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9.2 Christian Schilling

1 Introduction

The development of quantum many-body physics has been strongly influenced in recent years
by quantum information theory with a particular emphasis on the concept of entanglement.
From a general point of view, entanglement is one of the most fascinating concepts of physics
and there are at least three distinctive reasons for its significance in various fields of the quantum
sciences:

(i) It provides important insights into the properties and behavior of quantum systems such
as quantum phase transitions [1–3] and the formation/breaking of chemical bonds [4].

(ii) It serves as a diagnostic tool for the description of quantum many-body states. Hence,
its rigorous quantification facilitates the development of more efficient descriptions of
strongly interacting systems [5, 6]

(iii) It is an important resource used in the quantum information sciences for realizing, e.g.,
quantum cryptography [7, 8], superdense coding [9] and possibly even quantum comput-
ing [10].

In the more traditional fields such as condensed matter physics and quantum chemistry, how-
ever, point (iii) is not sufficiently well acknowledged. In particular, the quantification of entan-
glement and correlation is often flawed or at least operationally meaningless and the significance
of the respective numbers for quantum information processing tasks is therefore unclear. This
is due to the fact that the fundamental superselection rule (“nature does not allow one to su-
perpose even and odd fermion number states”) is erroneously ignored. In quantum information
theory, however, entanglement is often studied in an abstract mathematical context, often de-
coupled from concrete physical systems. It is not unlikely that this huge separation between the
worlds of quantum many-body physicists and quantum information theorists will have rather
unpleasant consequences for the interface between those two fields. As a matter of fact, this
interface is gaining a lot of relevance in recent years due to the ongoing second quantum revo-
lution which may shape the 21st century as much as the first quantum revolution has shaped the
20th century: Individual quantum systems, such as atoms and molecules shall be controlled to a
much greater extent than before to enable more powerful applications of quantum information.
This apparently would necessitate a thorough understanding of entanglement and various other
correlations types in the context of fermionic quantum systems both on a fundamental and an
applied level. Due to the expected transformative impact of this second quantum revolution this
challenging task can even be seen as a key strategic goal for the near-term future (see also the
illustration in figure 1).
Accordingly, the main motivation of these lecture notes is to provide an introduction into the
concept of entanglement and correlation in the context of fermionic quantum systems taking
into account the needs of both quantum information scientists and quantum many-body physi-
cists. For this, we recall and discuss on a more elementary level concepts that were already
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Fig. 1: Strategic ambition for the quantum sciences: The connection between the worlds of
quantum information (QI) and quantum many body physics (QMB) needs to be strengthened
with a particular focus on entanglement as the unifying concept.

presented in our recent articles [11, 12]. In section 2, we first recall the definition of entangle-
ment and correlation in systems of distinguishable particles and then explain how those key
concepts can be applied in the context of identical particles (mainly electrons). In particular,
we explain the superselection rule and demonstrate that ignoring it would mean to violate fun-
damental laws of physics. Then, in section 3 we illustrate those concepts by applying them
to smaller model systems which facilitate a fully analytical treatment. In section 4 we finally
study more realistic systems (water, naphthalene and dichromium molecules) by exact numer-
ical means and quantify the orbital correlation and its separation into quantum and classical
parts.

2 Concept of correlation and entanglement

2.1 The quantum information theoretical formalism

The notion of correlation and entanglement plays a central role in quantum physics. In this
section, we review those concepts and their quantification in the context of distinguishable
subsystems as commonly studied in quantum information theory. We restrict ourselves to the
most important case of bipartite settings and refer the reader to Refs. [13,14] for an introduction
into the concept of multipartite correlation and entanglement.
To introduce the concepts of entanglement and correlation, we first recall a few important as-
pects regarding quantum states and their geometry. Although it is illustrative to deal with wave
functions, e.g., ψ(~r, σ), as one can use them to construct probability clouds for atomic and
molecular orbitals visualization, it is advantageous to adopt the representation-free formal-
ism of density operators, acting on an underlying (for simplicity finite-dimensional) Hilbert
space H. This facilitates more direct and compact definitions of correlation and entanglement.
As a matter of fact, both concepts refer solely to a decomposition of the system into two (or
more) subsystems and do not depend on any possible choice of basis states for those subsys-
tems. In this formalism, a quantum state is represented by a Hermitian operator ρ that is positive
semi-definite (i.e., having non-negative eigenvalues) and trace-normalized to unity, Tr[ρ] = 1,
reflecting the probabilistic nature of quantum mechanics. For the following considerations it



9.4 Christian Schilling

will prove convenient to introduce and briefly discuss the set D of all density operators on a
given finite-dimensional complex Hilbert spaceH:

D ≡ {ρ : H linear−−→ H | ρ† = ρ ∧ ρ ≥ 0 ∧ Tr[ρ] = 1} . (1)

Exercise 2.1

Prove that in case of finite-dimensional complex Hilbert spacesH the Hermiticity of ρ is
a direct mathematical consequence of its positive semi-definiteness (and therefore would
not need to be imposed separately), i.e., show that ρ ≥ 0 implies ρ† = ρ.

Exercise 2.2

Prove that the set D of density operators is convex.

Equipped with the common notion of density operators, we can now discuss the concept of
expectation values of physical observables. The expectation value 〈Â〉ρ of an observable repre-
sented by a Hermitian operator Â follows according to Born’s rule as

〈Â〉ρ = Tr[ρÂ]. (2)

The set of all Hermitian operators generated through multiplication gives rise to the algebra
B(H) of all linear operators on H. For the sake of mathematical elegance one typically refers
to B(H) as the algebra of observables despite the fact that it contains also non-Hermitian oper-
ators. It is also worth noticing that — in contrast to B(H) — the real vector space of Hermitian
operators on H does not exhibit any algebraic structure since this set is not closed under mul-
tiplication, i.e., the product of two Hermitian operators is not necessarily Hermitian anymore.
While the expression (2) of the expectation value of an observable is one of the key concepts
thought in any quantum mechanics course, a crucial observation is often left out. To be more
specific, the compact form (2) reveals a more comprehensive and systematic notation of quan-
tum states: A quantum state is a linear, positive semi-definite map 〈·〉ρ from the algebra of
observables to the complex numbers, normalized to unity 〈1̂〉ρ = 1. The density operator just
defines this map according to (2). At first sight, this comment seems to be a bit pedantic and
overly mathematical. Yet, this more comprehensive notion of quantum states will allow one to
define the concept of reduced states in a rather straightforward manner (as we will see below)
while in the concrete formalism based on density operators and wave functions several obsta-
cles may arise. The latter often leads in practice to confusion and occasionally even to wrong
expressions for the reduced density operators of subsystems.

Exercise 2.3

Let ρ1, ρ2 ∈ D be two density operators on the finite dimensional Hilbert spaceH. Show
that the following two statements are equivalent:

1. ρ1 = ρ2,

2. 〈Â〉ρ1 = 〈Â〉ρ2 , for all Â ∈ B(H).
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Remark. The equivalence described in Exercise 2.3 is not valid anymore if the algebra A
of observables is restricted, i.e., it does not contain all linear operators on the Hilbert space,
A ( B(H). As we will learn in the next section, this will be the case for fermionic quantum
systems whose algebras of observables are restricted by the fundamental superselection rule to
only those operators that are not altering the particle number parity.
To develop some intuition for the convex space of density operators and quantum states, re-
spectively, we observe that the boundary of D is given by those ρ ∈ D which have at least
one vanishing eigenvalue. In particular, the extreme points (those that cannot be written as
a convex combination of others) are given by the pure states, ρ ≡ |Ψ〉〈Ψ |. From a general
point of view, the space D of quantum states could be interpreted as a subset of the Hermitian
matrices with dim(H) many rows and columns. In that sense the space D can be equipped
with a suitable metric. Examples include the distance metric based on the Frobenius norm,
dF (ρ, σ) = ‖ρ−σ‖F ≡

√
Tr(ρ−σ)2, or the Bures distance dB(ρ, σ) = Tr[

√√
ρ σ
√
ρ]2. For

further details on the geometry of density matrices and respective metrics we refer the reader to
Refs. [15–17].
One of the important conclusions from those geometric considerations is that the possible sim-
ilarity of two density operators ρ, σ can be quantified in a universal way, i.e., without referring
to a specific observable, despite the fact that ρ, σ do not carry any physical unit. In particular,
whenever two quantum states are close to each other in the state space D, their expectation
values will be close to each other for any observable as well. This follows directly from the

Cauchy-Schwarz inequality, |〈Â, B̂〉| ≤
√
|〈Â, Â〉|

√
|〈B̂, B̂〉| applied to the Hilbert-Schmidt

inner product, 〈Â, B̂〉 ≡ TrÂ†B̂,∣∣〈Â〉ρ−〈Â〉σ∣∣ = ∣∣TrÂ(ρ−σ)∣∣ ≤ ‖Â‖F dF (ρ, σ). (3)

To fully appreciate relation (3) let us recall that two quantum states with, e.g., the same energy
can still differ in their expectation values of other relevant observables.
All considerations so far were just referring to the total system. The discussion of interesting
physics refers, however, to a notion of subsystems. Let us consider in the following a quan-
tum system which can be split into two subsystems A and B, occasionally also called Alice’s
and Bob’s subsystem. In the common quantum information theoretical formalism those two
subsystems are assumed to be distinguishable and its states are described by density operators
ρAB on the total Hilbert space HAB ≡ HA ⊗HB, where HA/B denotes the local Hilbert space
of subsystem A/B. The underlying algebra AAB of observables of the total system follows
in the same way from the local algebras, AAB ≡ AA ⊗ AB. The presence of a multipartite
quantum system in particular allows us to introduce the important notion of reduced states cor-
responding to subsystems. To work this out, we consider a local measurement corresponding to
Â ∈ B(HA). Its expectation value follows directly as

〈Â⊗ 1̂B〉ρ = Trρ(Â⊗ 1̂B) . (4)

Since such a measurement is essentially restricted to only Alice’s subsystem, there exists a local
description of the quantum state, with respect to which the expectation of any local operator Â



9.6 Christian Schilling

is the same as (4). This is the commonly used reduced density operator defined as

ρA ≡ TrB ρ, (5)

which satisfies
〈Â〉ρA = 〈Â⊗ 1̂B〉ρ, ∀Â ∈ B(HA). (6)

It is exactly the content of Exercise 2.3 which proves the existence and uniqueness of this
reduced density operator. In this context, it is also worth noticing that the more abstract notion
of a quantum state as a linear map from the algebra of observables to the complex numbers
would allow one to define on a mathematical level the reduced state in a particularly simple
manner: The reduced state is given by the reduction of the total state to the subalgebra AA ⊗ 1̂

(effectively AA). Then, by referring to the Riesz representation theorem, the existence of a
corresponding density operator ρA follows directly.

Exercise 2.4

Calculate the reduced density operator ρA on the subsystem A of the two-qubit state

|Ψ〉 = 1√
3
|0〉A ⊗ |0〉B +

1√
3
|1〉A ⊗ |0〉B +

1√
3
|0〉A ⊗ |1〉B.

To proceed, we notice that a particularly relevant class of observables in AAB are the local
ones, i.e, those of the form Â ⊗ B̂. As a matter of fact, they correspond to simultaneous
measurements of Â on subsystemA and B̂ on subsystemB. To understand the relation between
both subsystems, one would be interested in understanding how the respective measurements of
both local measurements are correlated. As a matter of definition, they are uncorrelated if the
expectation value of Â⊗ B̂ factorizes,

〈Â⊗ B̂〉ρAB
≡ TrAB ρAB Â⊗ B̂
= TrAB[ρAB Â⊗ 1̂B] TrAB[ρAB 1̂A ⊗ B̂]

≡ TrA[ρA Â] TrB[ρB B̂] ≡ 〈Â〉ρA〈B̂〉ρB . (7)

In the second line we introduced the identity operator 1̂A/B ∈ AA/B and the last line gives rise
to the reduced density operators ρA/B ≡ TrB/A ρAB of subsystems A/B obtained by tracing out
the complementary subsystem B/A. To quantify the correlation between the measurements of
Â and B̂ one thus introduces the correlation function

CρAB
(Â, B̂) ≡ 〈Â⊗ B̂〉ρAB

− 〈Â〉ρA〈B̂〉ρB . (8)

Popular examples are the spin-spin or the density-density correlation functions, i.e., the local
operators Â, B̂ are given by some spin-component operator Ŝτ (~x) or the particle density oper-
ator n̂(~x) at two different positions ~xA/B in space.
The vanishing of the correlation function for a specific pair of observables Â, B̂ does not imply
by any means that the same will be the case for any other pair Â′, B̂′ of local observables. A
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prominent example would be the dissociated hydrogen state

|Ψ〉 = 1√
2

(
f †L↑f

†
R↓ − f

†
L↓f

†
R↑
)
|Ω〉 , (9)

where f †L/Rσ denotes the fermionic creation operator for an electron at the left(L)/right(R) nu-
cleus with spin σ, and |Ω〉 the vacuum state. Its electron density-density correlation function
between the left (L) and right (R) side vanishes in contrast to the respective spin-spin correlation
functions. Inspired by this example, one would like to introduce a measure for the correlation
between both subsystems without referring to a specific pair of local observables. One idea
would be to determine an average of the correlation function CρAB

(Â, B̂) or its maximal possi-
ble value with respect to all possible choices of local observables Â, B̂. At first sight, those two
possible measures of total correlation seem to be very difficult (if not impossible) to calculate
for a given ρAB. Yet, by referring to the geometric picture of density operators the introduction
of a total correlation measure turns into a rather simple task. To explain this, we first define

Definition 2.1 (Uncorrelated States) Let HAB ≡ HA ⊗HB be the Hilbert space and AAB ≡
AA⊗AB the algebra of observables of a bipartite system AB, with local Hilbert spacesHA/B

and local algebras AA/B. A state ρAB onHAB is called uncorrelated, if and only if

〈Â⊗ B̂〉ρAB
= 〈Â〉ρA〈B̂〉ρB , (10)

for all local observables Â ∈ AA, B̂ ∈ AB. The set of uncorrelated states is denoted by D0

and states ρAB /∈ D0 are said to be correlated.

A comment is in order regarding the local algebrasAA/B that play a crucial role in definition 2.1.
In the context of distinguishable subsystems one typically assumes that AA/B comprises all
Hermitian operators on the local spaceHA/B. As a consequence, a state ρAB is then uncorrelated
if and only if it is a product state, ρAB = ρA⊗ρB. This conclusion is, however, not true anymore
if one would consider in definition 2.1 smaller subalgebras [18]. Actually, exactly this will be
necessary in fermionic quantum systems due to the number parity superselection rule [19].
By referring to the geometric picture of density operators a measure for the total correlation
between A and B follows naturally. It is given by the distance of ρAB to the set D0 of uncorre-
lated states (see also figure 2 for an illustration). In principle one could base such a measure on
any possible distance-function. Yet, the notion of correlation and entanglement is formalized
in quantum information theory by imposing plausible axioms defining valid measures, com-
plemented by preferable features to guarantee an operational meaning [13, 14]. While further
details on that subject matter would go beyond the scope of these lecture notes, we just would
like to stress that the quantum relative entropy,

S(ρ||σ) = Tr ρ
(
log(ρ)− log(σ)

)
, (11)

emerges as the preferable underlying function for a geometric correlation (and entanglement)
measure (despite the fact that it is not a distance function in the strict mathematical sense) [20].
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Besides its information theoretical meaning, the quantum relative entropy has additional ap-
pealing properties. For instance, it is invariant under unitary transformations,

S(ρ||σ) = S(UρU †||UσU †) (12)

and it is convex in both arguments. The total correlation measures follow as [21, 22]

I(ρAB) ≡ min
σAB∈D0

S(ρAB||σAB) = S(ρAB||ρA ⊗ ρB) . (13)

Remarkably, the distinguished properties of the quantum relative entropy allow one to determine
the minimizer σAB ∈ D0 of ρAB’s distance to D0 analytically. It follows as σAB = ρA⊗ ρB and
the correlation is nothing else than the quantum mutual information I(ρAB). The latter has a
clear information theoretical meaning which emphasizes the significance of the total correlation
measure (13). It quantifies the information content in the state ρAB which is not yet contained
in the local states ρA, ρB.

Exercise 2.5

Prove that the following three definitions of the mutual information I are equivalent:

1. I(ρAB) = S(ρA) + S(ρB)− S(ρAB),

2. I(ρAB) = S(ρAB||ρA ⊗ ρB),

3. I(ρAB) = minσA,σB S(ρ||σA ⊗ σB).

We proceed by stating a crucial relation [23] between the total correlation (13) and individual
correlation functions (8),

CρAB
(Â, B̂)

‖Â‖F‖B̂‖F
≤
√

2 log(2)
√
I(ρAB). (14)

This means in particular that the correlation function of any two local observables Â, B̂ is small
whenever the quantum mutual information is small.

Exercise 2.6

Prove the crucial inequality (14). Hint: Combine (3) applied to the observable Â ⊗ B̂

with a well-known relation between the quantum relative entropy and the Frobenius norm
(see, e.g., Theorem 10.6 in Ref. [24]).

A possibly large total correlation suggests that the accurate description of the total system AB

requires significantly more computational effort than the one of both individual subsystems A,
B (in case they were entirely decoupled). While this is rather unfortunate for a quantum chemist
or a condensed matter theorist (they are interested in an accurate description of such systems)
the opposite is true from a quantum informational point of view. To be more specific, primarily
the quantum part of the total correlation represents an important resource for realizing quan-
tum information processing tasks such as quantum cryptography [7, 8], superdense coding [9],
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quantum teleportation [25] and possibly even quantum computing [10]. Typical protocols for
realizing such fascinating tasks utilize so-called Bell pairs, i.e., maximally entangled pure state
of two qubits (two-level quantum systems), e.g.,

|Ψ〉 = 1√
2

(
|↑〉A ⊗ |↓〉B − |↓〉A ⊗ |↑〉B

)
. (15)

It is thus one of the most important challenges to rigorously quantify the number of such Bell
pairs that could be extracted from a given correlated quantum state ρAB. It is not hard to imagine
that a correlated quantum state ρAB =

∑
i pi ρ

(i)
A ⊗ ρ

(i)
B which is given as the classical mixture

of uncorrelated states ρ(i)A ⊗ ρ
(i)
B does not offer any useful resource in that context: The system

AB is found in uncorrelated states ρ(i)A ⊗ ρ
(i)
B yet there is a classical probabilistic uncertainty

in which of them it will be in. To elaborate further on the quantification of entanglement one
defines

Definition 2.2 (Separable States) A state ρAB is called separable/non-entangled if ρAB can be
expressed as a convex linear combination of uncorrelated states, that is ρAB ∈ Conv(D0) ≡
Dsep . Otherwise a state is called entangled.

Here, Conv(·) stands for the convex hull and the term separable is frequently used in quantum
information theory for denoting non-entangled states. In these lecture notes, we will use these
two terms interchangeably.
In complete analogy to the concept of total correlation one has formulated plausible axioms for
valid and operationally meaningful entanglement measures [13, 14]. By referring the reader to
Ref. [22] for more details, it is again the geometric picture which leads to a prominent entan-
glement measure, the

E(ρAB) ≡ min
σAB∈Dsep

S(ρAB||σAB). (16)

It measures in terms of the quantum relative entropy (11) the minimal distance of ρAB to the
set Dsep of separable states. This and the general geometric picture is illustrated in figure 2.
The set D0 of uncorrelated states (recall definition 2.1) is shown as a black curve. According to
definition 2.2, its convex hull Dsep ≡ Conv(D0) comprises all separable/non-entangled states
while the remaining density operators (gray area) are entangled. The geometric correlation and
entanglement measures are given by the closest distance from a general state ρ ≡ ρAB to the
sets D0 (red dashed) and Dsep (red), respectively. Since the uncorrelated states are in particular
non-entangled, D0 ⊂ Dsep, the entanglement can never exceed the total correlation,

I(ρAB) ≥ E(ρAB). (17)

In contrast to the total correlation, there is no explicit analytical expression known for the rela-
tive entropy of entanglement in case of general mixed states and even its numerical calculation
is typically quite demanding. That is quite different in case of pure states, ρAB = |ΨAB〉〈ΨAB|,
since (16) then simplifies to the entanglement entropy which is defined as the von Neumann
entropy of the reduced density operators of subsystem A and B, respectively [26, 27],

E(|ΨAB〉〈ΨAB|) = S(ρA/B) = −Tr ρA/B log(ρA/B). (18)
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ρ
σ*
E(ρ)

I(ρ)
C(ρ)

Uncorrelated Separable Entangled

D0

Dsep

Fig. 2: Schematic illustration of the space D of quantum states. Family D0 of uncorrelated
states shown as thick black line and the separable states (its convex hullDsep) reside in the blue
area. The grey area represents the entangled states and the red (dashed) line the geometric
entanglement (classical correlation) measure E(ρ) (I(ρ)). From a more heuristic point of view,
one defines the classical correlation C(ρ) as the quantum relative entropy between the closest
separable and closest uncorrelated state.

It is equivalent to calculate the entanglement entropy with either ρA or ρB, as they have the
same eigenvalues in case of pure total states [28] and one has E(|ΨAB〉〈ΨAB|) = 0 if and only
if |ΨAB〉 factorizes. In that context, we also would like to recall that for mixed states ρAB the
entanglement entropy (18) is obviously not a good measure for entanglement anymore since the
mixedness of the reduced density operators ρA/B could originate just from possible mixedness
in ρAB (classical correlation).
Actually, knowing the closest separable state, the classical correlation of ρ can be quantified
geometrically (see figure 2), namely as the distance from the closest separable state σ∗ to the
closest uncorrelated state ρA ⊗ ρB [29],

C(ρ) ≡ S(σ∗||ρA ⊗ ρB). (19)

We conclude this section with two crucial comments. The first one is concerned with the relation
between the different types of correlation. In general, entanglement and classical correlation do
not sum to the total correlation. This is because mixed quantum states typically contain quan-
tum correlations beyond entanglement as it is concisely described by the concept of quantum
discord [30]. Moreover, a known exact relation including quantum discord refers to an alter-
native definition of classical correlation which is more technical than our simple geometric one
(see Eq. (19)) [30]. Due to its particular significance for quantum information tasks and for
the sake of simplicity we focus in our lecture notes on entanglement, however, and refer to it
occasionally as quantum correlation.
Last but not least, we would like to stress that for pure total states a remarkable operational
meaning of the entanglement entropy (to the base 2) has been found [31,26]: In the asymptotic
limit of n identical two-qubit systems, each in the same pure quantum state shared between
two parties A and B with an entanglement entropy S, the number m of maximally entangled
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Bell pairs that can be extracted follows as m = nS. It is exactly this operational meaning of
entanglement between distinguishable subsystems which raises some doubts about the common
approach to entanglement and correlation in condensed matter physics and quantum chemistry:
Applying some partial trace-like map to obtain some type of reduced density operator, possibly
even not normalized to unity, and then plugging it into the formula for the von Neumann entropy
does not necessarily mean to quantify correlation or entanglement.

2.2 Fermionic quantum systems

The concepts of entanglement and correlation, as reviewed in the previous section, refer to a
well-defined separation of the total system into two (or more) distinguishable subsystems. In the
simplest case, this separation emerges naturally from the physical structure of the total system,
namely by referring to a possible spatial separation of two subsystems. In that case, it will
be also easier to experimentally access both subsystems to eventually extract the entanglement
from their joint quantum state. Nonetheless, the notion of bipartite correlation and entanglement
is by no means unique for a given system since one just needs to identify some tensor product
structure in the total system’s Hilbert space,H ≡ HA⊗HB. In the most general approach, one
even defines subsystems by choosing two commuting subalgebras AA,AB of observables [18].
This also highlights the crucial fact that entanglement and correlation are relative concepts since
they refer to a choice of subsystems/subalgebras of observables.
In case of identical fermions the identification of subsystems is not obvious at all. For instance,
how could one decompose the underlying N -fermion Hilbert space HN ≡ ∧N [H1] or the Fock
space F ≡ ⊕N≥0HN? Actually, there exist two natural routes which look promising. The first
one refers naturally to the 2nd quantized formalism and leads to a notion of orbital (sometimes
also called mode or site) entanglement and correlation [32–34]. A second and more subtle
route [11] which is not covered here is related more to first quantization and tries to define
correlation and entanglement in the particle picture.
A natural tensor product structure emerges in the formalism of second quantization, facilitating
a bipartition on the set of spin-orbitals. To explain this, let us fix a reference basis for the one-
particle Hilbert space H1. We then introduce the corresponding fermionic creation (f †i ) and
annihilation operators (fj), fulfilling the fermionic commutation relations,

{f (†)
i , f

(†)
j } = 0, {f †i , fj} = δij. (20)

In the quantum information community the one-particle reference states are often referred to as
modes, or (lattice) sites by condensed matter physicists. Each spin-orbital or generally mode i
can be either empty or occupied by a fermion. In this picture, the quantum states are naturally
represented in the occupation number basis. The respective configuration states

|n1, n2, . . . , nd〉 = (f †1)
n1(f †2)

n2 · · · (f †d)
nd|Ω〉 (21)

with n1, n2 . . . , nd ∈ {0, 1} form a basis for the underlying Fock space

F(H1) =
d⊕

N=0

∧N [H(1)] . (22)
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Bipartitions naturally arise as separations of the basis B = {|ϕj〉}dj=1 of reference spin-orbitals
into two disjoint subsets BA = {|ϕj〉}mj=1, BB = {|ϕj〉}dj=m+1. This in turn suggests a splitting
of the configuration state according to

|n1, . . . , nm, nm+1, . . . , nd〉 7→ |n1, n2, . . . nm〉A ⊗ |nm+1, nm+2, . . . , nd〉B. (23)

The total Fock space F(H1) thus admits the tensor product structure

FAB ≡ F(H1) = F(H(A)
1 )⊗F(H(B)

1 ) ≡ FA ⊗FB, (24)

with respect to the given ordering of the spin-orbitals, where H(A/B)
1 denotes the one-particle

Hilbert space spanned by the first m and last d−m spin-orbitals, respectively. Actually, any
splitting of the one-particle Hilbert space into two complementary subspaces,

H1 = H(A)
1 ⊕H(B)

1 , (25)

induces a respective splitting (24) on the Fock space level.1 Moreover, such a decomposition
of the total Fock space into two factors allows us to introduce orbital reduced density operators
ρA/B for the respective orbital subsystem A/B. They are obtained by taking the partial trace of
the total state ρ with respect to the complementary factor FB/A. Consequently, ρA/B is defined
as an operator on the local space FA/B and in general does not have a definite particle number
anymore.
It seems that we can now readily apply the common quantum information theoretical formalism
referring to distinguishable subsystems. Yet there is one crucial obstacle. Not every Hermitian
operator acting on a fermionic Fock space is a physical observable. For instance, nature does
not allow one to coherently superpose even and odd fermion number states [19]. The signifi-
cance of this number parity superselection rule (SSR) is rather obvious as it will be explained
in the subsequent section since its violation would equivalently make superluminal signalling
possible in contradiction to special relativity. The number parity SSR implies that the algebra of
observables on any Fock space comprises only those operators which are block-diagonal with
respect to the even and odd fermion number sectors, Â = Âee + Âoo [35].

2.3 Superselection rules

A key ingredient in the physics of fermionic systems is the so-called parity superselection rule
(P-SSR). In its original form, P-SSR forbids coherent superpositions of even and odd fermion-
numbers states. In a more modern version, P-SSR states that the operators belonging to physi-
cally measurable quantities must commute with the parity operator of the particle number. This
means they have to be linear combinations of even degree monomials of the fermionic creation
and annihilation operators. This in turn implies that a superposition of two pure states with even

1For the sake of mathematical rigor and conclusiveness, we would like to stress that the corresponding iso-
morphism FAB → FA ⊗ FB is by no means unique. Yet, this changes when we take into account the parity
superselection rule as discussed below.
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Alice

Bob

Shared State

|ΨAB⟩

⇓

⇓ ⇓

U1 : i( f †
A − fA)

Unitary Op. 

M = ( fB + f †
B + 1)
2

Observable

0 1

|Ψ′ AB⟩

U0 : i( f †
A − fA)

Fig. 3: The protocol showing how superluminal signaling is possible when parity superselection
rule is broken: Alice communicates the bit value b ∈ {0, 1} by applying the corresponding
unitary Ub, Bob measures the observable M and obtains instantaneously that bit value, as
explained in the text.

and odd particle numbers cannot be distinguished from an incoherent classical mixture of those
states, thus one recovers the original formulation as a consequence.

The idea that the laws of nature impose P-SSR on fermionic systems was originally derived
based on group theoretical arguments [19, 36, 37]. However, the pertinence of P-SSR is also
obvious from the fundamental fact that violation of P-SSR would lead to a violation of the no-
signaling theorem, as we will explain in the following. The no-signaling theorem states that
two spatially separated parties cannot communicate faster than the speed of light. To relate this
fundamental law of physics to the P-SSR, let us assume that two distant parties Alice and Bob
could violate the P-SSR. For our argument it is sufficient for Alice and Bob to have each access
to one mode (e.g., an atomic spin-orbital). Their local Fock spaces are thus generated by the
fermionic annihilation and creation operators (fA, f

†
A) and (fB, f

†
B), respectively. Assume now

that they can share the state |ψ〉AB = 1√
2
(|0〉A|0〉B + |0〉A|1〉B), which is a superposition of

odd and even number states. The procedure for Alice to communicate instantaneously one bit
b = 0, 1 of classical information to Bob would be the following (see also figure 3): both of
them synchronize the clocks in their labs, and they pre-decide to perform local operations at a
particular time. If Alice wants to communicate 1, she does nothing (i.e., formally applies the
unitary U1 = 1), so |ψ〉AB remains unchanged; to communicate 0, Alice applies the unitary
U0 = i(f †A − fA), and the state becomes |ψ′〉AB = i√

2
(|1〉A|0〉B + |1〉A|1〉B). At the same

instant Bob measures the observable 1
2
(fB + f †B + 1). One easily verifies that in both cases

b = 0, 1 the outcome of that measurement is deterministic and will be nothing else than the
value of b. Hence, this proposed procedure allows Alice to communicate instantaneously a bit
b of information in contradiction to the no-signaling theorem and the laws of relativity.
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Exercise 2.7

Recap various steps of the quantum protocol outlined above and calculate various in-
termediate quantum states to confirm that violation of the P-SSR would indeed make
superluminal signalling possible.

Beside the parity superselection rule, it is often pertinent to consider superselection rules due
to some experimental limitations. One such rule is the fermion particle number superselection
rule (N-SSR). Measurable quantities obeying N-SSR must commute with the particle parity
operators [36]. This, in the form of lepton number conservation, was once considered to be
an exact symmetry of Nature. Recently, however, there have been indications that fundamental
Majorana particles may exist which could lead to a violation of the N-SSR. Nevertheless, in
a usual quantum chemistry set-up, we can safely regard N-SSR to hold. Indeed, the energies
of common molecular systems are (in contrast to systems studied in high energy physics) suf-
ficiently low to entirely suppress the emergence of electrons and other particles from vacuum
fluctuations. In the following parts of the lecture notes we will in particular discuss the conse-
quences of both superselection rules, but we assume that the N-SSR is the more relevant one in
quantum chemistry.
Having established the fundamental importance of superselection rules, we will now elucidate
how they affect our description of quantum states, and consequently change the physically
accessible correlation and entanglement in a quantum state. Accordingly, the SSRs will have
important consequences for the realization of quantum information processing tasks.
In the following, we will explain on a more abstract level superselection rules by referring to
the concept of local symmetries and present a general scheme for taking them into account.
The examples provided in Section 3 will then demonstrate those general concepts on a more
elementary level by applying them to the particle number and number parity symmetry for elec-
tronic quantum systems. From a general point of view, SSRs are restrictions on local algebras
of observables, resulting in physical algebras AA and AB. If the SSR is related to some locally
conserved quantityQA/B, then local operators must also preserve this quantity. That is, all local
observables satisfy

AA/B 3 OA/B =
∑
q

PqOA/BPq, (26)

where q ranges over all possible value of QA/B and Pq’s are projectors onto the eigensubspaces,
i.e.,OA/B are block diagonal in any eigenbasis of QA/B. It follows that different SSRs will lead
to drastically differentAA/B. The fact that we cannot physically implement every mathematical
operator changes the accessibility of quantum states. The fully accessible states are called the
physical states, and they satisfy

ρ =
∑
q,q′

Pq ⊗ Pq′ ρPq ⊗ Pq′ , (27)

or equivalently [
ρ, QA/B

]
= 0. (28)



Orbital Entanglement 9.15
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Fig. 4: Schematic protocol for utilizing entanglement from molecular systems (see text for more
details).

For a general state ρwhich does not satisfy (28), we can obtain its physical part by the following
projection

ρQ ≡
∑
q,q′

Pq ⊗ Pq′ ρPq ⊗ Pq′ . (29)

The physical state ρQ gives the same expectation value as ρ for all physical observables. There-
fore we can define a new class of uncorrelated states to be the ones with uncorrelated physical
parts with respect to the physical algebra:

DQ-SSR
0 =

{
ρ
∣∣ 〈OA ⊗OB〉ρ = 〈OA〉ρA〈OB〉ρB ∀OA ∈ AA,OB ∈ AB}. (30)

It is clear that the new set of uncorrelated states includes the one of the distinguishable set-
ting, i.e., D0 ⊆ DQ-SSR

0 . Consequently also more states are deemed separable. Relating to
figure 2, both the correlation and entanglement measure become smaller in the presence of an
SSR. There are two key messages here. First of all, correlation and entanglement are rela-
tive concepts. They depend not only on the particular division of the total system into two (or
more) subsystems but also on the underlying SSRs, which eventually defines the physical local
algebras of observables AA/B and the global algebra AA ⊗AB. Secondly, by ignoring the fun-
damentally important SSRs, one may radically overestimate the amount of physical correlation
and entanglement in a quantum state.
One of the biggest motivations for correctly identifying the amount of physical correlation and
entanglement in a quantum state is its value for information processing tasks. An operationally
meaningful quantification of entanglement does not only reveal non-local properties of a quan-
tum state, but should also measure the amount of resource that can be extracted for perform-
ing various quantum information tasks mentioned in section 1. In figure 4 we illustrate the
schematic protocol for utilizing entanglement from molecular systems. The quantum states of
individual molecules are transferred to SSR-free quantum registers through local measurements
and classical communication. A quantum circuit represented by a unitary gate U in figure 4
then acts on these quantum register states to perform computations. Finally, the end results of
the computation are retrieved with carefully designed measurements. The key step that limits
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the extraction of entanglement is the transferring of the quantum state, which is constrained by
the underlying SSR [38]. What remains on the quantum registers after the transfer are the phys-
ical parts defined in Eq. (29). From this perspective, the Q-SSR-constrained total correlation,
entanglement, and classical correlation of a single system in a state ρ follow as

IQ-SSR(ρ) = I(ρQ),

EQ-SSR(ρ) = E(ρQ),

CQ-SSR(ρ) = C(ρQ).

(31)

All quantum information theoretical concepts discussed so far are applicable to any arbitrary
orthonormal basis of D ≥ 2 spin orbitals. In particular, they then refer to any arbitrary sepa-
ration of them into subsystems A and B defined by spin-orbitals {|ϕj〉}DA

j=1 and {|ϕj〉}Dj=DA+1,
respectively. As far as the description of electronic structure is concerned, there are two partic-
ularly relevant separations. To explain them, let us first observe that the underlying one-particle
Hilbert space. H(1) consists of orbital and spin degrees of freedom, i.e., H(1) ≡ H(1)

l ⊗ H
(1)
s ,

where dim(H(1)
l ) ≡ d, dim(H(1)

s ) ≡ 2 and dim(H(1)) ≡ D = 2d. The first partition picks one
orbital |χ〉 ∈ H(1)

l and then defines subsystemA through the two spin-orbitals |χ〉⊗|σ〉, σ =↑, ↓.
Subsystem B follows accordingly and comprises the remaining D−2 spin-orbitals. The corre-
sponding measures for entanglement and correlation can be referred to as single-orbital en-
tanglement and correlation. As we will show in section 3.1, the fact that the total N -electron
ground state of a molecular system is pure drastically simplifies the respective measures and in
particular leads to closed formulas. The second more elaborated separation quantifies entangle-
ment and correlation between two orbitals |χi〉, |χj〉 ∈ H(1)

l . This means to first trace out the
complementary D−4 spin-orbitals to obtain a two-orbital reduced density matrix ρi,j which is
“living” on a sixteen-dimensional Fock space as illustrated in figure 5. Then, one applies to this
new “total state” ρi,j the formalism of bipartite entanglement and correlation for the separation
i↔ j (see also the subsequent section).
Finally, let us also illustrate how the SSRs are implemented in the calculation of pairwise orbital
entanglement. According to the previous comments, particularly Eq. (29), we just need to
replace ρi,j by its physical part ρQ

i,j . For the case of P-SSR and N-SSR this is illustrated in
figure 5. ρP

i,j is obtained by cutting out all light gray parts and ρN
i,j follows after removing two

additional entries (gray).
To avoid confusion, we recall that the quantum state on the algebra of observables based on two
orbitals i, j is described by the full 2RDM ρi,j , including the gray and light gray entries as well.
Yet, if we ask about the true physical correlation and entanglement between orbitals i and j this
means to restrict in a first step the quantum state to the subalgebra

Ai ⊗Aj ( Ai,j . (32)

Indeed, Ai ⊗ Aj is smaller than the full two-orbital algebra Ai,j because of the Q-SSR which
is applied for the former on both single-orbital algebras individually. Just to illustrate this in
more concrete terms, we observe for instance that the operator f †iσfjτ belongs to Ai,j but not to
Ai ⊗Aj , neither for P-SSR nor N-SSR, since f †iσ and fjτ change locally the number parity.
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     ↓             
↓                     
     ↑             
↑                     
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    ↑↓             
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↓   ↑ ↓             
↑ ↓  ↓              
↑   ↑ ↓             
↑ ↓  ↑              
↑ ↓    ↑ ↓          

N, m 3, 1/20, 0 2,−11, −1/2 2, 12, 0 4, 03, −1/21, 1/2

No SSR N-SSRP-SSR

Fig. 5: Illustration of two-orbital reduced density matrix ρi,j and its superselected variants ρQi,j ,
Q = N,P . Most entries vanish due to spin and particle symmetry (white). According to (29)
the P-SSR sets light gray entries to zero while N-SSR removes in addition two entries (gray).

3 Analytic treatment

3.1 Closed formulas for entanglement and correlation

We first look at the single-orbital total correlation and entanglement and assume a pure quantum
state ρ = |Ψ〉〈Ψ | for the total N -electron system (typically it will be the ground state or an
excited state of a molecular system). The one-orbital reduced density matrix associated with
the orbital |χj〉 is obtained by tracing out all remaining orbitals [34]

ρj = Tr\{j}[|Ψ〉〈Ψ |] . (33)

We reiterate that the partial trace Tr\{j}[·] does not mean to trace out particles but instead refers
to the tensor product in the second quantization, i.e., it exploits the structure F = Fj ⊗ F\{j}.
From a practical point of view, the non-vanishing entries of the single-orbital reduced density
matrix can be determined by calculating expectation values of |Ψ〉 involving only fermionic cre-
ation and annihilation operators referring to orbital |χj〉. For more details we refer the reader to
Refs. [39,40,34]. Due to the fixed particle number and the spin symmetry of |Ψ〉 the one-orbital
reduced density matrix will be always diagonal in the local reference basis {|Ω〉, |↑〉, |↓〉, |↑↓〉}
of orbital |χj〉:

ρj =


p1 0 0 0

0 p2 0 0

0 0 p3 0

0 0 0 p4

 . (34)
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By referring to the so-called Schmidt decomposition, the total state then takes the form

|Ψ〉 =
√
p1|Ω〉 ⊗ |ΨN,M〉+

√
p2|↑〉 ⊗ |ΨN−1,M− 1

2
〉 (35)

+
√
p3|↓〉 ⊗ |ΨN−1,M+ 1

2
〉+√p4|↑↓〉 ⊗ |ΨN−2,M〉,

where |Ψn,m〉 is a quantum state with particle number n and magnetizationm of the complemen-
tary subsystem comprising the remainingD−2 spin-orbitals. Now we can readily determine the
physical part ρQ in the presence of P-SSR or N-SSR. In the absence of SSRs, the single-orbital
entanglement of |Ψ〉 is simply given by the von Neumann entropy of ρj , and the single-orbital
total correlation is simply twice the entanglement,

E(|Ψ〉〈Ψ |) = S(ρj) = −
4∑
i=1

pi ln(pi).

I(|Ψ〉〈Ψ |) = 2E(|Ψ〉〈Ψ |).

(36)

In the case of Q-SSR, we need to consider the physical part ρQ of ρ = |Ψ〉〈Ψ |, which is no longer
a pure state. Consequently the single-orbital entanglement cannot be quantified by the von
Neumann entropy of ρj anymore. Instead we have to invoke the geometric picture in figure 2.
We first calculate the physical states with respect to P-SSR and N-SSR according to (29), and
then their correlation and entanglement are quantified using (13) and (16). Remarkably, despite
the fact that ρQ is not a pure state anymore the single-orbital correlation and entanglement under
P-SSR and N-SSR still involves the spectrum of ρj only:

I(ρP) = (p1 + p4) ln(p1 + p4) + (p2 + p3) ln(p2 + p3)

− 2(p1 ln(p1) + p2 ln(p2) + p3 ln(p3) + p4 ln(p4)),

I(ρN) = p1 ln(p1) + (p2 + p3) ln(p2 + p3) + p4 ln(p4)

− 2(p1 ln(p1) + p2 ln(p2) + p3 ln(p3) + p4 ln(p4)),

E(ρP) = (p1 + p4) ln(p1 + p4) + (p2 + p3) ln(p2 + p3)

− p1 ln(p1)− p2 ln(p2)− p3 ln(p3)− p4 ln(p4),
E(ρN) = (p2 + p3) ln(p2 + p3)− p2 ln(p2)− p3 ln(p3).

(37)

In particular, this implies immediately for both SSRs (Q=P,N)

IQ-SSR(ρ) = EQ-SSR(ρ) + E(ρ). (38)

For the case of no SSR, this is consistent with Eq. (36).
As already explained in the previous section, the second particularly relevant partitioning of
the total system leads to a notion of orbital-orbital correlation and entanglement. It is fully
described by the two-orbital reduced density matrix associated with orbital |χi〉 and |χj〉

ρi,j = Tr\{i,j}[|Ψ〉〈Ψ |]. (39)

For the specific case of a total system consisting of just two orbitals, the only two-orbital “re-
duced” density operator is given by the total (pure) state. Consequently, the orbital-orbital
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correlation and entanglement thus coincide with the single-orbital ones and the above results
(36), (37) immediately apply. Due to the electron interaction, the two-orbital reduced density
matrices ρi,j of general systems are, however, not pure anymore. This makes the calculation of
orbital-orbital entanglement and classical correlation highly non-trivial: According to the defi-
nition of the relative entropy of entanglement (16) one needs to minimize the distance between
ρi,j and σi,j ∈ Dsep which a priori involves 255 parameters. Yet, ρi,j inherits particle and spin
symmetries from the molecular ground state ρ = |Ψ〉〈Ψ | which changes the general situation
drastically. As a consequence almost all of its entries vanish as it is shown in figure 5 (see also
Refs. [39]). Based on elaborated ideas the respective minimization (16) can be simplified ac-
cordingly by transferring those symmetries toDsep [41,42]. The latter simplification eventually
allows us to calculate below the entanglement between |χ1〉, |χ2〉 ∈ H(1)

l for any ρi,j .
In the following, we will illustrate those concepts in the form of several analytical examples.

3.2 Single electron state

At first glance it might seem somewhat bizarre to examine the correlation and entanglement
in a system with only one particle. However, the reader shall bear in mind that the separation
into subsystems is not referring to particles but orbitals. The total Fock space F in our case
of two orbitals (|1〉, |2〉) has indeed a natural tensor product structure between the Fock spaces
of the first and second orbital, i.e., F = F1 ⊗ F2. Therefore the notion of correlation and
entanglement between two physically distinct orbitals is entirely legitimate even in the case of
one single electron.
In the following we consider the specific one-electron state

|Ψ〉 = 1√
2
(f †1↑ + f †2↑)|Ω〉 ≡

|↑〉 ⊗ |Ω2〉+ |Ω1〉 ⊗ |↑〉√
2

. (40)

Here, f †jσ denotes the fermionic creation operator for the spin-orbital |jσ〉, j = 1, 2, σ =↑, ↓
and |Ω〉 and |Ω1/2〉 the global and local vacuum states, respectively. If the SSRs are ignored,
state (40) is certainly entangled. Yet, as we will show now this entanglement is artificial since it
disappears when the P-SSR is taken into account. To prove this, recall that the P-SSR physical
part of ρ is obtained by projecting onto fixed local parity sectors

ρP =
∑

τ,τ ′=odd, even

Pτ ⊗ Pτ ′ρPτ ⊗ Pτ ′ =
1

2
|Ω1〉〈Ω1| ⊗ |↑〉〈↑ |+

1

2
|↑〉〈↑ | ⊗ |Ω2〉〈Ω2|, (41)

which is correlated but not entangled. Indeed, it is a classical mixture of two uncorrelated states.
For the sake of completeness, we would like to stress that for single electron states there is no
difference between P-SSR and N-SSR. In particular for the state (40) we find

ρN =
2∑

m,n=0

Pm ⊗ Pn ρPm ⊗ Pn

=
1

2
|Ω1〉〈Ω1| ⊗ |↑〉〈↑ |+

1

2
|↑〉〈↑ | ⊗ |Ω2〉〈Ω2| = ρP. (42)
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No SSR P-SSR N-SSR

Total 2 ln(2) ln(2) ln(2)

Quantum ln(2) 0 0

Classical 0.208 ln(2) ln(2) ln(2)

Table 1: Total, quantum and classical correlation between the two orbitals in the one-electron
state |Ψ〉 in (40), for the case without SSR, with P-SSR and with N-SSR.

We present in table 1 the orbital total correlation (“Total”), entanglement (“Quantum”) and
classical correlation (“Classical”) between |1〉 and |2〉 contained in state (40) which can easily
be calculated based on the physical states (41), (42).
The number 0.208 in table 1 is the constant ln(4/3)/2. When P-SSR or N-SSR is present (they
are equivalent in the case of only one electron), all entanglement is wiped out and all correlation
is classical, as it is shown by the second and third column. This striking example shows that one
can never extract any entanglement from a single one-electron quantum state even if it appears
at first sight as being entangled.

Exercise 3.1

Recalculate various entries of table 1.

Exercise 3.2

Building up on Exercise 3.1, explain why single electron quantum states are never P-SSR
or N-SSR entangled (i.e., for any dimension of the underlying one-particle Hilbert space
H(1) and any splitting (25)).

3.3 Dissociated hydrogen

Having studied the orbital-orbital correlation and entanglement in a one-electron state, we now
add a second electron to our two-orbital system. As an example, we consider the ground state
of the hydrogen molecule in the dissociation limit. The two orbital system now consists of the
1s orbital at each nucleus (both orthonormal as we assume almost infinite separation) and the
ground state follows as

|Ψ〉 = 1√
2
(f †1↑f

†
2↓ − f

†
1↓f
†
2↑)|Ω〉. (43)

In table 2 we list the total correlation, entanglement and classical correlation between |1〉 and
|2〉. When no SSR is considered, all three types of correlation equal those of the one-electron
state in table 1. However, in contrast to the latter, the ground state |Ψ〉 of the dissociated hy-
drogen molecule is already a physical state, with respect to both P-SSR and N-SSR. From (43)
we infer that |Ψ〉 is a pure state with definite local parities (odd, odd) and definite local particle
numbers (1, 1). The projection (29) therefore does not change the state |Ψ〉〈Ψ | and thus all three
types of correlation are unaffected by P-SSR and N-SSR according to (31).
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No SSR P-SSR N-SSR

Total 2 ln(2) 2 ln(2) 2 ln(2)

Quantum ln(2) ln(2) ln(2)

Classical 0.208 ln(2) 0.208 ln(2) 0.208 ln(2)

Table 2: Total, quantum and classical correlation between both orbitals |1〉, |2〉 in the dissoci-
ated hydrogen ground state |Ψ〉 in (43), for the case without SSR, with P-SSR and N-SSR.

Exercise 3.3

Recalculate various entries of table 2.

3.4 Hubbard dimer

The dissociated hydrogen molecule described in the previous section is a very special case
with a definite local particle number (and of course, parity). If we consider intermediate bond
length, however, different local particle number or parity sectors will start to mix, and hence
the behavior of the orbital correlation and entanglement will be more interesting. To elaborate
on this, we turn to an elementary model system. The Hamiltonian of this Hubbard dimer which
comprises two sites reads

H = −t
∑
σ=↑,↓

f †1σf2σ + H.c. + U
∑
j=1,2

n̂j↑n̂j↓, (44)

where f (†)
jσ are annihilation (creation) operators associated with a spin σ electron on site j = 1, 2.

It is worth recalling that small hopping rates t correspond to larger inter-nuclei separations. The
repulsive potential U penalizes any doubly occupied site, effectively describing the Coulomb
repulsion of two electrons in the same 1s orbital. Exploiting the symmetries of (44) one easily
determines the ground state of the Hubbard dimer

|Ψ〉 = a√
2

(
f †1↑f

†
2↓ − f

†
1↓f
†
2↑
)
|Ω〉+ b√

2

(
f †1↑f

†
1↓ − f

†
2↓f
†
2↑
)
|Ω〉, (45)

where

a =

√
W + U

2

2W
, b =

2t√
2W

(
W + U

2

) , W =

√
U2

4
+ 4t2. (46)

The orbital-orbital total correlation I , entanglement E and classical correlation C in the ground
state (45) are plotted in figure 6, for the case without SSR, with P-SSR and N-SSR [11], as a
function of the parameter t/U. In this special case of just two orbitals in total and a pure state,
the single-orbital and orbital-orbital correlation and entanglement coincide.
In the case without any SSR, the orbital-orbital entanglement E (red solid) is exactly half of the
total correlation I . For finite t/U , i.e., when b > 0 in (45), P-SSR and N-SSR drastically reduce
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Fig. 6: Total correlation I (black), entanglement E (red) and classical correlation C (blue)
between both sites for the ground state of the Hubbard dimer (44) as functions of the ratio t/U .
The curves for C and CP-SSR coincide.

the orbital-orbital total correlation and entanglement, as is shown by the curves correspond-
ing to IP-SSR (black dashed), IN-SSR (black dot-dashed), EP-SSR (red dashed) and EN-SSR (red
dot-dashed). N-SSR being the stronger rule, reduces correlation and entanglement the most.
However, when we take t/U → 0, corresponding to the dissociation limit, the effect of P-SSR
and N-SSR disappears. This is due to the vanishing coefficient b in (45) in the dissociation limit,
which results in a ground state that is physical in the presence of both P-SSR and N-SSR, as it
has already been pointed out in section 3.3.

In the weak coupling limit, U → 0, the Hamiltonian (44) reduces to the hopping Hamiltonian.
Since the latter is a one-particle operator it is a particularly simple task to understand the form
of its ground state: Both electrons just occupy (in different spin states) the energetically lower
one-particle state 1/

√
2
(
|L〉 + |R〉

)
. This is nothing else than the bonding orbital which max-

imizes relative to the antibonding orbital 1/
√
2
(
|L〉 − |R〉

)
the electron density between both

nuclei/sites. The corresponding ground state therefore reads

|Ψ(U=0)〉 = 1

2

(
f †1↑f

†
1↓ + f †1↑f

†
2↓ + f †2↑f

†
1↓ + f †2↑f

†
2↓

)
|Ω〉 . (47)

Exercise 3.4

Calculate for the state (47) all nine correlation quantities (in analogy to Table 2) and
verify their correctness by comparison with the numerical results presented in Figure 6.

All these previous elementary examples already reveal the drastic effect of SSRs on orbital
correlation and entanglement. In the following section we will apply the quantum information
theoretical concepts to systems with more orbitals.
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4 Numerical application to molecular ground states

In this section we investigate the correlation and entanglement in the ground states of molecules.
We consider exemplarily three chemical systems, the water molecule H2O, naphthalene C10H8

and the chromium dimer Cr2, each containing different levels of correlation. Accurate ground
states are found by using the density matrix renormalization group (DMRG) method as outlined
in the following section 4.1. The single-orbital and orbital-orbital correlation and entanglement
are studied in sections 4.2 and 4.3 with respect to two sets of orbitals, the Hartree Fock molec-
ular orbitals and the so-called natural orbitals. To avoid any confusion, it is worth noticing that
the choice of orbitals with respect to which those quantities are eventually calculated is made
only after having obtained a good approximation of the molecule’s quantum state. Only for
illustrative purposes we will choose in the following for this the Hartree-Fock orbitals which
at the same time already play some role in the calculation of the ground state. Hence, in com-
plete analogy to expectation values of more conventional observables, the orbital entanglement
and correlation depend on both the molecule’s quantum state |Ψ〉 and the choice of orbitals.
Yet, they do not depend on the numerical method that is used to obtain the concrete quantum
state |Ψ〉.

4.1 Computational details

In order to find a ground state, and from it compute the required orbital reduced density ma-
trices, we start with a preceding Hartree-Fock calculation to establish the molecular orbitals.
For our post-Hartree-Fock DMRG calculation we construct an active space consisting of the
most relevant molecular orbitals and compute integral elements with the one- and two-particle
Hamiltonian T and V, respectively. Those respective integral elements define the electronic
Hamiltonian at hand by referring to second quantization

H =
∑
ijσ

Tij f
†
iσfjσ +

∑
ijklστ

Vijkl f
†
iσf
†
jτfkτflσ . (48)

For our DMRG calculations we do not fix any molecular symmetries. Yet, the total particle
number and the z-component of the total spin are always assumed to be conserved, with the lat-
ter one always fixed to be zero. Furthermore, we did not employ exceedingly large active spaces
for two reasons. First, the ground states are almost exactly found. Second, for the purpose of
demonstration, our findings do not qualitatively hinge on the tiny improvement found by resort-
ing to larger active spaces. In particular, the reduction in correlation and entanglement due to
the regularly ignored superselection rules turns out to exceed by several orders of magnitude
the truncation error of our active spaces.

To obtain for each ground state |Ψ〉 the required one- (ρj) and two-orbital reduced density
matrices (ρi,j) we trace all orbitals except one and two, respectively (recall Eqs. (33), (39)).
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Fig. 7: Single-orbital entanglement of the Hartree-Fock molecular orbitals (as visualized) in
the ground states of H2O, C10H8 and Cr2 for the three cases of no, P- and N-SSR. Exact values
of entanglement and the remaining entanglement in terms of percentage of the No SSR case in
the presence of P-SSR and N-SSR are listed in the table below each plot.

4.2 Single-orbital entanglement and correlation

After having obtained the ground states of the desired molecules, we can now explore single-
orbital correlation and entanglement by applying the respective formulas from section 3.1.
Since the states ρ at hand are all pure states, the single-orbital total correlation without any
SSR is always exactly twice the single-orbital entanglement, as stated in (36). When P-SSR or
N-SSR is taken into account, the respective physical states ρP and ρN are no longer pure, but
in general mixtures of fixed parity or particle number states. However, in the form of Eq. (38)
there still exists an exact relation between total correlation and entanglement in the presence of
SSRs. Because of this, we focus in this section on the entanglement.

In figure 7 we plotted the single-orbital entanglement in the ground state of the H2O, C10H8

and Cr2, respectively, for the case without SSR, with P-SSR and with N-SSR, using the analytic
formulas (36) and (37). Below each figure we listed the exact values of single-orbital entangle-
ment in the absence of SSRs, and also the remaining entanglement in the presence of P-SSR
and N-SSR, in percentage. All these results refer here and in the following to the Hartree-Fock
molecular orbitals which are for the sake of completeness also visualized for H2O and C10H8.

Generally speaking, the single-orbital entanglement of Hartree-Fock orbitals is quite small com-
pared to the one of atomic orbitals in a bond (see sections 3.3 and 3.4), particularly for H2O
and C10H8. This confirms that the Hartree-Fock orbitals give rise to a much more local struc-
ture than that the atomic orbitals and in that sense define a much better starting point for high
precision ground state methods. Comparing the three systems, the water molecule contains the
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weakest single-orbital entanglement, less than 10−1 for all eight orbitals, whereas the strongest
single-orbital entanglement in naphthalene and the chromium dimer have the values 0.451 and
0.958, respectively. This already emphasizes the different levels of correlation in those systems.
Yet, it is worth noticing that any type of orbital entanglement and correlation (e.g., single- or
two-orbital entanglement) strongly depends on the chosen reference basis. Even for a config-
uration state (21) one could find large orbital entanglement and correlation if one referred to
orbitals which differ a lot from the natural orbitals.
From a quantum information perspective, the effect of SSRs on the single-orbital entanglement
is drastic. The presence of P-SSR and N-SSR considerably reduces the amount of physical
entanglement. According to the accompanying tables in figure 7, P-SSR eliminates at least
45% of it and occasionally even up to 87%. Taking into account the more relevant N-SSR
eliminates between 86% and 96%. Intriguingly, the entanglement hierarchy, however, remains
almost intact. That is, if one orbital is more entangled with the rest than another orbital, the
same will likely hold in the presence of P-SSR and N-SSR. It is also worth noting that even
the stronger N-SSR does never wipe out the entire entanglement, which we shall see below can
happen in the context of orbital-orbital entanglement.
From a quantum chemistry point of view, in figure 7 the single-orbital entanglement varies
significantly from orbital to orbital. In particular, some orbitals are barely correlated with the
others. Since we have chosen our active spaces systematically by taking into account various
Hartree-Fock orbitals energetically closest to the Fermi level, this is a good indicator that our ac-
tives spaces were large enough to cover most of the correlation contained in the three molecules.
On the other hand, if most orbitals were strongly entangled, the respective active space probably
would have been too small. This is also the reason why the single-orbital correlation could help
to automate the selection of active orbital spaces in quantum chemistry, as has been suggested
and worked out in Refs. [43, 44]. Our refined analytic results (36) and (37) demonstrated in
figure 7 are able to identify exactly the quantum part of the total correlation while also taking
into account the important superselection rules. These additional facets make precise the usage
of quantum information theoretic concepts in the context of quantum chemistry, and may offer
new perspectives into the selection of active space.

4.3 Orbital-orbital entanglement and correlation

To provide more detailed insights into the correlation and entanglement structure of molecular
ground states, we also study the pairwise correlation and entanglement between two orbitals.
This can be done in general in three steps:

1. Obtain the two-orbital reduced density matrix ρi,j by tracing out all orbital degrees of
freedom but orbital i and j as described in (39).

2. Apply the suitable projection to obtain the physical part ρQ
i,j of ρi,j under Q-SSR, as

explained in section 2.3.

3. Calculate the correlation and entanglement between the two orbitals using (31).
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Fig. 8: Total correlation, entanglement (“Quantum”) and classical correlation between any
two Hartree-Fock (left) and natural (right) orbitals in the ground state of H2O for the case with
no, P- and N-SSR.

It is worth recalling that the two-orbital reduced density matrices ρi,j are typically highly mixed,
which is due to the coupling between different Hartree-Fock orbitals in the Hamiltonian (48).
The total correlation for a mixed state, measured by the distance to the closest uncorrelated
state (13), can always be calculated analytically, as it coincides with the quantum mutual infor-
mation (13). However, the entanglement quantified as the distance to the closest separable state
(16) is immensely difficult to obtain by analytic means due to two reasons. One is the challenge
imposed by the high dimensionality, even if we are interested in the entanglement between just
two orbitals. The respective total system in that case has a Hilbert space isomorphic to C4⊗C4

(see also figure 5). A generic density matrix is then described by 16×16− 1 = 255 real-valued
parameters. In order to find the closest separable state to a two-orbital state ρi,j , one already
needs to navigate through 255 parameters. The second difficulty lies in the complexity of the
boundary of the set of separable states Dsep. So far exact criteria for separability known are
only for Hilbert spaces with dimensions up to 2×3 [45, 46]. In some cases when the total state
exhibits many symmetries, the closest separable state for the two-orbital reduced state can still
be found analytically [42]. In general, however, one has no choice but to resort to a combination
of analytic tools and numerical methods, which is here the case.

The quantities calculated are the total correlation, entanglement and classical correlation be-
tween two Hartree-Fock orbitals, for the case without SSR, with P-SSR and with N-SSR. All
those nine quantities are calculate for all pairwise combinations of orbitals, for the ground states
of all three molecules introduced in section 4.1. Since each ground state is a singlet with a fixed
electron number, any two-orbital reduced state ρi,j is also symmetric with respect to the total
two-orbital spin, magnetization and particle number [42]. Using the symmetry argument [41],
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Fig. 9: Total correlation, entanglement (“Quantum”) and classical correlation between any
two Hartree-Fock (left) and natural (right) orbitals in the ground state of C10H8 for the case
with no, P- and N-SSR.

the closest separable state σ∗i,j is block diagonal in the simultaneous eigenbasis of the respective
two-orbital spin and particle number operators (as also illustrated in figure 5). In the case of
N-SSR, the projections used for calculating the physical state further increase the symmetry
of σ∗i,j , which eventually allows us to determine it analytically [42]. For the case without SSR
and with P-SSR, we developed an algorithm based on semidefinite programming to find the
closest separable state and calculate the entanglement in an numerically exact way [42].

In figure 8, 9 and 10 we present the different types of correlation of the ground state of H2O
constructed with 8 orbitals, C10H8 with 10 orbitals and Cr2 with 28 orbitals, respectively.

There are several important messages to get across. First of all, similar to the results for the
single-orbital entanglement, the water molecule contains the weakest orbital-orbital correla-
tion, and the chromium dimer the strongest. Most importantly, our comprehensive analysis
then reveals that the quantum part of the total correlation plays only a minor role. In fact, the
orbital-orbital entanglement is usually one order of magnitude smaller than the total correla-
tion, and the molecular structure is thus dominated by classical correlation. This key result
of the analysis emphasizes that the quantum mutual information (13) is not a suitable tool for
quantifying orbital entanglement, as it leads to a gross overestimation. From a general point of
view, our findings raise questions about the significance of entanglement in chemical bonding
and quantum chemistry in general.

Similar to the single-orbital entanglement, SSRs also have a drastic effect on the orbital-orbital
entanglement, yet in a qualitatively different way. In the molecular systems we considered,
P-SSR preserved almost all of the orbital-orbital entanglement, whereas in the case of N-SSR,
almost no orbital-orbital entanglement is left, and consequently almost all orbital-orbital corre-
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Fig. 10: Total correlation, entanglement (“Quantum”) and classical correlation between any
two Hartree-Fock (left) and natural (right) orbitals in the ground state of Cr2 for the case with
no, P- and N-SSR.

lation is classical. Furthermore, in some instances even the entire orbital-orbital entanglement
is destroyed by the N-SSR. Referring to figure 5, this indicates that most of the contribution to
orbital-orbital correlation and entanglement comes from superposing f †i↓f

†
i↑|Ω〉 and f †j↓f

†
j↑|Ω〉,

which are marked as the dark grey blocks. These states describe either empty or doubly oc-
cupied orbitals. In fact, in all three molecules, single excitations are highly suppressed in any
of the molecular orbitals we consider. This is qualitatively different to the analysis of a single
bond in section 3.3 which was referring to localized atomic orbitals, each singly occupied. In
agreement with valence bonding theory, this observation confirms that two-orbital correlation
and entanglement are suitable tools for describing bonding orders only if they are applied to
localized atomic orbitals.
Lastly we would like to compare the correlation patterns of the Hartree-Fock orbitals with those
of the natural orbitals (see Figure 8, 9 and 10). To recap, the natural orbitals are the eigenstates
of the orbital one-particle reduced matrix

γ
(l)
i,j ≡

∑
σ=↑,↓

〈Ψ |f †jσfiσ|Ψ〉 . (49)

The natural orbitals inherit the ordering of the natural orbital occupation numbers (eigenvalues
of ρ(l)) which are arranged decreasingly. Previous observations regarding the correlation pat-
terns with respect to the Hartree-Fock orbitals is still present. Entanglement takes up only a
small fraction of the total correlation, and the presence of SSRs drastically reduce the entan-
glement. In contrast to the more scrambled pattern of the Hartree-Fock orbitals, however, an
additional pairing structure emerges among the natural orbitals. To be more precise, orbitals in
the neighbourhood of the Fermi level are strongly correlated but they share this entanglement
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only within pairs. After all, these pairs are symmetrical relative to the Fermi level. This sug-
gests a potential simplified description of the ground state in the natural orbital basis. At the
same time, the qualitative difference between the correlation patterns of the two sets of orbitals
demonstrates again that correlation and entanglement are relative concepts.
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