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6.2 Robert Eder

1 Introduction

Green functions are quantities of central importance in the theory of interacting many-particle
systems. In simplest terms they may be viewed as describing the propagation of some kind
of ‘perturbation’ through a system of interacting particles. On one hand, by their very defi-
nition Green functions contain information about the system which can be directly compared
to experiments, on the other hand they are a useful mathematical tool because there is a wide
variety of techniques to calculate them approximately, and thus overcome the, in general, insol-
uble nature of the many-particle problem. Of particular importance is the single-particle Green
function G(k, ω), which describes the propagation of an added particle with wave number k

and energy ~ω through the system and which is directly related to the experimentally mea-
surable photoemission and inverse photoemission spectrum. The famous Dyson equation then
expresses the single-particle Green function in terms of another central quantity in many-body
physics, the self-energy Σ(k, ω). This may be viewed as a k- and ω-dependent potential which
mimics the effect of the other particles on the propagation of the added particle (it is therefore
hardly a surprise that to simplest approximation the self-energy equals the Hartree-Fock poten-
tial). However, the physical significance of the self-energy is considerably wider. Namely, in
1961 Luttinger and Ward (LW) published a seminal paper [1] which became the foundation of
many important developments in the quantum theory of many-particle systems. They showed
that the grand canonical potential Ω of an interacting Fermion system can be expressed as a
functional of the single-particle Green function G(k, ω) and the self-energy Σ(k, ω). A key
step thereby was the construction of the Luttinger-Ward functional Φ[G], a functional of the
Green function which essentially describes the deviation of Ω from a non-interacting system
with the same band structure as the interacting one. Luttinger and Ward gave an explicit ex-
pression for Φ[G] as a sum over infinitely many Feynman diagrams and also showed that Σ
is the functional derivative of Φ[G] with respect to G and that Ω is stationary under variations
of Σ. The expression for Ω and the properties of Φ[G] became the basis for many important
results, such as the Luttinger theorem [2] which states that interactions between electrons do
not change the volume of the Fermi surface, or the construction of conserving approximations
by Baym and Kadanoff [3,4], where Φ[G] is approximated by keeping only a subclass of Feyn-
man diagrams. While the representation of Green functions in terms of Feynman diagrams was
highly successful for systems such as the electron gas, a new challenge arose with increasing
interest in strongly correlated electron systems such as the Hubbard model. Namely any Feyn-
man diagram expansion implicitly treats the interaction between the particles as a perturbation
and assumes a continuous evolution from the noninteracting case, which is highly questionable
for systems such as Mott-insulators. It is the purpose of the present lecture to sketch a further
development of the ideas of Luttinger and Ward which is mainly due to Potthoff, the so-called
self-energy functional theory. We present Potthoff’s non-perturbative re-derivation of the re-
sults of Luttinger and Ward [5, 6] and the application of their theorems to strongly correlated
electron systems by combining them with numerical methods. As an application, we discuss
the metal-insulator transition in the single-band Hubbard model.
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2 Green functions and the self-energy

2.1 The Green function and its analytical properties

We start with a discussion of Green functions and their properties and use. We will not cover
the representation of Green functions in terms of Feynman diagrams, since excellent introduc-
tions to this subject can be found in various textbooks [7–9]. In the present notes we try to be
consistent with Fetter/Walecka (FW) [8].
We consider a system of interacting fermions and assume that there is some complete basis of
single electron states ϕα(x). Here x = (r, σ) is the combined real-space and spin coordinate,
whereas α is shorthand for a set of quantum numbers. For example, in an LCAO-type descrip-
tion of a solid – which is what we mostly have in mind – we would have α = (i, n, ν, σ) where
i ∈ {1, . . . , N} denotes the unit cell, n ∈ {1, . . . , nAtom} the number of the atoms in the basis,
ν ∈ {s, px, py, pz, dxy . . . } the type of orbital on the respective atom, and σ the z-component
of spin. We denote the number of orbitals in a unit cell by norb , the total number of α’s thus is
Nα = 2Nnorb . Upon Fourier transformation one would replace i→ k, the wave vector.
In all that follows we consider a grand canonical ensemble with inverse temperature β = 1/kBT

and chemical potential µ. Introducing fermionic creation/annihilation operators c†α/cα for elec-
trons in the states ϕα(x), the grand canonical Hamiltonian K = H−µN̂ (with N̂ the operator
for the number of electrons) can be written as K = K0 +K1 with [7–9]

K0 =
∑
α,β

(
tα,β−µ δα,β

)
c†αcβ and K1 =

1

2

∑
α,β,γ,δ

Vα,β,δ,γ c
†
αc
†
βcγcδ. (1)

The matrix elements in this Hamiltonian are given by

tα,β =

∫
dx ϕ∗α(x)

(
− ~2

2m
∇2+V (r)

)
ϕβ(x),

Vα,β,δ,γ =

∫
dx

∫
dx′ ϕ∗α(x)ϕ∗β(x′) V (x−x′) ϕγ(x′)ϕδ(x).

For later reference we calculate

[cα, K] =
∑
β

(
tα,β−µδα,β

)
cβ +

∑
β,γ,δ

Vα,β,δ,γ c
†
βcγcδ, (2)

where we have used the identity Vα,β,γ,δ = Vβ,α,δ,γ obtained by exchanging the integration
variables x ↔ x′ in the definition of V . It obviously holds that [H, N̂ ] = 0 so that eigenstates
of H have a fixed particle number. The thermal average of any operator Ô is〈

Ô
〉
th

=
1

Z
Tr
(
e−βKÔ

)
=

1

Z

∑
i

e−βKi 〈i|Ô|i〉. (3)

Here |i〉 are the eigenstates of H , H|i〉 = Ei|i〉, and Ki = Ei−µNi the corresponding eigenval-
ues of K. Also,

Z = Tr
(
e−βK

)
=
∑
i

e−βKi (4)
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is the grand partition function, which is a quantity of interest by itself, because the grand canon-
ical potential of the system is given by Ω = −kBT log(Z).
We proceed to the definition of Green functions which basically describe the following gedanken
experiment: the system is initially in thermal equilibrium, but at a certain time t we do some-
thing to the system by acting with an operator Â. Â could add or remove an electron, flip a
spin or similar. We then let the system evolve for some time and undo the change at a time t′

by acting with an operator B̂, which often is Â†. We then form the overlap with the state we
would have obtained had the system evolved without perturbation. In other words, the Green
function describes how the ‘perturbation’ created by Â propagates in the interval t→ t′ before
it is removed by B̂.
We now formalize this idea, but for reasons which will become clear only later we make a
digression and first introduce imaginary time Green functions. Moreover, we specialize to the
single particle Green function, where the perturbation is removing or adding a particle, i.e.
Â = cα and B̂ = c†β , or vice versa. For any operator Ô the imaginary time Heisenberg operator
is Ô(τ) = eτK/~ Ô e−τK/~ and the imaginary time Green function is

Gα,β(τ, τ ′) = −
〈
T cα(τ)c†β(τ ′)

〉
th

= −Θ(τ−τ ′)
〈
cα(τ)c†β(τ ′)

〉
th

+Θ(τ ′−τ)
〈
c†β(τ ′)cα(τ)

〉
th

(5)

=
1

Z

(
−Θ(τ−τ ′)

∑
i,j

e−βKi e
τ−τ ′

~ (Ki−Kj) 〈i|cα|j〉〈j|c
†
β|i〉

+Θ(τ ′−τ)
∑
i,j

e−βKi e
τ−τ ′

~ (Kj−Ki) 〈i|c†β|j〉〈j|cα|i〉
)
. (6)

T in the first line is the time ordering operator, which reorders the following Heisenberg op-
erators such that their times decrease from left to right and multiplies by (−1) for each ex-
change of two Fermion operators, as can be seen in the second line. In going from the sec-
ond to last line we have used (3), inserted a resolution of unity

∑
j |j〉〈j| = 1, and used

〈i|Ô(τ)|j〉 = e
τ
~ (Ki−Kj) 〈i|Ô|j〉. Eq. (6) shows that Gα,β really is a function of τ−τ ′ only:

Gα,β(τ, τ ′) = Gα,β(τ−τ ′). To simplify the notation we henceforth replace τ−τ ′ → τ , which
is equivalent to choosing τ ′ = 0. The τ -dependence of both terms in (6) is e(−β+

|τ |
~ )Ki e−

|τ |
~ Kj .

Since the Ki are bounded from below, namely by K0 for the ground state with the given µ,
but unbounded from above in the thermodynamical limit, G is therefore well-defined only for
τ ∈ [−β~, β~] [10]. It therefore can be written as a Fourier series with frequencies nπ/~β.
However, it is easy to see from (6) that for τ ∈ [−β~, 0] one has G(τ+β~) = −G(τ), so that
only odd n can contribute. All in all we find the Fourier expansion

G(τ) =
1

β~

∞∑
ν=−∞

e−iωντ G(iων), (7)

G(iων) =

∫ β~

0

dτ eiωντ G(τ), (8)

with ων = (2ν + 1)π/β~ and integer ν. The ων are the Fermionic Matsubara frequencies.
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Performing the integral (8) with (6) forGα,β(τ), thereby using eiωνβ~ = −1 for any ν, we obtain

Gα,β(iων) =
1

Z

∑
i,j

e−βKi + e−βKj

iων − 1
~(Kj−Ki)

〈i|cα|j〉〈j|c
†
β|i〉. (9)

This so-called Lehmann representation of the Green function is exact but not really helpful for
practical computations because it requires knowledge of all eigenstates and energies of H . It
can be used, however, for establishing certain properties of the Green function as will be seen
in the following.
We proceed to the definition of the real-time Green function. Defining the real-time Heisenberg
operator Ô(τ) = eitK/~ Ô e−itK/~ the retarded real-time Green function is

GR
α,β(t, t′) = −iΘ(t−t′)

(〈
cα(t)c†β(t′)

〉
th

+
〈
c†β(t′)cα(t)

〉
th

)
,

= −iΘ(t−t′) 1

Z

(∑
i,j

e−βKi ei
t−t′
~ (Ki−Kj) 〈i|cα|j〉〈j|c

†
β|i〉

+
∑
i,j

e−βKi ei
t−t′
~ (Kj−Ki) 〈i|c†β|j〉〈j|cα|i〉

)
. (10)

Again this is a function of t−t′ only and, using the formula derived in Appendix A,

−iΘ(t) e−iEt = lim
η→0+

1

2π

∫ ∞
−∞

dω
e−iωt

ω−E+iη

we find its Fourier transform

GR
α,β(ω) =

1

Z
lim
η→0+

∑
i,j

e−βKi + e−βKj

ω + iη − 1
~(Kj−Ki)

〈i|cα|j〉 〈j|c
†
β|i〉. (11)

Comparison with Eq. (9) shows that GR
α,β(ω) can be obtained from Gα,β(iων) by replacing

iων → ω+iη. In other words, there is one function Gα,β(z) of the complex variable z, often
called the Green function, which gives Gα,β(iων) when evaluated for the Matsubara frequen-
cies, and GR

α,β(ω) when evaluated on a line infinitesimally above the real axis. The existence of
such a function is the very reason why the imaginary time Green function is introduced in the
first place. In principle, the quantities of interest, of course, are the real-time Green functions.
For example, the single-particle Green function (11) contains information about the photoemis-
sion and inverse photoemission spectrum of the system. On the other hand, the imaginary-time
Green function (9) can be evaluated approximately by using the powerful technique of expan-
sion in Feynman diagrams [7–9], which is not possible for the real-time Green function. The
standard way to obtain the real-time Green functions, which is used again and again in the liter-
ature, is to first obtain an approximate Gα,β(iων) by doing an expansion in Feynman diagrams
and then obtain the real-time Green function by continuing it analytically to a line infinitesi-
mally above the real axis. If one has an analytical expression for Gα,β(iων) this can be done by
simply replacing iων → ω+iη.
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We now discuss some properties of the Green function. In Eq. (11) the product of matrix ele-
ments 〈i|cα|j〉〈j|c

†
β|i〉 can differ from zero only if Nj = Ni+1, whence Kj−Ki = Ej−Ei−µ.

Gα,β(z) therefore has poles on the real axis, which correspond to differences of energies of
states whose electron number differ by one. Next, we rewrite the Green function as

G(z) =

∫ ∞
−∞

dω
ρ(ω)

z−ω
, (12)

where the elements of the spectral density matrix ρ(ω) can be read off from (9)

ρα,β(ω) =
1

Z

∑
i,j

(
e−βKi+e−βKj

)
〈i|cα|j〉〈j|c

†
β|i〉 δ

(
ω − Ki−Kj

~

)
. (13)

Since ω is real we find ρ∗α,β(ω) = ρβ,α(ω), i.e., ρ(ω) is Hermitian for any ω. Next consider any
vector v of length Nα and define the linear combination c†v =

∑
vαc
†
α. Then∑

α,β

v∗α ρα,β(ω) vβ =
1

Z

∑
i,j

(
e−βKi+e−βKj

) ∣∣〈j|c†v|i〉∣∣2 δ(ω − Ki−Kj

~

)
> 0

i.e., ρ(ω) is positive definite for each ω. It then follows from (12) that
(
G(z)

)+
= G(z∗) so

that G(z) is not Hermitian for complex z. Next consider

f(z) =
∑
α,β

v∗α Gα,β(z) vβ =
1

Z

∑
i,j

e−βKi + e−βKj

z − Ki−Kj
~

∣∣〈j|c†v|i〉∣∣2. (14)

We write z = x+iy and find the imaginary part of this to be

=f(z) = − y
Z

∑
i,j

e−βKi + e−βKj(
x− Ki−Kj

~

)2
+ y2

∣∣〈j|c†v|i〉∣∣2. (15)

This expression cannot vanish unless y = 0, so that for z away from the real axis all eigenvalues
of G(z) must have a nonvanishing imaginary part, otherwise we could choose v to be the nor-
malized right-hand eigenvector belonging to a purely real eigenvalue λ and find that f(z)=λ, in
contradiction to (15). This implies in particular that for z away from the real axis all eigenvalues
of G(z) are different from zero so that the determinant of G(z) is different from zero [11] and
its inverse G−1(z) does exist. Using Cramer’s rule we find the elements of the inverse Green
function

G−1α,β(z) =
(−1)α+β det Mα,β(z)

det G(z)

where Mα,β(z) is the respective minor of G(z), i.e. the matrix G(z) with line α and column β
discarded. Since for z away from the real axis all elements of G(z) are finite (see Eq. (9)) and
the determinant of G(z) is different from zero it moreover follows that away from the real axis
all elements of G−1(z) are analytical functions of z.
We proceed to a discussion of the behavior of G(z) for large |z|. We assume that the range of ω
where the elements of ρ(ω) are different from zero is finite, which simply means that the change
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in energy upon adding or removing an electron is bounded. To discuss the limit |z| → ∞ we
rewrite G(z) as

Gα,β(z) =
1

Z

∑
i,j

e−βKi

(
〈i|cα|j〉〈j|c†β|i〉
z − Kj−Ki

~

+
〈i|c†β|j〉〈j|cα|i〉
z +

Kj−Ki
~

)
, (16)

and expand
1

z ± Kj−Ki
~

→ 1

z
∓ Kj−Ki

~z2
+O

(
1

z3

)
.

Next use (Kj−Ki)〈j|cα|i〉 = 〈j|Kcα|i〉 − 〈j|cαK|i〉 = 〈j|[K, cα]|i〉 and find

Gα,β(z)→ δα,β
z

+

〈{
c†β, [cα, K]

}〉
th

~z2
+O

(
1

z3

)
.

Using (2) we obtain〈{
c†β, [cα, K]

}〉
th

= tα,β−µδα,β +
∑
γ,δ

(
Vα,γ,β,δ−Vα,γ,δ,β

) 〈
c†γcδ

〉
th
. (17)

The term involving V looks like the Hartree-Fock potential V (HF )
α,β , however, whereas for the

true Hartree-Fock potential the thermal average has to be taken using the Hartree-Fock wave
functions and energies, the thermal average in (17) has to be taken using the fully interacting
eigenstates and energies. Keeping this subtle difference in mind we still call the third term the
Hartree-Fock potential V (HF )

α,β so that

G(z)→ 1

z
+

t−µ+V(HF )

~z2
+O

(
1

z3

)
. (18)

Eq. (16) also highlights the physical content of the Green function. We consider a single band
of non-interacting electrons where α = (k, σ), and K =

∑
k (εk−µ) c†k,σck,σ. All eigenstates

can then be characterized by the occupation numbers of the states (k, σ) being either 0 or 1. In

Gk,k(z) =
1

Z

∑
i,j

e−βKi

(
〈i|c†k,σ|j〉〈j|ck,σ|i〉

z +
Kj−Ki

~

+
〈i|ck,σ|j〉〈j|c

†
k,σ|i〉

z − Kj−Ki
~

)
the matrix element 〈j|ck,σ|i〉 in the first term is then different from zero only if |i〉 has an electron
in the single-electron state (k, σ), whereas |j〉 has none, while all other momenta have identical
occupation. It follows that Ei = Ej+εk, whence Kj−Ki = −εk+µ. The first term therefore
describes the removal of an electron with momentum k and spin σ. By analogous reasoning, in
the second term Kj−Ki = εk−µ and this term describes addition of an electron. In both terms
Kj−Ki is independent of both, |i〉 and |j〉, so that we can use

∑
j |j〉〈j| = 1 and find

Gk,k(z) =
1

Z

∑
i

e−βKi

(
〈i|c†k,σ ck,σ|i〉
z − εk−µ

~
+
〈i|ck,σ c

†
k,σ|i〉

z − εk−µ
~

)
=
〈nk,σ〉th
z − εk−µ

~
+
〈1−nk,σ〉th
z − εk−µ

~
.

Both terms have poles which trace the electrons’ dispersion relation εk−µ, but the first term
describes only the occupied part of the band, the second term the unoccupied part. The Green
function is the combined photoemission and inverse photoemission spectrum and this holds true
also for the interacting case.
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2.2 The self-energy and its analytical properties

We proceed to the definition of another key quantity, the self-energy, and start by discussing the
equation of motion of the imaginary time Green function Eq. (5). We set Gα,β(τ, 0)→Gα,β(τ).
It follows readily from the definition of the imaginary-time Heisenberg operator Ô(τ) that
−~∂τ Ô(τ) = [Ô(τ), K]. Moreover, using, e.g., the representation Θ(τ) =

∫ τ
−∞dx δ(x) one

finds ∂τΘ(±τ) = ±δ(τ). Combining everything we get the equation of motion of the Green
function

−~∂τGα,β(τ) = ~ δ(τ)
〈{
cα, c

†
β

}〉
th

+
〈
T
[
cα(τ), K

]
c†β(0)

〉
th

= ~ δ(τ) δα,β +
∑
ν

(
tα,ν−µδα,ν

)
Gν,β(τ) + Fα,β(τ), (19)

Fα,β(τ) = −
∑
ν,κ,λ

Vα,ν,κ,λ

〈
T
[
(c†νcλcκ)(τ)c†β(0)

]〉
th
, (20)

where (2) was used. In the noninteracting case, i.e., all Vα,ν,κ,λ=0 we have Fα,β(τ)=0 and the
equation closes. Using the representation of the δ-function in terms of Matsubara-frequencies [8]

δ(τ) =
1

~β

∞∑
ν=−∞

e−iωντ

straightforward Fourier transform gives the noninteracting Green function(
iων −

t−µ
~

)
G0(iων) = 1. (21)

We return to the case V 6= 0. We recall that G(τ) fulfills G(τ+β~) = −G(τ) for τ ∈ [−β~, 0],
which established its Fourier expansion (7). It follows that ∂τG(τ+β~) = −∂τG(τ) whence
F (τ) must obey the same boundary condition: F (τ+β~) = −F (τ). Accordingly, F (τ) has the
same Fourier expansion (7) as G(τ) itself and we find(

iων −
t−µ
~

)
G(iων)−

1

~
F (iων) = 1.

Now we define the self-energyΣ(iων) byF (iων) = ~Σ(iων) G(iων) (recall that G−1(z) exists
for all z away from the real axis so thatΣ(iων) is well defined) whence(

iων −
t−µ
~
−Σ(iων)

)
G(iων) = 1. (22)

By analytical continuation, iων → z, this equation defines Σ(z) for all z away from the real
axis. Next, notice that the brackets on the left-hand side of (21) and (22) are G−10 (z) and
G−1(z), respectively, so that we immediately read off the famous Dyson equation

G−1(z) = G−10 (z)−Σ(z) = z − t−µ
~
−Σ(z). (23)
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2C

C1

z

Fig. 1: Integration contours for the proof of the spectral representation of Σ. The dashed line
is the real z′ axis.

We discuss some properties of Σ(z) which follow from its definition. Since both G−1(z) and
G−10 (z) are analytical in the complex z-plane except for the real axis, the same must hold true
forΣ(z). Next, it follows from (18) that

G−1(z)→ z − t−µ
~
− V(HF )

~
+O

(
1

z

)
⇒ Σ(z)→ V(HF )

~
+O

(
1

z

)
.

The shifted function Σ̄(z) = Σ(z)−V(HF)

~ therefore vanishes as 1/z for large |z|. Now consider
the equation G−1(z) G(z) = 1, take the Hermitian conjugate and use [G(z)]+ = G(z∗). It fol-
lows that [G−1(z)]+ = G−1(z∗). Since trivially [G−10 (z)]+ = G−10 (z∗) and VHF is Hermitian
it follows that Σ̄(z∗) = Σ̄+(z). Next, for real ω, define the real matrices K(ω) and J(ω) by

Σ̄(ω+i0+) = K(ω) + iJ(ω) ⇒ Σ̄(ω−i0+) = KT (ω)− iJT (ω). (24)

We introduce the symmetrized/antisymmetrized linear combinations K(±) = (K±KT )/2 and
J(±) = (J± JT )/2 whence

Σ̄(+)(z) =
1

2

(
Σ̄(z)+Σ̄T (z)

)
, Σ̄(−)(z) =

i

2

(
Σ̄(z)−Σ̄T (z)

)
. (25)

The latter can be expressed in terms of K(±)(z) and J(±)(z) as

Σ̄(+)(ω±i0+) = K(+)(ω)± iJ(+)(ω),

Σ̄(−)(ω±i0+) = −J(−)(ω)± iK(−)(ω). (26)

Now consider the integration contours in figure 1 which consist of lines infinitesimally above
and below the real axis and semicircles at infinity. Since Σ̄(z) is analytic away from the real
axis we have for any z in the upper half-plane∮

C1

dz′
Σ̄(±)(z′)

z′−z
= 0 ⇒

∫ ∞
−∞

dω
Σ̄(±)(ω−i0+)

ω−z
= 0 . (27)

The second equation follows because the integrand is ∝ 1/z′2 for large |z′| so that the contri-
bution from the arc vanishes and only the line infinitesimally below the real axis contributes,
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where z = ω−i0+, and ω− i0+−z = ω−z whenever z has a finite imaginary part. We can now
use (26) and obtain ∫ ∞

−∞
dω

K(±)(ω)

ω−z
= i

∫ ∞
−∞

dω
J(±)(ω)

ω−z
. (28)

Next we apply Cauchy’s theorem to the contour C2 in figure 1 and find

Σ̄(±)(z) =
1

2πi

∮
C2

dz′
Σ̄(±)(z′)

z′−z
.

Again the contribution from the arc vanishes. We use (28) to eliminate the integrals over K(+)

and J(−), revert (25) to obtain Σ̄(z) and arrive at the spectral representation of the self-energy,
as derived by Luttinger [12]

Σ(z) =
V(HF )

~
+

∫ ∞
−∞

dω
σ(ω)

ω−z
. (29)

Here, the Hermitian matrix σ(ω) = J(+)(ω)−iK(−)(ω).
Lastly, we notice a property of the self-energy that will be of some importance later on: we will
often be concerned with systems which contain both, ‘correlated orbitals’ and ‘uncorrelated
orbitals’. A given orbital α is ‘uncorrelated’ if all interaction matrix elements Vκλµν = 0 if at
least one of the four indices equals α. In other words, electrons in an uncorrelated orbital do
not interact with the other electrons. An example is the well-known Anderson model where
one usually has correlated ‘f -orbitals’ hybridizing with uncorrelated ‘conduction electrons’. It
then follows from the definition (20) that Fα,β(z) = 0 whenever α or β are uncorrelated, and the
same holds true for Σα,β(z): matrix elements of the self-energy involving uncorrelated orbitals
are zero!

2.3 Physical significance of the self-energy

We briefly recall the key results of our discussion so far: The Green function and self-energy
are related by the Dyson equation (23), they are analytical functions on the complex frequency
plane except for the real axis, and they have the spectral representations (12) and (29). The
poles of the Green function on real axis give the ionization and affinity energies of the system,
i.e., the energies it takes to remove or add an electron. We now want to discuss the physical
consequences of this formal structure. For the remainder of this subsection we consider the case
of a single band, set ~ = 1 and call tk−V (HF )

k −µ = εk. Moreover, we drop the dependence on
k and replace εk → ε, G(k, ω) → G(ω) and so on. To begin with, we consider a system with
finite N , where the spacing between eigenvalues Ki and hence between the poles of G(ω) is
finite. We have

G(ω) =
1

ω − ε− Σ̄(ω)
=

n+1∑
i=1

Zi
ω − ωi

(30)

Σ̄(ω) =
n∑
i=1

σi
ω − ζi

(31)



Green Functions and Self-Energy Functionals 6.11

G
(ω
)

ω

Fig. 2: The Green function G(ω) for real ω. The dashed vertical lines give the poles, ωi.

where Zi > 0 and ωi, ζi real. On the real axis, G(ω) crosses zero precisely once in each
interval [ωi, ωi+1] with negative slope, see figure 2. It follows from (30) that G(ζ) = 0 implies
Σ(ζ)→∞ so that the ζi in (31) must be the zeroes of G(ω). Moreover, the ζi are ‘sandwiched’
in between the poles ωi and their number is indeed one less than the ωi, see figure 2. Since
G−1(ωi) = 0 we find for ω close to ωi

G−1(ω) =

(
1− ∂Σ

∂ω

∣∣∣∣
ωi

)
(ω − ωi) ⇒ Zi =

(
1− ∂Σ

∂ω

∣∣∣∣
ωi

)−1
. (32)

The residue Zi, which equals the weight observed in photoemission/inverse photoemission,
therefore is related to the slope of the self-energy, which is a well-known result.
We consider a situation where the self-energy has a single pole, σ(ω) = σ0δ(ω−ζ), and reinsert
the k-dependence

G−1(k, z) = z − εk −
σ0
z − ζ

⇒ G(k, z) =
Z+

z − ω+,k

+
Z−

z − ω−,k
(33)

where we have introduced

ω±,k =
1

2

(
(εk+ζ)±

√
(εk−ζ)2 + 4σ0

)
, Z± = ± ω± − ζ

ω+ − ω−
.

It is easy to see that Z± > 0 and Z++Z− = 1 as it has to be. We can see from this that the
single pole of the noninteracting Green function at ω = εk is split into two poles at ω±,k, i.e., the
single band with dispersion εk becomes two bands with dispersions ω±,k. Note that irrespective
of the value of εk we find ω+,k−ω−,k ≥ 2

√
σ0 so that the two resulting bands are separated

by a gap of width ≥ 2
√
σ0. Thus, a single pole of the self-energy with macroscopic residuum

σ0 ‘pushes open’ a gap in the band structure around its position ζ . In fact, this is exactly the
situation encountered in a Mott insulator, where the self-energy has a single dominant pole of
strength ≈ U2/4 which ‘pushes open’ the Mott gap of width ≈ U.
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3 The Luttinger-Ward functional

3.1 The Green function as a functional integral

We start from the representation of the Green function in terms of a functional integral over
Grassmann variables. An excellent introduction to Grassmann variables and their use in quan-
tum field theory can be found in the textbook by Negele/Orland [9]. We give a brief summary
for readers unfamiliar with Grassmann variables, but it should be noted that this is nowhere
near sufficient to fully understand their use. Grassmann variables are objects (here we write
them as ϕ∗i or ϕj , where i and j distinguish different Grassmann variables) which anticommute:
ϕ∗iϕ

∗
j = −ϕ∗jϕ∗i , ϕiϕ∗j = −ϕ∗jϕi, and ϕiϕj = −ϕjϕi. It follows immediately that the square

of any Grassmann variable is zero. While we will be using Grassmann variables with (ϕ∗i ) and
without (ϕj) an asterisk, it should be noted that there is no such thing as the complex conju-
gate of a Grassmann variable – just as the index, the asterisk is simply a part of the name of
the Grassmann variable. Once we have defined a set of Grassmann variables, the correspond-
ing Grassmann algebra consists of all possible sums of products of Grassmann variables with
complex coefficients. For example, if we have the two Grassmann variables ϕ∗ and ϕ, the cor-
responding algebra consists of all expressions a0+a1ϕ+a2ϕ

∗+a3ϕϕ
∗ with complex a0, a1, a2,

and a3 (note that all higher powers of Grassmann variables vanish). The key property of the
Grassmann variables, which is used in field theory, is the rule for ‘integration’ over Grassmann
variables, which is ∫

dϕϕ = 1,

∫
dϕ 1 = 0 .

In other words, integration over Grassmann variables is the same as differentiation for ordinary
numbers, the only difference being that there are just two ‘functions’ of a Grassmann variable.
When we integrate over several Grassmann variables it has to be kept in mind that the differen-
tials dϕ∗i and dϕj anticommute as well. Transcendental functions of elements of the Grassmann
variables are defined via their power series expansion. To illustrate the above, we evaluate∫

dϕ∗dϕ ea0+a1ϕ+a2ϕ
∗+a3ϕϕ∗

=

∫
dϕ∗dϕ

(
1 +

(
a0 + a1ϕ + a2ϕ

∗ + a3ϕϕ
∗)+

1

2

(
a0a3ϕϕ

∗ + a1a2(ϕϕ
∗+ϕ∗ϕ)

))
= a3

(
1+

a0
2

)
.

Note that the power series expansion of the exponential terminates very quickly due to the
fact that all powers of Grassmann variables higher than the first vanish. Moreover, there is a
nonvanishing contribution to the integral only from those terms in the integrand where each
Grassmann variable to be integrated over appears precisely once.
After these preliminaries, we turn to the representation of the imaginary-time Green function
as functional integral over Grassmann variables. The full derivation is too lengthy to present
here but it is explained in a very understandable way by Negele/Orland [9]. Let the imaginary
time interval [0, ~β] be divided into M intervals of length ε = ~β/M , whereby we assume for
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convenience thatM is even. Define the imaginary time grid points τk = k·ε, k = 1 . . .M . Then
introduce Grassmann variables ϕ∗α,k and ϕα,k where α is the ‘compound index’ that labels the
Fermion operators c†α and cα, whereas k = 1 . . .M denotes the position in the imaginary time
grid. Then, the partition function can be written as Z = limM→∞ ZM , whereby [9]

ZM =
M∏
k=1

∏
γ

∫
dϕ∗γ,kdϕγ,k e

−S(ϕ∗,ϕ)

S = ε
M∑
k=1

(∑
γ

ϕ∗γ,k
ϕγ,k−ϕγ,k−1

ε
+

1

~
K(ϕ∗k, ϕk−1)

)
. (34)

Here the ‘Grassmann Hamiltonian’K(ϕ∗k, ϕk−1) is obtained from the Fermionic Hamiltonian (1)
by replacing c†γ → ϕ∗γ,k and cγ → ϕγ,k−1. The imaginary time Green function (5) reads [9]

Gα,β(τ, τ ′) = − lim
M→∞

1

ZM

M∏
k=1

∏
γ

∫
dϕ∗γ,k dϕγ,k ϕα,k(τ)ϕ

∗
β,k(τ ′) e

−S(ϕ∗,ϕ) . (35)

The symbols k(τ) and k(τ ′) denote those points on the imaginary-time grid which are closest
to τ and τ ′. Note that in the definition of S the term with k = 1 also involves the variable ϕγ,0,
which is not included in the set of integration variables. Rather one has to set ϕγ,0 = −ϕγ,M
to account for Fermi statistics [9]. If we let M → ∞ so that ε → 0, S appears to become an
integral whereas (ϕγ,k−ϕγ,k−1)/ε appears to become a derivative whence, apparently,

S →
∫ ~β

0

dτ

(∑
γ

ϕ∗γ
∂ϕγ
∂τ

+
1

~
K(ϕ∗, ϕ)

)
.

This notation can often be found in the literature but, as stressed by Negele/Orland, this can be
misleading because the ‘trajectories’ ϕ(τ) over which the functional integral is performed may
not at all be expected to be ‘smooth’.
Doing all calculations at finite M and taking the limit M → ∞ in the end is quite unwieldy
but fortunately there is an easy way to circumvent this. Namely we may always switch to the
Fourier transforms ϕ̃γ,ν and ϕ̃∗γ,ν , defined as

ϕ̃∗γ,ν =
1√
M

M∑
k=1

e−iωντk ϕ∗γ,k , ϕ̃γ,ν =
1√
M

M∑
k=1

eiωντk ϕγ,k , (36)

whereby the frequencies ων = (2ν+1)π/~β are the Fermionic Matsubara frequencies defined
above. The second equation looks like the Hermitian conjugate of the first one but recall that
there is no such thing as the Hermitian conjugate of a Grassmann variable, so this is actually
a definition. If we restrict ν to −M/2 + 1 ≤ ν ≤ M/2, so that the number of ων equals
the number of τk, the above transformations are unitary as shown in Appendix B, and can be
reverted to give

ϕ∗γ,k =
1√
M

∑
ν

eiωντk ϕ̃∗γ,ν , ϕγ,k =
1√
M

∑
ν

e−iωντkϕ̃γ,ν . (37)
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Note that eiωντM = ei(2ν+1)π = −1. Accordingly, if we define ϕγ,0 to be (37) evaluated for
k = 0 we automatically have ϕγ,0 = −ϕγ,M which was implicit in the definition of S. Since
the transformation from the ϕγ,k to the ϕ̃γ,ν is unitary the Jacobian is unity and

M∏
k=1

∏
γ

∫
dϕ∗γ,k dϕγ,k →

M
2∏

ν=−M
2
+1

∏
γ

∫
dϕ̃∗γ,ν dϕ̃γ,ν .

We proceed to rewrite S in terms of the ϕ̃∗ and ϕ̃. First, consider the ‘derivative term’

ε

M∑
k=1

ϕ∗γ,k
ϕγ,k−ϕγ,k−1

ε
=
∑
ν,ν′

ε

M

M∑
k=1

ei(ων−ων′ )τk
(

1−eiων′ε

ε

)
ϕ̃∗νϕ̃ν′ = ε

∑
ν

(
1−eiωνε

ε

)
ϕ̃∗νϕ̃ν .

In the limit of small ε (i.e. M →∞) the square bracket can be written as

−eiωνε/2 e
iωνε/2−e−iωνε/2

ε
= −eiωνε/2

(
deiωνx

dx

∣∣∣∣
x=0

+O(ε2)

)
→ −iων eiωνε/2

whence we obtain the final expression

ε
M∑
k=1

ϕ∗γ,k
ϕγ,k−ϕγ,k−1

ε
= −ε

∑
ν

iων e
iωνε/2 ϕ̃∗νϕ̃ν .

A typical term in K0 becomes

ε
M∑
k=1

(
tα,β−µδα,β

)
ϕ∗α,kϕβ,k−1 = ε

∑
ν

eiωνε
(
tα,β−µδα,β

)
ϕ̃∗α,νϕ̃β,ν

whereas the products of 4 Grassmann variables in K1 become

ε

M∑
k=1

ϕ∗α,k ϕ
∗
β,k ϕγ,k−1 ϕδ,k−1 =

ε2

~β
∑

ν1,ν2,ν3,ν4

δν1+ν2, ν3+ν4 e
i(ων3+ων4 )ε ϕ̃∗α,ν1 ϕ̃

∗
β,ν2

ϕ̃γ,ν3 ϕ̃δ,ν4 .

The various powers of ε which show up as prefactors can be eliminated by introducing the
rescaled Fourier transform ϕγ,ν =

√
ε ϕ̃γ,ν . This transformation is no longer unitary, rather the

Jacobian is εM which does not have a well-defined limit asM →∞. However, for any finiteM
the Jacobian is the same in both numerator and denominator in (35) and simply cancels out so
that the limit M → ∞ can be taken without problem. Having rewritten S in terms of the
(rescaled) Fourier amplitudes the limit M → ∞ becomes trivial: since we had −M/2 + 1 ≤
ν ≤M/2, we simply let each ν range over all integers. Our final result then becomes

−S[ϕ∗, ϕ] =
∑
ν

ϕ∗α,ν e
iωνεG−10,α,β(iων)ϕβ,ν

− 1

2~2β
∑
α,β,γ,δ

ν1,ν2,ν3,ν4

Vαβ,δ,γ δν1+ν2, ν3+ν4 e
2i(ων3+ων4 )ε ϕ∗α,ν1 ϕ

∗
β,ν2

ϕγ,ν3 ϕδ,ν4 ,
(38)
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whereby the limit ε→ 0+ has to be taken and the matrix G−10 (iων) = iων − t−µ
~ is the inverse

noninteracting Green function, see (21). Keeping the explicit factors of eiωνε and e2i(ων3+ων4 )ε

while ε → 0 may seem awkward, however, these factors are in fact crucial in some cases to
obtain meaningful results (see Appendix C) whereas they may be safely replaced by unity in
other cases. Next, using Eqs. (7) and (8) it is easy to show that

1

~β

∫ ~β

0

dτ

∫ ~β

0

dτ ′ eiωντ e−iων′τ
′
G(τ, τ ′) = δν,ν′ G(iων) ,

the ‘finite-M -version’ of which is

Gα,β(iων) = lim
M→∞

ε2

~β

M∑
k,k′=1

eiωντk e−iωντk′ Gα,β(τk, τk′)

= −
∏∞

µ=−∞
∏

γ

∫
dϕ∗γ,µ dϕγ,µ ϕα,ν ϕ

∗
β,ν e

−S(ϕ∗,ϕ)∏∞
µ=−∞

∏
γ

∫
dϕ∗γ,µ dϕγ,µ e

−S(ϕ∗,ϕ) , (39)

because ε2

~β =
( √

ε√
M

)2
. This expression readily lends itself to a perturbation expansion in K1

which leads to the known representation of the Green function in terms of Feynman diagrams.
However, we do not pursue this here but switch to our central objective, namely the construction
of the Luttinger-Ward functional, thereby closely following Potthoff [5, 6].

3.2 Construction of the Luttinger-Ward functional

We start by slightly changing our point of view. We note that the various objects that we
are concerned with (the noninteracting Green function G0, the full Green function G and the
self-energy Σ) all are just sets of complex numbers: Fα,β(iων), F ∈ {G0, G,Σ}. Then, we
may consider (39) with (38) as the definition of a functional G[G−10 ], which maps one such
set, G−10 (iων), to another one: G(iων). If the initial set happens to be a noninteracting Green
function of the form G−10 (iων) = iων − (t−µ)/~ with some physical set of single particle ele-
ments t, G[G−10 ] yields the corresponding interacting Green function, with interaction part K1.
Accordingly, K1 in (38) may be viewed as an implicit parameter of the functional and we con-
sider K1 fixed from now on. One may wonder if the functional G[G−10 ] gives a well-defined
result for any choice of G−10 . This is probably not the case, but we simply restrict its domain
those G−10 which give a well-defined result. Next consider the functional

Ω[G−10 ] = − 1

β
ln

(
∞∏

µ=−∞

∏
γ

∫
dϕ∗γ,µ dϕγ,µ e

−S(ϕ∗,ϕ)

)
,

which is the grand canonical potential for a physical G−10 because the bracket is Z in this case,
see (34). Its variation with respect to G−10 is

β
∂ Ω[G−10 ]

∂ G−10,α,β(iων)
= −eiωνε G[G−10 ]β,α(iων) . (40)
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Note the ‘inverted’ order of indices of G on the right hand side, which follows by a comparison
of (38) and (39). Next, for a given ‘self energy’ Σ and a given ‘Green function’ G consider

D[G,Σ] = G[G−1+Σ]−G .

Assume Σ is a true self-energy corresponding to some G−10 (iων) = iων − (t−µ)/~ (and in-
teraction K1) and G the corresponding interacting Green function. By the Dyson equation
G−1+Σ = G−10 , and since G[G−10 ] = G we find D[G,Σ] = 0. Next, for a given ‘Green
function’ G define the functional S[G] to be the ‘self energy’ which minimizes the norm of
D[G,Σ], defined as ∣∣D∣∣ =

1

N

∑
α,β

∑
ν

∣∣Dα,β(iων)
∣∣2.

For a physical Green function G and the corresponding self-energy Σ we found D = 0, which
gives the minimal value of |D|, whence S[G] = Σ and S simply maps the Green function to
the self-energy. If G is not a physical Green function, but sufficiently ‘reasonable’ such that the
above functionals can be defined, we expect

G
[
G−1+S[G]

]
= G + δG (41)

where δG→ 0 whenever G approaches a physical Green function. We are now in the position
to define the Luttinger-Ward functional, which is the following complex valued functional of a
Green function

Φ[G] = Ω
[
G−1+S[G]

]
+

1

β

∑
λ

eiωλε
(
− ln det G(iωλ) + Tr G(iωλ)Σ[G](iωλ)

)
. (42)

The logarithm of the determinant is the sum of the logarithms of the 2Nnorb eigenvalues of
G(iωλ) and the limit ε→ 0+ is understood (to shorten the notation we henceforth omit factors
like eiωλε and reinsert them only in the final result). Consider the variation of this functional
under a change of G: Using (40), (41) and the chain rule we find the variation of the first term

β
∂Ω [G−1+S[G]]

∂Gα,β(iων)
= −

∑
λ

∑
δ,γ

G
[
G−1+S[G]

]
δ,γ

(iωλ)
∂(G−1+S[G])γ,δ(iωλ)

∂Gα,β(iων)

= −
∑
λ

∑
δ,γ

(Gδ,γ+δGδ,γ) (iωλ)
∂(G−1+S[G])γ,δ(iωλ)

∂Gα,β(iων)
(43)

Next, notice that for each λ ∑
γ,δ

Gδ,γ(iωλ)G
−1
γ,δ(iωλ) = 2Nnorb , (44)

and since the Gα,β(iων) for different α, β and ν must be considered as independent variables

∂Gδ,γ(iωλ)

∂Gα,β(iων)
= δν,λ δα,δ δβ,γ .
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Differentiating (44) with respect to Gα,β(iων) we therefore obtain

∑
γ,δ

(
δν,λδα,δ δβ,γ G

−1
γ,δ(iων) +Gδ,γ(iωλ)

∂G−1γ,δ(iωλ)

∂Gα,β(iων)

)
= 0

⇒ −
∑
γ,δ

Gδ,γ(iωλ)
∂G−1γ,δ(iωλ)

∂Gα,β(iων)
= δν,λG

−1
β,α(iων) ,

and inserting this into (43) we find

β
∂Ω [G−1+S[G]]

∂Gα,β(iων)
= G−1β,α(iων)−

∑
λ

∑
δ,γ

Gδ,γ(iωλ)
∂S[G]γ,δ(iωλ)

∂Gα,β(iων)
+O(δG). (45)

Using Appendix D the derivative of the second term on the right hand side of (42) becomes

β
∂

∂Gα,β(iων)

(
− 1

β

∑
λ

ln det G(iωλ)

)
= −G−1β,α(iων) , (46)

whereas the derivative of the third term (multiplied by β) is

S[G]β,α(iων) +
∑
λ

∑
δ,γ

Gδ,γ(iωλ)
∂S[G]γ,δ(iωλ)

∂Gα,β(iων)
. (47)

Adding up (45), (46), and (47) and reinserting the exponential of eiωνε we obtain

β
∂Φ[G]

∂Gα,β(iων)
= eiωνεS[G]β,α(iων) +O(δG). (48)

If we now let G become the physical Green function for some noninteracting Green function
(and the fixed interaction K1) S[G] becomes the physical self-energy and δG vanishes. We
arrive at the key result that the self-energy is the functional derivative of the Luttinger-Ward
functional Φ with respect to the Green function (but note the inverted matrix indices on the right
hand side). For a physical G, Ω [G−1+S[G]] becomes the grand canonical potential and we
arrive at the expression for Ω first derived by Luttinger and Ward

Ω = − lim
ε→0

1

β

∑
λ

eiωλε
(

ln det G−1(iωλ) + Tr G(iωλ) Σ(iωλ)
)

+ Φ[G] . (49)

As it stands this expression is not really helpful for evaluating Ω, because if one wanted to use
the definition (42) to evaluate Φ[G] one would have to know Ω in the first place. However,
Luttinger and Ward have shown that Φ[G] can be represented as a sum over infinitely many
suitably chosen Feynman diagrams [1], so that for example a partial summation over a subset
of diagrams gives an explicit (approximate) expression for Φ[G]. The expression (49) gives Ω
as a functional of G (the self-energy Σ can be eliminated using the Dyson equation) and in the
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next step we want to write Ω as a functional of Σ. Since the self-energy is the derivative of Φ
with respect to G

1

β
eiωνε Σβ,α(iων) =

∂Φ[G]

∂Gα,β(iων)
, (50)

this can be done by Legendre transform. Assuming that the functional S[G] can be inverted to
yield G[Σ], define the Legendre transform

F [Σ] = Φ [G[Σ]]−
∑
λ

∑
γ,δ

G[Σ]δ,γ(iωλ)
∂Φ[G]

∂Gδ,γ(iωλ)

= Φ [G[Σ]]− 1

β

∑
λ

∑
γ,δ

eiωλεG[Σ]δ,γ(iωλ) Σγ,δ(iωλ)

and inserting this into (49) we find

Ω = − lim
ε→0

1

β

∑
λ

eiωλε ln det
(
G−10 (iωλ)−Σ(iωλ)

)
+ F [Σ] . (51)

By virtue of being a Legendre transform this functional obeys

β
∂F [Σ]

∂Σα,β(iων)
= −eiωνεGβ,α(iων), (52)

which is easily verified directly. Using this and again the theorem from Appendix D we arrive
at the key result

∂Ω

∂Σα,β(iων)
= 0 . (53)

Let us summarize what we found. First, there exists a functional Φ[G] such that the grand
potential Ω is given by (49). By itself this is not really spectacular because one could always
define Φ[G] via (49). What is highly nontrivial, however, is the fact that the self-energy can be
obtained as the functional derivative of Φ[G] at the exact G, see (50). Similarly, there exists a
functional F [Σ] such thatΩ is given by (51) and the Green function is obtained as the derivative
of F [Σ], see (52). Moreover, when expressed as a functional of the self-energy, Ω is stationary
with respect to variations of Σ, see (53), at the exact self-energy. Moreover, the functionals
Φ[G] and F [Σ] have an additional important property: they depend only on the interaction
part K1 in the Hamiltonian, but are completely independent of the noninteracting term K0 or,
equivalently, the noninteracting Green function G0. To see this, let us carefully go through
our above construction of the Luttinger-Ward functional. The functionals G[G−10 ] and Ω[G−10 ]

have the noninteracting Green function as their argument while there is no further ‘intrinsic’
dependence on G0 (these functional do depend on K1, however!). It follows that the functional
S[G], which is defined using only the functional G, does not have any implicit dependence on
G0 either, i.e., it can in principle be evaluated without knowledge of G0. Accordingly, Φ[G]

is a functional only of the Gα,β(iωλ) with no implicit dependence on t and µ, so that the same
holds true for its Legendre-transform F [Σ].
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4 Self-energy functional theories

4.1 Dynamical mean-field theory

In the preceding section we have seen that the grand potential Ω of an interacting Fermi system
can be represented as a functional of its self-energy, see Eq. (51), and that this functional is
stationary at the true self-energy, see Eq. (53). This is a promising result: Such stationarity
principles are put to use in almost every area of physics. In fact, one might come up with
the following variational determination of the self-energy: choose a trial self-energy of the
form (29), whence Ω ultimately becomes a functional of the spectral density σ(ω) (V(HF ) is
itself a functional of the Green function and hence the self-energy) and then use (53) to derive
an Euler-Lagrange equation for σ(ω). The problem is that the definition of the functional
Φ[G], Eq. (42), allowed to prove some of its properties, such as (50), but that it is completely
impossible to actually evaluate it for a given ‘trial G’ (this would, for example, necessitate
knowledge of Ω). Accordingly, it is equally impossible to give an explicit expression for its
Legendre transform F [Σ] and evaluate this for a given ‘trial Σ’.
However, we can circumvent this problem by making use of the fact that the functional F [Σ]

does not depend on the noninteracting part of the Hamiltonian K0, but only on the interaction
part K1. To illustrate the idea we consider the well-known Hubbard model on a lattice with N
sites and periodic boundary conditions

H =
∑
i,j

∑
σ

ti,j c
†
i,σci,σ + U

∑
i

ni,↑ni↓ =
∑
k,σ

εk c
†
k,σck,σ + U

∑
i

ni,↑ni↓ .

Thereby ni,σ = c†i,σci,σ and εk is the Fourier transform of ti,j . In addition we consider an
artificial system, called the reference system, with Hamiltonian H̃ =

∑
i H̃i, where all Hi have

the identical form of an Anderson impurity model

H̃i =
∑
ν

εν l
†
i,ν,σli,ν,σ +

∑
ν

(
Vν l

†
i,ν,σci,σ +H.c.

)
+ U ni,↑ni↓ (54)

where again ni,σ = c†i,σci,σ. This describes a single ‘Hubbard-site’ (described by c†i,σ and ci,σ)
coupled to a number of ‘ligand’ sites (described by l†i,ν,σ and li,ν,σ). We assume that the impurity
system can be solved, and denote the Green function and self-energy for this system by G̃

and Σ̃. We have seen above that all matrix elements of the self-energy involving uncorrelated
sites vanish. Since the ligands in the Hamiltonian (54) are uncorrelated, the only nonvanishing
element is Σ̃c,c(z).
After these preliminaries we come to the crucial point: since H and H̃ have the same interac-
tion, namely K1 = U

∑
i ni,↑ni,↓, the functional F [Σ̃] is the same for the Hubbard model and

the reference system. We now make use of this fact by taking the self-energy Σ̃ of the impurity
model to be the ‘trial self-energy’ for the lattice system. Since the reference system consists
of disconnected clusters its self-energy is diagonal in real space: Σ̃(i,c),(j,c)(z) = δi,j Σ̃c,c(z),
whence its Fourier transform is k-independent: Σ̃(k, z) = Σ̃c,c(z). The resulting Green func-
tion of the lattice therefore is G−1(k, z) = z − (εk−µ)/~− Σ̃c,c(z). Using (51) we thus obtain
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an approximate Ωlatt for the Hubbard model (the factor of 2 is for spin)

Ωlatt = F [Σ̃]− lim
ε→0

2

β

∑
k

∑
λ

eiωλε ln

(
iωλ −

εk−µ
~
− Σ̃c,c(iωλ)

)
. (55)

Now we know that Ω is stationary under variations of the self-energy, see Eq. (53). We cannot
perform a variation of the self-energy over all possible self-energies but we may restrict the
domain to ‘impurity model representable’ ones, that means those self-energies which can be
obtained by solution of the impurity model for some set of parameters {εν , Vν}. The variation
of Σ̃ then amounts to a variation of the parameters εν and Vν in (54). Let us discuss how the
value of F [Σ̃] changes with the parameters of the impurity model, t ∈ {εν , Vν}. Using the
chain rule and (52) we find

∂F [Σ̃]

∂t
=

∑
α,β

∑
λ

∂F [Σ̃]

∂Σ̃α,β(iωλ)

∂Σ̃α,β(iωλ)

∂t

= − 1

β

∑
α,β

∑
λ

eiωλε G̃β,α(iωλ)
∂Σ̃α,β(iωλ)

∂t

= −2N

β

∑
λ

eiωλε G̃c,c(iωλ)
∂Σ̃c,c(iωλ)

∂t
.

The last equation follows from the fact that there areN lattice sites i and the two spin directions
for each site. It follows that

∂Ωlatt

∂t
= − 2

β

∑
k,λ

eiωλε
[
G̃c,c(iωλ)−G(k, iωλ)

] ∂Σ̃c,c(iωλ)

∂t
= 0 . (56)

We may now perform a limiting procedure by sending the number of ligands→∞ that means
considering a continuum of ligands which hybridize with the correlated c-orbital. Then the
number of parameters t for which (56) must be fulfilled becomes a continuum. The simplest
way to fulfill all of these conditions at once is to set the square bracket equal to zero for each λ,
that means

G̃c,c(iωλ) =
1

N

∑
k

G(k, iωλ) =
1

N

∑
k

1

iωλ − (εk−µ)/~− Σ̃c,c(iωλ)
. (57)

This equation must be solved simultaneously for each ωλ by adjusting the hybridization function
V (E) and the density of states ρ(E) for the ligands in the impurity model, and in fact is nothing
but the well-known self-consistency equation for dynamical mean-field theory (DMFT) [13] .
The derivation above shows that DMFT can be understood as approximate minimization of the
grand potential as functional of the self-energy. The impurity model thereby acts as the ‘self-
energy preparation lab’ to generate trial Green functions and the associated exact self-energy.
So far we have partitioned the lattice into single sites and each site was ‘decorated’ with a ‘bath’
of ligands. However, we also could have partitioned the lattice into small but finite clusters and
decorated each cluster with a bath of noninteracting ligand sites. Going through similar steps
as above one can easily derive the self-consistency equations for various cluster-generalizations
of DMFT [6]. The variational principle for the grand potential as a functional of the self-energy
thus provides a unifying principle to derive all of these theories.
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4.2 Metal-insulator-transition in a dimer

We have seen that DMFT can be derived from the variational principle for the grand potential
by restricting the domain of self-energies to those which are derivable from an impurity model.
However, self-energy functional theory as outlined above allows for even simpler approaches
and as an example we now study Potthoff’s re-derivation of the phase diagram for the metal-
insulator transition in the Hubbard model [14]. We again consider the single-band Hubbard
model on a simple cubic N -site lattice with periodic boundary condition, but focus on the case
of particle-hole symmetry. To develop this idea we first note that the simple cubic lattice can be
divided into two sublattices, A and B, such that all neighbors of a site on the A sublattice are
on the B-sublattice and vice versa. Also, we rewrite the Hubbard model as

K = H−µ =
∑
i,j

∑
σ

ti,j c
†
i,σci,σ +

U

2

N∑
i=1

(
ni−1

)(
ni−1

)
−N U

2

=
∑
k,σ

(
εk −

U

2

)
c†k,σck,σ + U

N∑
i=1

ni,↑ ni,↓ ,

where ni = c†i,↑ci,↑ + c†i,↓ci,↓ and we assume that all ti,j are real so that ti,j = tj,i. Under the
transformation c† ↔ c we have ni−1→ 1−ni so that the interaction part is invariant, whereas
the hopping term changes sign. If the hopping integral ti,j is different from zero only if the
sites i and j belong to different sublattices, which is what we assume, this sign change can be
compensated by the gauge transformation c†i,σ → −c

†
i,σ for all sites i of, say, sublattice B. It is

straightforward to show that this transformation exchanges photoemission and inverse photoe-
mission spectrum and implies µ = U/2. We will now use particle-hole symmetry to construct
a simplified reference system.
Namely for the reference system we follow Potthoff and choose N dimers with one ‘Hubbard-
site’ hybridizing with one bath-site, i.e., the Hamiltonian for one dimer reads

K̃ = H̃−µN = −V
∑
σ

(
c†σlσ + l†σcσ

)
+
(
εl−

U

2

)∑
σ

l†σlσ +
U

2

(
nc−1

)(
nc−1

)
− U

2
. (58)

Here l†σ creates an electron in the ligand site and nc = c†↑c↑ + c†↓c↓. Compared to the reference
system (54) for DMFT that was discussed in the previous section, this amounts to retaining only
a single ligand. We have to write εl−U/2 because µ = U/2. Since we want to generate particle-
hole symmetric self-energies we have to impose particle-hole symmetry also in the reference
system. The transformation c† ↔ c, l† ↔ −l indeed converts the Hamiltonian into itself
except for the second term. Setting εl = U/2, however, eliminates this term and particle-hole
symmetry is restored. The Hamiltonian thus becomes

K̃ = −V
∑
σ

(
c†σlσ + l†σcσ

)
+
U

2

(
nc − 1

)(
nc − 1

)
− U

2
. (59)

and the only remaining parameter to be varied therefore is V , the ligand energy εl having been
eliminated by the requirement of particle-hole symmetry. The Fock space of the dimer has a
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dimension of 24 = 16 so that all eigenstates |i〉 and corresponding eigenenergies Ki can be
obtained by numerical diagonalization of the matrix for K̃. If we construct basis functions with
fixed particle number, spin and z-component of the spin, the problem in fact can be broken down
to diagonalizing 2×2 matrices. We therefore can calculate the grand potential Ω̃ by numerical
evaluation of the grand partition function (4), the Green function G̃α,β(z) by using the Lehmann
representation (9) and the self-energy Σ̃α,β(z) from the Dyson equation (23). Again, only the
entry Σ̃c,c(z) may differ from zero for any z, which is a good check for the computer program.
For concreteness, at T = 0 the self-energy of the dimer becomes [15]

Σ̃(z) =
U

2
+
U2

8

(
1

z+3V
+

1

z−3V

)
. (60)

Note that this has exactly the form (29), in particular the first term is indeed the Hartree-Fock
potential 〈nσ〉U because 〈nσ〉 = 1/2 due to particle-hole symmetry. Reverting Eq. (51) we can
now calculate the numerical value of the functional F [Σ̃]

F [Σ̃] = Ω̃ + lim
ε→0

1

β

∑
λ

eiωλε ln det G̃−1(iωλ).

Notice that this is possible only because we could obtain the numerical value of Ω̃ by full
exact diagonalization of K̃. This procedure gives us a self-energy Σ̃(z) and the corresponding
numerical value of the functional F [Σ̃] and we recall that both of these are functions of the
hybridization matrix element V in (59). Next, we proceed as above: we use the self-energy
Σ̃(z) as a trial self-energy for the lattice model and write

Ωlatt = − 2

β

∑
λ

eiωλε
∫
dε ρ0(ε) ln

(
iωλ − ε+ µ− Σ̃c,c(iωλ)

)
+ F [Σ̃] ,

where ρ0(ε) is the density of states for the conduction band. Following Potthoff [14] we use a
semi-elliptical density of states of width W = 4

ρ0(ε) =
1

2π

√
4−ε2.

In this approximation Ω becomes a function of V and figure 3(a) shows Ω(V ) at T = 0 for
different U. For smaller U there are two stationary points: a maximum at V = 0 and a minimum
at finite V, which is the physical solution. At Uc ≈ 5.82 the two extrema coalesce into a single
minimum at V = 0, which is the only stationary point for larger U. This change from finite V
to V = 0 precisely corresponds to the metal-insulator transition. To see this we recall equation
(60) for Σ̃(z) and insert it into the k-integrated Green function

G(z) = 2

∫ 2

−2
dε

ρ0(ε)

z + U/2− ε− Σ̃(z)
. (61)

This is shown in figure 4 together with =Σ̃(z) for z = ω−iη. The self-energy has two poles at
ζ1 = −3V and ζ2 = 3V which give the two Lorentzian peaks in =Σ̃(z). As discussed above
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Fig. 3: (a): Ω(V ) versus V at T = 0, variation with U , (b): Ω versus V at U = 5.2, variation
with T , (c): the resulting phase diagram.

these two poles ‘push open’ gaps in the density of states around themselves, see the top panel
of Fig. 4. There is still a finite spectral weight at the Fermi level, ω = 0, i.e., the system is a
metal. As V becomes smaller, see the center panel of Fig. 4, the slope of Σ̃(z) in the energy
range between ζ1 and ζ2 (which is ∂Σ

∂ω
= −

(
U
6V

)2 at ω = 0) becomes steeper and steeper so that
according to (32) the spectral weight at the Fermi level becomes smaller and smaller. Finally,
as V → 0 the two poles coalesce, see the bottom panel of Fig. 4, and there remains only a
single pole at ω = 0 which pushes open a gap of order U and the spectral density at ω = 0

vanishes – the system has turned into a Mott-insulator! This is precisely the scenario predicted
by DMFT [13], whereby DMFT calculations find Uc ≈ 5.84 [13] as compared to Uc ≈ 5.82

from the simple dimer calculation.
Next, figure 3(b) shows Ω(V ) for the fixed value of U = 5.2 and different temperatures T.
For most temperatures there are three stationary points whereby the local maximum can be dis-
carded. It follows, that there are actually two possible solutions for each temperature which
cross in between T = 0.10 and T = 0.12. This implies that there is a first order phase tran-
sition between these two temperatures. Repeating the procedure for various U gives the phase
diagram in figure 3(c). There is only a metallic solution for small U, at a first Uc1 a second
insulating solution starts to appear, at Uc there is a first order metal-insulator transition and on
from Uc2 there is only an insulating solution. The results obtained in this way by the solution
of a dimer are qualitatively very similar to those obtained by extensive numerical renormaliza-
tion group [16] and quantum Monte Carlo [17] calculations in the framework of DMFT. The
main deficiency of the dimer calculation is the underestimation of the critical temperature Tc in
figure 3(c) by a factor of ≈ 2.
This application of self-energy functional theory, whereby trial self-energies Σ(z) and the nu-
merical value of Ω and hence F [Σ] are obtained by exact diagonalization of a suitably chosen
reference system is called the Variational Cluster Approximation. This was first proposed by
Potthoff and successfully applied to a large number of problems.
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Fig. 4: Single particle spectral function and imaginary part of the self-energy (calculated with
an imaginary part of 0.05 for the frequency) obtained from the angle integrated Green func-
tion (61) with self-energy (60). Parameter values are U= 5 and V= 0.4 (top), V= 0.2 (center)
and V= 0 (bottom).

5 Summary and conclusion

We have discussed the single-particle Green function G(z) which describes the propagation of
a particle added to a system of interacting fermions. It is a function of the complex frequency
variable z which is analytical throughout the complex z-plane except for the real axis. On the
real axis it has poles which give the energies needed to add or remove a particle. Via the Dyson
equation it can be related to the self-energy Σ(z) which describes the effects of the interaction
with the propagating particle with the other particles in the system. We have derived the spectral
representations Eq. (12) and Eq. (29) for these quantities. We have then given a nonperturbative
derivation of the results of Luttinger and Ward: the grand canonical potential Ω is a functional
of the Green function and self-energy (see Eq. (49), the self-energy is the derivative of the
Luttinger-Ward functional with respect to the Green function (see Eq. (50)) and Ω is stationary
with respect to variations of the self-energy (see Eq. (53)). We have then seen thatΩ can also be
expressed as a functional of the self-energy alone (see Eq. (51)) which is stationary with respect
to variations of the self-energy. This then is the basis of self-energy functional theory which
provides a simple unifying framework for Dynamical Mean-Field Theory and its cluster gen-
eralizations and which also can be applied directly in the framework of the Variational Cluster
Approximation.
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Appendix A

We want to prove the formula

− iΘ(t) e−iEt = lim
η→0+

1

2π

∫ ∞
−∞

dω
e−iωt

ω − E + iη
. (62)

We consider the integral on the right-hand-side as a contour integral in the complex ω-plane
along the real axis. We initially limit the range of integration to be

∫ R
−R dω · · · and take the limit

R → ∞ in the end. We augment this contour by a semicircle of radius R around the origin so
that the resulting contour is closed. For any ω on the semicircle we have

e−iωt = esin(ϕ)Rt e−i cos(ϕ)Rt

where ϕ is the phase of ω. Assume that t sin(ϕ) < 0. Then, for any ε > 0 we can find an R
such that R esin(ϕ)Rt < ε. It follows that the contour integral over the part of the semicircle
where t sin(ϕ) < 0 vanishes in the limit R → 0. For t > 0 this means that the integral over
the semicircle in the lower half-plane π < ϕ < 2π vanishes, whereas it is the semicircle in the
upper half-plane 0 < ϕ < π which gives vanishing contribution for t < 0. We can thus replace
the integral on the right-hand-side by an integral along a closed contour which consists of the
real axis and an infinitely large semicircle in the lower (upper) half-plane for t > 0 (t < 0). But
this means we can invoke the theorem of residues which tells us that the integral is ±2πi times
the sum of residues of all poles within the integration contour. The integrand has one pole at
ω0 = E− iη with residuum e−iω0t. This is in the lower half-plane so that we know immediately
that for t < 0 the integral vanishes i.e., it is ∝ Θ(t). For t > 0 we readily find that the integral
is −2πi e−iω0t and inserting this into (62) and taking the limit η → 0 proves (62), which shows
that the Fourier transform of the left-hand side is (ω − E + iη)−1.

Appendix B

Call λ = ei
2mπ
M where m and M are integers. Then

M∑
k=1

λk = λ
M−1∑
k=0

λk = λ
λM − 1

λ− 1
,

but since λM = (e2πi)
m this is zero. Defining M -component vectors ~ϕ∗ = (ϕ∗1, ϕ

∗
2, . . . , ϕ

∗
M)

and ~vν = 1√
M

(e−iωντ1 , e−iωντ2 , . . . e−iωντM ) the first one of Equations (36) can be written as

ϕ∗γ,ν = ~v∗ν · ~ϕ∗. Introducing λ = e2i
µ−ν
M

π one has, using ων = (2ν+1)π/~β and τk = ~βk/M ,

~v∗ν · ~vµ =
1

M

M∑
k=1

ei(ωµ−ων)τk =
1

M

M∑
k=1

λk =


1 for µ−ν = nM,

λ λM−1
λ−1 = 0 for µ−ν 6= nM.

(63)

with integer n. The M vectors ~vν with −M/2 + 1 ≤ ν ≤M/2 therefore are orthonormal. The
matrix T , which transforms the M variables ϕ∗k into the M variables, ~ϕ∗ν = T ~ϕ∗k, therefore
has the ~vµ as its lines, whence T+ = T−1 and the transformation is unitary. Eq. (37) follows
immediately.
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Fig. 5: Integration contours for sums over Matsubara frequencies.

Appendix C

In this Appendix we want to highlight the importance of the factors of eiωλε and discuss the
evaluation of sums of the form

S = − lim
ε→0

1

β

∑
λ

eiωλε g(iωλ) ,

whereby we assume that g(z) is an analytic function except for the real axis. Since i~βωλ =

(2λ+1)iπ the Fermi function f(z) = (eβ~z + 1)−1 has poles at the Matsubara frequencies iωλ.
Straightforward calculation shows that for z = iωλ + ζ we have f(z) = −1/β~ζ so that the
residuum is −1/β~. Invoking the theorem of residues we can rewrite

S = lim
ε→0

~
2πi

∮
C
dz f(z) eεz g(z) ,

where C encircles the imaginary axis in counterclockwise fashion, see figure 5(a). Next we
note that the integrals along the two clover-shaped contours in figure 5(b) are zero, provided
the integrand is analytic in the interior of the two curves. Since the Fermi function has all of
its poles along the imaginary axis, which is outside of the curves in figure 5(b), and since we
assumed that g(z) is analytic except on the real axis this is certainly true. The Fermi function
f(z) guarantees that the contribution from the semicircle with <(z) > 0 vanishes, whereas the
factor ezε does the same for the semicircle with <(z) < 0, see the discussion in Appendix A. It
follows that the integral along the contour C in figure 5(a) is equal to that along the contour C ′ in
figure 5(c) (note the inverted direction of the curves in figure 5(c) as compared to figure 5(b)!).
We could thus convert the sum over Matsubara frequencies to an integral over a contour which
runs counterclockwise around the real axis, which can again be evaluated using the theorem of
residues whereby we pick up contributions from the singularities of g(z). In particular, the limit
T → 0 can be taken without problem for this expression. Notice that the seemingly unimportant
factor of eiωλε was instrumental for this construction because it was only due to this factor that
the arc with <(z) < 0 could be neglected. This is the reason why these factors have to be
followed carefully in all calculations.
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Appendix D

Here we prove the identity
∂ ln detA

∂Aij
= A−1ji

We use Laplace’s formula and expand detA in terms of minors

detA =
∑
l=1,n

(−1)i+l AilMil

Since none of the minors Mil contains the element Aij we find

∂ ln detA

∂Aij
=

(−1)i+jMij

detA

Next, the ith column of A−1 is the solution of the system of equations

Ac = Ei

where Ei is the ith column of the unit matrix. It has all elements equal to zero, except for the ith,
which is one. We use Cramer’s rule and find for the jth element of the ith column

A−1ji =
det Āj
detA

where Āj is the matrix where the jth column has been replaced by Ei. Now we use again
Laplace’s formula for det Āj and obtain

A−1ji =
(−1)i+jMij

detA

which proves the theorem.
As an application we assume that the matrix elements of A are functions of some parameter α.
Then we find

∂ ln detA

∂α
=
∑
i,j

∂ ln detA

∂Aij

∂Aij
∂α

=
∑
i,j

A−1ji
∂Aij
∂α

= TrA−1
∂A

∂α
.
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