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Contents
1 Introduction 2

1.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Pairing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Mean-field approximation and nodal lines . . . . . . . . . . . . . . . . . . . . 5

2 Elements of group theory 6
2.1 Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Character tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4 Example: The D4h character table . . . . . . . . . . . . . . . . . . . . . . . . 12
2.5 Tensor products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.6 Back to superconductivity: The Landau free energy . . . . . . . . . . . . . . . 13

3 Single-band superconductors 15
3.1 C4v symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 C∞ symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4 Multi-band superconductors 18
4.1 Band vs orbital basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.2 The case of Sr2RuO4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.3 Are nodes imposed by symmetry? . . . . . . . . . . . . . . . . . . . . . . . . 20
4.4 The graphene lattice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5 Superconductors with spin-orbit interaction 24
5.1 One-band model with Rashba coupling . . . . . . . . . . . . . . . . . . . . . . 24
5.2 Sr2RuO4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

6 Final remarks 26

E. Pavarini and E. Koch (eds.)
Topology, Entanglement, and Strong Correlations
Modeling and Simulation Vol. 10
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13.2 David Sénéchal

1 Introduction

Superconductivity is understood as a condensation of pairs of electrons. As such, it is a
rather subtle case of spontaneous symmetry breaking involving off-diagonal long range order
(ODLRO), and is usually described in terms of spontaneously broken electromagnetic U(1)
gauge symmetry [1]. This chapter is about superconductors that break other symmetries, specif-
ically point-group symmetries, in addition to U(1) gauge symmetry. For lack of space and time,
we focus on the theoretical classification of such states, not on experimental evidence or phe-
nomenology.

1.1 Notation

Let us first establish the notation. We consider a crystalline solid with Nb “active” electron
bands. Electron states are usually described in the Bloch-band basis, with wave functions
ϕk,a(x) for band a and wave vector k, or in a Wannier-orbital basis, with wave functions
wm(x−r) for the Wannier orbital m = 1, . . . , Nb centered at the lattice site r. We are used
to the latter in the context of strongly correlated electrons. In second-quantized language, we
express various physical observables in terms of creation and annihilation operators. In partic-
ular, the operator Ψσ(x) annihilates an electron of spin projection σ (σ = ↑, ↓) at the continuous
position x and obeys the anticommutation relations{

Ψσ(x), Ψ
†
σ′(x

′)
}
= δσσ′ δ(x−x′)

{
Ψσ(x), Ψσ′(x

′)
}
= 0 . (1)

The operator Ψσ(x) can be expressed in the Bloch basis as

Ψσ(x) =
∑
k,a,σ

da,σ(k)ϕk,a(x) where {da,σ(k), d†b,σ′(k′)} = (2π)3δ(k−k′) δa,b δσ,σ′ , (2)

or in the Wannier basis as

Ψσ(x) =
∑
r,m,σ

cr,m,σ wm,σ(x−r) where {cr,m,σ, c†r′,m′,σ′} = δr,r′ δm,m′ δσ,σ′ . (3)

A non-interacting Hamiltonian for the free propagation of such electrons takes, in the Wannier
basis, the general form

H0 =
∑

r,r′,m,m′,σ

tm,m
′

r,r′ c†r,m,σ cr′,m′,σ (4)

(we ignore the spin-orbit (SO) interaction for the moment). If cm,σ(k) is the Fourier transform
of cr,m,σ, the above Hamiltonian may be written in a simpler form, diagonal in k because of
translation invariance on the lattice

H0 =
∑

k,m,m′,σ

tm,m
′
(k) c†m,σ(k) cm′,σ(k) (5)

(we will call this description the orbital basis). Finally, the k-dependentNb×Nb matrix tm,m′(k)
may be diagonalized by a unitary matrix Va,m(k), which brings us to the annihilation operator
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dk,a(k) in the Bloch basis
da,σ(k) =

∑
m

Va,m(k) cm,σ(k) (6)

in terms of which the non-interacting Hamiltonian becomes completely diagonal

H0 =
∑
k,a,σ

εa(k) d
†
a,σ(k) da,σ(k) . (7)

In practice, band structure calculations provide us with the band energies εa(k) and the wave
functions ϕk,a(x), from which Wannier functions can be obtained with some degree of arbitrari-
ness, although a maximal localization principle can be followed [2]. Alternatively, the Wannier
basis can be the starting point, using a tight-binding approximation.

1.2 Pairing

The fundamental object of superconductivity is a pair of electrons, or Cooper pair. A generic
annihilation operator for a Cooper pair takes the following form, in a translation invariant sys-
tem1

∆̂ =

∫
d3r d3r′ ∆σσ′(r−r′) Ψσ(r)Ψσ′(r′) . (8)

Because of the Pauli principle, i.e., anticommutation relations (1), we can impose an antisym-
metry condition on the amplitude

∆σσ′(r−r′) = −∆σ′σ(r
′−r) . (9)

In the Bloch basis, this pairing operator and the antisymmetry condition are expressed as

∆̂ =
∑

k,a,b,σ,σ′

∆aσ,bσ′(k) daσ(k) dbσ′(−k) ∆aσ,bσ′(k) = −∆bσ′,aσ(−k) . (10)

Likewise, in the Wannier basis,

∆̂ =
∑

r,r′,m,m′,σ,σ′

∆rmσ,r′m′σ′ crmσ cr′m′σ′ ∆rmσ,r′m′σ′ = −∆r′m′σ′,rmσ (11)

and, in the orbital basis,

∆̂ =
∑

k,m,m′,σ,σ′

∆mσ,m′σ′(k) cmσ(k) cm′σ′(−k) ∆mσ,m′σ′(k) = −∆m′σ′,mσ(−k) . (12)

A general order parameter function (or pairing function) can be expressed as a linear combina-
tion of basis functions. We can use a basis made of products of k-dependent, orbital-dependent
and spin-dependent factors. In the orbital basis, this takes the form

∆m,σ;m′,σ′(k) =
∑
αβγ

ψαβγ f
α(k)Oβ

mm′ S
γ
σσ′ . (13)

1We ignore here the possibility of pairing waves, i.e., of Cooper pairs having a finite momentum. The Fulde-
Ferrell-Larkin-Ovchinnikov state in an example where such pairing may occur. For another example, see Ref. [3].
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where the amplitudes ψαβγ determine the precise form of pairing, given a suitable choice for
the basis functions fα(k) (momentum space), Oβ

mm′ (orbital space) and Sγσσ′ (spin space). In
the Bloch basis, the expansion would be similar

∆a,σ;b,σ′(k) =
∑
αβγ

χαβγ f
α(k)Bβ

ab(k)S
γ
σσ′ , (14)

with a different set of amplitudes χαβγ , and k-dependent basis functions Bβ
ab(k) in “band

space”. The reason the basis functions Oβ
mm′ do not depend on k is that Wannier functions

can be chosen to have a clear “orbital character” in space, like atomic orbitals, which transform
in a well-defined way under rotations and reflections (Section 4.2 will provide an example of
this). Consequently, the band basis functions Bβ

ab must depend on k; this makes the discussion
of inter-band superconductivity more complex in the Bloch basis than in the orbital basis.
Each of the spatial, orbital (or band) and spin parts can be either symmetric or antisymmetric
under the exchange of quantum numbers, but he overall combination must be antisymmetric.
For instance, in the absence of SO coupling, spin is conserved and pairing occurs either in the
singlet (spin 0) channel or in the triplet (spin 1) channel. In the case of a single band, the spatial
part f(k) must then be even (f(−k) = f(k)) for singlet pairing, and odd (f(−k) = −f(k))
for triplet pairing. This remains so in the case of intra-orbital (or intra-band) pairing, i.e.,
when Oβ

mm′ = 0 for m 6= m′, but inter-orbital pairing brings other possibilities, and spin-orbit
interactions complicate the matter further.

1.2.1 Spin part

The conventional way to describe the spin part is as follows

Sσσ′ = dγ(d̂γ)σσ′ d̂γ = i(τγτ2) , (15)

where the set of Pauli matrices τ1,2,3 is augmented by the identity matrix τ0. The three compo-
nents γ = 1, 2, 3 form the symmetric, triplet part of the pairing function, whereas the antisym-
metric, singlet part is represented by the component γ = 0.
Under a rotation in spin space, the 3-vector (dx, dy, dz) (or (d1, d2, d3)) transforms as a pseudo-
vector (i.e., invariant under spatial inversion) and constitutes the triplet component, whereas
d0 behaves like a pseudo-scalar (it changes signs under inversion) and constitutes the singlet
component. In the absence of SO coupling, the system being invariant under spin rotations, the
pairing function fully factorizes into a spin part and the rest. In other words, all terms in the
expansion (13) have the same spin part, and the pairing state can be characterized by a fixed
vector (dx, dy, dz) (triplet pairing) or by d0 (singlet pairing).

1.2.2 Spatial part

The spatial part f(k) of the pairing function could equally well be described in real space

f(k) =
∑
r

fre
ik·r (16)
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where fr is, so to speak, the pairing amplitude for electrons separated by a lattice vector r.
The spatial extent of the Cooper pair is called the coherence length, denoted ξ. This roughly
means that fr typically drops exponentially as a function of r with a characteristic length ξ. For
short coherence lengths, fr is dominated by the smallest values of r: on-site (r=0) and nearest-
neighbor amplitudes. Pure on-site pairing means fr = δr,0 and therefore a k-independent
amplitude. The celebrated d-wave pairing on a square lattice with unit lattice vectors x̂ and ŷ

means f±x̂ = −f±ŷ, all other amplitudes being zero, and therefore f(k) = cos kx− cos ky.

1.3 Mean-field approximation and nodal lines

In the mean-field approximation, a constant and uniform pairing field is assumed to pervade the
system. The effective Hamiltonian for singlet superconductivity then takes the following form,
in the Bloch basis

H0 =
∑
k,a,σ

εa(k) d
†
a,σ(k) da,σ(k) +

∑
k,a,b

∆ab(k)
[
da↑(k) db↓(−k)− da↓(k) db↑(−k)

]
(17)

(We assume that the chemical potential µ is included in the dispersion relation εa(k) as an
additive constant.) In order to diagonalize this Hamiltonian, one introduces an extended array
of annihilation operators2

Ψ(k) =
(
d1↑(k), . . . , dNb↑(k), d

†
1↓(−k), . . . , d†Nb↓(−k)

)
. (18)

The second half of the array Ψ(k) is basically the particle-hole transformation of the first half;
this procedure is attributed to Nambu. Because we are dealing with fermions, the components
of Ψ(k) still obey anticommutation relations and we can treat them as bona fide annihilation
operators. One can then express H0 as

H0 =
∑
k

Ψ †(k)H(k)Ψ(k) (19)

whereH(k) is a 2Nb×2Nb matrix with the following block structure:

H(k) =

 ε(k) ∆†(k)

∆(k) −ε(−k)

 (20)

where ε(k) is the diagonal matrix with elements εa(k) and ∆(k) is the matrix of band compo-
nents ∆ab(k).
To complete the analysis, we need to diagonalize the Hermitian matrix H(k) via a Bogoliubov
transformation. Because of the particular structure of the matrix H(k), its eigenvalues come
in pairs of opposite signs and the ground state (the superconducting condensate) is obtained by

2This particular form works well when the d-vector is d0 or dz . In other cases, or when spin is not conserved,
one must proceed to a full Nambu doubling of the degrees of freedom,
i.e., Ψ(k) =

(
d1↑(k), . . . , dNb↑(k), d1↓(k), . . . , dNb↓(k), d

†
1↓(−k), . . . , d

†
Nb↓(−k), d

†
1↑(−k), . . . , d

†
Nb↑(−k)

)
.
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filling all the negative energy levels. The resulting new set of annihilation operators annihilate
quasiparticles on top of the superconducting ground state.
As a simple example, let us consider a one-band model (Nb = 1). ε→ ε and ∆→ ∆ are then
scalar functions and the eigenvalues of Hamiltonian (20) are then easily computed to be

ξ(k) = ±
√
ε2(k) +∆2(k) (21)

Recall that the chemical potential is included in the function ε(k), so that the Fermi surface is
defined by the condition ε(k) = 0. Low-energy quasiparticles will exist on top of the condensate
if ξ(k) = 0 for some values of k that we call nodes. In this simple, one-band case, nodes exist
when both scalar functions ε(k) and ∆(k) vanish. For instance, in the well-known case of d-
wave superconductivity on a square lattice, ∆(k) ∝ cos kx− cos ky and the nodes are located
along the diagonals of the Brillouin zone : kx = ±ky. When more than one band is present,
complications occur (see Sect. 4.3 below).

2 Elements of group theory

2.1 Groups

Since group theory is not necessarily familiar to all, we will review the basics in this section,
with en emphasis on finite groups.3

A group G is a set {a, b, c, . . .} endowed with a multiplication law satisfying the following
constraints:

1. Group multiplication is associative: (ab)c = a(bc).
2. There is a neutral element e such that ea = ae = a ,∀a ∈ G.
3. Each element a has an inverse a−1 such that aa−1 = a−1a = e.

It is implicit that if a, b ∈ G, then ab ∈ G (closure under the group multiplication).
These rules are obeyed by the set of all nonsingular square matrices of order n, calledGL(n). A
subgroupH ofG is a subset ofG that is also a group under the same multiplication law, i.e., that
is closed under group multiplication. For instance, the group O(n) is the subgroup of GL(n)
made of orthogonal matrices. A group is continuous if its elements form a topological space,
i.e., a space with the notion of continuity. In particular, a Lie group is also a differentiable
manifold (O(n) is a Lie group). By contrast, a discrete group has well-separated elements,
and a finite group has a finite number of such elements. In general group multiplication is not
commutative; when it is, the group is said to be Abelian, otherwise it is nonabelian. A subset of
elements of G are called generators if all elements of the group (with the exception of e) may
be obtained by repeated products within the subset.
The point groups of solid-state physics are finite subgroups of O(n), and as such are sets of
rotations and reflections closed under repeated application. We will often refer to the elements

3There is a large selection of textbooks on group theory. Let us point out the classic Hamermesh text [4], as
well as the more recent “nutshell” text by A. Zee [5].
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+ + + +

+ + + +

n = 2 n= 3 n= 4 n= 6

Cn

Dn

Cnv

Cnh

Dnh

Dnd

Fig. 1: Graphical definition of the most common point groups. The group elements are those
that leave each figure unchanged. Decorations added to vertices are geometrical features that
rest on the plane of the page (gray), stick out of it (white) or into it (black). The darker colored
objects are underneath the lighter ones. Objects marked with a + sign have a top face distinct
from their bottom face and thus have no mirror symmetry about the plane or rotation axes lying
in the plane.
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of these groups as transformations, as they can be viewed as acting on an object or physical
configuration. The most common point groups can be defined as transformations on simple
objects as illustrated on Fig. 1:4

1. Cn (cyclic group): the group elements are rotations by 2π/n about the z axis (perpendic-
ular to the plane).

2. Dn (dihedral group): in addition to the rotations of Cn, the group contains n rotations of
π about n axes lying on the xy plane.

3. Cnv (pyramidal group): in addition to the rotations of Cn, the group contains n reflections
across n mirror planes perpendicular to the xy plane.

4. Cnh (reflection group): in addition to the rotations of Cn, the group contains a reflection
across the xy plane.

5. Dnh (prismatic group): in addition to the 2n rotations of Dn, the group contains a reflec-
tion across the xy plane.

6. Dnd (antiprismatic group): Similar to Dnh, except that the n π-rotation axes lying on the
xy plane are not the intersection of the xy plane with the n mirror planes perpendicular
to the xy plane. Rather, these axes are alternating with these intersections.

2.2 Representations

In general, we are dealing with group representations, i.e., realizations of the group elements
in terms of d-dimensional matrices acting on some space (that space V is called the module
of the representation). A group element a is represented by a matrix R(a) and that corre-
spondence is a homomorphism with respect to the group operation: R(ab) = R(a)R(b). Two
representations R and R′ are said to be equivalent if they are related by a change of basis,
i.e., R(a) = SR′(a)S−1,∀a ∈ G. For a finite group, it can be shown that any representation
is equivalent to a unitary representation, i.e., a representation made of unitary (or orthogonal)
matrices, such that R(a−1) = R−1(a) = R†(a). A simple example of a representation for the
group C4v is given in Table 1.
A representation is said to be reducible if a basis exists in the module V of the representation
such that all elementsR(a) have the same block-diagonal structure. This means that the module
can be seen as the direct sum of two submodules: V = V1 ⊕ V2, each of V1,2 being the support
for a representation in its own right. In other words, the two submodules are not mixed with
one another when acted upon by the group elements. Otherwise, the representation is said to
be irreducible. One of the common tasks of group theory is the reduction of representations in
terms of irreps (as irreducible representations are often called). The representation shown in
Table 1 happens to be irreducible.

4In a crystalline solid, one should in principle consider the full space group, which contains translations as well
as rotations and reflections. But translation invariance amounts to say that the gap function depends on a single
wave vector k, and the presence of the lattice implies that it should be unchanged when replacing k by k + Q,
where Q is an element of the reciprocal lattice.
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Table 1: A simple example of group representation for C4v: the matrices act on the coordinates
(x, y). Cn is a rotation by 2π/n in the x-y plane. σx, σy, σd and σd′ are reflections across the
planes x = 0, y = 0, x = −y and x = y, respectively.

g R(g) g R(g) g R(g) g R(g)

e

(
1 0

0 1

)
C4

(
0 1

−1 0

)
C−14

(
0 −1
1 0

)
C2

(
−1 0

0 −1

)

σx

(
−1 0

0 1

)
σy

(
1 0

0 −1

)
σd

(
0 1

1 0

)
σd′

(
0 −1
−1 0

)

A capital result of group theory are Schur’s lemmata:

1. If R and R′ are two irreps of different dimensions d 6= d′, then no nonzero rectangular
matrix A exists such that R(a)A = AR′(a) ∀a ∈ G.

2. If R and R′ are two irreps of the same dimension d = d′ and if a square matrix A exists
such that R(a)A = AR′(a) ∀a ∈ G, then the two representations are equivalent.

The consequence of these two lemmata is the following. Consider a module V upon which a
reducible representation acts. Then V = V1 ⊕ V2 is a direct sum, and so is each element of
the representation: R(a) = R1(a) ⊕ R2(a). Let H be a matrix acting on V that commutes
with all the group elements, i.e., HR(a) = R(a)H . If the representations R1 and R2 are not
equivalent, then H is necessarily block diagonal too, i.e., has no matrix elements between V1
and V2. Typically, in quantum mechanics, H is a Hamiltonian acting on a Hilbert space andG is
a group of transformations that commute with H , i.e., that leave the Hamiltonian invariant. The
construction of irreps then allows us to consider smaller spaces (the blocks) that are not mixed
with one another under time evolution. Said otherwise, energy eigenstates and eigenvalues can
be classified according to the irreps of the symmetry group of the problem.

2.3 Character tables

An important tool in identifying irreps of finite groups is the notion of character. Let us start
by defining conjugacy classes. Two elements a and b of a group G are conjugate to one another
if there is another element c such that a = cbc−1. Intuitively, this means that the two trans-
formations a and b are of the “same type”, as c can be seen as a change of basis (or point of
view), after which the two transformations a and b are equivalent. For instance, in the group
C4v, a = σx and b = σy are related by the rotation c = C4: they are conjugate. Evidently, if a is
conjugate to b and b is conjugate to a third element c, then a is also conjugate to c: conjugacy is
an equivalence relation and therefore the group G can be split into separate conjugacy classes.
Obviously, the identity e is a conjugacy class by itself. In C4v, the two mirror reflections col-
lectively denoted σv (σx and σy) form a class, as do the two reflections σd and σd′ and the two
rotations C4 and C−14 ; finally, the single rotation by π (C2) is a class by itself. Thus, C4v has 5
conjugacy classes and 8 elements.
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Table 2: Character table of C4v, with a list of the simplest (i.e., lowest degree) basis functions.
The basis functions of the two-dimensional representation E form a doublet, written here and
elsewhere in this chapter within square brackets [· · · , · · ·]. The last column shows the gap basis
functions derived in Sect. 3.1.

e 2C4 C2 σx,y σd,d′ basis functions gap functions

A1 1 1 1 1 1 1 1

A2 1 1 1 −1 −1 Rz , xy(x
2−y2) sin kx sin ky(cos kx− cos ky)

B1 1 −1 1 1 −1 x2−y2 cos kx− cos ky

B2 1 −1 1 −1 1 xy sin kx sin ky

E 2 0 −2 0 0 [Rx,Ry] , [x, y] [sin kx, sin ky]

The character χ(a) of an element a in a representation R is the trace of that matrix: χ(a) =

trR(a). Because of the cyclic property of the trace, two conjugate elements have the same
character in a given representation, and therefore characters are properties of conjugacy classes,
not of individual elements. We can therefore envisage a matrix-like table, called a character
table, where the different irreps are laid out in rows and the different conjugacy classes in
columns, each cell containing the character χ(µ)

i for the conjugacy class i within the irrep µ.
See, for instance, Table 2 for C4v, Table 3 for D4h and Table 4 for C6v. Note that the dimension
of each irreducible representation is naturally given by the character of the identity class e.
Schur’s lemma can be used to demonstrate the following orthogonality relation

K∑
i

gi
g
χ
(ν)∗
i χ

(µ)
i = δµν , (22)

where g stands for the number of elements of the group G, gi is the number of elements in
conjugacy class i, and K is the number of conjugacy classes. This relation states that the
different rows of the character table are orthogonal (if weighted by gi). This implies that there
cannot be more than K rows in the table, as the rows are vectors of dimension K. Indeed, it can
be shown that the number of non-equivalent irreps is precisely equal to K and that

K∑
µ

d2µ = g (23)

where dµ is the dimension of irrep µ. Finally, the orthogonality of the rows of the character
table also applies to its columns:

K∑
µ

gi
g
χ
(µ)∗
i χ

(µ)
j = δij . (24)

These powerful orthogonality relations allow us to decompose any reducible representation
R into a direct sum of irreps. Indeed, a general reducible representation can in principle be
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Table 3: Character table of D4h, with a list of the lowest degree basis functions.

e 2C4 C2 2C ′2 2C ′′2 i 2S4 σz σx,y σd,d′ basis functions

A1g 1 1 1 1 1 1 1 1 1 1 1

A2g 1 1 1 −1 −1 1 1 1 −1 −1 Rz , xy(x
2−y2)

B1g 1 −1 1 1 −1 1 −1 1 1 −1 x2−y2

B2g 1 −1 1 −1 1 1 −1 1 −1 1 xy

Eg 2 0 −2 0 0 2 0 −2 0 0 [Rx,Ry] , z[x, y]

A1u 1 1 1 1 1 −1 −1 −1 −1 −1 xyz(x2−y2)
A2u 1 1 1 −1 −1 −1 −1 −1 1 1 z

B1u 1 −1 1 1 −1 −1 1 −1 −1 1 xyz

B2u 1 −1 1 −1 1 −1 1 −1 1 −1 z(x2−y2)
Eu 2 0 −2 0 0 −2 0 2 0 0 [x, y]

expressed as

R =
K⊕
µ

aµR
(µ) . (25)

The a priori unknown integer aµ (the multiplicity of R(µ) in R) can be determined by use of the
orthogonality relation (22), using the known characters χi of the reducible representation R

aµ =
K∑
i

gi
g
χ
(µ)∗
i χi . (26)

The reducible representation R acts on a module V which, likewise, is a direct sum of irre-
ducible modules

V =
K⊕
µ

V (µ). (27)

A vector ψ belonging to the module V will be affected by the transformation a ∈ G as ψ →
R(a)ψ. It can be shown that the components of ψ along the submodule V (µ) associated to the
irrep µ can be obtained by applying on ψ the following projection operator

P (µ) =
∑
a

dµ
g
χ(µ)∗(a)R(a) (28)

where χ(µ)(a) is the character of element a in representation µ. In other words, the vector P (µ)ψ

belongs to the submodule V (µ) and, when acted upon by any transformation a ∈ G, will stay in
this submodule. Projection operators are exceedingly useful in constructing basis functions (or,
in superconductivity applications, gap functions) from tensor products.
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2.4 Example: TheD4h character table

Let us illustrate the ideas behind character tables with a more complex example than C4v: The
point group D4h. This group has the following K = 10 conjugacy classes:

1. The identity e
2. Two rotations C4, i.e., of angle π/2, about the z axis.
3. A rotation C2, i.e., of angle π, about the z axis.
4. Two rotations C ′2 (π) about the x and y axes.
5. Two rotations C ′′2 (π) about the diagonal axes x± y.
6. One space inversion i
7. Two pseudo-rotations S4 of π/4 (rotations times inversion).
8. A reflection σz across the z = 0 plane.
9. 2 reflections σx,y across the x = 0 and y = 0 planes.

10. 2 reflections σd,d′ across planes y = −x and y = x.

Correspondingly, there are K = 10 irreps, divided into two groups: the g-type representations
(first five rows on Table 3) that are even under the space inversion i, and the u-type represen-
tations, which are odd under i. For each representation, Table 3 gives an example of func-
tions (homogeneous polynomials in x, y, z), or of rotations (Rx, Ry, Rz), that transform under
that representation (in general, the elements of O(n) acting on homogeneous polynomials in
{x, y, z} will produce another homogeneous polynomial of the same degree. Consequently,
homogeneous polynomials of a given degree can be arranged into irreps. Likewise, an orthog-
onal matrix O will act on a rotation matrix R as R → ORO−1 and produce another rotation
matrix about a different axis (equivalently, one could express infinitesimal rotations in terms of
pseudo-vectors, and the group elements will act on these pseudo-vectors). Rotations therefore
transform under the group and can also be arranged into irreps.
Let us go through some of these representations:

• A1g is the trivial representation, of dimension 1. Each group element is represented by
the number 1.
• A2g, of dimension 1, is odd under π-rotations C ′2 and C ′′2 , as well as under the reflections
σx,y and σd,d′ . A rotationRz about the z axis belongs to this representation; in particular,
it changes sign when rotated by π with respect to a horizontal axis, but not when reflected
across the xy plane. It also changes sign when reflected across a vertical mirror plane.
The quartic polynomial xy(x2−y2) behaves the same way; note that xy does not, because
it is even under σd,d′ .
• B1g is odd under the π/2 rotations C4, under the π-rotations C ′′2 about the diagonals,

under the π/2 pseudo-rotations S4, and under the diagonal reflections σd,d′ . It is well
represented by the quadratic polynomial x2−y2 and by what we commonly call d-wave
superconductivity on a square or cubic lattice.
• B2g is similar, except that it is odd under the other set of reflections and π/2 rotations, as

if rotated by 45◦ compared to B1g. It is represented by the monomial xy and by d-wave
superconductivity, this time with a dxy form factor instead of dx2−y2 .
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• Eg is a two-dimensional representation, represented by the doublet of pseudo-vectors
[Rx,Ry], or by the doublet of monomials [zx, zy].
• The u-type representations have the same characters as the g-type representations for

proper transformations (the first 5 columns), and opposite characters for the improper
transformations (the last 5 columns). Proper transformations have determinant +1 and
describe actual transformation that a rigid object may undergo, whereas improper trans-
formation have determinant −1 and can always be viewed as a proper transformation
times the inversion i.

2.5 Tensor products

Given two representations R(1)
ij (a) and R

(2)
ij (a) of dimensions d1 and d2, acting respectively

on modules V1 et V2, the product representation of dimension d1d2 acts on the tensor product
module V1 ⊗ V2 and is made of the tensor products of the matrices of the two representations

Rik,jl(a) = R
(1)
ij (a)R

(2)
kl (a) or R(a) = R(1)(a)⊗R(2)(a) . (29)

A product representation is in general reducible, even if the two factors are irreducible. Re-
ducing a product representation to its irreducible components is an important problem of group
theory. The direct sum

R(µ) ⊗R(ν) =
⊕
ρ

Cρ
µν R

(ρ) (30)

is called the Clebsch-Gordan series. For one-dimensional representations (including all repre-
sentations of Abelian groups), this series is trivial since it contains a single term. For multidi-
mensional representations, the series can be inferred from the character table, by noting that the
character of a product representation is the product of the characters of its factors

χi(R
(µ) ⊗R(ν)) = χ

(µ)
i χ

(ν)
i =

∑
ρ

Cρ
µνχ

(ρ)
i . (31)

Applying the orthogonality relation (22) to this relation yields

Cρ
µν =

K∑
i=1

gi
g
χ
∗(ρ)
i χ

(µ)
i χ

(ν)
i . (32)

The states of the product module V1⊗V2 associated with each component of the Clebsch-Gordan
series can be obtained by applying the projection operators (28). An example application of
projection operators is given in Sect. 3.1.

2.6 Back to superconductivity: The Landau free energy

We will assume that Landau’s theory of phase transitions qualitatively describes the supercon-
ducting transition as temperature is lowered. This theory assumes that the broken symmetry
state is described by an order parameter ψ, which vanishes in the normal state and develops a
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Fig. 2: Behavior of the Landau free energy functional across a continuous (a.k.a. second order)
phase transition.

nonzero value in the broken symmetry state. It further assumes that a local free energy func-
tional f [ψ] may be defined and that the physical, uniform value of ψ corresponds to a minimum
of f (see Fig. 2).
If the precise form of ψ, i.e., the precise pattern of symmetry breaking, is not known, then we
may assume that ψ may be decomposed on a basis of possible pairing functions. Going back to
Eq. (13), let us combine the three indices α, β, γ into a single index r:

∆m,σ;m′,σ′(k) =
∑
r

ψr∆
(r)
m,σ;m′,σ′(k) (33)

The Landau free energy functional is then a power expansion in terms of the coefficients ψr:

f [ψ] = ars(T )ψ
∗
rψs + brspq(T )ψ

∗
rψ
∗
sψpψq + · · · (34)

where the ellipsis stands for gradient- and higher-degree terms, and T is the temperature.
The Landau functional should have the same symmetries as the underlying Hamiltonian. If
these symmetries form a group G of transformations, Schur’s lemma tells us that organizing the
basis functions ∆(r) according to irreps of G makes the matrix a(T ) block-diagonal: a(T ) =⊕

µ a
(µ)(T ), i.e., it has no matrix elements between functions belonging to different irreps.

Within each representation, the matrix a(µ)(T ) may be diagonalized, and at some point upon
lowering T one of its eigenvalues, initially all positive, may change sign, which signals the
superconducting phase transition and a minimum of f [ψ] at ψ 6= 0. This is going to first occur
in one of the representations and will define the symmetry character of the superconducting
state.5

For this reason it is important to arrange the possible gap functions into irreps of the symmetry
group G. It amounts to a classification of possible superconducting states. Of course, a precise
physical theory—a microscopic Hamiltonian—is needed in order to determine in which irrep
superconductivity actually appears; but this is not the subject of this chapter.
Since the basis functions are products of spin, orbital and spatial factors, the group theoretical
analysis can be done on each of these factors separately, followed by suitable tensor products.
In the absence of SO coupling, the system is invariant under rotations in spin space; this leads
to a clear separation between singlet and triplet gap functions, and only the combined orbital
and spatial factors need to be classified according to the point group G.

5This is the simplest scenario, but nothing forbids competing minima, and hence additional phase transitions,
to appear at lower temperatures.
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3 Single-band superconductors

Let us continue our exploration by focusing first on single-band superconductors. In the absence
of SO coupling, the classification of gap functions according to the point group is then limited
to the spatial part. The exponentials eik·r form a set of basis functions f r(k) for the spatial part.
Under an element g of the point group, k → gk and eik·r is mapped into eigk·r = eik·(g

−1r).
Given a lattice vector r, the set of functions labeled by S = {gr}, g ∈ G will transform
amongst themselves and will form a (generally reducible) representation. The matrices associ-
ated with that representation simply perform permutations of the element of the set S and are
obtained from the unit matrix by a permutation of the rows. Moreover, since the point groups
are subgroups of O(n), all the elements of S will have the same modulus.
In the one-band case, the Pauli principle forces the singlet pairing functions to be even in k,
whereas triplet functions are odd in k. We will focus in what follows on a simple example. A
more thorough discussion can be found in Ref. [6].

3.1 C4v symmetry

Let us illustrate the situation of a two-dimensional system on a square lattice withC4v symmetry.
The character table is shown on Table 2. Let us consider in succession the representations
generated from the vectors r=0 (on-site), r=x̂ (first neighbor) and r=x̂+ŷ (second neighbor).
The representation generated from r=0 contains a single function, equal to 1, belonging to A1.
The one generated from r=x̂ contains the four functions(

eikx , eiky , e−ikx , e−iky
)

(35)

in terms of which the group generators are

R(C4) =


0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 0

 R(σx) =


0 0 1 0

0 1 0 0

1 0 0 0

0 0 0 1

 (36)

The other elements of the representation are

R(C2) =


0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

 R(σy) =


1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0

 R(C−14 ) =


0 0 0 1

1 0 0 0

0 1 0 0

0 0 1 0



R(σd) =


0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

 R(σd′) =


0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

 R(e) =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1
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From these expression we can compute the projection operators (28). An explicit computation
shows that

P (A1) =
1

4


1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

, P (B1) =
1

4


1 −1 1 −1
−1 1 −1 1

1 −1 1 −1
−1 1 −1 1

, P (E) =
1

2


1 0 −1 0

0 1 0 −1
−1 0 1 0

0 −1 0 1


whereas P (A2) and P (B2) vanish. The basis functions we seek are the eigenvectors of these
projectors with eigenvalue +1

A1 : (1, 1, 1, 1) B1 : (1,−1, 1,−1) E : (1, 0,−1, 0) & (0, 1, 0,−1) (37)

which, in terms of the basis (35), are

A1 : cos kx+cos ky B1 : cos kx− cos ky E : [sin kx, sin ky] . (38)

The representation generated from r = x̂+ ŷ contains the four functions(
ei(kx+ky), ei(kx−ky), e−i(kx+ky), e−i(kx−ky)

)
. (39)

By repeating the same procedure, one finds following basis functions

A1 : cos kx cos ky B2 : sin kx sin ky E : [sin(kx+ky), sin(kx−ky)] . (40)

We need to go to the fourth neighbor r = 2x̂+ŷ in order to get a basis function belonging toA2:

A2 : sin kx sin ky(cos kx− cos ky) (41)

The simplest basis functions for the spatial part of the gap function are shown in the last column
of Table 2. Since we are dealing with a single band model, the nodes are solely determined by
the structure of the gap function ∆(k) obtained directly from the functions of Table 2.
The A1 representation corresponds to isotropic (or s-wave) pairing. The B1 representation is
the well-known d-wave pairing, and the B2 representation is a variant, rotated by 45◦. The A2

representation constitutes a more exotic case corresponding to g-wave pairing. Assuming a
constant modulus |k|, the gap functions associated to the one-dimensional representations of
Table 2 have the following shape as a function of polar angle in the kx-ky plane:

+

A1

+

−+

−

+

− +

−

B1A2

+

−
+

−

B1

+−

+ −

B2
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The gap functions associated with these representations have respectively 0, 8, 4, and 4 nodes
(or zeros) as a function of angle from 0 to 2π. The sign of the function in each lobe is indicated.
The E representation is odd under inversion and is therefore associated with triplet supercon-
ductivity. The gap function in that case is the doublet [sin kx, sin ky]. Each member of the
doublet has two nodal directions. However, it is possible to combine them into complex func-
tions sin kx ± i sin ky, each behaving like an effective one-dimensional representation of C4v,
mapped onto one another by complex conjugation or, physically speaking, time reversal. These
complex combinations have no nodes, as the real and imaginary parts do not vanish at the same
angle. These gap symmetries are respectively called px, py and px±ipy. The corresponding
angular dependences are illustrated below, again assuming a constant modulus |k|:

px

+−
+

−

py |px ± ipy|

3.2 C∞ symmetry

In the continuum approximation, i.e., for very long coherence lengths, it is legitimate to assume
that a two-dimensional model might have continuous rotation invariance about the z axis. The
rotation symmetry, combined with a mirror symmetry across any vertical plane, is effectively
the n→∞ limit of Cnv. The irreps of C∞v are

1. A1 : the character is 1 for every rotation and reflection.

2. A2 : the character is 1 for every rotation and −1 for every reflection.

3. En (n ∈ N∗) : the character is 2 cos(nθ) for a rotation of angle θ and 0 for reflections.
This is realized by the 2×2 rotation matrices R(θ) and reflection operators Σ(θ)

R(θ) =

 cos θ sin θ

− sin θ cos θ

 Σ(θ) =

cos θ sin θ

sin θ − cos θ

 (42)

The basis functions corresponding to En are the pairs [cosnϕ, sinnϕ], ϕ being the polar coor-
dinate on the kx-ky plane. These functions have n nodal lines each. The spatially even represen-
tations (A1 and E2m) correspond to singlet superconductivity and the odd representations (A2

and E2m+1) to triplet superconductivity. The representations n = 0, 1, 2, . . . are traditionally
labeled s, p, d, f , g, etc, like the orbital quantum number in atomic physics. The gap functions
in many point groups are labeled likewise, according to the number of nodal lines (e.g., C4v

above).
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4 Multi-band superconductors

4.1 Band vs orbital basis

Let g denote an element of the point group G. In the absence of SO coupling, its effect on the
annihilation operator cr,m,σ (Wannier basis) is the following

cr,m,σ → c′r,m,σ =
∑
m′

Umm′(g) cgr,m′,σ (43)

where gr is the mapping of site r under g and U(g) constitutes a Nb-dimensional representation
of the group G acting on orbital space. The matrix U(g) is independent of r by translation
invariance, and therefore the same transformation applies in the orbital basis

cm,σ(k)→ c′m,σ(k) =
∑
m′

Umm′(g) cm′,σ(gk) . (44)

The same symmetry operation is expressed differently in the band basis. From Eq. (6), we find

d′a(k) =
∑
b

Ũab(g,k) db(gk) (45)

where gk is the image of k under g and

Ũab(g,k) =
∑
m,m′

Va,m(k)V
∗
b,m′(k)Umm′(g) . (46)

The matrix Ũab(g,k) depends on k. Hence the orbital basis makes the group-theoretical analysis
much simpler, compared to the band basis, as mentioned above. This is therefore the basis we
will use in the following. The physical relevance of the two bases is discussed in Sect. 6.

4.2 The case of Sr2RuO4

This formalism for inter-orbital superconductivity can be applied to a model for Sr2RuO4 [7–9],
summarized in Fig. 3. It is defined on a square lattice, with three Ru t2g orbitals per site. In
the figure, these three orbitals (dyz, dxz and dxy) have been drawn on separate planes for clarity.
The main hopping terms are illustrated in the figure, but are not so important for our purpose,
except for their defining a noninteracting Hamiltonian with D4h symmetry (see Table 3). We
use the group D4h even though the model is two-dimensional because (i) we want to cover a
three-dimensional extension of the model with weak inter-plane coupling and (ii) the orbitals
themselves transform in a nontrivial way under the reflection σz across the xy plane. The
treatment summarized here is taken from [10].
The group D4h can be generated by successive applications of the elements C4, σx, and σz.
From Fig. 3 it is obvious that these operations have the following effect on the three orbitals

U(C4) =


0 1 0

−1 0 0

0 0 −1

 U(σx) =


1 0 0

0 −1 0

0 0 −1

 U(σz) =


−1 0 0

0 −1 0

0 0 1

 (47)
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−π 0 π
−π

0

π

α
β

γ

Fig. 3: Left panel: Schematic view of the SRO unit cell. The three orbitals have been vertically
separated for clarity (the model considered is purely two-dimensional). The labels 1,2,3 cor-
respond, respectively, to the dyz, dxz, and dxy orbitals. The different hopping terms (t1,2,3 and
λ) are illustrated. Right panel: Fermi surface of Sr2RuO4 in the simple model illustrated on
the left. The α and β bands are a mixture of the dxz and dyz orbitals, whereas the γ band is
pure dxy.

These matrices form, with the rest of the elements of the group, a reducible 3-dimensional
representation. From the characters one infers it to be B2g ⊕ Eg.
The orbital part of the pairing function can be expanded in terms of the following 3×3 matrices

âx =


1 0 0

0 0 0

0 0 0

 b̂x =


0 0 0

0 0 1

0 1 0

 ĉx =


0 0 0

0 0 1

0 −1 0



ây =


0 0 0

0 1 0

0 0 0

 b̂y =


0 0 1

0 0 0

1 0 0

 ĉy =


0 0 1

0 0 0

−1 0 0

 (48)

âz =


0 0 0

0 0 0

0 0 1

 b̂z =


0 1 0

1 0 0

0 0 0

 ĉz =


0 1 0

−1 0 0

0 0 0


A general basis state for pairing in orbital space may then be expressed via three vectors a, b,
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and c as
Omn = a · âmn + b · b̂mn + c · ĉmn . (49)

The orbital part Omm′ transforms as follows under a group operation g

Omm′ →
∑
n,n′

Umn(g)Um′n′(g)Onn′ or O → U(g)OUT (g) . (50)

These 9 matrices (48) belong to a 9-dimensional representation of D4h, obtained by taking the
tensor products of the matrices (47) with themselves. The content of this representation can
easily be shown to be 2A1g⊕B1g⊕B2g⊕Eg for symmetric states (spin singlets), and A2g+Eg
for antisymmetric states (spin triplets). Again, this classification ignores the spatial part (or
rather, supposes that it is invariant).
We can combine these orbital gap functions with spatial functions classified according to Ta-
ble 3, by taking tensor products and reducing them to irreps using projection operators. Ref. [10]
provides tables of singlet and triplet states belonging to each representation, with and without
inter-orbital pairing. These tables are too lengthy to reproduce here, but let us consider two
examples:

1. Singlet pairing may occur in the constant (k-independent) b̂z state, which belongs to the
B2g representation ofD4h, and is basically pairing between electrons belonging to the dxz
and dyz orbitals. This admixture of orbitals occurs in bands α and β of Sr2RuO4 (see right
panel of Fig. 3), mostly along the diagonals of the Brillouin zone. This pairing would lead
to nodes at the intersection of the α and β branches of the Fermi surface with the kx and
ky axes (dashed lines on the Fig. 3), as the pairing changes sign under C4 rotations (from
Table 3). It therefore has d-wave character.

2. TheE2u representation contains many simple triplet gap functions, including sin kz[b̂x, b̂y]

and âz[sin kx, sin ky]. This corresponds to what is usually called p ± ip superconductiv-
ity in this context. The âz[sin kx, sin ky] function involves only the γ band and would
vanish at two points along the γ band Fermi surface (hence the p-wave epithet). The
sin kz[b̂x, b̂y] function vanishes at the equator (kz = 0) and involves admixtures of the
dxy and dxz bands (b̂x) and of the dxy and dyz bands (b̂y).

4.3 Are nodes imposed by symmetry?

In the one-band case, a symmetry-imposed node occurs in a pairing function that vanishes in
some direction because it is odd under certain symmetry operations in the irreducible represen-
tation it belongs to. For instance, in the representation B1g of D4h or C4v, the pairing function
must be odd under a diagonal reflection σd, and must accordingly vanish along the diagonals,
which is indeed the case of the standard d-wave function cos kx− cos ky. The pairing function
being a scalar, its zeros correspond to nodes. The one-band case is simple because translation
invariance allows us to express the order parameter as a scalar function of the wave vector k.
However, strictly speaking, the notion of symmetry-imposed nodes does not make sense in the
case of multi-orbital models, with or without spin-orbit coupling.
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In a multi-orbital model, the pairing function is a multi-component object: a matrix. That matrix
may be odd under a certain symmetry operation, but that does not imply that it must vanish at
a fixed point of that operation in momentum space, because the odd character can reside in the
orbital part instead of the spatial part. Indeed, the odd character translates into the following
transformation property for the pairing function, in the case of, say, the reflection σd

∆ν(kx, ky, kz)→ ∆′ν(kx, ky, kz) = U(σd)νν′ ∆ν′(ky, kx, kz) (51)

where the index ν labels basis vectors in orbital space (i.e., not the same as the original orbital
basis with indices m,m′) and U the orbital part of the representation. In the B1g representation,
we therefore have the condition ∆′ν(kx, ky, kz) = −∆ν(kx, ky, kz), or [U(σd)∆(ky, kx, kz)]ν =

−∆ν(kx, ky, kz), which translates into [U(σd)∆(kx, kx, kz)]ν = −∆ν(kx, kx, kz) along the di-
agonal. In the single-orbital case, U=1 and that condition implies ∆(kx, kx, kz) = 0. In the
multi-orbital case, the orbital part ∆ of the pairing function may be an eigenvector of U with
eigenvalue −1, and this imposes no condition at all on ∆ν(kx, kx, kz). For instance, in our
model for Sr2RuO4, the pairing function âx−ây, which is wave vector independent, belongs
to B1g. The matrix U in that case exchanges ax and ay and is equivalent to −1 in orbital space,
which leaves an even (here constant) spatial part.
Another example: the inter-orbital pairing function ĉx sin kx + ĉy sin ky belongs to A1u and de-
scribes a singlet state that is odd under the reflection σz across the xy-plane. Indeed, under this
reflection, the orbitals dxz and dyz change sign, and so, according to Eq. (50), do the compo-
nents ĉx and ĉy, while the functions sin kx and sin ky are unaffected. The matrix-valued pairing
function then takes the form

∆(kx, ky, kz) =


0 0 sin ky

0 0 sin kx

− sin ky − sin kx 0

 (52)

(we ignore spin, which is in a singlet state in this example). The transformation law of that
pairing function under σz is ∆ → ∆′ = U(σz)∆UT (σz), where U(σz) is given in Eq. (47).
Therefore ∆′ = −∆, as it should be in representation A1u. Accordingly, while that pairing
function may have nodes, e.g., as a function of kz, their precise shape or location is not imposed
by symmetry.

4.4 The graphene lattice

As a different type of multiband system, let us consider the graphene lattice. It can be seen as a
triangular Bravais lattice of elementary hexagons with a basis of two sites (A and B) and lattice
basis vectors e1 and e2; see Fig. 4.
If the two atoms on sublattices A and B are identical, the point group of the lattice is C6v, when
considered from the middle of a hexagonal plaquette. This group has 12 elements in 6 conjugacy
classes. All elements may be generated by a π/3 rotation C6 and a reflexion σv with respect
to the horizontal axis of Fig. 4. The character table is shown in Table 4. The particularity
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a1

a2

a3

e1e2

e3

BA

Fig. 4: The graphene lattice, with two sites (A and B) per unit cell. The lattice basis vectors
e1,2 are shown, as well as the elementary bond vectors ai. The lattice vector e3 is conveniently
defined as e3 = −e1−e2.

Table 4: Character table of C6v, with a list of the nearest-neighbor pairing functions for each
irrep, expressed as function of ki=k·ei. Irreps A2 and B2 need longer-range pairing to appear.

e 2C6 2C3 C2 3σv 3σd basis functions
A1 1 1 1 1 1 1 1 , cos k1+cos k2+cos k3

A2 1 1 1 1 −1 −1
B1 1 −1 1 −1 1 −1 sin k1+sin k2+sin k3

B2 1 −1 1 −1 −1 1

E1 2 1 −1 −2 0 0 [sin k1− sin k2 , sin k1− sin k3]

E2 2 −1 −1 2 0 0 [cos k1− cos k2 , cos k1− cos k3]

of this system is that the group transformations do not leave the unit cell intact (a unit cell
may be defined as a pair of neighboring A and B sites, and the ambiguity in defining these
pairs breaks the C6v symmetry). This makes the separation (13) into orbital and momentum
variables awkward. In this case it is therefore preferable to work directly in real space and to
incorporate orbital and Wannier indices into a single spatial index r, belonging to the A or B
sublattices (the sites r therefore do not form a Bravais lattice). If we ignore the spin part, the
pairing amplitude is then simply a function ∆r,r′ . Translation invariance imposes the condition
∆r+ei,r′+ei = ∆r,r′ . We will define b = r′−r as the bond vector, and it turns out that this vector
uniquely characterizes the pairing amplitude, even though the set of b vectors does not form a
Bravais lattice. We can therefore express the pairing function as ∆b and the action of a group
element g ∈ G on such a function may be represented as

∆b −→
∑
b′

Rb,b′(g)∆b′ (53)

Because the point group preserves the norm of b, we can restrict our analysis to sets of bond
vectors of the same length.
The simplest possibility beyond the trivial one-site pairing b = 0 is nearest-neighbor pairing,
with b=±ai (i=1, 2, 3) where the elementary bond vectors ai are defined on Fig. 4. It is also
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Fig. 5: The simplest pairing functions on the graphene lattice. Each pairing (singlet or triplet)
lives on nearest-neighbor bonds. The color (blue = +, red = −) represents the sign of the
pairing amplitude. Note that rotating by π/3 exchanges the A and B sublattices, and therefore
changes the sign of the triplet amplitude cA↑cB↓ + cA↓cB↑, which justifies, in particular, the
f -wave label.

the predominant pairing to expect in a strongly correlated model with a large on-site repul-
sion U . These six bonds are associated with a multiplet of six pairing functions ∆b = δb,±ai

(i=1, . . . , 3). The explicit representation matrices R(g) are simple to construct, and so are the
projection operators P (µ) associated with the 6 irreps of C6v.
The mathematics are the same as for a one-band model defined on a triangular lattice. In that
case, the pairing functions are written, in the usual language, in the last column of Table 4, as a
function of the wavevector components ki = k · ei. There is a simple correspondence between
these functions and the graphene pairing functions ∆b:

e±ikj ←→ δb,±aj
(54)

For instance, the nearest-neighbor graphene pairing function belonging to the B1 representation
would be

∆b(B1) = δb,a1 − δb,−a1 + δb,a2 − δb,−a2 + δb,a3 − δb,−a3 . (55)

The functions associated with A1 and E2 are even under a spatial inversion (here equivalent to
the π-rotation C2), and are therefore appropriate for singlet pairing, whereas those associated
with B1 and E1 are odd and are appropriate for triplet pairing. These possibilities are illustrated
schematically in Fig. 5, taken from Ref. [11]. Based on the number of times the bond amplitude
changes sign as a function of angle, representations A1, B1, E1, and E2 can be labeled as s, f ,
p, and d-wave, respectively.
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5 Superconductors with spin-orbit interaction

5.1 One-band model with Rashba coupling

Let us consider a simple one-band model on a square lattice with a Rashba SO coupling

H0 =
∑
k

C†k

(
ε(k) + κ

(
τy sin kx − τx sin ky

))
Ck (56)

where Ck = (ck↑, ck↓). Assuming nearest-neighbor hopping t, the dispersion relation is ε(k) =
−2t(cos kx+cos ky). This model has C4v symmetry and, without the SO interaction, the gap
functions are classified in accordance with Sect. 3.1. Because of the κ term, under a point group
transformation g, both the orbital and spin indices are affected

cr,σ → c′r,σ =
∑
σ′

Sσσ′(g) cgr,σ′ (57)

where gr is the image of r by g. Under the π/2 rotation C4, we can apply the usual expression
for SU(2) spin rotations and

S(C4) = cos
π

4
+ iσz sin

π

4
=

1√
2

1+i 0

0 1−i

 (58)

As for the reflection σx, it maps (kx, ky) into (−kx, ky) and therefore should have the following
effect

S† τx S = τx S† τy S = −τy . (59)

A solution is to set S(σx) = iτx.
The matrices S(g) generated from S(C4) and S(σx) from a spin representation of C4v. Such
representations are not listed in the character table 2. In particular, within such a spin represen-
tation, the fourth power S(C4)

4 is −1, not 1.6 The tensor product of this spin representation
with itself yields symmetric and antisymmetric unitary representations, characterized by the
d-vector basis (15), namely:

1. A1, with gap function d̂0 (singlet)
2. A2, with gap function d̂z (triplet).
3. E, with gap function [d̂x, d̂y] (triplet).

(the projection operator technique illustrated in Sect. 3.1 can be applied equally well to this
situation.) The first (A1) is antisymmetric under exchange of the quantum numbers of the two
electrons, the other two (A2 and E) are symmetric. These unitary representations can in turn be
tensored with orbital and spatial representations, provided the overall pairing function is anti-
symmetric. Table 5 lists the simplest gap functions coming from this exercise. In particular, the
usual singlet d-wave function belonging to B1 would generically have a small triplet admixture
with the function d̂x sin ky + d̂y sin kx. Would this affect the nodes? In general yes, if the
strength of the Rashba SO coupling κ is large enough.

6This is the analog for point groups of the properties of spin rotations in the continuum. In some sense, such
spin representations are the “square roots” of the usual representations: their tensor products with themselves are
unitary representations. They are projective (or ray) representations.
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Table 5: On-site and first-neighbor gap functions for a square lattice with C4v symmetry and
spin-orbit coupling.

Irrep Basis functions

A1 d̂0 , (d̂x sin ky−d̂y sin kx)
A2 d̂x sin kx+d̂y sin ky

B1 d̂0(cos kx− cos ky) , d̂x sin ky+d̂y sin kx

B2 d̂x sin kx−d̂y sin ky
E1 d̂z[sin kx, sin ky]

5.2 Sr2RuO4

The case of Sr2RuO4 provides us with a more complex application of the above ideas. The
spin-orbit term appropriate for Sr2RuO4 is

HSO = i
κ

2

∑
r

∑
l,m,n

εlmn c
†
r,l,σ cr,m,σ′ τn,σσ′ (60)

where τn is the nth Pauli matrix, acting on spin indices. Under a general D4h transformation,
the spin-orbit term becomes

i
κ

2

∑
r

∑
l,m,n

εl′m′n U
∗
l′l Um′m c†r,l,σ cr,m,σ′ S

∗
ασ Sα′σ′ τn,αα′ . (61)

In order for the spin-orbit term to be invariant, the spin rotation matrix S must belong to a spin
representation of the group such that

S† τn S = Rnn′ τn′

εl′m′n U
∗
l′l Um′m = R−1nn′ εlmn′

(62)

It can be shown that, for the generators of D4h,

S(C4) =
1√
2

1+i 0

0 1−i

 S(σx) =

0 i

i 0

 S(σz) =

 i 0

0 −i

 (63)

We then proceed like in the previous section: we build tensor product representations for pairs
of electrons, and tensor those with irreps for the spatial part of the gap function. The resulting
gap functions are numerous. Singlet and triplet gap functions can coexist in the same irrep, and
new ones arise. For instance, in the B1g (a.k.a. d-wave) representation, we find the singlet gap
function âzd̂0(cos kx− cos ky) and the triplet gap function ĉzd̂z(cos kx− cos ky). Since spin is
not conserved separately, not only do singlet and triplet components coexist in the same irrep,
but different directions of the d-vector can also coexist. For instance, the function ĉxd̂x + ĉyd̂y
also belongs to the same representation. Details can be found in [10].
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6 Final remarks

Group theory is a powerful tool for classifying superconducting pairing states, especially in
the presence of many orbitals. However, it must be kept in mind that it makes no dynamical
predictions. It does not inform us on which of the gap functions is preferred on the basis
of a particular model; other tools are necessary. We can, however, venture in the following
general considerations in the presence of many bands: For weakly correlated materials, the
band description is more natural than the Wannier (orbital) description. We would then expect
pairing to occur at weak energies, i.e., for wave vectors close to the Fermi surface. Since
pairing occurs between opposite wave vectors, this nearly restricts it to occur within each band
separately (assuming time reversal symmetry, i.e., that −k belongs to the Fermi surface if k
does). What appears as inter-orbital pairing might then be merely intra-band pairing.
On the other hand, for strongly correlated materials, pairing may occur on a wider energy scale,
in which case the relation to Fermi surfaces is less important and the Wannier description is
more appropriate. In that case, we also expect pairing to have a shorter range and the short-
range pairing functions found in the general method exposed here are more relevant. The case
of Sr2RuO4 is particularly interesting: that material is undoubtedly strongly correlated. At the
same time, its three bands (α, β, γ) have Fermi surfaces that almost touch along the diagonals
(Fig. 3). In an intermediate-coupling situation, inter-orbital pairing would therefore be expected
to occur in the vicinity of these diagonal areas where the three Fermi surfaces almost meet.
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