps can be obtained directly from the Q = 0 cluster
two-particle Green’s function in the particle-particle channel,
GII

c↑↓↓↑(K,K ′) [see Eq. (7)], as

Ps = T 2

N2
c

∑

K,K ′

GII
c ↑↓↓↑(K,K ′), (25)

where the sum over K (and K ′) implicitly contains a sum over
momenta K⃗ and Matsubara frequencies ϖ .

If one assumes that the transition to the superconducting
phase takes place when the correlation length reaches the linear
cluster size Lc =

√
Nc, one expects from finite size scaling for

a Kosterlitz-Thouless transition that [17]

PsL
−7/4
c = Lc exp

[ −α√
T − Tc

]
. (26)

In Fig. 2, we have plotted the best data collapse for this equation
at 50% doping. The critical temperature TKT = 0.13 obtained
by the data collapse is equal to the value obtained by Paiva et al.
We believe that the discrepancy on the parameter α (0.3 versus
0.1) can most likely be attributed to the mean-field character
of the DCA+ algorithm.

Next, we use the new DCA+ two-particle formalism de-
scribed in Sec. II C to calculate the lattice irreducible vertex in
the particle-particle channel, &pp(k,k′), with continuous mo-
mentum dependence. We then compute the leading eigenvalue
λs(T ) (the corresponding eigenvector has s-wave symmetry) of
the pairing matrix &ppχ0 that enters the lattice Bethe-Salpeter
equation [see Eq. (11)]. This allows us to determine the
transition temperature Tc(Nc) for a given cluster size Nc
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FIG. 2. (Color online) Data collapse of the cluster susceptibility
Ps using the Kosterlitz-Thouless scaling form in Eq. (26) for a filling
of ⟨n⟩ = 0.5. We can observe a clear data collapse for clusters larger
than 84 sites.

from λs(Tc(Nc)) = 1. The exact infinite size cluster result
Tc(Nc → ∞) ≡TKT is then obtained from fitting the Tc(Nc)
data with the expected KT behavior [7,26]

Tc(Nc) = T KT
c + A

[B + log(
√

Nc)]2
. (27)

As one sees from the inset of Fig. 3, the fits of the data
for electron densities ⟨n⟩ = 0.1, 0.5, and 0.8 with the form
in Eq. (27) are excellent. The resulting estimates for TKT(⟨n⟩)
are shown as symbols in the main figure. The error bars are
obtained by omitting each data point (jack-knife procedure)
once in the corresponding Tc(Nc) curves, which results in
six different estimates for TKT for each density and thus the
standard deviation represented by the error bars. One sees that
the obtained transition temperatures lie within the error bars
of Paiva et al. (red dashed lines in Fig. 2).

FIG. 3. (Color online) Phase diagram of the attractive Hubbard
model with U = −4. The DCA+ results lie within the error bars
(red-dotted lines) of previously reported values by Paiva et al.

195133-6

Fig. 7: Kosterlitz-Thouless transition temperature in the attractive Hubbard model: TKT
c

for different electron densities d = 〈n〉 for U = −4t calculated with DCA+/QMC. The results
were obtained by calculating Tc(Nc) from the leading (s-wave) eigenvalue of the Bethe-Salpeter
equation for different cluster sizes Nc and extrapolating the results to the exact Nc →∞ limit,
where they compare well with finite size lattice DQMC calculations by Paiva et al. Figure
from [22].

In fact, for even larger clusters one would expect Tc to drop even more. An example of this is
shown in Fig. 7, which displays the results of a DCA+ calculation of Tc versus electron filling
d ≡ 〈n〉 for U = −4. The inset shows the linear cluster size (

√
Nc) dependence of Tc for

different 〈n〉, and one sees that Tc keeps dropping with increasing cluster size. For a filling of
〈n〉 = 0.8, close to the filling used in Fig. 6, we see that Tc ∼ 0.25 for U = −4 drops to ∼ 0.15

in the infinite cluster size limit. Here, Tc(Nc) was again determined from λs(Tc(Nc)) = 1 and
the (exact) infinite cluster size limit Tc(Nc → ∞) ≡ TKT is obtained from fitting the Tc(Nc)

curves with the expected KT behavior [19, 20]

Tc(Nc) = TKT +
A

[B + log(
√
Nc)]2

. (46)

Here, we have assumed that the transition at finiteNc occurs at the temperature Tc(Nc), at which
the superconducting correlation length reaches the linear cluster size. The log arises from the
fact that this correlation length has an exponential temperature dependence in the KT case.

The main panel in Fig. 7 shows Tc for different 〈n〉 determined this way. Also shown are results
from finite size lattice determinant QMC calculations by Paiva et al. (solid black curve) [17].
We see that the DCA+ results agree very well with those of Paiva et al., showing that the DCA
approximation and the procedures used to determine Tc provide reliable results.



Superconductivity within DMFT and DCA 13.17

3.2 Repulsive Hubbard model

We now turn to the 2D repulsive Hubbard model. Its Hamiltonian is given by Eq. (1) with
U > 0. Unlike the attractive model, there is no explicitly attractive interaction in this model
that could lead to superconductivity. Rather, the only interaction that is present is repulsive.
Nevertheless, this model has been investigated extensively in the context of superconductivity,
because it is commonly believed to provide a generic and the simplest description of the physics
of cuprate high-temperature superconductors [9].
So how can a model with only a repulsive interaction have a superconducting instability? Vari-
ous cluster DMFT and DCA studies have been concerned with addressing this question. Since
the local Coulomb repulsion U in this model is large (a realistic description of the cuprates re-
quires U/t & 6), an s-wave superconducting state, in which the electrons are paired on the same
site, is energetically unfavorable. Rather, one expects a state in which the electrons are paired
on different sites. Since DMFT can only describe local order parameters, it is not adequate to
study superconductivity in this model. Rather, one needs to use cluster extensions of DMFT,
and here we focus on DCA studies of this problem.

Superconducting instability

If the Hubbard model is supposed to describe the cuprate high-temperature superconductors,
then it should have a superconducting instability to a dx2−y2-wave state with a cos kx − cos ky
momentum structure. By Fourier-transforming to real space, we see that in this state, the elec-
trons are paired on nearest-neighbor sites with a dx2−y2 phase (+1 along ±x and -1 along ±y).
Thus, one needs at least a 4-site 2×2 cluster to describe this state. The earliest DCA calcula-
tions of this problem were therefore done for a 2×2 cluster. The left panel in Fig. 8 shows the
temperature versus doping δ = 1− 〈n〉 phase diagram of the 2D Hubbard model with U/t = 8

that resulted from this DCA Nc = 4 study [23]. And indeed, it has an extended dx2−y2-wave
superconducting phase at finite doping δ below the critical temperature Tc. Here Tc is the tem-
perature T where the pair-field susceptibility in Eq. (41), Pd(T ), with a dx2−y2-wave form factor
gd(K) = cosKx − cosKy diverges.
In addition, the phase diagram has an antiferromagnetic phase below the Néel temperature TN.
This phase transition was determined in an analogous manner to that for the superconducting
phase, by calculating the spin susceptibility χs(Q, T ) =

∑
ij e

iQ(xi−xj)
∫ β
0
dτ 〈TτSzi (τ)Szj (0)〉

for Q = (π, π), where Szi = (c†i↑ci↑ − c†i↓ci↓)/2 is the usual z-component of the spin operator.
This is done in the same manner as for the pair-field susceptibility, i.e., within the framework
described in Sec. 2.4, by calculating the irreducible vertex (in the spin S = 1 particle-hole
channel) from the corresponding cluster susceptibility, and then using this vertex in the Bethe-
Salpeter equation for the lattice susceptibility χs(Q, T ) [10]. Even though the Mermin-Wagner
theorem (see discussion in Sec. 3.1) does not allow for an antiferromagnetic phase at finite T
in the purely 2D model, the mean-field character of the DCA leads to this phase transition at
finite T . In the real cuprate materials, it is the coupling between the copper-oxygen planes that
stabilizes this transition at finite T .
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Fig. 5 – The temperature-doping phase diagram of the 2D Hubbard model calculated with QMC and
DCA for Nc = 4, U = 2. TN and Tc were calculated from the divergences of the antiferromagnetic
and d-wave susceptibilities, respectively. T ∗ was calculated from the peak of the bulk magnetic
susceptibility.

the order of J , so magnetically mediated pairing is possible. For Nc = 4 and δ = 0.05, the
d-wave pair-field susceptibility diverges at Tc ≈ 0.021, with an exponent which is less than
one, indicating that the fluctuations beyond DMFA which suppress the antiferromagnetism
are also responsible for pairing.

The phase diagram of the system is shown in fig. 5. We are determining the phase bound-
aries by the instability of the paramagnetic phase (divergence of the corresponding suscep-
tibility). Therefore, the overlap of d-wave superconducting and antiferromagnetic phase for
dopings δ < 0.05 does not indicate a coexistence of these phases. It merely states that if the
phase with higher transition temperature is suppressed (e.g., due to impurity effects or long-
range interactions not included here) a phase transition at the lower transition temperature
might happen from the paramagnetic state.

We also include T ∗, the pseudogap temperature fixed by the peak bulk susceptibility. At
low temperatures, it serves as a boundary separating the observed Fermi-liquid and non-Fermi-
liquid behavior. For T < T ∗ and δ < 0.2 the self-energy shows non-Fermi-liquid character for
the parts of the Fermi surface closest to k = (π, 0) whereas the low-temperature self-energy
is Fermi-liquid–like for δ >∼ 0.2. The d-wave transition temperature is maximum at δ ≈ 0.05.
The superconductivity persists to large doping, with Tc dropping very slowly. In contrast to
experimental findings, the pairing instability (preceded by an AF instability) persists down
to very low doping. One possible reason for this is that the model remains very compressible
down to very low doping δ ∼ 0.025. This could be due to the lack of long-ranged dynamical
spin correlations or stripe formation which could become more relevant as Nc increases or
when multiple Hubbard planes are coupled together. The effect of such additional non-local
corrections (Nc > 4) is presently unknown. However, we believe that a finite mean-field
coupling between Hubbard planes will stabilize the character of the phase diagram presented
here as Nc increases. A finite interplane coupling will also invalidate the Mermin-Wagner
theorem, preventing a vanishing TN for the AF phase as Nc increases. Such work is currently
in progress.

bars on larger cluster results are expected to be of the same
order or larger. The results clearly substantiate the topo-
logical arguments made above.

As noted before, the Nc! 4 result is the mean-field
result for d-wave order and hence yields the largest pairing
correlations and the highest Tc. As expected, we find large
finite-size and geometry effects in small clusters. When
zd < 4, fluctuations are overestimated and the d-wave
pairing correlations are suppressed. In the 8A cluster where
zd ! 1 we do not find a phase transition at finite tempera-
tures. Both the 12A and 16B cluster, for which zd ! 2,
yield almost identical results. Pairing correlations are en-
hanced compared to the 8A cluster and the pair-field
susceptibility Pd diverges at a finite temperature. As the
cluster size is increased, zd increases from 3 in the 16A
cluster to 4 in the larger clusters, the phase fluctuations
become two-dimensional, and as a result, the pairing cor-
relations increase further (with exception of the 18A clus-
ter). Within the error bars (shown for 16A only), the results
of these clusters fall on the same curve, a clear indication
that the correlations which mediate pairing are short
ranged and do not extend beyond the cluster size.

The low-temperature region can be fitted by the KT form
Pd ! A exp"2B=#T $ Tc%0:5&, yielding the KT estimates
for the transition temperatures TKT

c given in Table I. We
also list the values Tlin

c obtained from a linear fit of the low-
temperature region, which is expected to yield more accu-
rate results due to the mean-field behavior of the DCA
close to Tc [12]. For all clusters with zd ' 3 we find a
transition temperature Tc ( 0:023t ) 0:002t from the lin-
ear fits. We cannot preclude, however, the possibility of a
very slow, logarithmic cluster size dependence of the form
Tc#Nc% ! Tc#1% * B2="C * ln#Nc%=2&2 where Tc#1% is
the exact transition temperature. In this case it is possible
that an additional coupling between Hubbard planes could
stabilize the transition at finite temperatures.

In summary, we have presented DCA-QMC simulations
of the 2D Hubbard model for clusters up to Nc! 32 sites.
Consistent with the Mermin-Wagner theorem, the finite
temperature antiferromagnetic transition found in the
Nc! 4 simulation is systematically suppressed with in-
creasing cluster size. In small clusters, the results for the
d-wave pairing correlations show a large dependence on
the size and geometry of the clusters. For large enough
clusters, however, the results are independent of the cluster
size and display a finite temperature instability to a d-wave
superconducting phase at Tc ( 0:023t at 10% doping when
U ! 4t.
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Fig. 8: D-wave superconductivity in the 2D repulsive Hubbard model: Left panel: The
temperature T versus doping δ = 1 − 〈n〉 phase diagram calculated with DCA/QMC for a
2×2 cluster with U = 8t has an antiferromagnetic phase near half-filling below TN, a d-
wave superconducting phase at finite doping below Tc, and pseudogap behavior in the normal
state below T ∗. Right panel: Temperature dependence of the inverse pair-field susceptibility
1/Pd(T ) calculated with DCA/QMC for different cluster sizes for U = 4t and 〈n〉 = 0.9. Tc
is only weakly dependent on cluster size Nc when Nc & 12. Figures from [23] (left) and [24]
(right).

The phase diagram also displays a line labeled T ∗. This line does not indicate a phase transition.
Rather, it indicates the temperature below which the bulk spin susceptibility χs(Q = 0, T )

starts to drop when the system is further cooled. This exotic behavior is very different from the
Pauli susceptibility of a normal metal, which is basically independent of temperature at low T .
The downturn in χs(Q = 0, T ) signals the opening of a pseudogap in the low energy spin
excitations, which is also observed in various measurements in the cuprates [25]. In addition, at
the same temperature T ∗, the single-particle spectral function A(k, ω) = −ImG(k, ω + iδ)/π

starts to show a pseudogap, i.e., a partial suppression of spectral weight at the Fermi level ω = 0.
This is also observed in photoemission experiments in the cuprates, and provides evidence that
not only the spin degree of freedom, but electronic excitations in general are suppressed at low
energies. Thus, just like in the real materials, superconductivity in the Hubbard model emerges
from an exotic state, which is very different from a normal metal.

Coming back to superconductivity, the question arises of what happens to the phase transition
in more accurate calculations employing larger clusters when longer-ranged fluctuations are
taken into account. Just like for the attractive Hubbard model, where the critical temperature
is found to drop in larger clusters because of the inclusion of spatial phase fluctuations (see
previous Sec. 3.1), we would expect Tc to fall when larger clusters are used. Does Tc go to
zero or will it remain finite in the exact infinite size cluster limit? This question was first
addressed with the larger cluster DCA calculations [24] of the pair-field susceptibility in a
Hubbard model with U = 4t and 〈n〉 = 0.9 shown in the right panel of Fig. 8. Here, the
temperature dependence of the inverse pair-field susceptibility 1/Pd(T ) is plotted for a number
of different cluster sizes and shapes (indicated by the letters ’A’ and ’B’ following the cluster
size, see Ref. [24]), and the lines are fits to the exponential KT behavior one expects in two
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small. Thus one concludes that the pairing interaction arises
from the exchange of S ¼ 1 particle-hole fluctuations.

The momentum dependence of the leading pairing
eigenfunction ’!ðkÞ is shown in the inset of Fig. 22 and
corresponds to a dx2$y2 wave. The Matsubara frequency

dependence of this eigenfunction, shown in Fig. 22, has a
similar decay to that of the spin susceptibility. However, as
one knows, it is difficult to determine the real frequency
response from limited numerical Matsubara data. Recent
cellular dynamic mean-field studies by Kyung, Senechal,
and Tremblay (2009) for real frequencies found a correspon-
dence between the frequency dependence of the gap function
and the local spin susceptibility as shown in Fig. 23. The
frequency dependence of the interaction was also discussed
by Maier, Poilblanc, and Scalapino (2008) and Hanke et al.
(2010) who found that the dominant part of the interaction
comes from the spectral region associated with spin fluctua-
tions with an additional small contribution coming from high
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2m "T (dashed curve). The Matsubara frequency dependence of
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ðK;"TÞ normalized to #d
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values of K which lie along the dashed line shown in the inset of
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FIG. 23 (color online). This figure provides evidence linking the
frequency dependence of the imaginary part of the gap function
#dð!; kFÞ, which is called !00

anð!; kFÞ in this figure, to the frequency
dependence of the spin-fluctuation spectral weight $00ð!Þ. (a) The
imaginary part of the gap function !00

anð!; kFÞ at a wave vector kF
near the antinode is plotted vs ! for various dopings hni ¼ 1$ %.
(b) The imaginary part $00ð!Þ of the local spin susceptibility vs !
for the same set of dopings. The black dots in (a) and (b) identify
peaks. The positions of the peaks of !00

an in (a) are shown as the
shaded dots in (b) at the same height as the corresponding $00 to
illustrate their correspondence. One can see that the upward fre-
quency shift of the !00

an peaks relative to the $
00 peaks decreases with

the doping reflecting the decrease in the single-particle gap. The
lower five curves, for % values between 0.29 and 0.37, are for the
normal state. Here U ¼ 8t, t0 ¼ $0:3t0, t00 ¼ $0:08t, and a
Lorentzian broadening of 0:125t was used for an embedded 2( 2
plaquette. From Kyung, Senechal, and Tremblay, 2009.
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small. Thus one concludes that the pairing interaction arises
from the exchange of S ¼ 1 particle-hole fluctuations.

The momentum dependence of the leading pairing
eigenfunction ’!ðkÞ is shown in the inset of Fig. 22 and
corresponds to a dx2$y2 wave. The Matsubara frequency

dependence of this eigenfunction, shown in Fig. 22, has a
similar decay to that of the spin susceptibility. However, as
one knows, it is difficult to determine the real frequency
response from limited numerical Matsubara data. Recent
cellular dynamic mean-field studies by Kyung, Senechal,
and Tremblay (2009) for real frequencies found a correspon-
dence between the frequency dependence of the gap function
and the local spin susceptibility as shown in Fig. 23. The
frequency dependence of the interaction was also discussed
by Maier, Poilblanc, and Scalapino (2008) and Hanke et al.
(2010) who found that the dominant part of the interaction
comes from the spectral region associated with spin fluctua-
tions with an additional small contribution coming from high
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FIG. 21 (color online). Leading eigenvalues of the Bethe-Salpeter
equation in various channels for U=t ¼ 4 and a site occupation
hni ¼ 0:85. The Q ¼ ð";"Þ, !m ¼ 0, S ¼ 1 magnetic eigenvalue
is seen to saturate at low temperatures. The leading eigenvalue in the
singletQ ¼ ð0; 0Þ,!m ¼ 0 particle-particle channel has dx2$y2 sym-

metry and increases toward 1 at low temperatures. The largest charge
density eigenvalue occurs in the Q ¼ ð0; 0Þ, !m ¼ 0 channel and
saturates at a small value. The inset shows the distribution of k points
for the 24-site cluster. From Maier, Jarrell, and Scalapino, 2006a.
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frequency dependence of the normalized magnetic spin susceptibil-
ity 2$ðQ;!m Þ=½$ðQ; 0Þ þ $ðQ; 2"TÞ'for Q ¼ ð";"Þ vs !m ¼
2m "T (dashed curve). The Matsubara frequency dependence of
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and the normalized spin Q ¼ ð";"Þ susceptibility are

similar. Inset: The momentum dependence of the eigenfunction
#d

x2$y2
ðK;"TÞ normalized to #d

x2$y2
ðð0;"Þ;"TÞ shows its dx2$y2

symmetry. Here !n ¼ "T and the momentum values correspond to
values of K which lie along the dashed line shown in the inset of
Fig. 21. From Maier, Jarrell, and Scalapino, 2006a.
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frequency dependence of the imaginary part of the gap function
#dð!; kFÞ, which is called !00

anð!; kFÞ in this figure, to the frequency
dependence of the spin-fluctuation spectral weight $00ð!Þ. (a) The
imaginary part of the gap function !00

anð!; kFÞ at a wave vector kF
near the antinode is plotted vs ! for various dopings hni ¼ 1$ %.
(b) The imaginary part $00ð!Þ of the local spin susceptibility vs !
for the same set of dopings. The black dots in (a) and (b) identify
peaks. The positions of the peaks of !00

an in (a) are shown as the
shaded dots in (b) at the same height as the corresponding $00 to
illustrate their correspondence. One can see that the upward fre-
quency shift of the !00
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the doping reflecting the decrease in the single-particle gap. The
lower five curves, for % values between 0.29 and 0.37, are for the
normal state. Here U ¼ 8t, t0 ¼ $0:3t0, t00 ¼ $0:08t, and a
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Fig. 9: Dominant correlations in the 2D repulsive Hubbard model: DCA/QMC results for
a 24-site cluster with U = 4t and 〈n〉 = 0.85. Left panel: Leading eigenvalues of the Bethe-
Salpeter equation (43) in different channels. The Q = 0 pairing eigenvalue has dx2−y2-wave
symmetry and increases towards one at low temperatures. TheQ = (π, π) magnetic eigenvalue
dominates but saturates at low temperatures, and the Q = 0 charge eigenvalue remains small.
The inset shows the position of the cluster momenta K in the 24-site cluster. Right panel:
The frequency ωn = (2n + 1)πT dependence of the (normalized) leading dx2−y2-wave pairing
eigenvector φd(K, ωn) for T = 0.125t reflects the ωm = 2mπT dependence of the (normalized)
antiferromagnetic spin susceptibility χs(Q = (π, π), ωm). The inset shows the dx2−y2-wave
cosKx − cosKy momentum dependence of φd(K, ωn = πT ) along the dashed line shown in
the left inset. Figure from [26].

dimensions, i.e., Pd(T ) ∼ exp[2B/
√
T − Tc]. We see that 1/Pd(T ) goes to zero, i.e., Pd(T )

diverges, at a temperature Tc(Nc) for most clusters, with the 4-site cluster clearly showing the
largest Tc ≈ 0.05t. As expected, for larger clusters Tc falls but is stabilized when Nc & 12,
for which Tc ≈ 0.02t. More recent calculations [22] using the DCA+ extension were able to
go to even larger clusters, and found similar results with similar Tc in the large cluster limit.
These calculations were also done for larger U = 7t, for which a larger Tc ≈ 0.05t was found.
These calculations have thus provided evidence that the doped 2D Hubbard model has a d-wave
superconducting instability at finite temperatures.

Pairing mechanism

So far, the calculations we have discussed are “numerical experiments”, i.e., they show that a
model, despite the presence of only repulsive interactions, can have a superconducting ground
state, but do not give an answer to the question of what causes it. Unlike real experiments,
however, we can directly analyze the effective interaction that gives rise to superconductivity in
this model, i.e., the irreducible particle-particle vertex Γ pp(K,K ′) that enters the Bethe-Salpeter
equation (43) for the pair-field susceptibility. This vertex describes the scattering of a pair of
electrons with momenta and spins (k ↑,−k ↓) to a pair of electrons with (k′ ↑,−k′ ↓) (see
Fig. 5). As discussed in Sec. 2.4, we can also study the leading eigenvalue and -vector of the
Bethe-Salpeter equation and thus obtain new insight into this question.
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The left panel of Fig. 9 shows the temperature dependence of the leading eigenvalue λd(T ) of
the particle-particle Bethe-Salpeter equation (43) for U = 4t, 〈n〉 = 0.85, calculated with DCA
in the 24-site cluster shown in the inset [26]. As one sees from the blue curve, it rises sharply
at low temperatures and approaches one, consistent with the divergence in the pair-field suscep-
tibility. One can also construct similar Bethe-Salpeter equations for the charge and magnetic
particle-hole channels. The leading eigenvalues for these channels are shown in red (Q = (π, π)

magnetic) and green (Q = 0 charge). We see that the magnetic eigenvalue is initially domi-
nant, approaches one, but then saturates at values smaller than one at low temperatures. The
leading eigenvalue in the charge channel, in contrast, remains small over the entire temperature
range. From this, we can conclude that antiferromagnetic and superconducting correlations are
the dominant correlations in the system.
The momentum dependence of the eigenvector φd(K, ωn) corresponding to the leading pairing
eigenvalue along the dashed line in the inset of the left panel is shown in the inset of the right
panel. We see that it has a dx2−y2-wave cosKx − cosKy dependence. We note that in contrast
to the calculation of the pair-field susceptibility, where a d-wave form factor is assumed, here
this comes out naturally. The Matsubara frequency dependence of the pairing eigenfunction
φd(K, ωn) is shown in the main right panel and compared with the frequency dependence of the
Q = (π, π) magnetic susceptibility χs(Q, ωm). From this we see that (1) the pairing is retarded,
i.e., frequency dependent, and (2) the pairing dynamics reflects that of the antiferromagnetic
spin fluctuations.
We can also study the momentum and frequency dependence of Γ pp(K, ωn,K

′, ωn′) directly.
Its momentum dependence is shown for three different temperatures in Fig. 10. We see that
Γ pp(K,K ′) is peaked at large momentum transfer K −K ′ = (π, π), and this peak increases
in size as the temperature is lowered. This mirrors the growth of the antiferromagnetic spin
fluctuations with decreasing temperature, as seen in the plot of χs(Q = (π, π), ωm = 0) in the
same figure.
Interestingly, we see that the pairing interaction Γ pp in momentum space is positive, that is,
repulsive! One may then ask: How does a repulsive interaction give rise to pairing? The
answer lies in its momentum structure. If we look at the Bethe-Salpeter equation (43), or its
simpler version, the BCS gap equation (45), we see that for an interaction V (k,k′) ≡ V that
does not depend on momentum, a non-trivial solution ∆(k) 6= 0 only exists if V < 0. This
follows from the minus sign on the left hand side and the fact that the other terms under the
sum are all positive. This is the case for the conventional BCS superconductors or the attractive
Hubbard model discussed in Sec. 3.1, for which V < 0 and the gap equation gives an s-wave
gap ∆(k) ≡ ∆ without momentum dependence.
In contrast, the pairing interaction we find for the Hubbard model is positive and has momentum
dependence. In particular, it increases with increasing momentum transfer k − k′. The Fermi
surface of the doped Hubbard model is schematically shown in the right panel of Fig. 11. It is
similar to that of the hole-doped cuprates. The pairing interaction V (k,k′) scatters a pair with
momenta (k,−k) to a pair with momenta (k′,−k′) for k and k′ near the Fermi surface and this
scattering is strongest for a momentum transfer of k − k′ = (π, π). If the pairing gap ∆(k′)
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Fig. 10: Momentum structure of the pairing interaction in the 2D Hubbard model: Top
panel: K −K ′ dependence of Γ pp(K,K ′) for ωn = ωn′ = πT calculated with DCA/QMC
for a Hubbard model with U = 4t and 〈n〉 = 0.85 on a 4×4 cluster for different temperatures.
Lower panel: Q-dependence of the spin susceptibility χs(Q, ωm = 0) for the same parameters.
Both quantities display a similar increase near (π, π) as the temperature is lowered. Figure
from [5].

is positive for k′ = (π, 0), and V (k − k′) predominantly scatters pairs from k′ = (π, 0) to
k = (0, π), the gap equation has a non-trivial (∆(k) 6= 0) solution if ∆(k) < 0 for k = (0, π).
This is the case for a dx2−y2-wave gap ∆(k) ∼ coskx − cos ky, which changes sign between
k = (π, 0) and (0, π). Hence, the dx2−y2-wave momentum structure of the gap arises naturally
from a pairing interaction that is repulsive in momentum space and peaked at large momentum
transfer. In fact a superconducting gap that changes sign on the Fermi surface generally signals
a non-BCS like repulsive pairing interaction and therefore is taken as evidence for the presence
of unconventional superconductivity [5].
How a repulsive pairing interaction that is peaked at (π, π) can lead to pairing can also be seen
by Fourier-transforming the interaction Γ pp(K,K ′) to real space, according to

Γ pp(`x, `y) =
∑
K,K′

eiK` Γ pp(K,K ′) eiK
′`, (47)

for ωn = ωn′ = πT . Here, Γ pp(`x, `y) is the strength of the ωn = ωn′ = πT pairing interaction
between a singlet pair formed with one electron at the origin and the other at site (`x, `y). It is
shown in the right panel of Fig. 11. We see that this interaction is strongly repulsive for on-site



13.22 Thomas A. Maier

568 EUROPHYSICS LETTERS

Fig. 5 – The temperature-doping phase diagram of the 2D Hubbard model calculated with QMC and
DCA for Nc = 4, U = 2. TN and Tc were calculated from the divergences of the antiferromagnetic
and d-wave susceptibilities, respectively. T ∗ was calculated from the peak of the bulk magnetic
susceptibility.

the order of J , so magnetically mediated pairing is possible. For Nc = 4 and δ = 0.05, the
d-wave pair-field susceptibility diverges at Tc ≈ 0.021, with an exponent which is less than
one, indicating that the fluctuations beyond DMFA which suppress the antiferromagnetism
are also responsible for pairing.

The phase diagram of the system is shown in fig. 5. We are determining the phase bound-
aries by the instability of the paramagnetic phase (divergence of the corresponding suscep-
tibility). Therefore, the overlap of d-wave superconducting and antiferromagnetic phase for
dopings δ < 0.05 does not indicate a coexistence of these phases. It merely states that if the
phase with higher transition temperature is suppressed (e.g., due to impurity effects or long-
range interactions not included here) a phase transition at the lower transition temperature
might happen from the paramagnetic state.

We also include T ∗, the pseudogap temperature fixed by the peak bulk susceptibility. At
low temperatures, it serves as a boundary separating the observed Fermi-liquid and non-Fermi-
liquid behavior. For T < T ∗ and δ < 0.2 the self-energy shows non-Fermi-liquid character for
the parts of the Fermi surface closest to k = (π, 0) whereas the low-temperature self-energy
is Fermi-liquid–like for δ >∼ 0.2. The d-wave transition temperature is maximum at δ ≈ 0.05.
The superconductivity persists to large doping, with Tc dropping very slowly. In contrast to
experimental findings, the pairing instability (preceded by an AF instability) persists down
to very low doping. One possible reason for this is that the model remains very compressible
down to very low doping δ ∼ 0.025. This could be due to the lack of long-ranged dynamical
spin correlations or stripe formation which could become more relevant as Nc increases or
when multiple Hubbard planes are coupled together. The effect of such additional non-local
corrections (Nc > 4) is presently unknown. However, we believe that a finite mean-field
coupling between Hubbard planes will stabilize the character of the phase diagram presented
here as Nc increases. A finite interplane coupling will also invalidate the Mermin-Wagner
theorem, preventing a vanishing TN for the AF phase as Nc increases. Such work is currently
in progress.

bars on larger cluster results are expected to be of the same
order or larger. The results clearly substantiate the topo-
logical arguments made above.

As noted before, the Nc! 4 result is the mean-field
result for d-wave order and hence yields the largest pairing
correlations and the highest Tc. As expected, we find large
finite-size and geometry effects in small clusters. When
zd < 4, fluctuations are overestimated and the d-wave
pairing correlations are suppressed. In the 8A cluster where
zd ! 1 we do not find a phase transition at finite tempera-
tures. Both the 12A and 16B cluster, for which zd ! 2,
yield almost identical results. Pairing correlations are en-
hanced compared to the 8A cluster and the pair-field
susceptibility Pd diverges at a finite temperature. As the
cluster size is increased, zd increases from 3 in the 16A
cluster to 4 in the larger clusters, the phase fluctuations
become two-dimensional, and as a result, the pairing cor-
relations increase further (with exception of the 18A clus-
ter). Within the error bars (shown for 16A only), the results
of these clusters fall on the same curve, a clear indication
that the correlations which mediate pairing are short
ranged and do not extend beyond the cluster size.

The low-temperature region can be fitted by the KT form
Pd ! A exp"2B=#T $ Tc%0:5&, yielding the KT estimates
for the transition temperatures TKT

c given in Table I. We
also list the values Tlin

c obtained from a linear fit of the low-
temperature region, which is expected to yield more accu-
rate results due to the mean-field behavior of the DCA
close to Tc [12]. For all clusters with zd ' 3 we find a
transition temperature Tc ( 0:023t ) 0:002t from the lin-
ear fits. We cannot preclude, however, the possibility of a
very slow, logarithmic cluster size dependence of the form
Tc#Nc% ! Tc#1% * B2="C * ln#Nc%=2&2 where Tc#1% is
the exact transition temperature. In this case it is possible
that an additional coupling between Hubbard planes could
stabilize the transition at finite temperatures.

In summary, we have presented DCA-QMC simulations
of the 2D Hubbard model for clusters up to Nc! 32 sites.
Consistent with the Mermin-Wagner theorem, the finite
temperature antiferromagnetic transition found in the
Nc! 4 simulation is systematically suppressed with in-
creasing cluster size. In small clusters, the results for the
d-wave pairing correlations show a large dependence on
the size and geometry of the clusters. For large enough
clusters, however, the results are independent of the cluster
size and display a finite temperature instability to a d-wave
superconducting phase at Tc ( 0:023t at 10% doping when
U ! 4t.
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FIG. 3 (color). Inverse d-wave pair-field susceptibility as a
function of temperature for different cluster sizes at 10% doping.
The continuous lines represent fits to the function Pd !
A exp"2B=#T $ Tc%0:5& for data with different values of zd.
Inset: magnified view of the low-temperature region.
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fully irreducible vertex !irr, the S ¼ 0 charge fluctuations
1
2"d, and the S ¼ 1 spin fluctuations 3

2"m . As noted, it is the
increase of # with momentum transfer that gives rise to the
attractive near-neighbor pairing and it is clear from Fig. 20

that this comes from the S ¼ 1 part of the interaction.
The fully irreducible vertex is essentially independent of
momentum transfer and so it contributes only to the on-site
repulsion, while the S ¼ 0 charge part decreases at large
momentum giving rise to a small repulsive near-neighbor
interaction.

In these numerical calculations, one also obtains the
dressed single-particle Green’s function Gðk; i!nÞ. Given G
and #pp, one can determine the Bethe-Salpeter eigenvalues
and eigenfunction in the particle-particle channel by solving

$T

N

X

k0
#PPðk;k0ÞG"ðk0ÞG#ð$k0Þ!"ðk0Þ¼#"!"ðkÞ: (13)

This is basically the fully dressed BCS gap equation and
when the leading eigenvalue goes to 1 the system becomes
superconducting. One can also construct similar Bethe-
Salpeter equations for the charge and magnetic particle-hole
channels. Figure 21 shows a plot of the leading eigenvalues
associated with the particle-particle pairing channel and the
particle-hole charge S ¼ 0 and spin S ¼ 1 channels for
U=t ¼ 4 and a filling hni ¼ 0:85. As the temperature is
lowered, the particle-hole S ¼ 1 antiferromagnetic channel
with center-of-mass momentum Q ¼ ð$;$Þ is initially domi-
nant. However, at low temperatures the Q ¼ 0 pairing chan-
nel rises rapidly and the divergence of the antiferromagnetic
channel saturates. The charge channel eigenvalue remains

FIG. 19 (color online). The real space structure of the pairing
interaction obtained from the Fourier transform Eq. (11) of
#ppðk; k0Þ at a temperature T ¼ 0:125t for U ¼ 4t and hni ¼
0:85. Here there is an attractive pairing interaction for a singlet
formed between an electron at the origin and a near-neighbor site.
The peak in #pp shown in Fig. 18 leads to a pairing interaction
which oscillates in space.

FIG. 20 (color online). The momentum dependence of the various contributions that make up the irreducible particle-particle pairing vertex
#pp. (a) The irreducible particle-particle vertex #pp vs q ¼ K $ K0 for various temperatures with !n ¼ !n0 ¼ $T. Here K ¼ ð$; 0Þ and K0

moves along the momentum values of the 24-site cluster which lay on the dashed line shown in the inset of Fig. 21. Note that the interaction
increases with the momentum transfer as expected for a d-wave pairing interaction. (b) The q dependence of the fully irreducible two-fermion
vertex !irr. (c) The q dependence of the charge density (S ¼ 0) channel 1

2"d for the same set of temperatures. (d) The q dependence of

the magnetic (S ¼ 1) channel 3
2"m . Here one sees that the increase in #pp with momentum transfer arises from the S ¼ 1 particle-hole

channel. From Maier, Jarrell, and Scalapino, 2006b.

1400 D. J. Scalapino: A common thread: The pairing interaction for . . .

Rev. Mod. Phys., Vol. 84, No. 4, October–December 2012

Fig. 11: D-wave pairing from repulsive interactions: Left panel: Sketch of how repulsive
scattering at large momentum transfer gives rise to dx2−y2-wave pairing for the Fermi surface
of a hole-doped Hubbard model. For this case, a gap that changes sign between the regions
near (π, 0) and (0, π) satisfies the BCS gap equation (45). Right panel: Real space Fourier-
transform Γ pp(`x, `y), Eq. (47), of the pairing interaction Γ pp(K,K ′) for ωn = ωn′ = πT
shown in Fig. 10 for T = 0.125t. Here red (blue) bars indicate positive (negative) values of
Γ pp(`x, `y) and the length of the bars corresponds to its magnitude. The pairing interaction
is strongly repulsive for on-site pairs, but attractive when the electrons forming the pair sit on
nearest-neighbor sites. Figure from [5].

pairs, but attractive (negative) if the electrons are on nearest-neighbor sites. At longer distances,
the interaction keeps oscillating but falls of rapidly with distance.

We have seen that the momentum and frequency structure of the pairing interaction given by
the irreducible particle-particle vertex Γ pp(k, ωn,k

′, ωn′) reflects that of the spin fluctuations
described by the spin susceptibility χs(q, ωm). In fact, from weak coupling theory, one expects
that

Γ pp(k, ωn,k
′, ωn′) ≈

3

2
Ū2χs(k − k′, ωn − ωn′), (48)

where Ū is a coupling constant. This form of the pairing interaction is only approximate, i.e.,
it only accounts for a subset of the Feynman diagrams that enter Γ pp. However, DCA studies
have found that other contributions, such as the charge fluctuations, are negligible [16]. Hence,
this approximate form has been shown to give a very good approximation of the “exact” DCA
vertex Γ pp and thus the resulting eigenvalues and -vectors of the Bethe-Salpeter equation, and
therefore Tc [27]. One then speaks of a spin-fluctuation pairing interaction, in which the pairing
is mediated by the exchange of (antiferromagnetic) spin fluctuations [5]. In contrast to the
electron-phonon interaction, however, in this case the electrons that are being paired provide
their own pairing glue, i.e., there are no separate degrees of freedom such as the phonons in
conventional superconductors that mediate the pairing. Thus, it is not possible to separately
tune the degrees of freedom that are being paired and the degrees of freedom that mediate
the pairing. This makes it difficult to optimize Tc. One may see this by using a separable
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with quantum Monte Carlo approaches, and so we will in-
stead study a simpler two-orbital model with only intraor-
bital Coulomb interactions. This model will be realized by a
bilayer Hubbard model. Its Hamiltonian is given by

H = −t
∑

⟨ij⟩mσ

(
c

†
imσ cjmσ + h.c.

)
− t⊥

∑

iσ

(
c

†
i1σ ci2σ + h.c.

)

+ U
∑

im

nim↑nim↓. (2)

Here, the layers are indexed by m, each layer is described
by the Hamiltonian in Eq. (1) and t⊥ is an additional hop-
ping parameter between neighboring sites in the bilayer
model. This model provides a simplified two-orbital system
in which one can study the type of pairing that can occur
in systems with multiple Fermi surfaces such as the iron-
pnictides.

In order to analyze these models, we will use a dynamic
cluster quantum Monte Carlo approximation (DCA/QMC)
[6, 8, 13]. The DCA maps the bulk lattice problem onto an
effective periodic cluster embedded in a dynamic mean-field
that is designed to represent the rest of the system. The effec-
tive cluster problem is then solved using a quantum Monte
Carlo algorithm. The results discussed in this paper were
obtained with a Hirsch–Fye method [8]. DCA/QMC calcu-
lations of the 2D Hubbard model have found many phenom-
ena that are also observed in the cuprates, including an anti-
ferromagnetic Mott state, d-wave superconductivity as well
as pseudogap behavior [13]. It therefore provides an inter-
esting framework to study many of the open questions in the
field.

Formally, the quantity of interest to study the nature of
pairing in these models is given by the two-particle irre-
ducible vertex in the particle-particle channel, Γ

pp
irr (k, k′)

[14]. Here, k = (k, iωn) with ωn a fermion Matsubara fre-
quency and we are interested in the singlet pairing channel.
This quantity describes the scattering of two electrons with
momenta k and −k and antiparallel spins to a state with
momenta k′ and −k′ and, therefore, describes the pairing
interaction. Together with the single-particle Green’s func-
tion G(k), it enters the Bethe–Salpeter equation

− T

N

∑

k

Γ
pp

irr

(
k, k′)G

(
k′)G

(
−k′)Φα

(
k′) = λαΦα(k) (3)

which provides information on the strength (λα) and mo-
mentum and frequency structure (Φα(k)) of the leading pair-
ing correlations in the system [14]. At Tc, λα = 1 and Φα(k)

becomes identical to the superconducting gap. In the 2D
Hubbard model, at low temperature, one finds that the eigen-
vector corresponding to the leading eigenvalue has a d-wave
coskx − cosky momentum dependence.

Previous DCA/QMC simulations of the 2D Hubbard
model [14, 15] have found that the momentum and fre-
quency dependence of the pairing interaction Γ

pp
irr (k, k′) is

Fig. 1 (a) Superconducting transition temperature Tc versus doping x
for the 2D Hubbard model with U = 8 calculated with DCA/QMC on
an 8-site cluster. (b) Normalized interaction strength Vd and “intrinsic”
pair-field susceptibility Pd,0 versus doping x calculated at a tempera-
ture T = 0.125

similar to that of the spin susceptibility χ(k − k′), providing
evidence that that pairing interaction in this model is carried
by spin fluctuations.

In a spin fluctuation picture, one can naturally under-
stand the drop of Tc with doping on the overdoped side of
the cuprate phase diagram, since the spin-fluctuations are
weakened by doping away from the antiferromagnetic par-
ent state. On the other hand, the drop of Tc with underdop-
ing is difficult to understand in a picture where pairing is
mediated by spin fluctuations, since one would expect them
to get stronger when the system is doped towards the Mott
state. To investigate this issue, we show in Fig. 1a the tem-
perature versus doping superconducting phase diagram of
the 2D Hubbard model, calculated with DCA/QMC on an 8-
site cluster with U = 8. One sees that these calculations cor-
rectly predict the experimentally observed dome-like struc-
ture of the superconducting phase diagram, with Tc dropping
with both over and underdoping.

In order to analyze how this behavior arises from the
Bethe–Salpeter equation (3), we have calculated the “in-
trinsic” pair-field susceptibility projected onto the leading
eigenvector, Pd,0 = T/N

∑
k Φd(k)2G(k)G(−k) and the

strength of the pairing interaction Vd from VdPd,0 = λd . The
doping dependence of these quantities calculated at a low
temperature above Tc are shown in Fig. 1b. As one would
expect from a spin-fluctuation based pairing interaction, Vd

rises monotonically with decreasing doping toward the Mott
insulator. In contrast, Pd,0 decreases with decreasing dop-

Fig. 12: Dome-shaped structure of the superconducting phase: Top panel: Superconducting
Tc versus doping x in the 2D Hubbard model with U = 8t calculated with DCA/QMC for
an 8-site cluster. Bottom panel: Normalized interaction strength Vd and intrinsic pair-field
susceptibility Pd,0 versus doping x for T = 0.125t. The dome-like shape arises from competing
trends in these two quantities as the doping varies. Figure from [28].

approximation for Γ pp [26],

Γ pp(K,K ′) ≈ −Vd φd(K)φd(K
′), (49)

which becomes valid close to Tc when the d-wave eigenvalue λd is well separated from other
eigenvalues. With this, the Bethe-Salpeter equation (43) for the d-wave eigenvalue becomes

Vd(T )Pd,0(T ) ≈ λd (50)

with the “intrinsic” d-wave pair-field susceptibility Pd,0(T ) = T/Nc

∑
K φ

2
d(K) Ḡ0

2,↑↓(K).
The doping x = 1 − 〈n〉 dependence of Pd,0(T ) and Vd(T ) extracted from Vd = λd/Pd,0 via
Eq. (50) is shown in the bottom panel of Fig. 12 together with the x-dependence of Tc. From
this we see that the doping x, as a tuning parameter, has opposite effects on the strength of the
pairing interaction Vd and the intrinsic pair-field susceptibility Pd,0, and thus Tc as seen in the
top panel: With decreasing x, Vd rises, but Pd,0 falls, and the opposite behavior is observed
with increasing x. The increase in Vd as half-filling (x = 0) is approached can be understood
from the increase in the strength of the spin-fluctuations. The reason that this increase does not
lead to an increase in Tc is that, at the same time, Pd,0 is suppressed. This can be understood
from a reduction in the quasiparticle weight as the Mott state is approached. The interplay of
the pairing strength Vd and the intrinsic pair-field susceptibility Pd,0 and their opposite doping
dependence lead to the dome-shaped Tc seen in the top panel of Fig. 12.
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3.3 Extended Hubbard model

In the conventional electron-phonon mechanism of superconductivity, retardation is a neces-
sary ingredient in order to overcome the repulsive effect of the Coulomb interaction. In the
Hubbard model, as well as in the cuprates, however, the d-wave structure of the Cooper pair
wave function completely avoids the strongly repulsive effect of the local Coulomb U , because
the electrons making up the pair sit on nearest-neighbor sites. Retardation is therefore not a
necessary ingredient in this case. From the strong frequency dependence of the d-wave eigen-
vector shown in Fig. 9, however, we see that the pairing is nevertheless retarded on a scale set
by the dynamics of the spin fluctuations.
The situation changes when an additional nearest-neighbor Coulomb repulsion

V
∑
〈ij〉,σσ′

niσnjσ′ (51)

is considered and added to the Hubbard Hamiltonian in Eq. (1). The idea is that in realistic
systems, the Coulomb repulsion is hardly screened to a purely local interaction, but has an
additional short-ranged contribution. The resulting extended Hubbard model has recently been
studied with DCA to examine the effect of V on d-wave superconductivity [29]. For d-wave
pairs, where the electrons sit on neighboring sites, V is expected to have detrimental effects on
superconductivity.
This is seen in the plot of Tc versus the strength of V shown in Fig. 13. These results were
obtained from 2×2-cluster DCA calculations of the leading d-wave eigenvalue for the extended
Hubbard model for U = 7t and 〈n〉 = 0.9. Although, as expected, Tc is reduced with increas-
ing V, this decrease is rather modest, even up to relatively large values of V close to U/2. Why
is d-wave superconductivity so robust with respect to a nearest-neighbor Coulomb repulsion V,
which, in a static picture, will strongly reduce the binding energy of a d-wave pair and thus
should rapidly suppress Tc? A clue lies in the frequency dependence of the pairing interaction.

d-WAVE SUPERCONDUCTIVITY IN THE PRESENCE OF … PHYSICAL REVIEW B 97, 184507 (2018)

FIG. 1. (a) Temperature dependence of the leading (dx2−y2 -wave)
eigenvalue λd (T ) of the Bethe-Salpeter equation in the particle-
particle channel, Eq. (2) for the extended Hubbard model in Eq. (1)
with U = 7 and ⟨n⟩ = 0.9 for different magnitudes of the nearest-
neighbor Coulomb repulsion V . (b) d-wave eigenvalue λd at a fixed
temperature of T = 0.1 as a function of V for different fillings
⟨n⟩. (c) d-wave superconducting transition temperature Tc extracted
from λd (Tc) = 1 as a function of V. d-wave pairing is only weakly
suppressed by the interaction V as long as V ! U/2.

One also sees that "d (ωm) becomes less attractive at low
frequencies with increasing V . This reduction even exceeds the
frequency-independent 4V repulsive contribution, indicating
that there is another repulsive and dynamic contribution that
further weakens the d-wave pairing interaction. We come back

FIG. 2. The d-wave-projected irreducible particle-particle vertex
"d (ωm) for different values of V for ⟨n⟩ = 0.9. For finite V, "d

is attractive at low frequencies but then turns repulsive at higher
frequencies where it approaches 4V .

to this point later when we examine the spin and charge
susceptibilities.

The dynamics of the pairing interaction is reflected in the
frequency dependence of the d-wave eigenvector φd (K,ωn).
This quantity is plotted in Fig. 3 for K = (π,0) and T = 0.1 for
different values of V and ⟨n⟩ = 0.9. For V = 0, φd [(π,0),ωn]
falls to zero on a characteristic frequency scale. As previously
found in Refs. [24,27], this scale is determined by the spin
S = 1 particle-hole continuum, which for large U is several
times J = 4t2/U . For finite V , the eigenvector changes sign
and becomes negative at higher frequencies. This sign change
mirrors the sign change in "d (ωn). Just as φd (K,ωn) changes
sign in K space reflecting the repulsive nature of the pairing
interaction at large momentum transfer [2,24], φd (K,ωn) also
changes sign in frequency to adapt to the repulsive tail of the
pairing interaction due to the Coulomb V at high frequencies.
Thus, just as in the electron-phonon case, retardation is

FIG. 3. The frequency dependence of the leading d-wave eigen-
vector φd (K,ωn) of the Bethe-Salpeter Eq. (2) for K = (π,0) and
T/t = 0.1 for different values of V and ⟨n⟩ = 0.9. The sign change
in φd (K,ωn) as a function of frequency for finite V minimizes the
repulsive effect of V .

184507-3

Fig. 13: Resilience of d-wave pairing to a nearest-neighbor Coulomb repulsion: DCA/QMC
2×2-cluster results for Tc versus the nearest-neighbor Coulomb repulsion V in an extended 2D
Hubbard model with U = 7t and 〈n〉 = 0.9. Figure from [29].
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Fig. 14: The role of retardation in the pairing mechanism: Left panel: DCA/QMC 2×2-
cluster results for the d-wave projected pairing interaction Γd(iωm = iωn−iωn′) with ωn′ = πT
versus ωm for different values of V for 〈n〉 = 0.9 and T = 0.1t. Γd is attractive at low
frequencies and for finite V turns repulsive at higher frequencies. Right panel: Frequency
dependence of the leading d-wave eigenvector φd(K, ωn) for K = (π, 0) for different values
of V . The sign change in φd(K, ωn) reduces the repulsive effect of V and thus stabilizes d-wave
superconductivity. Figure from [29].

Fig. 14 shows a plot of the d-wave projected pairing interaction

Γd(ωm = ωn − ωn′) =

∑
K,K′ gd(K)Γ pp(K, ωn,K

′, ωn′)gd(K
′)∑

K g2d(K)
. (52)

Here gd(K) = cosKx − cosKy and ωn′ = πT . For V = 0, we see that Γd(ωm) is negative
over the whole frequency range. In other words, the pair scattering is attractive in the d-wave
channel, as we know from the previous results for the standard model without V . When V is
turned on, we see that Γd(ωm) remains attractive at low frequencies, but then turns repulsive at
higher frequencies. This reflects the fact that V is repulsive in the d-wave channel.

The dynamics of Γd(ωm) is similar to that of the conventional electron-phonon superconductors,
which is attractive at low frequencies due to the electron-phonon interaction, and repulsive at
high frequencies due to the Coulomb repulsion. The effect of this sign change on the d-wave
pairing eigenvector is shown in the right panel of Fig. 14, where the frequency dependence of
φd(K, ωn) is plotted for different values of V. As seen before in Fig. 9, for V = 0, it rapidly falls
to zero. For finite V , however, we see that φd(K, ωn) changes sign and turns negative at high
frequencies, reflecting the sign change in the d-wave pairing interaction Γd(iωm). Thus, just as
φd(K, ωn) changes sign inK to adapt to the repulsive nature of the pairing interaction at large
momentum transfer, φd(K, ωn) also changes sign in frequency to adapt to the repulsive tail of
the pairing interaction due to the Coulomb V . Therefore, just as in the electron-phonon case,
retardation is important and necessary to protect the d-wave pairs from the repulsive effects of
the (nearest-neighbor) Coulomb interaction.



13.26 Thomas A. Maier

4 Summary and concluding remarks

In these lecture notes, we have described how one can study superconductivity within the DMFT
and DCA frameworks and how these approaches have been used to provide new insight into the
nature of the pairing mechanism that leads to superconductivity in Hubbard models. As with
other ordered states, there are always two alternative methods to determine a possible phase
transition to a symmetry broken state within a mean-field approach like DMFT and DCA. The
first option is to extend the algorithm to account for a finite order parameter that describes
the symmetry broken state (anomalous propagator 〈ck↑c−k↓〉 in the case of superconductivity),
and start the calculation with a finite field that couples to the order parameter. This field is
then switched off after a few iterations and the calculation relaxes to either a state with order or
without. One may also keep the field turned on during the full calculation, carry out calculations
for different field strengths, and then calculate the response (susceptibility) to the field from the
derivative of the order parameter with respect to the field. The transition temperature Tc is then
obtained from the temperature where the susceptibility diverges. The second option is to carry
out the usual normal state calculation in the absence of order or an external field, but instead
calculate the susceptibility directly from the 4-point correlation function constructed from the
order parameter. Since both DMFT and DCA approaches are thermodynamically consistent [7],
both calculations will give identical results for the susceptibility and therefore Tc.

We have also seen that DMFT and DCA are powerful approaches to study superconductivity
in Hubbard models. DMFT, due to its local nature, can only describe superconducting phases
with order parameters that have a local contribution, such as s-wave. Applied to the attractive
Hubbard model, it allows to study s-wave superconductivity, which is expected in the doped
model due to its on-site attractive pairing potential U < 0. While it captures the rise of Tc with
increasing |U |, DCA calculations employing larger clusters are needed to describe the downturn
of Tc at large |U | due to phase fluctuations.

For the repulsive Hubbard model, s-wave pairing is energetically unfavorable and therefore
DMFT is not an adequate approach. DCA calculations employing a 2×2 cluster are the sim-
plest possible calculations to study the dx2−y2-wave pairing state that is expected for this model,
which offers the most basic description of the cuprate high-temperature superconductors. And
indeed, such 2×2-cluster DCA calculations have found properties reminiscent of the real ma-
terials, including antiferromagnetic, d-wave superconducting, and pseudogap behavior. DCA
calculations also find that superconductivity remains stable in larger cluster calculations, pro-
viding evidence that the doped 2D Hubbard model does have a finite temperature d-wave su-
perconducting transition.

Finally, we have seen that one can go beyond these numerical experiments and use these ap-
proaches to get insight into the mechanism that leads to pairing in these systems. Unlike real
experiments, these calculations can be used to directly analyze the momentum and frequency
structure of the pairing interaction. For the simple Hubbard model, one finds that it reflects the
momentum structure of the spin fluctuations, and one speaks of a spin-fluctuation pairing inter-
action. Just as in the conventional electron-phonon case, this interaction is retarded on a scale
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set by the dynamics of the antiferromagnetic spin fluctuations. While this retardation is not
needed to overcome the local Coulomb repulsion in the simple Hubbard model, we have seen
that it is essential in making the d-wave pairing state resilient to an additional nearest-neighbor
Coulomb repulsion.
Because of the difficulty associated with solving the DMFT impurity or DCA cluster problem,
most applications of these approaches in the field of superconductivity have been concerned
with single-band Hubbard models. Additional orbital degrees of freedom must, however, be
included in more complex models if one wants to study most materials other than the cuprates,
such as, for example, the iron-based superconductors. While this remains a challenging but
desirable task for the long term, more immediate progress may be made with simple toy models,
such as the bilayer Hubbard model studied in Ref. [30], that have some overlap with the physics
of the real materials.
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