
8 An Essential Introduction to NEGF Methods
for Real-Time Simulations

Gianluca Stefanucci
University of Rome Tor Vergata
via della Ricerca Scientifica 1
00173 Rome, Italy

Contents

1 Introduction 2

2 The contour idea 2

3 Nonequilibrium Green function 6

4 Noninteracting systems 7

5 Dyson equation on the contour 9

6 Simple diagrammatic approximations 11

7 Kadanoff-Baym equations 13

8 The Generalized Kadanoff-Baym Ansatz 14

9 Time-linear scaling and state-of-the-art approximations 18

10 First-principles NEGF+GKBA implementations 23
10.1 Kohn-Sham basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
10.2 Localized basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

E. Pavarini and E. Koch (eds.)
Simulating Correlations with Computers
Modeling and Simulation Vol. 11
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8.2 Gianluca Stefanucci

1 Introduction

We often hear about strongly correlated systems as opposed to weakly correlated ones. Strictly
speaking, however, the adjective “correlated” is not a feature of the system, rather of the state of
the system. Consider for instance a Hubbard dimer at half-filling with on-site repulsion U and
hopping integral t. For U/t→∞ the ground state is a singlet with no double occupancy; such
singlet is certainly a strongly correlated state since mean-field treatments predict that the ground
state has a finite and U -independent double occupation. Does this mean that the Hubbard dimer
is a strongly correlated system? Of course not. The same system does indeed admit a triplet
excited state of zero energy which is identical to the triplet excited state of the noninteracting
(U = 0) Hubbard dimer. Another example is provided by organic molecules. The majority of
them have a weakly correlated ground state but highly correlated excited states.
In dealing with out-of-equilibrium problems it is crucial to have some physical intuition about
the amount of correlation carried by all eigenstates involved in the dynamics. Not only that,
different excited states may experience different correlation effects, meaning that several state-
specific correlation mechanisms must be simultaneously taken into account. For these reasons
the development of approximated methods is generally more difficult than for equilibrium prob-
lems.
In this chapter we introduce a versatile formalism to deal with any quantum system in arbi-
trary nonequilibrium situations. The formalism is dubbed Nonequilibrium Green Functions
(NEGF) [1] and it is essentially the extension of many-body diagrammatic theory to systems
driven by external time-dependent fields. We show how to convert a generic nonequilibrium
process into a mathematical expression and hence how to build approximation schemes from
our physical intuition. Finally we present recent advances for efficient real-time NEGF simu-
lations of systems of interacting electrons and bosons, e.g., phonons or photons [2–6]. These
progresses make NEGF competitive with the fastest quantum method today available, i.e., time-
dependent density functional theory. Implementations in high performance computer facilities
will more likely open the door to first-principles investigations of a wide range of nonequilib-
rium correlated phenomena.

2 The contour idea

In almost all approaches to quantum matter the very first approximation is the truncation of the
one-particle Hilbert space. For solids this is usually done by ignoring planewaves with momen-
tum higher than a certain cutoff and by choosing a certain discretization of momenta in the first
Brillouin zone. In finite systems like atoms and molecules the truncation consists in considering
only a certain number of localized orbitals, e.g., Slater type orbitals or Gaussian type orbitals
or splines etc. Many kinds of one-particle bases are of course available in the market, their
suitability depending on the system under investigation and on the external perturbing fields. In
this chapter we do not specify the basis set and let the reader choose his/her favorite one. Only
in the last section we shall introduce two different kind of bases for the discussion of recent



Nonequilibrium Green functions 8.3

implementation strategies of the NEGF equations. We assume, however, that the chosen basis
is orthonormal and we denote by d̂i and d̂†i the fermionic operators annihilating and creating an
electron in the i-th basis function: hence the anticommutation rules read

{
d̂i, d̂

†
j

}
= δij . Notice

that the label i includes, in general, both orbital and spin degrees of freedom.
In second quantization the fermionic operators are used to construct operators associated to ob-
servable quantities, hence the Hamiltonian too. For a self-contained presentation we consider a
system of interacting electrons subject to external classical fields. However, we mention that the
NEGF formalism can deal with more realistic situations where an interaction between electrons
and quantized phonons and photons is present [7–9]. The purely electronic Hamiltonian reads

Ĥ(t) = Ĥ0(t) + Ĥint =
∑

ij

hij(t) d̂
†
i d̂j +

1

2

∑

ijmn

vijmn d̂
†
i d̂
†
j d̂md̂n . (1)

Henceforth we shall use the hat symbol “ˆ” for all operators written in second quantization. The
noninteracting part Ĥ0(t) is a quadratic form of fermionic operators and it contains information
on how electrons are coupled to external static potentials, e.g., the nuclear potential, and time-
dependent fields, e.g., laser pulses. The interacting part Ĥint is a two-body operator describing,
e.g., the Coulomb interaction between electrons. We specialize the discussion to an initial state
which is the ground state |Ψg〉 of Ĥ0 + Ĥint and, without any loss of generality, we take t = 0 as
the initial time. The average of any operator Ô at times t > 0 is given by

O(t) = 〈Ψg|Û(0, t) Ô Û(t, 0)|Ψg〉, (2)

where Û(t, t′) is the evolution operator from time t′ to time t. Let us manipulate Eq. (2).
Although the assumption of the adiabatic connection is not necessary to develop the NEGF for-
malism we here assume that it is fulfilled as it shortens the derivations. What is this assumption
about? Let us first define it mathematically and then explore its physical content. The adiabatic
Hamiltonian

Ĥη(t) = Ĥ0 + e−η|t|Ĥint (3)

coincides with the noninteracting part Ĥ0 in the remote past (t → −∞) and, for an infinitesi-
mal energy η, it approaches (adiabatically) the full interacting Hamiltonian at time t = 0. Let
|Φg〉 be the (noninteracting) ground state of Ĥ0 and let Ûη(t, t′) be the evolution operator from
time t′ to time t associated to the Hamiltonian Ĥη(t). According to the Gell-Mann-Low the-
orem [10–12] the state |Ψ〉 = Ûη(0,−∞)|Φg〉 is an eigenstate of Ĥ0 + Ĥint. The adiabatic
connection is fulfilled if |Ψ〉 = |Ψg〉, i.e., if the interacting ground state can be obtained from
the noninteracting one by an adiabatic switch-on of the interaction. The adiabatic connection
allows for rewriting Eq. (2) in terms of the non-interacting state |Φg〉, the price to pay being that
the evolution starts at t = −∞ instead of t = 0:

O(t) = 〈Φg|Ûη(−∞, 0) Û(0, t) Ô Û(t, 0) Ûη(0,−∞)|Φg〉. (4)

We could compress this result if we extend the definition of the time-dependent Hamiltonian in
Eq. (1) to negative times: Ĥ(t < 0) = Ĥη(t). Then the group property of the evolution operator
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Fig. 1: The contour γ, starting at t = −∞, going all the way to t = +∞ and then back to
t = −∞. By definition, any point lying on the forward branch is earlier than a point lying on
the backward branch.

implies Û(t, 0)Ûη(0,−∞) = Û(t,−∞) and Eq. (4) becomes

O(t) = 〈Φg|Û(−∞, t) Ô Û(t,−∞)|Φg〉. (5)

The forward evolution operator has a simple mathematical form in terms of the time-ordering
operator T . For any t > t′ (forward evolution)

Û(t, t′) = T
{
e−i

∫ t
t′ dt̄ Ĥ(t̄)

}
. (6)

In fact, T is not at all an operator, rather it is a rule according to which the operators in the curly
bracket must be ordered with later times to the left (or equivalently earlier times to the right).
We can better visualize the action of T if we write the integral in Eq. (6) as a Riemann sum
over the discrete times tn = t′+nδ, where n varies from zero to N = Int[(t−t′)/δ] and δ → 0.
Then tn is later than tm if n > m and

T
{
e−i

∫ t
t′ dt̄ Ĥ(t̄)

}
= lim

δ→0
T
{
e−iδ

∑N
n=0 Ĥ(tn)

}
= lim

δ→0
e−iδĤ(tN )e−iδĤ(tN−1) · · · e−iδĤ(t1)e−iδĤ(t0).

(7)
From this “unzipped” expression of the forward operator Û(t, t′) we can immediately find an
expression for the backward evolution operator Û(t′, t). Taking into account the group property
Û(t, t′)Û(t′, t) = 1̂ we have

Û(t′, t) = lim
δ→0

eiδĤ(t0)eiδĤ(t1) . . . eiδĤ(tN−1)eiδĤ(tN ) = T̄
{
ei

∫ t
t′ dt̄ Ĥ(t̄)

}
= T̄

{
e−i

∫ t′
t dt̄ Ĥ(t̄)

}
, (8)

where T̄ is the so called anti-time-ordering operator, i.e., a rule according to which the operators
in the curly bracket must be ordered with later times to the right. Inserting these results into
Eq. (5) we get

O(t) = 〈Φg|T̄
{
e−i

∫−∞
t dt̄′ Ĥ(t̄′)

}
Ô T

{
e−i

∫ t
−∞ dt̄ Ĥ(t̄)

}
|Φg〉. (9)

Pay now attention to the ordering of times. If we define the oriented contour γ = (−∞,+∞)∪
(+∞,−∞), see Fig. 1, and we place the times t̄ on the upper, or forward, branch and the times
t̄′ on the lower, or backward, branch then the string of operators in Eq. (9) appears ordered on
the contour γ. This observation is at the basis of the contour idea developed independently
by Keldysh [13], Schwinger [14], and Konstantinov and Perel’ [15], see also Refs. [16, 17]
for a more recent discussion. Let us introduce the contour-variable, or better the contour-time
z ∈ γ; z can lie either on the forward branch or on the backward branch and once the branch is
specified it can assume any value between −∞ and +∞. To specify the branch we add a “+”
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or “−” subscript to the times; thus z = t− is a time t on the forward branch and z = t+ is a
time t on the backward branch, see again Fig. 1. We also define operators with argument on the
contour like Ô(t−) = Ô(t+) ≡ Ô(t) ⇒ Ô(z) = Ô(t). (10)

In Fig. 1 we show how the Hamiltonian Ĥ(z) varies along the contour. Equation (9) can then
be rewritten as O(t) = 〈Φg|T γ

{
e−i

∫
γ dz̄ Ĥ(z̄)Ô(z)

}
|Φg〉, (11)

where T γ is the contour-ordering operator, i.e., a rule according to which the operators in the
curly bracket must be ordered with later contour-times to the left. A contour-time is earlier
than another if it is closer to the starting point, which in our notation is limt→−∞ t−. Therefore,
T γ acts like the time-ordering operator T for arguments on the forward branch and like the
anti-time-ordering operator T̄ for arguments on the backward branch. Let us verify Eq. (11).
Suppose that z = t−. Then Eq. (11) implies

O(t) = 〈Φg| T̄
{
e−i

∫−∞
∞ dt̄′ Ĥ(t̄′)

}

︸ ︷︷ ︸
Û(−∞,∞)

T
{
e−i

∫∞
t dt̄ Ĥ(t̄)

}

︸ ︷︷ ︸
Û(∞,t)

Ô T
{
e−i

∫ t
−∞ dt̄ Ĥ(t̄)

}

︸ ︷︷ ︸
Û(t,−∞)

|Φg〉

= 〈Φg|Û(−∞, t) Ô Û(t,−∞)|Φg〉, (12)

which is the same as Eq. (5). Similarly the reader can verify that choosing z = t+ the result
does not change.
A remark about Eq. (11) is important at this point. If the operator Ô does not depend explicitly
on time, like it is our operator, then we can safely write Ô(t) = Ô in Eq. (12). However, if
we do so in Eq. (11) then it is not possible to establish where to place the operator Ô when
acted upon by T γ . The reason to give a contour argument even to operators that do not have
an explicit time dependence (like the fermionic operators d̂i and d̂†i ) stems from the need of
specifying their position along the contour, thus rendering unambiguous the action of T γ . Once
the operators are ordered we can omit the time arguments if there is no time dependence.
We conclude this section with a brief comment on the necessity of introducing a contour for
nonequilibrium situations. In the absence of external fields the Hamiltonian at positive times
is constant and given by Ĥ = Ĥ0 + Ĥint. For any finite t > 0 we can choose the infinites-
imal energy η such that the equality Ĥ = Ĥη(t) is fulfilled with arbitrary precision. Hence
we can calculate time-dependent averages using the Hamiltonian Ĥ(t) = Ĥη(t) for negative
and positive times. For a nondegenerate ground state the Gell-Mann-Low theorem implies
that 〈Φg|Û(∞,−∞) = 〈Φg|eiαg where eiαg is a phase factor. Physically this means that by
switching on and then off the interaction we end up in the same state up to a phase factor
eiαg = 〈Φg|Û(∞,−∞)|Φg〉. Substituting this result into Eq. (5) and using the group property
of the evolution operator we get

O(t) =
〈Φg|Û(∞, t)ÔÛ(t,−∞)|Φg〉
〈Φg|Û(∞,−∞)|Φg〉

. (13)

Reading the time arguments from right to left we see that they are ordered on the real axis. In
equilibrium there is no need of introducing a contour. A more detailed discussion can be found
in Ref. [1].
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3 Nonequilibrium Green function

The NEGF formalism is a nonperturbative approach to calculate averages like in Eq. (11). Its
power and versatility stems from the possibility of including only a (well thought) selection of
scattering channels in the time-evolution. The fundamental bit in NEGF is the contour Green
function

Gij(z, z
′) ≡ 1

i
〈Φg|T γ

{
e−i

∫
γ dz̄ Ĥ(z̄) d̂i(z) d̂†j(z

′)
}
|Φg〉, (14)

where T γ is the contour-ordering operator with an extra rule: after the reordering the sign
changes if z′ is later than z. This extra rule can be shown to simplify the math enormously [1].
Equation (14) is a two-point correlator on the contour. For both z and z′ on the forward branch
the contour Green function coincides with the more familiar time-ordered Green function. How-
ever other choices of contour-times are possible. Let us get acquainted with Eq. (14).
If z is earlier than z′ we have (notice the sign change due to the extra rule)

Gij(z, z
′) = −1

i
〈Φg|Û(−∞, t′) d̂†j Û(t′, t) d̂i Û(t,−∞)|Φg〉 ≡ G<

ij(t, t
′). (15)

The last equality defines the lesser Green function. Notice that G< is a function of the physical
times t and t′. One way to get this function for all times t and t′ consists in evaluating the
contour Green function for z = t− (forward branch) and z′ = t′+ (backward branch); in this
case z would indeed be always earlier than z′. However, if t < t′ then we can get G< also
choosing z = t− and z′ = t′− whereas if t > t′ then we can get G< also choosing z = t+
and z′ = t′+. The lesser Green function is proportional to the probability amplitude that a hole
created at time t in the basis function i is found at time t′ in the basis function j. In other words
G< describes how an added hole (or a removed electron) propagates in the system.
The greater Green function is defined as the contour Green function evaluated at the contour-
time z later than z′

Gij(z, z
′) =

1

i
〈Φg|Û(−∞, t) d̂i Û(t, t′) d̂†j Û(t′,−∞)|Φg〉 ≡ G>

ij(t, t
′). (16)

Again this is a function of the physical times t and t′ and it is proportional to the probability
amplitude that an electron created at time t′ in the basis function j is found at time t in the basis
function i. Hence G> describes how an added electron propagates in the system. The lesser and
greater Green functions can be used to rewrite the contour Green function as

Gij(z, z
′) ≡ Θ(z, z′)G>

ij(t, t
′) +Θ(z′, z)G<

ij(t, t
′), (17)

where the Heaviside function on the contour Θ(z, z′) has value 1 if z is later than z′ and zero
otherwise. In Eq. (17) the contour time z can be either t− or t+ and similarly the contour time
z′ can be either t′− or t′+.
From the equal-time lesser Green function we can calculate the time-dependent average of any
one-body operator Ô =

∑
ij Oij d̂

†
i d̂j . To show it we observe that Eq. (15) for t = t′ yields

G<
ij(t, t) = −1

i
〈Φg|Û(−∞, t) d̂†j d̂i Û(t,−∞)|Φg〉 = iρij(t), (18)
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where ρ(t) is the one-particle density matrix. Taking into account Eq. (5)

O(t) =
∑

ij

Oij〈Φg|Û(−∞, t) d̂†i d̂jÛ(t,−∞)|Φg〉 = −i
∑

ij

OijG
<
ji(t, t) =

∑

ij

Oijρji(t). (19)

Examples of one-body operators are the noninteracting part of the Hamiltonian, the particle
density, the particle current, the local magnetic moment, the dipole moment, etc. From the time
off-diagonal values of G< it is also possible to calculate the average of the interaction part of
the Hamiltonian. This non trivial result is known as the Galitskii-Migdal formula

Hint(t) = 〈Φg|Û(−∞, t)ĤintÛ(t,−∞)|Φg〉 =
1

4i

∑

ij

[
i

(
d

dt
− d

dt′

)
δij − 2hij(t)

]
G<
ji(t, t

′)

∣∣∣∣
t=t′

.

(20)
The lesser and greater Green functions contain also information on the spectral properties, such
as those probed in photoemission or inverse photoemission experiments. Let Dki(t) be the
matrix element of the light-matter interaction operator between the i-th state of our basis set
and a photoelectron state of momentum k and energy εk. The current of photoelectrons of
momentum k measured at time t is then given by [18]

Ik(t) = 2
∑

ij

∫
dt̄ Re

(
Σij,k(t, t̄)G<

ji(t̄, t)
)

(21)

where Σij,k(t, t̄) = −iΘ(t−t̄)Dik(t)D∗jk(t)e−iεk(t−t̄).
In the next sections we lay down the basis for the calculation of the lesser and greater Green
function.

4 Noninteracting systems

A noninteracting system is described by a Hamiltonian with Ĥint = 0. In this case the calcula-
tion of the Green function is elementary. The evolution operator in Eqs. (6) and (8) satisfies for
all t and t′

i
d

dt
Û(t, t′) = Ĥ(t)Û(t, t′), −i

d

dt′
Û(t, t′) = Û(t, t′)Ĥ(t′). (22)

We then see that the derivative of Eq. (15) with respect to, e.g., t generates a commutator
between Ĥ(t) and d̂i. For noninteracting Hamiltonians this commutator is simply given by
[Ĥ0(t), d̂i] = −∑m him(t) d̂m. Similarly, the derivative with respect to t′ generates the com-

mutator between Ĥ(t′) and d̂†j which for noninteracting Hamiltonians is simply [Ĥ0(t′),
ˆ
d†j] =∑

m hmj(t
′) d̂†m. Therefore

i
d

dt
G<
ij(t, t

′) =
∑

m

him(t)G<
mj(t, t

′), −i
d

dt′
G<
ij(t, t

′) =
∑

m

G<
im(t, t′)hmj(t

′). (23)

An analogous derivation forG> leads to the same equations of motion (23). Let us rewrite them
in matrix form

i
d

dt
G≶(t, t′) = h(t)G≶(t, t′), −i

d

dt′
G≶(t, t′) = G≶(t, t′)h(t′). (24)
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The most general solution of these equations is G≶(t, t′) = u(t)Q≶ u†(t′) where Q< and Q>

are arbitrary matrices whereas u is the unitary time-evolution matrix in the one-particle Hilbert
space

u(t) ≡ T
{
e−i

∫ t
−∞ dt̄ h(t̄)

}
⇒ i

d

dt
u(t) = h(t)u(t). (25)

To find the matrices Q≶ we need an initial condition. We observe that limt→−∞ u(t) = 1 and
therefore Q≶ = limt→−∞G

≶(t, t). From Eq. (15) this limit is given by

Q<
ij = lim

t→−∞
G<
ij(t, t) = i〈Φg|d̂†j d̂i|Φg〉 ≡ iρgij, (26)

Q>
ij = lim

t→−∞
G>
ij(t, t) = −i〈Φg|d̂id̂†j|Φg〉 = −i

(
δij−ρgij

)
, (27)

where ρgij is the one-particle density matrix in the remote past, which is also the one-particle
density matrix associated to the noninteracting ground state |Φg〉. The noninteracting Green
function is therefore known once we know ρg.
The ρg can easily be calculated from the eigenvectors of the (equilibrium) one-particle hamilto-
nian: h ~ϕ (λ) = ελ~ϕ

(λ). Let us see how. We construct the fermionic operators ĉ†λ ≡
∑

m ϕ
(λ)
m d̂†m

that create an electron in the basis vector ~ϕ (λ). Using the orthonormality of the eigenvectors the
inverse relation reads d̂†m =

∑
λ ϕ

(λ)∗
m ĉ†λ and the noninteracting Hamiltonian can be rewritten as

Ĥ0 =
∑

λλ′

∑

ij

ĉ†λϕ
(λ)∗
i hijϕ

(λ′)
j ĉλ′ =

∑

λλ′

∑

i

ĉ†λϕ
(λ)∗
i ελ′ϕ

(λ′)
i ĉλ′ =

∑

λλ′

ĉ†λελδλλ′ ĉλ′ =
∑

λ

ελĉ
†
λĉλ.

(28)
According to the aufbau principle the noninteracting ground-state |Φg〉 of the system with N
particles is constructed by filling the first N levels of h, i.e., |Φg〉 = ĉ†1 . . . ĉ

†
N |0〉 where |0〉 is the

empty state. We then have

ρgij = 〈0|ĉN . . . ĉ1 d̂
†
j d̂i ĉ

†
1 . . . ĉ

†
N |0〉 =

N∑

λ=1

ϕ
(λ)∗
j ϕ

(λ)
i . (29)

To summarize the noninteracting lesser and greater Green functions have the following analytic
expression (in matrix form)

G<(t, t′) = iu(t) ρg u†(t′), G>(t, t′) = −iu(t)
(
1−ρg

)
u†(t′). (30)

We can use the property of the evolution operator u†(τ)u(τ) = 1 for any time τ to rewrite
Eq. (30) in terms of the equal-time lesser and greater Green functions G≶(t, t)

G≶(t, t′) =
(
Θ(t−t′) +Θ(t′−t)

)
G≶(t, t′)

= Θ(t−t′)u(t)u†(t′)G≶(t′, t′) +Θ(t′−t)G≶(t, t)u(t)u†(t′). (31)

This rewriting brings out two functions, i.e., the retarded and advanced Green functions

GR(t, t′) = −iΘ(t−t′)u(t)u†(t′) = −iΘ(t−t′) T
{
e−i

∫ t
t′ dt̄ h(t̄)

}
, (32)

GA(t, t′) = iΘ(t′−t)u(t)u†(t′) = iΘ(t′−t) T̄
{
e−i

∫ t
t′ dt̄ h(t̄)

}
=
(
GR(t′, t)

)†
. (33)
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The retarded and advanced Green functions carry no information on how the noninteracting
levels are initially populated. They only contain information on how to propagate one-particle
states – sometimes we shall refer to GR and GA as propagators. Using the propagators we can
rewrite Eq. (31) as

G≶(t, t′) = iGR(t, t′)G≶(t′, t′)− iG≶(t, t)GA(t, t′). (34)

This result has inspired an important ansatz in NEGF; we come back to it in section 8.

5 Dyson equation on the contour

The analytic calculation of the interacting Green function defined in Eq. (14) is possible only
in special cases like, e.g., integrable models or systems with only a few particles. In most cases
the interacting Green function must be approximated. In this section we discuss a scheme to
evaluate G(z, z′) using an arbitrary subset of scattering processes. Accurate approximations
can then be generated by selecting those processes that dominate over the others.
The starting point is the observation that inside the contour ordering the operators can be treated
as commuting operators. Consider for instance the contour ordered product of Ĥ0(z) (noninter-
acting part of the Hamiltonian) and Ĥint(z

′) (interaction Hamiltonian). Then

T γ
{
Ĥ0(z)Ĥint(z

′)
}

= T γ
{
Ĥint(z

′)Ĥ0(z)
}
. (35)

Indeed for, e.g., z later than z′ Eq. (35) yields Ĥ0(t)Ĥint(t
′) no matter if we use the expression

in the left hand side or in the right hand side – remember the rule: operators with later contour-
times must be placed to the left. We can then manipulate the interacting Green function in
Eq. (14) as follows

Gij(z, z
′) =

1

i
〈Φg|T γ

{
e−i

∫
γ dz̄ Ĥ0(z̄)e−i

∫
γ dz̄ Ĥint(z̄)d̂i(z)d̂†j(z

′)
}
|Φg〉,

=
1

i

∞∑

n=0

(−i)n

n!

∫

γ

dz1· · · dzn〈Φg|T γ
{
e−i

∫
γ dz̄ Ĥ0(z̄)Ĥint(z1) · · · Ĥint(zn)d̂i(z)d̂†j(z

′)
}
|Φg〉. (36)

In the first equality we used that for two commuting operators Â and B̂ we have eÂ+B̂ = eÂeB̂.
In the second equality we expanded the exponent containing the interaction Hamiltonian in a
Taylor series. Comparing Eq. (36) with the expansion of the more familiar time-ordered Green
function we notice that the only difference is in the domain of integration: in Eq. (36) all
integrals are over the contour while in the time-ordered Green function all integrals are between
−∞ and +∞ (real axis). We can then recycle all results of the time-ordered formalism; it
will be enough to change the time domain from the real axis to the contour. In particular the
integrand in Eq. (36) is the noninteracting average of a string of fermionic operators, which
can be broken into products of Green functions using the Wick theorem [19]. This innocent-
looking observation implies that we can represent the expansion of Eq. (36) in terms of the same
Feynman diagrams as the time-ordered Green function! The only difference in NEGF is that the
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oriented lines are contour Green functions and the times of each internal vertex are integrated
over the contour. A few diagrammatic examples are given in the next section.
It is textbook knowledge that the diagrammatic expansion of G highlights the occurrence of
an important mathematical unit repeated to infinite order, i.e., the self-energy Σ. In NEGF the
self-energy, like the Green function, depends on two contour-times and the relation between G
and Σ is given by the Dyson equation (in matrix form)

G(z, z′) = G0(z, z′) +

∫

γ

dz1dz2G0(z, z1)Σ(z1, z2)G(z2, z
′)

= G0(z, z′) +

∫

γ

dz1dz2G(z, z1)Σ(z1, z2)G0(z2, z
′), (37)

where the Green function G0 is the noninteracting Green function discussed in section 4. We
can transform the Dyson equation into two integro-differential equations that, as we shall see,
are easier to handle. For this purpose we derive below the equation of motion of G0(z, z′) on
the contour. Using the decomposition in Eq. (17) we have

i
d

dz
G0(z, z′) = iδ(z, z′)

[
G>

0 (t, t)−G<
0 (t, t)

]
+Θ(z, z′)

d

dt
G>

0 (t, t′)+Θ(z′, z)
d

dt
G<

0 (t, t′), (38)

where
δ(z, z′) =

d

dz
Θ(z, z′) = − d

dz
Θ(z′, z) (39)

is the Dirac delta on the contour. From Eq. (30) the term in the square bracket is simply

G>
0 (t, t)−G<

0 (t, t) = −iu(t)
(

1− ρg + ρg
)
u†(t) = −i. (40)

Taking into account Eq. (24), i.e., the time derivative of G≶
0 , we can then rewrite Eq. (38) as

i
d

dz
G0(z, z′) = δ(z, z′) + h(t)G0(z, z′). (41)

With similar steps we can calculate the derivative with respect to z′ and find

− i
d

dz′
G0(z, z′) = δ(z, z′) +G0(z, z′)h(t′). (42)

These last two equations are the equations of motion (on the contour) for the noninteracting
Green function. As anticipated, they are useful to transform the Dyson equation into two
integro-differential equations for G. Deriving the first line of Eq. (37) with respect to z and
the second line of the same equation with respect to z′ we find

(
i
d

dz
− h(t)

)
G(z, z′) = δ(z, z′) +

∫

γ

dz̄ Σ(z, z̄)G(z̄, z′), (43)

G(z, z′)

(
−i

←−
d

dz′
− h(t′)

)
= δ(z, z′) +

∫

γ

dz̄ G(z, z̄)Σ(z̄, z′). (44)

Before discussing the numerical strategies to solve the equations of motion (43) and (44) let us
have a closer look at the self-energy and its lesser and greater components.
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Σ         = +c,ij
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Fig. 2: Diagrams for the Hartree-Fock self-energy (top) and for the correlation self-energy in
the 2nd Born approximation (bottom).

6 Simple diagrammatic approximations

In Fig. 2 we show a couple of diagrammatic approximations to Σ. To first order in the electron-
electron interaction v only two diagrams contribute, see Fig. 2 (top). The resulting Σ is the so
called Hartree-Fock (HF) self-energy

ΣHF,ij(z, z
′) = −i δ(z, z′)

∑

mn

vimnj Gnm(z, z+)

︸ ︷︷ ︸
Hartree

+ iδ(z, z′)
∑

mn

vimjnGnm(z, z+)

︸ ︷︷ ︸
Fock

≡ δ(z, z′)VHF,ij(t), (45)

where we have denoted by z+ a contour-time infinitesimally later than z and we have defined the
HF potential in the second line of Eq. (45). From Eq. (17) we see that G(z, z+) = G<(t, t) =

iρ(t). The HF potential is therefore a linear function of the one-particle density matrix; explic-
itly we have

VHF,ij(t) =
∑

mn

(
vimnj−vimjn

)
ρnm(t). (46)

The HF self-energy diagrams are the only self-energy diagrams proportional to the Dirac delta
on the contour. This time-locality of ΣHF prevents the description of, e.g., quasi-particle life-
times (which are always infinite in HF) and quasi-particle satellites like those emerging from
the dressing of electrons with plasmons. The Green function in the HF approximation is the so-
lution of the equations of motion (43) and (44) when Σ is approximated with ΣHF. The contour
integral is in this case trivial and the equations of motion reduce to

(
i
d

dz
− h(t)− VHF(t)

)
G(z, z′) = δ(z, z′), (47)
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G(z, z′)

(
−i

←−
d

dz′
− h(t′)− VHF(t′)

)
= δ(z, z′). (48)

These equations have the same mathematical structure as those of the noninteracting Green
function, see Eqs. (41) and (42). The only difference is that the one-particle Hamiltonian h(t)

is replaced by the HF Hamiltonian

hHF(t) ≡ h(t) + VHF(t). (49)

In essence the HF world is a world where an electron does not collide with other electrons
but it rather moves in the mean-field potential VHF generated by all other electrons. The
lesser and greater components are therefore given by Eq. (30) with evolution operator u(t) =

T {e−i
∫ t
−∞ dt̄ hHF(t̄)}. This implies that the HF retarded and advanced Green functions read

GR(t, t′) = iΘ(t−t′)T {e−i
∫ t
t′ dt̄ hHF(t̄)}, GA(t, t′) =

(
GR(t′, t)

)†
, (50)

and that Eq. (34) for G≶ is valid in the HF approximation too.
Higher-order self-energy diagrams are nonlocal in time and contribute to the so called correla-
tion self-energy Σc. The splitting of the full self-energy Σ = ΣHF + Σc into a HF part and a
correlation part is extremely convenient for computational purposes, see section 10. In Fig. 2 we
show the second-order (in the interaction) diagrams for the correlated self-energy, also known
as the 2nd Born (2B) approximation. In the 2B world an electron can collide only once with an-
other electron; this is however enough to change its quantum number like, e.g., the momentum,
and hence to generate a finite life-time.
Converting the diagrams of Fig. 2 into a mathematical expression we get

Σc,ij(z, z
′) =

= i2
∑

rpn

∑

mqs

virpnvmqsj
[
−Gnm(z, z′)Gsr(z

′, z)Gpq(z, z
′) +Gnq(z, z

′)Gsr(z
′, z)Gpm(z, z′)

]

= i2
∑

rpn

∑

mqs

virpn
(
vqmsj−vmqsj

)
Gnm(z, z′)Gsr(z

′, z)Gpq(z, z
′), (51)

where in the last step we renamed m ↔ q in the second term of the square bracket. As antici-
pated this self-energy is nonlocal in time, i.e., it is not proportional to δ(z, z′), and the equations
of motion for G remain integro-differential equations. The corresponding greater and lesser
Green functions cannot be written as in Eq. (30) and, consequently, Eq. (34) is no longer valid.
The lesser and greater components of the self-energy are defined similarly to the lesser and
greater components of the Green function

Σ<
c (t, t′) ≡ Σc(t−, t

′
+), Σ>

c (t, t′) ≡ Σc(t+, t
′
−). (52)

Both Σ< and Σ> are functions of the real times t and t′. From their definition we see that these
functions are simply obtained from Eq. (51) with the replacement

Gnm(z, z′)Gsr(z
′, z)Gpq(z, z

′) → G≶
nm(t, t′)G≷

sr(t
′, t)≶G≶

pq(t, t
′). (53)
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Like the Green function, see discussion below Eq. (15), if t< t′ then the lesser self-energy is also
given by Σ<

c (t, t′) = Σ<
c (t−, t

′
−) whereas if t> t′ then we have Σ<

c (t, t′) = Σ<
c (t+, t

′
+). Anal-

ogous considerations apply to the greater self-energy. Choosing z and z′ on different branches,
like we have done in Eq. (52), returns the lesser and greater self-energy for all times t and t′.
In the next section we describe how to calculate the Green function with a nonvanishing corre-
lation self-energy.

7 Kadanoff-Baym equations

Let us start by rewriting the equations of motion (43), (44) with the self-energy Σ = ΣHF+Σc

(
i
d

dz
− hHF(t)

)
G(z, z′) = δ(z, z′) +

∫

γ

dz̄ Σc(z, z̄)G(z̄, z′), (54)

G(z, z′)

(
−i

←−
d

dz′
− hHF(t′)

)
= δ(z, z′) +

∫

γ

dz̄ G(z, z̄)Σc(z̄, z
′). (55)

As pointed out in section 3, see discussion below Eq. (15), the lesser Green function G<(t, t′) is
equal (for all t and t′) to the contour Green function G(z, z′) when z = t− and z′ = t′+. Making
this choice of contour-times in, e.g., Eq. (54) we find

(
i
d

dt
− hHF(t)

)
G<(t, t′) =

∫

γ

dz̄ Σc(t−, z̄)G(z̄, t′+). (56)

The Dirac delta vanishes since z lies on the forward branch and z′ lies on the backward branch
(hence they can never coincide). To work out the integral over the contour we break it up into
four different pieces, two per branch. The integral over the forward branch is performed from
−∞ to t and then from t to +∞ whereas the integral over the backward branch is performed
from +∞ to t′ and then from t′ to −∞
∫

γ

dz̄ Σc(t−, z̄)G(z̄, t′+) =

∫ t

−∞
dt̄ Σc(t−, t̄−)G(t̄−, t

′
+)︸ ︷︷ ︸

Σ>c (t,t̄)G<(t̄,t′)

+

∫ ∞

t

dt̄ Σc(t−, t̄−)G(t̄−, t
′
+)︸ ︷︷ ︸

Σ<c (t,t̄)G<(t̄,t′)

+

∫ t′

∞
dt̄ Σc(t−, t̄+)G(t̄+, t

′
+)︸ ︷︷ ︸

Σ<c (t,t̄)G<(t̄,t′)

+

∫ −∞

t′
dt̄ Σc(t−, t̄+)G(t̄+, t

′
+)︸ ︷︷ ︸

Σ<c (t,t̄)G>(t̄,t′)

. (57)

In this equation the integrand of the second and third terms is the same. We can then use∫∞
t

+
∫ t′
∞ =

∫ t′
t

=
∫ t′
−∞−

∫ t
−∞ and rewrite the contour integral as

∫

γ

dz̄ Σc(t−, z̄)G(z̄, t′+) =

∫ t

−∞
dt̄
(
Σ>

c (t, t̄)−Σ<
c (t, t̄)

)
G<(t̄, t′)

−
∫ t′

−∞
dt̄ Σ<

c (t, t̄)
(
G>(t̄, t′)−G<(t̄, t′)

)
. (58)
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For any two-times correlator C(z, z′) we define the retarded and advanced components as

CR(t, t′) = Θ(t−t′)
(
C>(t̄, t′)− C<(t̄, t′)

)
, (59)

CA(t, t′) = −Θ(t′−t)
(
C>(t̄, t′)− C<(t̄, t′)

)
. (60)

One important property following from these definitions is that

CR − CA = C> − C<. (61)

Using the retarded and advanced functions we can transform the equation of motion (56) in a
form containing only integrals and functions on the real axis

(
i
d

dt
− hHF(t)

)
G<(t, t′) =

∫ ∞

−∞
dt̄
(
ΣR

c (t, t̄)G<(t̄, t′) +Σ<
c (t, t̄)GA(t̄, t′)

)
. (62)

With similar manipulations we obtain the equation of motion for the greater Green function.
We choose z = t+ and z′ = t′−, use Eq. (55), and find

G>(t, t′)

(
− i

←−
d

dt′
− hHF(t′)

)
=

∫ ∞

−∞
dt̄
(
GR(t, t̄)Σ>

c (t̄, t′) +G>(t, t̄)ΣA
c (t̄, t′)

)
. (63)

Equations (62) and (63) are known as the Kadanoff-Baym equations (KBE) [20]. They form a
closed system of integro-differential equations since (i) the lesser and greater self-energies are
functions (or better functionals) of G< and G>, see for instance the 2B self-energy in Eq. (51),
and (ii) the lesser and greater Green functions are anti-hermitian, see the definitions in Eqs. (15)
and (16), i.e.,

G≶(t′, t) = −
(
G≶(t, t′)

)†
. (64)

Due to the cubic scaling with the maximum propagation time, the KBE are rather burdensome
to solve numerically. Their use has been so far restricted to atoms, diatomic molecules, or model
systems [21–24]. Details on available implementations strategies can be found in [1, 25, 26].
Before concluding this section we would like to observe that the retarded and advanced corre-
lators defined in Eqs. (59) and (60) agree with the previous definition of GR and GA in nonin-
teracting systems. The noninteracting lesser and greater Green functions are given in Eq. (30)
and therefore the noninteracting retarded Green function calculated according to Eq. (59) is

GR(t, t′) = −iΘ(t−t′)u(t)
(
1− ρg + ρg

)
u†(t′) = −iΘ(t−t′)u(t)u†(t′), (65)

which is the same as Eq. (32). Similarly one can show that the advanced noninteracting Green
functions defined as in Eq. (60) agrees with Eq. (33).

8 The Generalized Kadanoff-Baym Ansatz

In the mid-1980s Lipavsky et al. [27] proposed the so called Generalized Kadanoff-Baym
Ansatz (GKBA) to collapse the KBE for the two-times Green functions into a single equa-
tion for the one-particle density matrix ρ(t), reducing the computational cost drastically. The
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NEGF+GKBA approach has been successfully applied to the nonequilibrium dynamics [28,29]
and many-body localization [30] of Hubbard clusters, time-dependent quantum transport [31,
32] equilibrium absorption of sodium clusters [33], real-time dynamics of the Auger decay [34],
transient absorption [35–38] and carrier dynamics [18, 39] of semiconductors, excitonic insu-
lators out of equilibrium [40] as well as charge transfer [41] and charge migration [42–44] in
molecular systems.
The basic idea of the GKBA is to approximate the lesser and greater Green functions inside the
collision integral with the expression in Eq. (34), which we have demonstrated to be valid only
for noninteracting systems or in the HF approximation. In terms of the one-particle density
matrix ρ(t) = −iG<(t, t) = 1− iG>(t, t) defined in Eq. (18) we can write the GKBA as

G<(t, t′) = −GR(t, t′) ρ(t′) + ρ(t) GA(t, t′), (66)

G>(t, t′) = −GR(t, t′)(ρ(t′)−1) + (ρ(t)−1)GA(t, t′). (67)

Through the GKBA the time off-diagonal lesser and greater Green functions are expressed
in terms of ρ and the propagators. Assuming that the average time between two consecutive
collisions of an electron in the medium is longer than the quasiparticle life-time we can further
approximate the propagators with their HF expression, see Eq. (50). In this way the fullG≶(t, t′)

depends only on the density matrix since hHF is a functional of ρ through the HF potential,
see again Eq. (46). We mention here that other approximations to the propagators have been
proposed in the literature with the aim of accounting for finite quasi-particle life-times [31, 45–
47]. In all cases, however, the approximated propagators are functionals of ρ only.
Let us see how to reduce the KBE to a single equation for ρ(t) using the GKBA. Consider
Eq. (62) and the adjoint equation where the lesser Green function G<(t, t′) is derived with
respect to t′. The adjoint equation is the same as Eq. (63) with > → <. Subtracting the two
equations and setting t = t′ we get

i

(
d

dt
+

d

dt′

)
G<(t, t′)

∣∣
t=t′
−
[
hHF(t), G<(t, t)

]
= I(t) + I†(t), (68)

where I(t) is the collision integral on the right hand side of Eq. (62) calculated at t = t′. To show
that the collision integral of the adjoint equation is the hermitian conjugate of I(t) one can use
the anti-hermiticity of the Green function, i.e., Eq. (64), and of the self-energy. In this chapter
there is not enough space for the general proof of the property Σ<(t, t′) = −

(
Σ<(t′, t)

)†;
however, the reader can verify that this property is fulfilled by the 2B self-energy in Eq. (51);
see Ref. [1] for the general proof. The crucial observation is now that the first term in Eq. (68)
is nothing but the time derivative of the one-particle density matrix ρ, whereas the second term
is the commutator between the HF Hamiltonian and ρ. Hence

d

dt
ρ(t) + i

[
hHF[ρ](t), ρ(t)

]
= −I[ρ](t)− I†[ρ](t). (69)

We have highlighted that hHF is a functional of ρ through the HF potential in Eq. (46) and that
the collision integral I is a functional of ρ through the GKBA. Therefore Eq. (69) is a closed
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equation for the one-particle density matrix! The numerical solution scales quadratically with
the maximum propagation time since ρ depends on one time only. To better appreciate the
computational gain let us work out the collision integral I(t) for the 2B self-energy.
We begin by observing that for t = t′ the right hand side of Eq. (62) can be written as

I(t) =

∫ t

−∞
dt̄

((
Σ>

c (t, t̄)−Σ<
c (t, t̄)

)
G<(t̄, t)−Σ<

c (t, t̄)
(
G>(t̄, t)−G<(t̄, t)

))

=

∫ t

−∞
dt̄
(
Σ>

c (t, t̄)G<(t̄, t)−Σ<
c (t, t̄)G>(t̄, t)

)
. (70)

Using Eq. (51) a matrix element of the product Σ>
c (t, t̄)G<(t̄, t) reads

(
Σ>

c (t, t̄)G<(t̄, t)
)
il

=
∑

j

Σ>
c,ij(t, t̄)G

<
jl(t̄, t)

= i2
∑

rpn

virpn
∑

jmqs

(
vqmsj−vmqsj

)
G>
nm(t, t̄)G<

sr(t̄, t)G
>
pq(t, t̄)G

<
jl(t̄, t). (71)

Similarly, the matrix element of the product Σ<
c (t, t̄)G>(t̄, t) is obtained from Eq. (71) by in-

terchanging >↔ <. The mathematical structure underlying these expressions emerges clearly
if we introduce the Coulomb tensor

w qj
sm
≡ vmqsj−vqmsj = w∗jq

ms
(72)

and the response function

χ0,≷
pq
rs

(t, t′) ≡ −iG≷
pq(t, t

′)G≶
sr(t

′, t). (73)

We then see that Eq. (70) becomes [2–4]

Iil(t) = i2
∑

rpn

virpn

∫ t

−∞
dt̄
∑

jmqs

[
χ0,>
pq
rs

(t, t̄)w qj
sm
χ0,<
jl
mn

(t̄, t)− χ0,<
pq
rs

(t, t̄)w qj
sm
χ0,>
jl
mn

(t̄, t)
]

≡ −i
∑

rpn

virpn G pl
rn

(t). (74)

The square bracket is the sum of simple products between matrices in the two-particle space.
Using greek letters for superindices composed by pairs of one-particle indices, e.g., α = (p, r),
β = (l, n), etc., the matrix elements of G can also be written as [4]

Gαβ(t) = −i

∫ t

−∞
dt̄
∑

µν

[
χ0,>
αµ (t, t̄)wµνχ

0,<
νβ (t̄, t)− χ0,<

αµ (t, t̄)wµνχ
0,>
νβ (t̄, t)

]
. (75)

We point out that up to this point we have not yet used the GKBA to transform the collision in-
tegral, or equivalently G, into a functional of the density matrix. Evaluating the greater response
function for t > t′ using the GKBA we get

χ0,>
pq
rs

(t, t′) = i
∑

a

GR
pa(t, t

′)
(
ρaq(t

′)−δaq
)

︸ ︷︷ ︸
−G>pq(t,t′)

∑

b

ρsb(t
′)GA

br(t
′, t)

︸ ︷︷ ︸
G<sr(t′,t)

=
∑

ab

PR
pa
rb

(t, t′)ρ
(2)>
aq
bs

(t′), (76)
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where we have defined

PR
pa
rb

(t, t′) ≡ iGR
pa(t, t

′)GA
br(t

′, t), ρ
(2)>
aq
bs

(t′) ≡
(
ρaq(t

′)−δaq
)
ρsb(t

′). (77)

The two-time function PR can be interpreted as the propagator of an electron-hole pair. Notice
that GR(t+, t) = −i and GA(t, t+) = i, and hence

PR
pa
rb

(t+, t) = iδpaδrb (78)

or equivalently

PR
αβ(t+, t) = iδαβ. (79)

For t < t′ the GKBA implies

χ0,>
pq
rs

(t, t′) = i
∑

a

(
ρpa(t)−δpa

)
GA
aq(t, t

′)

︸ ︷︷ ︸
G>pq(t,t′)

∑

b

GR
sb(t
′, t)ρbr(t)

︸ ︷︷ ︸
−G<sr(t′,t)

= −
∑

ab

ρ
(2)>
pa
rb

(t)PA
aq
bs

(t, t′), (80)

where

PA
aq
bs

(t, t′) ≡ −iGA
aq(t, t

′)GR
sb(t
′, t) =

(
PR
qa
sb

(t′, t)
)∗
. (81)

Using the superindex convention, the greater response function in GKBA for any t and t′ then
reads

χ0,>
αβ (t, t′) =

∑

µ

(
PR
αµ(t, t′)ρ

(2)>
µβ (t′)− ρ(2)>

αµ (t)PA
µβ(t, t′)

)
. (82)

An analogous derivation can be carried out for the lesser response function. The final result is
identical to Eq. (82) but the matrix ρ(2)> is replaced by the matrix

ρ
(2)<
aq
bs

(t) ≡ ρaq(t)
(
ρsb(t)−δsb

)
. (83)

Hence

χ0,<
αβ (t, t′) =

∑

µ

(
PR
αµ(t, t′)ρ

(2)<
µβ (t′)− ρ(2)<

αµ (t)PA
µβ(t, t′)

)
. (84)

We are now ready to transform G into an explicit functional of the one-particle density matrix.
Taking into account that t̄ < t in Eq. (75), we obtain (in matrix form) [2–4]

G(t) = i

∫ t

−∞
dt̄P R(t, t̄)

(
ρ(2)>(t̄)wρ(2)<(t̄)− ρ(2)<(t̄)wρ(2)>(t̄)

)
P A(t̄, t), (85)

where boldface letters are used to distinguish matrices in the two-particle space from matrices
like G, h or Σ in the one-particle space. The quadratic scaling of the NEGF+GKBA approach
is evident from Eq. (85): a time step from t to t + δt necessitates the calculation of G(t), and
G(t) contains an integral whose upper limit grows like t.
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d

dt
⇢ + i

h
hHF, ⇢

i
= �(I + I†)

Iil = �i
X

rpn

virpn G pl
rn

 ⌘ ⇢(2)>w⇢(2)< � ⇢(2)<w⇢(2)>

⇢
(2)<
aq
bs
⌘ ⇢aq(⇢sb � �sb)

⇢
(2)>
aq
bs
⌘ (⇢aq � �aq)⇢sb

h
(2)

HF,
pc
rd

= hHF,pc�rd � �pchHF,dr

n
d

dt
G + i

h
h

(2)
HF, G

i
= i 

Fig. 3: Summary of the fundamental equations and definitions for NEGF+GKBA simulations
in the 2B approximation.

9 Time-linear scaling and state-of-the-art approximations

Important progress has been recently achieved in reducing the computational scaling of the
NEGF+GKBA equations to the ideal linear law [2], and in establishing that the time-linear
scaling holds for the 2B approximation as well as for state-of-the-art diagrammatic methods like
GW and T-matrix (both in the particle-hole and particle-particle channels) [3]. In Ref. [4] the
time-linear scaling formulation has been further extended to GW plus exchange, T-matrix plus
exchange and self-energies with three-particle correlations. Furthermore, in Ref. [5] a GKBA
has been introduced also for bosonic Green functions, and a time-linear scaling formulation
for real-time simulations of nonequilibrium systems of interacting electrons and bosons, e.g.,
phonons or photons, has been established here too.
The fundamental observation is that the two-particle propagator P R satisfies an elementary
equation of motion. Taking into account that GR and GA are approximated at the HF level, see
Eq. (50), we get for any t > t̄

i
d

dt
PR
pa
rb

(t, t̄) =
∑

c

hHF,pc(t)P
R
ca
rb

(t, t̄)−
∑

d

hHF,dr(t)P
R
ca
db

(t, t̄). (86)

Introducing the HF Hamiltonian in the two-particle space

h
(2)

HF,
pc
rd

(t) = hHF,pc(t)δrd − δpchHF,dr(t), (87)

we can rewrite the equation of motion for P R in matrix form as follows

i
d

dt
P R(t, t̄) = h

(2)
HF(t)P R(t, t̄), t > t̄. (88)

Let us now come to P A. In matrix form Eq. (81) reads P A(t̄, t) =
(
P R(t, t̄)

)†. Taking the
hermitian conjugate of Eq. (88) we then get

− i
d

dt
P A(t̄, t) = P A(t̄, t)h

(2)
HF(t), t > t̄, (89)
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⌃c,ij =

i j

1

2
3 n� 2

n� 1

n
1X

n=2

= +
w

Fig. 4: Diagrams for the GW+X self-energy.

where we have observed that the matrixh(2)
HF is hermitian in the two-particle space, i.e., h(2)

HF,αβ =

h
(2)∗
HF,βα. The equations of motion for P R and P A can be used to construct an equation of motion

for G. Recalling the rule

d

dt

∫ t

dt̄ f(t, t̄) = f(t+, t) +

∫ t

dt̄
d

dt
f(t, t̄), (90)

where f is an arbitrary function of two times, we find from Eq. (85)

i
d

dt
G(t) = −Ψ (t) + h

(2)
HF(t)G(t)− G(t)h

(2)
HF(t), (91)

with
Ψ (t) ≡ ρ(2)>(t)wρ(2)<(t)− ρ(2)<(t)wρ(2)>(t). (92)

Equation (91) together with the equation of motion for ρ, see Eq. (69), form a closed system
of ordinary differential equations [2, 3]. Thus the numerical solution of the time-dependent
2B approximation in NEGF+GKBA scales linearly with the maximum propagation time, which
was to be demonstrated. For the benefit of the reader we summarize in Fig. 3 the main equations
and definitions.
We have already mentioned that the linear scaling of the NEGF+GKBA equations is not limited
to the 2B approximation. In what follows we derive the NEGF+GKBA equations for the GW
plus exchange (GW+X) approximation. As we shall see the difference with the 2B approxima-
tion, Eq. (91), is only minor. Readers who wish to immediately compare 2B with GW+X or
who prefer to go through the derivation in a second reading can jump directly to Eq. (110).
The GW+X self-energy is displayed in Fig. 4 where the double wiggly lines represent the tensor
w defined in Eq. (72), see also the diagrammatic representation of w in the grey box of Fig. 4.
The well known GW self-energy is recovered by neglecting the exchange contribution in w,
i.e., by setting w qj

sm
= vmqsj (first term on the right hand side of the diagrammatic equation in

the grey box). The figure shows the diagrams of order n in the interaction strength. The first
term of the sum has n = 2 and it coincides with the 2B self-energy of Fig. 2. Thus, the GW+X
self-energy is obtained from the 2B self-energy of Eq. (51) upon replacing the bare response
function χ0

pq
rs

(z, z′) ≡ −iGpq(z, z
′)Gsr(z

′, z), cf. Eq. (73), with the RPA response function (in
matrix form)

χ(z, z′) = χ0(z, z′) +

∫

γ

dz̄χ0(z, z̄)wχ(z̄, z′). (93)
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This implies that the collision integral can again be written as in Eq. (74), but the function G
changes into

G(t) = −i

∫ t

−∞
dt̄
(
χ>(t, t̄)wχ0,<(t̄, t)− χ<(t, t̄)wχ0,>(t̄, t)

)
. (94)

We point out that at this point we have not yet used the GKBA to transform G into a functional
of the density matrix.
Before using the GKBA we extract the lesser and greater components of the RPA response
function. They follows from Eq. (93) when setting z = t−/+ and z′ = t+/−. Manipulating the
contour integral as we did in Eq. (57) until Eq. (62) we get

χ≶(t, t′) = χ0,≶(t, t′) +

∫
dt̄
(
χ0,R(t, t̄)wχ≶(t̄, t′) + χ0,≶(t, t̄)wχA(t̄, t′)

)
. (95)

Unless otherwise stated undefined integrals are over the entire real axis, i.e.,
∫
≡
∫∞
−∞. We can

use Eq. (95) to calculate the retarded and advanced components which, we recall, are defined
for any two-times correlator in Eqs. (59) and (60). For the retarded response function we find

χR(t, t′) = χ0,R(t, t′) +Θ(t−t′)
∫
dt̄ χ0,R(t, t̄)w

[
χ>(t̄, t′)−χ<(t̄, t′)

]

+Θ(t−t′)
∫
dt̄
[
χ0,>(t, t̄)−χ0,<(t, t̄)

]
wχA(t̄, t′). (96)

Consider the last term in this expression. It vanishes unless t > t′, due to the theta function
Θ(t−t′), and t′ > t̄, due to the theta function hidden in χA. We can then multiply the integrand
by Θ(t−t̄) and hence replace the square bracket with χ0,R(t, t̄). Taking into account Eq. (61)
to rewrite the square bracket in the second term we then see that the products χ0,RwχA cancel
off and we remain with

χR(t, t′) = χ0,R(t, t′) +

∫
dt̄ χ0,R(t, t̄)wχR(t̄, t′). (97)

The advanced response function can be worked out similarly; the result is the same as Eq. (97)
with R→ A.
The equations for χR/A are useful to isolate χ≶ in Eq. (95). To lighten the notation let us
denote with a dot the convolution between two functions. Thus Eq. (95) can be shorten into
χ≶ = χ0,≶+χ0,Rw·χ≶+χ0,≶w·χA and similarly Eq. (97) becomesχR = χ0,R+χ0,Rw·χR.
The dot can of course go to the left ofw as well. Notice that the retarded equation can be solved
iteratively to give

χR = χ0,R + χ0,Rw · χ0,R + χ0,Rw · χ0,Rw · χ0,R + . . .

= χ0,R +
(
χ0,R + χ0,Rw · χ0,R + . . .

)
w · χ0,R

= χ0,R + χRw · χ0,R. (98)

In other words χRw · χ0,R = χ0,Rw · χR. Let us go back to Eq. (95). Isolating χ≶ we get
(
δ − χ0,Rw

)
· χ≶ = χ0,≶ ·

(
δ +wχA

)
, (99)
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where δ stands for the Dirac delta, hence for any two-times correlator C we have [δ ·C](t, t′) =∫
dt̄ δ(t−t̄)C(t̄, t′) = C(t, t′) . Next we observe that

(
δ + χRw

)
·
(
δ − χ0,Rw

)
= δ +

(
χR − χ0,R − χRw · χ0,R

)
w = δ, (100)

since the term in parenthesis vanish, see Eq. (98). Convoluting Eq. (99) with
(
δ + χRw

)
on

the right we then find

χ≶ =
(
δ + χRw

)
· χ0,≶ ·

(
δ +wχA

)
. (101)

At this point we have all ingredients to evaluate G using the GKBA. From Eqs. (82) and (84)
we first obtain the GKBA expression of the retarded/advanced bare response functions

χ0,R(t, t′) = P R(t, t′)ρ(2),∆(t′), χ0,A(t, t′) = ρ(2),∆(t)P A(t, t′), (102)

where we have defined

ρ(2),∆(t) ≡ ρ(2),>(t)− ρ(2),<(t). (103)

Inserting Eq. (102) into Eq. (97) and in the analogous equation for χA we obtain the GKBA
expression for the retarded/advanced RPA response functions

χR(t, t′) = ΠR(t, t′)ρ(2),∆(t′), χA(t, t′) = ρ(2),∆(t)ΠA(t, t′), (104)

where the dressed electron-hole propagators satisfy the integral equation

ΠR = P R + P R · ρ(2),∆wΠR = P R +ΠR · ρ(2),∆wP R, (105a)

ΠA = P A + P A ·wρ(2),∆ΠA = P A +ΠA ·wρ(2),∆P A. (105b)

Here and below the product of a one-time function A and a two-times function B is intended as
[AB](t, t′) ≡ A(t)B(t, t′) and [BA](t, t′) = B(t, t′)A(t′). Thus in Eqs. (105) the convolution
dot could actually be placed anywhere between P R/A andΠR/A. Using the GKBA expression
for χ0,≶ in Eqs. (82) and (84) as well as the GKBA expression for χR/A in Eq. (104) the
lesser/greater RPA response function in Eq. (101) becomes

χ≶ =
(
δ +ΠRρ(2),∆w

)
·
(
P Rρ(2),≶ − ρ(2),≶P A

)
·
(
δ +wρ(2),∆ΠA

)

= ΠRρ(2),≶ ·
(
δ +wρ(2),∆ΠA

)
−
(
δ +ΠRρ(2),∆w

)
· ρ(2),≶ΠA. (106)

This result allows for rewriting G in Eq. (94) in a very elegant form. Taking into account that
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for any t̄ < t Eqs. (82) and (84) imply χ0,≶(t̄, t) = −[ρ(2),≶P A](t̄, t) we find

G(t) = i
[(
ΠRρ(2),> ·

(
δ+wρ(2),∆ΠA

)
−
(
δ+ΠRρ(2),∆w

)
·ρ(2),>ΠA

︸ ︷︷ ︸
χ>

)
·wρ(2),<P A

︸ ︷︷ ︸
−χ0,<

]
(t, t)

−
[
>↔ <

]

= i
[
ΠRρ(2),>wρ(2),< ·P A +ΠR

(
ρ(2),>wρ(2),∆−ρ(2),∆wρ(2),>

︸ ︷︷ ︸
−Ψ

)
·ΠA ·wρ(2),<P A

]
(t, t)

− i
[
ΠRρ(2),<wρ(2),> ·P A +ΠR

(
ρ(2),<wρ(2),∆−ρ(2),∆wρ(2),<

︸ ︷︷ ︸
−Ψ

)
·ΠA ·wρ(2),>P A

]
(t, t)

= i
[
ΠRΨ · P A +ΠRΨ ·ΠA ·wρ(2),∆P A

]
(t, t)

= i
[
ΠRΨ ·ΠA

]
(t, t), (107)

where in the second equality we have observed that [ρ(2),≷ΠA ·wρ(2),≶P A](t, t) = 0 sinceΠA

contains a Θ(t̄−t) and P A contains a Θ(t−t̄). We have also recognized the quantity Ψ defined
in Eq. (92). Making explicit the time integration, the function G in the GW+X approximation
has the following compact and elegant form

G(t) = i

∫ t

−∞
dt̄ΠR(t, t̄)Ψ (t)ΠA(t̄, t). (108)

It is now easy to prove that also the GW+X method scales linearly in time. Taking into account
the equation of motion (88) for P R and the rule in Eq. (90) we find from Eq. (105a)

i
d

dt
ΠR(t, t′) = h

(2)
HF(t)P R(t, t′) + i

d

dt

∫ t

−∞
dt̄P R(t, t̄)ρ(2),∆(t)wΠR(t̄, t′)

=
(
h

(2)
HF(t)− ρ(2),∆(t)w

)
ΠR(t, t′). (109)

Equation (105a) also implies thatΠR(t+, t) = i and thatΠA(t′, t) = [ΠR(t, t′)]†. Thus, using
again the rule in Eq. (90)

i
d

dt
G(t) = −Ψ (t) + h

(2)
eff (t)G(t)− G(t)h

(2)†
eff (t), (110)

where
h

(2)
eff (t) ≡ h(2)

HF(t)− ρ(2),∆(t)w. (111)

Comparing this result with the 2B equation of motion (91) we conclude that the only change
brought about by the GW+X approximation is the replacement of h(2)

HF with the effective Hamil-
tonian h(2)

eff . The effective Hamiltonian is not hermitian and therefore the last two terms in
Eq. (110) cannot be grouped to form a commutator.
Similar derivations can be carried out for the T-matrix approximation in the particle-particle and
particle-hole channels (with and without exchange diagrams), see Refs. [2–4]. In Ref. [4] an
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extension of the GKBA to higher order Green functions has been put forward to include three-
particle correlations while preserving the linear time-scaling. Another promising extension is
the GKBA for bosonic Green functions to deal with systems of electrons interacting with quan-
tized photons or phonons [5]. In this case too it is possible to build propagation algorithms that
scale linearly in time [5]. Importantly, these methodological advances can be merged to treat the
electron-electron, electron-phonon and electron-photon interactions on equal footing [6], thus
opening the door for the investigation of a broad range of nonequilibrium correlated phenom-
ena. Implementations of the NEGF+GKBA equations in high performance computer facilities
are therefore foreseeable in the next few years.

10 First-principles NEGF+GKBA implementations

The NEGF+GKBA equations can be applied to finite systems like atoms and molecules as
well as to extended systems like solids and interfaces. Of course, the most suitable basis to
describe a certain phenomenon depends on the system and on the external driving. For the
sake of definiteness we consider a finite system subject to an external time-dependent electric
field E(t). Treating the light-matter interaction in the dipole approximation the one-particle
Hamiltonian reads

hij(t) = heq
ij + E(t) ·Dij, (112)

where Dij = (Dx
ij, D

y
ij, D

z
ij) is a matrix element of the dipole vector.

In general a finite system is described by a one-particle basis made of active states and core
states. The population of the active states is different from 0 or 1 because of dynamical cor-
relations or thermal fluctuations or external fields whereas the population of the core states is
frozen to unity. We can work in the truncated space spanned by the active states provided that
the HF potential of the core electrons is added to heq. Henceforth we use the letter c for indices
running in the space of core states and the letters i, j,m, n for indices running in the active
space. We split the Hartree and exchange potentials into a core-electrons (ce) contribution and
an active-electrons (ae) contribution

(
VH,ce[ρ]

)
ij

=
∑

cc′

vicc′jρc′c,
(
VH,ae[ρ]

)
ij

=
∑

mn

vimnjρnm, (113)

(
Vx,ce[ρ]

)
ij

= −
∑

cc′

vicjc′ρc′c,
(
Vx,ae[ρ]

)
ij

= −
∑

mn

vimjnρnm. (114)

The full HF potential with indices in the active space is simply given by VHF = VH,ce + VH,ae +

Vx,ce + Vx,ae, see Eq. (46). Taking into account that ρcc′ = δcc′ , the equilibrium HF Hamiltonian
in Eq. (49) can be rewritten as

hHF[ρ] = heq+ce + VH,ae[ρ] + Vx,ae[ρ], (115)

where
heq+ce = heq + VH,ce + Vx,ce (116)
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is the one-particle Hamiltonian plus the HF potential generated by the frozen core-electrons.
Thus, replacing heq with heq+ce in Eq. (112) we can solve the NEGF+GKBA equations directly
in the active space.
In the next sections we shall describe how to perform first-principles NEGF+GKBA simulations
using two different types of basis. More details can be found in Ref. [48].

10.1 Kohn-Sham basis

We here consider the case of a Kohn-Sham (KS) basis [49–51] and assume that electrons in the
KS core orbitals remain frozen and do not participate to the dynamics. The equilibrium KS one-
particle density matrix in the KS basis reads ρKS,nm = δnm. The equilibrium KS Hamiltonian
in the same basis is diagonal and reads

hKS = heq + VH,ce + VH,ae[ρKS] + Vxc, (117)

where Vxc is the exchange-correlation (xc) potential of Density Functional Theory (DFT). In
general, VH,ce + Vxc is given by the sum of the pseudopotential and the xc potential generated
by the active electrons. A comparison with Eq. (115) allows us to express heq+ce in terms of the
KS Hamiltonian according to

heq+ce = hKS − Vxc − VH,ae[ρKS] + Vx,ce. (118)

Thus a first-principles NEGF+GKBA simulation needs as input the KS eigenvalues εKS
i (needed

to construct the KS Hamiltonian hKS,ij = δijε
KS
i ), the matrix elements Vxc,ij , Dij and the

Coulomb integrals vijmn for the evaluation of the Hartree potential VH,ae[ρKS] generated by
the active KS electrons, see Eq. (118), as well as for the evaluation of the functionals VH,ae[ρ]

and Vx,ae[ρ], see Eq. (115), and for the quantities Ψ , see Eq. (92), and h(2)
eff , see Eq. (111). In

this way the only remaining unknown is Vx,ce which, however, is usually small and can be ne-
glected. One could estimate this quantity by performing an all-electron KS calculation without
pseudopotentials.

10.2 Localized basis

For a description in terms of N one-particle localized states {|i〉} like, e.g., the Slater type
orbitals (STO) [52, 53] or the Gaussian type orbitals (GTO) [54], we need the matrix elements
of the equilibrium Hamiltonian heq

ij = 〈i| p̂2
2m

+ V̂n|j〉 (Vn being the nuclear potential), dipole
vector Dij = 〈i|r̂|j〉, overlap matrix Sij = 〈i|j〉 and Coulomb integrals vijmn = 〈ij|v̂|mn〉. As
our equations have been formulated in an orthonormal basis the very first step consists in the
orthonormalization of the localized (STO or GTO) basis

|i〉 →
∑

m

|m〉S−1/2
mi , (119)

and in expressing the matrices heq, D and the Coulomb tensor v in the new orthonormal basis.
To reduce the dimensionality of the one-particle Hilbert space we must perform a preliminary
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self-consistent HF calculation in the orthonormal basis of Eq. (119), and then construct the
orthonormal HF vectors |iHF〉 =

∑
m ϕ

(i)
m |m〉 with HF energies εHF

i . The HF states |iHF〉 =

|cHF〉 of energy εHF
c < Λ are considered as core states. Setting the vacuum energy at zero

the energy cut-off Λ is typically of the order of −102 eV. The best way to exploit the fixed
occupation of the core states is then to work in the HF basis since in this basis ρcc′ = δcc′ . This
means that we must calculate the matrix elements heq

ij , Dij and the Coulomb tensor vijmn in the
HF basis. To determine heq+ce we use its definition in Eq. (116) which in the HF basis yields

heq+ce
ij = heq

ij +
∑

cc′

(
vicc′j−vicjc′

)
ρc′c = heq

ij +
∑

c

(
viccj−vicjc

)
. (120)

This equation tells us that in addition to vijmn with all indices in the active space we also need
to calculate viccj and vicjc for all core indices c and for all active indices i, j.
The main limitation of the STO or GTO basis is that the continuum part of the one-particle
spectrum is, in general, poorly described and hence phenomena like photo-induced ionization
and Auger decay cannot be simulated. In phenomena like electron transport or photoabsorption
the electrons do instead remain bound to the system and a description in terms of localized
orbitals can be made accurate at will.



8.26 Gianluca Stefanucci

References

[1] G. Stefanucci and R. van Leeuwen: Nonequilibrium Many-Body Theory of
Quantum Systems: A Modern Introduction (Cambridge University Press, 2013)

[2] N. Schlünzen, J.P. Joost, and M. Bonitz, Phys. Rev. Lett. 124, 076601 (2020)

[3] J.P. Joost, N. Schlünzen, and M. Bonitz, Phys. Rev. B 101, 245101 (2020)

[4] Y. Pavlyukh, E. Perfetto, and G. Stefanucci, Phys. Rev. B, in press (2021)

[5] D. Karlsson, R. van Leeuwen, Y. Pavlyukh, E. Perfetto, and G. Stefanucci,
Phys. Rev. Lett., in press (2021)

[6] Y. Pavlyukh, D. Karlsson, R. van Leeuwen, E. Perfetto, and G. Stefanucci, in preparation
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