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1 Interatomic potentials for materials simulation

The computation of phase diagrams or mechanical properties of materials needs millions of
force evaluations for thousands of atoms, requirements which make these simulations unfeasible
with density functional theory (DFT). For many problems in materials science, chemistry, or
physics it is essential to simplify the description of the interatomic interaction in order that
large and long time atomistic simulations become possible.
The development of interatomic potentials is not a new field. Potentials became important when
the first computers were available to carry out atomistic simulations. Until about the 1980’s the
development of interatomic potentials was largely empirical. The electrons were regarded as
a glue that mediates the interaction of the atomic cores and the mathematical modeling of the
glue was based on intuition and trial and error. Interatomic potentials for materials that are
the focus of this chapter were developed along different strategies than force fields for biology
and polymer science. Guidance for the development of interatomic potentials for materials
was then obtained from DFT or tight-binding electronic structure methods. The assumption
of a constant semi-infinite recursion chain (discussed in Sec. 3.1) leads to the second-moment
potentials [1–3]. The square-root embedding function of the Finnis-Sinclair potential [4],

Ei =
√
ρi +

1

2

∑
j

V (rji) , (1)

is explained from the root mean square width of the second moment (see Sec. 3.4), where
ρi =

∑
j φ(rji) is the local density of atomic sites and where φ and V are pairwise functions

of the interatomic distance between atoms i and j. The observation that the atomic energy is
a non-linear function of the charge density [5, 6] also motivated the embedded atom method
[7], where instead of the square-root function of the Finnis-Sinclair potential a general, quasi-
concave embedding function is used. While the Finnis-Sinclair and embedded atom method
potentials compute the densities as a pairwise sum over neighbors, Tersoff included an angularly
dependent three-body term for modeling directional bond formation in semiconductors [8, 9],
so that the energy is written as a non-linear function that depends on a three-body contribution
ρi =

∑
jk φ(rrrji, rrrki). Later angular terms were also introduced in the modified embedded atom

method [10].
Since then many different potentials were developed, with more complex many-body contribu-
tions and improved descriptions of bond formation. From the many developments I will present
two strategies:

1. the derivation of interatomic potentials from a systematic coarse graining of the electronic
structure,

2. the development of general parametrizations of the many-atom interactions for interpo-
lating reference data.

The bond-order potentials (BOPs) are derived by first simplifying DFT to the tight-binding (TB)
approximation. Then local, approximate solutions of the TB models are developed from which
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expressions for the effective interaction between atoms are obtained. In this way the analytic
BOPs provide a rigorous derivation of interatomic potentials for semiconductors [11, 12] and
metals [13, 14], where the BOPs for metals will be discussed in this chapter. At their lowest
order of approximation the BOPs recover the Tersoff [8, 9] and Finnis-Sinclair [4] potentials,
respectively.
In contrast, the development of more formal, general parametrizations is often based on large
numbers of DFT data that enable the application of methods from statistical learning for interpo-
lating the reference data. This has led to the development of machine-learning interatomic po-
tentials, such as neural networks potentials [15] or Gaussian process regression for the Gaussian
approximation potentials [16]. The field is very active with many recent developments [17–36].
The machine-learning potentials reproduce DFT reference data sets with excellent accuracy.
As machine-learning potentials are not derived or motivated by physical or chemical intuition,
the excellent accuracy of the machine-learning potentials comes at the cost of interpretability.
Machine-learning potentials employ a descriptor that quantifies the local atomic environment.
The atomic energy or other atomic properties are then learned as a non-trivial function of the
descriptor by training with reference data. The atomic cluster expansion (ACE) provides a for-
mally complete descriptor of the local atomic environment [34,37] and may be used to compare
and re-expand different machine-learning interatomic potentials.
In section 2, I will discuss the derivation of the TB approximation from DFT. In Sec. 3 the mo-
ments theorem will be introduced. Several local expansions that implicitly or explicitly exploit
the moments theorem will then be summarized, before the analytic BOPs will be introduced. In
Sec. 4, I will discuss the ACE for the many-atom expansion of the interatomic interaction.

2 Coarse graining the electronic structure for
interatomic potentials

The TB approximation is obtained from a second-order expansion of the DFT functional. I will
first discuss the second-order expansion of the DFT energy and then introduce the TB approxi-
mation. This section follows closely the review in Ref. [38]. It builds on many earlier develop-
ments. Here I highlight a few references only, some of which were key for the development of
modern TB, others which provide excellent reviews [39–47].

2.1 Second-order expansion of the density functional

The contributions to the Hohenberg-Kohn-Sham DFT energy functional [48, 49] are given by

E = TS + EH + EXC + Eext , (2)

with TS the kinetic energy of the non-interacting electrons, EH the Hartree energy, EXC the
exchange-correlation energy and Eext the interaction of the electrons with the nuclei. The
Coulomb interaction between the cores of the nuclei still needs to be added for the compu-
tation of total energies. Next, the eigenstates ψn are expanded in basis functions ϕi. In general



3.4 Ralf Drautz

the basis functions are non-orthogonal,

Sij = 〈ϕi|ϕj〉 and δij = 〈ϕi|ϕj〉 with |ϕi〉 =
∑
j

S−1ij |ϕj〉 , (3)

with the overlap matrix S. The basis function indices may be raised with the inverse of the
overlap matrix and lowered with the overlap matrix, which enables a more compact notation in
the following. The eigenstates are then written as

|ψn〉 =
∑
i

ci(n)|ϕi〉 , and ci(n) =
∑
j

S−1ij c
(n)
j , (4)

with expansion coefficients ci(n). The matrix elements of the density matrix are given by

ρij = 〈ϕi|ρ̂|ϕj〉 =
∑
n

fn〈ϕi|ψn〉〈ψn|φj〉 =
∑
n

fnc
i(n)(cj(n))∗ , (5)

with the occupation numbers fn of the eigenstates ψn. Here I take fn = 1 for occupied states
below the Fermi level and fn = 0 for empty states above the Fermi energy. The charge density
is expressed as

ρ(rrr) =
∑
ij

ρijϕi(rrr)ϕ
∗
j(rrr) . (6)

If expressed in eigenstates, the density matrix is diagonal

ρnn′ = fnδnn′ . (7)

The DFT energy can be categorized in first-, second-, and higher-order contributions in terms
of the density matrix. The kinetic energy of non-interacting electrons is linear in the density
matrix,

TS =
∑
n

fn〈ψn|T̂ |ψn〉 = TTTρρρ , (8)

where here and in the following the trace is implicitly included in the matrix products,

TTTρρρ =
∑
ij

Tijρ
ji . (9)

The matrix elements of TTT are given by

Tij = 〈ϕi|T̂ |ϕj〉 . (10)

The external energy that contains the interaction of the electrons with the ionic cores is also
written as a first-order term

Eext =

∫
V ext(rrr)ρ(rrr) drrr = VVV extρρρ , (11)

with
V ext
ij =

∫
ϕ∗i (rrr)Vext(rrr)ϕj(rrr) drrr . (12)
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The Hartree energy EH is of second order in the density matrix ρρρ or the density ρ,

EH =
1

2

∫
ρ(rrr)ρ(rrr′)

|rrr − rrr′| drrrdrrr
′ =
∑
ijkl

1

2
JHijkl ρ

ijρkl =
1

2
JJJHρρρρρρ , (13)

with the Coulomb integral

JHijkl =
1

2

∫
ϕ∗i (rrr)ϕj(rrr)ϕ

∗
k(rrr
′)ϕl(rrr

′)

|rrr − rrr′| drrrdrrr′ . (14)

The exchange-correlation energy EXC is in general parametrized as a non-linear functional of
the density ρ and gradients of the density and therefore the only contribution to the DFT energy
that contains terms beyond second order. Here I just write a formal series expansion as

EXC = VVV XCρρρ+
1

2
JJJXCρρρρρρ+

1

6
KKKXCρρρρρρρρρ+ · · · . (15)

As the exchange correlation energy summarizes corrections due to many-electron interactions,
it is relatively short ranged. For example, while JJJH decays as 1/r for large separations between
the orbitals, we expect that the term JJJXC is limited to distances of the order of the interatomic
separation.
By grouping terms of the same order,

VVV = TTT + VVV ext + VVV XC , JJJ = JJJH + JJJXC , KKK = KKKXC , (16)

the DFT energy is written as a polynomial expansion in the density matrix

E = VVV ρρρ+
1

2
JJJρρρρρρ+

1

6
KKKρρρρρρρρρ+ · · · . (17)

2.1.1 Hamiltonian and band energy

The elements of the Hamiltonian matrix are obtained from the derivative of the energy with
respect to the density matrix

HHH =
∂E

∂ρρρ
= VVV + JJJρρρ+

1

2
KKKρρρρρρ+ · · · . (18)

The energy may then be represented as the band energy Eband = HHHρρρ and a double-counting
contribution,

E = HHHρρρ− 1

2
JJJρρρρρρ− 1

3
KKKρρρρρρρρρ− · · · . (19)

The band energy may be decomposed into contributions from different orbitals simply as

Eband ,i =
∑
j

Hijρ
ij and Eband =

∑
i

Eband ,i . (20)

This is called the intersite representation of the band energy as it involves two orbitals i and j.
By making use of

∑
j Hijc

j(n) = Enc
(n)
i , where En is the eigenvalue of eigenstate ψn, and
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inserting in the band energy, one arrives at Eband =
∑

i

∑
n fnEnc

(n)
i (ci(n))∗. It is customary to

define the local and global density of states

ni(E) =
∑
n

c
(n)
i (ci(n))∗ δ(En−E) , and n(E) =

∑
i

ni(E) =
∑
n

δ(En−E) , (21)

such that

Eband ,i =

∫ EF

E ni(E) dE and Eband =

∫ EF

E n(E) dE , (22)

with the Fermi energy EF . This is called the onsite representation of the band energy as it
involves only one orbital i.

2.1.2 Perturbation expansion

Often one is interested in the response of a material to a perturbation. Then instead of expanding
the DFT energy about ρ = 0, one would like to discuss the energy associated to the deviation
of the density from a particular density ρ(0)(rrr) [39, 40]. I re-expand the series Eq. (17) about a
reference density matrix ρρρ(0) such that

ρρρ = ρρρ(0) + δρρρ . (23)

From Eq. (17) one then obtains

E = E(0) +HHH(0)δρρρ+
1

2
JJJ ′δρρρ δρρρ+

1

6
KKK ′δρρρ δρρρ δρρρ+ · · · , (24)

where JJJ ′ and KKK ′ refer to the second and third-order expansion coefficients about ρρρ(0). The
Hamiltonian is given by

HHH = HHH(0) +JJJ ′δρρρ+
1

2
KKK ′δρρρδρρρ+ · · · , with HHH(0) = VVV +JJJρρρ(0) +

1

2
KKKρρρ(0)ρρρ(0) + · · · . (25)

2.2 Tight-binding approximation

In the TB approximation one takes the view that bond formation takes place when atomic-like
orbitals overlap. In practice this means that one builds TB models on a minimal basis of atomic-
like orbitals. The one-electron eigenstates are expanded as linear combinations of atomic-orbital
type (LCAO) basis functions. Orbital |iα〉 is located on atom i and has a well defined angular
momentum character, so that α comprises α = n, l,m. The basis functions are written as

ϕiα(rrr) = Rnl(|rrr−rrri|)Y m
l (θ, φ) , (26)

where the radial functions Rnl depend only on the distance to the position rrri of atom i and Y m
l

are spherical harmonics or real linear combinations of spherical harmonics. Differently from
an LCAO basis that is used in DFT, where often several radial basis functions are employed for
a given angular momentum, in TB one typically uses only one radial function for each angular
momentum and only includes orbitals that are dictated by the chemistry of the problem at hand.
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FIG. 1. (Color online) Illustration of the downfolding of a triple-ζ (3-ζ ) basis to an optimal single-ζ basis. Left plot: The original 3-ζ GPAW

pseudo-atomic orbitals (PAOs) basis. Right plot: the optimal basis function for Fe in the simple cubic (with a lattice constant of a = 2.50 Å),
the fcc (a = 3.46 Å) and the bcc (a = 2.87 Å) structures. The structures all have a nearest-neighbor distance of 2.5 Å and the basis functions
are virtually indistinguishable. The confinement potentials corresponding to "EPAO = 0.1 eV are shown in black. Also shown with a dashed
line is the optimal basis function for the Fe dimer at an interatomic distance of 2.5 Å.

simple TB models that we wish to construct. We therefore use
the dual basis sets of grid points20 and atomic orbitals17 im-
plemented in the GPAW code. We first calculate self-consistent
total energies and potentials using the systematic grid basis.
We then obtain the eigenstates |ψn⟩ expanded in a 3-ζ basis,
given by Eq. (2), by performing a single diagonalization in the
potential obtained by the grid calculation. Figure 2 illustrates
the very good agreement between the density of states (DOS)
calculated with the grid basis and with a 3-ζ basis.

B. Optimized atomic orbitals

The optimized minimal (1-ζ ) basis is obtained from the
multiple-ζ basis by a downfolding of the LCAO eigenstates
for a given atomic configuration. In a nonorthogonal minimal

basis {|ϕIµ⟩}, the contravariant basis {⟨ϕIµ|} provides a simple
expression for the closure relation,

⟨ϕIµ| =
∑

Jν

S−1
IµJν⟨ϕJν |,

∑

Iµ

|ϕIµ⟩⟨ϕIµ| = 1̂, (4)

with the overlap matrix S = ⟨ϕIµ|ϕJν⟩. The closure relation
may be seen as a projection operator, which, if applied on
|ψn⟩, measures to what extent |ψn⟩ can be represented in the
basis. We thus write the projection of |ψn⟩ expanded in the
multiple-ζ basis {|φIjµ⟩}, given by Eq. (2), on the minimal
basis {|ϕIµ⟩} as

Pn =
∑

Iµ

⟨ψn|ϕIµ⟩⟨ϕIµ|ψn⟩, P = N−1
e

∑

n

fnPn, (5)

FIG. 2. (Color online) Comparison of the density of states (DOS) of nonmagnetic iron calculated using three different basis sets. The
lattice constants for the calculations are a = 3.46 Å (fcc) and a = 2.87 Å (bcc). The structures have a nearest-neighbor distance of 2.5 Å.

184119-2

Fig. 1: Derivation of a single s and a single d radial function for Fe (right) from multiple s and
d basis functions (left). Taken from Ref. [50].

For example, for carbon or silicon four orbitals are used, one s orbital and three p orbitals. This
makes the TB approximation a chemically and physically intuitive method for analyzing bond
formation in materials.
The TB approximation builds on the perturbation expansion of the Hohenberg-Kohn-Sham
functional discussed in the previous section. The reference charge density ρρρ(0) and the reference
Hamiltonian HHH(0) in Eq. (24) are formally obtained by placing charge neutral, non-magnetic
atoms on positions for which the calculation is carried out and then overlapping the charge den-
sities of the atoms. The expansion of the energy Eq. (24) is typically terminated after second
order, which implies that the Hamiltonian Eq. (25) is a linear function of the density matrix. As
argued before, this should be a good approximation to DFT as only the exchange-correlation
energy includes contributions that are of higher than third order and these contributions are
partly taken into account in Eq. (24).
The radial functions of the TB orbitals must be modified from the radial functions of a free atom
in order that a good representation of the original DFT eigenfunctions may be achieved. In a
solid the atomic charge densities contract when the charge densities of neighboring atoms are
overlapped and therefore the radial function of the TB orbitals must also contract. Optimal ra-
dial functions may be obtained by downfolding from DFT eigenstates [50,51]. Fig. 1 illustrates
the downfolding of several radial functions onto a single radial function in Fe.

2.2.1 Parametrized Hamiltonian

Often the Slater-Koster two-center approximation is used to parametrize the Hamiltonian matrix
HHH(0). The matrix element 〈iα|Ĥ|jβ〉 is assumed to depend only on the position of atoms i and
j and the orbitals α and β. Clearly, this is a crude approximation and in general the matrix
element 〈iα|Ĥ|jβ〉 will depend on other close-by atoms [52], but it is often surprising how
much can be achieved with the simple two-center approximation. Fig. 2 shows the Hamiltonian
matrix elements for Fe that were obtained from the DFT eigenstates.
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FIG. 3. (Color online) Bond integrals: (a) nonorthogonal !EPAO = 0.1 eV, (b) orthogonal !EPAO = 0.1 eV, and (c) nonorthogonal
!EPAO = 0.4 eV. The solid lines in (b) show a fit to simple exponentials to the orthogonal !EPAO = 0.1 eV dimer curves.

d-valent TB model, we will retain only the ddσ , ddπ , and
ddδ integrals.

In Fig. 3 we show the bond integrals β that were calculated
from the optimal minimal basis using Eq. (12). The bond
integrals are discontinuous and poorly transferable. It has
earlier been shown that the inclusion of screening makes the
bond integrals β continuous at the nearest-neighbor and next-
nearest-neighbor distances.2,15,35,36 This prompted us to define
the bond integrals based on a Hamiltonian orthogonalized by
a symmetric Löwdin procedure,37

H̃ = S−1/2HS−1/2, (13)

where H corresponds to the full Hamiltonian in the sd-
minimal basis. Compared to other orthogonalization schemes,
the Löwdin orthogonalization has two important advantages:
the orthogonal orbitals bear the same symmetry as the
nonorthogonal original vectors,4 and they are the closest in a
least-squares sense.38 Figure 3(b) shows that the bond integrals
obtained by using H̃ in Eq. (12) are both transferable and
continuous. The very good agreement shown in Fig. 3(b),
even with the Fe dimer, is somewhat surprising. It has
already been shown in Fig. 1 that the optimal d basis is
transferable for a given interatomic distance. Therefore the
poor transferability observed in Fig. 3(a) can only be due to
three-center, 〈ϕI |VK |ϕJ 〉, contributions to the Hamilton matrix
elements leading to an environmental dependence of the two-

center integrals. The effect of the Löwdin orthogonalization
must be a screening of the three-center integrals.

A qualitative rationalization of the transferability can be
found by comparing H̃ to the D matrix used in an analy-
sis of chemical pseudopotential theory.39 Large three-center
contributions will be associated with large two-center overlap
integrals, thereby screening the large three-center integrals.
This interpretation is confirmed in Fig. 3(c), where radial
extents of the basis functions, and thereby the three-center
contributions, are reduced. Using !EPAO = 0.4 eV instead
of !EPAO = 0.1 eV reduces the radial extent of the d orbitals
from 5.1 to 3.9 Å. Consequently the unscreened bond integrals
show transferability and are continuous.

The bond integrals are fitted to simple exponentials as

βddλ(R) = addλ exp(−bddλR), λ = σ,π,δ. (14)

Due to the transferability of the bond integrals, shown in
Fig. 3, we simply use the bond integrals obtained for the
dimer; the parameters are given in Table I. At the nearest-
neighbor distance of the bcc and fcc structure of around
2.5 Å, the relative strength of the bond integrals, ddσ : ddπ :
ddδ = −0.60 : 0.41 : −0.08 eV, shows a surprisingly good
agreement with the canonical d-band ratio of −6 : 4 : −1.40

The transferability to the dimer also forms a link to the
widely used density-functional-based tight-binding (DFTB)
approach,13 where the bond integrals are evaluated from a
dimer calculation using a single-ζ basis in a potential from

184119-4

Fig. 2: Hamiltonian matrix elements for a d-valent orthogonal TB model of Fe in different
crystal structures. The solid lines show a fit to an exponential function. Taken from Ref. [50].

2.2.2 Charge transfer

In TB one frequently assumes that only the diagonal elements of δρρρ contribute to the second-
order term 1

2
JJJδρρρδρρρ. The diagonal elements are the charges in each orbital

qiα = Niα −N (0)
iα , (27)

that correspond to Mulliken charges in a non-orthogonal basis. The index 0 indicates the popula-
tion of orbital |iα〉 in a non-magnetic free atom. This approximation has important implications
for the structure of the TB model. From Eq. (24) and Eq. (25) the energy is given by

E = E(0) +
∑
iαjβ

H
(0)
iαjβnjβiα +

∑
iαjβ

1

2
Jiαjβqjβqiα , (28)

and the Hamiltonian as

Hiαjβ = H
(0)
iαjβ + Jiαkγ qkγSiαjβ . (29)

The modification ofHHH may thus be written as(
Eiα − E(0)

iα

)
Siαjβ with Eiα − E(0)

iα = Jiαkγ qkγ . (30)

Charge transfer modifies the onsite matrix elements Eiα but leaves the rest of the Hamiltonian
unchanged from its reference state H(0)

iαjβ . Sometimes multipole expansions are used for non-
spherical charges with an explicit parametrization of the angular contributions of JJJ in the above
equations.
Often, in an even simpler approximation, only the total charge on each atom qi =

∑
α qiα

is considered and the second-order term takes the form
∑

ij
1
2
Jijqiqj . Then from Eq. (29) all

onsite levels on an atom are shifted in parallel upon charge transfer. In literature it is sometimes
incorrectly assumed that this automatically corresponds to a point charge approximation.
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2.3 Bond formation in the tight-binding approximation

Following Eq. (28) two different types of bond formation are represented in a TB model, the
formation of covalent bonds through the modification of the off-diagonal elements of the den-
sity matrix δρiαjβ with iα 6= jβ and ionic interactions driven by charge transfer through the
modification of the diagonal elements of the density matrix δρiαiα = qiα. I will discuss the
decomposition of the TB energy in physically and chemically intuitive and transparent contri-
butions in the following.

2.3.1 Bond energy

The bond energy summarizes the energy that is stored in the bonds between different atoms

Ebond =
∑
iαjβ

(
Hiαjβ − EiαSiαjβ

)
njβiα = Eband −

∑
iα

EiαNiα . (31)

Differently from the band energy, the bond energy is invariant with respect to a shift of the en-
ergy scale. Using Eq. (29) the bond energy is closely related to the linear term in the TB energy

HHH(0)nnn = Ebond +
∑
iα

E
(0)
iα Niα . (32)

Equivalent to the intersite representation of the bond energy above is the onsite representation,

Ebond =
∑
iα

∫ EF

−∞

(
E−Eiα

)
niα(E) dE . (33)

The population of the density of states below Eiα leads to a negative contribution to the bond
energy, i.e., corresponding to the filling of bonding states. Once states above Eiα have to be
populated, the bond energy decreases, corresponding to a filling of anti-bonding states. The
integral over the complete band is zero, 0 = Ebond =

∑
iα

∫∞
−∞

(
E−Eiα

)
niα(E) dE, which

helps to show that the bond energy is always smaller or equal to zero,

Ebond ≤ 0 . (34)

2.3.2 Promotion energy

When bonds are formed, the onsite levels are re-populated. In the free atom the number of
electrons per orbital is denoted by N (0)

iα . For charge neutral atoms the promotion energy is then
written as

Eprom =
∑
iα

E
(0)
iα

(
Niα−N (0)

iα

)
. (35)

In contrast to the bond energy, the promotion energy is strictly positive as the electrons in the
free atom occupy the energetically lowest orbitals.



3.10 Ralf Drautz

2.3.3 Free atom energy

For the evaluation of the binding energy the energies of the free atoms are subtracted

EB = ETB − ETB
free atoms . (36)

From Eq. (28) the TB energy of non-magnetic, charge neutral free atoms is given by

ETB
free atoms =

∑
iα

E
(at)
iα N

(0)
iα −

1

2

∑
iαβ

JiαiβN
(0)
iα N

(0)
iβ , (37)

where E(at)
iα are the eigenstates of the free atom i and the population of the atomic orbitals is

equal to the population in the reference state, N (0)
iα .

2.3.4 Preparation energy

The preparation energy takes into account modifications of the onsite levels when the free atoms
are brought together and their charge density is overlapped to the reference charge density ρρρ(0),

Eprep =
∑
iα

(
E

(0)
iα −E(at)

iα

)
N

(0)
iα . (38)

2.3.5 Charge transfer

Charge transfer leads to two further contributions to the energy and a somewhat modified ex-
pression for the promotion energy above. Because of the onsite level difference between atoms
there is an energy linear in charge, and further the second-order contribution to the TB energy
Eq. (28). The two terms are denoted as an electrostatic interaction of charges on different atoms

Ees =
1

2

i 6=j∑
ij

Jijqiqj , (39)

and an ionic onsite contribution for charging each atom

Eion = Ēiqi +
1

2

∑
i

Jiiq
2
i . (40)

The energy Ēi is obtained as a weighted average of the reference onsite levels on atom i and
corresponds to the electronegativity of the atom. The parameter Jii further determines resistance
against charge transfer from the charge neutral state.

2.3.6 Repulsive energy

The repulsive energy summarizes all terms that do not explicitly depend on the modification of
the density matrix δnnn. For this reason Eprep is also absorbed in the repulsive energy

Erep = −1

2

j 6=j∑
iαjβ

JiαjβN
(0)
iα N

(0)
jβ + Enuc + Eprep , (41)

where Enuc corresponds to the Coulomb repulsion of the bare atomic cores.
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2.3.7 Summary of the energy in the tight-binding approximation

In summary, the second-order expansion of DFT, Eq. (24), cast in a TB binding energy is re-
written in the form

EB = Ebond + Eprom + Eion + Ees + Erep . (42)

The TB expansion suggests a representation of bond formation in the steps summarized in the
following table. Typically, the steps 1–3 are repulsive, while step 4 is attractive and drives bond
formation.

1 Erep → overlap atomic charge densities

2 Eion → charge atoms

3 Eprom → re-populate atomic energy levels

4 Ebond + Ees → chemical and electrostatic interactions

3 The moments theorem and local expansions

For the derivation of interatomic potentials I next turn to local solutions of the TB model. In
particular, the moments theorem will allow us to relate the local electronic structure to the local
atomic environment, which is critical for analyzing the interaction between atoms.
The moments of the local density of states may be defined as

µ
(N)
iα =

∫
ENniα(E) dE . (43)

The moments may be used to characterize the density of states. The zeroth moment is just the
norm, µ(0)

iα = 1. The first moment gives the center of the density of states. From the second
moment the root mean square width of the density of states may be obtained and from the third
moment its skewness. The fourth moment characterizes the bimodality of the local density
of states, etc. If all moments are known, then the density of states may be reconstructed and
therefore may be viewed as a function of its moments,

niα(E) = niα(E, µ
(0)
iα , µ

(1)
iα , µ

(2)
iα , . . . ) . (44)

The idea of reconstructing the density of states from its moments (or equivalent information)
is the basis for the different methods that will be discussed in the following. In order that such
a reconstruction can be efficient, the moments of the density of states need to be accessible.
Here the moments theorem that I will briefly derive in the following provides the critical link. I
assume for ease of notation that the basis functions are orthonormal

〈iα|jβ〉 = δijδαβ . (45)
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By using the definition of the density of states from Eq. (21) the moments may be rewritten as

µ
(N)
iα =

∫
ENniα(E) dE =

∑
n

EN
n 〈iα|n〉〈n|iα〉

∫
δ
(
En−E

)
dE

=
∑
n

〈iα|ĤN |n〉〈n|iα〉 = 〈iα|ĤN |iα〉 , (46)

where I used the completeness of the eigenstates 1̂ =
∑

n |n〉〈n|. A further manipulation
enables a geometric interpretation

µ
(N)
iα = 〈iα|ĤN |iα〉 =

∑
jβkγ...

〈iα|Ĥ|jβ〉〈jβ|Ĥ|kγ〉〈kγ|Ĥ . . . Ĥ|iα〉

=
∑
jβkγ...

HiαjβHjβkγHkγ... . . . H...iα , (47)

with a complete basis 1̂ =
∑

iα |iα〉〈iα|. The last identity tells us that the N th moment may be
obtained from the product of N Hamiltonian matrix elements. The N th moment may therefore
be described as the sum of all self-returning hopping path of length N that start and end on the
same basis function.
Along the same lines it is straightforward to show that the moments of the spectrally resolved
density matrix

niαjβ(E) =
dρiαjβ
dE

, or ρiαjβ =

∫ EF

niαjβ(E) dE , (48)

may be obtained as

ξ
(N)
iαjβ =

∫
ENniαjβ(E) dE = 〈iα|ĤN |jβ〉 . (49)

The N th moment ξ(N)
iαjβ of the spectrally resolved density matrix is thus given by all interference

paths of N products of the Hamiltonian matrix that start and end on orbitals |iα〉 and |jβ〉,
respectively.
As the Hamiltonian matrix elements depend on the positions of the atoms, the moments theorem
relates the atomic structure to the electronic structure. For the reconstruction of the local density
of states, the lowest moments contribute basic information on the width and shape of the density
of states, while higher moments may be used to reconstruct increasingly finer details. This is
intuitive: the matrix elements Hiαjβ decay roughly exponentially with distance between the
atoms i and j, which means that the low moments only sample the local environment of an
atom and higher moments incorporate information of an increasingly distant neighborhood of
orbital |iα〉.
In the following I will discuss methods for the reconstruction of the band energy from the atom-
ically local neighborhood. These methods were developed originally for linear-scaling DFT
or TB. The methods have different starting points, but implicitly or explicitly they all corre-
spond to a reconstruction of the density of states from its moments. For the analytic bond-order
potentials we use the moments to derive a hierarchical analytic expansion of the interatomic
interaction.
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Fig. 3: Illustration of the semi-infinite recursion chain Hamiltonian.

3.1 Recursion and numerical bond-order potentials

In the recursion method the Hamiltonian matrix is transformed to tridiagonal form, from which
the Green function may be obtained as a continued fraction [53, 54]. Given a starting orbital
|u0〉 = |iα〉 first a basis transformation is carried out,

bn+1|un+1〉 =
(
Ĥ−an

)
|un〉 − bn|un−1〉 , (50)

with
bn = 〈un|Ĥ|un−1〉 , and an = 〈un|Ĥ|un〉 . (51)

The recursion is initialized with b0 = 0 and leads to orbitals |un〉 that have remarkable proper-
ties: the resulting Hamiltonian matrix is tridiagonal, i.e., it only has entries on the diagonal and
next to the diagonal,

〈un|Ĥ|um〉 =



a0 b1 0 0 0 0 . . .

b1 a1 b2 0 0 0 . . .

0 b2 a2 b3 0 0 . . .

0 0 b3 a3 b4 0 . . .

0 0 0 b4 a4 b5 . . .

0 0 0 0 b5 a6
. . .

...
...

...
...

... . . . . . .


, and 〈un|um〉 = δnm . (52)

The tridiagonal Hamiltonian may be viewed as semi-infinite, one-dimensional chain and is
illustrated in Fig. 3. The recursion also shows that every Hamiltonian may be represented as a
one-dimensional semi-infinite chain with nearest-neighbor interactions.
The moments of the density of states Eq. (43) may be obtained from self-returning paths along
the tridiagonal Hamiltonian matrix as

µ
(0)
iα = 1 ,

µ
(1)
iα = a0 ,

µ
(2)
iα = a20 + b21 ,

µ
(3)
iα = a30 + (2a0 + a1)b

2
1 ,

µ
(4)
iα = a40 + b41 + (3a20 + 2a0a1 + a21 + b22)b

2
1 ,

...
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3.1.1 Green function expansion

The Green function is defined as

Ĝ =
(
E1̂− Ĥ

)−1
. (53)

The matrix elements of the Green function in eigenstates are given by

〈ψn|Ĝ|ψm〉 =
δnm

E − En
. (54)

This is easily verified by inserting the identify 1̂ =
∑

n′ |ψn′〉〈ψn′ | into

δn,m = 〈ψn|ψm〉 = 〈ψn|(E1̂−Ĥ)Ĝ|ψm〉

=
∑
n′

〈ψn|E1̂−Ĥ|ψn′〉〈ψn′|Ĝ|ψm〉 =
E − En
E − Em

δnm . (55)

The Green function matrix elements in basis functions are given by

Giαjβ(E) =
∑
nm

〈iα|ψn〉〈ψn|Ĝ|ψm〉〈ψm|jβ〉 =
∑
n

〈iα|ψn〉〈ψn|jβ〉
E − En

. (56)

With the help of the recursion chain Eq. (50) the diagonal elements of the Green function matrix
may be expressed in the form of a continued fraction [53],

Giαiα(E) = G00(E) =
1

E − a0 −
b21

E − a1 −
b22

E − a2 −
b23

E − a3 −
b24

E − a4 −
b25
. . .

. (57)

Next the Green function is related to the density matrix by making use of the identity

− 1

π
Im
∫

1

E − En
dE =

∫
δ(E−En) dE , (58)

so that comparing to Eq. (21) and Eq. (48) results in the identities

niα(E) = − 1

π
ImGiαiα(E) and niαjβ(E) = − 1

π
ImGiαjβ(E) . (59)

The Green function may therefore be used for the computation of the band or bond energy. This
is used in the numerical bond-order potentials (BOPs) that will be introduced next.
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3.1.2 Numerical bond-order potentials

We are interested in the local calculation of the band energy or, for the TB approximation, the
bond energy associated to orbital |iα〉. This is achieved by terminating the recursion expansion
of the Green function after a few recursion levels n: The recursion coefficients am and bm for
m > n are replaced by a constant terminator

am = a∞ , bm = b∞ for m > n . (60)

The terminator in the Green function may be summed analytically and leads to termination of
the continued fraction at level n by

E − an−1 − T (E) , (61)

with

T (E) =
1

2

(
E−a∞ −

√
(E−a∞)2 − 4b2∞

)
(62)

obtained from the functional equation T (E) = b2∞/(E−a∞ − T (E)) for the ininite continued
fraction with constant coefficients.
The corresponding density of states is different from zero only in the interval between a∞−2b∞
and a∞ + 2b∞. A local expansion of the bond energy is now obtained as

Ebond,iα = − 1

π
Im
∫ EF E − Eiα

E − a0 −
b21

E − a1 −
b22

. . . −
. . .

E − an−1 − T (E)

. (63)

The integration of the Green function is carried out numerically, therefore the name numerical
BOPs.
For the evaluation of forces the off-diagonal elements of the Green function are also required.
These are obtained by defining

|u0〉 =
1√
2

(
|iα〉+ eiϑ|jβ〉

)
, (64)

with ϑ = cos−1 λ and therefore

G00 = λGiαjβ +
1

2

(
Giαiα +Gjβjβ

)
. (65)

A particular termination of the expansion ensures that the onsite and intersite representation of
the bond energy are identical [55]. Details of the numerical BOPs are available in Refs. [56–58].
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3.2 Kernel polynomial method

In the Kernel Polynomial Method (KPM) [59–61] the density of states is represented as

niα(ε) =

∫
K(ε, ε′)niα(ε′) dε′ , (66)

where the energy has been rescaled as

ε =
E − a∞

2b∞
. (67)

It is clear that this identity only holds if the kernel fulfills K(ε, ε′) = δ(ε−ε′). In order to
achieve an approximate, local representation of niα(ε) the kernel is expanded in Chebyshev
polynomials of the first kind

K(ε, ε′) =
1

π

1√
1−ε2

(
g
(0)
T + 2

nmax∑
n=1

g
(n)
T Tn(ε)Tn(ε′)

)
. (68)

The factors g(n)T are chosen in such a way that for every nmax the kernel is positive,K(ε, ε′) ≥ 0,
while it is also as narrow as possible for an efficient convergence to the Dirac delta function
when nmax is increased. Typically g(n)T smoothly decays as a function of n from g

(0)
T = 1 to

g
(nmax )
T = 0. Fig. 4 illustrates different damping factors.

By inserting the expansion for the Kernel in Eq. (66), an expansion for the density of states is
obtained as

niα(ε) =
1

π

1√
1−ε2

(
g
(0)
T + 2

nmax∑
n=1

g
(n)
T Tn(ε)µTn

)
, (69)

with the Chebyshev moments

µTn =

∫ 1

−1

Tn(ε)niα(ε) dε . (70)

As the Chebyshev polynomials may just be written in powers of ε, the Chebyshev moments are
linear combinations of the moments of the density of states, Eq. (21).
The damping factors g(n)T that ensure a positive expansion of the density of states remove much
of the contribution of higher moments. One way to avoid this is to add higher moments that are
generated based on a maximum entropy principle [63].

3.3 Fermi operator expansion

In DFT it is customary to introduce an electronic temperature. This is done in part for practical
reasons, as temperature dampens details of the Fermi surface in a metal and leads to faster con-
vergence of the k-space integration over the Brillouin zone as a function of the k-mesh density.
For the Fermi operator expansion the electronic temperature provides the starting point for the
expansion. With temperature, the band energy and the number of electrons are computed as

Eband =

∫
ε f(ε, µ)n(ε) dε and N =

∫
f(ε, µ)n(ε) dε (71)
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If the kernel in Eq. (26) is strictly positive, K (nmax)(ε,ε′) ! 0,
then, because the density of states is positive too, niα(ε) ! 0,
the resulting approximate density of states, in principle, also
fulfills n

(nmax)
iα (ε) ! 0. A positive kernel may be obtained by

using the trigonometric form of the Chebyshev polynomials,
Eq. (9), such that the kernel is represented as

K (nmax)(ε,ε′) = 1
π

1
sin φ

{

g
(0)
T +

nmax∑

n=1

g
(n)
T [cos n(φ − φ′)

+ cos n(φ + φ′)]

}

, (29)

where we used 2 cos φ cos φ′ = cos(φ − φ′) + cos(φ + φ′).
Therefore, in order to establish the positivity of the kernel,
it suffices to show that

D(α) = g
(0)
T + 2

nmax∑

n=1

g
(n)
T cos nα ! 0 , (30)

for arbitrary α. Examples of positive kernels are the Fejer
kernel,

g
(n)
T = 1 − n

nmax
, (31)

and the Jackson kernel that is used in the KPM,21

g
(n)
T = nmax − n + 1

nmax + 1

(
cos π

n

nmax + 1

+ sin π
n

nmax + 1
cot π

1
nmax + 1

)
. (32)

In practice, a positive kernel does not necessarily mean that the
representation of the density of states is positive everywhere, as
the band center and band width, a(∞)

iα and b
(∞)
iα , are parameters

that need to be chosen prior to the expansion. If, for example,
the bandwidth is chosen too narrow, then the kernel cuts out
only part of the true density of states. Therefore the expansion
coefficients τ

(n)
iα that one would obtain from carrying out the

integral over the kernel explicitly no longer agree with the
expansion coefficients that are calculated from the moments
theorem. Thus, if the expansion coefficients that are obtained
based on the moments theorem are entered into Eq. (28), the
density of states may become negative although the kernel is
positive. Therefore the choice of a

(∞)
iα and b

(∞)
iα is critical for

a sensible expansion of the density of states. Here, we use the
Gerschgorin circle theorem35 to guarantee that the band width
and band center are chosen in such a way that the complete
spectrum niα(E) is covered and therefore the expansion of the
density of states is strictly positive, see Appendix B.

We show how to achieve an explicitly positive representa-
tion of the density of states in the analytic bond-order potentials
by following the KPM and expanding the kernel in Chebyshev
polynomials of the second kind:

K (nmax)(ε,ε′) = 2
π

√
1 − ε2

[

g
(0)
U +

nmax∑

n=1

g
(n)
U Un(ε)Un(ε′)

]

,

(33)

such that the density of states may be written in the form of
Eq. (2) modified by the kernel expansion coefficients g

(n)
U ,

n
(nmax)
iα (ε) = 2

π

√
1 − ε2

[

g
(0)
U +

nmax∑

n=1

g
(n)
U σ

(n)
iα Un(ε)

]

. (34)

By using Un = sin(n + 1)φ/ sin φ, the representation of the
kernel is equivalent to

K (nmax)(ε,ε′) = 1
π

1
sin φ′

{
nmax+1∑

n=1

g
(n−1)
U [cos n(φ − φ′)

− cos n(φ + φ′)]

}

, (35)

where we used 2 sin φ sin φ′ = cos(φ − φ′) − cos(φ + φ′). By
comparing to Eq. (29), we may choose to identify

g
(n)
U = g

(n+1)
T

/
g

(1)
T , n = 1, . . . ,nmax, (36)

where the coefficients g
(n+1)
T are the coefficients of an expan-

sion in terms of Chebyshev polynomials of the first kind that
includes terms up to order nmax + 1. In Fig. 2, the kernel that
is obtained in this way is illustrated.

An explicitly positive kernel may be obtained as follows.
As φ and φ′ are limited to the interval [0,π ] and because of the
symmetry of the cosine function, we may rewrite the kernel
(33) as

K (nmax)(ε,ε′) = 1
2π

1
sin φ′

[
nmax+1∑

n=1

g
(n−1)
U (cos nα − cos nβ)

]

,

(37)

with α = |φ − φ′| and β = π − |φ + φ′ − π |, where 0 "
α " β " π . Therefore the kernel is positive if

nmax+1∑

n=1

g
(n−1)
U cos nα !

nmax+1∑

n=1

g
(n−1)
U cos nβ . (38)

FIG. 2. (Color online) Jackson kernel, Eq. (32), for Chebyshev
polynomials of the first kind for nmax = 50 (black squares), and
the corresponding kernels, Eqs. (36) (red circles) and (40) (blue
triangles), for Chebyshev polynomials of the second kind.

094105-5

Fig. 4: Damping factors used in the KPM (Jackson kernel) and analytic BOPs for nexp = 50.
Taken from Ref. [62].

with the energy scale Eq. (67), where µ is the electron chemical potential and

f(ε, µ) =
1

1 + exp
(
ε−µ
kBT

) , (72)

the temperature dependent Fermi-Dirac distribution function and n(ε) the density of states. At
T = 0 K the smearing is zero and f(ε, µ) corresponds to the Heaviside step function Θ(ε, εF )

which is one below the Fermi energy εF and zero above. In the Fermi operator expansion (FOE)
method [64, 65] the density matrix is locally approximated by writing it as

ρiαjβ =

∫
f(ε, µ)niαjβ(ε)dε , (73)

and then expanding f in a polynomial

f(ε, µ) =
∑
k

ckε
k . (74)

By making use of Eq. (49) the density matrix is written as

ρiαjβ =
∑
k

ck ξ
(k)
iαjβ , and Eband =

∑
iαjβ

∑
k

ck ξ
(k)
iαjβHjβiα =

∑
iα

∑
k

ckµ
(k+1)
iα . (75)

In practice the Fermi-Dirac distribution function is expanded in Chebyshev polynomials

f(ε) =
1

π
√

1−ε2
(
µT0 + 2

nmax∑
n=1

µTnTn(ε)

)
. (76)

with the Chebyshev moments µTn , Eq. (70), and the band energy accordingly. Another repre-
sentation of the Fermi operator expansion, the rational representation, may be related to the
recursion expansion.
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3.4 Analytic bond-order potentials

The analytic BOPs combine the recursion expansion and the KPM. I start from a scaled energy
Eq. (67) that allows us to work with Chebyshev polynomials that are defined on the interval
[−1, 1]. The analytic BOPs use the Chebyshev polynomials of the second kind as the they are
orthogonal with respect to the square root function

2

π

∫ +1

−1
Un(ε)Um(ε)

√
1−ε2 dε = δnm . (77)

The square root function is also the density of states of the semi-infinite recursion chain when
all matrix elements are identical a0 = a1 = · · · = a∞ and b1 = b2 = · · · = b∞. If the reference
energy is shifted to a0 = 0, then b21 = µ

(2)
iα . As b1 = b∞ determines the width of the density of

states, the bond energy scales as
√
µ
(2)
iα and the Finnis-Sinclair potential, Eq. (1), is immediately

obtained. Therefore, by choosing the Chebyshev polynomials of the second kind, the analytic
BOPs incorporate the Finnis-Sinclair potential at the lowest order of approximation.
The Chebyshev polynomials of the second kind fulfill the recursion relation

Un+1(ε) = 2εUn(ε)− Un−1(ε) , (78)

with U0 = 1 and U1 = 2ε.
The expansion coefficients for the density of states are obtained by projection,

σ
(n)
iα =

∫ +1

−1
Un(ε)niα(ε) dε , (79)

and the density of states is expressed as

niα(ε) =
2

π

∑
n

√
1−ε2 σ(n)

iα Un(ε) . (80)

The expansion coefficients σ(n)
iα are computed using the moments theorem Eq. (43) as

σ
(n)
iα = 〈iα|Un(ĥ)|iα〉 , (81)

with the scaled Hamiltonian

ĥ =
Ĥ − a∞

2b∞
. (82)

In practice nmax expansion coefficients are computed, which corresponds to evaluating nmax

moments of the density of states. Thus the expansion Eq. (80) becomes

niα(ε) =
nmax∑
n=0

√
1−ε2 σ(n)

iα Un(ε) , (83)

or using ε = − cosφ,

niα(ε) =
nmax∑
n=0

σ
(n)
iα sin(n+1)φ . (84)
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If a Fourier series expansion is abruptly terminated because only the first nmax expansion coef-
ficients are taken into account, this may lead to significant oscillations that are known as Gibbs
ringing. In particular, these oscillations may be so large that the expansion of the density of
states Eq. (84) may become negative.
The Gibbs ringing may be removed and a strictly positive expansion of the density of states may
be enforced by damping the expansion coefficients,

niα(ε) =
nmax∑
n=0

gn σ
(n)
iα sin(n+1)φ . (85)

The damping factors gn are similar to the damping factors in KPM and decrease monotonically
from g0 = 1 to gnmax = 0 [62, 66], see Fig. 4. They damp oscillations and avoid Gibbs ringing
and potentially negative values of the density of states. As the damping factors decrease to zero
for nmax , they remove most of the contribution from higher moments. Therefore more moments
need to be calculated, i.e., nmax needs to be increased. As the calculation of the moments is the
most time consuming part in the energy and force evaluation, one would like to keep nmax as
small as possible.
This may be resolved by terminating the expansion Eq. (85). One first evaluates moments up
to nmax from the Hamiltonian using the moments theorem. Further moments from nmax+1 up
to nexp � nmax are then computed using an estimated model Hamiltonian that has the form of
a semi-infinite chain with nearest neighbor bonds only [62]. Because of the simple structure
of the semi-infinite chain, only very few matrix elements need to be multiplied and therefore
the computation of the moments along the chain is very fast. The resulting expansion takes the
form

niα(ε) =
nmax∑
n=0

gn σ
(n)
iα sin(n+1)φ+

nexp∑
n=nmax+1

gn σ
(n)
iα sin(n+1)φ . (86)

The damping factors decay monotonically from g0=1 to gnexp=0. For nexp�nmax the damping
factors for the first few moments are close to one and the contributions of the corresponding
moments are hardly affected. This means that the expansion as a function of nmax converges
quickly to the tight-binding reference. In practice one uses nexp ≈ 20×nmax . This leads to a
good quality of the reconstructed DOS already at a small number of calculated moments.
The density of states Eq. (86) may be integrated analytically,

Ebond ,iα = 2b∞

nexp∑
n=0

gn σ
(n)
iα

(
χ̂n+2(φF )− γ0χ̂n+1(φF ) + χ̂n(φF )

)
, (87)

with γ0 = (Eiα−a∞)/b∞ and χ̂0 = 0,

χ̂1 = 1− φF
π

+
1

2π
sin(2φF ) . (88)

The response functions take the form

χ̂n(φF ) =
1

π

(
sin(n+1)φF

n+1
− sin(n−1)φF

n−1

)
. (89)
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Finally, the number of electrons in orbital Niα is obtained as

Niα =

nexp∑
n=0

gn σ
(n)
iα χ̂n+1(φF ) , (90)

with the Fermi phase εF = − cosφF . For the gradients of the bond energy Ebond ,iα and the
number of electrons Niα efficient analytic expressions may be obtained [14, 62]. The analytic
BOPs have been extended further to include non-collinear magnetism [14, 67]. The analytic
BOPs scale-linearly with the number of atoms. An efficient and parallel implementation is
available [68] that enables simulations with millions of atoms.

3.5 Examples for the analytic bond-order potentials

3.5.1 Bond order

The density matrix is also called the bond order, a factor of two is usually between the two
quantities in non-magnetic systems. I transform the orbitals |iα〉 and |jβ〉 in a new basis of
bonding and anti-bonding dimer states to analyze bond formation

|+〉 =
1√
2

(
|iα〉+ |jβ〉

)
bonding state , (91)

|−〉 =
1√
2

(
|iα〉 − |jβ〉

)
anti-bonding state . (92)

The density matrix may then be obtained from the difference of the number of electrons in
bonding and anti-bonding states

ρiαjβ = 〈iα|ρ̂|jβ〉 =
1

2

(
N+ −N−

)
, (93)

with N+ = 〈+|ρ̂|+〉 and N− = 〈−|ρ̂|−〉 and Niαiα +Njβjβ = (N++N−) the number of elec-
trons in the bond. If we assume a non-magnetic calculation and take into account spin degen-
eracy, then 0 ≤ Niαiα ≤ 2 and the same for Njβjβ . This allows one to put limits on the density
matrix

|ρiαjβ| ≤ Niαjβ and |ρiαjβ| ≤ 2−Niαjβ , (94)

with Niαjβ = (Niαiα+Njβjβ)/2. Fig. 5 shows the density matrix for close packed transition
metals as a function of band filling.

3.5.2 Structural stability

The analytic BOPs may be employed for the analysis of the structural stability of different
phases. To this end one compares the structures at the same repulsive energy, following the
structural energy difference theorem [44]. Fig. 6 shows the structural energy differences for a
number of close packed phases.
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!kU
bond = 20b!!

i
"

−1

"F

#" − 1/2#i0$!kni#"$d"

= 20b!"
−1

"F

"!
i

!kni#"$d" . #78$

The second equality follows because we have made the ex-
cellent approximation for metals that each atom remains lo-
cally charge neutral, so that !kNi vanishes. Substituting the
expansion for the density of states, Eq. #39$, the gradient
becomes

!kU
bond#nmax$ = 10b! !

m=0

nmax

!
n=0

m

pmn!k!
i

$̂i
#n$

%%&̂m+2#'F$ + &̂m#'F$& . #79$

The derivative of the dimensionless moments !k$̂i
#n$ may be

further simplified,

!k!
i

$̂i
#n$ =

1
5!

i(
'i((!kĥ

n(i()

=
1
5!

i(
'i((nĥn−1!kĥ(i()

=
1
5 !

i(j)
n*̂i(j)

#n−1$!khj)i(, #80$

where ĥ= #Ĥ−a!$ / #2b!$ and we have taken into account that
the trace of a product of operators is invariant with respect to
cyclic exchange of arguments. Finally, by introducing

+̃i(j)
#nmax$ = 2 !

m=0

nmax

!
n=0

m

pmnn*̂i(j)
#n−1$%&̂m+2#'F$ + &̂m#'F$& , #81$

with *̂i(j)
#−1$ =0, the forces may be written in a form similar to

Hellmann-Feynman forces,

Fk
bond = − !kU

bond#nmax$ = − !
i(j)

+̃i(j)
#nmax$#!kHj)i($ . #82$

We prove in the Appendix that as nmax tends to infinity,
+̃#nmax$→+, so that we recover the exact Hellmann-Feynman
force Eq. #20$. It remains for future research to investigate
the magnitude of the errors made by using site-dependent
coefficients ai! and bi! in our analytic BOP expansion.

V. CONCLUSION

In this paper we have derived analytic expressions for the
bond energy and forces within d-valent transition-metal sys-
tems. This has been achieved by expanding the on-site den-
sity of states in terms of Chebyshev polynomials of the sec-
ond kind weighted by the semielliptic density of states
corresponding to the well-known second-moment approxi-
mation. The resulting expansion generalizes the second-
moment approximation to the density of states by including
higher moments that enter the expansion linearly. We showed
using Stoner theory that including contributions up to the
sixth moment in the density of states was sufficient to repro-
duce the very different behavior observed between the ferro-
magnetic moments of bcc 3d-valent iron and its close-packed
fcc and hcp phases under pressure. The corresponding sixth-
moment expansion for the bond energy associated with a
given site was also found to display the hcp→bcc→hcp
→ fcc structural trend across the nonmagnetic 4d and 5d
transition-metal series.

We have derived an analytic expression for the bond order
by using BOP theory to write the intersite Green’s function
as a derivative of an on-site Green’s function. The resultant
expansion coefficients are linear combinations of the inter-
ference paths that link the atoms at the two ends of the bond.
We showed that the corresponding intersite representation
for the bond energy can be constrained to be identical to that
within the on-site representation. An analytic expression for
the forces is obtained in terms of a linear combination of the
interference paths. It is proved to converge to the Hellmann-
Feynman force as higher moments are included.

These analytic BOPs not only generalize the previous
second-moment Finnis-Sinclair and fourth-moment Carlsson
potentials to include higher moments, but they also give ex-
plicit analytic expressions for the valence dependence of the
prefactors associated with the different moment contribu-
tions. Thus they are applicable to both the study of property
trends across the transition-metal elements and alloy behav-
ior. These potentials are currently being fitted to bcc transi-
tion metals in order to perform large scale MD simulations of

FIG. 5. Comparison of first nearest-neighbor ,, -, and . bond
orders within sixth-moment approximation with k-space TB results
for bcc, fcc, and hcp as a function of the d valence. Dark #light$
curves correspond to Eq. #76$ with #without$ constraint contribu-
tion. As the latter contribution is small, light curves are visible only
for bcc - bond order.

RALF DRAUTZ AND D. G. PETTIFOR PHYSICAL REVIEW B 74, 174117 #2006$

174117-12

Fig. 5: Bond order as a function of band filling for close-packed transition metals. The TB
approximation is compared to BOPs. Taken from Ref. [13].

3.5.3 Ti phase diagram

Fig. 7 shows the free energy differences between competing phases in Ti. The phase diagram
predicted from analytic BOPs is in very good agreement with experiment and DFT, despite the
fact that the energy differences between the competing phases are of the order of only a few
meV.

3.5.4 Parametrization

For the parametrization of the analytic BOPs, first the Hamiltonian matrix elements are obtained
from downfolding on DFT wavefunctions [50, 51], see Figs. 1 and 2. The Hamiltonian is then
parametrized and together with the repulsive energy fitted to reproduce DFT reference data.
Software that largely automatizes the parametrization procedure is available [68, 71].
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FIG. 9. (Color online) (Left panels) Convergence of structural
energy differences for exact BOP expansion with respect to maximum
number of moments mmax. The bottom panel gives TB reference
structural energy differences as shown from the right panel of
Fig. 6. All energy differences are given with respect to fcc and
plotted against number of d electrons. (Right panels) Convergence
of structural energy differences for first-order BOP expansion with
respect to maximum number of moments mmax. The bottom panel
gives first-order TB reference structural energy differences. All
energy differences are given with respect to fcc and plotted against
number of d electrons in fcc.

the fine structure of the Laves DOS, for example, would only
be picked up by the rapidly oscillating high-order Chebyshev
polynomials in the BOP expansion Eq. (39). Their neglect is
responsible for the remaining errors in the bottom left panel of
Fig. 10. As an aside, we see in the top left panel of Fig. 11 that
the linear approximation to the expansion coefficients leads to
a sizable shift in the bonding and antibonding peaks in the bcc
DOS to lower energies. This results in the deep minimum of
the (bcc-fcc) BOP structural energy difference curve in the left
panel of Fig. 9 being shifted from Nd around 4.1 (nonlinear)
to 3.4 (linear) with an accompanying error in the energy 50%
that of the structural energy difference itself.

The errors made by using the first-order expression,
Eq. (42), can be investigated explicitly for the TB case.

FIG. 10. (Color online) (Left panels) Errors in exact BOP
structural energy difference curves for mmax = 6,8,10 with respect
to exact TB result shown in bottom left panels of Fig. 9. Errors
are plotted against number of d electrons. (Right panels) Errors in
first-order BOP structural energy difference curves for mmax = 6,8,10
with respect to first-order TB result shown in bottom right panel of
Fig. 9. Errors are plotted against number of d electrons in fcc.

These errors are shown in the bottom panel of Fig. 12,
which has been obtained by comparing the exact with the
first-order TB structural energy difference curves in the
bottom left and bottom right panels of Fig. 9. We see
that the errors are all positive with the bcc half-filled band
displaying a sizable error compared to the other structure
types. This can be understood by looking at the second-
order error,58 which is neglected in the first-order expression,
Eq. (42), namely,
{(

U II
bond−U I

bond

)
−

(
U II

bond−U I
bond

)(1)}(2) = 1
2nI

(
EI

F

)
(!EF )2,

(48)

where !EF = EII
F − EI

F . We have replaced the band energy
on the left-hand side with the bond energy as they are identical
for our non-self-consistent TB model. The top panel of Fig. 12
shows the band-filling variation in the normalized values of
!EF for the different structure types, while the middle panel

224116-13

Fig. 6: Structural energy differences for a number of close-packed phases (left panel). mmax

indicates the moment at which the expansion was terminated, the lowest panels show the TB
reference. The right panel shows a first order expansion. For details Ref. [69], from which this
figure was also taken.

volumes, and Upot
0( ) is the energy of the equilibrium ω or hcp phases. The thermal averages in

equation (16) were calculated from MD trajectories in the NVT ensemble with a duration of
10 ps after complete equilibration with a Langevin thermostat for 5 different volumes. For the
ω phase we employed a 4×4×6 supercell while for the hcp phase a 6×6×4 supercell,
with a total of 288 atoms for both structures. For each temperature, the obtained free energy-
volume curves were fitted using the Birch–Murnaghan equation [99, 100] to determine the
value of the zero-pressure (Helmholtz) free energy.

Since the bcc structure is not stable at 0 K, temperature integration as in equation (16) is
not possible. To calculate the free energy of the bcc phase, we instead employed the standard
Frenkel–Ladd method [101] to integrate the free energy difference between our potential U 1

and a reference potential U 0,
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with k=5 eVÅ−2. The thermal averages � MU U1 0⟨ ⟩ were again calculated in the NVT
ensemble for 10 ps using a 6×6×6 bcc cubic supercell with 432 atoms. The volume was
varied for each temperature so that the total pressure was zero. The integral in equation (17)
was evaluated using 15 values of the switching parameter λ.

Figure 7 presents the Helmholtz free energy differences between ω and hcp and between
bcc and hcp as a function of temperature. The energy difference between ω and hcp at 0 K
reduces to 3 meV at−1if the zero point energy is considered. Our BOP predicts a phase

Figure 7. Helmholtz free energy differences with respect to the hcp phase as a function
of temperature. At zero pressure the phase with the lowest free energy is the most stable
phase.
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Fig. 7: Free energy differences as computed for Ti with analytic BOPs. Taken from Ref. [70].



From Electrons to Potentials 3.23

4 Many atom expansions

In the first part of this chapter I discussed the derivation of simplified electronic structure models
from DFT. A local expansion of the TB energy then led to explicit interatomic potentials.
While a lot of insight can be gained from the analysis of bond formation in the BOPs and robust
parametrizations may be achieved with few parameters, the accuracy and transferability of the
BOPs are also limited by the coarse-graining approximations from DFT to TB and BOP.

In the past years an important focus in the field of atomistic modeling was the parametrization
of DFT reference data with very high accuracy, i.e., errors of less than a few meV. The TB and
BOP expansions introduced in the previous sections are not competitive here, as the approxi-
mations made down the coarse-graining hierarchy from DFT to TB to BOPs introduce errors
that are larger than a few meV. As I will discuss in the following, one can develop models
that incorporate some of the spirit of TB for obtaining meV accurate parametrizations of DFT
reference data.

For the parametrization of large DFT datasets with very high accuracy typically methods that
are rooted in machine-learning are employed, for example, neural network potentials that are
based on neural networks [15] or Gaussian process regression in the Gaussian approximation
potentials [16]. All machine-learning methods have in common that the target property, for
example, the atomic energy, is obtained as a complex, non-linear function of some mathemat-
ical descriptions of the local atomic environment. The detailed mathematical structure of the
descriptors are mostly obtained by intuition. One may view the empirical mathematical struc-
ture of the descriptors as the Achilles’ heel of machine-learning interatomic potentials and a
formally complete descriptor of the local atomic environment is desirable. The atomic cluster
expansion [34, 37] achieves a formally complete description of the local atomic environment
and will be introduced in the following.

4.1 Atomic cluster expansion

The atomic cluster expansion (ACE) provides a complete descriptor for the local environment
of an atom [34, 37]. Each atom i has a configuration that in the simplest case of an elemental
material and excluding charge transfer or magnetism is fully characterized by the distance vec-
tors to all neighboring atoms j, rrrji = rrri−rrrj , and where rrri and rrrj are the positions of the atoms
i and j, respectively. The collection of all the distance vectors is the configuration

σσσ = (rrr1i, rrr2i, rrr3i, . . . ) . (95)

A scalar product between functions f(σσσ) and g(σσσ) is defined as

〈f |g〉 =

∫
dσσσ f ∗(σσσ) g(σσσ)ω(σσσ) , (96)
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where ω(σσσ) is a weight function. Next complete basis functions that depend only on a single
bond are introduced

〈φv(σ)|φu(σ)〉 = δvu , (97)∑
v

[φv(rrr)]
∗φv(rrr

′) = δ(rrr−rrr′) . (98)

For establishing a hierarchical expansion furthermore φ0 = 1, which may be understood as an
atom without properties, i.e., the vacuum state.
A cluster α with K elements contains K atoms α = (j1, j2, . . . , jK), where the order of en-
tries in α does not matter and indices are pairwise different i 6= j1 6= j2 6= jK . The vector
ν = (v0; v1, v2, . . . , vK) contains the list of single-atom basis functions in the cluster, and only
single-atom basis functions with v > 0 are considered in ν. A cluster basis function is then
given by

Φαν = φv1(rrrj1i)φv2(rrrj2i) . . . φvK (rrrjK i) . (99)

The orthogonality and completeness of the single-atom basis functions transfers to the cluster
basis functions

〈Φαν |Φβµ〉 = δαβδνµ , (100)

1 +
∑
γ⊆α

∑
ν

[Φγν(σσσ)]∗Φγν(σσσ
′) = δ(σσσ−σσσ′) , (101)

where α is an arbitrary cluster and the right-hand side of the completeness relation is the product
of the relevant right-hand sides of Eq. (98). The expansion of an element of the energy of atom i

may therefore be written in the form

Ei = J0 +
∑
αν

JανΦαν(σσσ) , (102)

and the expansion coefficients Jαν obtained by projection

Jαν = 〈Φαν |G(σσσ)〉 . (103)

Writing the expansion Eq. (102) explicitly in single-atom basis functions leads to

Ei =

i 6=j∑
j

∑
v1

Jv1φv1(rrrji) +
1

2

i 6=j1 6=j2∑
j1j2

∑
v1v2

Jv1v2φv1(rrrj1i)φv2(rrrj2i)

+
1

3!

i 6=j1 6=j2...∑
j1j2j3

∑
v1v2v3

Jv1v2v3φv1(rrrj1i)φv2(rrrj2i)φv3(rrrj3i) + . . . . (104)

This may be rewritten in a slightly different way with unrestricted sums and updated expansion
coefficients

Ei =
∑
j

∑
v1

cv1φv(rrrji) +
1

2

∑
j1j2

∑
v1v2

cv1v2φv1(rrrj1i)φv2(rrrj2i)

+
1

3!

∑
j1j2j3

∑
v1v2v3

cv1v2v3φv1(rrrj1i)φv2(rrrj2i)φv3(rrrj3i) + . . . , (105)
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where only i is excluded from the summations over j1, j2, . . . . The expansion Eq. (105) is
identical to Eq. (104), with expansion coefficients cν that are different from the expansion co-
efficients Jν in Eq. (104). The expansion coefficients cν are simple functions of Jν that may be
obtained by taking into account that products of basis functions of the same argument may be
expanded into linear combinations of single basis functions, for example, φv1(rrrji)φv2(rrrji) =∑

v avφv(rrrji), etc., such that the self-interactions are removed by an appropriate modification of
a lower-order expansion coefficient. The relation between Jν and cν is also outlined in Ref. [72].
I next introduce the atomic density

ρi(σ) =

j 6=i∑
j

δ(σ−σj) , (106)

and the atomic base that is obtained as

Av = 〈ρi|φv〉 =

j 6=i∑
j

φv(rrrj) . (107)

This allows us to rewrite the expansion Eq. (105) in the form

Ei =
∑
ν

cνAAAν with AAAν = Av1Av2Av3 . . . (108)

where the index ν collects the required indices v1, v2, v3, . . . from Eq. (105).
By construction the expansion is invariant with respect to permutation of identical atoms. The
change from Eq. (104) to Eq. (105) further means that the atomic expectation values of the
many-atom correlation functions Φαν may be expressed exactly by products of expectation val-
ues of single-bond basis functions. This enables a very efficient implementation as the effort
for evaluating the many-atom correlation functions scales linearly with the number of neighbors
irrespective of the order of the correlation functions.
The expansion Eq. (107) is general, which also means that in general it is not invariant under
rotation. Rotationally invariant expansions may be obtained as outlined in the following. First,
the single-bond basis functions are chosen as basis functions of the irreducible representations
of the rotation group. In practice, this corresponds to linear combination of atomic orbitals
(LCAO) basis functions as in TB, Eq. (26),

φinlm(rrr) = Rnl(|rrr−rrri|)Y m
l (θ, φ) . (109)

Rotationally invariant products are obtained with the help of generalized Clebsch Gordan coef-
ficients

Bν =
∑
mmm

(
lll

LLL
0

)
N

An1l1m1An2l2m3An3l2m3 . . . , (110)

with lll = (l1, l2, l3, . . . ), mmm = (m1,m2,m3, . . . ) and LLL are intermediate angular momenta that
arise from products of the spherical harmonics [34, 37, 72–74]. The expansion for the energy
may then be represented as

Ei =
∑
ν

cνBBBν . (111)
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Fig. 8: Comparison of predictions from ACE to DFT reference. The energies are compared
over three orders of magnitude. The graph shows many thousand data points and outliers are
visible in particular. Taken from Ref. [34].

4.2 Relation to other descriptors

The completeness of the ACE allows one to make contact with other frequently used descriptors.
Here I list a few popular descriptors and machine-learning potentials that may be rewritten in
the form of an ACE [34, 37]:

• Steinhardt parameters: the Steinhardt parameters [75] are frequently employed for struc-
ture classification.

• Symmetry functions: neural network potentials use 2-body and 3-body functions, called
symmetry functions, as descriptors for the atomic environment [15].

• Smooth overlap of atomic positions (SOAP): the SOAP descriptor [76] is employed, for
example with the Gaussian approximation potential (GAP) [16]. A tensorial version of
SOAP is also available [27].

• Spectral neighbor analysis potential (SNAP): the SNAP employs the SOAP descriptor
with hyperspherical harmonics [21].

• Moment tensor potentials (MTP): the MTPs [22] provide an expansion of the interatomic
energy in terms of Cartesian tensors.

4.3 Parametrization

Compared to TB and BOP models, the ACE provides less physical insight but greater flexibility
for the accurate parametrization of arbitrary interatomic interactions. This means that a larger
number of reference data needs to be available for fitting the ACE expansion coefficients cν .
Fig. 8 shows the comparison of the ACE predictions for copper compared to DFT reference
data. More than 50000 DFT total energy calculations were used for the parametrization of the
ACE. The reference data set comprises many different bulk crystal structures, with and without
defects, at various volumes and deformations in addition to small clusters with 2 to 25 Cu atoms.
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Knowledge and insight gained from TB and BOP can be used for the parametrization of ACE.
For the Cu example, the ACE was built on the Finnis Sinclair potential Eq. (1). However, instead
of computing the density ρi and the repulsion

∑
j Vij/2 from pairwise functions, density and

repulsion were represented by a general ACE expansion. The non-linear square-root embedding
function helps to converge the ACE faster as compared to a linear expansion as the non-linear
dependence of the bond energy on coordination is immediately taken into account. Furthermore,
the radial functions Rnl may be related to the minimal basis radial functions of TB models.

5 Summary and conclusions

This chapter exemplifies two strategies for obtaining interatomic potentials in materials science.
The derivation of BOPs from DFT encompasses a systematic coarse-graining of the electronic
structure that provides insight into bond formation and is amenable to physical and chemical
interpretation. In contrast, ACE is a formal many-atom expansion that is flexible to model bond
formation accurately but with many fitting parameters, so that large numbers of DFT reference
data are required.
The TB approximation is obtained from DFT as a second-order expansion with respect to the
density matrix of overlapping spherical atomic charge densities. A physically transparent mech-
anism of bond formation is obtained by grouping the terms in the expansion in bond energy and
electrostatic interactions that drive the formation of covalent, polar and ionic bonds, the charg-
ing of the atoms and the promotion of electrons out of their atomic state, and a repulsive energy
that keeps the atoms apart.
The moments theorem allows one to relate the atomic structure to the electronic structure. I
introduced several methods that implicitly or explicitly make use of the moments theorem to
reconstruct the bond energy from the local atomic environment. The recursion method first
transforms the Hamiltonian to tridiagonal form, which enables a continued fraction representa-
tion of the Green function. The numerical BOPs make use of the recursion method for a local
construction of the bond energy. The KPM expands the kernel into Chebyshev polynomials for
a local expansion of the bond energy. Closely related is the FOE that starts from the expansion
of a temperature dependent electronic broadening function. Finally, the analytic BOPs pro-
vide explicit analytic expressions for energies and forces that may also be used to analyze bond
strengths and structural stability. The analytic BOPs reproduce the DFT energies very well and
enable the simulations of phase diagrams in good agreement with experiment. Software for
simulations with millions and for the efficient parametrization of new models is available.
The ACE provides a formal many-atom expansion that enables parametrizations with arbitrary
accuracy given that sufficient reference data is available. The completeness of the ACE also
means that other descriptors and machine-learning potentials may be represented in the form of
an ACE. The parametrization of the ACE was discussed briefly and illustrated for copper.
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[27] A. Grisafi, D.M. Wilkins, G. Csányi, and M. Ceriotti, Phys. Rev. Lett. 120, 036002 (2018)

[28] M.A. Wood and A.P. Thompson, J. Chem. Phys. 148, 241721 (2018)
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[77] J. Grotendorst, N. Attig, S. Blügel, and D. Marx (Eds.):
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