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We discuss recent developments in our understanding of matter,
broadly construed, and their implications for contemporary re-
search in fundamental physics.

T he Theory of Everything is a term for the ultimate theory of
the universe—a set of equations capable of describing all

phenomena that have been observed, or that will ever be
observed (1). It is the modern incarnation of the reductionist
ideal of the ancient Greeks, an approach to the natural world that
has been fabulously successful in bettering the lot of mankind
and continues in many people’s minds to be the central paradigm
of physics. A special case of this idea, and also a beautiful
instance of it, is the equation of conventional nonrelativistic
quantum mechanics, which describes the everyday world of
human beings—air, water, rocks, fire, people, and so forth. The
details of this equation are less important than the fact that it can
be written down simply and is completely specified by a handful
of known quantities: the charge and mass of the electron, the
charges and masses of the atomic nuclei, and Planck’s constant.
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The symbols Z% and M% are the atomic number and mass of the
%th nucleus, R% is the location of this nucleus, e and m are the
electron charge and mass, rj is the location of the jth electron, and
! is Planck’s constant.

Less immediate things in the universe, such as the planet
Jupiter, nuclear fission, the sun, or isotopic abundances of
elements in space are not described by this equation, because
important elements such as gravity and nuclear interactions are
missing. But except for light, which is easily included, and
possibly gravity, these missing parts are irrelevant to people-
scale phenomena. Eqs. 1 and 2 are, for all practical purposes, the
Theory of Everything for our everyday world.

However, it is obvious glancing through this list that the
Theory of Everything is not even remotely a theory of every
thing (2). We know this equation is correct because it has been
solved accurately for small numbers of particles (isolated atoms
and small molecules) and found to agree in minute detail with
experiment (3–5). However, it cannot be solved accurately when
the number of particles exceeds about 10. No computer existing,
or that will ever exist, can break this barrier because it is a
catastrophe of dimension. If the amount of computer memory
required to represent the quantum wavefunction of one particle
is N then the amount required to represent the wavefunction of
k particles is Nk. It is possible to perform approximate calcula-
tions for larger systems, and it is through such calculations that

we have learned why atoms have the size they do, why chemical
bonds have the length and strength they do, why solid matter has
the elastic properties it does, why some things are transparent
while others reflect or absorb light (6). With a little more
experimental input for guidance it is even possible to predict
atomic conformations of small molecules, simple chemical re-
action rates, structural phase transitions, ferromagnetism, and
sometimes even superconducting transition temperatures (7).
But the schemes for approximating are not first-principles
deductions but are rather art keyed to experiment, and thus tend
to be the least reliable precisely when reliability is most needed,
i.e., when experimental information is scarce, the physical be-
havior has no precedent, and the key questions have not yet been
identified. There are many notorious failures of alleged ab initio
computation methods, including the phase diagram of liquid 3He
and the entire phenomenonology of high-temperature super-
conductors (8–10). Predicting protein functionality or the be-
havior of the human brain from these equations is patently
absurd. So the triumph of the reductionism of the Greeks is a
pyrrhic victory: We have succeeded in reducing all of ordinary
physical behavior to a simple, correct Theory of Everything only
to discover that it has revealed exactly nothing about many things
of great importance.

In light of this fact it strikes a thinking person as odd that the
parameters e, !, and m appearing in these equations may be
measured accurately in laboratory experiments involving large
numbers of particles. The electron charge, for example, may be
accurately measured by passing current through an electrochem-
ical cell, plating out metal atoms, and measuring the mass
deposited, the separation of the atoms in the crystal being known
from x-ray diffraction (11). Simple electrical measurements
performed on superconducting rings determine to high accuracy
the quantity the quantum of magnetic f lux hc#2e (11). A version
of this phenomenon also is seen in superfluid helium, where
coupling to electromagnetism is irrelevant (12). Four-point
conductance measurements on semiconductors in the quantum
Hall regime accurately determine the quantity e2#h (13). The
magnetic field generated by a superconductor that is mechani-
cally rotated measures e#mc (14, 15). These things are clearly
true, yet they cannot be deduced by direct calculation from the
Theory of Everything, for exact results cannot be predicted by
approximate calculations. This point is still not understood by
many professional physicists, who find it easier to believe that a
deductive link exists and has only to be discovered than to face
the truth that there is no link. But it is true nonetheless.
Experiments of this kind work because there are higher orga-
nizing principles in nature that make them work. The Josephson
quantum is exact because of the principle of continuous sym-
metry breaking (16). The quantum Hall effect is exact because
of localization (17). Neither of these things can be deduced from
microscopics, and both are transcendent, in that they would
continue to be true and to lead to exact results even if the Theory
of Everything were changed. Thus the existence of these effects
is profoundly important, for it shows us that for at least some
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Theory of Almost Everything

given Hamiltonian

solve eigenvalue problem

electrons indistinguishable

3N-dimensional pde

no observable M(x1,… ,xN) can distinguish them

i.e. M symmetric under exchange of coordinates

how possible?

eigenfunction needs to be antisymmetrized

N! terms

still eigenfunction?



antisymmetrization

N! terms — hard problem in general

easy O(N3) for product wavefunctions

Slater determinants



basis of Slater determinants

complete set of single-electron orbitals

expand N-electron function in 1st variable

and repeat to obtain expansion in product states

antisymmetric: states with ni=nj vanish, ni↔nj only differ by sign

basis of Slater determinants



second quantization: motivation

get rid of coordinates and their permutations: Dirac states
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1p
2
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|↵,�i =
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2
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use operators |↵,�i = c†�c
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position of operators encodes signs

product of operators changes sign under commutation: anti-commutation
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†
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anti-commutator {A,B} := AB + BA



second quantization: motivation

specify N-electron states using operators

N=0: |0i (vacuum state)

normalization: h0|0i = 1

N=1: |↵i = c†↵|0i (creation operator adds one electron)

overlap:

normalization: h↵|↵i = h0|c↵c†↵|0i

h↵|�i = h0|c↵c
†
� |0i

adjoint of creation operator must remove one electron:  
annihilation operator

c↵|0i = 0 and c↵c†� = ±c
†
�c↵ + h↵|�i
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†
↵|0i
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†
� = �c

†
�c
†
↵



second quantization: formalism

vacuum state |0⟩ 
and 

set of operators cα related to single-electron states φα(x) 
defined by:
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creators/annihilators operate in Fock space 
transform like orbitals!



second quantization: field operators

creates electron of spin σ at position r ̂ †(x) with x = (r,�)

then c†↵ =

Z
dx '↵(x) ̂

†(x)

complete set:{'↵n(x)}

put electron at x with 
amplitude  φa(x)

�
 ̂(x),  ̂(x 0)

 
= 0 =

�
 ̂ †(x),  ̂ †(x 0)

 
�
 ̂(x),  ̂ †(x 0)

 
= �(x � x 0)

they fulfill the standard anti-commutation relations

how to express coordinates? 
creation/annihilation operators in real-space basis



second quantization: Slater determinants
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second quantization: Slater determinants

general N: commute Ψ(xN) to the right

Laplace expansion in terms of N−1 dim determinants wrt last line of

=

���������

'↵1(x1) '↵2(x1) · · · '↵N (x1)
'↵1(x2) '↵2(x2) · · · '↵N (x2)
...

...
. . .

...
'↵1(xN) '↵2(xN) · · · '↵N (xN)

���������



second quantization: Dirac notation

separate coordinates from orbitals

analogous to Dirac notation

product states                    are many-body generalization of Dirac states

evaluate matrix elements …



second quantization: expectation values

expectation value of N-body operator wrt N-electron Slater determinants

only valid for N-electron states!

|0ih0| = 1 on 0-electron space



result independent of N

second quantization: zero-body operator

M̂0 =
1

N!

Z
dx1dx2 · · · xN  ̂ †(xN) · · ·  ̂ †(x2) ̂ †(x1)  ̂(x1) ̂(x2) · · ·  ̂(xN)
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N!
1 · 2 · · · N = 1 using

only(!) when operating on N-electron state

zero-body operator M0(x1,…xN) = 1 independent of particle coordinates

second quantized form for operating on N-electron states:

overlap of Slater determinants



second quantization: one-body operators

result independent of N

M̂1 =
1

N!

Z
dx1 · · · dxN  ̂ †(xN) · · ·  ̂ †(x1)
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expand in complete orthonormal set of orbitals
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one-body operator M(x1, . . . , xN) =
P
j M1(xj)

transforms as 1-body operator



second quantization: two-body operators

two-body operator M(x1, . . . , xN) =
P
i<j M2(xi , xj)

result independent of N

expand in complete orthonormal set of orbitals
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2-body matrix

4-index tensor
no contribution for 


n=n’ or m=m’

sign-change for

n↔n’ or m↔m’

collect terms with same operator content

two-body matrix

of dim Norb(Norb−1)/2

together with Norb2 hopping terms

completely specifies Hamiltonian



Exact Diagonalization



variational principle and Schrödinger equation

energy expectation value

variation

variational equation:

equivalent to time-independent Schrödinger equation



variational principle

expand |Ψ⟩ ≠ 0 in eigenfunctions

variational principle for excited states

assume eigenvalues sorted E0 ≤ E1 ≤ … 

in practice only useful when orthogonality to (unknown) states

ensured, e.g., by symmetry



expand in Slater basis

rewrite 

choose (orthonormal) orbital basis { 𝜑k | k } and corresponding


basis of Slater determinants { 𝜙k1,…,kN | k1 < … < kN }

expand Schrödinger equation in Slater basis

matrix eigenvalue problem



variational principle

restrict to finite Slater basis

solve with LAPACK

variational principle: 

art: systematically increase basis to achieve convergence

nesting of eigenvalues

consider problem with basis size L as exact problem


variational principle for —H:                                                             .



representation of basis

occupation number representation

>>> for i in range(2**4):
...   if bin(i).count('1')==2: 
...     print(format(i, "04b"))
... 
0011
0101
0110
1001
1010
1100

bit-representation of basis states



matrix elements: Fermi signs

normal-order and evaluate overlap (determinant)

orthonormal basis:

count set bits: popcnt



many-body problem

dimension of Hilbert space

ways of putting N electrons in K orbitals: K (K−1) (K−2)⋅⋅⋅(K−(N−1)) = K!/(K−N)!

order in which electrons are put does not matter: N!

dimH(N)K =
K!

N!(K � N)! =
✓
K

N

◆

M N↑ N↓ dimension of Hilbert space
2 1 1 4
4 2 2 36
6 3 3 400
8 4 4 4 900

10 5 5 63 504
12 6 6 853 776
14 7 7 11 778 624
16 8 8 165 636 900
18 9 9 2 363 904 400
20 10 10 34 134 779 536
22 11 11 497 634 306 624
24 12 12 7 312 459 672 336

use symmetry to reduce dimension

e.g., spin conserved

>>> def binom(K,N):
...   if N==0:
...     return 1
...   else:
...     return (K-N+1)*binom(K,N-1)/N
... 
>>> binom(24,12)**2
7312459672336
>>> binom(24,12)**2*8/2**30
54482



sparseness

almost all matrix elements are zero, except

diagonal elements

single hop                                            N             × (K−N)

pair-hop                                               N(N−1)/2 × (K−N)(K−N−1)/2

matrix-vector products are very fast

1011001010
1011100010
1001100011

even more sparse for TB (short-range hopping) 

and local Coulomb (Hubbard) interaction



Lanczos method



minimal eigenvalue: steepest descent

E[ ] =
h |H| i
h | i

�E[ ]

�h | =
H| i � E[ ]| i

h | i = | ai 2 span (| i, H| i)

energy functional

direction (in Hilbert space) of steepest ascent

minimize energy in span (| i, H| i)

steepest descent minimization in high-dimensional space

local minima?



minimal eigenvalue: steepest descent

minimize energy in span (| i, H| i)

iterate!

construct orthonormal basis

|v0i = | i/
p
h | i

b1 |v1i = |ṽ1i = H|v0i � |v0ihv0|H|v0i

H|v0i = b1 |v1i+ a0 |v0i

diagonalize to find lowest eigenvector

an := hvn|H|vni b1 :=
p
hṽ1|ṽ1idefine:

Hspan(| i,H| i) =

✓
a0 b1
b1 a1

◆



convergence
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10-site Hubbard-chain, half-filling; dim=63,504



Lanczos idea

instead of L-fold iterative minimization on two-dimensional subspaces 
minimize energy on L+1 dimensional Krylov space 

more variational degrees of freedom ⇒ even faster convergence

minimize on span (| 0i, H| 0i) to obtain | 1i
minimize on span (| 1i, H| 1i)2 span

�
| 0i, H| 0i, H2| 0i

�

minimize on span (| 2i, H| 2i)2 span
�
| 0i, H| 0i, H2| 0, H3| 0i

�

etc.

KL( 0i) = span
�
| 0i, H| 0i, H2| 0i, . . . , HL| 0i
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convergence to ground state
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Lanczos iteration

construct orthonormal basis in Krylov space

bn+1|vn+1i = |ṽn+1i = H|vni �
nX

i=0

|vi ihvi |H|vni

an := hvn|H|vnidefine: bn :=
p
hṽn|ṽni

bn+1 �m,n+1 = hvm|H|vni �
nX

i=0

hvm|H|vni �m,ihvm| :

hvm|H|vnh=

8
>><

>>:

hvm|H|vni for m < n
an for m = n
bn+1 for m = n + 1
0 for m > n + 1

H =

0

BBBB@

a0 ? ? · · · ?
b1 a1 ? ?
0 b2 a2 ?

0 0 0 aL

1

CCCCA

H has upper Hessenberg form  
symmetric/hermitian ⇒ tridiagonal



Lanczos iteration

HKL(|v0i) =

0

BBBBBBBBB@

a0 b1 0 0 0 0
b1 a1 b2 0 · · · 0 0
0 b2 a2 b3 0 0
0 0 b3 a3 0 0

...
. . .

...
0 0 0 0 aL�1 bL
0 0 0 0 · · · bL aL

1

CCCCCCCCCA

H|vni = bn|vn�1i+ an|vni+ bn+1|vn+1i

orthonormal basis in Krylov space

|v0i
b1 |v1i = H|v0i � a0|v0i
b2 |v2i = H|v1i � a1|v1i � b1|v0i
b3 |v3i = H|v2i � a2|v2i � b2|v1i

· · ·



Lanczos algorithm

v=init

b0=norm2(v) not part of tridiagonal matrix
scal(1/b0,v) v= |v0i
w=0

w=w+H*v w= H|v0i
a[0]=dot(v,w)

axpy(-a[0],v,w) w= |ṽ1i = H|v0i � a0|v0i
b[1]=norm2(w)

for n=1,2,...

if abs(b[n])¡eps then exit invariant subspace
scal(1/b[n],w) w= |vni
scal( -b[n],v) v= �bn|vn�1i
swap(v,w)

w=w+H*v w= H|vni � bn|vn�1i
a[n]=dot(v,w) a[n]= hvn|H|vni � bnhvn|vn�1i
axpy(-a[n],v,w) w= |ṽn+1i
b[n+1]=norm2(w)

diag(a[0]..a[n], b[1]..b[n]) getting an+1 needs another H|vi
if converged then exit

end



spectrum of tridiagonal matrix

toy problem: matrix with eigenvalues -3, -3, -2.5, -2,-1.99, -1.98, ... -0.01, 0
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Lanczos step

converged,  
but only one of two degenerate states at -3



Krylov space cannot contain degenerate states

assume |φ1〉 and |φ2〉 are degenerate eigenstates with eigenvalue ε, 
then their expansion in the orthonormal basis of the Krylov space is

⇒ |φ1〉 and |φ2〉are identical up to normalization

hv0|Hn|'i i = "n hv0|'i i



loss of orthogonality

toy problem: matrix with eigenvalues -3, -3, -2.5, -2,-1.99, -1.98, ... -0.01, 0
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loss of orthogonality (very small bn): 
additional states when overconverged



convergence to extremal eigenvalues

toy problem: matrix with eigenvalues -3, -3, -2.5, -2,-1.99, -1.98, ... -0.01, 0

exponential convergence  
faster for large gap in spectrum

Ě0 � E0
EN � E0
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convergence to ground state

10-14

10-12

10-10

10-8 

10-6 

10-4 

10-2 

1

 0  20  40  60  80  100

Δ
E t

ot

iteration

U=2t
U=4t
U=6t
U=8t
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construction of eigenvectors

let                       be the nth eigenstate of the tridiagonal Lanczos matrix 

the approximate eigenvector is then given in the Lanczos basis 

 ̌n = ( ̌n,i)

| ̌ni =
LX

i=0

 ̌n,i |vi i

need all Lanczos basis vectors ⇒ would require very large memory 

instead: re-run Lanczos iteration from same |v0〉 
and accumulate eigenvector on the fly

HKL(|v0i) =

0

BBBBBBBBB@

a0 b1 0 0 0 0
b1 a1 b2 0 · · · 0 0
0 b2 a2 b3 0 0
0 0 b3 a3 0 0

...
. . .

...
0 0 0 0 aL�1 bL
0 0 0 0 · · · bL aL

1
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Green function

need entire spectrum !?



Green function

z � Ȟc =

0
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Green function is 0,0 element of inverse matrix

run Lanczos starting from |Ψc› (normalized!)



Green function
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inversion by partitioning
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invert block-2×2 matrix



convergence by moments
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summary
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steepest descent ⇒ Krylov space spectral function: moments
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occupation number representation

(anti)symmetrization is hard 
Slater determinants to the rescue
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indistinguishable electrons second quantization

bit counting



sparse matrix-vector product: OpenMP

      subroutine wpHtruev(U, v,w)
c --- full configurations indexed by k=(kdn-1)+(kup-1)*Ndnconf+1
 ...
!$omp parallel do private(kdn,k,i,lup,ldn,l,D)
      do kup=1,Nupconf
        do kdn=1,Ndnconf
          k=(kdn-1)+(kup-1)*Ndnconf+1
          w(k)=w(k)+U*Double(kup,kdn)*v(k)
        enddo
        do i=1,upn(kup)
          lup=upi(i,kup)
          do kdn=1,Ndnconf
            k=(kdn-1)+(kup-1)*Ndnconf+1
            l=(kdn-1)+(lup-1)*Ndnconf+1
            w(k)=w(k)+upt(i,kup)*v(l)
          enddo
        enddo
        do kdn=1,Ndnconf
          k=(kdn-1)+(kup-1)*Ndnconf+1
          do i=1,dnn(kdn)
            ldn=dni(i,kdn)
            l=(ldn-1)+(kup-1)*Ndnconf+1
            w(k)=w(k)+dnt(i,kdn)*v(l)
          enddo
        enddo
      enddo
      end
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      subroutine wpHtruev(U, v,w)
c --- full configurations indexed by k=(kdn-1)+(kup-1)*Ndnconf+1
 ...
!$omp parallel do private(kdn,k,i,lup,ldn,l,D)
      do kup=1,Nupconf
        do kdn=1,Ndnconf
          k=(kdn-1)+(kup-1)*Ndnconf+1
          w(k)=w(k)+U*Double(kup,kdn)*v(k)
        enddo
        do i=1,upn(kup)
          lup=upi(i,kup)
          do kdn=1,Ndnconf
            k=(kdn-1)+(kup-1)*Ndnconf+1
            l=(kdn-1)+(lup-1)*Ndnconf+1
            w(k)=w(k)+upt(i,kup)*v(l)
          enddo
        enddo
        do kdn=1,Ndnconf
          k=(kdn-1)+(kup-1)*Ndnconf+1
          do i=1,dnn(kdn)
            ldn=dni(i,kdn)
            l=(ldn-1)+(kup-1)*Ndnconf+1
            w(k)=w(k)+dnt(i,kdn)*v(l)
          enddo
        enddo
      enddo
      end

OpenMP on Jump
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distributed memory
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MPI-2: one-sided communication



Hubbard model
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hopping: spin unchanged

interaction diagonal
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Idea: matrix transpose of v(i↓,i↑)

Lanczos-vector as matrix: 
v(i↓,i↑)

implementation: 

MPI_alltoall (N↓ = N↑)
MPI_alltoallv (N↓ ≠ N↑)

(1,1) (1,2)

(2,1) (2,2)

(3,1) (3,2)

(4,1) (4,2)

(5,1) (5,2)

(6,1) (6,2)

(1,3) (1,4)

(2,3) (2,4)

(3,3) (3,4)

(4,3) (4,4)

(5,3) (5,4)

(6,3) (6,4)

(1,5) (1,6)

(2,5) (2,6)

(3,5) (3,6)

(4,5) (4,6)

(5,5) (5,6)

(6,5) (6,6)

thread 0 thread 1 thread 2

before transpose: ↓-hops local 
after    transpose: ↑-hops local 



Implementation on IBM BlueGene/P
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Adv. Parallel Computing 15, 601 (2008)



performance on full Jugene?



performance on full Jugene!
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performance on full Jugene!
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ParLaw
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