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1 Introduction

Density functional theory (DFT) is an extremely sophisticated approach to many-body prob-
lems [1,2]. It must be among the most used and least understood of all successful theories in
physics. Currently, about 50,000 papers each year report results of Kohn-Sham (KS) DFT calcu-
lations [3], including room temperature superconductors under high pressure [4], heterogeneous
catalysis at metal surfaces and for nanoparticles [5], understanding the interior of Jupiter and
exoplanets [6], studying how ocean acidification affects the seabream population [7], and even
which water to use when making coffee [8].

But much of modern condensed matter physics involves using model Hamiltonians to study
strongly correlated systems, where understanding new phenomena is considered far more im-
portant than generating accurate materials-specific properties [9, 10]. In fact, our standard dia-
grammatic approach (expansions in the strength of the electron-electron coupling) is hard-wired
into all our descriptions of such many-body phenomena, be it the fractional quantum Hall ef-
fect [11] or the Kondo effect (even when perturbation theory fails, we still think of resummed
diagrams) [12].

Because DFT is logically subtle, without requiring much mathematical gymnastics (although
they are available for those that enjoy them [13]) or skill with summing Feynman diagrams,
and because DFT is entirely different from the standard approach, most of what you may have
learned is hopelessly confused or simply downright untrue. Hence the title of this article, taken
from a popular book on history [14]. For example, any conflation of the KS scheme with
traditional mean-field theory is a dire mistake, and should be avoided at all costs.

This chapter is primarily designed to explain essential concepts of DFT to theorists more fa-
miliar with standard many-body theory and perhaps more experienced in dealing with strongly
correlated systems. It should also prove useful for anyone performing DFT calculations on
weakly correlated systems, who might be wondering where things go wrong as correlations
grow stronger. Additionally, the Hubbard dimer is a wonderful teaching tool for basic concepts,
as so many of its exact results can be derived analytically.

The first use of this material came in a conversation between KB and Duncan Haldane at a meet-
ing sponsored by the US Department of Energy. Duncan asked KB to explain this DFT business,
and he suggested the dimer as the minimal relevant model. After 45 minutes of tough argu-
ment, Haldane said “That’s the first time I've ever really understood this Kohn-Sham scheme.
Thanks.” Within 2 years, he was awarded a share in a Nobel Prize in physics [15]. While cor-
relation is not causation, Haldane did not win his share until affer he understood KS-DFT with
the aid of this simple model!

However, it is important to note that the benefits of this type of analysis are not solely limited to
those working in theoretical physics. In the fields of theoretical chemistry and material science,
for instance, where ground-state electronic energies are often required to be extremely accurate
[16-18], there has been growing technological interest in the study of both chemically complex
and strongly correlated materials [19,20]. This chapter was partly designed with these fields in
mind, serving as a resource for any computational scientist who wishes to better comprehend
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the limitations of their computational methods. Throughout this text, there will be various
highlighted sections dedicated to examples, exercises, and key concepts to aid the reader in
applying what is learned in this study to their own endeavors.

There are now a huge number of diverse introductions to DFT, with many different perspectives.
These include a simple tutorial for anyone with knowledge of quantum mechanics [21], a very
long online textbook with lots of nasty problems [22], a many-body introduction [23], and
even video lectures [24]. But this chapter is specifically aimed at explaining the most essential
concepts, and why strongly correlated systems are more challenging in DFT. All the Hubbard
material appears in two long review articles, one on the ground state theory [25] and a second on
linear-response TDDFT [26]. The Hubbard dimer has been recently used to explore effects in
other aspects of DFT, such as magnetic DFT [27], ensemble DFT [28], and thermal DFT [29].

Takeaway: DFT appears deceptively simple to understand. It is much trickier than peo-
ple realize. This chapter provides a unique explanation of basic ideas using a simple
model.

1.1 Background

We work in the non-relativistic non-magnetic Born-Oppenheimer approximation, using Hartree
atomic units (¢2 = A = m, = 1). The Hamiltonian for the electrons is simple and known
exactly

H=T+Vee+V, (1)

where T is their kinetic energy, V.. is the electron-electron Coulomb repulsion, and V is the
one-body potential, equal to a sum of Coulomb attractions to the ions in an isolated molecule
or solid. We let /V be the number of electrons.

A first-principles approach to this problem is to feed a computer a list of nuclear types and
positions and, following a recipe, it spits out various properties of the electronic system. In
quantum chemistry [30], the recipe is called a model chemistry [31, 32] if both the method
(e.g. Hartree-Fock) and the basis set are specified.

We contrast this with traditional approaches in condensed matter [33]. Often a model Hamilto-
nian is written down, hoping that it describes the dominant physical effects. For most interesting
problems, standard approaches to solving this Hamiltonian will fail, i.e., be hopelessly inade-
quate or require near-infinite computer resources. An inspired approximation may be found that
works well enough, and so the underlying physics can be explained. Well enough will usually
mean that with good estimates of the model parameters, qualitative and even semi-quantitative
agreement is found with key properties of interest.

Each of these are excellent approaches, especially for the purposes they were designed for.
Modern DFT calculations of weakly correlated materials (and molecules) are of the first-prin-
ciples type, and often yield atomic positions within 1-2 hundredths of an Angstrom and phonon
frequencies within 10%, without any materials-specific input, an impossibility with a simple
model Hamiltonian. On the other hand, with standard approximations, DFT calculations always
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fail whenever a bond such as Hj is stretched, and correlations become strong [34]. Even simple
Mott-Hubbard physics is beyond such methods (and we shall see why in this chapter), or Kondo
physics (but see Reference [35]).

But more and more of modern materials research requires the intelligent application of both
approaches, and many methods, such as DFT+U [36] or dynamical mean field theory (DMFT)
[37-40] are being developed to bridge the gap. Many of the materials of greatest practical
interest to energy research (such as for batteries [19] or photovoltaics [20]) include a moderate
level of correlation that require a pure DFT approach to be enhanced, by adding vital missing
ingredients of the physics.

The US and Britain are friends ‘separated by a common language’ [41]. This is essentially true
of the mass of confusion between traditional many-body theory and DFT. In DFT, we use the
same words as in MBT, but giving them different meanings, simply because we enjoy confusing
folks.

Finally, we mention an intermediate Hamiltonian between the dazzling complexity of the real
physical and chemical world and the beautiful simplicity of the Hubbard model. A great chal-
lenge to studying the effects of strong correlation has been the difficulty in producing highly
accurate benchmark data. Molecular electronic structure calculations are much simpler than
materials calculations, and quantum chemistry has long been able to provide highly accurate
answers for many small molecules at or near equilibrium [32], as well as the complete binding
energy curves of others [42]. But this is much harder to do for materials. Recent illustrations
of this difficulty are the careful bench-marking of model Hamiltonians (such as an 8 x8 Hub-
bard lattice) using highly accurate many-body solvers [43], the amount of computation needed
to find an accurate cohesive energy of the benzene crystal [44], and the celebration of merely
being able to agree on approximate DFT results with a variety of solid-state codes [45].

To overcome this difficulty, about 10 years ago, a mimic of realistic electronic structure calcu-
lations was established [46]. This mimic uses potentials that are defined continuously in space
(i.e., not a lattice model) but are one-dimensional. In fact, ultimately, a single exponential was
chosen [47], whose details mimic those of the popular soft Coulomb potential. With about
20 grid points per ‘atom’, standard density-matrix renormalization (DMRG) methods [48, 49]
could then rapidly produce extremely accurate ground-state energies and densities for chains of
up to about 100 atoms [46]. By living in 1D, not only is DMRG very efficient, but the thermo-
dynamic limit (of the number of atoms going to infinity with fixed interatomic spacing) is also
reached much more quickly than in 3D. Moreover, the parameters were chosen so that standard
density functional approximations, such as the local density approximation [50], succeeded and
failed in ways that were qualitatively similar to those in the real world [51]. We will refer to this
1D laboratory for further demonstration of some of the simple results shown in this chapter.

Takeaway: DFT is ideally suited to produce useful accuracy for ground-state energetics
of realistic Hamiltonians. Many-body theory is more often used to produce approximate
answers to model Hamiltonians, and often focuses on response properties. Both are
useful in their own fields and, increasingly, interesting problems require input from both.
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Mott-Hubbard Charge-Transfer

Fig. 1: Two distinct regimes of the asymmetric Hubbard dimer. On the left, the charging energy
is much greater than the difference in on-site potentials, and the left- and right-occupation
numbers are similar. On the right, the situation is reversed, and the occupation on the left is
much greater than that of the right.

1.2 Hubbard dimer

The Hubbard model (in 1, 2 or 3D) [52] is the standard model for studying the effects of strong
correlation on electrons. By default, it implies an infinite periodic array of sites. For our demon-
stration, we simply need two sites. We have NV = 2 and the ground-state is always a singlet.
The Hamiltonian (in 2nd quantization) is

FI = —{ Z (éIUéQU + hC> + U Z ﬁiTﬁi¢ + Z Uiﬁi . (2)

The kinetic term is just hopping between the sites, and is the discretization of the kinetic opera-
tor on the lattice, with the diagonal elements set to 0. The electron-electron repulsion is just an
onsite U, while the one-body operator is just an on-site potential, v; and v,.

In this chapter, we imagine a world in which Eq. (1) is replaced by Eq. (2), i.e., as if the many-
body problem to be solved is simply that of Eq. (2). So, for us, the Hubbard dimer is not an
approximation to anything. We will choose the values of U, ¢, and v; as we wish, to explore
various regimes in the model. Any question concerning the origins of these values in terms of
realistic orbitals and matrix elements is irrelevant to our work here.

Since a constant in the potential is just a shift in the energy, we set v = —v; and use the param-
eter Av =1wvy—v; as the sole determinant of the potential of our system. Similarly, with N =2,
ny = N—ny, and we use An =mny—n, as the single parameter characterizing the ground-state
density. Thus ground-state DFT in this model is simply site-occupation function theory (SOFT)
and density functionals are replaced by simple functions of a single variable, An. Finally, we
choose ¢ = 1/2 and report all variables in units of 2¢, as one can scale all energies by a constant.
Different physics appears depending on the ratio of U to Awv, i.e., on-site repulsion versus
inhomogeneity, see Fig. 1. When U >> Awv, the system is strongly correlated, with both site oc-
cupations close to 1, despite any inhomogeneity. For Av > U, the system is weakly correlated,
and the on-site U is insufficient to stop one occupation becoming much greater than the other.
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Fig. 2: Exact ground-state energy of the Hubbard dimer as a function of Av for several values
of U. The qualitative behavior changes as Av passes through U.

For those with a chemical inclination, this is a minimal basis model for a diatomic with 2
electrons (with some matrix elements and orbital overlap ignored). For Hy, Av = 0, but ¢
decreases as the separation between the nuclei is increased, so that U (in units of 2¢) grows
exponentially. The ground-state is close to a single Slater determinant near equilibrium (U <1),
so that Hartree-Fock (HF) is a reasonable approximation. But U>>1 when very stretched, so
that the ground-state is now a Heitler-London wavefunction, and (restricted) HF is very poor.
The highly unsymmetric case corresponds to HeH™", where both electrons reside on the He side,
as long as Av remains larger than U as the bond is stretched.

There are well-known analytic solutions for all states of the 2-site Hubbard model and the
behavior of the ground-state energy [25] is shown in Fig. 2. Simple limits include the symmetric
case

E=—\/1+U/22+U/2, An=0 SYM 3)

An expansion of the square root in the symmetric case in powers of U has a radius of conver-
gence of 2, while the opposite expansion in 1/U has a radius of 1/2. Thus there is a well-defined
critical point at U = 2, below which perturbation in the electron-electron coupling strength con-
verges, i.e., the system is weakly correlated, and above which it is strongly correlated. Another
simple limit is the non-interacting (tight-binding) case (U = 0)

Av
E=—V1+Av?2, An=-2—— U=0 4
v AN T A ©=0 @

which is given by the blue curve in the figure. We see from the figure that, on a broad scale, F ~
—(Av—U) ©(Av—U). Explicit formulas exist for all the excited-state energies, wavefunctions,
and densities also. Approximations in many different limits are given in the many appendices
of Reference [25].
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Fig. 3: Ground-state occupation of the Hubbard dimer as function of Av for several values of
U.

We can also extract any other property we wish from the analytic solution, such as the one-
electron density (here the occupations). Fig. 3 shows the ground-state density as a function of
Av for several values of U. For any U, n, = n; when Av = 0. The blue line is essentially the
tight-binding solution. In that case, as Av increases, the occupation difference rapidly increases
towards 2. Then, as we turn on U, this increase becomes less and less rapid. By the time U
reaches 10, the occupations remain close to balanced until Av becomes close to 10, when (on
the scale of Awv), it rapidly flips to close to 2.

Takeaway: We take the 2-site Hubbard model as our Hamiltonian, and apply DFT con-
cepts directly to it. Here, it is not a simple model for a more realistic Hamiltonian.

Analytic solutions are trivial, and we can plot any properties we wish.

2 Density functional theory

We have now defined the machinery required to understand the central theorems of DFT through
the lens of the Hubbard dimer. The theorems discussed in this section, like their real-space coun-
terparts, are exact and apply directly to ground-state calculations (we will cover time-dependent
DFT later). Most DFT calculations are used to determine the ground-state electronic energy of
a system, or more specifically, determine the energy of a system as a function of nuclear co-
ordinates. In this section, we will discuss the underlying principles of these calculations by
examining their role at the most fundamental level, in their simplest form.
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Fig. 4: Ground-state potential difference as a function of An for several values of U.

The Hohenberg-Kohn theorem [53] is actually three theorems in sequence. These were proved
in a simple proof-by-contradiction argument based on the Rayleigh-Ritz variational principle
for the wavefunction. Later, the more direct and more general constrained search approach was
given by Levy [54] and Lieb [13].

2.1 Hohenberg-Kohn I

HKI proves that the (usual) map of Av — An is invertible, i.e., An is a single-valued function
of Av for a given U. This is obvious from Fig. 3 (and its inversion, Fig. 4), and in the TB case

A

Fig. 4 is simply Fig. 3 drawn sideways, i.e., with x and y axes reversed. Clearly, for any given
value of U, there is a unique Av.

A much-stated (but often out of context) corollary of this is that all properties of the system
are (implicitly) functionals of n;. While this is true, almost all research in DFT focuses on
the ground-state energy functional, because it is so useful, and we have few useful approxima-
tions for others (e.g., for the first excited-state energy, but see discussion in TDDFT section).
Recently, machine learning methods have been trained to find some of these other function-
als [55,56].
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F(U,n,)

Fig. 5: Universal part of the energy function(al) of a Hubbard dimer as a function of ny for
several values of U. As U increases, F tends to U|1—n,|.

2.2 Hohenberg-Kohn II

HKII states that the function below exists and is independent of Auv:

Fy(ny) :‘111121511 (U|T + Voo | W) :%%X{E(Av) —AvAn/2}. (6)
where the minimum is over all antisymmetrized normalized 2-electron wavefunctions whose
occupation of site 1 is n;. The middle expression is the constrained search definition due to
Levy [57]. The rightmost form is due to Lieb [13]. Either definition works here. This F},
functional was termed universal by HK, by which they simply meant that it does not depend on
the Av of your given system, i.e., it is a pure density functional. The phrase, often appearing in
the literature, that /" is a universal functional, is not meaningful.

Although one can write analytic formulas for the ground-state energy for the dimer, there is no
explicit analytic formula for F. It is trivial to calculate /' numerically and F' is shown in the
Fig. 5. In the special case of U = 0, it is easy,

Fu—o(n1) =Ts(ny) = —v/n1(2 — ny). (7)

Here we have attached the subscript S to remind us that U = 0, so this is the kinetic energy
function for a single Slater determinant, and is indistinguishable from the blue line of Fig. 5.
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2.3 Hohenberg-Kohn IIT

HKIII states that there is a variational principle for the ground-state energy directly in terms of
the density alone:

E(Av) = min {FU(nl) + AUAn/Z}. (8)

This bypasses all the difficulties of approximating the wavefunction (but of course buries them
in the definition of ;). Usually, the minimum can be found from the Euler equation

dFy(ni)  Av

= 9
dn, 5 =0, €)

and the unique n; (Av) is the one that satisfies this equation.

This allows us to find a solution to the many-body problem, without ever calculating the wave-
function. Given an expression for Fy(nq), either exact or approximate, for any value of Awv,
one can solve Eq. (9) above to find the corresponding Av (exact or approximate) and insert into
Eq. (8) to find the energy. Any approximation to F'(n;) provides approximate solutions to all
many body problems (every value of Av).

Takeaway: The HK theorems prove the existence of an exact variational principle for the
ground-state energy based on the density, not the wavefunction, but give no information
on how to approximate it. This is an (almost) useless statement in practice. But to any
unbeliever in DFT, one can always tell them (to go look at) F7,.

3 Kohn-Sham DFT

The original DFT, called Thomas-Fermi theory [58, 59], tried to approximate F;(n;) directly,
but such direct approximations have never been accurate enough for most electronic structure
calculations. A tremendous step forward occurred when Kohn and Sham considered a fictitious
system of non-interacting fermions with the same ground-state density as the true many-body
one [60]. In our case, this is just the TB problem, for which we already have explicit solutions.
They wrote the F' function in terms of quantities that could easily be calculated in such a system:

Fy(ny) = Ts(ny) + Uu(ny) + Exc(ny). (10)

Here, 75 is just the TB hopping energy of Eq. (4), and the Hartree energy is just the mean-field
electron-electron repulsion

Un = %(n%ni), (11)

which is an explicit function of the occupations. Then Fx., the exchange-correlation (XC) en-
ergy (about which, much more, later) is simply everything else, i.e., Fx is defined by Eq. (10).
It is then trivial to show, from the Euler equation, that the TB potentials that will reproduce the

exact occupations are
OExc

Ui:Ui—i‘Uni—i‘ .
> anz

(12)
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Fig. 6: KS DFT view of an asymmetric half-filled Hubbard dimer as a function of U. The on-site
potential difference Av is shown in black and the KS on-site potential difference Avs is in red.

The first correction to v; is the Hartree potential, while the second is the XC potential. These
KS TB equations must be solved self-consistently, as the potentials depend on the occupations.
Once converged, the final densities can be used to extract the total energy of the MB system,
via

E=Ts+Uy+ Exc+V =¢— Uy + Exc — AvgcAn/2, (13)

where ¢ is the eigenvalue in the TB KS calculation. Again, just like in the HK case, once
Exc(nq) is given (either approximate or exact), the KS equations can be solved for any elec-
tronic system and a ground-state energy and occupation extracted.

The wondrous improvement due to the KS scheme is that only a small fraction of the total
energy (the XC part) need be approximated. Many of the most important quantum effects, such
as screening, shell structure, binding energies, etc. are mostly accounted for by the quantum
effects of the one-body system. Finally, a very simple, intuitive approximation suggested by
KS themselves (the local density approximation (LDA) [61, 50]) produced far better results
than they expected (but with binding energy errors too large for quantum chemistry taste).

Fig. 6 gives us some sense of how this works, for Av = 1. Then, if U = 0, most occupation is
on the left. For U = 2, the repulsion makes the occupations more equal. The KS potential is
simply that TB potential that produces those (many-body) occupations. So it must be a smaller
potential difference than the real potential. One can see that the Hartree potential will typically
overestimate repulsion, while XC corrects that to give the exact answer. Finally, when U 1is
ramped up to 5, the occupations become very close to equal, and the KS potential difference
becomes very small.
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Traditionally, F'x is separated into an exchange and a correlation contribution. The exchange
contribution is then defined as

By = (g |Vie| Bs) — Uy, (14)

where @ is the KS wavefunction, and FE is always negative. Then one can show correlation is
just
Eo = (V[H[¥) — (Ps|H|[Ps) (15)

and, by the variational principle, is also never positive. These definitions (almost) match those
of quantum chemistry [62], except that in KS-DFT, all orbitals come from a single potential,
while in HF orbitals are freely chosen to minimize the HF energy. But there are some surprises
relative to the traditional many-body expansion. For example, because of the definitions, E
includes some ‘self-exchange’, i.e., it is non-zero even for a single electron (where Fx is —Uy
and F, = 0). DFT approximations which do not satisfy these conditions for all one-electron
densities are said to have self-interaction errors [63]. Moreover, ‘higher-order exchange effects’
are all lumped into the correlation energy. In any event, for our 2-electron problem, in a spin
singlet, Fx = —Uy /2, but no simple relation exists for larger V.

The traditional Hartree-Fock approximation comes from expanding the electron-electron inter-
action to first order, which means neglecting F., and then minimizing the energy. In full DFT
terms, for our 2-electron system,

1
T =Ts+ 5Un; (16)

or in KS-DFT terms
Exe = —Un/2. (17)

Thus, solving the TB equation self-consistently with Eq. (17) produces the minimum for the
total energy using F''' of Eq. (16).

In Fig. 7, we show the contributions to the KS potential for a sequence of different U values, as a
function of the occupation. The effect of repulsion is to always oppose the potential difference,
making the KS potential difference smaller. In the first, U is small, and correlation is of order U?
(see Reference [25]). Thus the correlation contribution is negligible (red and green overlap) and
HF is an excellent approximation. In the middle, U = 1 is moderate, and now we begin to see
the difference correlation makes in the potential. Moreover, its effect is to make Awvyy. deviate
from a straight line. Finally, for strong correlation, the HXC potential (almost) exactly is equal
and opposite to the one-body potential. Again, the HX contribution has much curvature, but
now correlation wipes that out (almost) entirely. Clearly, the HF approximation will be terrible
for the potential in this case, and yield entirely incorrect densities. In fact, a lower-energy
solution appears if one allows spin symmetry breaking [64].

It is now relatively routine to calculate accurate KS potentials from highly accurate densities
found, e.g., via quantum chemical methods [65]. In an insanely demanding calculation, it is
even possible to solve the KS equations using the exact XC functional [66]. Convergence
becomes more difficult as correlations grow stronger, but remains possible [67].
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Fig. 7: Plots of Avg (blue) and its components, the one-body potential Av (black), the Hartree
plus exchange potentials, UAn /2 (red), and the same with correlation added, UAn /2 + Av,
(green) plotted against ny for various values of U.

Takeaway: The KS scheme is exact meaning that, if we only knew the exact exchange-
correlation functional, we could determine the ground-state energy exactly, of every elec-
tronic problem. There are many existing calculations of the exact XC potential. In prac-
tice, we must approximate XC, but because XC is a small fraction of the total energy,
standard KS calculations are usefully accurate for ground-state energies and densities.
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3.1 KS spectral function

There is a pernicious superstition [68] that the KS spectrum is related to the physical response
properties of the real system. This false belief has arisen because, for weakly correlated sys-
tems, this is approximately true, apart from the fundamental gap of a semiconductor. From a
practical viewpoint, the KS bands are marvelously useful as a starting point for Green function
calculations of real spectral functions. Moreover, long ago, when the local density approxima-
tion ruled supreme, there was no way to know if differences between the KS and exact response
properties was due to the crudeness of this approximation [69,70]. These days, there are simple
exact answers to such speculations, if we only have the patience to read them.

3.2 The ionization potential theorem

As a simple example of the mysterious workings of the exact functional, we state an important
exact result
I(N) = E(N—1) — E(N) = —"9(N). (18)

Here E(N) is the ground-state of the N-electron system, and £'© is the energy of the highest-
occupied KS orbital. (For those with some chemistry leaning, Koopmans’ theorem is an ap-
proximate version of this for HF calculations [71]). This illustrates some of the power of KS-
DFT. You might think that, with the exact functional, all one can extract is the ground-state
energy and density of our system. But the above result shows that the HO of the KS scheme
also tells you the ionization energy. One can also extract all static response functions exactly
by turning on weak external perturbations, and applying the exact functional to the perturbed
systems. In practice, standard DFT approximations tend to violate this exact condition very
badly [69, 70, 72]. Nonetheless, they often still yield usefully accurate ground-state energies,
thus performing their primary function. (On the other hand, returning to the discussion of HKI,
knowing the exact XC does not, in general, give you access to, say, the first excited state energy.
It is a functional of n; alone, but we cannot deduce that functional from Fy.(n;).)

Increasing N by 1 in Eq. (18) yields

A(N) = E(N) — E(N+1) = —"O(N+1) # "Y(N), (19)

where A is called the electron affinity of the system in chemistry. The difference between the
KS HO of the N+1 electron system and the lowest unoccupied (LU) level of the N-electron
system is called Ay, where the A indicates its origin from the infamous derivative discontinuity
of DFT [69]. This simply means, that at zero temperature, the energy of the system consists of
straight line segments between integer values, as shown below in Fig. 8. The energy itself is
continuous, but its derivative, the chemical potential, is not. For a neutral system, the chemical
potential is —I below the integer and — A above. This discontinuous jump in p shifts the KS
HO eigenvalue by the same amount, producing the difference with the KS LU of the neutral.
(Realistic electronic systems do not have an upward pointing portion of the curve in Fig. 8. This
occurs for the dimer because electrons cannot escape to outside the system.)
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2
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—

Fig. 8: Plot of E(N) for U = 1 and Av = 0.

3.3 Mind the gap

We are now ready to see the relevance of this to solids. Even for a finite system, we define the
charge (or fundamental) gap as
E,=1-A. (20)

As the size of the system grows toward a bulk material, this quantity tends to the fundamental
charge (or transport) gap of the system (at least for ordered systems [73]). But, because of
Egs. (18) and (19) above, we find

E,=FE, 4+ Axc, (21)

where L, , is the KS gap (i.e., the difference between the LU and HO level, or the gap between
the KS valence and conduction bands in a solid). Thus, with the exact XC functional of ground-
state DFT, we do not get the true gap by looking at its KS value for the neutral system.

Fig. 9 shows the spectral function (projected onto the left-hand site) in a weakly correlated
case [26], the symmetric dimer with U = 1. We can see the sense in which the KS spectral
function (red) resembles the blue exact one: the significant KS peaks are of about the same
height and position as their blue counterparts, and the blue peaks without KS counterparts are
relatively small. The KS gap is smaller than the true gap, but not by much. Because both the
KS and the exact spectral functions satisfy the same sum rule (even with an approximate XC),
if the dominant peaks are reproduced (even with the wrong gap), only small peaks are missed
in the KS spectrum.

On the other hand, Fig. 10 shows the same system with a larger U value. Now the strong KS
peaks are not in the right place and are noticeably too large. Moreover, the blue peaks with
no KS analogs are a substantial contribution. Finally, in the inhomogeneous case, the potential
asymmetry overcomes the effects of the Hubbard U. In Fig. 11, we see that for Av = 2 and
U =1, the KS spectral function is almost identical to the true one.



3.16 Kieron Burke and John Kozlowski

A’i‘,’..(_ U=1
04 ) ........... Av =0
- E :
ELql
0_2_ ..................... . ..... E - .......................
S 4 o0 1 2 3
m

Fig. 9: Spectral function of the symmetric dimer for U = 1 and Av = 0. The physical MB
peaks are plotted in blue. the KS in red. Here I = 0.1, A = —1.1. and £*Y = 0.9.
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Fig. 10: Same as Fig. 9, but now U = 5. Here I = —0.3, A = —4.7, and €*Y = 1.3. Note that
the KS gap remains unchanged by the alteration of U because An = 0 in both cases.

Lastly, we finish this section illustrating the relevance of this discussion to the thermodynamic
limit. The canonical example of the Mott-Hubbard transition is a chain (or lattice) of H atoms.
Each atom has one electron, so the bands of the KS potential are always half-filled, with no gap
at the Fermi energy. Thus the gap is always zero and the KS band structure suggests it’s a metal.
This may be true at moderate separations of the atoms, but as the separation is increased, the
electrons must localize on atoms, and it must become a Mott insulator.

Fig. 12 shows the gap, calculated for chains of well-separated 1D H atoms of increasing length
[46]. By performing the calculation with finite systems, i.e., without periodic boundary condi-
tions, we calculate the gap for each N by adding and removing electrons, as in Eq. (20), and
then take the limit as N — oo. On the other hand, we extract the exact ground-state density
from our DMRG calculation at each [V, and find the corresponding exact KS potential for each
N. We could then as easily extrapolate the KS gap, from the HO and LU, showing that indeed
the KS gap vanishes in the thermodynamic limit — exactly the same as if we had calculated the
KS band structure, in which the Fermi energy would be right in the middle of the band. This
provides a dramatic illustration of the KS underestimate of the true gap, even when using the
exact XC functional.
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Fig. 11: Same as Fig. 9, but now U = 1, Av = 2.
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Fig. 12: Exact gaps for chains of N soft hydrogen atoms with atomic separation b = 4 (error
bars are less than symbol sizes). The upper curve is a quadratic fit of exact gaps of the largest six
systems and extrapolates to a finite value E, =~ 0.33. The exact Kohn-Sham gaps, in contrast,
extrapolate to zero showing that for N — oo the true KS system is metallic (lower curve is a

linear fit of exact KS gaps of the largest six systems). Taken from Reference [46].

the exact KS gap can vanish for a simple Mott insulator.

Takeaway: The KS Green function does not match the true Green function. If corre-
lation is weak, it may be a good approximation to it, with its main deficiency being an
underestimate of the gap. For stronger correlations, there can be huge differences, and
there are always more features in the real Green function. In the thermodynamic limit,
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34

Talking about ground-state DFT

First, we review our crucial formal points.

1.

In general, the KS scheme with the exact functional yields ground-state energy and den-
sity, and any other quantities that can be teased from them, such as static response prop-
erties and ionization potentials.

There is no formal meaning for most KS eigenvalues in ground-state DFT, despite the fact
that many practitioners treat them as if there were. Of course, they do provide tremen-
dous physical and intuitive insight, especially for weakly correlated systems, where they
are good approximations to the excitations (either quasi-particle or optical). But when
correlations are strong, explicit methods are needed to correct them [74].

. The strongest manifestation of point 2 above is that the exact KS gap is typically smaller

than the true gap, and can vanish in cases where the true gap is finite (Mott insulator).

Moreover, there is an exact formula relating the total energy to the sum of the KS eigen-
values, which contains finite corrections for double counting. There is no ambiguity about
these corrections, they are derived from the formal theory, and yield the exact many-body
energy. But when correlated methods are used for a subset of the orbitals, ambiguities
can arise that affect occupancies [75].

. Although in principle, all properties are functionals of the ground-state density, knowl-

edge of the exact ground-state energy functional (via Ex.) does not provide a way to
calculate these other functionals. As we see later, TDDFT is a way to do precisely this.

Next, we discuss how these points show up in practical DFT calculations of solids, where XC

approximations must be made.

1.

The steady progress within quantum chemistry and materials in functional development
is almost entirely focused on improvements in accuracy and reliability of the total energy
for weakly correlated systems [76,77]. This is by far the most important use of DFT
in modern electronic structure. Such improvements are often not particularly relevant to
the response properties of greatest interest in strongly correlated materials. For example,
the KS eigenvalues are often not improved significantly by functionals yielding better
energies [78,79]. Although the KS eigenvalues cannot be directly interpreted in general,
they are uniquely defined (up to a constant). Thus the exact KS Hamiltonian is a well-
defined starting point for many-body methods.

The KS scheme is not a mean-field scheme in the traditional sense of the word, and it can
be extremely difficult to relate its features to those of traditional many-body theory. The
KS wavefunction is typically a single Slater determinant, but yields the exact many-body
energy via its density.
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3. Standard approximations, such as LDA and generalized gradient approximations (GGA),
by construction produce total energies that are smooth and continuous at integer /V, unlike
the exact £/(NN). Thus their corresponding Ay is zero [69]. According to Sec. 3.3, the
KS band gap in such approximations is their prediction for the fundamental gap. In fact,
it has been found that their KS gaps are likely a good approximation to the exact KS
gap [80], but their lack of discontinuous behavior means they miss the correction to turn
it into the true gap.

4. On the other hand, the range-separated hybrid functional HSE06 is well-known to pro-
duce reasonable gaps for moderate gap semiconductors. This is because, instead of per-
forming a true pure KS calculation, most codes (like VASP) perform a generalized KS
calculation [81] when a functional is orbital-dependent [82, 83]. They treat the orbital-
dependent part of the potential as if it were a many-body potential, just as is done in HF.
(A similar but smaller effect occurs in meta-GGA’s that depend on the kinetic energy den-
sity, such as SCAN [84]). And in fact clever tricks may be used to extract the true gap,
even from a periodic code [85].

Takeaway: Even with the exact functional, the KS band gap does not equal the true
transport gap of the system. Likely, semilocal functionals yield accurate KS gaps but,
because they lack a discontinuous behavior at integer particle numbers, cannot yield ac-
curate transport gaps. Modern hybrid functionals that depend explicitly on KS orbitals
yield band gaps closer to fundamental gaps, but only when treated with generalized KS
theory.

4 Time-dependent DFT (TDDFT)

Our last main section is about time-dependent density functional theory (TDDFT) [86-89].
While this uses many of the forms and conventions of ground-state DFT, it is in fact based on a
very different theorem from the HK theorems. When applied to the linear response of a system
to a dynamic electric field, it yields the optical transitions (and oscillator strengths) of that
system. It has become the standard method for extracting low-level excitations in molecules,
where traditional quantum chemical calculations are even more demanding than those for the
ground state.

The Runge-Gross theorem [90] states that, for a given initial wavefunction, statistics, and in-
teraction, the time-dependent density uniquely determines the one-body potential. In principle,
this can be used for any many-electron time-dependent problem, including those in strong laser
fields [86]. In practice, such calculations are limited by the accuracy of the approximations and
whether the observable of interest can be extracted directly from the one-electron density. One
constructs TD KS equations, defined to yield the exact time-dependent one-electron density.
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Because TDDFT applies to the time-dependent Schrodinger equation, the XC functional differs
from that of ground-state DFT in general, and has a time-dependence.

Our interest will be only in the linear-response regime. In that case, one can derive a crucial
result, which we give in operator form, called the Gross-Kohn equation [91]

X(@) = Xs(W) + xs(w) * (fu + fre(w)) * x(w), (22)

where x(w) is the dynamic density-density response function of the system, and xs is its KS
counterpart. The kernel, f, is the functional derivative of the time-dependent potential. Thus,
fu is the Hartree contribution, while fx.(w) is the XC correction.

Eq. (22) is a Dyson-like equation for the polarization. If we set fy. = 0, it is the standard
random-phase approximation, the Coulomb interaction simply dressing the bare interaction, and
producing all the bubble diagrams. But things get a little weird when we assert that inclusion
of fxc(w) produces the exact response of the system, for all frequencies. From a many-body
viewpoint, this is suspicious, as these are a closed set of equations without coupling to 4-point
functions. But the logic is sound and exactly analogous to the ground-state: there exists such a
function that could be considered as defined by Eq. (22).

The excitations of a system are given by poles of its response function. Simple analysis (ex-
actly that of RPA) yields a matrix equation that corrects KS transition frequencies to the true
transition frequencies, where the matrix elements involve f; + fxc. With standard ground-state
approximations, folks have merrily calculated mostly low-lying valence transitions from the
ground-state of many molecules [92], finding accuracies a little lower than those of ground-
state DFT [93], and computational costs that are comparable. This has been invaluable for
larger molecules, where many excitations of the same symmetry may overlap, and so TDDFT
yields a semiquantitative signature that can be easily matched with experiment [94].

However, not all is well in paradise. Almost immediately, it was noticed that the use of a
ground-state approximation is simply the static limit of the corresponding kernel, and can be
easily shown to produce only single excitations. While useful workarounds were created for
some cases, it was also found that going to higher-order response does not solve the problem.
And many of the most exciting transitions in biochemistry are double excitations.

s '

Takeaway: Time-dependent DFT applies DFT methods to time-dependent problems.
Within linear response, this yields exact expressions for the dynamic polarization, but
at the cost of introducing a new functional, the frequency-dependent XC kernel. Ignor-
ing its frequency dependence yields useful accuracy for low-lying molecular excitations
with standard functionals. TDDFT is now standard for calculating optical response of
molecules and materials.

4.1 Hubbard dimer

Happily we care only about Hubbard dimers, where everything is much simpler. First, we note
our Hubbard dimer, in the singlet space, has just three states: the ground-state, the first excited
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Fig. 13: Transition frequencies of the first and second excitations as a function of Av for U = 1.

state, which has a single excitation, and the second excited state, which is a double excitation
out of the ground-state. Since there are no spatial degrees of freedom, our y(w) is the Fourier
transform of An(t)/Awv(0), which is just a scalar, with w-dependence
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where w; denotes the transition frequency and a; is related to its oscillator strength [26]. Thus
X has poles at each of the transition frequencies. Fig. 13 shows the value of each of these
transitions as a function of Av for U = 1. The double excitation is a little above the single
for the symmetric case, but grows linearly with Av. The single remains about the same, and
even dips, until Av = U, and then begins to grow itself. Here we can use our model system to
examine one of the key mysteries of practical TDDFT: Where did all the higher excitations go?
First we do an exact ground-state KS calculation, as in the previous sections. Thus the exact
KS system is a tight-binding problem with effective potential, Avg, defined to yield the exact
ground state An. This yields two eigenvalues, the lower symmetric combination and the higher
asymmetric combination. The KS ground-state has the lower one doubly occupied. There do
exist KS analogs of the many-body states. The single excitation has one electron excited to the
higher level, the double has both. Fig. 14 adds the KS transitions to Fig. 13, showing that they
loosely follow the accurate transitions, but are significantly different.

In the KS response function, yg, the matrix elements of the density operator between ground
and double excitation are zero, since both KS orbitals are different, so the Slater determinants
are not coupled by a single density operator. Hence, such states have no numerator, eliminating
any poles that might have arisen in the denominator, i.e.,

Qs

Xs(w) = TR (24)

Thus the second KS transition, the double, does not appear at all in the response function! It’s
position is correctly marked in Fig. 14, but cannot be seen in 5.
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Fig. 14: Same as Fig. 13, but with KS transitions (depicted in blue). For Av > U, the KS
transition is a very good approximation to the true transition.
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Fig. 15: Same as Fig. 13, but with the adiabatically exact approximation (AE, pink dashes).

By requiring the poles occur at the right places, one finds (in general) a matrix equation in the
space of single excitations for the true transitions, whose elements are determined by the kernel.
Here, this is one dimensional, yielding

2
14+ Av2”

(25)
The adiabatically exact approximation (AE) is to use the exact ground-state functional here
to calculate fyxc. This corrects the single KS transition and is shown in Fig. 15. This works
extremely well to capture almost all the difference with the KS transition, yielding very accurate
excitations. This becomes even better for Av greater than U, where the corrections virtually
vanish (just as in Fig. 11 for the spectral function).

But Eq. (25) just has one solution if the w-dependence in the kernel is neglected. On the other
hand, if there is strong frequency dependence in the kernel, new transitions, not in the KS
system, may appear. In fact, we know that is precisely what happens, as the physical system
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Fig. 16: Frequency dependence of exact (black) and Kohn-Sham susceptibilities (blue) and
exchange-correlation kernel (red) for U = Av = 1. Poles marked by dashed vertical lines, as
a function of frequency v. The red line shows the exchange-correlation kernel.

does have a double excitation. To understand how standard TDDEFT fails, we note that we
can calculate the exact kernel by finding x(w) from many-body calculations, xs(w) by the
techniques of the earlier section, inverting and subtracting

fuxe(W) = x5 ' (w) = x " (w). (26)

Fig. 16 shows the singular frequency-dependence of the kernel from Eq. (26), which allows
Eq. (25) to have an additional solution.

However, while all this provides insight into how the exact functional performs its magic, it does
not tell us directly how to create a general purpose model, which would build this frequency-
dependence into an explicit density functional sufficiently accurately to capture double excita-
tions [89].

Takeaway: The Hubbard dimer demonstrates the accuracy of the adiabatic approxima-
tion in TDDFT for single excitations, and also the missing frequency dependence needed
to generate the double excitations missing in adiabatic TDDFT.

4.2 Talking about TDDFT

We saw in the earlier sections how the KS eigenvalues did not have a formal meaning in pure
ground-state KS-DFT. We have seen here that, with the advent of TDDFT, they form the starting
point of a scheme which produces the optical excitations. These are not the quasi-particle
excitations associated with the Green function, which involve a change in particle number.

While the primary function of approximate ground-state DFT is to find energies, it usually also
produces reasonably accurate densities, but rather erroneous XC potentials. In fact, this feat is
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achieved by having all the occupied orbitals shifted (higher) than their exact KS counterparts. A
constant shift has no effect on the density. But if the unoccupied levels (at least, the low-lying
valence excitations) suffer the same shift, then KS transition frequencies are unaffected, and
the adiabatic approximation (usually applied to the same XC approximation as the ground-state
calculation) is reasonably accurate for many weakly correlated molecules.

Linear-response TDDFT has been less used in solids, because in the case of insulators, it became
clear early on [95] that there is a long-range contribution to the XC kernel (as long-ranged as
the Hartree contribution is) that is missed when using a semilocal ground-state approximation
adiabatically. There are now many ways around this difficulty [96], some based on modelling
the kernel using many-body techniques.

There have been many other approaches suggested for extracting optical excitations from DFT.
An old simple one is called A-SCF [97], which involves simply using excited-state occupation
numbers in a KS calculation, and finding the energy the usual way. Another, which has seen
considerable recent interest [98,99], is to use ensemble DFT [100].

Takeaway: TDDFT can be considered an algorithm for finding the functional (of the
ground-state density) for optical excitations.

5 Summary

This short review is aimed at broadening understanding of the basic differences between a den-
sity functional viewpoint and that of traditional many-body theory. The emphasis here has been
on the exact theory, which we have illustrated on the 2-site Hubbard model. We have shown
it is confusing to consider KS theory as any kind of traditional mean-field theory, and how the
addition of TDDFT allows one to consider the KS eigenvalues as zero-order approximations to
the optical excitations, not the quasiparticle excitations.

However, the only reason that anyone cares about the exact theory of DFT is because, in prac-
tice, it is extremely useful with relatively unsophisticated approximations. These begin with
the famous local density approximation, in which the XC energy per electron at each point in
a system is approximated by that of a uniform gas matching the density at this point. This was
introduced already in the KS paper (where the statement of exactness appears as a mere foot-
note), thereby totally muddying the waters between exact and approximate statements. Walter
Kohn told KB that he simply noticed the exact nature of the KS scheme after submitting the pa-
per. From about 1990 onwards, many users began using more sophisticated functionals, whose
primary effect was to improve total energies and energy differences.

This article has said little or nothing about how to understand such approximations. This is be-
cause local (and semilocal) approximations capture a universal limit of all electronic systems,
by yielding relatively exact XC energies in this limit [101-104]. Traditional many-body theory
generally considers a power series expansion in the electron-electron interaction. The alterna-
tive limit simultaneously increases the number of particles, in a way that the total electron-
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electron repulsion remains a finite fraction of the total energy even as interactions become
weaker. The simplest example of this is that the LDA for exchange, whose formula can be
derived by hand, has a percentage error that vanishes for atoms as Z = N — oo [102].

This limit is hard-wired into the last term of the real-space Hamiltonian of Eq. (1), which is
the integral of the density times the one-body potential. This is why the density is the basic
variable in DFT. Even if formal theorems can be proven using other variables, this is why
density functional theory has been so successful. It is also the case that the one-body potentials
to which we apply DFT are diagonal in coordinate space, which is related to why the LDA is a
universal limit.

Thus, key aspects of DFT approximations that are crucial to its success are missing from lattice
models like the Hubbard model. There is no corresponding universal limit in which LDA be-
comes exact, even if one uses an approximation based on the uniform case [105, 106]. Again,
this is why we created our 1D real-space mimic of 3D reality, instead of just solving lattice
models.

Takeaway: This chapter has illustrated a variety of key conceptual points about DFT on
a simple model system. Anyone who can answer the exercises will have absorbed 90% of
the material, and should be well-qualified to understand exactly what a DFT calculation
does, and does not, tell you. In the twenty-first century, with so many DFT calculations
being performed in so many different fields, the phrase “Oh, that’s just mean-field theory”
should no longer have any place in scientific discussions about DFT results.
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A

Exercises

If you have followed the logic throughout this tutorial, you will enjoy sorting out these little

questions. If you want solutions, please email either of the authors, with a brief note about your

current status and interests.

10.

11.

12.

13.

14.

15.

. State which aspect of Fig. 4 illustrates the HKI theorem.

What geometrical construction gives you the corresponding ground-state potential for a
given n4 in Fig. 57

. Study the extreme edges (n; = 0 and 2) of Fig. 5. What interesting qualitative feature is

barely visible, and why must it be there?

What feature must always be present in Fig. 5 near n; = 1? Explain.

. How can you be sure that, no matter how large U becomes, Fy;(n;) is never quite U|1—n,|?

Assuming the blue line is essentially that of U = 0, use geometry on Fig. 3 to find Avy
for U = 5.

What is the relation, if any, between each of the blue plots in the three panels of Fig. 7?
Explain.

What is the relation, if any, between each of the red plots in the three panels of Fig. 7?
Explain.

Why is the green line almost the mirror image of the black line in the U = 10 panel of
Fig. 77 Could it be the exact mirror image? Explain.

From Fig. 8, using E(N) about N = 2, determine the locations of the largest peaks of
Fig. 9 and compute the gap between them.

Sketch how Fig. 8 must look if U = 10 and Av = 0.
What is the relation between the two blue lines in Fig. 14? Explain.

Give a rule relating the numbers of vertical lines of different color in Fig. 16.
Explain its significance.

Recall the definition of the kernel from section 4. Using this, derive f;; and fx, and draw
them on Fig. 16. Explain where double excitations must come from for 2 electrons.

Using formulas and figures from both sections, deduce the results of Fig. 15 in the absence
of correlation (Hint: You will need to solve the Hartree-Fock self-consistent equations),
and comment on the relative errors. This is a little more work than the other exercises.
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