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ETH Zürich, Switzerland

Contents

1 Introduction 2

2 Unconventional superconductivity 2
2.1 Pair wave function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.2 Symmetry properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3 Topological properties of a two-dimensional chiral superconductor 5
3.1 Nambu space representation . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.2 Topological invariant – Chern number . . . . . . . . . . . . . . . . . . . . . . 6
3.3 Symmetry criterion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4 Edge states in chiral superconductors 11
4.1 Edge states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.2 Surface currents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.3 Quasiparticle current and thermal Hall effect . . . . . . . . . . . . . . . . . . . 15

5 Chiral superconductivity in three dimensions 17

6 Topological superconducting phases with TRS 19
6.1 Two-dimensional systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
6.2 Surface currents and universal properties . . . . . . . . . . . . . . . . . . . . . 20
6.3 Three-dimensional systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

7 Symmetry classification 22

8 Realizations of topological superconducting phases 23

9 Conclusion 24

E. Pavarini and E. Koch (eds.)
Topology, Entanglement, and Strong Correlations
Modeling and Simulation Vol. 10
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1 Introduction

Superconductivity is undoubtedly one of the most remarkable and enigmatic ground states of
electronic matter. At sufficiently low temperature electrons of a metal condense into a coherent
state of Cooper pairs and open a single-quasiparticle excitation gap. This has been the notion
of the BCS theory of 1957 which counts among the most comprehensive descriptions of many-
electron properties in condensed matter physics. While the original BCS theory is based on the
simplest intrinsic structure of Cooper pairs, superconductivity appearing in systems with strong
electron correlation realizes more complex pair wave states whose internal structure expand
the space of superconducting phases and phenomena tremendously. As we will discuss below,
we distinguish between conventional and unconventional superconducting states [1–3]. The
former are found in the standard textbook superconductors such as the elemental metals Pb, Al
or Nb and many compounds. Unconventional superconductivity, on the other hand, occurs in
materials classes like the cuprate high temperature superconductors such as YBa2Cu3O7 and
the heavy Fermion compounds represented by UBe13, UPt3 and CeCoIn5, which all also show
strong magnetic correlations [4–7]. An intensely studied case is Sr2RuO4 whose nature of
superconductivity is debated at present [8, 9].
In this lecture we would like to address a special subclass among the unconventional supercon-
ductors which display topological properties. The first phases in this class where actually not
superconductors, but the neutral superfluid 3He whose phases rest on the same Cooper pairing
paradigm as all known superconductors. 3He has two phases in the absence of a magnetic field,
the A-phase and the B-phase, which both have topological properties and distinguish them-
selves by their symmetry [10]. While the B-phase preserves maximal possible symmetries of
the fluid, the A-phase spontaneously violates time reversal symmetry (TRS) and is know as a
“chiral superfluid”. Both phases can generate topologically protected edge states, a trade mark
of topological insulators. In the following we will put our focus on chiral superconducting
phases which break TRS and explain some of the important features and phenomena. We will
also touch briefly upon TRS conserving topological superconductors. In this lecture it is ex-
pected that the basics of BCS superconductivity are known, but otherwise the technical level
will be kept rather low. There are textbooks and numerous review articles which go deeper into
technical details [11–14]. Early works by G. Volovik date back more than three decades [15].

2 Unconventional superconductivity

2.1 Pair wave function

We first address the nature of an unconventional superconductor by analyzing the structure of
its ground state and at the same time introduce the standard notations. For simplicity we restrict
ourselves here exclusively to systems with a single electronic band whose states are Bloch states
|k, s〉 created (annihilated) by the operators ĉ†ks (ĉks). The BCS-like ground state is a coherent
state of electron pairs (Cooper pairs) with vanishing total momentum, such that we can define a
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pair wavefunction,
Fss′(k) =

〈
ĉ−ks′ ĉks

〉
(1)

where 〈· · · 〉 denotes the expectation value for the ground state or a thermal average, in general.
Obviously, the particle number is not conserved as is the essence of a coherent state. The
wavefunction is 2×2-matrix in spin space and satisfies the relation F̂ (k)=−F̂ (−k)T due to the
Pauli principle, i.e., the pair wave function is odd under exchange of the two electrons. If time
reversal and inversion symmetry are preserved in the normal state, we distinguish the two cases

F̂ (k) =

 f0(k) σ̂
0iσ̂y with f0(k) = f0(−k)

f(k) · σ̂iσ̂y with f(k) = −f(−k)
(2)

where the upper stands for an even-parity spin-singlet and lower for an odd-parity spin-triplet
pairing state, represented by a scalar (f0(k)) and vector (f(k)) wavefunction. Here σ̂ denotes
the Pauli matrices and σ̂0 the two-dimensional unit matrix.
We distinguish conventional and unconventional Cooper pairing by the sum of f0(k) over the
Brillouin zone (BZ)

I0 =
∑
k∈BZ

f0(k) and I =
∑
k∈BZ

f(k) (3)

which is proportional to the real space on-site amplitude of the pair wavefunction.1 The notion
conventional only applies to even parity states with I0 6= 0. All states with I0 = 0 or I =

0 are called unconventional. Obviously, all odd-parity states are unconventional. The fact
that paired electrons avoid to meet on the same position, gives these states an advantage over
conventional pairs in systems with strong electron repulsion. In such a case, standard electron-
phonon mediated pairing interaction, which is essentially a contact interaction, is ineffective
in causing unconventional pairing states and other pairing mechanism yielding longer-ranged
interactions are necessary, such as spin fluctuation exchange.

2.2 Symmetry properties

Within Landau theory of second-order phase transitions the low-temperature ordered phase is
characterized by an order parameter describing the spontaneous symmetry breaking. This order
parameter belongs to an irreducible representation of the normal state symmetry group, for
superconductivity involving the crystal point group (P), spin rotation (SU(2)), and TRS (T )
which can be broken in unconventional superconducting states beside U(1)-gauge symmetry
(coherent state). The general pair wave function can be written as a superposition

F̂ (k) =

NΓ∑
n=1

ηnF̂Γ,n(k) (4)

1The real space pair wavefunction is given by the Fourier transform (with Ω as the volume)

Φ̂(r−r′) = 1

Ω

∑
k∈BZ

F̂ (k)eik·(r−r
′)
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where the {F̂Γ,1(k), · · · , F̂Γ,NΓ (k)} form the basis set of the irreducible representation Γ of di-
mension NΓ , and ηn are complex coefficients. The symmetry operations are most conveniently
performed within the notation introduced in Eq. (2), where rotation operations g ∈ P (spin and
lattice are tied together through spin-orbit coupling) lead to

g ◦ F̂ (k) ⇒
{
g ◦ f0(k) = f0(Rgk)

g ◦ f(k) = Rgf(Rgk)
(5)

with Rg is the corresponding real space rotation matrix. Inversion yields I ◦f0(k) = f0(−k) =
f0(k) and I ◦ f(k) = f(−k) = −f(k). Time reversal and U(1)-operation, K and Φ, respec-
tively, give

K ◦ fµ(k) = fµ(k)
∗ and Φ ◦ fµ(k) = fµ(k)e

iφ . (6)

Assuming that a given superconducting phase belongs to a single representation, we can asso-
ciate its symmetry properties easily with the behavior of the corresponding basis functions. The
conventional superconducting phase is in the non-degenerate trivial representation of even par-
ity, constituting the state of highest possible symmetry – only U(1)-gauge symmetry is broken.
Otherwise, in Eq. (3) the sum I0 would vanish.
A particularly important feature is the degeneracy, connected with the dimension NΓ , because
it allows for intriguing phenomena which are not available in conventional superconductors.
For a concrete and simple example, we consider here the case of NΓ = 2 which is important for
topologically non-trivial superconductors with chiral pairing. For this purpose we look at the
tetragonal point group, D4h, which has two-dimensional irreducible representations Eg and Eu,
with even and odd parity, respectively. The basis functions reflecting the symmetry operations
are in their most simple form

Eg : f0,Γ,x(k) = kzkx f0,Γ,y(k) = kzky

Eu : fΓ,x(k) = ẑkx fΓ,y(k) = ẑky
(7)

where f of the odd parity state is oriented along the z-axis corresponding to the spin-triplet
state with the spin state (S, Sz) = (1, 0) corresponding to “equal spin” pairing.
Only a discrete set of superpositions of these basis states are stable. The possible superconduct-
ing phases for these degenerate pairing state basis can be found using the Landau free energy
expansion in the order parameter. The complex coefficients ηn of Eq. (4), which has two com-
ponents η = (ηx, ηy), can play the role of the order parameter. The free energy then contains
the following terms,

F [η] = a(T )|η|2 + b1|η|4 +
b2

2

{
η∗2x η

2
y + η2

xη
∗2
y

}
+ b3|ηx|2 |ηy|2 (8)

which include all independent scalar combinations of η transforming underEg,u up to 4th order.
There are only three fourth-order terms. Here a(T ) = a′(T − Tc) (both components have the
same critical temperature) and b1, b2 and b3 are real coefficients. All coefficients constitute
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material specific input to the theory. Under the constraint that the free energy is bound from
below, we find the following three phases

ηA ∝
{

(1,+i)

(1,−i)

}
, ηB ∝

{
(1,+1)

(1,−1)

}
, ηC ∝

{
(1, 0)

(0, 1)

}
, (9)

which all are two-fold degenerate. The phaseA is chiral and breaks TRS, while the other two are
nematic and break crystal rotational symmetry. Which of the three phases is realized depends on
microscopic details not accessible to our symmetry arguments. A weak-coupling approach yield
generally theA-phase as most stable as it has least zero nodes. In the following we will focus on
this phase, because it includes the best known topologically non-trivial superconducting phase.

3 Topological properties of a two-dimensional
chiral superconductor

In this section we start out with a superconductor within a two-dimensional or a quasi-two-
dimensional metal, where the latter is characterized by having an essentially cylindrical Fermi
surface (FS) as we will encounter also in Sect. 5. As mentioned above we restrict to a single
band model and assume basic knowledge of the BCS theory.

3.1 Nambu space representation

In a first step we introduce the Nambu representation of the microscopic Hamiltonian in mean
field form (up to added constant terms)

Hmf =
1

2

∑
k

Ĉ†kHkĈk (10)

with the Nambu spinor Ĉk =
(
ĉk↑, ĉk↓, ĉ

†
−k↑, ĉ

†
−k↓
)T and the Hamiltonian matrix

Hk =

(
ξkσ̂

0 ∆̂k

∆̂†k −ξ−kσ̂0

)
(11)

with ξk as the band energy measured relative the chemical potential µ (ξk = 0 defines the FS)
and the gap function

∆̂k = iσ̂y
{
σ̂0d0(k) + σ̂ · d(k)

}
=

(
−dx(k)+idy(k) dz(k)+d0(k)

dz(k)−d0(k) dx(k)+idy(k)

)
(12)

with d0(k) even and d(k) odd functions of k. The Nambu representation doubles the electronic
spectrum by adding the (redundant) hole spectrum. The coherent state corresponds to a hy-
bridization of electrons and holes through the off-diagonal elements ∆̂k, which are connected
with the pair wavefunction within mean field theory through the pairing interaction

V̂ =
1

2

∑
k,k′

∑
s1,s2,s3,s4

V s1s2s3s4
k,k′ ĉ†ks1 ĉ

†
−ks2 ĉ−k′s3 ĉk′s4 . (13)
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The relation is given by
∆kss′ = −

∑
k′

∑
s̃,s̃′

V ss′s̃s̃′

k,k′ Fs̃′s̃(k) (14)

such that the symmetry properties of the ∆̂k and F̂ (k) are identical.
The Hamiltonian in Eq. (10) with (11) yields the spectrum

Ek =
√
ξ2
k + |∆k|2 with |∆k|2 =

1

2
Tr ∆̂†k∆̂k (15)

for the Bogoliubov quasiparticles Âk = (âkα, âkβ, â
†
−kα, â

†
−kβ) obtained by the unitary trans-

formation

Ĉk = UkÂk with Uk =

(
ûk v̂k
v̂∗−k û∗−k

)
(16)

with Uk U
†
k = 1. We derive Uk through the condition

U †kHkUk =

(
Ekσ̂

0 0

0 −E−kσ̂0

)
. (17)

Note that ûk and v̂k constitute wave functions of the electron and the hole-like components of
the quasiparticles, respectively, as can be seen from

ûk =
1√
2

√
1 +

ξk
Ek

, v̂k = − ∆̂k√
2|∆k|

√
1− ξk

Ek

. (18)

3.2 Topological invariant – Chern number

We now turn to the chiral A-phase we introduced above and restrict ourselves to the odd parity
case, because the even-parity state cannot be realized in a purely two-dimensional system as
it involves kz-dependence, indicating extensions of Cooper pairs along the z-axis. Because it
will be useful later, we consider here a tight-binding model on a square lattice with a simple
nearest-neighbor hopping dispersion

ξk = −2t
(
cos kx + cos ky

)
− µ (19)

where t is the hopping matrix element and the lattice constant is unity. The Cooper pairs shall
originate from a nearest-neighbor pairing interaction, which leads to the pair wave function and
the gap function

f±(k) = F0ẑ
(
sin kx ± i sin ky

)
and d±(k) = ∆0ẑ

(
sin kx ± i sin ky

)
(20)

transforming within Eu of the tetragonal point group. It is easy to see that for this gap structure
using Eq. (12) the gap matrix H(k) in Eq. (11) can be decomposed into two disconnected parts
with two-dimensional Hamiltonian matrices,

h(k) =

(
ξk dz(k)

d∗z(k) −ξk

)
= hk · τ̂ (21)
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ky kx

mk

Fig. 1: Mapping from the Brillouin zone to the unit sphere: The representation of the Hamilto-
nian hk as a unit vector mk = hk/|hk| allows us to map the two-dimensional BZ in k-space
to a unit sphere.

corresponding to the spinors
(
ĉk↑, ĉ

†
−k↓
)

and
(
ĉk↓, ĉ

†
−k↑
)
, where τ are Pauli matrices for the

particle-hole space. Note that this can be considered now a spinless subspaces. The three-
dimensional vector

hk =
[
Im (dz(k), Re (dz(k), ξk

]
(22)

is a mapping of the two-dimensional BZ (torus) to a sphere with unit vectormk=hk/|hk| (Fig. 1).
Withmk we define

Ωz
k =

1

2
mk ·

[
∂kxmk × ∂kymk

]
(23)

which is known as the z-component of the Berry curvature Ωk. We use now Ωz
k to define a

topological invariant, the Chern number, to characterize the chiral state. The Chern number C
is obtained from Ωz

k by an integral over the BZ

NC = 2π

∫
BZ

d2k

(2π)2
Ωz

k (24)

and is an integer for a topologically non-trivial state. Geometrically this corresponds to (half
of) the area element on the sphere, such that the integral (24) results in the number of timesmk

wraps around the sphere when k covering the (torus of) the BZ.
The calculation of C in this way looks rather tedious. Fortunately, there is a considerably
simpler way to determine the Chern number which relies on the knowledge of the gap function
on the FS:

NC =
1

2π

∮
FS

dk ·∇k arg[dz(k)] (25)

which corresponds to the non-trivial phase winding of the gap function (analogous for the pair
wavefunction) around the FS. It is rather easy to see that for µ < 0 the FS is closed around
the BZ center and the phase of dz(k) acquires a winding of 2π going around the FS in positive
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Fig. 2: Charges of the gap function d+
z (k) in the first BZ. The Chern charges are +1 for the red

circles and −1 for the blue points. The Chern number is obtained from Eq. (25) by counting
the charge which is encircled by the Fermi surface as a path running in the positive orientation.
(a) Below half filling: FS closed around center of the BZ and has C = +1; (b) At half filling:
the gap function vanishes on the FS at the blue points on the BZ boundary, such that Eq. (25)
is not defined; (c) Above half filling: the FS closes around a red corner point of the BZ, which
leads to C = −1 when considering that effective path orientation is negative. Note that (b) is
the point of a Lifshitz transition from an electron- to a hole-like FS, which is at the same time a
topological transition between different Chern numbers, where the gap vanishes.

direction for the gap function in Eq. (20), with d+
z (k) = ∆0(sin kx+ i sin ky). The gap function

d−z (k) yields a winding −2π. The sign of NC indicates the sign of chirality.
A further convenient feature of the gap function is the appearance of zeros in the BZ or bound-
ary. Because the gap function is periodic in k-space we find for the odd-parity state

dz(k) = −dz(−k) = −dz(−k+G) (26)

where G is a reciprocal lattice vector. If the condition k = −k+G is satisfied, dz(k) = 0,
which is in the give case true for the four inequivalent pointsK1,...,4 = (0, 0), (π, 0), (0, π), (π, π).
We can attribute these zeros a charge corresponding to a winding number.

dz(k =Kn+q) = ∆0q e
iQnθq (27)

with Q1 = Q4 = +1 and Q2 = Q3 = −1 for d+
z (k) (see Fig. 2). The total charge vanishes,∑4

n=1Qn = 0. These “Chern charges” are very handy to determine the Chern number through
Eq. (25) by examining which charges are encircled in which way. In Fig. 2 we consider three
cases of band filling assuming a simple tight-binding model with nearest-neighbor hopping with
ξk given in Eq. (19). The case (a) displays a simple electron-like FS (µ < 0) which encircles the
charge Q1 at the BZ center in a positive orientation (arrows). Note we always define “positive
orientation” with respect to BZ center. In case (c) the FS (µ > 0) is hole-like, going around the
charge Q4 at the BZ corner. We can calculate C by shifting the BZ in a way to make K4 the
center which, however, leaves the orientation of encircling negative and leads to C = −1. On
the other hand, we may stick with Fig. 2(c) and follow the path around the BZ center, which
consists of the disconnected green FS lines and join them by a path along the BZ boundary
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Fig. 3: Charges of the various gap functions in the first BZ. (a) Next-nearest neighbor pairing
with the gap function d+

z (k) of Eq. (29) has NC=+1 for FS 1 and C=−3 for FS 2. (b) Chiral
d-wave state, d±0 (k) of Eq. (30) in a hexagonal system has a charge Q1=2 at the BZ center and
Q2,3=−1 at the BZ corners for positive chirality. (c) s+id-wave state of Eq. (31) which has
four zeros whose charges cancel to zero for all Fermi surfaces of tetragonal crystal symmetry.

passing through the (blue) charges at K2 and K3. In this way we get the Chern number by
taking each of the four charge contributions at these BZ boundaries only half, as they are cut.
This then yields a full contribution from the charge at the center and four halves from the BZ
boundary

NC = +1 +
1

2
(−4) = −1 (28)

consistent with the other view point considering only the charge at K4. The case (b) of half
filling (µ=0) corresponds to the Lifshitz transition between the electron- and hole-like FS
and leads to a zero in the gap functions, dz(K2,3)=0. Here, the Chern number jumps dis-
continuously and we encounter a topological transition. In Fig. 2 we considered a state with
one chirality, d+

z (k) = ∆0(sin kx + i sin ky) which changes under time reversal operation to
d−z (k) = ∆0(sin kx − i sin ky) with all the charges switching sign.
Larger Chern numbers can be obtained by alternative pairing states, e.g., for Cooper pairing of
electrons on next-nearest neighbor sites in a square lattice, which lead to a gap function

d±z (k) = ∆0

(
cos ky sin kx ± i cos kx sin ky

)
. (29)

This state belongs to the same representation Eu as (20), but is different in terms of topology
reflected by the Chern number. This gap functions has additional zeros in the BZ besides the
ones found above, K1,...,4. They lie at the four points K5,...,8 = π

2
(±1,±1), π

2
(±1,∓1). The

charges rearrange: Q1,...,4=±1 and Q5,...,8=∓1 for d±z in Eq. (29). Again the total charge van-
ishes. We encounter here also Chern numbers of NC=∓3 for the electron-like FS 2 enclosing
the inner five zeros (see Fig. 3(a)).
Another case is the so-called chiral d-wave state which is an even-parity spin singlet pairing
state. The two necessary components of the basis functions, k2

x−k2
y and kxky, are not degenerate

in the tetragonal system, but only in a lattice of hexagonal symmetry with point group D6h

where they belong to the two-dimensional representation E2u, Considering here also a nearest-
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neighbor type of pairing state (on a triangular lattice) we obtain a gap function of the form

d±0 (k) = ∆0

3∑
n=1

e±i2πn/3 cos(k · Tn) (30)

with T1 = (0, 1), T2 = (
√
3/2,−1/2) and T3 = (−

√
3/2,−1/2). We find zeros at the BZ

center and corners, K1 = (0, 0) and K2,3 = (0, 1), (
√
3/2, 1/2), respectively, as shown in

Fig. 3(b). The corresponding charges are Q1 = ±2 and Q2,3 = ∓1 ensuring again that the total
sum vanishes. The electron-like FS (1) as well as the hole-like FS (2) would, therefore, have
NC = ±2. There is no topological phase transition possible at the Lifshitz transition, since the
FS never passes through a gap zero going from FS 1 to FS 2.
Finally we would like to introduce an example of a superconducting phase with broken TRS
which is not chiral. This is the well-known s+idx2−y2-wave state. In the tetragonal crystal
lattice the two constituents are not degenerate, as they belong to different one-dimensional
representations, A1g and B1g. So we assume that for some coincidence both states are compet-
itive, although they may have different strength and also different critical temperatures (super-
conducting double transition). We consider this state built up from nearest-neighbor pairing,
d0,s(k) = cos kx + cos ky also known as extended s-wave state, and d0,d(k) = cos kx − cos ky.
This leads to

d0(k) = ∆s

(
cos kx + cos ky

)
± i∆d

(
cos kx − cos ky

)
(31)

which has zeros at K1,2 = ±π
2
(1, 1) and K3,4 = ±π

2
(1,−1) whose charges are opposite,

Q1,2 = ±1 and Q3,4 = ∓1 such that the Chern number by symmetry vanishes always, as in
Fig. 3(c) for both typical FS (1 and 2).
Note that due to the fact that we have used the reduced Hamiltonian in the discussion following
Eq. (21) we should include the spin degeneracy in the Chern number, such that NC is multiplied
by a factor 2, in general.

3.3 Symmetry criterion

Whether an unconventional pairing state is chiral or not can be decided also simply by con-
sidering a rather simple symmetry property. As we mentioned before, the ideal condition to
get a TRS breaking state is found when the pair wave function belongs to a degenerate irre-
ducible representation of the crystal point group. The chiral superconducting state has a chiral
axis which is in the case considered above the z-axis. Looking at the most simple form of a
chiral state, kx ± iky, we recognize the spherical harmonic Y1,±1(k) which corresponds to an
angular momentum Lz=±~. In any point group the angular momentum can be associated with
irreducible representations ΓL. In a chiral superconducting state we may attach a net “angular
momentum” with the Cooper pair, e.g.,

〈L〉 =
〈
Tr
(
∆̂†k(k ×∇k)∆̂k

)〉
BZ

(32)

where 〈· · · 〉BZ is an average over the BZ. The symmetry related criterion for a finite 〈L〉 is that
the decomposition of Γ⊗ΓL⊗Γ includes the trivial representation where Γ is the representation
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of the pairing state. For the point group D4h the angular momentum parallel to z-axis belongs
to the A2g, such that for the chiral p-wave order parameter in Eu follows

Eu ⊗ A2g ⊗ Eu = A1g ⊕ A2g ⊕B1g ⊕B2g (33)

which includes the trivial representation A1g. Thus, it is possible to construct a chiral pairing
state within the representation Eu of D4h. The same is true for the representation E2g in D6h.
On the other hand, the s+id state is composed of A1g and B1g in D4h and

(A1g ⊕B1g)⊗ A2g ⊗ (A1g ⊕B1g) = A2g ⊕ A2g ⊕B2g ⊕B2g (34)

which does not contain A1g. Thus we cannot form a chiral state from order parameters in these
two representations. Interestingly, uniaxial deformation along the axis [110] would change the
condition, reducing the symmetry to D2h with the corresponding representations A1g and B1g.
But now the Lz is also in the representation B1g and the decomposition within the point group
D2h includes the trivial representation. Returning back to the Chern number, we see in Fig. 3(c)
the deformation may change the Fermi surface in way (elliptically elongated along [1, 1] and
squeezed [1,−1]) such that only the zeros of charges of the same sign are encircled.

4 Edge states in chiral superconductors

In the context of topological phases often the concept of bulk-edge correspondence is mentioned
[12, 13]. In chiral superconductors this manifests itself in the presence of chiral quasiparticle
modes at the surface with energies below the bulk gap. There is a relation between the Chern
number and the basic structure of the edge states as we will point out below, after discussing
a specific case. In this section we will also analyze a few physical properties connected with
these surface modes.

4.1 Edge states

One of the simplest cases to discuss the structure of edge states is a chiral p-wave state. For this
purpose we consider the Bogoliubov-de Gennes equation which allows us to analyze inhomoge-
neous superconducting phases and local excitation spectra. We will work here with the reduced
particle-hole space in the two-spinor representation as given in Eq. (21). To illustrate the edge
states it is sufficient to use the Andreev approximation where we focus on the momentum range
very close to the FS and separate the fast spatial dependence due to the Fermi wave vector from
the slow ones: ξk ≈ ~vF · (k−kF ) (see for example Ref. [16]). In a real space formulation this
leads to the differential equations(

~vF · (i∇−kF ) ∆kF

∆∗kF −~vF · (i∇−kF )

)(
ukF (r)

vkF (r)

)
= E

(
ukF (r)

vkF (r)

)
(35)

where ukF (r) and vkF (r) are the electron and hole component of the wave function, respec-
tively, of the stationary eigenstates. These eigenstates are labeled by the Fermi momenta kF
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indicating the direction of a quasi-classical trajectory of motion, characteristic to the Andreev
approximation. With this we can introduce the field operators like

Ψ̂(r) =
∑
kF

(
âkFukF (r) + â†−kF vkF (r)

)
(36)

where (âkF , â
†
−kF ) are (spinless) Bogoliubov quasi particle operators. We locate the surface at

x=0 (normal vector parallel to x-axis) and assume specular scattering. Then we can take the
ansatz for the wave function(

ukF (r)

vkF (r)

)
= b1

(
A+

kF+

rkF+A
−
kF+

)
e+iqxx+ikF+·r + b2

(
r∗kF−A

−
kF−

A+
kF−

)
e−iqxx+ikF−·r (37)

with the boundary condition that the wave function vanishes at the surface, x=0 as can be
achieved with the proper choice of b1,2. Moreover,∫ ∞

0

dx

∫ L

0

dy
(
|ukF (r)|2 + |vkF (r)|2

)
= 1 (38)

where periodic boundary condition can be assume along y-direction for a system of length L.
The parameters in Eq. (37) are A±kF = [E ±

√
E2−|∆kF |2]1/2, kF± = kF (± cos θkF , sin θkF )

rkF = ∆∗kF /|∆kF |, and iqx = ±
√
E2−|∆kF |2/~vFx (|qx| � kF ). Within the Andreev ap-

proximation the continuous energy spectrum of the extended quasiparticle state is given by
E = ±

√
(~vFqx)2+|∆kF |2. However, there are also states with subgap energies (|E| < |∆kF |)

which are bound states at the surface, called Andreev bound states. Their energy is obtained by
solving the equation

rkF+r
∗
kF− =

E +
√
E2−|∆kF |2

E −
√
E2−|∆kF |2

⇒ E = Eky = Im [∆kF ]
∣∣∣
kF ·ŷ=ky

(39)

where we use the momentum kFy parallel to the surface to label the dispersion as we assume
translational invariance along y-direction. Note that the expression Eky=Im [∆kF ] has to be
used with care and is only valid as such for states with |NC |=1. For higher Chern numbers
the solution of Eq. (39) has to take the winding of the gap function properly into account (see
Fig. 4(c) for the example of NC=− 3).
We introduce the electron operator φ̂ky specifically for the edge state,

γ̂ky=

∫
d2r
(
φ̂kyu

∗
kF
(r)− φ̂†−kyv∗kF (r)

)
and γ̂†−ky=

∫
d2r
(
φ̂†−kyukF (r)− φ̂kyvkF (r)

)
(40)

which then lead to the edge state Hamiltonian,

Hsf =
∑
ky

Eky γ̂
†
ky
γ̂ky . (41)

The same spectrum we obtain also for the other part of the original Hamiltonian, so that we
could label γ̂ky additionally with a spin index. Note that for the zero-energy mode (Eky=0=0) we
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Fig. 4: Chiral edge states: (a) Closed quasi-classical trajectories of electrons (green) and
holes (blue) connected through Andreev reflections yield subgap bound states at the surface.
Schematic structure of the quasiparticle spectrum: (b) Chiral edge mode with energies below
the quasiparticle continuum (green) for NC= + 1 [situation as in Fig. 2 (a) and 3 (a) FS 1].
(c) Chiral edge modes for NC=− 3 [situation as shown in Fig. 3 (a) FS 2].

find that ukF (r)=ukF (r)
∗=vkF (r)=vkF (r)

∗. Thus, the creation and annihilation operator are
identical γ̂0=γ̂

†
0. This mode has no electrical charge as electron and hole compensate perfectly.

This mode has then the property of a Majorana fermion [12, 13].
Taking ∆kF=dz(kF ) from Eq. (20) we find for the subgap energies

Eky = ±∆0 sin ky (42)

which yields a chiral mode whose orientation is connected directly with the chirality, i.e., the
sign of the slope corresponds to sign of the Chern number NC (see Fig. 4 (b)). The num-
ber of surface modes crossing zero energy in with a certain orientation is connected with
rkF = exp[−i arg{dz(kF )}] in Eq. (39) which provides a direct relation to the Chern num-
ber in Eq. (25). The Chern number as a winding number determines the number of chiral
branches which connect the lower with the upper continuum of the spectrum of Bogoliubov
quasiparticles as can be seen upon examination of Eq. (39) [17]. This means eventually,

NC =
∑
ky

sign[vy(ky)] δ(Eky) (43)

where NC corresponds to the net number of zero-energy crossings of given sign of velocity
~vy(ky)=dEky/dky. The relation constitutes the concept bulk-edge correspondence and shows
that the character of the surface bound states are related to the topological properties of the bulk
state. This is analogous to the integer Quantum Hall state, for our chiral p-phase the ν=1 case.
It is instructive to look at the quasi-classical trajectories as displayed in Fig. 4 (a). An electron
with given momentum bounces off specularly from the surface back towards the bulk super-
conductor and is through an Andreev reflection turned into hole which essentially retraces the
original path of the electron. With the Andreev reflection of the hole the path is completed



12.14 Manfred Sigrist

jy

x ⇠ �

(a)
(b)

Bz

0

ar
b.

 u
ni

ts

⇠

Fig. 5: Spontaneous supercurrent at surface. (a) Charge currents induced by the chiral edge
state extend on a length ξ (coherence length) into the bulk (oscillations are of Friedel-type with
wave vector kF . (b) The magnetic field (green shading) induced by the edge current (blue) is
screened by counter currents (red) on a length scale λ, the London penetration depth.

such that we can view this as closed orbit involving both an electron and a hole component,
obviously as an electron-hole superposition constituting Bogoliubov quasiparticles as of the su-
perconductor. The localization length along the x-axis is the order of the bulk coherence length
ξ ≈ ~vF/|∆0| as obtained from the wave function in Eq. (37). In the following we will consider
the phenomenological implications.

4.2 Surface currents

Fig. 4 (a) reveals a further property of the chiral edge state. The closed quasi-classical trajectory
for a given kFy carries a net electrical current parallel to the surface, because electrons and
holes move in opposite direction. Restricting to the Andreev bound states the expression for the
current density is given by

Jy(x) = −2e

L

∑
ky=kF ·ŷ

vFy

(
|ukF (x)|2f(Eky)− |vkF (x)|2f(−Eky)

)
= −2e

L

∑
ky

vFy

(
|ukF (x)|2 + |vkF (x)|2

)
f(Eky)

(44)

with ~vF=∇kξk
∣∣
k=kF

. By symmetry the current density has only a non-vanishing y-component.
The relations Eky = −E−ky and vFy(ky) = −vFy(−ky) ensure that the electronic (uk) and hole
(vk) part add up in the same direction. Like the bound state this current is confined to a coher-
ence length ξ at the surface, as shown in Fig. 5. The magnetic field generated by this current is
screened (Meissner-Ochsenfeld effect) by counter currents on a length scale of London penetra-
tion depth λ, such that the integrated current at the surface vanishes (see Fig. 5(b)). The current
induced by the edge states depends on details of the band structure through vF . Moreover, it is
important to note that also the quasiparticles of the continuum contribute to the current, which
lead to some quantitative changes and are ignored in Eq. (44). Consequently, the magnitude of
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the current is not uniquely connected with the topology of the chiral state. In contrast to the
Quantum Hall state where the chiral edge mode is made up of electrons, here it is a part of the
Bogoliubov quasiparticle spectrum. Bogoliubov quasiparticles are due to the hybridization of
electrons and holes and, consequently, do not conserve charge [18–20]. As we will show below
there is no connection to the Chern number sometimes even not on qualitative level.
It has been discussed whether the chirality would yield a spontaneous Hall effect, a transverse
voltage as response to a supercurrent. The discussion of this phenomenon is rather complex and
exceeds our analysis. The effect is very small and we refer to Ref. [21].

4.3 Quasiparticle current and thermal Hall effect

The analogy to the Quantum Hall effect, however, seems to hold for the Bogoliubov quasiparti-
cles, whose spectrum and current is uniquely connected to the topology of the state. Unlike the
charge, the energy of quasiparticles is conserved and we can consider the energy (heat) current
carried by the edge states, as defined by

J (Q)
y (x) =

1

L

∑
kFy

EkFyvky

(
|ukF (r)|2 + |vkF (r)|2

)
f(EkFy) (45)

where the quasiparticle velocity is given by ~vy(ky) = ∂Eky∂ky. Integrating over x with the
normalization condition (38) we obtain

I(Q)(T ) =

∫
dky
2π

Ekyvy(ky)f(Eky) . (46)

In the low-temperature limit (kBT � ∆0 ∼ kBTc) we may use Sommerfeld expansion for the
temperature dependence

I(Q)(T ) =

∫
dky
2π

vy(ky)

(
EkyΘ(−Eky)− kBT

β2E2
ky

4 cosh2(βEky/2)
+ · · ·

)
≈ I

(Q)
0 − kBT

~

∫
dE

2π

β2E2

4 cosh2(βE/2)
= I

(Q)
0 − π

6

(kBT )
2

~
.

(47)

Thus, the first correction to the (non-universal) zero-temperature current is universal, as it does
not contain any material-dependent parameters.
Let us now consider a Hall-bar geometry, shown in Fig. 6, where the two edges have by sym-
metry opposite quasiparticle currents. Due the gap of the bulk state, the electronic heat current
is carried only by the edge states. Therefore, the total heat current along the bar consists of the
contribution of both surface which flow in opposite direction. A finite current only appears, if
the temperature is different on the two surfaces and the leading contribution is

I(Q)
tot = I

(Q)
1 + I

(Q)
2 =

π

6

k2
B

~
(
T 2

2−T 2
1

)
= −π

6

k2
BT

~
∆T = κyx∆T (48)

with T1 = T−∆T/2 and T2 = T+∆T/2. This is the Righi-Leduc effect, the heat current
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Fig. 6: Hall bar for the Righi-Leduc effect or thermal Hall effect: Difference in temperature on
the two edges induce a heat current along the bar. For chiral edge states this yields a quantum
thermal Hall effect.

induced by a transverse temperature difference is quantized with the same universal contribution
for each chiral edge mode [14, 22–24], such that we can write

κxy = −κyx =
π

6

k2
BT

~
NC . (49)

Thus, assuming positive chirality (kx+iky) for the case in Fig. 3(a) the FS 1 and 2 would yield
NC=2 and NC=− 6, respectively, including the spin. Note that the universal linear-T behavior
is valid only in the limit of very small T and the leading correction ∼ e−∆0/kBT (∆0/kBT )

2 is
due to thermally activated quasiparticles.

The thermal Hall effect reveals the topological nature of the superconducting phases while
neither the spontaneous supercurrent at the surface nor the spontaneous Hall effect are universal
and may even be too small to measure. An illustrative example for this discrepancy can be seen
in the behavior when crossing the Lifshitz transition for the situation of Fig. 2 (a-c). The spectra
of the surface bound states are shown in Fig. 7 (a) and (b) where the former corresponds to the
electron-like and the latter to the hole-like Fermi surface. In both cases the Fermi velocity vFy
entering the surface current expression in Eq. (44) has the same sign for negative energies Eky .
Thus, in both cases the surface current I runs in the same direction despite the fact that the
two situations correspond to Chern numbers of opposite sign. Thus, the Lifshitz transition
between to two FS topologies upon rising µ leaves at most a slight anomaly in the supercurrent
as function of µ. The surface current is not tied to the Chern number, but changes sign under
the time reversal operation. In contrast, the thermal Hall conductance κxy/T changes from one
universal value to the other, as the quasiparticle velocity vy changes sign for the two kinds of
edge states.
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Fig. 7: Topology versus currents: Chiral edge states for (a) electron-like and (b) hole-like FS
have dispersions with opposite velocity. (c) The direction of the charge current (electron – hole
flow) is unchanged (only small anomaly at the Lifshitz transition at µ = 0), while the thermal
Hall conductance κxy/T changes sign between two universal values (width of the transition
shrinks with lowering T ).

5 Chiral superconductivity in three dimensions

In a genuinely three-dimensional material the generic case of a chiral superconductor is not
topologically non-trivial because is has to have zero nodes in the gap. We would like to con-
sider here in a simple way, how one can characterize the properties of such superconductors
nevertheless, using some of the tools introduced above.
For our discussion we use again a system with simple tetragonal point group D4h with a gap
function of chiral p-wave state, d(k) = ∆0ẑ(sin kx± i sin ky) without any kz-dependence. The
chiral axis is along the z-axis. We now define a sliced Chern number (SCN) by cutting through
the three-dimensional BZ for fixed kz. The cross section includes again 2D FS (FS(kz)) which
allow us to determine a Chern number through the winding number

nC(kz) =
1

2π

∮
FS(kz)

dk ·∇karg[dz(k)] (50)

which is an integer and depends on the charges of the encircled gap zero lines crossing the
BZ (along z-direction). The overall “Chern number” is then obtained through the integration
over kz

NC =
a

2π

∫ +π/a

−π/a

dkz
2π

nC(kz) . (51)

Now let us look at two generic examples, shown in Fig. 8. For a weak dispersion along the z-
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Fig. 8: Fermi surfaces in three-dimensional systems: (a) Quasi-two-dimensional metal with
open (cylindrical) FS and no gap zeros yields an integer Chern number with a Fermi arc (blue
line) crossing the whole surface BZ (green ky-kz-plane). (b) Genuine three-dimensional metal
with closed Fermi surface has point nodes at the poles. The Fermi arc is limited by the projection
of the nodal points and the non-integer Chern number reflects the restricted length.

axis the FS will be open and cylindrical (a) such that none of the zeros of the gap function dz(k)
crosses the FS anywhere. This corresponds to a quasi-two-dimensional system. Thus, the bulk
quasiparticle spectrum remains fully gapped and nC(kz) = ±1 for all kz in the BZ, as shown in
Fig. 8 (c) leading to NC = ±1, an integer number indicating a topologically non-trivial state.
On the other hand, a strong dispersion along the z-axis yields a closed Fermi surface (Fig. 8 (b)).
There are only cross section of the Fermi surface for −kFz < kz < +kFz where nC(kz) = ±1.
Here the gap function dz(k) has point nodes in the gap at the two poles of the FS (kx = ky = 0).
The Chern number is NC = ±kFza/π, i.e., non-integer.
What information does the Chern number NC carry? These superconductors have chiral edge
states connected with nC(kz), whose spectrum looks as depicted in Fig. 4(b), for a surface with
normal vector along x-direction. For the standard chiral p-wave state we can find for all kz
with nC(kz) = ±1 that there is one ky value where Eky = 0 which we may call a Fermi point.
The sign of the sliced Chern number nC(kz) gives these Fermi points an orientation. In the
ky-kz-plane they form a so-called Fermi arc which in case (a) crosses the whole BZ while it has
a finite length for case (b). The Chern number NC is a measure for the length of the Fermi arc.
The Chern number NC appears again in the thermal Hall effect,

κxy =
π

6

k2
BT

~

∫
dkz
2π

nC(kz) =
π

6

k2
BT

~
NC . (52)

A universally quantized value is only found for truly topological phases as for the quasi-two-
dimensional case (a) in Fig. 8. Note that for the case (b) the presence of point nodes in the gap
introduces stronger corrections to linear-T law of κxy which has a T 3 dependence.
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6 Topological superconducting phases with TRS

Another class of topological superconductors conserves time reversal symmetry and belong to
the odd-parity pairing states, as long as parity is a symmetry. In many aspects these supercon-
ductors are related to the B-phase of superfluid 3He.

6.1 Two-dimensional systems

We return to two-dimensional superconductors and consider here as an example the spin-triplet
superconducting phase belonging to one-dimensional representation of the tetragonal point
group D4h. These are given by the gap functions

dA1u(k) = ∆0

(
x̂ sin kx + ŷ sin ky

)
, dA2u(k) = ∆0

(
x̂ sin ky − ŷ sin kx

)
,

dB1u(k) = ∆0

(
x̂ sin kx − ŷ sin ky

)
, dB2u(k) = ∆0

(
x̂ sin ky + ŷ sin kx

)
.

(53)

All four states (53) are equal-spin pairing states with spin parallel / antiparallel to the z-axis.
We focus here on dA1u(k) which has the following gap matrix

∆̂k =

 ∆k↑↑ ∆k↑↓

∆k↓↑ ∆k↓↓

 =

 −∆0

(
sin kx−i sin ky

)
0

0 ∆0

(
sin kx+i sin ky

)
 (54)

such that the Nambu space can again be decomposed into two subspace with the spinors (ĉks, ĉ−ks)
with s = ±1 for spin up and down, respectively. It is obvious that each subspace has a “chiral”
gap function with a definite “Chern number”

NC,s =
1

2π

∮
F

Sdk ·∇karg[∆kss] (55)

which is spin dependent with NC,+1=−NC,−1. The net Chern number taking both spins to-
gether, NC=

∑
sNC,s = 0, vanishes, since TRS is conserved. Nevertheless, bulk-edge corre-

spondence is reflected by the presence of “spin chiral edge states” of opposite orientation for
the two spin subspaces (see Fig. 9(a)): Eky ,s = Im [∆kF ,ss]. These edge states can be obtained
again by means of the Bogoliubov-de Gennes equations used above. They are called helical as
propagation direction and spin of the quasiparticles are tied together.
Analogous to Sect. 4.1 we introduce again quasiparticle operators for the edge state which have
now a spin index, Γ̂ky =

(
γ̂ky↑, γ̂ky↓

)
. The surface Hamiltonian reads,

Hsf =
∑
ky ,s

Eky ,s γ̂
†
ky ,s

γ̂ky ,s =
∑
ky ,s,s′

Eky ,ss′ γ̂†ky ,sγ̂ky ,s′ . (56)

Here Eky ,ss′ follows from the symmetry general relation (n̂×k‖) ·σss′ = kyσ
z
ss′ where n̂=(100)

is the surface normal vector and k‖ the momentum parallel to the surface.
For the time being we restrict here to the situation of an electron like FS closed around the BZ
center, for simplicity.
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Fig. 9: Helical edge states: (a) The energy dispersion is spin dependent with opposite quasi-
particle velocity for up and down spin. (b) This yields spin currents at the surface.

6.2 Surface currents and universal properties

Due to TRS conservation there is no spontaneous supercurrent along the surface unlike in the
case of a chiral superconducting phase. The helical spectrum of the Andreev bound states results
in a spin current in turn. Following the same way as in Eq. (44) we find that after the integration
over x the total surface current for the spin s is given by

Iy,s =
1

L

∑
ky

vFy(ky)f(Eky ,s) . (57)

With the relations, Eky ,s=−Eky ,s̄=E−ky ,s̄ and vFy(ky)=− vFy(−ky) follows that Iy,s=− Iy,s̄.
Therefore obviously the supercurrent vanishes, i.e., Iy = Iy,↑+Iy,↓ = 0. However, we obtain a
net spin current along the edge

I(s)
y =

~
2

(
Iy,↑−Iy,↓

)
=

~
L

∑
ky

vFy(ky)f(Eky ,↑) (58)

whereby this current runs in the opposite direction on the two edges of a bar as shown in
Fig. 9(b). This current would also contain contributions from the continuum not included in
Eq. (57). Like the chiral supercurrents these spin currents are not universal. Unlike the super-
current, the spin current does not lead to screening currents.
On the other hand, there is an analog to the quantized thermal Hall effect for chiral supercon-
ductors. Very much in the same way as in Sect. 4.3 we can derive a relation like in Eq. (48),

κ(s)
xy = −κ(s)

yx =
π

3

k2
BT

~
(59)

whereby the response to the transverse temperature difference in the Hall bar is a “spin heat
current”

I(Q,s)
y =

∫
dky
2π

Ekyvy(ky)
(
f(Eky↑)−f(Eky↓)

)
. (60)

Considering this in a Hall bar geometry again, this would constitute a quantized thermal spin
Hall effect. An experimental verification would very likely be rather challenging.
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Fig. 10: Edge states for the Balian-Werthammer state d(k) = ∆0ν̂ · k: (a) The edge states
are helical with Dirac-type cone dispersion on the two surface BZ (here kx-ky). The arrows
(orange) show the spin texture. (b) These edge states yield spin currents with transverse spin
orientation on all surfaces.

6.3 Three-dimensional systems

The prime example of a topological phase in this category is the Balian-Werthammer (BW)
state which corresponds to the B-phase of superfluid 3He [3,10]. It is an odd-parity state with a
gap function

d(k) =

 ∆0

(
x̂kx + ŷky + ẑkz

)
(I)

∆0

(
x̂ sin kx + ŷ sin ky + ẑ sin kz

)
(II)

(61)

where case (I) corresponds to a fully rotationally symmetrical system like 3He and case (II) is
the analogous state in a simple cubic lattice with nearest-neighbor pairing. Unlike all the other
odd-parity states considered above this is not an equal-spin pairing state. The spin configuration
is locked to the momentum space (like for the states in Eq. (53) which constitutes a dynamical
“spin-orbit coupling”). The gap function has no zeros on a closed Fermi surface in case (I) and
in case (II) there is a finite number of zero points in the BZ. The analysis of the topology by
slicing the BZ reveals that “topological invariants” only exist for k · ν̂ = 0 (ν̂ slicing normal
vector) or at the BZ boundary for case (II). Thus, we do not have Fermi arcs unlike in the case
of time reversal symmetry breaking chiral superconductors.
It is straightforward to derive the edge states from the corresponding Bogoliubov-de Gennes
equations [25, 12]. The corresponding surface Hamiltonian for case (I) reads

Hsf =
∑
k‖,s,s′

(n̂× k‖) · σss′ γ̂†k‖,sγ̂k‖,s′ (62)

which shows a helical spectrum with a cone shaped dispersion around the center of the surface
BZ. In Fig. 10(a) we show the momentum dependence of the subgap quasiparticle energy for the
normal vector along the z-axis. This leads to surface spin currents as displayed in Fig. 10(b).
In this case we have only a Fermi point in the surface BZ. In case (II) it is possible to have
additional such cones at points of the BZ boundary some of which show a reversed spin pattern.
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AZ class SU(2) TRS parity examples edge states
D × × odd spinless chiral p-wave chiral

DIII × © odd BW p-wave helical
A 4 × odd spinful chiral p-wave chiral

AIII 4 © odd nematic zero-energy
C © × even chiral d-wave chiral
CI © © even nematic zero-energy

Table 1: Six classes of Bogoliubov-de Gennes Hamiltonians: We distinguish behavior under
spin SU(2) and TRS operation – “©” present, “×” absent, “4” restricted SU(2) with Sz
preserved. We use examples discussed in parts above.

7 Symmetry classification

In the context of topological phases, in particular topological insulators, single-particle Hamil-
tonians have been categorized into ten symmetry classes and led to the so-called periodic table
of topological matter. Among these we find also the classes to which superconductors belong,
the subgroup of the Bogoliubov-de Gennes Hamiltonians [26,27]. In this section we would like
briefly to locate the examples we have given above within this classification scheme, because
it is often used in literature. The basis of the classification are properties of the Hamiltonian as
given in Eq. (11) under the discrete symmetries of time-reversal, particle-hole, and sublattice
(so-called chiral) symmetry. In Table 1 we give the list of the six relevant classes which are
labeled according to the Altland-Zirnbauer (AZ) classes [28].
We will now consider briefly the different classes.
Classes without spin rotation symmetry SU(2): Class D violating TRS is in 2D systems char-
acterized by an integer Chern number. An example is a spinless chiral p-wave superconductor,
e.g., the reduced Hamiltonian in Eq. (21) which possesses chiral edge states. The class DIII
conserves TRS and includes the superconducting states discussed in Sect. 6 which generate
helical edge states in two and three dimensions.
Classes with conserved spin Sz-component: We find the spinful chiral p-wave superconductor
including both spin components in H(k) possessing integer Chern numbers in 2D systems.
This belongs to class A without TRS and has chiral edge states. Class AIII with TRS contains
the odd-parity states like nematic phase B and C in Eq. (9). These states have zeros in the gap.
They can develop zero-energy Andreev bound states for certain surfaces as can be seen from
our analysis in Sect. 4.1. For all trajectories with ∆kF+

=−∆kF− we find from Eq. (39) E=0.
Classes with full spin rotation symmetry: Here we find the even-parity spin-singlet supercon-
ductors where Cooper pairs do not have any spin dependence. The class C breaks TRS and
incorporates the chiral d-wave state, dx2−y2+idxy-wave, which is characterized by a Chern num-
ber in 2D and possesses chiral edge states. An alternative chiral d-wave state in 3D systems has
dxz+idyz-symmetry with a line node. Nematic d-wave states like dx2−y2 and dxy belong to class
CI. Analogous to the nematic odd-parity states, they have zero-energy Andreev bound states
for certain surface orientations.
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8 Realizations of topological superconducting phases

As mentioned in the introduction unconventional superconductivity is most likely found in ma-
terials with strongly correlated electrons. While such superconductors are known since the late
1970’s it is still a highly non-trivial task to identify the structure of Cooper pairs.
A few experimental methods are considered important in the context of topological supercon-
ductivity. For the detection of spontaneously broken TRS in superconductors there are two
widely trusted methods. These are the zero-field muon spin relaxation (see, e.g., Ref. [29]) and
the polar Kerr effect (see, e.g., Ref. [30]). The former measures the depolarization rate of the
spins of injected muons. For numerous superconductors we find an increase of the depolariza-
tion rate indicating that the superconductor produces intrinsically a spontaneous magnetic field
distribution associated with broken TRS. The polar Kerr effect observes the rotation of the po-
larization axis of reflected light relative to the incident polarization. By symmetry such an effect
is possible for chiral superconductors for incident beams along the chiral axis. The estimate of
the magnitude of the observed signals, however, is a complex theoretical problem [30].
Among the superconductors labeled as TRS breaking by these two methods, we find several
which are candidates for chiral superconductivity. In this respect the most intensively inves-
tigated is Sr2RuO4 which has been suggested to be a chiral p-wave superconductor [8, 31].
During the last year, however, new experimental data led to a debate whether Sr2RuO4 is
indeed an odd-parity superconductor. SrPtAs has been discussed as a candidate for chiral
d-wave superconductivity of the dx2−y2+idxy-wave type [32, 33]. Chiral d-wave supercon-
ductivity of the dzx+idzy-wave type has been proposed for the heavy Fermion superconduc-
tor URu2Si2 [30, 34]. Chiral superconductivity may also be realized in UPt3, another heavy
Fermion compound, as a chiral f -wave channel, with a gap function, d(k) = ẑkz(kx+iky)2 or
d(k) = ẑ(kx+iky)(5k

2
z−1) [35, 36].

While magnetic properties have been observed through µSR and polar Kerr effect in many of
these superconductors, so far attempts, focussed mainly on Sr2RuO4, to directly detect the mag-
netic fields produced by surface currents, using scanning probes, have only delivered negative
results [37, 38]. This may reflect the fact that the generated magnetic fields are not univer-
sal and too small for the conditions in the experiment [18–20]. On the other hand, quasipar-
ticle tunnelling data for Sr2RuO4 show zero-bias anomalies indicating the presence of edge
states [39, 40]. Note, however, that these experiments cannot distinguish chiral from helical
edge states easily.
Since magnetism is considered adversary to superconductivity, the superconducting phases ap-
pearing in the ferromagnetic heavy Fermion systems, UGe2, URhGe and UCoGe, have attracted
also much attention [41,42]. These systems break TRS even in the normal state and the Cooper
pairs form in a spin polarized environment, most likely with odd-parity. This has been the basis
of proposals of superconducting phases with topological properties (for a recent work see [43]).
A most recent case of an U-based superconductors which possibly realizes chiral pairing is
UTe2, a heavy Fermion metal close to a ferromagnetic quantum critical point [44].
Unconventional superconductivity in materials without an inversion center in their crystal lattice
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represent another intriguing class, because parity is not a symmetry for Cooper pairs anymore.
Also here topological features have been discussed (see for example [45]). A brief overview of
the many realizations of topological bulk superconductors can be found in Ref. [46].

9 Conclusion

This brief lecture notes give only a very selected insight into a very dynamical and fast evolving
field. The very active subject of artificially structured systems designed to show topological
superconductivity have been completely omitted. In particular, one-dimensional systems, so-
called nano-wires, provide a way to generate Majorana edge modes in a controlled way and are
considered as potential building blocks for so-called topological quantum computers [47, 48].
Also nodal structures of the pair wavefunction or the gap functions are a subject of topological
matter [49, 50].
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