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1 Introduction: the many-body problem

The electronic many-body problem, in the non-relativistic limit and in the Born-Oppenheimer
approximation, is described by the Hamiltonian

Ĥe = −1

2

∑

i

∇2
i −

∑

i

∑

α

Zα
|ri−Rα|

+
∑

i>j

1

|ri−rj|
+
∑

α>α′

ZαZα′

|Rα−Rα′|
, (1)

where {ri} are electron coordinates, {Rα} nuclear coordinates and Zα the nuclear charges.
Using a complete one-electron basis, for example the basis {ϕa(r)}, where {a} are the quantum
numbers, we can write this Hamiltonian in second quantization as

Ĥe = −
∑

ab

tabc
†
acb

︸ ︷︷ ︸
Ĥ0

+
1

2

∑

aa′bb′

Uaa′bb′ c
†
ac
†
a′cb′cb

︸ ︷︷ ︸
ĤU

.

Here the hopping integrals are given by

tab = −
∫
dr ϕa(r)

(
−1

2
∇2−

∑

α

Zα
|r−Rα|

︸ ︷︷ ︸
ven(r)

)
ϕb(r),

while the elements of the Coulomb tensor are

Uaa′bb′ =

∫
dr2

∫
dr2 ϕa(r1)ϕa′(r2)

1

|r1−r2|
ϕb′(r2)ϕb(r1).

In principle, all complete one-electron bases are equivalent. In practice, since, in the general
case, we cannot solve the N -electron problem exactly, some bases are better than others. One
possible choice for the basis are the Kohn-Sham orbitals,

{
ϕKS
a (r)

}
, obtained, e.g., in the local

density approximation (LDA).1 In this case, it is useful to replace the electron-nuclei interaction
ven(r) with the DFT potential vR(r), which includes in addition the Hartree term vH(r) and the
(approximate) exchange-correlation potential vxc(r)

vR(r) = ven(r) +

∫
dr′

n(r′)

|r−r′|︸ ︷︷ ︸
vH(r)

+ vxc(r),

so that

t̃ab = −
∫
dr ϕKS

a (r)

(
−1

2
∇2 + vR(r)

)
ϕKS
b (r). (2)

To avoid double counting (DC), we have however to subtract from ĤU the term ĤDC, which
describes the Coulomb terms already included in the hopping integrals

Ĥe = −
∑

ab

t̃ab c
†
acb

︸ ︷︷ ︸
Ĥ0=ĤLDA

e

+
1

2

∑

aba′b′

Ũaa′bb′ c
†
ac
†
a′cb′cb − ĤDC

︸ ︷︷ ︸
∆ĤU

.

1For the purpose of many-body calculations the differences between LDA, GGA, or their plain extensions are
in practice negligible; for simplicity, in the rest of the lecture, we thus adopt LDA as representative functional.
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For weakly-correlated systems, in the Kohn-Sham basis, the effects included in ∆ĤU can, in
first approximation, either be neglected or treated as a perturbation. This implies that ĤLDA

e ∼
Ĥeff , where Ĥeff is the effective model which provides a good description of the system (at least)
at low energy, and which describes emergent effective “elementary particles” and their interac-
tions. Hypothetically, one could imagine that Ĥeff is obtained via a canonical transformation,
so that Ĥeff ∼ Ŝ−1Ĥe Ŝ, although the exact form of the operator Ŝ is unknown.
A defining feature of strong-correlation effects is that they cannot be described via a single-
electron Hamiltonian. An effective model Ĥeff of form ĤLDA

e does not capture the Mott metal-
insulator transition, no matter what the specific values of the parameters t̃ab are.2 Thus for
strongly-correlated materials the low-energy effective model must be different. The canonical
Hamiltonian used to describe the Mott transition is the Hubbard model

Ĥ = −
∑

σ

∑

ii′

ti,i
′
c†iσci′σ + U

∑

i

n̂i↑n̂i↓, (3)

which includes, in addition to a single-electron term, the on-site Coulomb repulsion. This model
captures the essence of the Mott transition. At half filling, for U=0 it describes a paramagnetic
metal, and for ti,i′(1−δi,i′)=0 an insulating set of paramagnetic atoms. Unfortunately, differ-
ently from Hamiltonians of type ĤLDA

e , Hubbard-like models cannot be solved exactly in the
general case. Remarkably, till 30 years ago, no method for describing the complete phase dia-
gram of (3) in a single coherent framework, including the paramagnetic insulating phase, was
actually known. This changed between 1989 and 1992, when the dynamical mean-field the-
ory (DMFT) was developed [1–4]. The key idea of DMFT consists in mapping the Hubbard
model onto a self-consistent auxiliary quantum-impurity problem, which can be solved exactly.
The mapping is based on the local dynamical self-energy approximation, very good for realistic
three-dimensional lattices—and becoming exact in the infinite coordination limit [1, 2].
DMFT was initially applied only to simple cases, due to limitations in model building, computa-
tional power, and numerical methods for solving the auxiliary impurity problem (the quantum-
impurity solvers). In the last twenty years remarkable progress lifted many of these limitations.
First, reliable schemes to build realistic low-energy materials-specific Hubbard-like models
have been devised, in particular using Kohn-Sham localized Wannier functions. This is as-
tonishing, given that we do not know the exact operator Ŝ which gives the effective low-energy
Hamiltonian, and thus a truly systematic derivation is not possible. Second, key advances in
quantum-impurity solvers and increasingly more powerful supercomputers made it possible to
study always more complex many-body Hamiltonians. The approach which emerged, con-
sisting in solving, within DMFT, materials-specific many-body Hamiltonians constructed via
LDA, is known as the LDA+DMFT method [5–7]. This technique (and its extensions) is now
the state-of-the-art for describing strongly-correlated materials. In this lecture I will outline the
basic ideas on which the method is based, its successes and its limitations. This manuscript
extends the one of last year’s school—in which more details on the model building aspects can
be found—to the calculation of linear response functions.

2One can obtain an insulator by reducing the symmetry, e.g, by increasing the size of the primitive cell. This
Slater-type insulator has however different properties than a Mott-type insulator.
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2 From DMFT to LDA+DMFT

In this section we introduce the basics of dynamical mean-field theory. We start from a case
for which we can perform analytic calculations, the two-site Hubbard Hamiltonian. This is a
toy model, useful to illustrate how the method works, but for which, as we will see, DMFT is
not a good approximation. Indeed, the Hubbard dimer is the worst case for DMFT, since the
coordination number is the lowest possible. Next we extend the formalism to the one-band and
then to the multi-orbital Hubbard Hamiltonian. For three-dimensional lattices the coordination
number is typically large and thus DMFT is an excellent approximation. Finally, we summarize
the modern schemes to construct materials-specific many-body models. They are based on
Kohn-Sham Wannier orbitals, calculated, e.g, using the LDA functional. The solution of such
models via DMFT defines the LDA+DMFT method.

2.1 DMFT for a toy model: The Hubbard dimer

The two-site Hubbard model is given by

Ĥ = εd
∑

iσ

n̂iσ − t
∑

σ

(
c†1σc2σ + c†2σc1σ

)
+ U

∑

i

n̂i↑n̂i↓, (4)

with i = 1, 2. The ground state for N = 2 electrons (half filling) is the singlet3

|G〉H =
a2(t, U)√

2

(
c†1↑c

†
2↓ − c†1↓c†2↑

)
|0〉+

a1(t, U)√
2

(
c†1↑c

†
1↓ + c†2↑c

†
2↓

)
|0〉 (5)

with

a2
1(t, U) =

1

∆(t, U)

∆(t, U)− U
2

, a2
2(t, U) =

4t2

∆(t, U)

2

∆(t, U)− U , (6)

and

∆(t, U) =
√
U2 + 16t2. (7)

The energy of this state is

E0(2) = 2εd +
1

2

(
U −∆(t, U)

)
. (8)

In the T → 0 limit, using the Lehmann representation (see Appendix B), one can show that the
local Matsubara Green function for spin σ takes then the form

Gσ
i,i(iνn) =

w+(t, U)

iνn −
(
E0(2)− εd+t−µ︸ ︷︷ ︸
E0(2)−E−(1)−µ

) +
w−(t, U)

iνn −
(
−E0(2) + U+3εd+t−µ︸ ︷︷ ︸

E+(3)−E0(2)−µ

)

+
w−(t, U)

iνn −
(
E0(2)− εd−t−µ︸ ︷︷ ︸
E0(2)−E+(1)−µ

) +
w+(t, U)

iνn −
(
−E0(2) + U+3εd−t−µ︸ ︷︷ ︸

E−(3)−E0(2)−µ

) , (9)

3Eigenstates and eigenvalues of the Hubbard dimer for arbitrary filling can be found in Appendix A.
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where νn = π(2n+1)/β are fermionic Matsubara frequencies and µ = εd+U/2 is the chemical
potential. The weights are

w±(t, U) =
1

4

(
1± w(t, U)

)
, with w(t, U) = 2a1(t, U)a2(t, U) =

4t

∆(t, U)
. (10)

The local Green function can be rewritten as the average of the Green function for the bonding
(k = 0) and the anti-bonding state (k = π), i.e.,

Gσ
i,i(iνn) =

1

2

(
1

iνn + µ− εd + t−Σσ(0; iνn)︸ ︷︷ ︸
Gσ(0;iνn)

+
1

iνn + µ− εd − t−Σσ(π; iνn)︸ ︷︷ ︸
Gσ(π;iνn)

)
. (11)

The self-energy is given by

Σσ(k; iνn) =
U

2
+
U2

4

1

iνn + µ− εd − U
2
−eik 3t

. (12)

The self-energies Σσ(0; iνn) and Σσ(π; iνn) differ due to the phase eik = ±1 in their denomi-
nators. The local self-energy is, by definition, the average of the two

Σσ
l (iνn) =

1

2

(
Σσ(π; iνn)+Σσ(0; iνn)

)
=
U

2
+

U2

4

iνn + µ− εd − U
2(

iνn + µ− εd − U
2

)2 − (3t)2

=
U

2
+

U2

4

iνn
(iνn)2 − (3t)2

. (13)

The difference

∆Σσ
l (iνn) =

1

2

(
Σσ(π; iνn)−Σσ(0; iνn)

)
= − U2

4

3t
(
iνn + µ− εd − U

2

)2 − (3t)2

= − U2

4

3t

(iνn)2 − (3t)2
, (14)

thus measures the importance of non-local effects; it would be zero if the self-energy was inde-
pendent of k. Next we define the hybridization function

F σ(iνn) =

(
t+∆Σσ

l (iνn)
)2

iνn + µ− εd −Σσ
l (iνn)

(15)

which for U=0 becomes

F σ
0 (iνn) =

t2

iνn
. (16)

By using these definitions, we can rewrite the local Green function as

Gσ
i,i(iνn) =

1

iνn + µ− εd − F σ(iνn)−Σσ
l (iνn)

. (17)
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Fig. 1: Hubbard dimer: Imaginary (left) and real (right) part of the retarded Green function,
obtained setting iνn → ω+ iδ (analytic continuation) in Eq. (9). Red lines: k = 0 contribution.
Blue lines: k = π contribution. Dashed lines: Poles of the retarded Green function. Parame-
ters: t = 1, U = 4. The weight of the poles yielding the smaller peaks, w−(t, U), defined in
Eq. (10), goes to zero for U → 0. In the atomic limit, instead, all four poles have the same
weight; the energies of the two positive (negative) poles become identical, however.

The associated retarded Green function, obtained via analytic continuation (iνn → ω+ iδ),
is shown in Fig. 1. It is important to point out that, as one may see from the formulas just
discussed, the local Green function and the local self-energy satisfy the local Dyson equation

Σσ
l (iνn) =

1

Gσ
i,i(iνn)

− 1

Gσ
i,i(iνn)

, (18)

where Gσ
i,i(iνn) is given by

Gσ
i,i(iνn) =

1

iνn + µ− εd − F σ(iνn)
. (19)

Thus, one could think of mapping the Hubbard dimer into an auxiliary quantum-impurity model,
chosen such that, within certain approximations, the impurity Green function is as close as
possible to the local Green function of the original problem. How can we do this? Let us adopt
as auxiliary model the Anderson molecule

ĤA = εs
∑

σ

n̂sσ − t
∑

σ

(
c†dσcsσ + c†sσcdσ

)
+ εd

∑

σ

n̂dσ + Un̂d↑n̂d↓ , (20)

where s labels the uncorrelated bath site and d the correlated quantum-impurity site. The first
constraint would be that Hamiltonian (20) has a ground state with the same occupations of the
2-site Hubbard model, i.e., at half filling, nd = ns = 1. Such a self-consistency condition is
satisfied if εs = µ = εd +U/2. This can be understood by comparing the Hamiltonian matrices
of the two models in the Hilbert space with N = 2 electrons. To this end, we first order the
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two-electron states of the Hubbard dimer as

|1〉 = c†1↑c
†
2↑|0〉, |4〉 = 1√

2
(c†1↑c

†
2↓ − c†1↓c†2↑)|0〉,

|2〉 = c†1↓c
†
2↓|0〉, |5〉 = c†1↑c

†
1↓|0〉,

|3〉 = 1√
2
(c†1↑c

†
2↓ + c†1↓c

†
2↑)|0〉, |6〉 = c†2↑c

†
2↓|0〉.

(21)

In this basis the Hamiltonian of the Hubbard dimer has the matrix form

Ĥ2(εd, U, t) =




2εd 0 0 0 0 0

0 2εd 0 0 0 0

0 0 2εd 0 0 0

0 0 0 2εd −
√

2t −
√

2t

0 0 0 −
√

2t 2εd+U 0

0 0 0 −
√

2t 0 2εd+U




. (22)

The ground state, the singlet given in Eq. (5), can be obtained by diagonalizing the lower
3×3 block. For the Anderson molecule, ordering the basis in the same way (1 → d, 2 → s),
this Hamiltonian becomes

ĤA
2 (εd, U, t; εs) =




εd+εs 0 0 0 0 0

0 εd+εs 0 0 0 0

0 0 εd+εs 0 0 0

0 0 0 εd+εs −
√

2t −
√

2t

0 0 0 −
√

2t 2εd+U 0

0 0 0 −
√

2t 0 2εs




. (23)

Comparing the lower 3×3 block of ĤA
2 (εd, U, t; εs) with the corresponding block of Ĥ2(εd, U, t)

we can see that, unless εs = µ = εd + U/2, the two doubly occupied states |5〉 and |6〉 have
different energies and thus the two sites i = 1, 2 are differently occupied in the ground state.
By setting εs = µ we find that

ĤA
2 (εd, U, t;µ) = Ĥ2(εd+

U
4
, U

2
, t). (24)

TheN = 2 ground state of ĤA
2 (εd, U, t;µ) has thus the form of the ground-state for the Hubbard

dimer

|G〉A =
a2(t, U/2)√

2

(
c†d↑c

†
s↓ − c†d↓c†s↑

)
|0〉+

a1(t, U/2)√
2

(
c†d↑c

†
d↓ + c†s↑c

†
s↓

)
|0〉, (25)

and the condition ns =nd = 1 is satisfied. Since εs 6= εd, however, the eigenstates of ĤA for
one electron (N = 1) or one hole (N = 3) are not the bonding and antibonding states of the
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Hubbard dimer.4 The impurity Green function is then given by

Gσ
d,d(iνn) =

1

4

(
1 + w′(t, U)

iνn − (E0(2)− E−(1)− µ)
+

1− w′(t, U)

iνn − (E+(3)− E0(2)− µ)

1− w′(t, U)

iνn − (E0(2)− E+(1)− µ)
+

1 + w′(t, U)

iνn − (E−(3)− E0(2)− µ)

)
, (26)

where

E0(2)− E±(1)− µ = −
(
E±(3)− E0(2)− µ

)
= −1

4

(
2∆(t, U/2)±∆(t, U)

)
(27)

and

w′(t, U) =
1

2

32t2 − U2

∆(t, U)∆(t, U/2)
. (28)

After some rearrangement we obtain a much simpler expression

Gσ
d,d(iνn) =

1

iνn + µ− εd −Fσ0 (iνn)−Σσ
A(iνn)

. (29)

The impurity self-energy equals the local self-energy of the Hubbard dimer

Σσ
A(iνn) =

U

2
+
U2

4

iνn
(iνn)2 − (3t)2

, (30)

as one may see comparing it to equation (13). The hybridization function is given by

Fσ0 (iνn) =
t2

iνn
, (31)

as for the non-interacting Hubbard dimer, Eq. (16). For U = 0, Gσ
d,d(iνn) equals the non-

interacting impurity Green function

G0σ
d,d(iνn) =

1

iνn + µ− εd −Fσ0 (iνn)
. (32)

The impurity Green function thus satisfies the impurity Dyson equation

Σσ
A(iνn) =

1

G0σ
d,d(iνn)

− 1

Gσ
d,d(iνn)

. (33)

In Fig. 2 we show the retarded impurity Green function of the Anderson molecule (orange, right
panels) and the retarded local Green function of the 2-site Hubbard model, both in the local self-
energy approximation (blue, right panels) and exact (blue, left panels). Comparing left and right
panels we can see that setting ∆Σσ

l (ω) = 0 yields large errors. The right panels demonstrate,
however, that the spectral function of the Hubbard dimer with ∆Σσ

l (ω) = 0 is quite similar
to the one of the Anderson molecule. The small remaining deviations come from the fact that,

4The complete list of eigenvalues and eigenvectors of the Anderson molecule for εs = εd + U/2 and arbitrary
electron number N can be found in Appendix A.
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Fig. 2: Retarded Green function of the Hubbard dimer (t = 1, U = 4) and of the Anderson
molecule (εs = εd +U/2) in the zero temperature limit. Left panels: Hubbard dimer, exact
Green function. Right panels, blue: Hubbard dimer in the local self-energy approximation, i.e.,
with ∆Σσ

l (ω) = 0. Right panels, orange: Anderson molecule. Dashed lines: Poles for the
Hubbard dimer (left) or the Anderson molecule (right).

for the Hubbard dimer, in the impurity Dyson equation, the non-interacting impurity Green
function is replaced by Gσ

i,i(iνn) in the local self-energy approximation, i.e., by the bath Green
function

Gσi,i(iνn) =
1

iνn + µ− εd −Fσl (iνn)
, (34)

where

Fσl (iνn) =
t2

iνn + µ− εd −Σσ
A(iνn)

. (35)

We are now in the position of explaining how DMFT works for the Hamiltonian of the Hubbard
dimer, choosing the Anderson molecule Hamiltonian (20) as the auxiliary quantum-impurity
model. The procedure can be split in the following steps

1. Build the initial quantum impurity model with G0σ
d,d(iνn) = G0σ

i,i (iνn). The initial bath is
thus defined by energy εs = εd and hopping t.

2. Calculate the local Green function Gσ
d,d(iνn) for the auxiliary model.
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3. Use the local Dyson equation to calculate the impurity self-energy

Σσ
A(iνn) =

1

G0σ
d,d(iνn)

− 1

Gσ
d,d(iνn)

.

4. Calculate the local Green function of the Hubbard dimer setting the self-energy equal to
the one of the quantum-impurity model

Gσ
i,i(iνn) ∼ 1

2

(
1

iνn + µ− εd + t−Σσ
A(iνn)

+
1

iνn + µ− εd − t−Σσ
A(iνn)

)
.

5. Calculate a new bath Green function Gσi,i(iνn) from the local Dyson equation

Gσi,i(iνn) =
1

Σσ
A(iνn) + 1/Gσ

i,i(iνn)
.

6. Build a new G0σ
d,d(iνn) from Gσi,i(iνn).

7. Restart from the second step.

8. Iterate till self-consistency, i.e., here till nσd = nσi and Σσ
A(iνn) does not change any more.

The Anderson molecule satisfies the self-consistency requirements for εs = µ. The remaining
difference between Gσ

d,d(iνn), the impurity Green function, and Gσ
i,i(iνn), the local Green func-

tion of the Hubbard dimer in the local self-energy approximation, arises from the difference in
the associated hybridization functions

∆Fl(iνn) = Fσl (iνn)−Fσ0 (iνn) = t2p2

(
− 2

iνn
+

1

iνn− εa
+

1

iνn+ εa

)
, (36)

where p2 = U2/8ε2
a and εa =

√
9t2 +U2/4. The error made is small, however, as shown in the

right panels of Fig. 2. To further improve we would have to modify the auxiliary model adding
more bath sites. Staying with the Anderson molecule, in Fig. 3 we compare in more detail its
spectral function with the exact spectral function of the Hubbard dimer. The figure emphasizes
several important conclusions. The top right panel reminds us that DMFT is not a good approx-
imation for molecular complexes with two (or few) correlated sites. This is because in such
systems the coordination number is the lowest possible, the worst case for dynamical mean-
field theory. In three-dimensional crystals, instead, the coordination number is typically large
enough to make dynamical mean-field theory an excellent approximation. The bottom left panel
of Fig. 3 shows that, in the local-self-energy approximation, the agreement between Anderson
and Hubbard Green functions remains very good for any U value. This indicates that when
the local-self-energy approximation works well, as in the case of three-dimensional crystals, it
can be successfully used to study the behavior of a given system as a function of U. Leaving
for a moment DMFT aside, the two bottom panels of Fig. 3 show that the evolution with U is
different for the impurity Green function of the Anderson molecule and the exact local Green
function of the Hubbard dimer. Anticipating the discussion of later sections, if we compare to



DMFT for linear response functions 8.11

 0

 10

 20

-5  0  5

-I
m

 G
(ω

)

ω/t

 0

 10

 20

-5  0  5

-I
m

 G
(ω

)

ω/t

 0

 10

 20

-5  0  5

-I
m

 G
(ω

)

ω/t

 0

 10

 20

-5  0  5

-I
m

 G
(ω

)

ω/t

 0

 10

 20

-5  0  5

-I
m

 G
(ω

)

ω/t

 0

 10

 20

-5  0  5

-I
m

 G
(ω

)

ω/t

 0

 10

 20

-5  0  5

-I
m

 G
(ω

)

ω/t

 0

 10

 20

-5  0  5

-I
m

 G
(ω

)

ω/t

 0

 10

 20

-5  0  5

-I
m

 G
(ω

)

ω/t

 0

 10

 20

-5  0  5

-I
m

 G
(ω

)

ω/t

 0

 10

 20

-5  0  5

-I
m

 G
(ω

)

ω/t

 0

 10

 20

-5  0  5

-I
m

 G
(ω

)

ω/t

   

   

   

-5  0  5

  
  

  
  

 

ω/t

   

   

   

-5  0  5

  
  

  
  

 

ω/t

   

   

   

-5  0  5

  
  

  
  

 

ω/t

   

   

   

-5  0  5

  
  

  
  

 

ω/t

   

   

   

-5  0  5

  
  

  
  

 

ω/t

   

   

   

-5  0  5

  
  

  
  

 

ω/t

0 

10 

20 

         

U=0
-I

m
 G

(ω
)

         

0 

10 

20 

         

U=0
-I

m
 G

(ω
)

         

   

   

   

         

U=4

  
  

  
  

 

         

   

   

   

         

U=4

  
  

  
  

 

         

Fig. 3: Imaginary part of the retarded Green function of the Anderson molecule (orange) and
Hubbard dimer (blue) in the zero temperature limit. In the bottom left panel the local self-energy
approximation is adopted for the Hubbard dimer; in all other cases the exact Green function of
the Hubbard dimer is shown. Parameters: t = 1, εs = µ. Top: U = 0 (left) and U = 4t (right).
Bottom: Evolution with increasing U from 0 to 4t in equal steps.

the spectral function of the actual lattice Hubbard model, we could say that the Hubbard dimer
captures well the evolution of the Hubbard bands and the gap in the large-U limit. On the other
hand, the Anderson molecule partially captures the behavior of the central “quasi-particle” or
“Kondo” peak, although the Kondo effect itself is unrealistically described; as a matter of fact,
the Kondo energy gain (the “Kondo temperature”) is perturbative (∝ t2/U ) in the case of the
Anderson molecule, while it is exponentially small for a Kondo impurity in a metallic bath.
Going back to DMFT, this also points to the possible shortcomings of calculations in which
the quantum-impurity model for the lattice Hubbard model is solved via exact diagonalization,
however using a single bath site or very few; this might perhaps be sufficient in the large-gap
limit,5 but is bound to eventually fail approaching the metallic regime. Indeed, this failure is
one of the reasons why the solution of the Kondo problem required the development of—at the
time new—non-perturbative techniques such as the numerical renormalization group.

5For a discussion of bath parametrization in exact diagonalization and the actual convergence with the number
of bath sites for the lattice Hubbard model see Ref. [8].
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2.2 Non-local Coulomb interaction

In Sec. 2.1 we have seen that the local Coulomb interaction gives rise, alone, to non-local self-
energy terms, which can be very important. What is, instead, the effect of the non-local part
of the Coulomb interaction? For a Hubbard dimer, extending the Coulomb interaction to first
neighbors leads to the Hamiltonian

Ĥ =εd
∑

iσ

n̂iσ − t
∑

σ

(
c†1σc2σ + c†2σc1σ

)
+ U

∑

i=1,2

n̂i↑n̂i↓

+
∑

σσ′

(
V−2JV−JV δσσ′

)
n̂1σn̂2σ′ − JV

∑

i 6=i′

(
c†i↑ci↓c

†
i′↓ci′↑ + c†i′↑c

†
i′↓ci↑ci↓

)
, (37)

where the parameters in the last two terms are the intersite direct (V ) and exchange (JV )
Coulomb interaction. For two electrons the Hamiltonian, in a matrix form, becomes

ĤNL
2 =




2εd+V−3JV 0 0 0 0 0

0 2εd+V−3JV 0 0 0 0

0 0 2εd+V−3JV 0 0 0

0 0 0 2εd+V−JV −
√

2t −
√

2t

0 0 0 −
√

2t 2εd+U −JV
0 0 0 −

√
2t −JV 2εd+U




,

where the basis is defined in Eq. (21). In the atomic (t = 0) limit, the triplet states, |1〉, |2〉 and
|3〉, have lower energy than the singlet states, |4〉, |5〉 and |6〉, as one can see by comparing the
diagonal elements of the upper and lower 3×3 block of the matrix ĤNL

2 here above. This is due
to the fact that JV is positive (ferromagnetic) and V < U. The triplet can remain the ground
multiplet even for finite t. If, however, JV is sufficiently small, the ground state is a singlet,
as in the case V=JV =0. Setting for simplicity JV = 0, we notice that ĤNL

2 = Ĥ2(ε′d, U
′, t),

where the right-hand-side term is the N= 2-electron Hamiltonian of the JV =V= 0 Hubbard
dimer, Eq. (22), with parameters ε′d = εd +V/2 and U ′=U−V. The N= 2 ground state is thus
still given by Eq. (5), provided that we replace U with U ′ in the coefficients. Eventually, in the
limiting case U=V, ĤNL

2 equals the corresponding Hamiltonian of an effective non-correlated
dimer, Ĥ2(ε′d, 0, t). What happens away from half filling? For N= 1 electrons, eigenvectors
and eigenvalues are the same as in the V= 0 case; for N= 3 electrons all energies are shifted
by 2V. Summarizing, we can obtain the Green function for V 6= 0 from Eq. (9) setting

E±(N=1, U ;V ) = E±(N=1, U ; 0) = εd ± t

E±(N=3, U ;V ) = E±(N=3, U ; 0) + 2V = 3εd ± t+ U + 2V

E0(N=2, U ;V ) = E0(N=2, U−V ; 0) + V = E0(2, U−V ) + V

µ(U ;V ) = µ(U) + V = µ+ V

w±(t, U ;V ) = w±(t, U−V ; 0).
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Fig. 4: Imaginary part of the retarded Green function of the Hubbard dimer in the zero tem-
perature limit (U=4, t=1), increasing the intersite Coulomb repulsion V from 0 to V=U=4 in
equal steps; we have set JV = 0. The dark blue line corresponds to V = 0.

Thus we have, recalling that U ′ = U−V,

Gσ
i,i(iνn) =

w+(t, U ′)

iνn−
(
E ′0(2)−1

2
V−εd+t−µ′

)+
w−(t, U ′)

iνn−
(
−E ′0(2)+U ′+1

2
V+3εd+t−µ′

)

+
w−(t, U ′)

iνn−
(
E ′0(2)−1

2
V−εd−t−µ′

)+
w+(t, U ′)

iνn−
(
−E ′0(2)+U ′+1

2
V+3εd−t−µ′

) , (38)

where we set µ′ = µ−V/2 = εd+U
′/2 and E ′0(2) = E0(2, U ′). The associated spectral

function is shown in Fig. 4. The figure illustrates that increasing V from 0 to U makes the
spectra progressively closer to the one of a non-correlated system. Eventually, for U=V, only
two poles contribute, since w−(t, U ′) = 0. In this limit, the spectral function is identical to
the one of the non-interacting Hubbard dimer, however with an enhanced effective hopping,
t −→ t+ V/2. We can thus say that, in first approximation, the (positive) intersite coupling V
effectively reduces the strength of correlations in the Hubbard dimer. In conclusion, the case
of the Hubbard dimer explains why strong-correlation effects typically appear when the local
term of the electron-electron repulsion dominates, i.e., when it is much larger than long-range
terms. A hypothetical system in which the Coulomb interaction strength is independent on
the distance between sites (for the dimer, U=V ) is likely to be already well described via
an effective weakly correlated model. Of course, in real materials, the effects of long-range
Coulomb repulsion can be much more complicated than in the two-site model just discussed,
but the general considerations made here remain true even in realistic cases.
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2.3 Quantum-impurity solvers: Continuous-time quantum Monte Carlo

For the case of the Anderson molecule exact diagonalization is the simplest quantum-impurity
solver and the one that provides most insights. Methods based on Quantum Monte Carlo (QMC)
sampling are often, however, the only option for realistic multi-orbital and/or multi-site models.
Thus, here we explain how to obtain the impurity Green function of the Anderson molecule via
hybridization-expansion continuous-time QMC [9], a very successful QMC-based quantum-
impurity solver. In this approach, the first step consists in splitting the Hamiltonian into bath
(Ĥbath), hybridization (Ĥhyb), and local (Ĥloc) terms

ĤA = εs
∑

σ

n̂sσ

︸ ︷︷ ︸
Ĥbath

−t
∑

σ

(
c†dσcsσ + c†sσcdσ

)

︸ ︷︷ ︸
Ĥhyb

+ εd
∑

σ

n̂dσ + Un̂d↑n̂d↓

︸ ︷︷ ︸
Ĥloc

. (39)

Next, we write the partition function Z as a perturbation series in the hybridization. To this end,
we define Ĥ0 = Ĥbath + Ĥloc and rewrite the partition function as

Z =Tr
(
e−β(Ĥ0−µN̂)V̂ (β)

)
(40)

where the operator V̂ (β) is given by

V̂ (β) = eβ(Ĥ0−µN̂) e−β(Ĥ0+Ĥhyb−µN̂)=
∑

m

∫ β

0

dτ1 · · ·
∫ β

τm−1

dτm

︸ ︷︷ ︸∫
dτm

(−1)m
∏1

l=m
Ĥhyb(τl)

︸ ︷︷ ︸
Ôm(τ )

, (41)

and

Ĥhyb(τl) = eτl(Ĥ0−µN̂) Ĥhyb e
−τl(Ĥ0−µN̂) = −t

∑

σ

(
c†dσl(τl)csσl(τl) + c†sσl(τl)cdσl(τl)

)
. (42)

In this expansion, the only terms that contribute to the trace are even order ones (m = 2k) and
they are products of impurity (d) and bath (s) creator-annihilator pairs. We can thus rewrite

∫
dτ 2k −→

∫
dτ k

∫
dτ̄ k and Ô2k(τ ) −→

∑

σ,σ̄

Ô2k
σ,σ̄(τ , τ̄ ) (43)

where

Ô2k
σ,σ̄(τ , τ̄ ) = (t)2k

k∏

i=1

(
c†dσ̄i(τ̄i)csσ̄i(τ̄i)c

†
sσi

(τi)cdσi(τi)
)
. (44)

The vector σ = (σ1, σ2, ..., σk) gives the spins {σi} associated with the k impurity annihilators
at imaginary times {τi}, while σ̄ = (σ̄1, σ̄2, ..., σ̄k) gives the spins {σ̄i} associated with the
k impurity creators at imaginary times {τ̄i}. It follows that the local and bath traces can be
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decoupled and the partition function can be rewritten as

Z

Zbath

=
∑

k

∫
dτ k

∫
dτ̄ k

∑

σ,σ̄

dkσ̄,σ(τ , τ̄ ) tkσ,σ̄(τ , τ̄ ) (45)

dkσ̄,σ(τ , τ̄ ) =
t2k

Zbath

Trbath

(
e−β(Ĥbath−µN̂s)T ∏1

i=kc
†
sσi

(τi)csσ̄i(τ̄i)
)

(46)

tkσ,σ̄(τ , τ̄ ) = Trloc

(
e−β(Ĥloc−µN̂d)T ∏1

i=kcdσi(τi)c
†
dσ̄i

(τ̄i)
)
, (47)

where Zbath = 1 + 2e−β(εs−µ) + e−2β(εs−µ) and

cdσ(τ) = eτ(Ĥloc−µN̂d)cdσe
−τ(Ĥloc−µN̂d), csσ(τ) = eτ(Ĥbath−µN̂s)csσe

−τ(Ĥbath−µN̂s).

The trace involving only bath operators is simple to calculate, since Ĥbath describes an inde-
pendent-electron problem for which Wick’s theorem holds. It is given by the determinant

dkσ̄,σ(τ , τ̄ ) = det
(
Fkσ̄,σ(τ , τ̄ )

)
(48)

of the k×k non-interacting hybridization-function matrix, with elements
(
Fkσ̄,σ(τ , τ̄ )

)
i′,i

= F 0
σ̄i′ ,σi

(τ̄i′−τi), (49)

where

F 0
σ̄,σ(τ) = δσ̄,σ

t2

1 + e−β(εs−µ)
×
{
−e−τ(εs−µ) τ > 0,

+e−(β+τ)(εs−µ) τ < 0.
(50)

This is the imaginary time Fourier transform of the hybridization function introduced previously

F 0
σ̄,σ(iνn) =

t2

iνn − (εs−µ)
δσ̄,σ. (51)

The calculation of the local trace is in general more complicated. In the case discussed here,
the Hamiltonian does not flip spins. Thus only terms with an equal number of creation and
annihilation operators per spin contribute to the local trace, and we can express the partition
function in expansion orders per spin, kσ. This yields [10]

Z

Zbath

=

(∏

σ

∞∑

kσ=0

∫
dτ kσσ

∫
dτ̄ kσσ

)
dkσ̄,σ(τ , τ̄ )tkσ,σ̄(τ , τ̄ ), (52)

where the vectors σ = (σ↑,σ↓) and σ̄ = (σ̄↑, σ̄↓) have (k↑, k↓) components, and for each kσ
component σi = σ̄i = σ. Thus

tkσ,σ̄(τ , τ̄ ) = Trloc

(
e−β(Ĥloc−µN̂d) T

∏
σ

∏1

i=kσ
cdσ(τσi)c

†
dσ(τ̄σ̄i)

)
. (53)

The latter can be calculated analytically. To do this, first we parametrize all configurations for a
given spin via a timeline [0, β) plus a number of creator/annihilator pairs which define segments
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β 0

k=0

!2 !1 !2!1

k=1

!1!2 !2!1

!2 !1
k=2

!1 !2 !2

!2 !1

!1

Fig. 5: Representative configurations contributing to the local trace at zeroth, first and second
order. The timelines for spin up are red and those for spin down are blue. The filled circles
correspond to the insertion of a creator (time τ1), and the empty circles to the insertion of an
annihilator (time τ2). Dotted lines represent the vacuum state for a given spin, full lines the
occupied state. The grey boxes indicate the regions in which l↑,↓ 6= 0.

on the timeline. At zeroth order two possible configurations exist per spin, an empty timeline,
which corresponds to the vacuum state |0〉, and a full timeline, which corresponds to the state
c†dσ|0〉. A given configuration yields, at order k = k↑ + k↓

tkσ,σ̄(τ , τ̄ ) =

(∏

σ

skσσ

)
e−

∑
σσ′ ((εd−µ)δσσ′+

U
2

(1−δσ,σ′ ))lσ,σ′ , (54)

where lσ,σ′ is the length of the overlap of the τ segments for spins σ and σ′, respectively, while
sσ = sign(τσ1−τ̄σ1) is the fermionic sign. Possible configurations at order k = 0, 1, 2 are
shown in Fig. 5. At order k = 0, summing up the contribution of the four configurations shown
in Fig. 5 yields the local partition function Zloc = 1 + 2e−β(εd−µ) + e−β(2(εd−µ)+U). Order k = 1

is already more complicated. Setting εs = µ as in the self-consistent solution, the contribution
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to the bath trace in this case is

d1
σ̄σ(τ1, τ2) = F 0

σ̄σ(τ1, τ2) = −t
2

2
δσ,σ̄ sign(τ1−τ2). (55)

The local trace at the same order is instead given by

t1σσ̄(τ2, τ1) = Trloc

(
e−β(Ĥloc−µN̂d)T cdσ(τ2)c†dσ(τ1)

)
. (56)

We can now calculate the contribution at half filling of the four k = 1 configurations shown in
Fig. 5. In the case k↑ = 1 and k↓ = 0 we have, going from left to right in each row

t1↑↑(τ2, τ1) =





+e−(τ2−τ1)(εd−µ) = +e+τ21U/2

−e−(β−(τ1−τ2))(εd−µ) = −e(β+τ21)U/2

−e−β(2(εd−µ)+U)+(τ1−τ2)(εd−µ+U) = −e−τ21U/2

+e−(τ2−τ1)(εd−µ+U)−β(εd−µ) = +e(β−τ21)U/2

(57)

where τ21 = τ2 − τ1 and µ = εd + U/2. Similar results can be obtained for k↑ = 0 and k↓ = 1.
Summing up all terms up to order one we find

Z

Zbath

∼Zloc +
∑

σ

∫ β

0

dτ2

∫ β

0

dτ1 d
1
σσ(τ1, τ2) t1σσ(τ2, τ1)

∼Zloc

(
1− β 1− eβU2

1 + e
βU
2

2t2

U

)
. (58)

The exact formula of the partition function can be obtained from the eigenvalues and eigenvec-
tors in Appendix A

Z

Zbath

= Zloc

3(1 + e
βU
2 ) + e

βU
4

(
4e−

β∆(t,U)
4 + 4e+

β∆(t,U)
4 + e+

β∆(t,U/2)
2 + e−

β∆(t,U/2)
2

)

8
(
1 + e

βU
2

) . (59)

Its Taylor expansion in powers of t/U yields, at second order, the expression above. Going
back to Eq. (56), one can observe that, for k = 1, the local trace is proportional to the lo-
cal Green function, Gσ

d,d(τ). Indeed, Gσ
d,d(τ) can be calculated using the configurations just

described—provided that we start from k = 1 and we divide by the hybridization function.
More specifically, for k = 1 and τ > 0 we have

Gσ
d,d(τ) ∼ − 1

β

∫ β

0

∫ β

0

dτ2dτ1 d
1
σσ(τ1, τ2)t1σσ(τ2, τ1)︸ ︷︷ ︸

w1

δ
(
τ − (τ2−τ1)

) 1

F 0
σσ(τ1−τ2)

. (60)

We are now ready to generalize to arbitrary order. Taking all k values into account, the partition
function can be expressed as the sum over all configurations {c}, i.e., in short

Z =
∑

c

wc =
∑

c

|wc| sign wc. (61)
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In a compact form, we can write wc = dτc dc tc where dτc =
∏

σ

∏kσ
i dτσidτ̄σ̄i , and dc and tc

are the bath and local traces for the configuration c. This expression of the partition function
shows that we can interpret |wc| as the sampling weight of configuration c. A generic observable
Ô can then be obtained as the Monte Carlo average on a finite number of configurations Nc

〈Ô〉 =

∑
c〈Ô〉c|wc| sign wc∑
c |wc| sign wc

=

∑
c sign wc〈Ô〉c |wc|/

∑
c |wc|∑

c sign wc |wc|/
∑

c |wc|
≈

1
Nc

∑Nc
c 〈Ô 〉c sign wc

1
Nc

∑
c sign wc

. (62)

The term 1
Nc

∑
c sign wc in the denominator is the average fermionic sign. When this is small,

much longer runs are required to obtain data of the same quality; eventually the computational
time can become so long that the calculation is unfeasible—in these cases we have a sign prob-
lem. In practice, the QMC simulation starts from a random configuration c. Next we propose
an update c→ c′. Within the Metropolis-Hastings algorithm, the acceptance ratio is

Rc→c′ = min

(
1,
pc′→c
pc→c′

|wc′|
|wc|

)
, (63)

where pc→c′ is the proposal probability for the update c → c′. In the approach described here,
known as segment solver, the basic updates are addition and removal of segments, antisegments
(segments winding over the borders of the timeline, see Fig. 5), or complete lines. As example,
let us consider the insertion of a segment for spin σ. A segment is made by a creator and an
annihilator. The creator is inserted at time τin; the move is rejected if τin is in a region where
a segment exists. If created, the segment can have at most length lmax, given by the distance
between τin and the time at which the next creator is, hence

pc→c′ =
dτ̄

β

dτ

lmax

. (64)

The proposal probability of the reverse move (removing a segment) is instead given by the
inverse of the number of existing segments

pc′→c =
1

kσ + 1
. (65)

The acceptance ratio for the insertion of a segment becomes then

Rc→c′ = min

(
1,
βlmax
kσ+1

∣∣∣∣
dc′

dc

tc′

tc

∣∣∣∣
)
. (66)

For the impurity Green function, here the most important observable, the direct average yields

〈Ô〉c = 〈Gσ
d,d〉c =

∑

σ′

kσ∑

i=1

kσ∑

j=1

∆(τ, τσ′j−τ̄σ′j)
(
Mk′σ

)
σ′j,σ′i

δσ,σσ′jδσ,σ̄σ′i (67)

where Mk =
(
Fk
)−1 is the inverse of the hybridization matrix and

∆(τ, τ ′) = − 1

β

{
δ(τ − τ ′) τ ′ > 0

−δ(τ − (τ ′+β)) τ ′ < 0
. (68)

One can verify that at order k = 1 this indeed returns Eq. (60).
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2.4 DMFT for the single- and multi-orbital Hubbard model

The Hubbard Hamiltonian (3) is in principle the simplest model for the description of the Mott
metal-insulator transition. In the tight-binding approximation it becomes

Ĥ = εd
∑

σi

n̂iσ − t
∑

σ〈ii′〉

c†iσci′σ + U
∑

i

n̂i↑n̂i↓, (69)

where 〈ii′〉 is a sum over first neighbors. As discussed in the introduction, for U = 0, at
half-filling, this Hamiltonian describes a metallic band. For t = 0 it describes an insulating
collection of disconnected atoms. Somewhere in-between, at a critical value of t/U, a metal
to insulator transition must occur. In this section we will discuss the DMFT solution of (69)
and the picture of the metal-insulator transition emerging from it. The first step consists in
mapping the original many-body Hamiltonian into an effective quantum-impurity model, such
as the Anderson Hamiltonian

ĤA =
∑

kσ

εskn̂kσ

︸ ︷︷ ︸
Ĥbath

+
∑

kσ

(
V s
k c
†
kσcdσ + h.c.

)

︸ ︷︷ ︸
Ĥhyb

+ εd
∑

σ

n̂dσ + Un̂d↑n̂d↓

︸ ︷︷ ︸
Ĥimp

. (70)

In this model the on-site Coulomb repulsion U appears only in the impurity Hamiltonian, Ĥimp,
while the terms Ĥbath and Ĥhyb, describe, respectively, the bath and the bath-impurity hybridiza-
tion. In the next step, the quantum-impurity model is solved. Differently from the case of the
Anderson molecule, this cannot be done analytically. It requires non-perturbative numerical
methods, such as exact diagonalization, the numerical renormalization group, density-matrix
renormalization group or QMC. Here we describe the DMFT self-consistency loop for a QMC
quantum-impurity solver. Solving the quantum-impurity model yields the impurity Green func-
tion Gσ

d,d(iνn). From the impurity Dyson equation we can calculate the impurity self-energy

Σσ
A(iνn) =

(
G0σ
d,d(iνn)

)−1 −
(
Gσ
d,d(iνn)

)−1
. (71)

Next, we adopt the local self-energy approximation, i.e., we assume that the self-energy of the
Hubbard model equals the impurity self-energy. Then, the local Green function is given by

Gσ
ic,ic(iνn) =

1

Nk

∑

k

1

iνn + µ− εk −Σσ
A(iνn)

, (72)

where Nk is the number of k points. The local Dyson equation is used once more, this time
to calculate the bath Green function Gσ(iνn), which in turn defines a new quantum-impurity
model. This procedure is repeated until self-consistency is reached, i.e., the number of electrons
is correct and the self-energy does not change anymore (within a given numerical accuracy). In
this situation we have

Gσ
ic,ic(iνn) ∼ Gσ

d,d(iνn). (73)
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Fig. 6: The metal-insulator transition in ferromagnetic Hartree-Fock. The calculation is for a
square lattice tight-binding model with dispersion εk = −2t(cos kx + cos ky).

It is important to underline that self-consistency is key to the success of DMFT in describing the
metal-to-insulator transition. This can, perhaps, be best understood looking once more at the
effects of self-consistency in a simpler approach, the static mean-field Hartree-Fock method.6

If we chose the same primitive cell as in DMFT, the Hartree-Fock self-energy matrix is

Σσ
i,i′(iνn) = U

(
n

2
− sσm

)
δi,i′ , (74)

where sσ = +1 for spin up and sσ = −1 for spin down and m = m+ = (n↑−n↓)/2, with
nσ = niσ. The approximation is then identical to replacing the Hubbard Hamiltonian with

ĤHF =
∑

kσ

(
εk + U

(
1

2
− sσm

))
n̂kσ. (75)

This shows that heff = 2Um plays the role of an effective magnetic field (Weiss field). The
self-consistency criterion is

n̄σ = n̄iσ = 〈n̂iσ〉HF , (76)

where the expectation value 〈n̂iσ〉HF is calculated using the Hamiltonian ĤHF, which in turn
depends on n̄σ via m. This gives the self-consistency equation

m =
1

2

1

Nk

∑

kσ

σe−β(εk+U( 1
2
−sσm)−µ)

1 + e−β(εk+U( 1
2
−sσm)−µ)

. (77)

If we set m = 0 the equation is satisfied; for such a trivial solution the static mean-field cor-
rection in Eq. (75) merely redefines the chemical potential and has therefore no effect. For
sufficiently large U, however, a non-trivial solution (m 6= 0) can be found. If m 6= 0 the spin up
and spin down bands split, and eventually a gap can open. This is shown in Fig. 6. The static
mean-field correction in Eq. (75) equals the contribution of the Hartree diagram to the self-
energy, Σσ

H(iνn) = Un̄−σ. In many-body perturbation theory, however, n̄σ = 1/2, i.e., m = 0.
6Keeping in mind that many self-consistent solutions obtained with the Hartree-Fock method are spurious.
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Fig. 7: VOMoO4: LDA+DMFT spectral function at finite temperature for 0 ≤ U ≤ 4. Energies
are in eV and spectral functions in states/spin/eV. The calculations have been done using a
continuous-time hybridization-expansion QMC solver [10]. A detailed LDA+DMFT study of
the electronic and magnetic properties VOMoO4 can be found in Ref. [11].

In the self-consistent static mean-field approximation, instead, m can differ from zero, and a
phenomenon not described by the mere Hartree diagram can be captured, ferromagnetism in a
correlated metal. If the band splitting, given by heff=2Um, is larger than the bandwidth, the
system can even become an insulator.
In DMFT the role of the Weiss mean field is played by the bath Green function Gσi,i(iνn). The
emerging picture of the Mott transition is described in Fig. 7 for a representative single-band
material. In the U = 0 limit, the spectral function A0(ω) is metallic at half filling (top left
panel). For finite U, if we set Σσ

A(ω) = 0 as initial guess, the DMFT self-consistency loop
starts with A(ω) = A0(ω). For small U/t, the converged spectral function A(ω) is still similar
to A0(ω). This can be seen comparing the U = 0.5 and U = 0 panels in Fig. 7. Further
increasing U/t, sizable spectral weight is transferred from the zero-energy quasi-particle peak
to the lower (LH) and upper (UH) Hubbard bands, centered at ω ∼ ±U/2. This can be observed
in the U = 1 panel of Fig. 7. The system is still metallic, but with strongly renormalized masses
and short lifetimes, reflected in the narrow quasi-particle (QP) peak. Finally, for U larger than
a critical value (U ≥ 1.5 in the figure) a gap opens and the system becomes a Mott insulator.
When this happens the self-energy diverges at low frequency, where

Σσ
A(ω + i0+) ∼ U

2
+
U2

4

a(t, U)

ω + i0+
. (78)

In the large U/t limit the gap increases linearly with the Coulomb repulsion, i.e., Eg(1) ∼
U −W, where W is the bandwidth.
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The single-band Hubbard model describes the essence of the metal-insulator transition. In order
to understand this phenomenon in materials, however, we have to study multi-orbital Hubbard-
like Hamiltonians. These have the form

Ĥ = Ĥ0 + ĤU

Ĥ0 = −
∑

ii′

∑

σ

∑

mm′

ti,i
′

mσ,m′σ′ c
†
imσci′m′σ′

ĤU =
1

2

∑

i

∑

σσ′

∑

mm′

∑

pp′

Umpm′p′ c
†
imσc

†
ipσ′cip′σ′cim′σ,

where m,m′ and p, p′ are different orbitals and the Coulomb tensor is local. The DMFT ap-
proach can be extended to solve models of this type, mapping them to multi-orbital quantum-
impurity models. The main changes with respect to the formalism introduced in the previous
section are then the following

εk → (Hk)mσ,m′σ′ (iνn+µ)→ (iνn+µ) 1̂mσ,m′σ′

ti,i
′ → ti,i

′

mσ,m′σ′ εd → εi,i
′

mσ,m′σ′ = −ti,imσ,m′σ′

where 1̂ is the identity matrix. As a consequence, the local Green function, the bath Green
function, the hybridization function and the self-energy also become matrices

Gσ(iνn)→ Gσ,σ′m,m′(iνn) Gσ(iνn)→ Gσ,σ′

m,m′(iνn) Σσ(iνn)→ Σσ,σ′

m,m′(iνn).

The corresponding generalization of the self-consistency loop is shown schematically in Fig. 8.
Although the extension of DMFT to Hubbard models with many orbitals might appear straight-
forward, in practice it is not. The bottleneck is the solution of the generalized multi-orbital
quantum-impurity problem. The most flexible solvers available so far are all based on QMC.
Despite being flexible, QMC-based approaches have limitations. These can be classified in
two types. First, with increasing the number of degrees of freedom, calculations become very
quickly computationally too expensive—how quickly depends on the specific QMC algorithm
used and the actual implementation. Thus, going beyond a rather small number of orbitals and
reaching the zero-temperature limit is unfeasible in practice. The second type of limitation is
more severe. Increasing the number of degrees of freedom leads, eventually, to the infamous
sign problem; when this happens, QMC calculations cannot be performed at all. In order to
deal with limitations of the first type, it is crucial to restrict QMC calculations to the essential
degrees of freedom; furthermore, we should exploit symmetries, develop fast algorithms and
use the power of massively parallel supercomputers to reduce the actual computational time.
For the second type of problems not a lot can be done; nevertheless, it has been shown that a
severe sign problem might appear earlier with some basis choices than with others [10]. Al-
though eventually we cannot escape it, this suggests that the model set up can be used as a tool
to expand the moderate sign-problem zone. For what concerns symmetries, in the paramagnetic
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Fig. 8: LDA+DMFT self-consistency loop. The one-electron Hamiltonian is built in the basis
of Bloch states obtained from localized Wannier functions, for example in the local-density
approximation (LDA); this givesHLDA

k . The set {ic} labels the equivalent correlated sites inside
the unit cell. The local Green-function matrix is at first calculated using an initial guess for the
self-energy matrix. The bath Green-function matrix is then obtained via the Dyson equation
and used to construct an effective quantum-impurity model. The latter is solved via a quantum-
impurity solver, here quantum Monte Carlo (QMC). This yields the impurity Green-function
matrix. Through the Dyson equation the self-energy is then obtained, and the procedure is
repeated until self-consistency is reached.

case and in absence of spin-orbit interaction or external fields, an obvious symmetry to exploit
is the rotational invariance of spins, from which follows

Xσ,σ′

m,m′(iνn) = δσ,σ′ Xm,m′(iνn),

where X = G, G,Σ. In addition, if we use a basis of real functions, the local Green-function
matrices are real and symmetric in imaginary time τ , hence

Xσ,σ′

m,m′(iνn) = δσ,σ′ Xm,m′(iνn) = δσ,σ′ Xm′,m(iνn).

Finally, often the unit cell contains several equivalent correlated sites, indicated as {ic} in Fig. 8.
In order to avoid expensive cluster calculations, we can use space-group symmetries to construct
the matrices G, G,Σ at a given site i′c from the corresponding matrices at an equivalent site, e.g.,
ic = 1. Space-group symmetries also tell us if some matrix elements are zero. For example, for
a model with only t2g (or only eg) states, in cubic symmetry, in the paramagnetic case and in
absence of spin-orbit interaction or external fields, we have

Xσ,σ′

m,m′(iνn) = δσ,σ′ Xm,m(iνn) δm,m′ .
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2.5 LDA+DMFT: Model building

The state-of-the art approach for building realistic Hubbard-like models relies on constructing,
for a given system, materials-specific Kohn-Sham Wannier functions ϕKS

imσ(r). These can be
obtained via electronic structure calculations based on density-functional theory [5–7], e.g., in
the LDA approximation.7 After we have built the complete one-electron basis, the first steps
in model-building are those already described in the introduction. We recall here the essential
points and then discuss the next stage. The many-body Hamiltonian can be expressed as Ĥ =

Ĥ0 + ĤU − ĤDC, with

Ĥ0 = ĤLDA = −
∑

σ

∑

ii′

∑

mm′

ti,i
′

m,m′c
†
imσci′m′σ,

ĤU =
1

2

∑

ii′jj′

∑

σσ′

∑

mm′pp′

U iji′j′

mp m′p′c
†
imσc

†
jpσ′cj′p′σ′ci′m′σ.

The double-counting correction ĤDC arises from the fact that the hopping integrals are cal-
culated replacing the electron-nuclei interaction ven(r) with the self-consistent DFT reference
potential

vR(r) = ven(r) +

∫
dr′

1

|r−r′|︸ ︷︷ ︸
vH(r)

+ vxc(r),

which includes the long-range Hartree term vH(r) and the exchange-correlation contribution
vxc(r). We thus have to subtract from ĤU the effects already included in Ĥ0

ĤU → ∆ĤU = ĤU − ĤDC.

Unfortunately we do not know which important correlation effects are indeed included in Ĥ0 via
vR(r), and therefore the exact expression of ∆ĤU is also unknown. The remarkable successes
of the LDA suggest, however, that in many materials the LDA is overall a good approximation,
and therefore, in those systems at least, the term ∆ĤU can be completely neglected. What
about strongly-correlated materials? Even in correlated systems, most likely the LDA works
rather well for the delocalized electrons or in describing the average or the long-range Coulomb
effects. Thus one can think of separating the electrons into uncorrelated and correlated; only
for the latter we do take the correction ∆ĤU into account explicitly, assuming furthermore that
∆ĤU is local or almost local [5], since we know that it is the local term which is responsible
for most non-trivial many-body effects. Typically, correlated electrons are those that partially
retain their atomic character, e.g., those that originate from localized d and f shells; for conve-
nience, here we assume that in a given system they stem from a single atomic shell l (e.g., d for

7Using GGA or similar functionals in place of LDA yields minor differences in the many-body Hamiltonian;
instead, using LDA+U or similar approximations yields Hartree-Fock-like effects that would have to be subtracted
via the double-counting correction.
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transition-metal oxides or f for heavy-fermion systems) and label their states with the atomic
quantum numbers l and m = −l, . . . , l of that shell. Thus

U iji′j′

mpm′p′ ∼
{
U l
mpm′p′ iji′j′ = iiii ∧ mp,m′p′ ∈ l

0 iji′j′ 6= iiii ∨ mp,m′p′ /∈ l.

Within this approximation ∆ĤU is replaced by ∆Ĥ l
U = Ĥ l

U − Ĥ l
DC, where Ĥ l

DC is, e.g., given
by the static mean-field contribution of Ĥ l

U . There is a drawback in this procedure, however.
By splitting electrons into correlated and uncorrelated we implicitly assume that the main ef-
fect of the latter is the renormalization or screening of parameters for the former, in particular
of the Coulomb interaction. The computation of screening effects remains, unfortunately, a
challenge. The calculation of exact screening would require the solution of the original many-
body problem, taking all degrees of freedom into account, an impossible task. Commonly-
used approximate schemes are the constrained LDA approximation (cLDA) and the constrained
random-phase approximation (RPA) [5–7]. Both methods give reasonable estimates of screened
Coulomb parameters for DMFT calculations. Typically cRPA calculations include more screen-
ing channels and are performed for less localized bases than cLDA calculations; thus cRPA
parameters turn out to be often smaller than cLDA ones. To some extent, the difference can be
taken as an estimate of the error bar.
After we have selected the electrons for which we think it is necessary to include explicitly the
Hubbard correction, we have to build the final Hamiltonian for DMFT calculations. To this end,
it is often convenient to integrate out or downfold, in part or completely, the weakly correlated
states. There are different degrees of downfolding. The two opposite extreme limits are (i) no
downfolding, i.e., keep explicitly in the Hamiltonian all weakly-correlated states (ii) massive
downfolding, i.e., downfold all weakly correlated states. If we perform massive downfolding,
e.g., downfold to the d (or eg or t2g) bands at the Fermi level, the Hamiltonian relevant for
DMFT takes a simpler form. The LDA part is limited to the selected orbitals or bands, which,
in the ideal case, are decoupled from the rest

ĤLDA = −
∑

σ

∑

ii′

∑

mαm
′
α

ti,i
′

mα,m
′
α
c†imασ ci′m′ασ.

The local screened Coulomb interaction for this set of orbitals is the on-site tensor

Ĥ l
U =

1

2

∑

i

∑

σσ′

∑

mαm′α

∑

mβm
′
β

Umαmβm′αm′β c
†
imασ

c†imβσ′cim′βσ′
cim′ασ.

It is important to point out that the level of downfolding does not modify the hardness of the
quantum-impurity problem. If, for example, in studying a transition-metal oxide, we plan to
treat only 3d bands as correlated, it does not matter if we perform calculations with a Hamilto-
nian containing also, e.g., O p states, or we rather downfold all states but the 3d and work with
a set of Wannier basis spanning the 3d-like bands only. The number of correlated orbitals in the
quantum-impurity problem is the same.8

8The choice might influence how severe the QMC sign problem is, however.
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Fig. 9: NMTO Wannier-like orbitals for t2g states in LaTiO3 obtained via massive downfolding
to the t2g bands. The t2g-like orbitals have O p tails at the neighboring O sites reflecting the
distortions of the lattice. The figure has been taken from Ref. [12].

One advantage of massive downfolding is that the double-counting correction typically becomes
a shift of the chemical potential, and it is therefore not necessary to calculate it explicitly. A
second important advantage is that the interpretation of the final results is simpler. Instead, a
disadvantage is that the basis functions are less localized, and therefore the approximation of
the Coulomb interaction to a local operator might be less justified, and in some cases it might be
necessary to include non-local Coulomb terms. The effect of downfolding on the localization of
Wannier functions is illustrated for example in Fig. 9. Finally, another disadvantage of massive
downfolding is that the energy window in which the model is valid is more narrow.

All advantages and disadvantages considered, what is then the best way of performing DMFT
calculations? There is no universal answer to this question; it depends on the problem we are
trying to solve and the system we are studying. Independently of the degree of downfolding
we choose, it is important to point out that a clear advantage of Wannier functions in gen-
eral is that they carry information about the lattice, bonding, chemistry, and distortions. This
can be seen once more in Fig. 9, where orbitals are tilted and deformed by the actual struc-
ture and chemistry of the compound. Indeed, one might naively think of using a “universal”
basis, for example atomic functions, the same for all systems, and thus calculating the hop-
ping integrals using simply the electron-nuclear interaction ven(r). Besides the complications
arising from the lack of orthogonality, such a basis has no built-in materials-specific informa-
tion, except lattice positions. It is therefore a worse starting point for describing the electronic
structure, even in the absence of correlations: larger basis sets are required to reach the same
accuracy. From the point of view of LDA+DMFT, an advantage of an universal basis would
be that it is free from double-counting corrections; on the other hand, however, exactly because
we do not use the LDA potential and LDA orbitals to calculate the hopping integrals, we also
cannot count on the successes of LDA in the description of average and long-range Coulomb
effects. The hopping integrals would not even include the long-range Hartree term. For these
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reasons ab-initio Wannier functions remain so far the basis of choice. They can be built via the
N th-Order Muffin-Tin Orbital (NMTO) method [12], the maximal-localization scheme [13],
or projectors. Fig. 9 shows examples of NMTO-based Wannier functions. No matter what
construction procedure is used, a common characteristic of ab-initio Wannier functions is that
they are site-centered and localized.9 A question naturally arises: How crucial is it to use lo-
calized functions as one-electron basis? This is an important point, since we have seen that
strong-correlation effects arise in systems in which the on-site Coulomb interaction is much
larger than longer-range terms. Let us consider therefore two opposite extreme limits. The
first is the case in which the basis functions are independent of the lattice position (i.e., they
are totally delocalized). For such a basis choice the Coulomb interaction parameters would
be the same for every pair of lattice sites, no matter how distant. Thus a Hubbard-like model
would be hard to justify. In the second extreme case, we adopt a hypothetical basis so localized
that ψimσ(r)ψi′m′σ′(r) ∼ δi,i′ δ(r−Ti). Even for such a basis choice, the unscreened Coulomb
interaction is not local, but given by

U iji′j′

mp m′p′ ∝
δi,i′δj,j′

|Ti−Tj|
,

hence it decays slowly with distance, although the (divergent) on-site term dominates. More
generally, we can conclude that by increasing the localization of the basis we enhance the im-
portance of the on-site Coulomb repulsion with respect to long-range terms; this better justifies
Hubbard-like models—although we have to remember that most of the long-range part of the
Coulomb interaction is in any case subtracted via the double-counting correction ĤDC. The
extreme case of the δ(r−Ti) functions also illustrates, however, how far we can go. A major
problem with the extremely localized basis discussed above is that it would make it impossible
to properly describe bonding, since the hopping integrals would be zero. Although such a basis
is, of course, never used to build many-body models, there is a tempting approximation that
has similar flaws. If one uses DFT-based electronic-structure techniques that tile the space in
interstitial and non-overlapping atomic spheres (e.g., the LAPW method), it is tempting to use
as basis for correlated electrons the atomic functions defined inside the atomic spheres. These
functions are, by construction, much more localized than Wannier orbitals (even when no down-
folding is performed in the Wannier construction). However, they do not form a complete basis
set in the space of square-integrable functions. This is obvious because such a basis does not
even span the LDA bands; to reproduce the bands we need, in addition, functions defined in
the interstitial region. This is illustrated in Fig. 10 for a simple example of two quantum well
potentials.10 We therefore cannot use it to write the many-body Hamiltonian in the usual form,
Ĥ0 + ĤU . In conclusion, a basis which, as ab-initio Wannier functions, is complete and indeed
spans the bands, is better justified, although we somewhat lose in localization.

9Differences in localizations between the various construction procedures are actually small for the purpose of
many-body calculations, provided that the same bands are spanned in the same way.

10Another, but less severe, problem of atomic sphere truncations is that the results will depend on the sphere
size, in particular when atomic spheres are small.
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Fig. 10: The problem of two quantum wells. The figure shows (schematically) for each well
the wavefunction of a bound state. If we consider only the part of the wavefunction inside its
own well (red in the figure), the differential overlap (and hence the hopping integral) between
functions centered on different wells would be zero.

3 Linear response functions

Linear response functions are key to understanding many experimental results. In this section
we explain how to calculate them within the LDA+DMFT approach. First we introduce the
generalized susceptibility, which yields the linear response to a given external perturbation.
Next we present the method used to calculate it and discuss the approximations adopted. Last
we analyze in detail the case of the magnetic susceptibility for the one-band Hubbard model.

3.1 Definitions

Let us start by introducing the site susceptibility in imaginary time. This is given by

χP̂ i
ν
Ôi
′
ν′

(τ ) =
〈
T ∆P̂ i

ν(τ1, τ2)∆Ôi′

ν′(τ3, τ4)
〉

0
, (79)

where τ = (τ1, τ2, τ3, τ4) and T is the time-ordering operator. The site-dependent operators are
defined via the equations

P̂ i
ν(τ1, τ2) =

∑

α

pνα c
†
iα′(τ2)ciα(τ1), ∆P̂ i

ν(τ1, τ2) = P̂ i
ν(τ1, τ2)−

〈
P̂ i
ν(τ1, τ2)

〉

Ôi′

ν′(τ3, τ4) =
∑

γ

oν
′

γ c†i′γ′(τ4)ci′γ(τ3), ∆Ôi′

ν′(τ3, τ4) = Ôi′

ν′(τ3, τ4)−
〈
Ôi′

ν′(τ3, τ4)
〉
.

The labels α = (α, α′), γ = (γ, γ′) are collective flavors. For the multi-band Hubbard model
they may include spin (σ) and orbital (m) quantum number, plus a fractional lattice vector
identifying a correlated basis atom in the unit cell (ic). The weight factors oνα and pν′γ , in general
complex numbers, identify the type of response. We can then rewrite Eq. (79) as

χP̂ i
ν
Ôi
′
ν′

(τ ) =
∑

αγ

pναo
ν′

γ χiα,i′γ(τ ),

with

χiα,i′γ(τ ) =
〈
T ciα(τ1)c†iα′(τ2)ci′γ(τ3)c†i′γ′(τ4)

〉
−Giα,iα′(τ1, τ2)Gi′γ,i′γ′(τ3, τ4). (80)
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Fig. 11: Diagram contributing to the linear susceptibility for a non-interacting system. The red
lines indicates that the creator/annihilator is originally from the operator P̂ν′ and the green lines
indicate that the creator/annihilator is from the operator Ôν . The corresponding frequencies
and momenta are explicitly assigned.

Performing the Fourier transform from imaginary time to Matsubara frequencies we obtain

χiα,i′γ(ν) =
1

16

∫∫∫∫
dτ eiν·τχiα,i′γ(τ ), (81)

where ν = (ν1,−ν2, ν3,−ν4). Due to the conservation of energy, only three of the four νi
frequencies are independent. Hence, for convenience we set ν1 = νn, ν2 = νn+ωm, ν3 =

νn′+ωm, and ν4 = νn′ . Next we perform the Fourier transform from site to momentum space.
Due to the conservation of lattice momentum, only three of the four ki-vectors are independent.
After redefining k1 = k, k2 = k+q, k3 = k′+q and k4 = k′, we find the expression

χP̂ν Ôν′ (q;ν) =
∑

αγ

pναo
ν′

γ

∑

ii′

ei(Ti−Ti′ )·qχiα,i′γ(ν) =
∑

αγ

pναo
ν′

γ

1

N2
k

∑

kk′

[χ(q; iωm)]kνnα,k′νn′γ

︸ ︷︷ ︸
[χ(q;ωm)]νnα,νn′γ

.

In this expression, by summing over k and k′ we obtained [χ(q;ωm)]νnα,νn′γ . The physical
linear response function is given by the sum over the fermionic Matsubara frequencies

χP̂ν Ôν′ (q; iωm) =
∑

αγ

pναo
ν′

γ

1

β2

∑

nn′

[
χ(q;ωm)

]
νnα,νn′γ︸ ︷︷ ︸

[χ(q;ωm)]α,γ

. (82)

In this lecture we will consider the example of the magnetic susceptibility. In this case the
operators P̂ i

ν and Ôi′

ν′ are the three components of the magnetization operator. In the single-
orbital limit (α = α′ = σ and γ = γ′ = σ′), we thus have, e.g.,

ozα = −gµB〈σ|σ̂z|σ〉, pzα = −gµB〈σ′|σ̂z|σ′〉.
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Fig. 12: Diagrammatic representation of the Bethe-Salpeter equation for the linear susceptibil-
ity. The red lines indicate a creator/annihilator stemming from the operator P̂ν and the green
lines from the operator Ôν′ . The box labeled with Γ is the vertex function, the one labeled with
χ the full susceptibility, and χ0 is the pair-bubble term.

3.2 DMFT and the Bethe-Salpeter equation

The linear response functions for the multi-band Hubbard model Ĥ0 + ĤU can be in principle
obtained via standard many-body perturbation theory, i.e., using the Coulomb interaction U as
the expansion parameter. In this approach the expansion point is the linear response function
for the non-interacting Hamiltonian Ĥ0. This term, due to Wick’s theorem, can be written as
follows
[
χ0(q; iωm)

]
νnα,νn′γ

=
1

N2
k

∑

kk′

[
− βNkGkαγ′(iνn)Gk′+qα′γ(iνn′+iωm) δn,n′δk,k′

]

︸ ︷︷ ︸[
χ0(q;iωm)

]
kνnα,k′νn′γ

. (83)

The associated Feynman diagram is shown in Fig. 11, and we will refer to it as the bubble term.
Once we switch on the Coulomb interaction, many-body perturbation theory leads to the Bethe-
Salpeter equation, pictorially shown in Fig. 12. The susceptibility can then be expressed via the
relation
[
χ(q; iωm)

]
νnα,νn′γ

=
1

N2
k

∑

kk′

[
χ0(q; iωm)+

1

N2
k

χ0(q; iωm)Γ (q; iωm)χ(q; iωm)
]
kνnα,νn′k

′γ
.

Replacing recursively χ(q; iωm) one obtains an infinite series in the vertex Γ (q; iωm), which
plays the role of the self-energy in the Dyson equation.
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Green Function Susceptibility

local self-energy approximation local vertex approximation

local Dyson equation local Bethe-Salpeter equation

k-dependent Dyson equation matrix q-dependent Bethe-Salpeter equation matrix

G(k; i⌫n) = G0(k; i⌫n) + G0(k; i⌫n)⌃(k; i⌫n)G(k; i⌫n)

G(i⌫n) = G0(i⌫n) + G0(i⌫n)⌃(i⌫n)G(i⌫n)

� (q; i!m) ! � (i!m)

�(q; i!m) = �0(q; i!m) + �0(q; i!m)� (q; i!m)�(q; i!m)

�(i!m) = �0(i!m) + �0(i!m)� (i!m)�(i!m)

⌃(k; i⌫n) ! ⌃(i⌫n)

Fig. 13: Analogies between the calculation of the Green function G(k; iνn) in the local-self-
energy approximation (left) and the calculation of the response function χ(q; iωm) in the local
vertex approximation (right). Each term in the general Bethe-Salpeter equation can be viewed
as a square matrix of dimension NkNnNα, where Nk is the number of k points, Nn the number
of fermionic Matsubara frequencies, Nα the number of flavors.

Instead of expanding around the non-interacting limit, for correlated systems it is more con-
venient to construct a diagrammatic series starting from the bubble term calculated using the
DMFT Green functions, i.e., replacing G −→ G in Eq. (83). The result is

[χ0(q; iωm)]νnα,νn′γ = −βδnn′
1

Nk

∑

k

Gαγ′(k; iνn)Gα′γ(k+q; iνn+iωm). (84)

If we follow this approach, the unknown vertex Γ (q; iωm) in the Bethe-Salpeter equation differs
from the one obtained in standard many-body perturbation theory. In order to calculate it we
adopt two approximations. The first is that the vertex is approximately local. In the infinite
dimension limit it has been shown that the vertex can be replaced by a local [4, 14] quantity,
Γ (iωm). Assuming that, in the spirit of the dynamical mean-field approximation, for a real
3-dimensional system we can do the same, we thus set

Γ (q; iωm) −→ Γ (iωm). (85)

Thus, dropping for simplicity the flavor indices, after performing the k sums, the Bethe-Salpeter
equation becomes

χ(q; iωm) = χ0(q; iωm) + χ0(q; iωm)Γ (iωm)χ(q; iωm). (86)

By solving it we find, formally

χ−1(q; iωm) = χ−1
0 (q; iωm)− Γ (iωm). (87)
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Fig. 14: VOMoO4: Static magnetic susceptibility χ(q; 0)/χA(0) in the qx, qy plane for repre-
sentative qz values, T ∼ 380 K and U = 5 eV. The normalization χA(0) ∼ µ2

eff/kBT is the
atomic susceptibility in the large βU limit. Top panels: Γ = 0. Bottom panels: Γ 6= 0. Special
points: Γ1 = (2π, 0), X= (π, 0) and M= (π, π). Rearranged from Ref. [11].

Next we assume that Γ (iωm) equals the vertex for the quantum impurity. We define χ(iωm)

the impurity susceptibility obtained via the quantum-impurity solver in the final iteration of the
DMFT self-consistency loop, and χ0(iωm) the average of Eq. (84) over momenta

χ0(iωm) =
1

Nq

∑

q

χ0(q; iωm). (88)

The local vertex Γ (iωm) is then obtained by solving a local Bethe-Salpeter equation

Γ (iωm) = χ−1
0 (iωm)− χ−1(iωm). (89)

Replacing Γ (iωm) into Eq. (87) finally yields the q-dependent susceptibility. It has to be no-
ticed that, although the two equations (87) and (89) look innocent, solving them numerically is
a delicate task because the local susceptibility is in general not diagonal in n, n′ and does not
decay very fast with the frequencies. There are, however, various ways to reduce the compu-
tational costs, e.g., via extrapolations [11] or using compact representations based on auxiliary
polynomials [15, 16]. The method just illustrated for the calculation of linear response func-
tions in the local vertex approximation bears resemblance with the approach adopted for the
calculation of the Green functions in the local self-energy approximation. These analogies are
schematically pointed out in Fig. 13. Instead, in Fig. 14 we show as an example the case of
the static magnetic susceptibility for a one-band system, the S=1/2 frustrated Mott insulator
VOMoO4. The figure shows both the bubble term χ0(q; iωm) (top panels) and the full suscep-
tibility χ(q; iωm) (bottom panels). The two differ sizably in absolute value. In addition, as we
will discuss later, the χ0(q; iωm) term alone is very weakly dependent on the temperature. The
expected Curie-Weiss-like behavior is only recovered when Γ (iωm) is taken into account.
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3.3 The local susceptibility: Legendre representation

The core of the approach described in the previous section is the calculation of the local sus-
ceptibility tensor, χαααγγγ(τττ). In DMFT all local observables 〈Ô〉 are obtained via the quantum-
impurity solver, for example the continuous-time hybridization expansion QMC technique pre-
sented in Section 2.3. Susceptibilities, however, require sizably longer computational time than
Green-function matrices. Thus, instead of calculating directly χαααγγγ(τττ), it is convenient to express
the tensor elements in a basis of orthogonal functions fml (τ), chosen such that the representation
is as compact as possible. A successful choice [15, 16] is

fml (τ) = e−iϕm(τ)

{ √
2l+1 pl(x(τ)), τ > 0

−(−1)m
√

2l+1 pl(x(τ+β)), τ < 0

where pl(x(τ)) is a Legendre polynomial of degree l, with x(τ) = 2τ/β − 1; here the factor
(−1)m in the second row ensures anti-periodicity for all values of m, which is the index for
the bosonic Matsubara frequency ωm. Via the orthogonality properties of the polynomials we
obtain

χαααγγγ(iωm) =
1

β2

∑

ll′

f−ml (0+) χl,l
′

αααγγγ(iωm) f−ml′ (0+). (90)

The expansion coefficients in Eq. (90) take the form

χl,l
′

αααγγγ(iωm) =

∫ β

0

dτ23

∫ β

0

dτ12

∫ β

0

dτ34 e
−iωmτ23fml (τ12)χαα

′

γγ′ (τ14, τ24, τ34, 0)fml′ (τ34), (91)

where τij = τi−τj , with τ14 = τ12+τ23+τ34, and τ24 = τ23+τ34. The phase defining the gauge
is ϕm(τ) = ωmτ/2 and does not depend on l. As we have seen, in quantum Monte Carlo the
observables are obtained as the average over the visited configurations c. Splitting (91) into two
terms [16] we have

〈
χl,l

′

αααγγγ(iωm)
〉
c

=
〈
Cl,l′αααγγγ (iωm)

〉
c
− βδm,0

〈
Gl
ααα

〉
c

〈
Gl′

γγγ

〉
c
.

The first term can be expressed as

〈
C l,l′

αααγγγ (iωm)
〉
c
=

1

β

NB∑

bb′dd′

kb,kd∑

i,j

kb′ ,kd′∑

i′,j′

fml (τdj−τ̄bi)fml′ (τd′j′−τ̄b′i′)cdb,d
′b′

ji,j′i′ (iωm)δααα,(αdj ,ᾱbi)δγγγ,(αd′j′ ,ᾱb′i′ )

where

cdb,d
′b′

ji,j′i′ (iωm) =
(
wdbjiw

d′b′

j′i′ − wd
′b
j′iw

db′

ji′

)
e−iωm(τ̄bi−τd′j′ ).

Here the imaginary times τbi and τ̄bi all vary in the interval [0, β). The letters b and d label the
NB flavors decoupled by symmetry, e.g., {↑, ↓}. Finally, wdbji = δb,dMkb

bj,bi, where the matrix
Mkb = [Fkb0 ]−1 is the inverse of the hybridization function matrix Fkb0 for expansion order kb.
The Green functions in the second term are instead given by

〈
Gl
ααα

〉
c

= − 1

β

NB∑

b

kb∑

ij

f 0
l (τbj−τ̄bi)wbbji δααα,(αbj ,ᾱbi).
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3.4 Magnetic susceptibility for the single-band Hubbard model

The magnetic susceptibility is the linear response to an external magnetic field applied along a
direction, here defined as ẑ. The associated site susceptibility is

χi,i
′

zz (τ ) =
〈
T M̂ i

z(τ)M̂ i′

z (0)
〉

0
−
〈
M̂ i

z

〉
0

〈
M̂ i′

z

〉
0
,

where M̂ i
z = −gµBŜiz is the magnetization for lattice site i. Its Fourier transform is

χzz(q; iωm) =
∑

ii′

eiq·(Ti−Ti′ )
∫
dτ eiωmτχi,i

′

zz (τ)

=
〈
M̂z(q;ωm)M̂z(−q; 0)

〉
0
−
〈
M̂z(q)

〉
0

〈
M̂z(−q)

〉
0
, (92)

where ωm is a bosonic Matsubara frequency. In this section we will discuss the example of
the single-band Hubbard model on a hypercubic lattice and at half filling. Furthermore, unless
differently specified, we will adopt the tight-binding dispersion

εk = −2t
d∑

n=1

cos kda, (93)

where d = 1, 2, 3 is the dimension and a the length of the unit vectors defining the lattice. For
a single-band model the magnetization operator can be expressed in the Bloch basis as

M̂z(q) = −gµB
2

∑

k

∑

σ

sσc
†
k+qσckσ, (94)

where sσ = 1 for σ = ↑ and sσ = −1 for σ = ↓ . To obtain the magnetic response function we
thus have to calculate the imaginary-time tensor with elements

[
χ(q; τ )

]
kσ,k′σ′

=
〈
T ckσ(τ1)c†k+qσ(τ2)ck′+qσ′(τ3)c†k′σ′(τ4)

〉
0

(95)

−
〈
T ckσ(τ1)c†k+qσ(τ2)

〉
0

〈
T ck′+qσ′(τ3)c†k′σ′(τ4)

〉
0
.

The associated imaginary-time magnetic susceptibility is then given by

χzz(q; τ ) = (gµB)2 1

4

∑

σσ′

sσsσ′
1

β

1

N2
k

∑

kk′

[χ(q; τ )]kσ,k′σ′

︸ ︷︷ ︸
χσσσ′σ′ (q;τ )

. (96)

After we Fourier transform with respect to imaginary time and sum over the fermionic Matsub-
ara frequencies, we have

χzz(q; iωm) = (gµB)2 1

4

∑

σσ′

sσsσ′
1

β2

∑

nn′

χn,n
′

σσσ′σ′(q; iωm), (97)

where

χn,n
′

σσσ′σ′(q; iωm) =
1

16

∫∫∫∫
dτ eiν·τχσσσ′σ′(q; τ ). (98)

For ωn = 0 we obtain the static response function.
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Fig. 15: The ratio χ0(q; 0)/χ0(0; 0) in the x-y plane for a hypercubic lattice with t = 0.4 eV
(T ∼ 230 K) at half filling. From left to right: one, two, and three dimensions.

3.4.1 Non-interacting limit

In the non-interacting limit we can use Wick’s theorem to simplify Eq. (95). It follows that the
elements of the two-particle Green function tensor vanish if k 6= k′. Thus Eq. (96) becomes

χzz(q; τ ) = −(gµB)2 1

4

1

β

1

Nk

∑

k

∑

σ

Gkσ(τ14)Gk+qσ(−τ23).

For the frequency-dependent magnetic susceptibility Eq. (97) we have instead

χzz(q; iωm) = (gµB)2 1

4

1

β2

∑

nn′

∑

σ

χn,n
′

σσσσ(q; iωm),

where
∑

σ

χn,n
′

σσσσ(q; iωm) = − β

Nk

∑

k

∑

σ

Gkσ(iνn)Gk+qσ(iνn+iωm) δn,n′ . (99)

The actual dynamical susceptibility is then given by

χzz(q; iωm) = − (gµB)2 1

4

1

Nk

∑

k

∑

σ

nσ(εk+q)− nσ(εk)

εk+q − εk + iωm
,

where nσ(x) = nF (x) is the Fermi distribution function. Figure 15 shows the static spin suscep-
tibility for a d-dimensional hypercubic lattice. For T → 0, it diverges at the antiferromagnetic
vector qC , which in two dimension is the M point. Indeed, since εk+qC = −εk (perfect nesting)
we have

χ0(qC ; 0) ∝ 1

4

∫ εF

−∞
dε
ρ(ε)

ε
.
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Fig. 16: Effect of ρ(εF ) on the temperature dependence of χR = χP (T )/χP (0) for a hypercubic
lattice with t = 0.4 eV and at half filling. Up to ∼ 1000 K only the logarithmic Van-Hove
singularity (two-dimensional case) yields a sizable effect.

In the q → 0 and T → 0 limit, setting ωm = 0 we recover the Pauli susceptibility

χzz(0; 0) =
1

4
(gµB)2 ρ(εF ),

ρ(εF ) = −
∑

σ

1

Nk

∑

k

dnσ(εk)

dεk

∣∣∣∣
T=0

.

Fig. 16 shows that, assuming the dispersion given in Eq. (93), the Pauli susceptibility is weakly
temperature dependent in three dimensions, but not when a van-Hove singularity is close to the
Fermi level, as it happens for the d = 2 case.

3.4.2 Small U/t limit: Hartree Fock approximation and Stoner model

In the small U/t limit one can expand around the non-interacting susceptibility and treat the
effect of Coulomb repulsion in the static mean-field or Hartree-Fock approximation. We have
previously seen (Section 2.4 and Fig. 6) that in the ferromagnetic case this means that the
band for spin up and spin down electrons acquire different energy. The energy splitting equals
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the one obtained in the presence of an effective magnetic field heff = 2mU, where m is the
magnetization. We can generalize this result to a magnetic structure characterized by a vector
q; in this case we have heff(q) = 2m(q)U, where m(q) is the associated order parameter. The
associated static magnetic response function is thus

χ(q; 0) =
χ0(q; 0)

1− Γχ0(q; 0)
, (100)

where Γ=2U. This is a simplified version of the Bethe-Salpeter equation obtained in stan-
dard many-body perturbation theory, with, however, a first-order frequency- and momentum-
independent vertex. In the case of a hypercubic lattice with dispersion (93) the susceptibility
χ0(q; 0) is larger at the nesting vector; this favors instabilities towards antiferromagnetism.

3.4.3 Atomic limit

Let us now consider the opposite extreme, the atomic limit. First we adopt a simple approach.
Since all atoms are decoupled, only on-site terms i = i′ contribute. We then can calculate the
right-hand side of Eq. (92) by summing up the contributions of the four atomic states, |0〉, c†↑|0〉,
c†↓|0〉, c†↑c†↓|0〉, obtaining at half filling

χzz(q; iωm) = (gµB)2 1

4kBT

eβU/2

1 + eβU/2
δωm,0. (101)

The same expression can be derived following the general procedure outlined in the previ-
ous pages, i.e., starting from the two-particle Green function tensor χσσσ′σ′(q; τ), defined in
Eq. (96). In the atomic limit, it is convenient to work in real space, since

χσσσ′σ′(q; τ ) =
1

β

∑

i

χiσσ,iσ′σ′(τ ).

Thanks to the symmetries of the tensor in imaginary time, it is sufficient to calculate χiσσ,iσ′σ′(τ )

for positive times 0 < τj4 < β, where τj4 = τj−τ4 with j = 1, 2, 3. Due to the time ordering
operator we have, however, to consider separately six different imaginary-time sectors. In the
Appendix one can find a list of all these sectors and their contributions. For simplicity, we
discuss here explicitly only the case τ14 > τ24 > τ34 > 0 and label the corresponding τττ -vector
as τ+. Calculating the trace we obtain

χiσσ,iσ′σ′(τ
+) =

eτ12U/2+τ34U/2 + δσσ′e
(β−τ12)U/2−τ34U/2

2(1 + eβU/2)
−Gσ

i,i(τ12)Gσ′

i,i(τ34).

The mean-field terms Gσ
i,i(τ12)Gσ′

i,i(τ34) cancel out in the actual magnetic linear response func-
tion, so here we do not give their form explicitly and we will neglect them in the rest of the
calculations. For a single atom, the contribution of the τ+ sector to the imaginary-time mag-
netic susceptibility is

χzz(τ
+) = (gµB)2 1

4

1

β

∑

σσ′

sσsσ′χiσσ,iσ′σ′(τ
+) =

(gµB)2

4β

1

(1 + eβU/2)
e(β−τ12−τ34)U/2.
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Summing up the contributions of all imaginary-time sectors and performing the Fourier trans-
form we obtain χn,n

′

σσσ′σ′(iωn), defined in Eq. (98). For U 6= 0 this tensor is non-diagonal in the
fermionic Matsubara frequencies. For ωn = 0 we have [11]

∑

σσ′

σσ′ χn,n
′

iσσ,iσ′σ′(0) =Mn′
dMn

dy
+Mn

dMn′

dy
− βn(y)

[
δn,n′ + δn,−n′

]
dMn

dy
+ βn(−y)MnMn′

−1

y

{
Mn′ − β

[
n(y)δn,−n′ − n(−y)δn,n′

]}
Mn (102)

where

Mn =
1

iνn − y
− 1

iνn + y
. (103)

We can now calculate the magnetic susceptibility via Eq. (97), recovering the expected result,
Eq. (101). The resulting atomic magnetic susceptibility is thus proportional to 1/kBT, i.e., has
a Curie-like behavior; furthermore it is zero at finite frequency. The temperature dependence
can be remarkably different from the U = 0 limit. Indeed, if the density of states is flat around
the Fermi level, as it is often the case in three-dimensional lattices, the non-interacting Pauli
susceptibility χzz(0; 0) is weakly temperature dependent. As we have seen, a strong temperature
dependence can be found, however, if, e.g., a logarithmic van-Hove singularity is at the Fermi
level, as in the case of the square lattice at half filling shown in Fig. 16.

3.4.4 DMFT: χ0(q;ω) and the Bethe-Salpeter equation

In order to calculate the magnetic susceptibility with DMFT we need, first of all, χ0(q;ω), the
bubble term calculated from the DMFT Green functions. We consider here the small t/U or
Mott insulating regime. In this case we can derive an approximate local self-energy starting
from the atomic limit. The t=0 local Green function is

Gσ
i,i(iνn) =

1

iνn + µ− εd −Σσ
l (iνn)

,

where the local self-energy is given by

Σσ
l (iνn) =

U

2
+
U2

4

1

iνn + µ− εd − U
2

, (104)

and µ = εd + U
2

. In the Mott insulating regime we can assume that the local self-energy has
the same form (104), with U2/4 replaced by a quantity which plays the role of a dimensionless
order parameter [17] for the insulating phase

1

rU

4

U2
=

∫ +∞

−∞
dε

ρ(ε)

ε2
. (105)

Here ρ(ε) is the density of states per spin. The integral in Eq. (105) diverges in the metallic
phase. The Green function can then be rewritten as
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Fig. 17: Graphical solution of the equation ω− εk = Σσ
l (ω) yielding the poles E+

k and E−k of
the Green function defined in Eq. (106).

Gσ(k; iνn) =
1

iνn −Σσ
l (iνn)− εk

=
1

E+
k−E−k

[
E+
k

iνn − E+
k

− E−k
iνn − E−k

]
(106)

where E+
k and E−k are the two roots of the equation ω −Σσ

l (ω)− εk = 0,

E±k =
1

2
εk ±

1

2

√
ε2
k + rU U2.

By performing the Matsubara sums, one finds

χ0
zz(q; 0) = (gµB)2 1

4

∑

σ

1

β2

∑

n

χn,nσσσσ(0)

= (gµB)2 1

2

1

Nk

∑

k

[
−I++

k,q − I−−k,q︸ ︷︷ ︸
Ak,q

+ I+−
k,q + I−+

k,q︸ ︷︷ ︸
Bk,q

,
]

where, setting α = ± and γ = ±,

Iαγk,q =
Eα
k E

γ
k+q(

E+
k − E−k

)(
E+
k+q − E−k+q

) n(Eα
k )− n(Eγ

k+q)

Eα
k − Eγ

k+q

.

In the q → 0 limit

Ak,0 = β

[
(E+

k )2

ε2
k + rU U2

n(E+
k )
(
1− n(E+

k )
)

+
(E−k )2

ε2
k + rU U2

n(E−k )
(
1− n(E−k )

)]

Bk,0 =
rU U

2

2(ε2
k + rU U2)3/2

(
n(E−k )− n(E+

k )
)
.

In the large βU limit, the Ak,0 term, proportional to the density of states at the Fermi level,
vanishes exponentially; the Bk,0 term yields the dominant contribution. Hence

χ0
zz(0; 0) ∼ (gµB)2 1

4

1

Nk

∑

k

rU U
2

(ε2
k+rU U2)3/2

∼ (gµB)2 1

4
√
rU U

[
1− 3

2

1

Nk

∑

k

ε2
k

rU U2
+ . . .

]
.
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Fig. 18: VOMoO4: The Curie-Weiss behavior of the uniform magnetic susceptibility at half
filling, obtained with the LDA+DMFT approach. Rearranged from Ref. [11].

The right-hand side is equal to the atomic term χ0
zz(0) minus a correction of order t2/U3. As

we can see, χ0
zz(0; 0) is small and weakly dependent on the temperature. Here for simplic-

ity we will discuss only the case of the two-dimensional square lattice at half filling. In the
Mott-insulating regime, due to the superexchange interaction, this model exhibits an antiferro-
magnetic instability at qC = (π/a, π/a, 0). Let us then calculate χ0

zz(qC ; 0) and compare it
with χ0

zz(0; 0). Since, as we have seen, εk+qC = −εk, we find

Ak,qC =
1

2

rU U
2

ε2
k + rU U2

n(E+
k−εk)− n(E+

k )

εk

Bk,qC =
1

2

ε2
k

ε2
k + rU U2

n(E+
k−εk)− n(E+

k )

εk
− 1

2

1√
ε2
k + rU U2

(
n(E+

k )− n(E−k )
)
,

and therefore

χ0(qC ; 0) ∼ (gµB)2 1

4
√
rUU

(
1− 1

2

1

Nk

∑

k

ε2
k

rUU2

)
.

Thus χ0(q; 0) is indeed larger at q = qC than at q = 0; it is however weakly temperature
dependent and does not exhibit Curie-Weiss instabilities. The calculation presented above can
be generalized to any q vector [11], obtaining the expression

χ0(q; 0) ∼ (gµB)2 1

4
√
rUU

(
1− 1

2

J0√
rUU

− 1

4

Jq√
rUU

)
, (107)

where Jq = J
(

cos qx + cos qy
)
, and the super-exchange coupling is J = 4t2/U. For the next

step we need to calculate the local vertex. This requires, as we have seen, the solution of the
self-consistent quantum-impurity model via the quantum-impurity solver. Here, for the purpose
of illustrating how the approach works, we approximate the local susceptibility with the atomic
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susceptibility in the large βU limit. Furthermore we work with the susceptibilities obtained
after the Matsubara sums have been performed. Thus

χ0
zz(0) ∼ (gµB)2 1

4
√
rUU

, χzz(0) ∼ 1

4kBT
.

The local vertex is then approximately given by

Γ ∼ 1

χ0
zz(0)

− 1

χzz(0)
∼ 1

(gµB)2

[
4
√
rUU

(
1 +

1

2

J0√
rUU

)
− 4kBT

]
.

The last step consists in solving the Bethe-Salpeter equation

χzz(q; 0) =
1

(χ0
zz(q; 0))−1 − Γ ∼

(gµB)2

4

1

kBT + Jq/4
=

(gµB)2

4kB

1

T−Tq
.

This shows that including the local vertex correction we recover the Curie-Weiss behavior, as
expected for a system described by local spins coupled by a Heisenberg-like exchange; we
also correctly find the antiferromagnetic instability, since qC is the vector for which the critical
temperature Tq is the largest. In conclusion, we have seen that Γ (iωm) is essential to properly
describe the magnetic response function of strongly-correlated systems. This can be seen in
Fig. 14 for the Mott insulator VOMoO4. In the figure we can compare the very weak linear
magnetic response χ0(q; 0) (upper panels) with the LDA+DMFT result χ(q; 0) (lower panels).
The latter is not only strongly enhanced with respect to χ0(q; 0), but also exhibits the expected
Curie-Weiss like behavior, as can be seen in Fig. 18 for q = 0.

3.4.5 DMFT: Static and dynamical susceptibility below the critical temperature

In this section we will discuss the magnetic response in the anti-ferromagnetic phase, i.e., for
T � TN , where TN is the transition temperature in DMFT. We will consider as representative
case the single-band Hubbard model on a square lattice with dispersion

εk = −2t(cos kx + cos ky)︸ ︷︷ ︸
αk

+ 4t′ cos kx cos ky︸ ︷︷ ︸
γk

+ . . . . (108)

a model typically adopted for describing the Cu 3d x2−y2 states at the Fermi level in high-
temperature superconducting cuprates. We consider again the half-filled case in the small t/U
and t′/U limit, yielding an insulating ground state. The DMFT results presented for this model
are from Ref. [19], where more details can be found. In the paramagnetic phase, the static
susceptibility exhibits a Curie-Weiss behavior, for the same reasons we discussed in the previous
section. This can be seen in Fig. 19.
In the antiferromagnetic phase, the square lattice can be divided into two sublattices, A and B,
describing sites with opposite magnetic moment, m (sub-lattice A) and−m (sub-lattice B); the
unit cell contains ns=2 Cu atoms, labeled with ic = 1, 2. In this case the local self-energy can
be approximated by the site-dependent static Hartree-Fock term

Σσ
ic,i′c

(iνn) ≈
(
−µ+ (−1)ic−1sσmU

)
δic,i′c . (109)
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For a given spin we can thus write the associated ns×ns Green function matrix as

Gσ(k; iνn) ≈ 1

Dk(iνn)

(
iνn−γk−sσmU αke

−ikxa

αke
ikxa iνn−γk+sσmU

)
, (110)

where Dk(iνn)=(iνn − γk)2−α2
k−(mU)2. The elements of Gσ(k; iνn) can be re-expressed as

Gσ
ic,i′c

(k; iνn) =
∑

p=±

w
ici′c
σkp

iνn − Ep
k

, (111)

where the poles corresponds to the Hartree-Fock energiesE±k = γk±
√
α2
k+(mU)2 = γk±∆αk,

shown in Fig. 20 for γk = 0. The weights are

w11
σkp =

1

2

(
1−p sσmU√

α2
k + (mU)2

)
= w22

−σkp, (112)

w12
σkp =

p

2

αk√
α2
k + (mU)2

e−ik·(T1−T2) =
[
w21
σkp

]∗
. (113)

Performing the Matsubara sum

χ
0;ici′c
σσ′σ′σ(q; iωm)=− 1

βNk

∑

kn

Gσ
ic,i′c

(k; iνn)Gσ′

i′c,ic
(k+q; iνn+iωm) (114)

≈ 1

Nk

∑

k

∑

pp′

w
ici′c
σkpw

i′cic
σ′k+qp′ Ipp

′

k,q(iωm), (115)
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for a square lattice tight-binding model with dispersion εk = −2t(cos kx + cos ky).

with

Ipp′k,q(iωm) =−
nF (Ep

k)− nF (Ep′

k+q)

iωm + Ep
k − Ep′

k+q

. (116)

Below the critical temperature we have to distinguish two types (T ) of response. Assuming that
the ordered magnetic moments are along ẑ, a magnetic field parallel to ẑ yields the longitudinal
(T = ‖ ) linear response, and one perpendicular to ẑ the transverse (T =⊥) linear susceptibility.
They can be expressed in a compact way as

χT0 (q; iωm) =
(gµB)2

4

∑

σσ′

1

2

∑

ici′c

fTσσ′ χ
0;ici′c
σσ′σ′σ(q; iωm)eiq·(Tic−Ti′c ) (117)

≈(gµB)2

4

1

Nk

∑

k

∑

pp′

vT ,pp
′

k,q Ipp
′

k,q(iωm) (118)

where f ‖σσ′ = δσ,σ′ and f⊥σσ′ = δσ,−σ′ , while

vT,pp
′

k,q =
1

2

∑

σσ′

∑

ici′c

w
ici′c
σkpw

i′cic
σ′k+qp′f

T
σσ′e

iϕ
ici
′
c

q (119)

=
1

2

(
1+pp′

αkαk+q + fTσσ′sσsσ′(mU)2

∆αk∆αk+q

)
. (120)

We note that v‖,ppk,0 =1 and v‖,p−pk,0 =0, while v⊥,p−pk,M = 1 and v‖,ppk,M = 0. For simplicity in the
discussion that follows we set t′ = 0. In the low-temperature limit only the terms with p = −p′
contribute. For t� U we have

χT0 (q; iωm) ≈(gµB)2

4

1

Nk

∑

k

vT,+−k,q

(
1

iωm + U
− 1

iωm − U

)
. (121)

Here we can see that the excitation energies are of order U, and not of the order of the superex-
change couplings as we would expect for the Hubbard model.
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Rearranged from Ref. [19].

In order to recover the correct behavior we have to solve the Bethe-Salpeter equation. To this
end we have first to return to the site-dependent tensor, since we have to invert the associated
ns×ns matrices. Using the transverse susceptibility as representative case, the relevant matrix
elements in the ordered phase are

χ
0;ici′c
σ−σ−σσ(q; iωm) ≈

(
− a

ici′c
σ (q)

iωn − U
+
a
ici′c
−σ (q)

iωn + U

)
e−iq·(Tic−Ti′c ), (122)

where

aici
′
c

σ (q) =
1

Nk

∑

k

∑

pp′

w
ici′c
σkpw

i′cic
−σk+qp′δp,+δp,−. (123)

In the t� U limit, at linear order in J1/U we have

a11
σ (q) = a22

−σ(q) ≈ 1

4
(1−sσ)2 + sσ(1−sσ)

J1

U
, (124)

a12
σ (q) = a21

−σ(q) ≈ −J1

U
fq, (125)

where fq = (cos qx + cos qy)/2. The ic=i′c elements are therefore independent on q at order
J1/U. By inverting the susceptibility matrix with the elements defined above we thus obtain, at
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sufficiently low frequency

[
1

χ0(q; iωm)
− 1

χ0(iωm)

]ici′c

σ−σ−σσ
≈ 2J1fq(1−δici′c)e

−iq·(Tic−Ti′c ) (126)

By adding to this the inverse of the local susceptibility matrix

χ
ici′c
σ−σ−σσ(iωm) ≈

(
− a

ici′c
σ

iωn − 2J1

+
a
ici′c
−σ

iωn + 2J1

)
δic,i′c

with aici
′
c

σ = 1
Nq

∑
q a

ici′c
σ (q). Inverting again, we finally obtain

χ⊥(q; iωm) =
(gµB)2

4

∑

σ

1

2

∑

ici′c

χ
ici′c
σ−σ−σσ(q; iωm)eiq·(Tic−Ti′c ) (127)

≈(gµB)2 J1(1−fq)
ω2
m + 4J2

1 (1−f 2
q )
, (128)

which is the expected behavior for a Heisenberg antiferromagnet. The result of actual DMFT
calculations is shown in Fig. 19 and Fig. 21. More details can be found in Ref. [19].

4 Conclusion

The LDA+DMFT approach and its extension has proved very successful for describing corre-
lated materials. It has shown us that materials details do matter, contrarily to what often was
assumed in the past; for example a crystal field much smaller than the bandwidth can favor the
Mott metal-insulator transition [18]. The method is becoming progressively more and more
versatile. It is now possible, e.g., to study multi-orbital Hubbard-like models including the
full Coulomb vertex and the spin-orbit interaction. Successful extension schemes, e.g., clus-
ter methods, account, at least in part, for the q-dependence of the self-energy. In this lecture,
we have seen how to use the LDA+DMFT approach to calculate not only Green and spectral
functions but also linear-response functions. In the scheme presented, the local susceptibil-
ity is obtained via the quantum-impurity solver at the end of the self-consistency loop; the
q-dependent susceptibility is, instead, calculated solving in addition the Bethe-Salpeter equa-
tion in the local-vertex approximation. As representative case we have studied the magnetic
susceptibility of the one-band Hubbard model at half filling. The extension of the LDA+DMFT
approach to the calculation of generalized susceptibilities makes it possible to put the method
and the approximations adopted to more stringent tests. This is key for further advancing the
theoretical tools for the description of strong correlation effects in real materials.
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Appendix

A Eigenstates of Hubbard dimer and Anderson molecule

The Hamiltonian of the Hubbard dimer is given by

Ĥ = εd
∑

σ

∑

i=1,2

n̂iσ − t
∑

σ

(
c†1σc2σ + c†2σc1σ

)
+ U

∑

i=1,2

n̂i↑n̂i↓.

It commutes with the number of electron operator N̂ , with the total spin Ŝ and with Ŝz. Thus
we can express the many-body states in the atomic limit as

|N,S, Sz〉 N S E(N,S)

|0, 0, 0〉 = |0〉 0 0 0

|1, 1/2, σ〉1 = c†1σ|0〉 1 1/2 εd

|1, 1/2, σ〉2 = c†2σ|0〉 1 1/2 εd

|2, 1, 1〉 = c†2↑c
†
1↑|0〉 2 1 2εd

|2, 1,−1〉 = c†2↓c
†
1↓|0〉 2 1 2εd

|2, 1, 0〉 = 1√
2

(
c†1↑c

†
2↓ + c†1↓c

†
2↑

)
|0〉 2 1 2εd

|2, 0, 0〉0 = 1√
2

(
c†1↑c

†
2↓ − c†1↓c†2↑

)
|0〉 2 0 2εd

|2, 0, 0〉1 = c†1↑c
†
1↓|0〉 2 0 2εd + U

|2, 0, 0〉2 = c†2↑c
†
2↓|0〉 2 0 2εd + U

|3, 1/2, σ〉1 = c†1σc
†
2↑c
†
2↓|0〉 3 1/2 3εd + U

|3, 1/2, σ〉2 = c†2σc
†
1↑c
†
1↓|0〉 3 1/2 3εd + U

|4, 0, 0〉 = c†1↑c
†
1↓c
†
2↑c
†
2↓|0〉 4 0 4εd + 2U

Let us order the N = 1 states as in the table above, first the spin up and then spin down block.
For finite t the Hamiltonian matrix for N = 1 electrons takes then the form

Ĥ1 =




εd −t 0 0

−t εd 0 0

0 0 εd −t
0 0 −t εd



.
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This matrix can be easily diagonalized and yields the bonding (−) and antibonding (+) states

|1, S, Sz〉α Eα(1, S) dα(1, S)

|1, 1/2, σ〉+ = 1√
2

(
|1, 1/2, σ〉1 − |1, 1/2, σ〉2

)
εd+t 2

|1, 1/2, σ〉− = 1√
2

(
|1, 1/2, σ〉1 + |1, 1/2, σ〉2

)
εd−t 2

where dα(N) is the spin degeneracy of the α manifold.
For N = 2 electrons (half filling), the hopping integrals only couple the three S = 0 states, and
therefore the Hamiltonian matrix is given by

Ĥ2 =




2εd 0 0 0 0 0

0 2εd 0 0 0 0

0 0 2εd 0 0 0

0 0 0 2εd −
√

2t −
√

2t

0 0 0 −
√

2t 2εd + U 0

0 0 0 −
√

2t 0 2εd + U




.

The eigenvalues and the corresponding eigenvectors are

|2, S, Sz〉α Eα(2, S) dα(2, S)

|2, 0, 0〉+ = a1|2, 0, 0〉0 − a2√
2

(
|2, 0, 0〉1 + |2, 0, 0〉2

)
2εd + 1

2

(
U+∆(t, U)

)
1

|2, 0, 0〉o = 1√
2

(
|2, 0, 0〉1 − |2, 0, 0〉2

)
2εd + U 1

|2, 1,m〉o = |2, 1,m〉 2εd 3

|2, 0, 0〉− = a2|2, 0, 0〉0 + a1√
2

(
|2, 0, 0〉1 + |2, 0, 0〉2

)
2εd + 1

2

(
U−∆(t, U)

)
1

where

∆(t, U) =
√
U2 + 16t2,

and

a2
1 = a2

1(t, U) =
1

∆(t, U)

∆(t, U)− U
2

a2
2 = a2

2(t, U) =
4t2

∆(t, U)

2

(∆(t, U)− U)
,

so that a1a2 = 2t/∆(t, U). For U = 0 we have a1 = a2 = 1/
√

2, and the two states |2, 0, 0〉−
and |2, 0, 0〉+ become, respectively, the state with two electrons in the bonding orbital and the
state with two electrons in the antibonding orbital; they have energy E±(2, 0) = 2εd ± 2t; the
remaining states have energy 2εd and are non-bonding. For t > 0, the ground state is unique
and it is always the singlet |2, 0, 0〉−; in the large U limit its energy is

E−(2, 0) ∼ 2εd − 4t2/U.
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In this limit the energy difference between the first excited state, a triplet state, and the singlet
ground state is thus equal to the Heisenberg antiferromagnetic coupling

Eo(2, 1)− E−(2, 0) ∼ 4t2/U = Γ.

Finally, for N = 3 electrons, eigenstates and eigenvectors are

|3, S, Sz〉α Eα(3) dα(3, S)

|3, 1/2, σ〉+ = 1√
2

(
|1, 1/2, σ〉1 + |1, 1/2, σ〉2

)
3εd + U + t 2

|3, 1/2, σ〉− = 1√
2

(
|1, 1/2, σ〉1 − |1, 1/2, σ〉2

)
3εd + U − t 2

If we exchange holes and electrons, the N = 3 case is identical to the N = 1 electron case.
This is due to the particle-hole symmetry of the model.

The Hamiltonian of the Anderson molecule is given by

Ĥ = εs
∑

σ

n̂2σ − t
∑

σ

(
c†1σc2σ + c†2σc1σ

)
+ εd

∑

σ

n̂1σ + Un̂1↑n̂1↓.

In the atomic limit, its eigenstates states can be classified as

|N,S, Sz〉 N S E(N,S)

|0, 0, 0〉 = |0〉 0 0 0

|1, 1/2, σ〉1 = c†1σ|0〉 1 1/2 εd

|1, 1/2, σ〉2 = c†2σ|0〉 1 1/2 εs

|2, 1, 1〉 = c†2↑c
†
1↑|0〉 2 1 εd + εs

|2, 1,−1〉 = c†2↓c
†
1↓|0〉 2 1 εd + εs

|2, 1, 0〉 = 1√
2

(
c†1↑c

†
2↓ + c†1↓c

†
2↑

)
|0〉 2 1 εd + εs

|2, 0, 0〉0 = 1√
2

(
c†1↑c

†
2↓ − c†1↓c†2↑

)
|0〉 2 0 εd + εs

|2, 0, 0〉1 = c†1↑c
†
1↓|0〉 2 0 2εd + U

|2, 0, 0〉2 = c†2↑c
†
2↓|0〉 2 0 2εs

|3, 1/2, σ〉1 = c†1σc
†
2↑c
†
2↓|0〉 3 1/2 εd + 2εs

|3, 1/2, σ〉2 = c†2σc
†
1↑c
†
1↓|0〉 3 1/2 2εd + εs + U

|4, 0, 0〉 = c†1↑c
†
1↓c
†
2↑c
†
2↓|0〉 4 0 2εd + 2εs + U
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For N = 1 electrons the Hamiltonian can be written in the matrix form

Ĥ1 =




εd −t 0 0
−t εs 0 0
0 0 εd −t
0 0 −t εs


 .

The eigenstates are thus

|1, S, Sz〉α Eα(1, S) dα(1, S)

|1, 1/2, σ〉+ = α1|1, 1/2, σ〉1 − α2|1, 1/2, σ〉2 1
2

(
εd + εs +

√
(εd−εs)2 + 4t2

)
2

|1, 1/2, σ〉− = α2|1, 1/2, σ〉1 + α1|1, 1/2, σ〉2 1
2

(
εd + εs −

√
(εd−εs)2 + 4t2

)
2

where dα(N) is the spin degeneracy of the α manifold. For εs = εd + U/2 the eigenvalues are

E±(1, S) = εd +
1

4

(
U ±∆(t, U)

)
,

while the coefficients are α1 = a1(t, U) and α2 = a2(t, U).

For N=2 electrons, the hopping integrals only couple the S=0 states. The Hamiltonian is

Ĥ2 =




εd+εs 0 0 0 0 0

0 εd+εs 0 0 0 0

0 0 εd+εs 0 0 0

0 0 0 εd+εs −
√

2t −
√

2t

0 0 0 −
√

2t 2εd+U 0

0 0 0 −
√

2t 0 2εs




For εs = εd + U/2 the eigenvalues and the corresponding eigenvectors are

|2, S, Sz〉α Eα(2, S) dα(2, S)

|2, 0, 0〉+ = b1|2, 0, 0〉0 − b2√
2

(
|2, 0, 0〉1 + |2, 0, 0〉2

)
2εd + U

2
+ 1

4

(
U+2∆(t, U

2
)
)

1

|2, 0, 0〉o = 1√
2

(
|2, 0, 0〉1 − |2, 0, 0〉2

)
2εd + U 1

|2, 1,m〉o = |2, 1,m〉 2εd + U
2

3

|2, 0, 0〉− = b2|2, 0, 0〉0 + b1√
2

(
|2, 0, 0〉1 + |2, 0, 0〉2

)
2εd + U

2
+ 1

4

(
U−2∆(t, U

2
)
)

1

where b1 = a1(t, U/2) and b2 = a2(t, U/2). These states have the same form as in the case
of the Hubbard dimer; the ground state energy and the weight of doubly occupied states in
|2, 0, 0〉− differ, however. Finally, for N = 3 electrons, the eigenstates are

|3, S, Sz〉α Eα(3, S) dα(3, S)

|3, 1/2, σ〉+ = α2|1, 1/2, σ〉1 + α1|1, 1/2, σ〉2 3εd + U + 1
4

(
U+∆(t, U)

)
2

|3, 1/2, σ〉− = α1|1, 1/2, σ〉1 − α2|1, 1/2, σ〉2 3εd + U + 1
4

(
U−∆(t, U)

)
2
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B Lehmann representation of the local Green function

For a single-orbital model, the local Matsubara Green function for a given site i is defined as

Gσ
i,i(iνn) = −

∫ β

0

dτeiνnτ
〈
T ciσ(τ)c†iσ(0)

〉
,

where T is the time-ordering operator, β = 1/kBT, and νn a fermionic Matsubara frequency.
Let us assume we know all eigenstates |Nl〉 and their energy El(N), for arbitrary number of
electrons N. Thus, formally

Gσ
i,i(iνn) =− 1

Z

∑

Nl

∫ β

0

dτeiνnτe−∆El(N)β
〈
Nl

∣∣ciσ(τ)c†iσ(0)
∣∣Nl

〉
,

where Z =
∑

Nl e
−∆El(N)β is the partition function, ∆El(N) = El(N) − µN with µ the

chemical potential, and c†iσ(0) = c†iσ. We now insert a complete set of states, obtaining

Gσ
i,i(iνn) =− 1

Z

∑

ll′NN ′

∫ β

0

dτeiνnτe−∆El(N)β
〈
Nl

∣∣ciσ(τ)|N ′l′
〉〈
N ′l′
∣∣c†iσ
∣∣Nl

〉

=− 1

Z

∑

ll′NN ′

∫ β

0

dτe−∆El(N)βe(iνn+∆El(N)−∆El′ (N ′))τ
∣∣〈N ′l′|c†iσ|Nl〉

∣∣2

=
1

Z

∑

ll′NN ′

e−∆El′ (N
′)β + e−∆El(N)β

iνn +∆El(N)−∆El′(N ′)
∣∣〈N ′l′ |c†iσ|Nl〉

∣∣2.

Due to the weight
∣∣〈N ′l′ |c†iσ(0)|Nl〉

∣∣2 only the terms for whichN ′ = N+1 contribute. Thus, after
exchanging the labels l′N ′ ↔ lN in the first addend, we obtain the Lehmann representation

Gσ
i,i(iνn)=

∑

ll′N

e−β∆El(N)

Z

( ∣∣〈(N−1)l′ |ciσ|Nl〉
∣∣2

iνn −∆El(N)+∆El′(N−1)
+

∣∣〈(N+1)l′ |c†iσ|Nl〉
∣∣2

iνn −∆El′(N+1)+∆El(N)

)
.

Let us consider as example the atomic limit of the Hubbard model at half filling. In this case
all sites are decoupled; there are four eigenstates per site, the vacuum |0〉, with ∆E(0) = 0, the
doublet |1σ〉 = c†iσ|0〉, with ∆Eσ(1) = −U/2, and the doubly-occupied singlet |2〉 = c†i↑c

†
i↓|0〉,

with ∆E(2) = 0. Furthermore, Z = 2(1 + eβU/2) and

∣∣〈(N−1)l′ |ciσ|Nl〉
∣∣2=

{
1 if |Nl〉=|2〉 ∨ |1σ〉
0 otherwise

∣∣〈(N+1)l′|c†iσ|Nl〉
∣∣2=

{
1 if |Nl〉=|0〉 ∨ |1−σ〉
0 otherwise

Thus, after summing up the four non-zero contributions, we find

Gσ
i,i(νn) =

1

2

(
1

iνn + U/2
+

1

iνn − U/2

)
.
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C Atomic magnetic susceptibility

Let us consider an idealized single-level atom described by the Hamiltonian

Ĥ = εd
(
n̂↑ + n̂↓

)
+ Un↑n↓.

The eigenstates of this system, |ΨNi 〉, as well as their expectation values at half filling are

|ΨNi 〉 N ∆Ei =
〈
ΨNi
∣∣Ĥ − µN̂

∣∣ΨNi
〉

|0〉 0 0

c†σ|0〉 1 −U
2

c†↑c
†
↓|0〉 2 0

The magnetic susceptibility in Matsubara space is given by

[
χzz(iωm)

]
nn′

= β
1

4
(gµB)2

∑

P

sign(P )fP

fP (iωP1 , iωP2 , iωP3) =

∫ β

0

dτ14

∫ τ14

0

dτ24

∫ τ24

0

dτ34 e
iωP1τ14+iωP2τ24+iωP3τ34fP (τ14, τ24, τ34)

where P = A,B, . . . are the six possible permutations of the indices (123) and

fP (τ14, τ24, τ34) =
1

Z

∑

σσ′

σσ′Tr e−β(Ĥ−µN̂)
[
ôP1(τ14)ôP2(τ24)ôP3(τ34)c†σ′

]

=
1

Z

∑

σσ′

σσ′
∑

ijkl

e−β∆Ei〈i|ôP1|j〉〈j|ôP2|k〉〈k|ôP3|l〉〈l|c†σ′ |i〉

×
[
e∆Eijτ14+∆Ejkτ24+∆Eklτ34

]
,

where ∆Eij = ∆Ei −∆Ej . For the identity permutation the operators are ôP1 = cσ, ôP2 = c†σ,
and ôP3 = cσ′ and the frequencies are ω1 = νn, ω2 = −ωm−νn, ω3 = ωm+νn′ . This expression
can be used to calculate the magnetic susceptibility of any one-band system whose eigenvalues
and eigenvectors are known, e.g., via exact diagonalization. In the case of our idealized atom

fE(τ14, τ24, τ34) =
1

(1 + eβU/2)
eβU/2 e−(τ12+τ34)U/2 =

1

(1 + eβU/2)
gE(τ14, τ24, τ34).

The frequencies and functions fP (τ14, τ24, τ34) for all permutations are given in the table below

ωP1 ωP2 ωP3 gP (τ14, τ24, τ34) sign(P )

E(123) νn −ωm−νn ωm+νn′ eβU/2 e−(τ12+τ34)U/2 +

A(231) −ωm−νn ωm+νn′ νn eβU/2 e−(τ12+τ34)U/2 +

B(312) ωm+νn′ νn −ωm−νn −e+(τ12+τ34)U/2 +

C(213) −ωm−νn νn ωm+νn′ −eβU/2e−(τ12+τ34)U/2 −
D(132) νn ωm+νn′ −ωm−νn e+(τ12+τ34)U/2 −
F (321) ωm+νn′ −ωm−νn νn e+(τ12+τ34)U/2 −
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The missing ingredient is the integral

IP (x,−x, x;iωP1 , iωP2 , iωP3) =

∫ β

0

dτ14

∫ τ14

0

dτ24

∫ τ24

0

dτ34 e
iωP1τ14+iωP2τ24+iωP3τ34ex(τ14−τ24+τ34)

= +

∫ β

0

dτ14

∫ τ14

0

dτ

∫ τ14−τ

0

dτ ′ e(iωP1+iωP2+iωP3+x)τ14−i(ωP2+ωP3 )τe−(iωP3+x)τ ′

= +
1

iωP3 + x

1

−iωP2 + x

[
1

iωP1 + x

1

n(x)
+ βδωP1+ωP2

]

+
1

iωP3 + x

1− δωP2+ωP3

i(ωP2 + ωP3)

[
1

iωP1 + x
− 1

i(ωP1 + ωP2 + ωP3) + x

]
1

n(x)

+ δωP2+ωP3

1

iωP3 + x

{[
1

(iωP1 + x)

]2
1

n(x)
− β

[
1

(iωP1 + x)

]
1− n(x)

n(x)

}
.

where x = ±U/2, depending on the permutation. Summing up all terms we obtain the final
expression for ωm = 0. Setting y = U/2 we have in total [11]

∑

σσ′

σσ′ χn,n
′

iσσ,iσ′σ′(0) =Mn′
dMn

dy
+Mn

dMn′

dy
− βn(y)

[
δn,n′ + δn,−n′

]
dMn

dy
+ βn(−y)MnMn′

−1

y

{
Mn′ − β

[
n(y)δn,−n′ − n(−y)δn,n′

]}
Mn (129)

where

Mn =
1

iνn − y
− 1

iνn + y
. (130)

The finite frequency term (not given here) vanishes once we sum over n, n′.
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