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1 Introduction

The last decade has witnessed tremendous progress in our understanding of topological band
theory. Soon after the discovery of topological insulators [1], it has been realized that topology
plays also a significant role in gapless systems, i.e., in topological semimetals [2–7]. Topologi-
cal semimetals exhibit protected band crossings near the Fermi energy with nonzero topological
charges. While the existence of these band crossings has been recognized early on during the
development of band theory [8], their fundamental importance has been understood only re-
cently. In the course of the last few years it has been shown that topological band crossing
give rise to a variety of interesting phenomena, such as, intrinsic anomalous Hall effects [6],
exotic surface states [5], large thermopower, and unusual responses related to quantum anoma-
lies [9]. Because of these properties, topological semimetals could potentially be used for new
device applications [10]. E.g., the helical nature of the surface states can be used for low-
dissipation transport [11]. The spin-momentum locking of the surface states can be utilized for
low-consumption spintronic devices and magnetic memory devices [12]. The high photosen-
sitivity of topological semimetals is of importance for the construction of ultrafast photodetec-
tors [13]. Moreover, many topological semimetals have large thermoelectric responses, which
could be of use for high-efficiency energy converters or thermal detectors [14].

There are two different types of topological band crossings, namely, accidental band crossings
and symmetry-enforced band crossings. Accidental band crossings are protected by symmor-
phic crystal symmetries and are only perturbatively stable [2]. That is, they can be adiabatically
removed by large symmetry-preserving deformations of the Hamiltonian, for example, through
pair annihilation. Dirac points and Dirac lines are examples of accidental band crossings, which
are protected by parity-time inversion, reflection, or rotation symmetry [7, 15]. Another exam-
ple is Weyl points, which can be stable even in the absence of symmetries [5, 6]. Accidental
band crossings also occur in the Bogoliubov bands of superconductors [2]. Symmetry-enforced
band crossings [16–22], however, arise in the presence of nonsymmorphic symmetries and are
globally stable, i.e., they cannot be removed even by large deformations of the Hamiltonian.
That is, these band crossings are required to exist due to nonsymmorphic symmetries alone,
independent of material details, such as chemical composition or energetics of the bands.

In these lectures we will discuss both types of band crossings, first focusing on accidental band
crossings in Sec. 2 and then studying symmetry-enforced band crossings in Sec. 3. A particular
focus will be on nodal-line semimetals, where the band crossings occur along one-dimensional
lines in the BZ, close to or at the Fermi energy. But we will also discuss Weyl semimetals,
where the band crossings occur at isolated points in the Brillouin zone (BZ).

In the following we will focus on weakly interacting semimetals, which can be described within
the single-particle picture. Using the band theory of solids [23], the electronic wavefunctions
ψ in a crystal of a semimetal can be classified by their crystal momentum k, which is defined
in the periodic BZ. Bloch’s theorem tells us that ψ can be expressed in terms of Bloch states
|um(k)〉, which are defined in a single unit cell of the crystal. These Bloch states are eigenstates
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of the Bloch Hamiltonian H(k),1

H(k) |um(k)〉 = Em(k) |um(k)〉 , (1)

where m represents the band index. The eigenvalues Em(k) in the above equation are called
Bloch bands and the set {Em(k)} is referred to as the band structure of the solid.
In this lecture we are interested in the crossings between two different bands, Em(k) and
Em′(k), say. That is, we want to know under which conditions the two energies Em(k) and
Em′(k) become degenerate at certain points or lines in the BZ. The main focus will be on elec-
tronic band structures of solids. However, the band crossings discussed here can also occur in
different contexts, for example, for photonic bands of dielectric superlattices [24], for phonon
bands in crystals, for magnon bands in ordered antiferromagnets [25], or for Bogoliubov bands
in superconductors [1, 2].
The remainder of these notes are organized as follows. In Sec. 2.1 we will begin by deriving
a classification of accidental band crossings protected by time-reversal symmetry, particle-hole
symmetry, and/or chiral symmetry. As concrete examples of such accidental band crossings,
we will consider, among others, Weyl and nodal-line semimetals (Secs. 2.2 and 2.3). For these
examples we will discuss the bulk-boundary correspondence, which relates the nontrivial topol-
ogy of the band crossing in the bulk to the appearance of surface states. We will also review
the quantum anomalies that arise in the low-energy descriptions of these semimetals. Sec-
tion 3 is devoted to the study of symmetry-enforced band crossings. We will first explain some
general properties of nonsymmorphic symmetries and show how these can lead to symmetry-
enforced band crossings. Subsequently, two examples of nonsymmorphic band crossings will
be discussed: Weyl lines protected by glide reflection in Sec. 3.2 and Dirac lines protected
by off-center symmetries in Sec. 3.3. For each of these examples, we present some material
realizations and discuss implications for experiments.

2 Accidental band crossings

Accidental band crossings occur, for example, when a hole-like and an electron-like parabolic
band in a two-dimensional material overlap, forming two band crossings, as shown in Fig. 1.
This band crossing is stable if the two bands have a non-trivial topology and/or opposite sym-
metry. In general these accidental crossings share the following features:

• They are protected by symmorphic crystal symmetries and/or nonspatial symmetries.
Here, symmorphic symmetry means a symmetry which leaves at least one point of the
real-space crystal invariant. Symmorphic symmetries are point-group symmetries of the
crystal, such as rotation or reflection. Nonspatial symmetry refers to a symmetry that
dose not transform different lattice sites into each other. I.e., a symmetry that acts locally
in real space, such as time-reversal or particle-hole symmetry.

1For superconductors the Bloch Hamiltonian should be replaced by a Bogoliubov-de Gennes Hamiltonian.
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Fig. 1: When an electron- and hole-like band of different symmetry overlap, they form two
accidental band crossings. The color shading indicates some “pseudo-spin” degree of freedom
of the Bloch states |un(k)〉, which depends on crystal momentum k.

• Accidental band crossings exhibit local topological charges ntop. These topological charges
are defined in terms of contour integrals, e.g.,

ntop =
1

2π

∮
C
F(k) dk ∈ Z, (2)

where the integration is along the contour C, which encloses the band crossing point or
line. Here, F(k) represents a general curvature function, such as the Berry curvature or
the winding number density. These topological charges are quantized to integer values,
i.e., ntop ∈ Z. For point crossings, the sum of the topological charges of all crossings
formed by a given pair of bands needs to be zero, due to a fermion-doubling theorem [26].

• Accidental band crossings are only perturbatively stable. That is, small symmetry-pre-
serving perturbations can move the band crossings in the BZ, but cannot remove them,
by opening up a gap. However, large symmetry-preserving deformations can completely
remove the band crossings. E.g., for point crossings one can pair annihilate two point
crossings with opposite topological charge by a large symmetry-preserving deformation.

It follows from the last point above, that classifications of accidental band crossings based on
symmetry and topology only tell us whether for a given set of symmetries a band crossing is
possible. I.e., these classifications only tell us whether a given set of symmetries protect band
crossings or not. They do not tell us whether these crossings actually occur, which depends on
the detailed energetics of the bands (i.e., on how the bands disperse through the BZ).
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2.1 Classification of band crossings

Topological band crossings of the accidental type can be classified using the Dirac-matrix
Hamiltonian method [2, 27, 28]. This method relies on the fact that close to a band crossing
the Bloch Hamiltonian H(k), Eq. (1), can in general be approximated by a Dirac Hamiltonian,
i.e., by

HD(k) =
d∑
j=1

kjγj, (3)

where d is the spatial dimension and γj are gamma matrices obeying the anti-commutation
relations

{γi, γj} = 2δij1, j = 0, 1, . . . , d. (4)

Using Eq. (4), we find that H2
D =

∑d
j=1 k

2
j1. Hence, the energy spectrum of HD(k) is given by

E = ±

√√√√ d∑
j=1

k2j , (5)

which exhibits a band crossing at k = 0, where the bands become degenerate with E = 0.
(I.e., the Dirac Hamiltonian has no gap.) The Dirac-matrix Hamiltonian method analyzes the
stability of the gapless Dirac-Hamiltonian (3) against gap-opening deformations. That is, one
studies whether there exists a gap-opening mass term mγ0, i.e., an additional gamma matrix γ0
with {γ0, γj} = 0 (j = 1, 2, . . . , d), with which HD(k) can be deformed. If such a mass term
exists, then the band crossing can be removed. I.e., by adding mγ0 to HD the spectrum deforms

intoE = ±
√
m2 +

∑d
j=1 k

2
j , which has no band crossing anymore at k = 0. This indicates that

the band crossing is topologically trivial. However, if there does not exist an additional gamma
matrix γ0, then the band crossing is topologically nontrivial and stable against deformations.
The classification of band crossings is done in terms of the following three characteristics
(cf. Table 1):

(i) Spatial and nonspatial symmetries of the Bloch Hamiltonian H(k).

(ii) The co-dimension p = d− dBC of the band crossing, where dBC is the dimension of the
band crossing. (I.e., dBC = 0 for point crossings, dBC = 1 for line crossings, etc.)

(iii) How the band crossing transforms under the nonspatial (anti-unitary) symmetries, which
map k → −k. That is, we need to distinguish whether the band crossing is mapped
onto itself under the nonspatial symmetries or not, see Fig. 2. For this reason we need
to differentiate between band crossings at high-symmetry points and off high-symmetry
points of the BZ.

Before performing the classification, let us first discuss how the spatial and nonspatial symme-
tries restrict the form of the Dirac Hamiltonian (3).



11.6 Andreas P. Schnyder

Fig. 2: The classification of stable band crossings depends on how the band crossings trans-
form under nonspatial (anti-unitary) symmetries. (a) The band crossing is left invariant under
nonspatial symmetries. (b) Two band crossings are pairwise related by the nonspatial symme-
tries, which map k→ −k.

2.1.1 Symmetry operations

We consider the classification in terms of both nonspatial and spatial symmetries.

Nonspatial symmetries. Nonspatial symmetries are symmetries that act locally in real space,
i.e., they do not transform different lattice sites into each other. There are three different non-
spatial symmetries that need to be considered: anti-unitary time-reversal symmetry (TRS) and
particle-hole symmetry (PHS), as well as chiral (i.e., sublattice symmetry) [2, 29]. Here, “anti-
unitary” refers to the fact that these symmetries can be written as a product of a unitary matrix U
with the complex conjugation operator K. In momentum space, time-reversal and particle-hole
symmetry act on the Bloch (or Bogoliubov-de Gennes) Hamiltonian as

T −1H(−k)T = +H(k), and C−1H(−k)C = −H(k), (6a)

respectively, where T and C are the anti-unitary operators for time-reversal and particle-hole
symmetry. Both T and C can square either to +1 or−1, depending on the type of the symmetry
(see last three columns of Table 1). Chiral symmetry, on the other hand, is implemented by2

S−1H(k)S = −H(k), (6b)

where S is a unitary operator. Symmetries (6) define the ten Altland-Zirnbauer (AZ) symmetry
classes (i.e., the “ten-fold way”) [2, 30, 31], which are listed in Table 1. The first column in
Table 1 gives the name of the ten AZ symmetry classes. The labels T , C, and S in the last three
columns indicate the presence (“+”, “−”, and “1”) or absence (“0”) of time-reversal symmetry,
particle-hole symmetry, and chiral symmetry, respectively, as well as the sign of the squared
symmetry operators T 2 and C2.
Combining Eqs. (6) with Eq. (3), we find that when the Dirac Hamiltonian obeys TRS, PHS, or
chiral symmetry, the gamma matrices in Eq. (3) must satisfy

{γi, T } = 0, [γi, C] = 0, {γi,S} = 0, (7)

2Note that combining TRS with PHS yields a chiral symmetry.
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Table 1: Classification of stable band crossings in terms of the ten AZ symmetry classes [2],
which are listed in the first column. The first and second rows give the co-dimensions p =
d− dBC for band crossings at high-symmetry points [Fig. 2(a)] and away from high-symmetry
points of the BZ [Fig. 2(b)], respectively.

at high-sym. point p=8 p=1 p=2 p=3 p=4 p=5 p=6 p=7
T C S

off high-sym. point p=2 p=3 p=4 p=5 p=6 p=7 p=8 p=1
A 0 Z 0 Z 0 Z 0 Z 0 0 0

AIII Z 0 Z 0 Z 0 Z 0 0 0 1
AI 0 0a 0 2Z 0 Za,b

2 Zb
2 Z + 0 0

BDI Z 0 0a 0 2Z 0 Za,b
2 Zb

2 + + 1
D Zb

2 Z 0 0a 0 2Z 0 Za,b
2 0 + 0

DIII Za,b
2 Zb

2 Z 0 0a 0 2Z 0 − + 1
AII 0 Za,b

2 Zb
2 Z 0 0a 0 2Z − 0 0

CII 2Z 0 Za,b
2 Zb

2 Z 0 0a 0 − − 1
C 0 2Z 0 Za,b

2 Zb
2 Z 0 0a 0 − 0

CI 0a 0 2Z 0 Za,b
2 Zb

2 Z 0 + − 1
a

For these entries there can exist bulk band crossings away from high-symmetry points that are protected by Z
invariants inherited from classes A and AIII. (TRS or PHS does not trivialize the Z invariants.)

b
Z2 invariants protect only band crossings of dimension zero at high-symmetry points.

where i = 1, 2, . . . , d. Similarly, any mass term mγ0 that leads to the opening of a gap at the
band crossing must satisfy

[γ0, T ] = 0, {γ0, C} = 0, {γ0,S} = 0. (8)

Spatial symmetries. Spatial symmetries are symmetries that act non-locally in position space,
i.e., they transform different lattice sites into each other. Point-group symmetries are an ex-
ample of spatial symmetries. Here, we shall focus on reflection symmetries with the unitary
operator R. For concreteness we assume that R lets x → −x. The invariance of the Bloch
Hamiltonian (1) under this reflection implies

R−1H(−k1, k̃)R = H(k1, k̃), (9)

where k̃ = (k2, . . . , kd) and the unitary reflection operator R can only depend on k1, since it is
symmorphic [cf. Eq. (44)]. Note that for spin-1

2
particles (e.g., Bloch electrons with spin-orbit

coupling) R transforms the spin degree of freedom as

RŜxR
−1 = Ŝx and RŜy,zR

−1 = −Ŝy,z, (10)

where Ŝi = ~
2
σ̂i is the spin operator. Hence, the spin part of R is given by iσx.3 In general, R

contains also an internal part which rearranges the positions of the atoms in the unit cell.
3The reason to include the factor i here is to ensure that R2 = −1, since R2 effectively corresponds to a spin

rotation by 2π. However, in general, there is a phase ambiguity in the definition ofR, since a phase can be absorbed
in the electronic creation/annihilation operators.
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Combining Eq. (9) with Eq. (3), we find that when the Dirac Hamiltonian obeys reflection
symmetry, the gamma matrices in Eq. (3) must satisfy

{γ1, R} = 0, [γj, R] = 0, where j = 2, 3, . . . , d, (11)

and the mass term must satisfy [γ0, R] = 0.

2.1.2 Band crossings at high-symmetry points

We will now use the Dirac-matrix Hamiltonian method4 to classify band crossings at high-
symmetry points of the BZ, i.e., at time-reversal invariant momenta (TRIMs) of the BZ, e.g.,
the Γ point. This classification approach consists of the following steps:

1. Write down a d-dimensional gapless Dirac Hamiltonian HD of the form of Eq. (3), that is
invariant under all the considered symmetries. The matrix dimension of the gamma ma-
trices should be minimal, i.e., large enough such that all symmetries can be implemented
in a nontrivial way, but not larger.

2. Check whether there exists a symmetry-allowed mass term mγ0, which anticommutes
with HD. If yes, then the band crossing can be gapped out. This indicates that the band
crossing is topologically trivial, which is labeled by “0” in Table 1. If no, then the band
crossing is topologically stable (i.e., protected by the symmetries), which is labeled by
“Z or “Z2” in Table 1.

3. To determine whether there is a single or multiple band crossings protected by the sym-
metries, we have to consider multiple copies of the Dirac Hamiltonian HD. Doubled
versions of HD can be obtained as

Hdb
D =

∑
i∈A

kiγi ⊗ σz +
∑
i∈Ac

kiγi ⊗ 1, (12)

where the first summation is over an arbitrary subset A ⊆ {1, 2, ..., d} and the second
summation is over the complement of this subset Ac. We then have to check whether
there exist gap-opening terms for these enlarged Dirac Hamiltonians. If there exists a
mass term for all possible versions of Hdb

D , then the band crossing is classified by a Z2

invariant. If the band crossing is stable for an arbitrary number of copies of HD, then it is
classified by a Z number, see Table 1.

To make this more explicit, let us discuss some specific cases.

4This approach is closely related to the problem of Clifford algebra extensions [2, 28], which puts it on a
rigorous footing.
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Class A in 2D. First, we consider a band crossing in a two-dimensional system without any
symmetries, corresponding to class A in Table 1. The generic low-energy 2×2 Hamiltonian for
such a band crossing at k = 0 readsHA

2D =
∑

k Ψ
†
kH

A
2DΨk, where

HA
2D = kxσx + kyσy (13)

and Ψk = (c1k, c2k)T is a spinor with two orbital degrees of freedom. Since this band crossing
can be gapped out by the mass term mσz, it is topologically trivial and therefore unstable. This
is indicated by a “0” in the fourth column of Table 1.

Class A in 3D. Next, we study a zero-dimensional band crossing in three-dimensions without
any symmetries. This type of band crossing is realized in Weyl semimetals [2, 5, 6]. The low-
energy 2×2 Hamiltonian takes the formHA

3D =
∑

k Ψ
†
kH

A
3DΨk, with

HA
3D = kxσx + kyσy + kzσz. (14)

It is impossible to find a mass term for this Hamiltonian, because there exist only three gamma
matrices of rank 2. (There exists no “fourth Pauli matrix” that anticommutes with HA

3D.) There-
fore, the band-crossing is stable. To determine whether the Weyl crossing (14) has a Z or Z2

classification, we need to consider all possible doubled versions of HA
3D, cf. Eq. (12). We can

consider, for example, the following doubled version of HA
3D

HA,db1
3D = kxσx ⊗ σz + kyσy ⊗ σ0 + kzσz ⊗ σ0, (15)

where ⊗ denotes the tensor product between two Pauli matrices. For this doubled version of
HA

3D, there exist two mass terms, e.g., σx ⊗ σx and σx ⊗ σy, which gap out the band crossing.
However, there exists another doubled version of HA

3D, namely

HA,db2
3D = kxσx ⊗ σ0 + kyσy ⊗ σ0 + kzσz ⊗ σ0, (16)

whose band crossing is stable. We find that there does not exist any mass term for HA,db2
3D ,

which gaps out the band crossing. Since we have found one doubled version of HA
3D which has

a stable (four-fold degenerate) band crossing, we conclude that Weyl band crossings exhibit a
Z classification. (One can show that there exist also multiple copies of HA

3D with stable band
crossings.) This is indicated by the label “Z” in the fifth column of Table 1.
The Weyl points described by Eq. (14) are monopoles of Berry flux, i.e., they realize hedgehog
defects of the Berry curvature (see Fig. 4). The stability of these Weyl points is guaranteed by
a quantized Chern number (see Sec. 2.2).

Class A + R in 2D. Let us now add reflection symmetry to the game. We consider again a
two-orbital system with the low-energy HamiltonianHA+R

2D =
∑

k Ψ
†
kH

A+R
2D Ψk, where

HA+R
2D = kxσx + kyσy, (17)
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which is symmetric under reflection symmetry R−1HA+R
2D (−kx, ky)R = HA+R

2D (kx, ky), with
R = σy. This Hamiltonian describes the low-energy physics of a single Dirac cone of graphene.
We observe that the only possible gap-opening mass term mσz, which anticommutes with
HA+R

2D , is symmetry forbidden, since it breaks reflections symmetry (R−1σzR = −σz). Hence,
the band-crossing of HA+R

2D at k = 0 is stable and protected by reflection symmetry. We find
that also the doubled version of HA+R

2D ,

HA+R,db
2D = kxσx ⊗ σ0 + kyσy ⊗ σ0, (18)

is stable, since there exists no reflection-symmetric mass term. For example, m̂ = σz ⊗ σx
breaks reflection, since (σy ⊗ σ0)−1m̂(σy ⊗ σ0) 6= m̂. Therefore, the reflection-symmetric band
crossing (17) has a Z classification. This is indicated by the label “MZ” in the fifth column of
Table VIII of Ref. [2].

Class AII in 2D. Next, we study a band crossing in two-dimensions with time-reversal sym-
metry (T 2 = −1), corresponding to class AII in Table 1. The low-energy Dirac Hamiltonian
reads again

HAII
2D = kxσx + kyσy. (19)

But now we impose time-reversal symmetry (6a) with the operator T = iσyK, which squares
to −1 (class AII). This type of time-reversal symmetric band crossing is realized at the surface
of three-dimensional topological insulators with spin-orbit coupling. The only possible mass
term, which anticommutes with HAII

2D , is mσz. However, mσz breaks time-reversal symmetry
(since, T −1mσzT 6= mσz) and is therefore forbidden by symmetry. Hence, Eq. (19) describes
a topologically stable band crossing in class AII. Next, we examine different doubled versions
of HAII

2D , i.e.,

HAII,db
2D =

(
HAII

2D 0

0 HAII
2D
′

)
, (20)

where HAII
2D
′ ∈ {±kxσx ± kyσy,±kxσx ∓ kyσy}, see Eq. (12). (The time-reversal operator for

these double Hamiltonians is T = iσy ⊗ σ0K.) It is not difficult to show that for each of the
four versions of HAII,db

2D there exists at least one symmetry-preserving mass term, which gaps
out the band crossing. For example, for the first version of HAII,db

2D with HAII
2D
′
= +kxσx+kyσy,

the mass term is σz ⊗ σy. Thus, the band crossings described by HAII,db
2D is unstable. Therefore,

we conclude that Eq. (19) has a Z2 classification, see fourth column of Table 1.

2.1.3 Band crossings off high-symmetry points

In this section we classify band crossings that are located away from high-symmetry points, i.e.,
away from the TRIMs of the BZ, see Fig. 2(b). These band crossings can be moved around in
the BZ, as they are not pinned at the TRIMs. They transform pairwise into each other by the



Topological Semimetals 11.11

nonspatial anti-unitary symmetries (time-reversal and particle-hole symmetry). For this reason,
we have to take into account the full momentum dependence of the Hamiltonian in the entire
BZ. That is, within the Dirac-matrix Hamiltonian approach, we need to consider the following
type of Hamiltonian [27]

HD =

p−1∑
i=1

sin kiγi +
(
p− 1−

p∑
i=1

cos ki

)
γ̃0, (21)

which contains the momentum-dependent mass term γ̃0, cf. Eq. (3). The Dirac Hamiltonian (21)
describes dBC-dimensional band crossings (with dBC = d− p), which are located at

k = (0, . . . , 0,±π/2, kp+1, . . . , kd). (22)

We observe that the band crossings (22) are located away from the high-symmetry points
(0, 0, 0, . . . , 0), (π, 0, 0, . . . , 0), (0, π, 0, . . . , 0), etc. of the BZ. The classification of these band
crossings proceeds in a similar way as in Sec. 2.1.2. It consists of the following steps:

1. Write down a d-dimensional Dirac Hamiltonian HD of the form Eq. (21) with p=d−dBC ,
which satisfies all the considered symmetries. The rank of the gamma matrices in Eq. (21)
should be large enough, such that all symmetries can be implemented in a nontrivial way,
but not larger.

2. Check, whether

• there exists an additional momentum-independent mass term Γ̃ , which anticom-
mutes with HD and which is invariant under all symmetries.

• there exists an additional momentum-dependent kinetic term sin kpγp, which anti-
commutes with HD and which respects all symmetries.

If the answer is yes for either of the above two points, then the band crossing can be
gapped out. Hence, the band crossing is topologically trivial (entries labeled by “0” in
Table 1). If the answer is no for both of the above points, then the band crossing is
topologically stable (entries labeled by “Z” or “Z2” in Table 1).

3. To determine whether there is a single or multiple band crossings protected by the sym-
metries, consider multiple copies of HD, similar to Eq. (12).

Using this approach it was shown that only Z-type invariants can ensure the stability of band-
crossings off high-symmetry points [2]. (Z2-type invariants do not give rise to stable band
crossings off high-symmetry points.) To exemplify this, we discuss some specific cases.
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2.2 Weyl semimetal

We study the band crossing points of a three-dimensional Weyl semimetal [2, 5, 6], which be-
longs to symmetry class A (cf. Sec. 2.1.2). The Hamiltonian is defined on the cubic lattice and
is given byHA

3D =
∑

k ΨkH
A
3DΨk, with (cf. Eq. (21) with p = 3)5

HA
3D = sin kxσx + sin kyσy + (2− cos kx − cos ky − cos kz)σz, (23)

and the spinor Ψk = (c1k, c2k), which has two orbital degrees of freedom (e.g., s and p orbitals),
but no spin-degree of freedom, since the semimetal is assumed to be magnetically ordered. The
spectrum of Eq. (23) is given by

Ek = ±
√

(sin kx)2 + (sin ky)2 + (2− cos kx − cos ky − cos kz)2. (24)

HA
3D exhibits two band crossing points at E = 0 (called Weyl points), which are located at

(0, 0,±π/2). As in Sec. 2.1.2, we find that these Weyl nodes are topologically stable, since
there does not exist any fourth gamma matrix of rank two. (I.e., there exist no additional mass
or kinetic terms.) We also find that the doubled version HA

3D ⊗ σ0 has stable band crossings.
Hence, the classification is of Z type, see third column of Table 1.
The stability of the Weyl points is guaranteed by a quantized Chern number

C =
1

2π

∮
C
F(k)dk, where F(k) = ∇k ×Ak (25)

is the Berry curvature of the occupied band and C is a two-dimensional closed integration con-
tour. The Berry connection Ak is defined as Ak = i〈u−(k)|∇k|u−(k)〉, with |u−(k)〉 the Bloch
state of the occupied band. The Weyl points act as sources and drains of Berry curvature, i.e.,
the vector field F(k) points inwards at one Weyl point and outwards at the other. The Chern
number (25) measures how much Berry flux passes through the contour C. For contours that
enclose one of the two Weyl points the Chern number is C = ±1. For contours that do not
enclose a Weyl point, the Chern number is zero C = 0.
For Hamiltonian (23) the Chern number can be rewritten in the simple form6

C(kz) =
1

4π

∮
Ckz

dkxdky d̂k ·
[
∂kxd̂k × ∂ky d̂k

]
, with d̂k =

d(k)

|d(k)| , (26)

and dx(k) = sin kx, dy(k) = sin ky, and dz(k) = (2 − cos kx − cos ky − cos kz). Here, for
simplicity, we choose C to be parallel to the kxky-plane, see Fig. 4(a). The vector d̂k in Eq. (26)
defines a map from k to the unit sphere S2, see Figs. 3(a) and 3(b). The Chern number C(kz),
Eq. (26), measures how many times the d̂k-vector wraps around S2 as k sweeps through the
contour Ckz . (Note that for k restricted to a spherical contour C, d̂k represents a map from S2

to S2, whose topology is given by the second homotopy group π2(S2) = Z [32].) Let us now
study how C(kz), Eq. (26), changes as a function of kz. Two different regions of kz can be
distinguished:

5Note that this model has an inversion symmetry, i.e., (σz)−1HA
3D(−k)σz = HA

3D(k), which ensures that the
two Weyl points are at the same energy.

6The fact that there is a non-zero Chern number can also be diagnosed from the parity eigenvalues at the
TRIMs [5]. The parity eigenvalues at the Γ point are opposite to those at all the other TRIMs. From this it follows
that the Chern number C(kz = 0) must be non-zero.
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(a) (b)

(c) (d)

|kz| > ⇡
2 |kz| < ⇡

2

Fig. 3: (a),(b) show the regions covered by the dk-vector, Eq. (26), on the unit sphere. (c),
(d) depict the textures of dk in the kxky-plane, i.e., in the contour Ckz . (a), (c) corresponds to
C(kz) = 0, while (b), (d) represents C(kz) 6= 0.

Trivial region. For |kz| > π/2, the d̂k-vector covers only a small region around the north
pole of S2, i.e., it points mostly upwards. Hence, d̂k does not wrap around S2, leading to a zero
Chern number C(kz) = 0, see left-hand side of Fig. 3. This follows also from the fact that the
contour C can be continuously shrunk to zero, without crossing through the singularities of the
Weyl points. Thus, the integral (26) must vanish.

Topological region. For |kz| < π/2, however, the d̂k-vector wraps once around the unit
sphere S2. That is, it points along all directions as k sweeps through Ckz , producing a Skyrmion
texture in the kxky-plane, see right-hand side of Fig. 3. As a consequence, the Chern number
is nonzero, i.e., C(kz) = ±1, which endows the Weyl points with a nonzero topological charge
(also know as “chirality”). This agrees with the fact that the contour C cannot be continuously
shrunk to zero, without crossing through the Weyl point singularities. Hence, the integral (26)
must be nonzero.

Due to the periodicity of the BZ, we can consider the contour Ckz to enclose either the upper or
the lower part of the BZ, see Fig. 4(a). Both ways of closing the contour must give consistent
results. A contour Ckz with |kz| > π/2, which can be shrunk to zero, can also be viewed
as enclosing both Weyl points. Hence, the Chern numbers of the two Weyl points must add
up to zero, i.e., they must have opposite topological charges, which is a manifestation of the
fermion-doubling theorem [26].
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Fig. 4: (a) The Weyl points (red spheres) are sources and drains of Berry flux (red arrows). In
the surface BZ there exists a Fermi arc state (yellow), which connects the projection of the two
Weyl points. The blue plane indicates the integration contour Ckz of Eq. (26). (b) Schematic
energy dispersion of the Fermi arc state in the (100) surface BZ. The Fermi arc surface state
(yellow) smoothly connects to the linearly dispersing bulk bands (blue) of the two Weyl points.

2.2.1 Fermi arc surface states

We now discuss the surface states of Weyl semimetals, which arise due to the nontrivial topology
of the Weyl points. For this we consider again Hamiltonian (23) restricted to a planar contour
Ckz which is perpendicular to the kz axis [blue plane in Fig. 4(a)]. As we have seen above,
for any contour Ckz with |kz| < π/2 the Chern number is C = ±1. Thus, each of the two-
dimensional HamiltoniansHA

3D,kz
(kx, ky) ,with |kz| < π/2, represents a two-dimensional Chern

insulator. These Chern insulators all have chiral edge modes, which on the surface perpendicular
to, e.g., the x direction, have a linear dispersion with E ' vky. Hence, there is a collection of
chiral edge modes on the (100) surface, which all disperse in the same direction. They form an
arc in the surface BZ, connecting the projection of the two Weyl points (yellow arc in Fig. 4).
This arc smoothly connects to the bulk bands, as shown in Fig. 4(b). We note that these arc
states cannot exist in purely two-dimensional systems, as they would contradict the continuity
of the band structure (bands cannot terminate at a point). At surfaces, however, these arc states
are allowed, since their end points smoothly connect with the bulk bands.

2.2.2 The chiral anomaly

Since the two Weyl points of opposite Chern number (i.e., opposite chirality) are separated by
a large momentum in the BZ, one might naively expect that the number of electrons n± at each
Weyl point with C = ±1 are separately conserved. In other words, one might think that besides
the regular electric charge e(n++n−), also the chiral charge e(n+−n−) is conserved. Indeed,
within a classical low-energy description of Weyl semimetals the chiral charge is preserved.
However, at the quantum level this symmetry is broken, giving rise to an anomaly, i.e., the
chiral anomaly [5, 6]. That is, in the presence of electric fields E and magnetic fields B the
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number of electrons n± at a given Weyl point is changed as

d

dt
n± = ± e

2

h2
E ·B. (27)

Therefore, an electric field together with a magnetic field can generate (or destroy) chiral charge,
i.e., they can pump electric charges from one Weyl point to the other, leading to valley polariza-
tions. The total electric charge, however, remains preserved in this process. The chiral anomaly
has a number of experimental consequences, such as anomalous Hall effect and negative mag-
netoresistance [6].

2.3 Dirac nodal-line semimetal

As a second example, we study a nodal-line band crossing in a three-dimensional semimetal
with time-reversal symmetry (class AI) and reflection symmetry [33, 35, 36]. The Hamiltonian
is defined on the cubic lattice and is given by HAI+R

3D =
∑

k Ψ
†
kH

AI+R
3D Ψk, where the spinor

Ψk = (cpk, cdk)T describes spinless Bloch electrons (no spin-orbit coupling) originating from p

and d orbitals and HAI+R
3D reads (cf. Eq. (21) with p = 2)7

HAI+R
3D = sin kzσ2 + [2− cos kx − cos ky − cos kz]σ3. (28)

The spectrum of this Hamiltonian

Ek = ±λk = ±
√

(2− cos kx − cos ky − cos kz)2 + (sin kz)2, (29)

exhibits a band-crossing at E = 0, which is located along a nodal ring within the kz = 0

plane, see Fig. 5(a). Such a nodal-line band crossing at the Fermi energy is realized in Ca3P2,
CaAgP, and other materials [2,15,33]. Eq. (28) is time-reversal symmetric with the time-reversal
operator T = σ0K, and reflection symmetric, R−1HAI+R

3D (kx, ky,−kz)R = HAI+R
3D (kx, ky, kz),

with the reflection operator R = σz. There is also an inversion symmetry, P−1HAI+R
3D (−k)P =

HAI+R
3D (k), with the inversion operator P = σz. We observe that the only possible mass term

mτx that anticommutes withHAI+R
3D is symmetry forbidden, since it breaks reflection symmetry

(R−1mσxR = −mσx) and space-time inversion symmetry [ (T P)−1mσx(T P) = −mσx].
Hence, the nodal line band crossing is stable and protected by reflection symmetry and PT
symmetry. However, the band crossing of the doubled version of HAI+R

3D

HAI+R,db
3D = sin kzσ2 ⊗ σ0 + [2− cos kx − cos ky − cos kz]σ3 ⊗ σ0. (30)

is protected only by reflection but not by PT symmetry, since the mass term m̂ = σx ⊗ σy is
symmetric underPT [(σz⊗σ0K)−1m̂(σz⊗σ0K) = m̂], but breaksR [(σz⊗σ0)−1m̂(σz⊗σ0) 6=
m̂]. From this we conclude that nodal rings of type (28) have a Z classification in the presence
of reflection symmetry, but only a Z2 classification in the presence of PT symmetry.

7Here, we have included both cos kx and cos ky terms in order to deform the nodal line of Eq. (21) into a
nodal ring.
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Fig. 5: (a) Hamiltonian (28) describes an electron- and a hole-like band, which cross each
other along a nodal loop (red ring). The green line represents the contour L of Eq. (31). The
red area in the surface BZ indicates the region where surface states exist. (b) Schematic energy
dispersion of the drumhead surface state in the (001) surface BZ. The drumhead surface state
(green) smoothly connects to the bulk bands (blue and red) of the nodal ring.

The topological invariant, which guarantees the stability of the nodal ring, is the Berry phase.
The Berry phase is defined as a one-dimensional contour integral over the Berry connection (for
a related mirror invariant, see Ref. [33])

PL = −i
∮
L
dkl 〈u−(k)| ∇kl |u−(k)〉 . (31)

Here, |u−(k)〉 is the filled Bloch eigenstate of Eq. (28), which is given by

|u−(k)〉 =
1√

2λk(λk−Mk)

(
λk−Mk

i sin kz

)
, (32)

withMk = 2−cos kx−cos ky−cos kz. Note that the Berry phase is only defined up to mod 2π.
One can show that reflection symmetry R and space-time inversion PT lead to the quantization
of the Berry phase, i.e., PL ∈ {0, π} [33]. For contours L that do not interlink with the nodal
ring, the Berry phase (31) is zero, since the contour can be continuously shrunk to a single point.
For a contour L that does interlink with the nodal ring the Berry phase evaluates to PL = π.
In this case, the contour cannot be continuously shrunk to zero without crossing the nodal ring.
Hence, the nodal ring is stable to small changes in the parameters, as long as mirror or PT
symmetry is not broken.
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Fig. 6: (a) The nodal-line semimetal is decomposed into a family of two-dimensional subsystems
(blue plane) parametrized by the angle φ. (b) In the presence of an electric field (violet arrow),
the nonzero Berry curvature (red arrows) leads to a transverse Hall current (green arrows).
Figures adapted from Ref. [35].

2.3.1 Drumhead surface state

We now discuss the surface states of nodal-line semimetals, that arise due to the nontrivial
topology of the nodal ring. For this purpose we consider Hamiltonian (28) restricted to a line
contour Lkx,ky , which is perpendicular to the kxky-plane, i.e., along the kz direction [green line
in Fig. 5(a)]. As we have seen above, for any contour Lkx,ky , with cos kx + cos ky > 1, the
Berry phase is P = π. Hence, each of the one-dimensional Hamiltonians HAI+R

3D;kx,ky
(kz), with

cos kx + cos ky > 1, represents a one-dimensional topological insulator with non-zero Berry
phase. These one-dimensional topological insulators all have midgap end states [34]. As a
consequence, there is a collection of end states on the (001) surface, which form a drumhead
that smoothly connects to the projected bulk bands [green area in Fig. 5(b)]. This drumhead state
is not allowed to exist in purely two-dimensional systems, as it would violated the continuity
of the band structure (bands cannot terminate at lines). At a surface, however, such drumhead
states can exist, since their edges smoothly connect to the bulk bands.

2.3.2 The parity anomaly

To discuss the parity anomaly, we divide the nodal-line semimetal into a collection of two-
dimensional subsystems parametrized by the angle φ ∈ [0, π), as shown in Fig. 6(a). Each of
these subsystems contains two Dirac points with opposite sign of Berry phase χ = sgn(P ),
which are related by time-reversal symmetry. The quantum field theory of a single Dirac point
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of such a subsystem coupled to an electromagnetic field Aµ includes the term

Sφ,χCS = χ
e2

4π

∫
d2xdt εµνλAµ∂νAλ. (33)

This Chern-Simons term only arises at the quantum level and is a manifestation of the parity
anomaly, since it breaks PT symmetry. Varying the Chern-Simons term with respect to Aµ,
gives the anomalous transverse current

jφ,χµ = χ
e2

4π
εµνλ∂νAλ (34)

for a single Dirac point in subsystem φ with chirality χ. Hence, electromagnetic fields generate
a topological current, which flows perpendicular to the applied field. These transverse currents
are depicted in green in Fig. 6. For a field along the ky axis, the transverse currents flow
downward on the side of the ring with ky > 0, while they flow upward on the opposite side.
This leads to an accumulation of charge on opposite surfaces of nodal-line semimetals. Since
the contributions on opposite sides of the nodal ring cancel out, the topological currents can only
be measured by a device that filters electrons based on their momenta [35]. Alternatively, the
topological currents can be induced and probed by axial gauge fields, which couple oppositely
to electrons with opposite momenta [36].

3 Symmetry-enforced band crossings

In this section we study symmetry-enforced band crossings that are movable (but not removable)
[16–22]. These movable band crossings, which are required to exist by symmetry alone, exhibit
the following properties:

• They are protected by nonsymmorphic crystal symmetries, possibly together with non-
spatial symmetries. A nonsymmorphic symmetry is a symmetry G = {g, t}, which
combines a point-group symmetry g with a translation t by a fraction of a Bravais lattice
vector (see Sec. 3.1).

• Symmetry-enforced band crossings are characterized by a global topological charge,
which measures the winding of the eigenvalue of G as we go through the BZ. As shown
in Fig. 7, one needs to go twice (or n times) through the BZ in order to get back to the
same eigenvalue.

• Symmetry-enforced band crossings are globally stable. That is, they cannot be removed,
even by large symmetry-preserving deformations. They are required to exist by symmetry
alone, independent of any other material details (e.g, chemical composition or energetics
of the bands).
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Fig. 7: Nonsymmorphic symmetries lead to symmetry-enforced band crossings. The color shad-
ing indicates how the eigenvalue of the nonsymmorphic symmetry changes as a function of crys-
tal momentum. Note that one needs to go through the BZ twice (or n times), in order to get back
to the same eigenvalue.

Strategy for materials discovery. The last point above allows us to construct the following
strategy to discover new materials with topological band crossings [21, 22], which consists of
three steps:

(i) First, we identify the space groups (SGs) whose nonsymmorphic symmetries enforce the
desired band crossings. This can be done by either (i) computing the algebraic relations
obeyed by the symmetry operators or (ii) by computing the compatibility relations be-
tween irreducible symmetry representations (irreps).

(ii) Second, we perform a database search for materials in these SGs. The most comprehen-
sive database on inorganic crystals is the Inorganic Crystal Structure Database (ICSD)
from the Leibniz Institute in Karlsruhe (https://icsd.fiz-karlsruhe.de). Other databases,
which also contain band structures, are the AFLOW database (http://aflowlib.org), the
Materials Project database (https://www.materialsproject.org), the database for material
sciences at the IOP of the Chinese Academy of Science (http://materiae.iphy.ac.cn), and
the Topological Materials Database (https://topologicalquantumchemistry.com).

(iii) Third, we compute the electronic band structure of these materials to check whether the
band crossings are near the Fermi energy.

In Secs. 3.2.3 and 3.3.2 we will present two materials that have been found using the above
strategy.

3.1 Nonsymmorphic symmetries lead to enforced band crossings

Nonsymmorphic symmetries G = {g|t} combine a point-group symmetry g with a translation
t by a fraction of a Bravais lattice vector, see Fig. 8. Without loss of generality, we can assume
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Fig. 8: This figure illustrates two nonsymmorphic symmetries: A glide reflection in panel (a)
and a two-fold screw rotation in panel (b).

that the fractional translation t is parallel to the invariant space of g, i.e., that gt = t. The
reason for this is that any component of t that is not invariant under g can be removed by a
suitable choice of unit cell (i.e., a suitable choice of reference for g). (An exception to this rule
will be discussed in Sec. 3.3.) Applying an n-fold nonsymmorphic symmetry n times yields a
translation, i.e.,

Gn = {gn|nt} = ±p Ta, p ∈ {1, 2, . . . , n−1}, (35)

where Ta is the translation operator for the Bravais lattice vector a and g is an n-fold point-
group symmetry. The ± sign on the right-hand side of Eq. (35) originates from gn, which
equals −1 for spin-1/2 quasiparticles (Bloch electrons with spin-orbit coupling) and +1 for
spinless quasiparticles (Bloch electrons without spin-orbit coupling). Two simple examples of
nonsymmorphic symmetries are illustrated in Fig. 8:

• a glide reflection M = {m|t}, with M2 = ±Ta

• a two-fold screw rotation C2 = {cn|t}, with (C2)
2 = ±Ta

In the band structure of materials with nonsymmorphic symmetries, the operators G = {g|t}
can enforce band degeneracies in the g-invariant space of the BZ, i.e., on lines or planes which
satisfy gk = k. In these g-invariant spaces, the Bloch states |um(k)〉 can be constructed in such
a way that they are simultaneous eigenfunctions of both G and the Hamiltonian. To derive the
G-eigenvalues of the Bloch states |um(k)〉, we observe that

Gn = ±e−ipk·a, (36)

which follows from Eq. (35). Hence, the eigenvalues of G are

G |ψm(k)〉 =

{
eiπ(2m+1)/ne−ipk·a/n |ψm(k)〉 , for spin 1/2,

ei2πm/n e−ipk·a/n |ψm(k)〉 , for spin 0,
(37)
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where m ∈ {0, 1, . . . , n−1}. Because of the phase factor e−ipk·a/n in Eq. (37) the eigensectors
of G can switch, as k moves along the g-invariant space. From this it follows that pairs of
bands must cross at least once within the invariant space.8 With this we have found the basic
mechanism that leads to symmetry-enforced band degeneracies [16–19],
Let us now explain in more detail how a screw rotation leads to a symmetry-enforced band
crossing in a simple one-dimensional system with two atoms per unit cell. In momentum space
such a system is described by a two-band Hamiltonian H(k). The screw rotation symmetry
(π rotation, followed by half translation) takes the form [16]

G(k)H(k)G−1(k) = H(k), G(k) =

(
0 e−ik

1 0

)
, (38)

where the exponential factor e−ik accounts for the fact that one of the two atoms is moved to
the next unit cell. Here, we consider the case of spin-0 quasiparticles (Bloch electrons without
spin-orbit coupling), hence G(k) does not contain a spin part. Now, since G2(k) = σ0e

−ik the
eigenvalues of G are ±e−ik/2, i.e., we can label the two bands of H(k) by the eigenvalues of
G(k)

G |ψ±(k)〉 = ±e−ik/2 |ψ±(k)〉 , (39)

cf. Eq. (37) with n = 2 and p = 1. We see that the eigenvalues are momentum dependent and
change from ± at k = 0 to ∓ at k = 2π, as we go through the BZ. Hence, the two eigenspaces
get interchanged and the bands must cross at least once, see Fig. 7.
It is also possible to mathematically prove that there needs to be at least one crossing [16].
The proof is by contradiction. First, we observe that G(k) does not commute with σ3 (it anti-
commutes). Therefore, H(k) cannot contain a term proportional to σ3, since it is symmetry
forbidden. Moreover, we can drop terms proportional to the identity, since they only shift the
energy of the eigenstates, but do not alter the band crossings. For this reason the Hamiltonian
can be assumed to be off-diagonal and can be written as

H(k) =

(
0 q(k)

q∗(k) 0

)
. (40)

With this parametrization, the spectrum of H(k) is symmetric around E = 0 and is given by
E = ±|q(k)|. For this reason, any band crossing must occur at E = 0. Applying the symmetry
constraint (38), we find that q(k) must satisfy

q(k)eik = q∗(k). (41)

We now need to show that any periodic function q(k) satisfying the constraint (41) must have
zeros, corresponding to a band crossing point. To see this, we introduce the complex variable

8Here we assume that here are no additional degeneracies due to other symmetries.
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z := eik and the complex function f(z) := q(k). From Eq. (41) it follows that zf(z) = f ∗(z).
Assuming that f(z) is nonzero on the unit circle S1, then

z = f ∗(z)/f(z), (42)

which, however, leads to a contradiction. This is because for z ∈ S1 the two sides of Eq. (42)
both define functions from S1 to S1. But the left hand side has winding number 1, while the
right hand side has even winding number, since f ∗(z)/f(z) = e−2iArg[f(z)]. Thus, f(z) and
q(k) must vanish at some k by contradiction. Therefore, there must be a band crossing point
somewhere in the BZ.

3.2 Weyl nodal-line semimetal

Next we discuss how a glide reflection symmetry can enforce two-fold degeneracies along a
line. Materials with these line degeneracies are called Weyl nodal-line semimetals. For con-
creteness, we consider a system with spin-orbit coupling, which is invariant under the hexagonal
SG 190 (P 6̄2c). This SG contains a glide reflection symmetry of the form

Mx : (x, y, z)→ (−x, y, z + 1
2
)iσx, (43)

where the Pauli matrix σx operates in spin space. Applying this glide reflection twice yields
minus a unit translation in the x direction, i.e., −T̂x, where the minus sign is due to the spin
part. The glide reflection (43) leaves two planes in the BZ invariant, namely the kx = 0 plane
and the kx = π plane, see Fig. 9(a).

3.2.1 Symmetry eigenvalues

We now use the arguments from Sec. 3.1 to show that the glide reflectionMx leads to symmetry-
enforced degeneracies along a line within the kx = π plane. Within the kx = π plane, the Bloch
bands can be chosen to be eigenstates of Mx with the eigenvalues

Mx |ψ±(k)〉 = ±ie−ikz/2 |ψ±(k)〉 , (44)

which follows from Eq. (37) with p = 1 and n = 2. Next, we add time-reversal symmetry to the
game, since we want to study nonmagnetic systems. Time-reversal symmetry sends the crystal
momentum k to −k and acts on the Hamiltonian as (see Sec. 2.1.1)

T −1H(−k)T = +H(k), (45)

with the operator T = iσyK and K the complex conjugation operator. Time-reversal symmetry
leaves two points in the kx = π plane invariant [blue and red dots in Fig. 9(a)], which are called
time-reversal invariant momenta (TRIMs). At these TRIMs the bands are two-fold degenerate
due to Kramers theorem, i.e., they form Kramers pairs. Away from the TRIMs, however, the
bands are in general non-degenerate. (Note that spin-orbit coupling lifts the spin degeneracy.)
Since T contains the complex conjugation operator K, the Kramers pairs at the TRIMs are
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FIG. 9: Weyl nodal line with hourglass dispersion. (a) Weyl nodal line in the kx = ⇡ plane protected by the

glide mirror symmetry Mx, Eq. (3.9). (b) Band connectivity diagram for a line connecting M and L within

the kx = ⇡ plane, which is left invariant by Mx. The bands are Kramers degenerate at M and L. The color

shading indicates the Mx eigenvalues (3.10) of the Bloch bands. (c) The Bloch bands along any path within

the kx = ⇡ plane, connecting M to L, exhibit the band connectivity shown in (b).

where the Pauli matrix �x operates in spin space. Here we consider spin-1/2 quasiparticles, i.e.,

Bloch electrons with spin-orbit coupling. Applying this glide reflection twice yields minus a unit

translation in the x direction, i.e., �T̂x, where the minus sign is due to the spin part. The glide

reflection (3.9) leaves two planes in the BZ invariant, namely the kx = 0 plane and the kx = ⇡

plane, see Fig. 9(a).

a. Symmetry eigenvalues. Within the invariant planes kx = 0 and kx = ⇡, the Boch bands

can be chosen to be eigenstates of the glide mirror operator Mx with the eigenvalues

Mx | ±(k)i = ±ie�ikz/2 | ±(k)i , (3.10)

which follows from Eq. (3.3) with p = 1 and n = 2.

Next, we add time-reversal symmetry to the game, since we want to study nonmagnetic systems.

Time-reversal symmetry sends the crystal momentum k to �k and acts on the Hamiltonian as

T�1H(�k)T = +H(k), (3.11)

with the operator T = i�yK and K the complex conjugation operator. Time-reversal symmetry

leaves two points in the kx = 0 and kx = ⇡ planes invariant, see blue and red dots in Fig. 9(a).

These points are called time-reversal invariant momenta (TRIMs). Due to spin-orbit coupling, the

energy bands | m(k)i are in general non-degenerate, except at the TRIMs, where time-reversal

symmetry enforces twofold degeneracies, due to Kramers theorem (Appendix A). Since T contains
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Fig. 9: (a) Weyl nodal line in the kx = π plane protected by the glide mirror symmetry Mx,
Eq. (43). (b) Band connectivity diagram for a line connecting M and L within the kx = π
plane, which is left invariant by Mx. The bands are Kramers degenerate at M and L. The color
shading indicates the Mx eigenvalues (44) of the Bloch bands. (c) The Bloch bands along any
path within the kx = π plane, connecting M to L, exhibit the band connectivity shown in (b).
Figures adapted from Ref. [21].

formed by bands whose Mx eigenvalues are complex conjugate pairs. Using Eq. (44), we find
that at the L point of the kx = π plane the Mx eigenvalues are +1 and −1, while at the M point
they are +i and −i. (Similar arguments hold for the TRIMs in the kx = 0 plane.) Hence, at M
the Kramers pairs are formed by bands with opposite Mx eigenvalues [blue dot in Fig. 9(a)],
while at L they are formed by bands with the same Mx eigenvalues [red dot in Fig. 9(a)]. This
is shown in Fig. 9(b), where the Mx eigenvalues are indicated by the color shading. We see that
since the Kramers pairs switch partners as we go from M to L, the bands must cross at least
once forming a group of four connected bands with an hourglass dispersion. Because this holds
for any one-dimensional path within the kx = π plane, connecting M to L, the kx = π plane
must contain a Weyl line degeneracy, as shown in Fig. 9(c).

3.2.2 Compatibility relations

The existence of symmetry-enforced band crossings can also be inferred from the compatibility
relations between irreducible representations (irreps) at different high-symmetry points of the
BZ [37]. To show this we consider again a system in SG 190 with spin-orbit coupling. But
before doing so, we first need to review some basic properties of double SGs and their double-
valued irreps [38].
Band structures of nonmagnetic materials with spin-orbit coupling (i.e., materials with a time-
reversal symmetry T 2 = −1) are invariant under the symmetries of double SGs. Correspond-
ingly, the symmetry operators under which these band structures transform are given by the
double-valued irreps of the double SGs. If we consider the band structure at a particular high-
symmetry point k (or high-symmetry line), then the symmetries are reduced to a subgroup of the
double SG. This subgroup is denoted by Gk and is called the little group at k. Because the Bloch
Hamiltonian restricted to k commutes with this little group Gk, the bands at k can be labeled
by the double valued irreps of Gk, which are denoted by D̄k. If we move continuously away
from a high-symmetry point k1 to a nearby point k2, then the symmetries are lowered. That is,
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Irreps \Element E Mx

M5

(
+1 0

0 +1

) (
+i 0

0 −i

)
L2 +1 −1
L3 +1 −1
L4 +1 +1
L5 +1 +1

C
′
3 +1 e

i
2
(π+kz)

C
′
4 +1 e−

i
2
(π−kz)

Table 2: Double valued irreps of SG 190 (P 6̄2c) without time-reversal at the TRIMs M and
L and within the mirror plane kz = π, denoted by C’. Due to the partial translation of Mx,
the irreps for C’ have momentum-dependent phases. For the labeling of the irreps we use the
convention of Ref. [37].

the little group Gk2 is smaller than the little group Gk1 , and forms a subgroup Gk2 ⊂ Gk1 . As a
consequence, representations D̃k2 of Gk2 can be inferred (i.e., subduced) from the little-group
irreps D̄k1 , i.e., we have

D̃k2 = D̄k1 ↓ Gk2 . (46)

Decomposing the subduced representations D̃k2 into irreps yields the compatibility relations
between the irreps D̄k1 and D̄k2 [37–39]. From these compatibility relations one can deduce
the connectivity of the Bloch bands in the BZ.

We will now show how this works for SG 190. We start be determining the little group irreps
at the TRIMs M and L, and within the mirror plane kx = π (denoted by C’). Table 2 lists the
double-valued irreps without time-reversal symmetry. We find that at the M point there is only
one double-valued irrep, namely M̄5, which is two-dimensional and pseudoreal. At the L point
there are four different irreps: L̄2, L̄3, L̄4, and L̄5, which are one-dimensional and complex.
The irreps for C’ are all one-dimensional and have k-dependent phases, due to the translation
part of the glide reflection Mx, Eq. (43). At the TRIMs M and L we need to construct time-
reversal symmetric irreps (i.e., real irreps) using Table 2. We note that pseudoreal irreps are
time-reversal symmetric by themselves. Complex irreps, on the other hand, must be paired up
into complex-conjugate pairs to make them time-reversal symmetric [38, 39]. Hence, at the L
point we need to pair L̄2 with L̄3 and L̄4 with L̄5, see Fig. 10(a). With this, all time-reversal
symmetric irreps at the TRIMs are two dimensional, in agreement with the Kramers theorem,
which leads to two-fold degeneracies. As we move away from the TRIMs to a point in C’,
these two-dimensional irreps decompose into one-dimensional irreps, in such a way that the
compatibility relations are satisfied.

To figure out how the Kramers pairs split up, we therefore need to derive the compatibility
relations between the irreps at M, L, and C’. For this purpose, we use the following relation
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Fig. 10: (a) Compatibility relations for SG 190 between the little-group irreps at M, L, and C’
(kx = π plane). (b) Band connectivity diagram for SG 190 for a path within the kx = π plane
connecting M to L. Figures adapted from Ref. [21].

between the characters χ of the irreps9

χ[Dl(g)] =
2∑
i=1

χ[C
′
mi

(g)], (47)

for any group element g. Here, χ[Dl(g)] is the character of the irrep Dl at the TRIM M or
L, while {C ′m1

, C
′
m2
} is the set of irreps that Dl decomposes into, as we move away from

the TRIMs to a point on C’. Relation (47) follows from continuity, which requires that the
characters of the irreps are preserved, as we continuously move away from a TRIM to a point
on C’. By use of Eq. (47), we infer that the time-reversal symmetric irrep at M (where kz = 0)
decomposes into

M5 → C
′
3 + C

′
4, (48a)

while for the real irreps at L (where kz = π) we have

L2L3 → C
′
3 + C

′
3,

L4L5 → C
′
4 + C

′
4. (48b)

The above two relations represent the compatibility relations between the irreps at the TRIMs
(M and L) and C’. They determine the connectivity of the bands on the path M–C’–L. That is,
as we move from M to C’ and then on to L, the Kramers pairs at M must split up and then
pair up again, such that the compatibility relations (48) are satisfied. Therefore the bands must
connect as shown in Fig. 10(b). That is, the irreps switch partners as we move within C’ from
M to L. As a consequence, the band connectivity is nontrivial with sets of four connected bands
that show an hourglass dispersion, with at least one movable crossing between M and L. Hence,
each quartet of bands within the C’ plane forms at least one Weyl nodal line, which fully agrees
with the results of Sec. 3.2.1, cf. Fig. 9(b).

9The character of a group irrep associates with each group element the trace of the corresponding irrep matrix.
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Fig. 11: (a) Electronic band structure of ZrIrSn along the high-symmetry path H–L–M, cf. Fig 9.
The band crossings along M–L (violet dots) are part of Weyl nodal lines within the kx = π plane.
(b) Dispersion of the pair of bands that form the Weyl nodal line at E ' −0.64 eV. The nodal
line (red dots) encloses the L point.

3.2.3 Example material: ZrIrSn

Having found that all band structures with strong spin-orbit coupling in SG 190 exhibit Weyl
nodal lines, we now apply the strategy of page 19 to find real materials that exhibit these line
degeneracies. To do so, we consult the ICSD database (https://icsd.fiz-karlsruhe.de) to find ma-
terials with heavy elements (indicating strong spin-orbit coupling) that crystallize in SG 190.
This was performed in Ref. [21] and it was found that ZrIrSn is a good example. ZrIrSn con-
tains only heavy elements resulting in strong spin-orbit coupling. Indeed, the calculated band
structure [Fig. 11(a)] shows that the spin-orbit coupling leads to a large band splitting away
from the TRIMs, by about 100 meV. As predicted in the previous section, along the M–L path
we observe groups of four connected bands with an hourglass dispersion and at least one cross-
ing. As shown in Fig. 11(b), these crossings are part of Weyl nodal lines in the C’ plane, i.e.,
two-fold degeneracies on rings which enclose one of the TRIMs.
Similar to the Dirac nodal-line semimetal of Sec. 2.3, the topology of this Weyl nodal ring is
described by a π Berry phase [33], which leads to drumhead surface states. Furthermore, the
bands that form nodal rings carry large Berry curvatures, which leads to anomalous transport
properties, for example, anomalous magnetoelectric responses or large Hall effects.

3.3 Dirac nodal-line semimetal

As a second example, we study how off-center symmetries can enforce four-fold degeneracies
along a line, i.e., how they can enforce the existence of Dirac nodal lines. In Sec. 2.3, we
have already discussed a Dirac nodal-line semimetal with an accidental nodal ring, which is
protected by symmorphic symmetries (i.e., reflection or PT symmetry). Here, however, we
discuss Dirac nodal lines that are symmetry enforced by off-center symmetries. Moreover, we
shall consider systems with strong spin-orbit coupling, which was neglected in Sec. 2.3. For
concreteness, we consider spin-orbit coupled systems which are symmetric under the hexagonal
SG 176 (P63/m). This SG contains the glide reflection

M̃z : (x, y, z)→ (x, y,−z + 1
2
)iσz, (49a)
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where σz acts in spin space, and the inversion symmetry

P : (x, y, z)→ (−x,−y,−z). (49b)

These two symmetries form together a pair of so-called off-center symmetries [20, 21]. We
observe hat the translation part t = 1

2
ẑ of the glide reflection (49a) is perpendicular to the

m̃z invariant space (i.e., the xy mirror plane). As mentioned on page 20, this type of glide
reflection can be transformed into a symmorphic symmetry by a different choice of unit cell
i.e., by shifting the origin by 1

4
ẑ. However, this shift in origin also affects P , leading to a

translation part in P . Since M̃z and P have different reference points, it is not possible to
choose the origin such that both M̃z and P are without translation parts. A pair of two such
symmetries with different reference points are called off-center symmetries.

3.3.1 Commutation relations

We now show that the momentum dependence of the commutation relation between M̃z and
P enforces the existence of fourfold degenerate nodal-lines. The glide reflection M̃z leaves
two planes in the hexagonal BZ invariant, namely the kx = 0 plane and the kx = π plane,
see Fig. 12(a). Within these planes the Bloch states can be labeled by the M̃z eigenvalues ±i
(remember that M̃2

z = −1). I.e., we have

M̃z |ψ±(k)〉 = ±i |ψ±(k)〉 . (50)

To derive the commutation relation between M̃z and P , we apply the symmetry operators M̃z

and P in succession,

(x, y, z)
P−→ (−x,−y,−z)

M̃z−−→ (−x,−y,+z + 1
2
)iσz,

(x, y, z)
M̃z−−→ (x, y,−z + 1

2
)iσz

P−→ (−x,−y,+z − 1
2
)iσz.

This tells us that M̃zP and PM̃z differ by a unit translation in the z direction. Hence, by letting
M̃zP and PM̃z act on the Bloch states (50), we get the commutation relation in k-space

M̃zP |ψ±(k)〉 = eikzPM̃z |ψ±(k)〉 . (51)

It follows that the two symmetry operators commute in the kz = 0 plane, while they anticom-
mute in the kz = π plane. Since we are interested in nonmagnetic systems, we now also need
to study the commutation relation between the off-center symmetries (49) and the time-reversal
operator T = iσyK. Because T commutes with both M̃z and P , we have

M̃zPT |ψ±(k)〉 = eikzPT M̃z |ψ±(k)〉 . (52)

Thus, the Kramers pair |ψ±(k)〉 and PT |ψ±(k)〉 have the same M̃z eigenvalues for kz = π

(since M̃z [PT |ψ±(k)〉] = −PT [±i |ψ±(k)〉] = ±iPT |ψ±(k)〉), while for kz = 0, they have
opposite M̃z eigenvalues. Hence, if two Kramers pairs of bands with opposite M̃z eigenvalues
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(a) (b) (c)
ZHANG, CHAN, CHIU, VERGNIORY, SCHOOP, AND SCHNYDER PHYSICAL REVIEW MATERIALS 2, 074201 (2018)

FIG. 10. Electronic band structure of ZrIrSn in SG P 6̄2c (No.
190). The band crossings along the M-U -L path are part of Weyl
nodal lines within the kx = π plane, which are protected by the glide
mirror symmetry Mx . These Weyl nodal lines enclose one of the two
time-reversal invariant momenta M or L, as shown in the inset for the
crossing near E ≃ −0.64 eV.

lines [type-(i)], and LaBr3, which exhibits fourfold-degenerate
Dirac nodal lines [type-(ii)].

1. ZrIrSn

ZrIrSn crystallizing in SG P 6̄2c (No. 190) [69] is an exam-
ple of a hexagonal material with Weyl nodal lines protected by a
mirror glide symmetry. In Fig. 10 we present the first-principles
band structure of ZrIrSn. Along the M-U -L line, which is
invariant under the mirror glide symmetry Mx , we observe
groups of four connected bands, which cross each other at least
once. Since these crossings must occur for any path within the
kx = π plane connecting M to L (cf. Sec. II B), they form
Weyl nodal lines. The shape of the Weyl nodal line for the
crossing near E ≃ −0.64 eV is shown in the inset of Fig. 10.
All the other Weyl nodal lines have similar shapes and enclose
one of the TRIMs M or L in the kx = π plane. We emphasize
that all the bands within the kx = π plane form such Weyl
nodal lines, since their existence is enforced by the mirror glide
symmetry. The topological properties of these Weyl nodal lines
are characterized by a nonzero Berry phase [13], which, by the
bulk-boundary correspondence, leads to drumhead states at the
surface of ZrIrSn. Moreover, due to the absence of inversion,
the bands in ZrIrSn carry a nonzero Berry curvature, which
is particularly large close to the Weyl nodal lines. In slightly
doped samples of ZrIrSn this should give rise to anomalous
transport properties, such as, e.g., large anomalous Hall effects
or anomalous magnetoelectric responses [37].

2. LaBr3

An example of a hexagonal material with Dirac nodal lines
is LaBr3 in SG P 63/m (No. 176) [70]. As indicated in Table I,
materials in this SG exhibit fourfold-degenerate nodal lines
within the kz = π plane protected by the off-centered symme-
tries M̃z and P . To verify this, we perform first-principles band-
structure calculations of LaBr3 to obtain the band structure
shown in Figs. 11 and 18(c). All the bands of LaBr3 are
Kramers degenerate, since SG P 63/m (No. 176) contains a PT

FIG. 11. First-principles band structure of LaBr3 in SG P 63/m

(No. 176). The band crossings along the A-L-H -A path are part of
Dirac nodal lines, which are symmetry enforced by the off-centered
symmetries M̃z and P (cf. Sec. III). The inset shows the Dirac nodal
lines within the kz = π plane formed by the two topmost valence
bands. All the other bands form similar nodal lines; cf. Fig. 18(b).

symmetry that squares to −1. Along the A-L-H -A path, within
the kz = π plane, there are groups of two Kramers degenerate
bands that cross each other several times. These band crossings
are part of a fourfold-degenerate Dirac nodal line, whose shape
resembles a star (inset of Fig. 11), in complete agreement with
the theoretical analysis of Sec. III. These Dirac nodal lines are
protected from hybridizing, since the bands that cross have
opposite M̃z eigenvalues. Note that such star-shaped Dirac
nodal lines are formed by all the bands at all energies, since
their existence follows from symmetry alone, independent
of the energetics of the bands. Thus, probing this insulating
material below the Fermi energy (which might be possible if
flakes of this layered compound are deposited on a metallic
substrate) with angle-resolved photoemission spectroscopy
would reveal the star-shaped band crossings.

In closing, we note that LiScI3 [77] crystallizing in SG P 6̄c2
(No. 188) is an example of a material with Weyl nodal lines
within the kxkz plane. Unfortunately, the spin-orbit coupling in
this material is rather weak, leading to a band splitting of only
about ∼10 meV. We therefore do not discuss this material in
any further detail here.

V. CONCLUSIONS

In this work, we have classified all possible nonsymmorphic
band degeneracies in hexagonal materials with time-reversal
symmetry and strong spin-orbit coupling. Our classification
approach is based on representation theory of space groups
and the algebraic relations between symmetry operators. We
find that 13 out of the 27 hexagonal space groups (SGs) support
topological band crossings protected by nonsymmorphic sym-
metries (Table I). Among them there are ten SGs with Weyl
nodal points (Nos. 169-173 and 178-182), two SGs with Weyl
nodal lines (Nos. 188 and 190), and one SG with Dirac nodal
lines (No. 176). The stability of these band crossings is ensured
by quantized topological numbers, i.e., by a Chern number or
a π -Berry phase. We emphasize that the appearance of these
band crossings is enforced by symmetry alone, i.e., they occur

074201-10

Fig. 12: (a) Dirac nodal-lines in the kz = π plane, which connect the A and L points. (b) Two
Kramers degenerate bands with opposite M̃z eigenvalues cross each other to form a Dirac nodal
line. (c) Electronic band structure of LaBr3 along the high-symmetry path A–L–H–A. The band
crossings along H–A are part of Dirac nodal lines within the kz = π plane. The inset shows the
shape of the Dirac nodal line for the two top most bands in the main panel. Figures adapted
from Ref. [21].

cross within the kz = π plane, they form a Dirac nodal line. This Dirac nodal line cannot
gap out, since the two Kramers pairs have opposite M̃z eigenvalues. For kz = 0, however, the
crossing of two Kramers pairs of bands is not protected, since the two Kramers pairs have the
same M̃z eigenvalue.
Such a Dirac nodal line is in fact required to exist by symmetry alone, i.e., it occurs in any
material with the off-center symmetries (M̃z, P ) and, in particular, in any material with spin-
orbit coupling crystallizing in SG 176, irrespective of the chemical composition. To show that
the Dirac nodal line is symmetry enforced, we consider the degeneracies at the TRIMs within
the kz = π plane, i.e., at A and L [Fig. 12(a)]. At these two TRIMs the bands are four-fold
degenerate, i.e., they form quartets of four degenerate states, which have the M̃z eigenvalues

M̃z |ψ±(K)〉 = ±i |ψ±(K)〉 , (53a)

M̃zP |ψ±(K)〉 = ∓iP |ψ±(K)〉 , (53b)

M̃zT |ψ±(K)〉 = ∓iT |ψ±(K)〉 , (53c)

M̃zPT |ψ±(K)〉 = ±iPT |ψ±(K)〉 , (53d)

where K ∈ {A,L}. These four Bloch states are mutually orthogonal to each other, because
they are either Kramers partners or they have opposite M̃z eigenvalues. Moving away from
the TRIMs, the degenerate quartet splits, in general, into two Kramers pairs of bands. Due to
inversion and time-reversal symmetry, the dispersion of the Kramers pairs of bands is symmetric
with respect to the TRIMs. That is, the Kramers pairs of bands at K+k and K−k have the same
energy, but opposite M̃z eigenvalues, as shown in Fig. 12(b). It now follows from continuity,
that each quartet of states at K cannot exist in isolation, but must be part of a Dirac nodal
line connecting two TRIMs, see Fig. 12(a). This Dirac nodal line must be symmetric under
inversion, time-reversal, and all other point-group symmetries of the SG, but is otherwise free
to move within the kz = π plane. That is, the Dirac nodal line is movable, but not removable.
For SG 176, which has a sixfold rotation symmetry, the Dirac nodal lines are shaped like stars,
see Figs. 12(a) and 12(c).
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3.3.2 Example material: LaBr3

We have shown that all materials crystallizing in SG 176 have star-shaped nodal lines within the
kz = π plane. In order to look for materials, we consult again the ICSD database and search for
compounds with heavy elements crystallizing in SG 176. In Ref. [21] it was found that LaBr3
is a good example. Figure 12(c) shows the first-principles band structure of LaBr3 along the
high-symmetry lines A–L–H–A . All bands are Kramers degenerate, due to the presence of PT
symmetry. Along the H–A line we observe band crossings, which are part of Dirac nodal lines,
whose shape resembles a star [inset of Fig. 12(c)].

4 Conclusions and future directions

In this chapter, we have reviewed accidental and symmetry-enforced band crossings. We have
presented a classification of accidental band crossings in terms of symmetries and we have dis-
cussed how nonsymmorphic symmetries can lead to symmetry-enforced band crossings. We
have presented a number of examples, ranging from Weyl semimetals with point nodes to Dirac
semimetals with line nodes. From these discussions it is clear that symmetry together with
topology fundamentally restricts the possible forms of band structures, i.e., in particular, their
connectivity and their degeneracies. We have discussed this in terms of the momentum depen-
dence of the symmetry eigenvalues, and in terms of compatibility relations between irreducible
representations. An alternative approach is to study the properties of symmetric Wannier func-
tions, which form space group representations. In this approach topological bands are identified
as those, whose symmetric Wannier functions are not exponentially localized [40]. Combining
this with symmetry based indicators, it is possible to perform high-throughput searches for
topological materials [41–43].
While topological band structures of time-reversal invariant materials have been investigated
extensively, topological band structures of magnetic systems still need to be understood better.
Another avenue for future research is the study of how electron-electron correlations change
the topology of materials. On the one hand, correlations can connect two topological band
structures (or phases) that are distinct in the single-particle picture, on the other hand they can
give rise to entirely new topological phenomena [2]. Finally, on the experimental front, there is
a crucial need for better topological materials. In particular semimetals, where the Fermi energy
is closer to the band crossing, and where there are no other bands close to the Fermi energy. The
reader is invited to look for new topological semimetals by himself using the strategy detailed
on page 19.
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