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1 Introduction

Quantum Monte Carlo (QMC) methods are a broad and versatile class of stochastic algorithms
for solving the many-body Schrödinger equation. They have been applied to fermions and
bosons at zero and finite temperatures. Zero temperature calculations include both ground and
excited states. Application areas range from quantum chemistry to lattice models of correlated
materials to nuclear physics. Although the various methods differ greatly in their details, there
is a small core of underlying ideas that are common to all the methods, which we will em-
phasize in this lecture. This lecture will be limited to zero temperature methods for fermionic
systems. The emphasis will be on providing a unified description of both variational and pro-
jector Monte Carlo methods, both in discrete and in continuous space. The wide range of QMC
applications will not be discussed. The finite-temperature path-integral Monte Carlo method
has been reviewed in Ref. [1]. Details of zero-temperature methods, which we do not have time
for here, can be found in the original papers, in books and review articles [2–8], and in chapters
by Becca, Lüchow, Prokof’ev, Sandvik, and Zhang in this volume.
The many-body Schrödinger equation can be solved straightforwardly by expanding the wave-
function in a linear combination of determinants of single-particle orbitals, a method that is
known as full configuration interaction. The limitation is that the number of states scales com-
binatorially in the number of orbitals Norb, and the number of electrons N = N↑ + N↓, as
NorbCN↑ × NorbCN↓ , where N↑, N↓ are the number of up- and down-spin electrons respectively,
so this brute-force method can be applied only to tiny systems. In contrast, some of the QMC
methods scale as a low-order polynomial in N , provided that an approximate solution whose
accuracy depends on the quality of a trial wavefunction is acceptable. Frequently high qual-
ity trial wavefunctions can be constructed, making QMC one of the few methods that provide
accurate solutions for difficult problems.

2 QMC in a nutshell

I will distinguish between QMC simulations and QMC calculations, although almost all other
researchers use these terms interchangeably. To my mind the stochasticity in QMC simulations
mimics the stochasticity of the experimental system, e.g., the diffusion of neutrons in a nuclear
reactor. On the other hand, QMC calculations, which is what we will be discussing here,
introduce stochasticity into problems that are in fact deterministic. The solution of the many-
body Schrödinger equation is perfectly deterministic (not to be confused with the probabilistic
interpretation of the wavefunction amplitude) so it is in fact rather remarkable that introducing
stochasticity makes the problem more tractable.
QMC methods are most useful when the dimension of the Hilbert space is very large and other
many-body methods become impractical. They can be used both when the state of the system
is described by discrete degrees of freedom, e.g., spin states or expansion coefficients of the
wavefunction in a finite basis, as well as when the state is described by continuous degrees of
freedom, e.g., the wavefunction amplitudes as a function of 3N−dimensional electron coordi-
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nates, in which case the Hilbert space is in fact infinite! The basic ideas of QMC are the same
in discrete and continuous systems, so I will provide a unified treatment of both cases and will
use discrete and continuous notation (e.g., sums and integrals) interchangeably.

2.1 Variational Monte Carlo

Many QMC methods rely on having good approximate wavefunctions to improve their accu-
racy and efficiency. So, we consider three wavefunctions: the exact wavefunction |Ψ0〉 and two
approximate wavefunctions which we call the trial wavefunction |ΨT 〉 and the guiding wave-
function |ΨG〉: Their expansions in a (complete or incomplete) basis of Nst states are

Exact |Ψ0〉 =
Nst∑

i

ei |φi〉, where ei = 〈φi|Ψ0〉 (1)

Trial |ΨT 〉 =
Nst∑

i

ti |φi〉, where ti = 〈φi|ΨT 〉 (2)

Guiding |ΨG〉 =
Nst∑

i

gi |φi〉, where gi = 〈φi|ΨG〉 (3)

If the basis is incomplete then “exact” should be construed to mean “exact in that basis.” ΨT
and ΨG are frequently chosen to be the same function, but they serve two different purposes
and at times there are good reasons for choosing them to be different, as will become apparent
shortly. The basis state indices may be discrete (e.g., determinants of single-particle orbitals)
or continuous (e.g., the 3N coordinates of the N electrons). In either case one can use |ΨT 〉 to
define the “local energy” of that state

EL(i) =

∑Nst

j Hijtj

ti
. (4)

The variational energy of |ΨT 〉 can be evaluated as follows:

EV =
〈ΨT|Ĥ|ΨT〉
〈ΨT|ΨT〉

=

∑Nst

ij 〈ΨT|φi〉 〈φi|Ĥ|φj〉 〈φj|ΨT〉∑Nst

i 〈ΨT|φk〉 〈φk|ΨT〉

=

∑Nst

ij tiHijtj∑Nst

k t2k
=

Nst∑

i

t2i∑Nst

k t2k

∑Nst

j Hijtj

ti
=

Nst∑

i

t2i∑Nst

k t2k
EL(i)

≈

[∑NMC

i EL(i)
]
Ψ2
T

NMC

→ΨG 6=ΨT

[∑NMC

i

(
ti
gi

)2

EL(i)

]

Ψ2
G[∑NMC

k

(
tk
gk

)2
]

Ψ2
G

(5)

In the last line, we switch from the sum over all states to a sum over states sampled with
probability g2

i /
∑Nst

k g2
k, first for ΨG = ΨT (the usual case) and then for ΨG 6= ΨT. In the limit
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that ΨT → Ψ0, EL,i → E0, the exact energy, independent of i. It is now apparent that the
requirements on |ΨT 〉 and |ΨG〉 are rather different. We wish to employ a |ΨT 〉 which is not only
a good approximation to |Ψ0〉 (i.e., one that gives a low EV and has small rms fluctuations in
EL), but also one for which EL can be evaluated efficiently. For a discrete basis, this means that
Ĥ should be very sparse in that basis, whereas for the continuous real space basis this requires
that 〈φk|ΨT〉 and its Laplacian (needed for calculating the kinetic energy) can be evaluated
efficiently. Instead the requirements on |ΨG〉 are that 〈φi|ΨG〉 can be evaluated efficiently and
that it is nonzero whenever 〈φi|Ψ0〉 is nonzero, since otherwise the expectation values would be
biased relative to the actual variational value.
Hence the minimal ingredients for an accurate and efficient VMC algorithm are:

1. A method (Metropolis-Hastings) for sampling 〈φk|ΨT〉2.

2. A |ΨT 〉 with variational parameters that is flexible enough to be a good approximation to
|Ψ0〉 for optimized parameters, and for which 〈φk|ΨT〉 andEL can be evaluated efficiently.

3. Robust and efficient methods for optimizing the variational parameters.

These ingredients will be discussed in Secs. 3, 5, and 6 respectively.

2.2 Projector Monte Carlo

Projector Monte Carlo (PMC) methods evaluate the true energy E0 (in the absence of a “sign
problem”) rather than the variational energyEV using a “mixed estimator,” 〈Ψ0|Ĥ|ΨT〉/〈Ψ0|ΨT〉,
for the energy. Following almost the same steps as in VMC

E0 =
〈Ψ0|Ĥ|Ψ0〉
〈Ψ0|Ψ0〉

=
〈Ψ0|Ĥ|ΨT〉
〈Ψ0|ΨT〉

=

∑Nst

ij 〈Ψ0|φi〉 〈φi|Ĥ|φj〉 〈φj|ΨT〉∑Nst

k 〈Ψ0|φk〉 〈φk|ΨT〉

=

∑Nst

ij eiHijtj∑Nst

k ektk
=

Nst∑

i

eiti∑Nst

k ektk

∑Nst

j Hijtj

ti
=

Nst∑

i

eiti∑Nst

k ektk
EL(i)

=

[∑NMC

i EL(i)
]
ΨTΨ0

NMC

→ΨG 6=ΨT

[∑NMC

i

(
ti
gi

)
EL(i)

]
ΨGΨ0[∑NMC

k

(
tk
gk

)]
ΨGΨ0

(6)

The only difference between Eqs. (6) and (5) is that the sampled distribution is eigi/
∑Nst

k ekgk
rather than g2

i /
∑Nst

k g2
k. At first sight this seems like an insurmountable obstacle since |ΨG〉

is known, but |Ψ0〉 is not. In Sec. 4 we describe methods for sampling the mixed distribution
needed for PMC. The properties required of |ΨT〉 and |ΨG〉 are exactly the same as for VMC.
Note that although an unbiased energy is obtained in the absence of a sign problem regardless of
|ΨT〉 and |ΨG〉, the statistical error depends on |ΨT〉 and |ΨG〉. When the sign problem is present,
approximations will be needed and their accuracy and efficiency depend on |ΨT〉 and |ΨG〉.
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3 Variational Monte Carlo

3.1 Metropolis-Hastings method

As discussed in Sec. 2.1 we need to sample with probability g2
i /
∑Nst

k g2
k. To familiarize the

reader with both discrete and continuous notation, we now assume we are working in con-
tinuous real space, in which case we need to sample from the probability density function
ρ(R) = ψ2

T(R)/
∫
dR ψ2

T(R), where we assume that the choice |ΨG〉 = |ΨT〉 has been made
since that is the usual practice. It is possible to sample a large number of probability density
functions [9] directly (i.e., with no serial correlations) using the transformation or the rejection
methods, but not such complicated probability density functions, so instead the Metropolis-
Hastings method [10,11] is used. It was originally developed to sample the thermal Boltzmann
distribution, but is in fact a very powerful method for sampling any known discrete or continuous
distribution. (In Sec. 4 we will see how to sample the unknown distribution ψTψ0/

∫
dRψT ψ0!)

3.1.1 Markov chains

The Metropolis-Hastings method employs a Markov chain. A Markov chain is specified by two
ingredients:

1) an initial state

2) a transition matrix M(Rf |Ri) (probability of transition from Ri → Rf .) with the properties

M(Rf |Ri) ≥ 0, and

∫
dRf M(Rf |Ri) = 1. (Column-stochastic matrix) (7)

The first property expresses the fact that probabilities must be non negative. The second prop-
erty expresses the fact that a point at Ri must go somewhere at the next step. The eigenvalues
of a column-stochastic matrix are between 0 and 1, and there is at least one eigenvalue equal
to 1 since the vector with all components equal to one is a left eigenvector with eigenvalue 1,
and the left and right eigenvalues of any matrix are the same. If in addition M is a “primitive
matrix,” i.e., there exists an integer n for which all the elements of Mn are strictly positive, then
there is a unique eigenvector with eigenvalue 1 and the Markov chain is said to be “ergodic.”1

We wish to choose an M such that repeated application of M results in sampling ρ(R), so we
choose an M that satisfies

∫
dRf M(Ri|Rf) ρ(Rf) = ρ(Ri) =

∫
dRf M(Rf |Ri) ρ(Ri) ∀ Ri (8)

The first equality expresses a stationarity condition, namely that the net flux in and out Ri is
zero. Hence if one starts with the correct distribution ρ(R), repeated application of M will
continue to sample from ρ(R). The second equality follows from the definition of a stochastic
matrix. Eq. (8) shows that ρ(R) is a right eigenvector with eigenvalue 1. Since all the other

1Here we ignore some subtleties that arise when the space is infinite.
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eigenvalues are between 0 and 1, but not equal to 1, ρ(R) is the dominant right eigenvector
of M and repeated application of M results eventually in sampling ρ(R).
In practice, the length of Monte Carlo (MC) run should be long enough that there is a significant
probability of the system making several transitions between the neighborhoods of any pair of
representative states that make a significant contribution to the average. This ensures that states
are visited with the correct probability with only small statistical fluctuations. For example in
a double-well system many transitions between the two wells should occur, but we can choose
our Markov matrix to achieve this even if the barrier between wells is high.
A drawback of the Metropolis-Hastings method is that the sampled states are serially correlated.
The rate at which the initial density evolves to the desired density ρ and the autocorrelation time
of estimates of various observables is governed by the subdominant eigenvalues. In the ideal
situation all the other eigenvalues are zero and every sample is independent.

Construction ofM : Detailed balance condition We have as yet not provided a prescription
to construct M , such that ρ is its stationary state. To do this we impose the detailed balance
condition

M(Rf |Ri) ρ(Ri) = M(Ri|Rf) ρ(Rf) (9)

The detailed balance condition is more stringent than the stationarity condition. Instead of
requiring that the net flux in and out of each state is zero, it requires that the net flux between
every pair of states is zero. It is a sufficient, not a necessary condition, but it provides a practical
way to construct M .
To go further, it is convenient employ a 2-step process. Moves from Ri to a provisional point R′f
are proposed with probability T (R′f |Ri) and then accepted with probability A(R′f |Ri). The
corresponding Markov matrix is

M(Rf |Ri) =




A(Rf |Ri) T (Rf |Ri) if Rf 6= Ri

1−
∫
dR′f A(R′f |Ri) T (R′f |Ri) if Rf = Ri

(10)

M(Rf |Ri) and T (Rf |Ri) are stochastic matrices, but A(Rf |Ri) is not. The detailed balance
condition now becomes

A(Rf |Ri) T (Rf |Ri) ρ(Ri) = A(Ri|Rf) T (Ri|Rf) ρ(Rf)

i.e.
A(Rf |Ri)

A(Ri|Rf)
=

T (Ri|Rf)

T (Rf |Ri)

ρ(Rf)

ρ(Ri)
. (11)

3.1.2 Choice of acceptance matrix

To satisfy Eq. (11) we can choose

A(Rf |Ri) = F

(
T (Ri|Rf)

T (Rf |Ri)

ρ(Rf)

ρ(Ri)

)
(12)
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where F is any function for which F (x)/F (1/x) = x and 0 ≤ F (x) ≤ 1. Two possible choices
are F (x) = x/(1 + x) and F (x) = min{1, x}, corresponding to

A(Rf |Ri) =
T (Ri|Rf) ρ(Rf)

T (Ri|Rf) ρ(Rf) + T (Rf |Ri) ρ(Ri)
, (13)

and A(Rf |Ri) = min

{
1,
T (Ri|Rf)

T (Rf |Ri)

ρ(Rf)

ρ(Ri)

}
. (14)

The latter choice is the optimal choice since it maximizes the acceptance for given ρ and T ,
and is the choice made in the Metropolis et al. and the Hastings papers. Actually, Metropolis
et al. assumed that T (Ri|Rf) = T (Rf |Ri) in which case the factors of T drop out of Eq. (14),
and Hastings made the generalization to T (Ri|Rf) 6= T (Rf |Ri), which enables a more efficient
algorithm.

3.1.3 Choice of proposal matrix T

The optimal choice for the acceptance matrixA(Rf |Ri) is straightforward, Eq. (14), but there is
considerable scope for using one’s ingenuity to come up with good proposal matrices, T (Rf |Ri),
that give small serial correlations between samples. As mentioned before, the ideal choice of
M(Rf |Ri) has one eigenvalue equal to 1 and the rest zero. However, in practice the way to
find efficient choices for T (Rf |Ri) is not to think about eigenvalues, but instead to think about
choosing a T (Rf |Ri) that has large proposed moves and at the same time has high acceptance
probabilities, i.e.,

T (Ri|Rf)

T (Rf |Ri)

ρ(Rf)

ρ(Ri)
≈ 1. (15)

There is a great deal of freedom in the choice of T (Rf |Ri), the only constraints being that it is a
stochastic matrix leading to an ergodic Markov chain, and that it must be possible to efficiently
sample T (Rf |Ri) with a direct sampling method.
It may appear from Eq. (15) that our goal should be to make T (Rf |Ri) ∝ ρ(Rf) since in that
case the various factors cancel and the product becomes 1. This is in fact the case if it is possible
to achieve that condition over all space, but it is not—if it were possible, we would not be using
Metropolis-Hastings in the first place. So, we will discuss an alternative goal in a moment.
In order to prevent the acceptance from getting too small, it is common practice to restrict the
moves to be in the neighborhood of Ri by choosing T (Rf |Ri) to be non-zero, or at least not
negligible, only within a domain D(Ri) of volume Ω(Ri) around Ri. For a given functional
form of T (Rf |Ri) the acceptance decreases as Ω(Ri) increases, so, there exists an optimal
Ω(Ri) for which the system evolves the fastest.
To make further progress, we now make explicit that T (Rf |Ri) is an ergodic matrix by writing

T (Rf |Ri) =
S(Rf |Ri)∫
dRf S(Rf |Ri)

≈ S(Rf |Ri)

S(Ri|Ri)Ω(Ri)
, (16)
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where S(Rf |Ri) is non-zero only in the domain D(Ri). Then,

A(Rf ,Ri)

A(Ri,Rf)
=

T (Ri|Rf)

T (Rf |Ri)

ρ(Rf)

ρ(Ri)
≈ Ω(Ri)

Ω(Rf)

S(Ri|Ri)

S(Rf |Rf)

S(Ri|Rf)

S(Rf |Ri)

ρ(Rf)

ρ(Ri)
. (17)

Noting that for the present purpose S should be viewed as a function of the left index only, it is
apparent that the choice

S(Rf |Ri) ∝
√
ρ(Rf)/Ω(Rf) yields A(Rf ,Ri)/A(Ri,Rf) ≈ 1. (18)

To be more precise, if the log-derivatives of S(Rf |Ri) equal those of
√
ρ(Rf)/Ω(Rf) at Rf =

Ri, the average acceptance goes as 1 − O(∆3), where ∆ is the linear dimension of D(Ri),
provided that D(Ri) is inversion symmetric about Ri.
Another good choice for T (Rf |Ri), motivated by the diffusion Monte Carlo algorithm discussed
in Sec. 4, is

T (Rf |Ri) =
1

(2πτ)3N/2
exp

[
−
(
Rf −Ri −V(Ri) τ

)2

2τ

]
, (19)

where V(Ri) = ∇Ψ(R)/Ψ(R)|R=Ri
is called the drift velocity of the wave function and τ

is the time step which can be adjusted so as to minimize the autocorrelation time of the local
energy. This is sampled by choosing

Rf = Ri + V(Ri)τ + η, (20)

where η is a vector of 3N random numbers drawn from the Gaussian distribution with average 0

and standard deviation
√
τ .

We demonstrate the increase in the acceptance probability that can be achieved by using Eq. (18)
or Eq. (19) with a simple one-dimensional example. We wish to sample Ψ(R)2. The simplest
choice for T (Rf |Ri) is a uniform distribution in Ω(Ri) specified by |Rf − Ri| < ∆ and zero
outside

T (Rf |Ri) =





1

2∆
if Rf ∈ Ω(Ri),

0 elsewhere.
(21)

Instead, our recommended prescription from Eq. (18) is

T (Rf |Ri) =





1

2∆

(
1 +
∇Ψ(R)

Ψ(R)

∣∣∣∣
R=Ri

(Rf −Ri)

)
if Rf ∈ Ω(Ri),

0 elsewhere

(22)

and the prescription of Eq. (19) becomes

T (Rf |Ri) =
1

(2πτ)1/2
exp

[
−
(
Rf −Ri − V (Ri) τ

)2

2τ

]
. (23)
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Fig. 1: Plots of Ψ(R′), S(R′|R),
(
Ψ(R′)
Ψ(R)

)2
T (R,R′)
T (R′,R)

for the three choices of T (R′, R) in
Eqs. (21), (22), (23). The lower two plots have much larger average acceptances than the top.
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In Fig. 1 we show plots of Ψ(R′), S(R′|R), and
(
Ψ(R′)/Ψ(R)

)2
T (R,R′)/T (R′, R) for the

three different choices of T (R′, R) in Eqs. (21), (22), and (23). In the top plot
(
Ψ(R′)
Ψ(R)

)2
T (R,R′)
T (R′,R)

deviates linearly in R′ − R from 1 in the vicinity of R′ = R and deviates greatly from 1 over
much ofΩ(R), in the middle plot it deviates cubically inR′−R from 1 in the vicinity ofR′ = R

and is close to 1 in all of Ω(R), and in the bottom plot it deviates linearly in R′ −R from 1 but
stays close to 1 over a fairly wide range. Hence the choices of T (Rf |Ri) in Eq. (18) and (19)
result in much smaller autocorrelation times than the simple choice of a symmetric T (Rf |Ri).

The analysis in Eqs. (16) to (19) and the examples in Eqs. (21) to (23) assume that ρ(R)=Ψ(R)2

has continuous derivatives. In reality, Ψ(R)2 has derivative discontinuities at electron-nucleus
and electron-electron coincidence points. The former are much more important than the latter,
since the wavefunction is large there and the velocity is directed towards the nucleus, so the
electron tends to overshoot the nucleus. So, there is a high likelihood of having electrons
near the nuclei and their acceptances are likely to be small. To tackle this problem, a highly
efficient VMC algorithm with autocorrelation times of the local energy close to 1 is presented
in Refs. [12, 13] wherein the electron moves are made in spherical coordinates centered on
the nearest nucleus and the size of radial moves is proportional to the distance to the nearest
nucleus. In addition, the size of the angular moves gets larger as one approaches a nucleus.
This algorithm allows one to achieve, in many cases, an autocorrelation time of the local energy
close to 1.

3.1.4 Moving the electrons all at once or one by one?

The accept-reject step can be performed after moving each electron, or after moving all the
electrons. The former requires more computer time since the wavefunction and its gradient
must be recalculated after each move. The increase in computer time is not a factor of N as
one may naively expect, but more like a factor of 2. The reason is that it takes O(N3) time to
calculate a determinant from scratch, but only O(N2) time to recalculate it, using the matrix
determinant lemma and the Sherman-Morrison formula, after a single row or column has been
changed. For systems with many electrons, moving the electrons one at a time leads to a more
efficient algorithm because larger moves can be made for the same average acceptance, so the
autocorrelation time of the local energy is smaller, more than compensating the increase of the
calculation time per MC step.

4 Projector Monte Carlo

In Sec. 2 we wrote down the exact energy as a mixed estimator where the bra is the exact
wavefunction and the ket the trial wavefunction, but we did not explain how one accesses the
exact wavefunction, i.e., the ground state of the Hamiltonian. This is done using a projector.
Projector Monte Carlo is a stochastic realization of the power method for finding the dominant
eigenvector of a matrix. If one repeatedly multiplies an arbitrary eigenvector (not orthogonal
to the dominant eigenvector) by the matrix, then one eventually gets the dominant eigenvector,



Variational and Projector Monte Carlo 3.11

since at each step it gets multiplied by the largest in magnitude eigenvalue of the matrix. The
power method is an example of an iterative eigensolver. Other iterative eigensolvers exist, such
as the Lanczos method and the diagonally-preconditioned Davidson method, and they are much
more efficient than the power method for deterministic calculations. So, if the dimension of the
Hilbert space is not very large, say < 1010 then one would just do a deterministic calculation
using the Lanczos or Davidson methods. However, when the Hilbert space is so large (even
infinite) that it is not possible to store even a few vectors of Hilbert space dimension, then PMC
methods become the method of choice, since at any point in time they store only a sample
of states.
The projector is any function of the Hamiltonian that maps the ground state eigenvalue of Ĥ
to 1, and the higher eigenvalues of Ĥ to absolute values that are < 1 (preferably close to 0). We
use the term “projector” somewhat loosely, since it is only repeated application of the projector
that yields the desired state:

|Ψ0〉 = lim
n→∞

P̂ n(τ) |ΨT〉. (24)

Possible choices for the projector are

Exponential projector: P̂ = eτ(ET 1̂−Ĥ) (25)

Linear projector: P̂ = 1̂ + τ(ET 1̂− Ĥ)
(
τ < 2/(Emax−E0)

)
(26)

Green function projector: P̂ =
1

1̂− τ(ET 1̂− Ĥ)
(27)

where ET is an estimate of the ground state energy.

4.1 Importance sampling

The projectors above enable us to sample ei = 〈φi|Ψ0〉. However, according to Eq. (6) we want
to sample from giei = 〈φi|ΨG〉 〈φi|Ψ0〉. Since

∑

f

Pfiei = ef (28)

the similarity transformed matrix with elements

P̃fi =
gfPfi
gi

(29)

has an eigenstate with elements giei:

∑

i

P̃fi(giei) =
∑

i

(
gfPfi
gi

)
(giei) = gfef . (30)

ˆ̃P is called the importance sampled projector and it samples 〈φi|ΨG〉 〈φi|Ψ0〉.
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4.2 Branching random walks

Note that unlike the Markov matrix in Eq. (10) used in the Metropolis-Hastings method, the
columns of the projector are not normalized to 1. We can write P̃fi as

P̃fi =
P̃fi∑
f P̃fi

∑

f

P̃fi ≡ Tfi Wi (31)

where now Tfi is a Markov matrix and Wi are multiplicative weights. So, instead of the un-
weighted Monte Carlo walk that we had when doing VMC, we now have walkers that are
specified by not just their position and but also by their weight. At each Monte Carlo step, the
weight gets multiplied byWi. If we have a single weighted walker, then a few generations of the
walk will dominate the averages and the computational effort expended on the rest of the walk
would be largely wasted. It is possible to have a population of walkers of fluctuating population
size, with each walker having unit weight, but this leads to unnecessary birth/death events. So,
it is best to have a population of walkers, such that all walkers within a generation have roughly
the same weight, say within a factor of 2, and birth/death events when the weights go outside
that range. Even so, the weights of different generations will vary a lot in a sufficiently long run.
So, efficiency demands that we exercise population control to make the weights of each gen-
eration approximately the same. The population control error is proportional to the inverse of
the target population size Nwalk. The error arises because of a negative correlation between the
energy averaged over the generation and the weight of the generation. When the energy is low,
the weight tends to be large and population control artificially reduces the weight and thereby
creates a positive bias in the energy. Similarly, when the energy is high, the weight tends to be
small and population control artificially increases the weight and this too creates a positive bias
in the energy. Since the relative fluctuations in the energy and in the weight go as 1/

√
Nwalk,

the relative fluctuations in their covariance goes as 1/Nwalk, resulting in a O(1/Nwalk) popula-
tion control bias. So, one way to reduce the population control error is to simply use a large
population, and this is what most people do. If one wishes to be sure that the error is sufficiently
small, plot the energy versus 1/Nwalk and take the limit 1/Nwalk → 0. But there exists a better
way that allows us to estimate and remove most of the population control error within a single
run [14, 15].

4.3 Taxonomy of PMC methods

The various PMC methods can be characterized by a) the form of the projector, and, b) the
space in which the walk is performed, i.e., the single-particle basis and the quantization used.
By second quantization we mean that walkers are characterized by only the occupancy of the
single-particle states, whereas by first quantization we mean that walkers are characterized by
the occupancy and by which electrons are on which states. So, walkers that are related by elec-
tron permutations in a first quantized space map onto the same walker in a second quantized
space. Table 1 is a taxonomy of some PMC methods. For example, DMC uses the expo-
nential projector (imaginary-time propagator) with a 1st quantized continuous real space basis,
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Method Projector SP Basis Quantization

Diffusion Monte Carlo (DMC) [16, 17, 15] eτ(ET 1̂−Ĥ) r 1st

GFMC [18–20] eτ(ET 1̂−Ĥ) (samp. τ ) r 1st

Lattice-regularized DMC (Sorella, Casula) eτ(ET 1̂−Ĥ) (samp. τ ) ri 1st

FCIQMC [21–23] 1̂ + τ(ET 1̂− Ĥ) φorthog
i 2nd

phaseless AFQMC [24, 5] eτ(ET 1̂−Ĥ) φnonorthog
i 2nd

Table 1: Taxonomy of PMC methods. The methods are characterized by the projector, and the
space in which the walk is performed, i.e., the single-particle basis and the quantization.

AFQMC also uses the exponential projector but with a 2nd quantized orbital basis, and FCIQMC
uses a linear projector with a 2nd quantized orbital basis. In AFQMC the orbitals are nonorthog-
onal and evolve continuously during the MC run, whereas in FCIQMC they are orthogonal and
are fixed during the entire run. The linear projector has the advantage that if the Hamiltonian is
known exactly in the chosen basis, so also is the projector. However, it can be used only when
the spectrum of the Hamiltonian is bounded.

4.4 Diffusion Monte Carlo

We now discuss in some detail just one of the various PMC methods, the PMC method in real-
space using first-quantized walkers. This method is more commonly known as diffusion Monte
Carlo (DMC), and the projector is often referred to as the Green function since it is the Green
function of the Fokker-Planck equation in the short-time approximation. We limit the following
discussion to ΨG(R) = ΨT(R).
We now derive an approximate expression for

〈
ΨT|R

′
〉
〈R′ |eτ(ET 1̂−Ĥ)|R〉 1

〈R|ΨT〉
≡ ΨT(R

′
)G(R

′
,R, τ)

1

ΨT(R)
≡ G̃(R

′
,R, τ).

We multiply the imaginary-time the Schrödinger equation

−1

2
∇2Ψ(R, t) +

(
V(R)− ET

)
Ψ(R, t) = −∂Ψ(R, t)

∂t
(32)

by ΨT(R) and rearrange terms to obtain

−∇
2

2
(ΨΨT) + ∇ ·

(∇ΨT

ΨT

ΨΨT

)
+

(
−∇2ΨT

2ΨT

+ V
︸ ︷︷ ︸
EL(R)

−ET

)
(ΨΨT) = −∂(ΨΨT)

∂t
(33)

defining f(R, t) = Ψ(R, t)ΨT(R), this is

−1

2
∇2f

︸ ︷︷ ︸
diffusion

+ ∇ ·
(∇ΨT

ΨT

f

)

︸ ︷︷ ︸
drift

+
(
EL(R)− ET

)
f

︸ ︷︷ ︸
growth/decay

= −∂f
∂t

(34)
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Since we know the solution for each individual term on the LHS, an approximation Green
function is

G̃(R
′
,R, τ) =

1

(2πτ)3N/2
e
−(R

′−R−V(R)τ)2/(2τ)+

(
ET−
(
EL(R

′
)+EL(R)

)
/2

)
τ

+O(τ 2). (35)

This is the same as the proposal matrix in Eq. (20) but there is now an additional growth/decay
factor. So, the walker moves exactly as before, but the weight gets multiplied by this factor.
Simply by turning on this multiplicative factor, one can switch between VMC and DMC.
This projector gives rather poor results—it has a very large time-step error and typically gives
charge distributions for finite systems that are too diffuse. We describe next two improvements:
a) take into account the singularities of the projector, and b) introduce an accept-reject step to
ensure that the exact distribution is sampled in the limit that the ΨT(R) is exact.

4.4.1 Singularities of G̃(R
′
,R, τ )

Following Ref. [15], Table 2 shows the singularities of G̃(R
′
,R, τ) at the nodes of ΨT(R)

and the particle coincidences. G̃(R
′
,R, τ) is accurate if V(R) is nearly constant over the time

step, τ , and ifEL changes nearly linearly between R and R
′. Both assumptions fail dramatically

at these singularities. For exact ΨT the local energy EL(R) is constant, but for the approximate
ΨT used in practice, it diverges to ±∞ as the inverse of the distance to the nearest node. On
the other hand the divergence of EL(R) at particle coincidences is easily removed simply by
imposing the electron-nucleus and electron-electron cusps on ΨT. The velocity V(R) diverges
at the nodes and has a discontinuity at particle coincidences even for exact ΨT, so this cannot
be taken care of by improving ΨT. Instead, we must improve upon the implicit assumption in
G̃(R

′
,R, τ) that V(R) is constant during the time step τ . When an electron is near a node,

the velocity diverges as the inverse distance to the node and is directed away from the node,
so the large velocity does not persist over the entire time step τ . Taking this into account and
integrating over the time step we find that the average velocity over the time-step τ is:

V̄ =
−1 +

√
1 + 2V 2 τ

V 2 τ
V →

{
V if V 2 τ � 1√

2/τ V̂ if V 2 τ � 1
(36)

Similar improvements to the average velocity in the vicinity of electron-nucleus coincidences,
and the average of EL can also be made.

Table 2: Singularities of G̃(R
′
,R, τ).

Region Local energy EL Velocity V

nodes EL ∼ ±1/R⊥ for ΨT

EL = E0 for Ψ0

V ∼ 1/R⊥ for both ΨT and Ψ0

e-n and e-e
coincidences

EL ∼ 1/x if cusps not imposed
EL finite if cusps are imposed

EL = E0 for Ψ0

V has a discontinuity for both ΨT and Ψ0
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4.4.2 Imposing detailed balance in DMC

Since G̃(R
′
,R, τ) has a time-step error, it fails to sample the correct distribution even in the limit

that ΨT(R) is exact. So, for large values of τ , the version of DMC presented so far can actually
be less accurate than VMC. Following Refs. [17, 15] this is easily remedied as follows: If we
omit the third term on the left-hand side of Eq. (34) then it can be verified that f(R) = ΨT(R)2

is the solution since

−1

2
∇2ψ2

T(R) + ∇ ·
(∇ψT

ψT

ψ2
T(R)

)
= 0. (37)

However, we can sample ΨT(R)2 using Metropolis-Hastings. So, we can view the drift-diffusion
part of G̃(R

′
,R, τ) as being the proposal matrix T (R′,R) and introduce an accept-reject step

after the drift and diffusion steps and before the reweighting step. With this simple modification,
DMC is guaranteed to give an energy lower than the VMC energy, and in the limit of τ → 0 an
energy that is variational, i.e., higher than the true energy. Finally, we account for the fact that
the walker moves less far, since some of the moves are rejected, by using an effective time step
τeff for reweighting

τeff = τ
R2

accep

R2
prop

, (38)

where R2
prop is the sum of the squares of all the proposed one-electron move distances and

R2
accep is the same sum, but including only the accepted moves.

4.5 Sign problem

PMC suffer from a sign problem except in a few special situations, e.g., 1-dimensional problems
in real space. In all PMC methods, the sign problem occurs because an undesired state grows
relative to the state of interest when the system is evolved by repeated stochastic applications of
the projector. This results in a computational cost that grows exponentially with system size N.
A reasonable definition [25] is that there is no sign problem if the computer time required to
compute the value of an observable for an N -particle system with specified error, ε, scales as
T ∝ N δε−2, where δ is a small power (say, δ ≤ 4). (It is assumed that N is increased in some
approximately homogeneous way, e.g., adding more atoms of the same species.) The details of
how the sign problem manifests itself is different in the various PMC methods, and we discuss
two examples.

4.5.1 Sign problem in DMC

In the absence of importance sampling (which has the important side effect of imposing the
fixed-node constraint), the DMC projector of Eq. (35) becomes

G(R
′
,R, τ) ≡ 〈R′|P̂ (τ)|R〉 ≈ e

−(R
′−R)2/(2τ)+

(
ET−
(
V(R

′
)+V(R)

)
/2

)
τ

(2πτ)3N/2
. (39)
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It is nonnegative everywhere, so there is no sign problem if one were interested in the domi-
nant state of this projector. However, the dominant state of this projector is the Bosonic ground
state whereas the state of interest is the Fermionic ground state. If one started with a positive
distribution and a negative distribution such that their sum is purely Fermionic as illustrated in
Fig. 2, and applied the projector deterministically, both the positive and the negative distribu-
tions would tend to the Bosonic ground state, but, their sum would yield the Fermionic ground
state, though with an amplitude that gets exponentially small relative to the amplitude of the in-
dividual components with increasing MC time. However, the projection is done stochastically
and the probability of positive and negative walkers landing on the same state at the same MC
time step and cancelling is very small if the portion of the state space that contributes signifi-
cantly to the expectation values is finite and large, and it is zero if the state space is continuous
(unless the dynamics of the walkers is modified to force opposite-sign walkers to land on the
same spot). Hence it is not possible to sum the positive and negative contributions to extract
the Fermionic ground state. This is demonstrated in Fig. 2. Furthermore, the problem cannot
be solved by using an extremely large population of walkers. This enhances the probability
of cancellations, but, because of fluctuations, eventually only positive or only negative walkers
will survive and so the Fermionic state will completely disappear.

Fixed-node approximation: The importance-sampled Green function of Eq. (35) is not just
a similarity transform, as in Eq. (29), of the Green function of Eq. (39). A fixed-node constraint
has sneaked in as well. The velocity in Eq. (35) diverges at nodes and is directed away from
them, so the number of node crossings per unit time goes to zero in the τ → 0 limit.2 So,
the solution obtained is the solution to the Schrödinger equation with the boundary condition
that it goes to zero at the nodes of ΨT(R). Since we are now adding in an artificial constraint,
the resulting energy has a positive fixed-node error, which disappears in the limit that the nodal
surface of ΨT(R) is exact. The fixed-node approximation not only enables the calculation of the
Fermionic ground state by eliminating the non-Fermionic states, it also enables the calculation
of Fermionic excited states by preventing a collapse to the Fermionic ground state. For the
excited states one loses the upper-bound property, but nevertheless the method has been used to
calculate challenging excited states accurately [26–28].

4.5.2 Sign problem in FCIQMC

It may appear from the above discussion that the sign problem can be solved by performing
the MC walk in a 2nd-quantized, i.e., antisymmetrized, basis. Each 2nd-quantized basis state
consists of all the permutations of the corresponding 1st-quantized basis states. Then there are
no Bosonic states or states of any symmetry other than Fermionic, so there is no possibility of
getting noise from non-Fermionic states. Of course, it is well known that this does not solve the
sign problem. The problem is that different paths leading from a state to another can contribute
with opposite sign. If the opposite sign contributions occur at the same MC step, then the

2The number of node crossings per MC step goes as τ3/2, so the number of crossings per unit time goes to zero
as
√
τ .
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a)

Fermi ground state
Bose ground state

Trial state

b)

Plus walkers

Minus walkers

c)

Plus walkers

Minus walkers

Fermionic state

d)

Plus walkers

Minus walkers

Fermionic state

e)

Plus walkers

Minus walkers

Fermionic state

f)

Plus walkers

Minus walkers

Fermionic state

Fig. 2: Demonstration of the sign problem in DMC. a) The green curve schematically depicts
the Bosonic ground state, the red curve the Fermionic ground state, and the blue curve an
approximate Fermionic wavefunction. b) The starting positive distribution is shown in red and
the starting negative distribution in green. Their sum is purely Fermionic. c-f) The red and
the green curves show the evolution of the positive and negative distributions. Their sum, the
blue curve, converges to the Fermionic ground state. f) For a finite population, the walkers are
depicted as delta functions and in a continuous space they never meet and cancel (unless they
are forced to in some way). Consequently there is an exponentially vanishing “signal to noise”
ratio.



3.18 Cyrus J. Umrigar

contributions cancel and yield a net contribution of smaller absolute magnitude, just as they
would in a deterministic calculation. The problem occurs when opposite sign contributions
occur at different MC steps. Further, since Ψ and −Ψ are equally good, they are each sampled
with equal probability in the course of a long MC run.
In a few special situations the sign problem is absent. The necessary and sufficient condition
for there to be no sign problem is that all columns (or equivalently rows) of the projector have
the same sign structure aside from an overall sign. Equivalently, there is no sign problem if
it is possible to find a set of sign changes of the basis functions such that all elements of the
projector are nonnegative. For example, the projector with the following sign structure




+ − + +

− + − −
+ − + +

+ − + +


 (40)

does not have a sign problem, since changing the sign of the 2nd basis state makes all the
elements nonnegative. Note that it is not necessary to actually make these sign changes—the
projectors before and after the sign changes are equally good.
Although a 2nd-quantized basis does not solve the sign problem, it is advantageous to use a 2nd-
quantized basis when designing an exact Fermionic algorithm. First, an antisymmetrized basis
is a factor of N ! smaller, and so the probability of opposite sign walkers meeting and cancelling
is greater. Second, since each 2nd-quantized basis state consists of a linear combination of
1st-quantized basis states, 2nd-quantized states that are connected by the projector may have
multiple connections coming from several of the constituent 1st-quantized states. Hence there
is the possibility of internal cancellations in the 2nd-quantized basis, which reduces the severity
of the sign problem [29]. Third, since Bosonic and other symmetry states are eliminated it is
clear that one can achieve a stable signal to noise for any large but finite basis by making the
walker population very large. The limit of an infinite walker population is equivalent to doing a
deterministic projection, which of course does not have a sign problem.
The FCIQMC method [21] does just this. It uses efficient algorithms for dealing with a large
number of walkers and obtains essentially exact energies for very small molecules in small
basis sets, using a large but manageable number of walkers. The MC walk, is done in an
orbital occupation number (or equivalently determinantal) basis. For somewhat larger systems
it is necessary to employ the initiator approximation [22] which greatly reduces the walker
population needed to achieve a stable signal to noise ratio. Only states that have more walkers
on them than some threshold value can spawn walkers on states that are not already occupied.
The associated initiator error disappears of course in the limit of an infinite population and
in practice it is possible to get accurate energies for interesting systems. However, the initiator
error can be of either sign and it can be nonmonotonic, so extrapolation to the infinite population
limit can be tricky. A large gain in efficiency can be gained by doing the projection on the most
important states deterministically [23] since the sign-problem is present only for stochastic
projection.
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5 Form of trial wavefunctions

A major advantage of QMC methods is that since the integrals are done using Monte Carlo, one
has a great deal of freedom in the choice of the form of the trial wavefunction ΨT(R), allowing
for compact yet accurate choices. As mentioned in Sec. 2.1, both the accuracy and the efficiency
of both VMC and PMC (when there is a sign problem) depend on ΨT(R). The only constraint
on the choice of ΨT(R) is that it should be possible to evaluate it and its local energy quickly
(in low-order polynomial in N time).

5.1 Slater-Jastrow wavefunctions

The most commonly used choice for electronic systems is the so-called Jastrow-Slater form,
that is, the product of a linear combination of determinants Dn of single-particle orbitals and a
Jastrow correlation factor

ΨT =

(∑

n

dn D↑n D↓n

)
× J . (41)

Note that in order to save computation time, we have replaced each determinant by a product
of an up-spin and a down-spin determinant, which is not fully antisymmetric. This is legitimate
because the expectation value is unchanged upon full antisymmetrization for any operator that
does not have explicit spin dependence. The single-particle orbitals are usually expanded in
spherical harmonics times Slater functions (monomial times an exponential in radial distance)
for all-electron calculations in order to be able to impose the electron-nucleus cusps, and in
spherical harmonics times gaussians or Gauss-Slater functions [30] for pseudopotential calcu-
lations. The minimal Jastrow function is a function of the electron-electron coordinates with
the correct antiparallel- and parallel-spin cusps, but more typically it is written as a product of
electron-nucleus, electron-electron and electron-electron-nucleus Jastrows:

J =
∏

αi

exp (Aαi)
∏

ij

exp (Bij)
∏

αij

exp (Cαij) (42)

where α indexes the nuclei, and i and j index the electrons. Adding higher-order Jastrows,
say 3 electrons and a nucleus, leads to minor gains relative to the increase in computational
cost [31]. In all there are 4 kinds of parameters that can be optimized: a) the linear coefficients
dn multiplying the determinants, b) the orbital coefficients that specify the orbitals in terms of
the basis functions, c) the exponents of the basis functions, and d) the Jastrow parameters. The
number of basis exponents and the number of Jastrow parameters scale linearly in the number
of atomic species, the number of orbital parameters scale as the number of electrons times the
number of basis functions, and the number of dn can be combinatorially large in the number
of basis functions and electrons. However, in practice only a very tiny fraction of these are
used. In fact one of the big advantages of QMC methods is that because of the effectiveness of
the Jastrow in capturing some of the correlation, the number of determinants can be orders of
magnitude smaller than in other methods for the same accuracy.
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In real-space QMC, the Jastrow is particularly effective in introducing the so-called “dynamic
correlation.” The multi-determinantal expansion is used mostly to include “near-degeneracy”
or “static” correlation, which requires relatively few determinants. Consequently the number of
determinants required to obtain a given energy is often orders of magnitude less in the presence
of a flexible Jastrow than in its absence. Moreover, the size of the single-particle basis needed
is reduced, particularly if the exponents of the basis functions are also optimized (though this is
rarely done). Note that although the Jastrow does not directly change the nodes of ΨT(R), when
the wavefunction is optimized in the presence of the Jastrow it indirectly changes the nodes of
ΨT(R) and thereby enables accurate fixed-node DMC energies with compact wavefunctions.

The Jastrow plays another very important role in real-space QMC. The local energy, EL(R),
diverges to ±∞ at electron-nucleus and electron-electron coincidences, unless cusp-conditions
[32, 33] are imposed. The electron-nucleus cusps can be imposed by placing constraints on the
orbitals (both intra-atom and inter-atom contributions need to be considered) but the electron-
electron cusp requires the Jastrow function. Once the cusp conditions are imposed, EL(R)

becomes finite at particle coincidences (though there is still a finite discontinuity in the limit
that two electrons approach a nucleus [34]). This greatly reduces the fluctuations of the local
energy and improves the efficiency of both VMC and DMC.

The multideterminant expansion is typically chosen by performing a small complete active
space self consistent field (CASSCF) calculation and keeping the most important determinants.
However, for challenging molecules there are several determinants outside the CAS space of
affordable size that are more important than some of the determinants that are included from
within the CAS space. Consequently, as the number of included determinants is increased,
convergence of the energy is observed but to a spurious value. This problem is solved by
selecting the determinants from a configuration interaction calculation [35, 36], which selects
the most important determinants from the entire Hilbert space.

5.2 Symmetry-projected broken-symmetry mean-field wavefunctions

Recently there has been remarkable increase in the number of determinants that can be effi-
ciently included in the multideterminant expansion [37–39]. Nevertheless, since the number of
determinants grows combinatorially in the size of the single-particle basis and the number of
electrons (though with a much reduced prefactor because of the Jastrow) there is considerable
interest in using more flexible mean-field states than a single determinant, namely the antisym-
metrical geminal power (AGP) [40] and Pfaffian [41,42] as the antisymmetric part of QMC trial
wavefunctions [43]. Recently these ideas have been extended to use, in QMC trial wavefunc-
tions, symmetry-projected broken-symmetry mean-field states [43], first employed in traditional
quantum chemistry calculations [44]. The symmetries that are broken and restored are combi-
nations of particle-number, S2, Sz and complex conjugation. The most flexible of these breaks
bonds correctly and yields remarkably good potential energy curves [43], considering that the
computational cost is only marginally greater than that for a single determinant.
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5.3 Backflow wavefunctions

Another direction (which can be combined with the above) is to use backflow wavefunctions,
first introduced by Feynman to describe correlations in liquid Helium. The orbitals are evaluated
at backflow-transformed coordinates that depend on the positions of all the electrons. These give
considerably improved energies and fluctuations [45–48], but they incur a factor of N increase
in the computational cost since the determinant lemma and Sherman-Morrison formula cannot
be used achieve an O(N2) cost for updating determinants and their derivatives when a single
electron is moved.

5.4 Wavefunctions in orbital-space QMC

Although most VMC and PMC calculations for electronic systems have been done in real space,
recently there has been considerable interest in orbital-space QMC [49–51]. The orbital-space
Jastrow plays a rather different role than its real-space counterpart—its most important con-
tribution is to suppress double occupancy of orbitals and so it is effective in describing static
correlations. The straightforward approach has a computational cost that scales as O(N4) for
constant error per electron, but ideas borrowed from the semistochastic heatbath configuration
interaction (SHCI) method [52], reduce this cost to O(N2) [51].

6 Optimization of trial wavefunctions

Accurate variational wavefunctions typically have a large number of linear and nonlinear param-
eters, that have to be optimized. As many as several hundred thousand have been used [53, 39].
One of the interesting features of QMC methods is that sometimes tiny changes in the algo-
rithm, that may go unnoticed, can make a dramatic improvement to its efficiency. It is very
helpful to think about ideal situations where the variance becomes zero; although this may
never be achieved in practice, it is helpful for designing algorithms with low variance. This
is particularly true in the case of wavefunction optimization algorithms. At the present time
the 3 most used optimization algorithms are the stochastic reconfiguration method [54, 40], the
Newton method [55], and the linear method [56–58]. We will present the Newton method in
some detail to illustrate the sort of small algorithmic changes that can provide large efficiency
improvements, but will mention the other two methods only cursorily.
Optimizing the wavefunctions is important for several reasons. We enumerate below the various
errors in QMC calculations that are reduced by optimizing the wavefunction:

1. Statistical error (both the rms fluctuations of EL and the autocorrelation time)
2. Variational error in EVMC

3. Fixed-node error in EDMC

4. Time-step error in DMC
5. Population control error in DMC
6. Pseudopotential locality error in DMC when using nonlocal pseudopotentials
7. Error of mixed estimates of observables that do not commute with the Hamiltonian in DMC
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In fact all errors, aside from the finite-size errors present in calculations of periodic systems,
benefit from wavefunction optimization.
The next question for optimizing wavefunctions is: precisely what quantity do we want to
optimize? Possible choices are:

1) minimize EVMC =
〈ΨT|H|ΨT〉
〈ΨT|ΨT〉

= 〈EL〉Ψ2
T

(43)

2) minimize σ2
VMC =

〈ΨT|(H − ET)2|ΨT〉
〈ΨT|ΨT〉

=
〈
E2

L(Ri)
〉
Ψ2
T
− 〈EL(Ri)〉2Ψ2

T
(44)

3) maximize Ω2 =
| 〈ΨFN |ΨT〉 |2

〈ΨFN |ΨFN〉 〈ΨT|ΨT〉
=

〈
ΨFN

ΨT

〉2

Ψ2
T〈∣∣∣ΨFN

ΨT

∣∣∣
2
〉

Ψ2
T

(45)

4) minimize EDMC =
〈ΨFN |H|ΨT〉
〈ΨFN |ΨT〉

= 〈EL〉|ΨFNΨT| (46)

In fact all of the above have been studied to some extent in published and unpublished work.
For an infinitely flexible wave function all these optimization criteria will yield the exact wave-
function (except that minimizing σ could yield an excited state) but for the imperfect functional
forms used in practice they differ. Since the final energy is obtained from EDMC rather than
EVMC, the most desirable option is the last one. However, the very limited experience gained so
far indicates that minimizing EVMC with flexible wavefunctions results in approximately mini-
mizing also EDMC, so the additional effort of minimizing EDMC is not worthwhile. Hence the
common practice is to minimize EVMC or a linear combination of EVMC and σ2

VMC, with most
of the weight on EVMC.
Early work on optimizing wavefunctions used variance minimization [59, 60] because early
attempts at minimizing EVMC required many more Monte Carlo samples than for minimizing
σ2

VMC. This is explained in Fig. 3. In green we schematically show the local energies for some
sampled points. Since the wavefunction is not exact these energies have a spread. In red we
show how these energies change as one attempts to minimize EVMC. Most of the energies go
down and some may go up, but the average on the sample goes down. As the wavefunction is
made more flexible the average may go down well below the true energy. Now if one draws
a fresh sample, then we find that the average on this sample has actually gone up rather than
down! Once one realizes the problem with energy minimization it becomes clear that the way
around it is to minimize the variance of the local energies as shown in blue. In that case local
energies move closer to each other and the average energy also tends to go down, less so than
for energy minimization, but this gain in energy is genuine—an independent sample shows the
same effect. Of course energy minimization will work if one has a sufficiently large number of
samples, but the point of the above thought experiment is that the number of samples needed is
smaller for variance minimization than for naive energy minimization. We next discuss more
clever ways to minimize the energy that overcome this problem by minimizing the expectation
value of the energy without minimizing the energy of the chosen sample.
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Variance vs. Energy

σ2 =

Nconf∑

i=1

(HΨT(Ri)

ΨT(Ri)
− Ē

)2

Ē =

Nconf∑

i=1

HΨT(Ri)

ΨT(Ri)

Optimized

Variance

Energies

Original

Energies

Energy
Optimized
Energies

Eav

Eav Eexact

Fig. 3: Why variance minimization requires fewer samples than naive energy minimization.

6.1 Newton method
6.1.1 Minimization of EVMC

In the Newton method, the parameter changes, δp, are obtained by solving linear equations

h δp = −g , (47)

where h is the Hessian and g the gradient of EVMC with respect to the variational parameters.
In the rest of this section ΨT and EVMC are the only wavefunction and energy of relevance, so
in the interest of notational brevity we replace these by Ψ and Ē respectively.

Ē =
〈Ψ |H|Ψ〉
〈Ψ |Ψ〉 = 〈EL〉|Ψ |2 ; EL(R) =

HΨ(R)

Ψ(R)
(48)

where the notation 〈· · ·〉|Ψ |2 denotes a Monte Carlo average over samples drawn from |Ψ |2.
Following Ref. [55] the energy gradient wrt parameter pi, denoted by Ēi, is

Ēi =
〈Ψi|HΨ〉+ 〈Ψ |HΨi〉

〈Ψ |Ψ〉 − 2
Ē 〈Ψ |Ψi〉
〈Ψ |Ψ〉 = 2

〈Ψi|HΨ〉 − Ē 〈Ψ |Ψi〉
〈Ψ |Ψ〉 (49)

≈
〈
Ψi
Ψ
EL +

HΨi
Ψ
− 2Ē

Ψi
Ψ

〉

ψ2

≈ 2

〈
Ψi
Ψ

(EL − Ē)

〉

ψ2

(50)

In Eq. (49) we use the Hermiticity of the Hamiltonian to go from the expressions on the left
to that on the right. The expressions in Eq. (50) are the MC estimates of the corresponding
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expressions in Eq. (49). Note however, that the expressions on the left and right of Eq. (50)
become precisely equal only in the limit of an infinite sample. For a finite sample, the expression
on the right has much smaller fluctuations than the one on the left for sufficiently good trial
wavefunctions3 because it has zero variance in the limit that Ψ is exact.
Rewriting the gradient as

Ēi = 2
〈Ψi|HΨ〉 − Ē 〈Ψ |Ψi〉

〈Ψ |Ψ〉 = 2

〈
ΨiΨ(EL − Ē)

〉

〈|Ψ |2〉 (51)

and taking the derivative wrt pj , we obtain the following expression for the hessian:

Ēij = 2

[〈
(ΨijΨ + ΨiΨj)(EL − Ē)

〉
+
〈
ΨiΨ(EL,j − Ēj)

〉
− Ēi 〈ΨΨj〉

〈|Ψ |2〉

]
(52)

= 2

[〈(
Ψij
Ψ

+
ΨiΨj
|Ψ |2

)
(EL − Ē)

〉

ψ2

−
〈
Ψi
Ψ

〉

ψ2

Ēj −
〈
Ψj
Ψ

〉

ψ2

Ēi +

〈
Ψi
Ψ
EL,j

〉

ψ2

]
. (53)

What can be done to reduce the variance of this expression? The last term is not symmetric in
i and j because we started from the right hand rather than the left hand expression in Eq. (50),
so we can symmetrize it, but that does not affect the variance appreciably.

Next note that 〈EL,i〉|Ψ |2 =
〈|Ψ |2(HΨΨ )

i
〉

〈|Ψ |2〉 =

〈
|Ψ |2

(
HΨi
Ψ
− Ψi

|Ψ |2
HΨ

)〉
〈|Ψ |2〉 = 〈ΨHΨi−ΨiHΨ〉

〈|Ψ |2〉 = 0, so we are free

to add terms such as
〈
Ψj
Ψ

〉
ψ2
〈EL,i〉ψ2 . Now, the fluctuations of the covariance 〈ab〉−〈a〉〈b〉 are

smaller than those of the product 〈ab〉, when
√
〈a2〉−〈a〉2 � |〈a〉| and 〈b〉 is small. (〈EL,i〉ψ2

is 0 on an infinite sample and small on a finite sample.) Hence we make the replacement
〈
Ψi
Ψ
EL,j

〉

ψ2

→ 1

2

(〈
Ψi
Ψ
EL,j

〉

ψ2

−
〈
Ψi
Ψ

〉

ψ2

〈EL,j〉ψ2 +

〈
Ψj
Ψ
EL,i

〉

ψ2

−
〈
Ψj
Ψ

〉

ψ2

〈EL,i〉ψ2

)
.

The resulting expression is

Ēij = 2

[〈(
Ψij
Ψ

+
ΨiΨj
|Ψ |2

)
(EL − Ē)

〉

ψ2

−
〈
Ψi
Ψ

〉

ψ2

Ēj −
〈
Ψj
Ψ

〉

ψ2

Ēi

]

+

〈
Ψi
Ψ
EL,j

〉

ψ2

−
〈
Ψi
Ψ

〉

ψ2

〈EL,j〉ψ2 +

〈
Ψj
Ψ
EL,i

〉

ψ2

−
〈
Ψj
Ψ

〉

ψ2

〈EL,i〉ψ2 (54)

= 2

[〈(
Ψij
Ψ
− ΨiΨj
|Ψ |2

)
(EL − Ē)

〉

ψ2

(0 for pi linear in exponent)

+2

〈(
Ψi
Ψ
−
〈
Ψi
Ψ

〉

ψ2

)(
Ψj
Ψ
−
〈
Ψj
Ψ

〉

ψ2

)
(
EL − Ē

)
〉

ψ2

]

+

〈
Ψi
Ψ
EL,j

〉

ψ2

−
〈
Ψi
Ψ

〉

ψ2

〈EL,j〉ψ2 +

〈
Ψj
Ψ
EL,i

〉

ψ2

−
〈
Ψj
Ψ

〉

ψ2

〈EL,i〉ψ2 . (55)

3A subtle point is that the zero-variance estimator on the RHS of Eq. (50) is also an infinite-variance estimator
when ΨT is not exact and the parameters being optimized can change the nodes of the wavefunction. So, for poor
wavefunctions it may be preferable to use a known alternative expression that has finite variance for approximate
ΨT.
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Fig. 4: Energy convergence of C2 using a Slater CVB1 basis with 48 basis functions, optimizing
24 Jastrow, 164 CSF and 90 orbital parameters. If the basis exponents are optimized then
with 44 basis functions, a considerably more compact wavefunction with just 13 CSFs gives
an energy better than this by 1 mHa (not shown). However, converging the wavefunction takes
many more optimization iterations.

The expressions in the first two lines have zero variance in the limit of an exact trial wavefunc-
tion and the last line has a much reduced variance compared to our starting point, Eq. (53).
Finally, we note that the individual summands in Eq. (55) have a leading 3rd-order divergence
near the nodes of the trial wavefunction for parameters that change wavefunction nodes, but
the leading divergences cancel each other, leaving a 2nd-order divergence which gives a finite
expectation value but infinite variance. Despite having infinite variance estimators for the gra-
dient and the hessian, the method works remarkably well for small systems even for parameters
that move the nodes of ΨT, as shown in Fig. 4. If finite variance estimators are needed they are
obtained by using nodeless ΨG with ΨG ≈ |ΨT| except near the nodes of ΨT [61].

6.1.2 Minimization of σVMC

As mentioned earlier, another option is to minimize the variance of the energy

σ2 =

∫
d3NR |Ψ |2(EL − Ē)2

∫
d3NR |Ψ |2 . (56)

The exact gradient and hessian have been derived and used but the following simpler option
works just as well. When the parameters are changed, the variance changes both because EL

changes and because the distribution of sampled points changes. If we ignore the latter, which
means that we are computing the variance on a fixed set of Monte Carlo configurations, we get

(σ2)i = 2
〈
EL,i(EL − Ē)

〉
= 2

〈
(EL,i − Ēi)(EL − Ē)

〉
. (57)
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Energy Minimum
Variance Minimum

Fig. 5: Schematic of energy and variance contours.
Adding a small fraction of variance to the energy in the
function to be minimized can reduce the variance while
raising the energy only very slightly.

In the case of energy minimization we added a term with zero expectation value to reduce the
variance of the energy. Similarly, in the right hand expression above we have added a term to
minimize the variance of the variance.
Then the (positive definite) Levenberg-Marquardt approximation to the Hessian matrix is

(σ2)ij = 2
〈
(EL,i − Ēi)(EL,j − Ēj)

〉
. (58)

6.1.3 Mixed minimization

A linear combination of the energy and variance can be optimized simply by using the same
linear combination for the gradient and the hessian. The reason for possibly wanting to use a
linear combination is that by adding in small fraction of variance minimization (say 0.01-0.05)
to energy minimization, it may be possible to reduce the variance without appreciably raising
the energy. To explain why, we show in Fig. 5 schematic contours for the energy and variance.
If only the energy is minimized then the parameters may lie anywhere close to the bottom of
the energy well, but if a small fraction of the variance is added to the mix then the portion of
the energy well closer to the bottom of the variance minimum is favored.
Fig. 6 has convergence plots for energy, variance, and mixed minimization for the NO2 molecule
using a pseudopotential. The optimization takes only a few iterations. We see that mixed mini-
mization lowers the variance while raising the energy only slightly. However, energy minimiza-
tion has the smallest autocorrelation time, Tcorr, so the benefit from doing a mixed minimization
rather than just an energy minimization is small.

6.1.4 Stabilizing the optimization

If we add a positive constant adiag to the diagonal of the hessian matrix, i.e., h → h + adiagI,
where I is the identity matrix, then the proposed moves get smaller and rotate from the New-
tonian direction to the steepest descent direction. We use this to stabilize the optimization. At
each optimization iteration, we perform two kinds of MC runs. First we do a run to compute
the gradient and the hessian. Second, we do a 10-times shorter MC run, that does 3 correlated
sampling calculations with parameters obtained from this gradient and hessian and 3 values
of adiag that differ from each other by factors of 10 to get the corresponding 3 values of the



Variational and Projector Monte Carlo 3.27

a) -41.8

-41.7

-41.6

-41.5

-41.4

-41.3

-41.2

-41.1

-41

-40.9

E
v
m

c 
(H

ar
tr

ee
)

-41.8

-41.7

-41.6

-41.5

-41.4

-41.3

-41.2

-41.1

-41

-40.9

E
v
m

c 
(H

ar
tr

ee
)

-41.76

-41.75

-41.74

-41.73

5 10 15 20

Energy min
Variance min

Mixed min

-41.76

-41.75

-41.74

-41.73

5 10 15 20

Energy min
Variance min

Mixed min

b)
0.8

1

1.2

1.4

1.6

1.8

σ
 (

H
)

0.78

0.8

0.82

0.84

0.86

0.88

0.9

5 10 15 20

Energy min
Variance min

Mixed min

c)
1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

0 5 10 15 20 25

T
co

rr

Iteration number

Energy min
Variance min

Mixed min
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variance minimization, and mixed energy and variance minimization. Convergence is achieved
in just a few iterations. Mixed minimization lowers σ while raising the energy only slightly.
Tcorr is smallest for energy minimization.
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energy (or whatever linear combination of the energy and variance that we are optimizing). The
optimal value of adiag is then predicted from a parabolic fit of the 3 energy values with some
bounds imposed, provided the 2nd derivative of the fit is positive; else the adiag value that gives
the lowest energy is chosen. In addition, adiag is forced to increase if the parameter variations
exceed some chosen thresholds, or if some parameters exit their allowed domain of variation
(e.g., if a basis exponent becomes negative). Despite these precautions, the energy occasionally
goes up a lot, in which case one goes back to the earlier gradient and hessian and proposes new
parameter changes with a larger value of adiag. This only happens for the larger systems that we
study; for small systems such as NO2 shown in Fig. 6 the optimization converges within a few
iterations with no need to go back to an earlier iteration. Note that even when it is necessary
to go back, the entire procedure is automatic; there is no need for human intervention. Finally
we note that we do not necessarily choose the parameters from the last optimization iteration
as the final best parameters. Instead we choose the parameters from the iteration for which
EVMC + 3σVMC is lowest. In fact, this often is the last iteration because in order to save time,
we use a small number of MC steps in the first iteration and gradually increase the number of
MC steps with each new iteration (upto some maximum), so even after EVMC has converged,
σVMC continues to go down with iteration number.

6.2 Linear method

The linear optimization method is probably at the present time the most commonly used opti-
mization method. It was originally developed for linear parameters [62], but was extended to
nonlinear parameters [56–58]. It has the advantage that it does not require calculating the 2nd

derivatives of ΨT(R) and it converges just as quickly as the Newton method. Similar to what
we have described for the Newton method, there are far from obvious changes that need to be
made to the straightforward version of the method in order to make it efficient. The details can
be found in the original literature [62, 56–58].

6.3 Stochastic reconfiguration method

The stochastic reconfiguration method [54, 40] can be viewed as an approximation to the New-
ton method. Of the 3 methods mentioned in this lecture, it requires the least computation per
optimization iteration, but it typically takes several times as many iterations to converge. Al-
though it converges more slowly, when applied to heavy systems it can sometimes oscillate
less than the other methods because it requires fewer derivatives and suffers less from infinite-
variance estimators.
Optimization of many parameters: When the number of parameters to be optimized is large
(more than a few thousand) storage of the relevant matrices (hessian for Newton method, Hamil-
tonian and overlap for the linear method, overlap for the stochastic reconfiguration method)
becomes a problem. However, they need not be stored if iterative methods are used to solve the
relevant equations. Then it becomes practical to optimize on the order of 105–106 parameters.
Details can be found in Refs. [53, 8].
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7 Outlook

I hope this lecture has given you some flavor of the sort of thinking that goes into designing
accurate and efficient QMC algorithms. QMC methods have been worked upon less that some
other electronic structure methods. Hence, I think there is still considerable room for improve-
ment. An example of that would be the development of a continuous real-space PMC method
that does not have a time-step error. In fact one of the earliest PMC methods invented [18–20]
does not have a time-step error. However, despite this major advantage, it is not used anymore
because it is much less efficient that DMC. Further, there exist, in a discrete space, efficient
PMC methods that use the exponential projector with no time-step error. It seems possible that
one could invent an efficient time-step error free algorithm for continuous real-space PMC as
well.
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