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5.2 Philipp Werner

1 Quantum impurity models

A quantum impurity model describes an atom or molecule embedded in some host with which
it exchanges electrons or spin. This exchange allows the impurity to make transitions between
different quantum states, and these transitions lead to non-trivial dynamical properties. Quan-
tum impurity models play a prominent role, for example, in the theoretical description of dilute
metal alloys and in theoretical studies of quantum dots and molecular conductors. These models
also appear as an auxiliary problem whose solution yields the dynamical mean-field description
of correlated lattice models.
The Hamiltonian of a general impurity model has the form

H = Hloc +Hbath +Hmix, (1)

where Hloc describes the impurity, characterized by a small number of degrees of freedom
(typically spin and orbital degrees of freedom denoted by a, b, . . .), and Hbath describes an
infinite reservoir of free electrons, labeled by a continuum of quantum numbers p and a discrete
set of quantum numbers ν (typically spin). Hmix describes the exchange of electrons between
the impurity and the bath in terms of hybridization amplitudes V a

pν . Denoting the impurity
creation operators by d† and the bath creation operators by c†, the three terms are

Hloc =
∑
ab

εabd†adb +
1

2

∑
abcd

Uabcdd†ad
†
bdcdd, (2)

Hbath =
∑
pν

εpc
†
pνcpν , (3)

Hmix =
∑
paν

(
V a
pν d

†
acpν + (V a

pν)
∗c†pνda

)
. (4)

In most of the following discussions, we focus on the single-orbital Anderson impurity model,
where the local Hamiltonian

Hloc = Hµ +HU , (5)

Hµ = −µ(n↑ + n↓), (6)

HU = U n↑n↓, (7)

has a Hilbert space of dimension four. The discrete quantum number labeling the impurity
states is the spin σ, nσ = d†σdσ is the density operator for impurity electrons with spin σ, and
the chemical potential is µ = −ε. The bath and mixing terms are

Hbath =
∑
pσ

εpc
†
pσcpσ, (8)

Hmix =
∑
pσ

(
Vpσ d

†
σcpσ + V ∗pσc

†
pσdσ

)
. (9)

An illustration of the Anderson impurity model is shown in Fig. 1.
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Fig. 1: Schematic representation of the Anderson impurity model. The left panel illustrates the
Hamiltonian representation. Spin up and down electrons on the impurity (black dot) interact
with an on-site energy U and hop to a continuum of non-interacting bath levels with energy
εp. The amplitudes for these transitions are given by the hybridization parameters Vpσ. Right
panel: Action representation of the Anderson impurity model, where the bath is replaced by the
hybridization function ∆σ(τ).

1.1 Action formulation

For analytical and numerical studies of equilibrium impurity problems, it can be useful to ex-
press the partition function and the imaginary-time Green function in terms of the imaginary-
time action. By integrating out the bath degrees of freedom in the path integral formalism one
obtains the partition function of the Anderson impurity model as

Z = Trd
(
T e−S

)
,

with the impurity action S = Smix+Sloc given by

Smix =
∑
σ

∫ β

0

dτdτ ′ d†σ(τ
′)∆σ(τ ′−τ)dσ(τ), (10)

Sloc =

∫ β

0

dτ
(
− µ

(
n↑(τ)+n↓(τ)

)
+ U n↑(τ)n↓(τ)

)
. (11)

T is the time-ordering operator. The impurity Green function becomes

G(τ) = −
〈
T d(τ)d†(0)

〉
S
= − 1

Z
Trd
(
T e−Sd(τ)d†(0)

)
.

The imaginary-time and Matsubara-frequency representations are related by

G(iωn) =

∫ β

0

dτ eiωnτG (τ) , G(τ) =
1

β

∑
n

e−iωnτG(iωn),

where the fermionic Matsubara frequencies are ωn = (2n+1)π/β and β = 1/T is the inverse
temperature.
The hybridization function ∆σ(τ ′−τ) in Eq. (10) represents the amplitude for hopping from the
impurity into the bath at time τ and back onto the impurity at time τ ′. It is a function of the
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bath energies and hybridization amplitudes and is most conveniently expressed in Matsubara
frequency space:

∆σ(iωn) =
∑
p

|Vpσ|2
iωn − εp

. (12)

It is also useful to introduce the Green function of the non-interacting impurity, G0, which is
related to the hybridization function by

[Gσ0 ]−1(iωn) = iωn + µ−∆σ(iωn). (13)

1.2 Dynamical mean-field theory

Quantum impurity models are a key ingredient of the dynamical mean-field theory (DMFT),
which provides an approximate description of correlated lattice models [1]. The success of
DMFT created a demand for accurate and versatile impurity solvers and triggered the devel-
opment of the continuous-time impurity solvers. These solvers have been discussed in detail
in various lecture notes [2], reviews [3] and books [4]. Our presentation here follows closely
Chapter 8 in Ref. [4].
In this section, we briefly introduce the DMFT approximation, which maps an interacting lattice
model, such as the Hubbard model, onto an effective single-site problem (impurity model)
subject to a self-consistency condition for the bath.
The Hubbard model

HHubbard = −t
∑
〈ij〉σ

(
d†iσdjσ + d†jσdiσ

)
+ U

∑
i

ni↑ni↓ − µ
∑
iσ

niσ

describes electrons hopping between nearest neighbor sites of some lattice with amplitude t.
Two electrons on the same site interact with energy U. The chemical potential term has been
added because we will work in the grand canonical ensemble. The noninteracting dispersion
εk is obtained as the Fourier transform of the hopping matrix. For example, in the case of a
one-dimensional lattice with lattice spacing a, εk = −2t cos(ka).
Inspired by the Weiss molecular-field theory [1], we focus on one particular site of the lattice
and replace the remaining degrees of freedom of the model by a bath of non-interacting levels
and a hybridization term that connects the interacting site to the bath. The effective single-site
problem thus becomes an Anderson impurity model,1

Himp =
∑
pσ

εpc
†
pσcpσ +

∑
pσ

(
Vpσd

†
σcpσ + V ∗pσc

†
pσdσ

)
+ Un↑n↓ − µ(n↑+n↓). (14)

Here, the d† create electrons on the impurity, nσ = d†σdσ, and the c†p create electrons in bath
states labeled by a quantum number p. In this effective single-site model, hoppings from the
impurity into the bath and back represent processes in the original Hubbard model where an

1In the DMFT context, the bath energy levels εp of the impurity model are not directly related to the dispersion
of the lattice model, εk.
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electron hops from a given site into the lattice and returns to it after some excursion through the
lattice. The hybridization parameters Vp give the amplitudes for such processes.
The DMFT procedure optimizes the parameters εp and Vp such that the bath of the Anderson
impurity model mimics the lattice environment as closely as possible. If we work with the
impurity action, the bath properties are encoded in ∆(τ) or G0(τ) and these functions thus play
the role of the mean field. It is a dynamical mean field, because the hybridization function ∆ or
Weiss Green function G0 depends on (imaginary) time or frequency.
The self-consistent solution is constructed in such a way that the impurity Green function
Gimp(iωn) reproduces the local lattice Green function Gloc(iωn) ≡ Gi,i(iωn). In other words, if
G(k, iωn) is the momentum-dependent lattice Green function of the Hubbard model, we seek
bath parameters and hybridizations such that the DMFT self-consistency condition∫

(dk)G(k, iωn) ≡ Gimp(iωn) (15)

is satisfied.2 The solution of Eq. (15) is obtained by iteration. To define a practical procedure, we
have to relate the left-hand-side of Eq. (15) to impurity model quantities. This step involves, as
the essential approximation of the DMFT method, a significant simplification of the momentum-
dependence of the lattice self-energy [5].
The self-energy describes the effect of interactions on the propagation of electrons. In the non-
interacting model, the lattice Green function is G0(k, iωn) =

(
iωn+µ−εk

)−1, with εk being
the Fourier transform of the hopping matrix. The Green function of the interacting model is
G(k, iωn) =

(
iωn+µ−εk −Σ(k, iωn)

)−1 with Σ(k, iωn) the lattice self-energy. Therefore

Σ(k, iωn) = G−10 (k, iωn)−G−1(k, iωn).

Similarly, we obtain the impurity self-energy

Σimp(iωn) = G−10 (iωn)−G−1imp(iωn),

with G−10 defined in Eq. (13). The DMFT approximation is the identification of the lattice
self-energy with the momentum-independent impurity self-energy,

Σ(k, iωn) ≈ Σimp(iωn).

This approximation allows us to rewrite the self-consistency equation (15) as∫
(dk)

(
iωn+µ−εk −Σimp(iωn)

)−1 ≡ Gimp(iωn). (16)

Since both Gimp(iωn) and Σimp(iωn) are determined by the impurity model parameters εp and
Vp (or the function ∆(τ) or G0(τ)), Eq. (16) defines a self-consistency condition for these
parameters (or functions).
We now formulate the self-consistency loop for the Weiss Green function G0(iωn). Starting
from an arbitrary initial G0(iωn), for example, the local Green function of the noninteracting
lattice model, we iterate the following steps until convergence:

2
∫
(dk) denotes a normalized integral over the Brillouin zone.
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1. Solve the impurity problem, that is, compute the impurity Green function Gimp(iωn) for
the given G0(iωn),

2. Extract the self-energy of the impurity model: Σimp(iωn) = G−10 (iωn)−G−1imp(iωn),

3. Identify the lattice self-energy with the impurity self-energy, Σ(k, iωn) = Σimp(iωn)

(DMFT approximation), and compute the local lattice Green function:

Gloc(iωn) =

∫
(dk)

(
iωn+µ−εk −Σimp(iωn)

)−1
,

4. Apply the DMFT self-consistency condition, Gloc(iωn) = Gimp(iωn), and use it to define
a new Weiss Green function G−10 (iωn) = G−1loc (iωn) +Σimp(iωn).

The computationally expensive step is the solution of the impurity problem (Step 1). When the
loop converges, the bath contains information about the lattice (through the density of states),
and about the phase (metal, Mott insulator, antiferromagnetic insulator, . . . ). The impurity,
which exchanges electrons with the bath, thus feels, at least to some extent, as if it were a site
of the lattice.

2 Continuous-time QMC solvers – General formalism

Quantum impurity models are (0+1)-dimensional quantum field theories and as such are compu-
tationally much more tractable than interacting lattice models. The main objective is computing
the impurity Green function

G(τ) = −〈T d(τ)d†(0)〉 = − 1

Z
Tr
(
e−(β−τ)Hd e−τHd†

)
, (17)

where Z = Tr e−βH is the impurity model partition function, β the inverse temperature, T is
the (imaginary) time-ordering operator, and Tr = TrdTrc the trace over the impurity and bath
states. In the last expression we assumed that 0 ≤ τ < β.
Continuous-time Monte Carlo algorithms expand the partition function into a series of “dia-
grams” and stochastically sample these diagrams [3]. We represent the partition function as a
sum (or more precisely as an integral) over configurations C with weight wC ,

Z =
∑
C

wC , (18)

and implement a random walk C1 → C2 → C3 → · · · in configuration space in such a way that
ergodicity and detailed balance are satisfied. Using sign-weighted averages, the impurity Green
function can be estimated from a finite number M of measurements as

G =
∑
C

wC GC

Z
=

∑
C |wC | signC GC∑
C |wC | signC

≈
∑M

i=1 signCiGCi∑M
i=1 signCi

≡ 〈sign ·G〉MC

〈sign〉MC
. (19)
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To derive the general framework for the continuous-time solvers it is useful to express the
partition function as an imaginary-time ordered exponential in an interaction representation.
To do this, we split the Hamiltonian into two parts, H = H1 + H2, and define the imaginary-
time dependent operators in the interaction representation as O(τ) = eτH1Oe−τH1 . In this
representation, the partition function becomes Z = Tr

(
e−βH1T e−

∫ β
0 dτH2(τ)

)
.3

Next, we expand the time-ordered exponential into a power series,

Z =
∞∑
n=0

∫ β

0

dτ1 · · ·
∫ β

τn−1

dτn Tr
(
e−(β−τn)H1(−H2) · · · e−(τ2−τ1)H1(−H2)e

−τ1H1

)
. (20)

This yields a representation of the partition function of the form (18), namely, as an infinite sum
over the weights of certain configurations. The configurations are collections of time-points on
the imaginary-time interval: C = {τ1, . . . , τn}, n = 0, 1, . . . , where we assume the imaginary-
time ordering τi < τi+1 and the restriction τi ∈ [0, β). The expression for the Monte Carlo
weights is

wC = Tr
(
e−(β−τn)H1(−H2) · · · e−(τ2−τ1)H1(−H2)e

−τ1H1

)
(dτ)n. (21)

There are two complementary continuous-time Monte Carlo techniques: (i) the weak-coupling
approach, which scales favorably with system size (that is, the number of correlated sites or
orbitals in the impurity model) and allows the efficient simulation of relatively large impurity
clusters with simple interactions, and (ii) the hybridization-expansion approach, which can
handle impurity models with strong interactions among multiple orbitals. For simplicity, we
continue to focus on the single-orbital Anderson impurity model defined in Eqs. (6)–(9). In this
case, the weak-coupling continuous-time Monte Carlo approach expands Z in powers of the
interaction U in an interaction representation where the imaginary-time evolution is determined
by the quadratic partHµ+Hbath+Hmix of the Hamiltonian. The complementary hybridization-
expansion approach expands Z in powers of the impurity-bath hybridization term Hmix in an
interaction representation where the imaginary-time evolution is determined by the local part
Hµ+HU +Hbath of the Hamiltonian. The details of how the weights (21) are sampled and how
the observables are measured depend on the specific continuous-time method.

3 Weak-coupling approach

The weak-coupling continuous-time impurity solver [6] expands the partition function in pow-
ers ofH2=HU .4 Equation (21) then gives the weight of a configuration of n interaction vertices.
Since H1 = H−H2 = Hµ+Hbath+Hmix is quadratic, we can use Wick’s theorem to evaluate
the trace. The result is a product of two determinants of n×n matrices (one for each spin). The

3We can understand this formula by defining the operatorA(β) = eβH1e−βH and writing the partition function
asZ = Tr(e−βH1A(β)). The operatorA(β) satisfies dA/dβ = eβH1(H1−H)e−βH = −H2(β)A(β), the solution
of which is A(β) = T exp

(
−
∫ β
0
dτH2(τ)

)
.

4A related algorithm, based on an expansion in powers of HU−K/β (with K some non-zero constant), is the
continuous-time auxiliary field method [7].
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elements of these matrices are the Weiss Green functions Gσ0 for the time intervals defined by
the vertex positions

wC
Z0

= (−Udτ)n 1

Z0

Tr
(
e−(β−τn)H1n↑n↓ · · · e−(τ2−τ1)H1n↑n↓e

−τ1H1

)
= (−Udτ)n

∏
σ

detM−1
σ ,

where (
M−1

σ

)
ij
= Gσ0 (τi−τj) with Gσ0 (τ) = −

1

Z0

Tr
(
e−βH1T d(τ)d†(0)

)
,

and Z0 = Tr e−βH1 is the partition function of the non-interacting model.5 For the diagonal
elements, we adopt the convention (M−1

σ )ii = Gσ0 (0−).
At this point, one notices a potential sign problem. In the paramagnetic phase, where G↑0 = G↓0 ,
the product of determinants is positive, which means that for a repulsive interaction (U > 0)
odd perturbation orders yield negative weights. Except in the particle-hole symmetric case,
where odd perturbation orders vanish, these odd order configurations cause a sign problem.
Fortunately, we can solve this sign problem by shifting the chemical potentials for up and down
spins in an appropriate way [6]. To do so, we rewrite the interaction term as [8]

HU =
U

2

∑
s

∏
σ

(
nσ−ασ(s)

)
+
U

2
(n↑+n↓) + U

((
1

2
+δ

)2

− 1

4

)
, (22)

with

ασ(s) =
1

2
+ σs

(
1

2
+δ

)
. (23)

Here, δ is some constant and s = ±1 is an auxiliary Ising variable. This construction is not a
Hubbard-Stratonovich transformation, but simply a shift in the zero of energy. The constant
U
(
(1
2
+δ)2 − 1

4

)
in Eq. (22) is irrelevant and will be ignored in the following. We absorb

the contribution 1
2
U(n↑+n↓) into the non-interacting Green function by shifting the chemical

potential as µ→ µ−1
2
U. Explicitly, the Weiss Green function is redefined as6

(
Gσ0
)−1

= iωn+µ−∆σ →
(
G̃σ0
)−1

= iωn+µ−1
2
U−∆σ.

The introduction of an Ising variable si at each vertex position τi enlarges the configuration
space exponentially. A configuration C now corresponds to a collection of auxiliary spin vari-
ables defined on the imaginary-time interval: C = {(τ1, s1), (τ2, s2), . . . , (τn, sn)}. The weight
of these configurations is

wC = Z̃0(−Udτ/2)n
∏
σ

det M̃−1
σ , (24)

where (
M̃−1

σ

)
ij
= G̃σ0 (τi−τj)− ασ(si)δij. (25)

5We note that in the DMFT framework discussed in Section 1.2, the function Gσ0 is determined directly by
the self-consistency loop, without reference to a Hamiltonian. For the purpose of the present discussion, we may
however assume that we know Hbath and Hmix terms whose parameters yield Gσ0 through Eqs. (12) and (13).

6In a DMFT calculation, this means that the shifted chemical potential is used within the self-consistency loop.
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Fig. 2: Local update in the weak-coupling method. The horizontal line represents the
imaginary-time interval [0, β). We increase the perturbation order by adding an auxiliary spin
with random orientation at a random time and decrease it by removing a randomly chosen
auxiliary spin.

3.1 Sampling

For ergodicity it is sufficient that the sampling inserts the auxiliary spins with random orien-
tation at random times and removes randomly chosen spins. Detailed balance requires that
the probability p(C→C ′) to move from configuration C to C ′ satisfies w(C)p(C→C ′) =

w(C ′)p(C ′→C). Splitting p(C→C ′) = pprop(C→C ′)pacc(C→C ′) into a proposal and accep-
tance probability, and using the Metropolis-Hastings algorithm [4], we have

pacc(C→C ′) = min
(
1,R(C→C ′)

)
,

where

R(C→C ′) =
w(C ′) pprop(C ′→C)

w(C) pprop(C→C ′)

and Eq. (24) is used to compute the ratio of the weights. To complete the description of the
sampling we need to specify proposal probabilities for the insertion and removal of an auxiliary
spin. A simple and reasonable procedure is illustrated in Fig. 2. For the insertion, we pick a
random time in [0, β) and a random orientation for the new spin, while for the removal, we
simply pick a random spin. The corresponding proposal probabilities are

pprop(n→ n+1) = 1
2
(dτ/β), pprop(n+1→ n) = 1/(n+1). (26)

The first step is choosing with equal probability whether we insert or remove. If we insert, then
we are going from a configuration with n spins to a configuration with n+1 spins, and from
Eq. (24) and the above choices for pprop, the acceptance probability becomes pacc(n→ n+1) =

min
(
1,Rinsert(n→ n+1)

)
with

Rinsert(n→ n+1) =
−βU
n+1

∏
σ

det
(
M̃

(n+1)
σ

)−1
det
(
M̃

(n)
σ

)−1 . (27)

The acceptance probability for the removal follows from

Rremove(n+1→ n) = 1/Rinsert(n→ n+1). (28)
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3.2 Determinant ratios and fast matrix updates

From Eq. (27), we see that each update requires the calculation of a ratio of two determinants.
At first sight, one might think that for a matrix of size n×n this is anO(n3) operation. However,
each insertion or removal of a vertex (or spin) merely changes one row and one column of the
matrix M−1

σ (or M̃−1
σ ).7 It is thus possible to evaluate this ratio in a time O(n2) for insertion

and O(1) for removal [3].
We first note that the objects which are stored and manipulated, besides the lists of the times
{τi} (or times and spins {(τi, si)}), are the matrices Mσ = (Gσ0 )−1, not M−1

σ = Gσ0 . Inserting a
vertex (or auxiliary spin) adds a new row and column to M−1

σ . We imagine inserting this row
and column on the border of the given matrix and write the resulting matrix in a block matrix
form (omitting the σ index for simplicity):

(
M (n+1)

)−1
=

( (
M (n)

)−1
Q

R S

)
.

The analogous blocks of the M matrix are defined as

M (n+1) =

(
P̃ Q̃

R̃ S̃

)
. (29)

Here Q, R, and S are n×1, 1×n, and 1×1 matrices which contain the functions G0 evaluated at
time intervals determined by the position of the new vertex (spin). They can be easily computed.
We want to find P̃ , Q̃, R̃, and S̃, and the ratio of determinants. Using the expression for the
block inversion of a matrix and for the determinant of a block matrix, the determinant ratio
needed for the acceptance probability becomes

det
(
M (n+1)

)−1
det
(
M (n)

)−1 = det
(
S −RM (n)Q

)
= S −RM (n)Q . (30)

Because we store M (n), computing the acceptance probability of an insertion move is just an
O(n2) operation. If the move is accepted, the new matrix M (n+1) can be computed from M (n),
Q, R, and S, also in a time O(n2):

S̃ =
(
S − (R) (M (n)Q)

)−1
, (31)

Q̃ = −(M (n)Q) S̃, (32)

R̃ = −S̃ (RM (n)), (33)

P̃ = M (n) + (M (n)Q) S̃ (RM (n)). (34)

In the case of removing a spin we imagine removing a bordering row and column. It follows
from Eqs. (30) and (31) that

det
(
M (n)

)−1
det
(
M (n+1)

)−1 = det S̃ = S̃. (35)

7In the following, we write the formulas without the tildes, that is, for the sampling of interaction vertices. For
the algorithm with auxiliary spins, it suffices to replace M→ M̃ and G0→G̃0.
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S̃ is just a 1×1 matrix so its determinant is trivial to compute. The above formulas also imply
that the elements of the reduced matrix are

M (n) = P̃ − (Q̃)(R̃)/S̃. (36)

The calculation of the removal probability is thus O(1), while the calculation of the new M (n)

matrix is O(n2).

3.3 Measurement of the Green function

To compute the contribution of a configuration C to the Green function, Gσ
C(τ), we insert in

the right-hand side of Eq. (21) a creation operator d† at time 0 and an annihilation operator d at
time τ and divide by wC . Wick’s theorem and Eq. (30) then lead to the expression [6]

Gσ
C(τ) = Gσ0 (τ)−

∑
k

Gσ0 (τ−τk)
∑
l

(
Mσ

)
kl
Gσ0 (τl). (37)

The estimate for the impurity Green function for a given imaginary-time then follows from
Eq. (19). To avoid unnecessary and time-consuming summations during the Monte Carlo sim-
ulation (evaluation of Eq. (37) for many τ -values), we accumulate the quantity [7]

Sσ(τ̃) ≡
∑
k

δ(τ̃−τk)
∑
l

(
Mσ

)
kl
Gσ0 (τl),

by binning the time points τ̃ on a fine grid. After the simulation is finished, we compute the
Green function as8

Gσ(τ) = Gσ0 (τ)−
∫ β

0

dτ̃ Gσ0 (τ−τ̃)
〈
Sσ(τ̃)

〉
MC. (38)

It is also possible to measure the Matsubara components of the Green function directly. Using
the imaginary-time translational invariance of the Green functions, one finds

Gσ
C(iωn) = Gσ0 (iωn)− Gσ0 (iωn)

∑
kl

1

β
eiωn(τk−τl)

(
Mσ

)
kl
Gσ0 (iωn),

so that

Gσ(iωn) = Gσ0 (iωn)−
1

β

(
Gσ0 (iωn)

)2〈∑
kl

eiωn(τk−τl)
(
Mσ

)
kl

〉
MC
. (39)

We note that because the Weiss Green function has the high-frequency behavior G0(iωn) ∼
1/iωn, the measured impurity Green function automatically inherits the correct high-frequency
tail.

8Comparison of this equation with the Dyson equation G = G0 + G0 ? Σ ? G (where the ? symbol denotes a
convolution in imaginary time) shows that his procedure amounts to measuring −Σ ? G.
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3.4 Multi-orbital and cluster impurity problems

The generalization of the weak-coupling method to impurity clusters is straightforward. All we
have to do is to add a site index to the interaction vertices (or auxiliary Ising spin variables) and
sample the vertices (auxiliary spins) on a family of nsites imaginary-time intervals.
General four-Fermion terms as in Eq. (2) are, at least in principle, also easily dealt with. We
simply expand the partition function in powers of the interactions Uabcd. The trace over the
impurity and bath degrees of freedom again yields a determinant of a matrix whose order equals
the total perturbation order. In general there is a sign problem. To reduce the sign problem, it is
advantageous to introduce auxiliary fields α and replace

1

2

∑
abcd

Uabcd d†ad
†
bdcdd → −

1

2

∑
abcd

Uabcd
(
d†adc−αac

)(
d†bdd−αbd

)
,

with an appropriate shift in the quadratic part of the Hamiltonian. However, in general, it is
not possible to completely eliminate the sign problem by a suitable choice of α parameters.
Furthermore, since the number of interaction terms grows like O(n4

orbitals), the computational
cost rapidly escalates. In practice, the approach discussed in the following section is a more
suitable approach for single-site multi-orbital impurity problems with general interactions.

4 Hybridization-expansion approach

While the Monte Carlo weights in the weak-coupling method are expressed in terms of the
Weiss Green function G0, the hybridization-expansion method, which is in many ways com-
plementary to the weak-coupling approach, naturally involves the hybridization function ∆. It
follows from Eq. (13) that the Weiss Green function G0 and hybridization function∆ contain the
same information, and the DMFT procedure sketched in Sec. 1.2 could be just as well written
as a self-consistency loop fixing the hybridization function ∆.
The hybridization-expansion approach [9] is based on an expansion of the partition function
in powers of the impurity-bath hybridization term. Here, we decompose the Hamiltonian
as H2 = Hmix and H1 = H − H2 = Hµ + HU + Hbath. Since H2 ≡ Hd†

2 + Hd
2 =∑

pσ Vpσ d
†
σcpσ +

∑
pσ V

∗
pσ c
†
pσdσ has two terms, corresponding to electrons hopping from the

bath to the impurity and from the impurity back to the bath, only even perturbation orders
contribute to Eq. (20). Furthermore, at perturbation order 2n, only the (2n)!/(n!)2 terms cor-
responding to n creation operators d† and n annihilation operators d contribute. We therefore
write the partition function as a sum over configurations {τ1, . . . , τn; τ ′1, . . . , τ ′n} that are collec-
tions of imaginary-time points corresponding to these n annihilation and n creation operators:

Z =
∞∑
n=0

∫ β

0

dτ1 · · ·
∫ β

τn−1

dτn

∫ β

0

dτ ′1 · · ·
∫ β

τ ′n−1

dτ ′n Tr
(
e−βH1T Hd

2 (τn)H
d†

2 (τ ′n) · · ·Hd
2 (τ1)H

d†

2 (τ ′1)
)
.

(40)
Since the imaginary-time evolution operator e−τH1 does not rotate the spin in the case of the
Anderson impurity model, the configurations must contain an equal number of creation and



QMC Impurity Solvers 5.13

annihilation operators for each spin. Taking this additional constraint into account and using
the explicit expressions for Hd

2 and Hd†
2 , we find

Z = Zbath

∑
{nσ}

∏
σ

∫ β

0

dτσ1 · · ·
∫ β

τσnσ−1

dτσnσ

∫ β

0

dτ ′σ1 . . .

∫ β

τ ′σnσ−1

dτ ′σnσ

× Trd
(
e−βHlocT

∏
σ

dσ(τ
σ
nσ)d

†
σ(τ
′σ
nσ) . . . dσ(τ

σ
1 )d

†
σ(τ
′σ
1 )
)

× 1

Zbath

Trc
(
e−βHbathT

∏
σ

∑
p1...pnσ

∑
p′1...p

′
nσ

V ∗p1σVp′1σ · · ·V
∗
pnσσ

Vp′nσσ

c†pnσσ(τ
σ
nσ)cp′nσσ(τ

′σ
nσ) . . . c

†
p1σ

(τσ1 )cp′1σ(τ
′σ
1 )
)
,

where to separate the d and c operators we used the fact that H1 does not mix the impurity and
the bath. The local Hamiltonian Hloc is defined in Eq. (5) and Zbath = Trc e−βHbath .
Introducing the β-antiperiodic hybridization function (12), which in the time-domain reads

∆σ(τ) =
∑
p

|Vpσ|2
eεpβ + 1

{
−e−εp(τ−β) 0 < τ < β

e−εpτ −β < τ < 0
,

the trace over the bath states can be expressed as

1

Zbath

Trc
(
e−βHbathT

∏
σ

∑
p1...pnσ

∑
p′1...p

′
nσ

V ∗p1σVp′1σ · · ·V
∗
pnσσ

Vp′nσσ

c†pnσσ(τ
σ
nσ)cp′nσσ(τ

′σ
nσ) · · · c†p1σ(τσ1 )cp′1σ(τ

′σ
1 )
)
=
∏
σ

detM−1
σ ,

where M−1
σ is the (nσ×nσ) matrix with elements(

M−1
σ

)
ij
= ∆σ(τ ′i

σ−τσj ).

In the hybridization expansion approach, the configuration space consists of all sequences C =

{τ ↑1 , . . . , τ ↑n↑ ; τ
′↑
1 , . . . , τ

′↑
n↑
|τ ↓1 , . . . , τ ↓n↓ ; τ

′↓
1 , . . . , τ

′↓
n↓
} of n↑ creation and annihilation operators for

spin up (n↑ = 0, 1, . . .) and n↓ creation and annihilation operators for spin down (n↓ = 0, 1, . . .).
The weight of such a configuration is

wC = ZbathTrd
(
e−βHlocT

∏
σ

dσ(τ
σ
nσ)d

†
σ(τ
′σ
nσ) · · · dσ(τσ1 )d†σ(τ ′σ1 )

)∏
σ

detM−1
σ (dτ)2nσ . (41)

The trace factor represents the contribution of the impurity, which fluctuates between different
quantum states as electrons hop in and out. The determinants sum up all bath evolutions which
are compatible with the given sequence of transitions.
To evaluate the trace factor, we may for example use the eigenbasis of Hloc. In this basis, the
imaginary-time evolution operator e−τHloc is diagonal while the operators dσ and d†σ produce
transitions between eigenstates with amplitude±1. Because the time evolution does not flip the
electron spin, the creation and annihilation operators for a given spin alternate. This observation
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lmax

Fig. 3: Local update in the segment picture. The two segment configurations correspond to
spin up and down electrons. Each segment depicts a time interval in which an electron of the
corresponding spin resides on the impurity. The segment end points are the locations of the
operators d† (full circles) and d (empty circles). We increase the perturbation order by adding
a segment or anti-segment of random length for random spin and decrease it by removing a
randomly chosen segment or anti-segment.

allows us to separate the operators for spin up from those for spin down and to depict the time
evolution by a collection of segments with each segment representing an imaginary-time interval
in which an electron of spin up or down resides on the impurity (Fig. 3). We call an unoccupied
time-interval between two segments an “anti-segment”.
At each time, the eigenstate of the impurity follows immediately from the segment representa-
tion, and the trace factor becomes

Trd
(
e−βHlocT

∏
σ

dσ(τ
σ
nσ)d

†
σ(τ
′σ
nσ) · · · dσ(τσ1 )d†σ(τ ′σ1 )

)
= S exp

(
µ(l↑+l↓)− Uloverlap

)
, (42)

with S being a permutation sign, lσ the total “length” of the segments for spin σ, and loverlap the
total length of the overlap between spin-up and spin-down segments. The lower panel of Fig. 3
shows a configuration with two segments for spin up and one segment for spin down (note the
periodic boundary conditions). The time intervals where segments overlap, indicated by gray
rectangles, correspond to a doubly occupied impurity and cost a repulsion energy U.

4.1 Sampling

For ergodicity, it is sufficient to insert and remove pairs of creation and annihilation operators
(segments or anti-segments) for spin up and down. One possible strategy for inserting a segment
is the following: We select a random time in [0, β) for the creation operator. If it falls on an
existing segment, the impurity is already occupied and the move is rejected. If it falls on an
empty space, we compute lmax, the length from this selected time to the next segment (in the
direction of increasing τ , taking into account the periodic boundary conditions).9 Then we

9If there are no segments for the given spin, lmax = β.
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choose the position of the new annihilation operator randomly in this interval of length lmax

(Fig. 3). If in the inverse procedure we propose to remove a randomly chosen segment for this
spin, then the proposal probabilities for the insertion and removal are

pprop(nσ → nσ+1) =
dτ

β

dτ

lmax

, pprop(nσ+1→ nσ) =
1

nσ + 1
.

The acceptance probability for the insertion of a segment becomes pacc(nσ → nσ+1) = min
(
1,

Rinsert(nσ → nσ+1)
)
, with

Rinsert(nσ → nσ+1) =
βlmax

nσ + 1
eµlnew−Uδloverlap

det
(
M

(nσ+1)
σ

)−1
det
(
M

(nσ)
σ

)−1 , (43)

while the acceptance probability for a removal is obtained from

Rremove(nσ+1→ nσ) = 1/Rinsert(nσ → nσ+1). (44)

Here, lnew is the length of the new segment, and δloverlap is the change in the overlap (see Fig. 3).
We compute the ratio of determinants using the fast update formulas discussed in Section 3.2.

4.2 Measurement of the Green function

The strategy is to create configurations which contribute to the Green function measurement by
decoupling the bath from a given pair of creation and annihilation operators in C. We start by
expressing the expectation value for the Green function as

G(τ) = − 1

Z

∑
C

w
d(τ)d†(0)
C = − 1

Z

∑
C

w
(τ,0)
C

w
d(τ)d†(0)
C

w
(τ,0)
C

,

where wd(τ)d
†(0)

C denotes the weight of the configuration C with an additional operator d†(0) and
d(τ) in the trace factor and w(τ,0)

C denotes the complete weight corresponding to the enlarged
operator sequence (including enlarged hybridization determinants). Since the trace factors of
both weights are identical, up to a permutation sign (−1)i+j ,

w
d(τ)d†(0)
C

w
(τ,0)
C

=
(−1)i+j det

(
MC

)−1
det
(
M

(τ,0)
C

)−1 =
(
M

(τ,0)
C

)
ji
,
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with i and j denoting the row and column corresponding to the additional operators d† and d in
the enlarged

(
M

(τ,0)
C

)−1. Hence, the measurement formula for the Green function becomes10

G(τ) = − 1

Z

∑
C

w
(τ,0)
C

(
M

(τ,0)
C

)
ji
= − 1

Z

∑
C̃

wC̃ ñ
2δ(τñ−τ)δ(τ ′ñ−0)

(
MC̃

)
ññ

= − 1

Z

∑
C̃

wC̃ ñ
2 1

β
δ(τ, τñ−τ ′ñ)

(
MC̃

)
ññ
,

with δ(τ, τ ′) = δ(τ−τ ′) for τ ′ > 0, and δ(τ, τ ′) = −δ(τ−τ ′−β) for τ ′ < 0. In the first step, we
went from a sum over configurations C with n creation and annihilation operators in addition
to d(τ) and d†(0) to a sum over configurations C̃ with ñ = n+1 operator pairs, while in the last
step, we used the translational invariance and the β-anti-periodicity of the Green function. We
finally replace the factor ñ2 (which comes from the 1/(n!)2 factor in the Monte Carlo weights
without time ordering) by a sum over all pairs i, j of creation and annihilation operators, to
obtain the measurement formula G(τ) = − 1

Z

∑
C̃ wC̃

∑
ij

1
β
δ(τ, τj−τ ′i)

(
MC̃

)
ji

, or

G(τ) =

〈
−
∑
ij

1

β
δ(τ, τi−τ ′j)Mij

〉
MC
. (45)

Fourier transformation of Eq. (45) yields the measurement formula

G(iωn) =

〈
−
∑
ij

1

β
eiωn(τi−τ

′
j)Mij

〉
MC

(46)

for the Fourier coefficients of the Green function. Note that in contrast to the weak-coupling
approach, where we measure the Green function as aO(1/(iωn)2) correction to the Weiss Green
function, Eq. (46) does not automatically yield the correct high frequency tail.
An elegant way to suppress the noise in G(iωn) at large ωn and to obtain a compact represen-
tation of the Green function is to measure the expansion coefficients in a basis of orthogonal

10For the purpose of this derivation, it is convenient to use configurations C and C̃ without time ordering, that
is, we write the Green function as

G(τ) =− Zbath

Z

∑
n

1

n!2

∫ β

0

dτ1 · · · dτn
∫ β

0

dτ ′1 · · · dτ ′n

× Trd
(
e−βHlocT d(τ)d†(0)d(τn)d†(τ ′n) · · · d(τ1)d†(τ ′1)

)
det
(
M (τ,0)

)−1(
M (τ,0)

)
n+1,n+1

=− Zbath

Z

∑
n

(n+1)2(
(n+1)!

)2 ∫ β

0

dτ1 · · · dτn+1

∫ β

0

dτ ′1 · · · dτ ′n+1δ(τn+1−τ)δ(τ ′n+1−0)

× Trd
(
e−βHlocT d(τn+1)d

†(τ ′n+1)d(τn)d
†(τ ′n)d(τ1)d

†(τ ′1)
)
det
(
M (τ,0)

)−1(
M (τ,0)

)
n+1,n+1

=− Zbath

Z

∑
ñ

ñ2

(ñ!)2

∫ β

0

dτ1 · · · dτñ
∫ β

0

dτ ′1 · · · dτ ′ñδ(τñ−τ)δ(τ ′ñ−0)

× Trd
(
e−βHlocT d(τñ)d†(τ ′ñ) · · · d(τ1)d†(τ ′1)

)
det
(
M (ñ)

)−1(
M (ñ)

)
ññ
.
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polynomials [10]. A suitable choice are the Legendre polynomials Pl(x) defined on x ∈ [−1, 1]
through the recursion relation

P0(x) = 1,

P1(x) = x,

(l+1)Pl+1(x) = (2l+1)xPl(x)− lPl−1(x).

The Pl furthermore satisfy
∫ 1

−1 dxPk(x)Pl(x) = 2
2l+1

δkl. Defining x(τ) = 2τ/β−1, one can
thus express the Green function on the interval τ ∈ [0, β] as

G(τ) =
∑
l≥0

√
2l + 1

β
Pl
(
x(τ)

)
Gl, (47)

Gl =
√
2l + 1

∫ β

0

dτPl
(
x(τ)

)
G(τ). (48)

The advantage of the Legendre representation over the Matsubara representation is a much faster
decay of the expansion coefficients with increasing order. The Matsubara Fourier transform
requires anti-periodization of the Green function with discontinuities at τ = mβ, which leads
to slowly decaying Matsubara coefficients (G(iωn) ∼ 1/iωn for large ωn). On the other hand,
the Legendre basis represents the smooth function G(τ) on the interval [0, β]. In practice, 30 to
50 Legendre coefficients are enough to reproduce the Green function with high precision and
neglecting the higher orders acts as a convenient noise filter.
From Eqs. (45) and (48) it follows that

Gl =

〈
−
∑
ij

√
2l + 1

β
P̃l(τi−τ ′j)Mij

〉
MC
, (49)

with P̃l(τ) = Pl
(
x(τ)

)
for τ > 0 and P̃l(τ) = −Pl

(
x(τ+β)

)
for τ < 0.

The Matsubara coefficients are obtained from the Legendre coefficients asG(iωn) =
∑

l≥0 TnlGl,
with the unitary transformation Tnl given by Tnl = (−1)nil+1

√
2l + 1jl(

1
2
βωn), which involves

the spherical Bessel functions jl(z). In the limit n→∞, Tnl decays ∼ 1/(iωn) for n even and
∼ 1/(iωn)

2 for n odd.
An even more compact representation of Green functions can be obtained with the so-called
intermediate representation introduced in Ref. [11].

4.3 Generalizations – Matrix and Krylov formalisms
4.3.1 Matrix formalism

It is obvious from the above derivation that the hybridization-expansion formalism is applicable
to general classes of impurity models [12]. Because we compute the trace factor in the weight
(41) exactly, Hloc can contain arbitrary local interactions (for example, spin-exchange terms
in multi-orbital models), degrees of freedom (for example, spins in Kondo-lattice models) or
constraints (for example, ‘no double occupancy’ in the t-J model).
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For multi-orbital impurity models with Hloc diagonal in the occupation number basis, such as
models with density-density interactions, the segment formalism illustrated in Fig. 3 is still ap-
plicable, but there is now a collection of segments for each flavor α (orbital, spin, etc.). The
trace factor can again be computed from the length of the segments (the chemical potential con-
tribution) and the overlaps between segments of different flavor (the interaction contribution).
This allows a very efficient simulation of models with 5, 7, and in principle even more orbitals,
despite the fact that the corresponding Hilbert spaces (45 = 1024 for 5 orbitals, 47 = 16384 for
7 orbitals) are quite large.
If Hloc is not diagonal in the occupation number basis defined by the d†α, the calculation of

Trd
(
e−βHlocT

∏
α

dα(τ
α
nα) d

†
α(τ
′α
nα) · · · dσ(τα1 ) d†α(τ ′1

α
)
)

(50)

becomes rather involved and for a model with a large Hilbert space also computationally ex-
pensive. An obvious idea is to evaluate the trace in the eigenbasis where the imaginary-time
evolution operators e−Hlocτ become diagonal. On the other hand, the operators dα and d†α,
which are simple and sparse in the occupation number basis, become complicated matrices in
the eigenbasis. The evaluation of the trace factor in the eigenbasis thus involves the multiplica-
tion of matrices whose size scales as the dimension of the Hilbert space of the local problem.
Since the dimension of this Hilbert space grows exponentially with the number of flavors, the
calculation of the trace factor becomes the computational bottleneck of the simulation, and the
matrix formalism is therefore restricted to a relatively small number of flavors.
It is important to identify and use conserved quantum numbers [13]. Typically, these are particle
number for spin up and spin down and momentum. If we group the eigenstates ofHloc according
to these quantum numbers, the operator matrices acquire a sparse block structure. For example,
the operator d†↑,q connects states corresponding to the quantum numbers m = {n↑, n↓, k, . . .} to
those withm′ = {n↑+1, n↓, k+q, . . .} (if they exist). Checking the compatibility of the operator
sequence with the different starting blocks allows us to identify the blocks which contribute to
the trace without performing any expensive matrix-matrix multiplications.
Let us take as a simple example a two-orbital model with conserved quantum numbers n↑ and
n↓. The operator sequence d†↑(τ4) d

†
↑(τ3) d↑(τ2) d↑(τ1) (with τ1 < τ2 < τ3 < τ4) is compatible

with the starting blocks {n↑ = 2;n↓ = 0, 1, 2}, since the quantum numbers evolve as

{n↑ = 2;n↓} →
d↑
{n↑ = 1;n↓} →

d↑
{n↑ = 0;n↓} →

d†↑

{n↑ = 1;n↓} →
d†↑

{n↑ = 2;n↓},

whereas the blocks {n↑ = 0, 1;n↓ = 0, 1, 2} do not contribute to the weight, since, for example,

{n↑ = 1;n↓} →
d↑
{n↑ = 0;n↓} →

d↑
∅ .

Having identified the contributing blocks, the trace calculation reduces to a block matrix multi-
plication of the form∑

contributing
m

Trm
(
· · ·
(
O
)
m′′m′

(
e−(τ

′−τ)Hloc
)
m′

(
O
)
m′m

(
e−τHloc

)
m

)
, (51)
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where O is either a creation or annihilation operator, m denotes the index of the matrix block,
and the sum runs over those starting sectors which are compatible with the operator sequence.
Using the block structure imposed by the conserved quantum numbers, it is possible to effi-
ciently simulate 3-orbital models or 4-site clusters. However, since the matrix blocks are dense
and the largest blocks grow exponentially with system size, the simulation of 5-orbital models
already becomes quite expensive and the simulation of 7-orbital models with 5, 6 or 7 electrons
is doable only if we truncate the size of the blocks.
In fact, one should distinguish two types of truncations:

1. Restriction of the trace
∑

contributing m Trm(. . .) to those quantum number sectors or states
which give the dominant contribution,

2. Reduction of the size of the operator blocks
(
O
)
m′m′′

by eliminating high-energy states.

Truncations of type (1) have little effect at low enough temperature, because they restrict the
possible states only at a single point on the imaginary-time interval. Truncations of the type (2)
are more problematic and possibly lead to systematic errors which are difficult to estimate and
control when the system size is large.
Accumulating a histogram of the states or quantum number sectors visited during the sampling
can be very instructive. For example, in the study of correlated materials with multiple partially
filled orbitals, interesting questions are the typical valence or the dominant spin state, and the
importance of fluctuations to other charge and spin states. Dynamical mean-field theory allows
us to address these issues by adopting a real-space representation of the solid as a collection of
atoms and treating the local fluctuations on a given site through the effective impurity model
construction. The strong-coupling solver, which treats the local part of the impurity problem
exactly, is ideally suited for such an analysis.

4.3.2 Krylov formalism

An alternative strategy [14] to evaluate the trace factor (50) is to

1. Adopt the occupation number basis in which we can easily apply the dα and d†α operator
matrices to any state and in which we can exploit the sparse nature of Hloc during the
imaginary-time evolutions,

2. Approximate the trace by a sum over the lowest energy states, that is, by a truncation of
type (1) described in the previous subsection.

Instead of evaluating the matrix corresponding to the product of operators, we propagate each
retained state in the trace through the sequence of time-evolution, creation and annihilation op-
erators. This computation only involves matrix-vector multiplications of the type dα|v〉, d†α|v〉,
and Hloc|v〉 with sparse operators dα, d†α and Hloc and is thus possible for systems for which
the multiplication of dense matrix blocks becomes prohibitively expensive. Furthermore, the
approach does not require any approximation of type (2), so all excited states remain accessi-
ble at intermediate τ . While the sparsity of Hloc depends on the number of interaction terms,
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this number grows at most proportionally to the number of orbitals squared. In contrast, the
dimension of the matrix grows exponentially with the number of orbitals.
The expensive step is the calculation of the time evolution from one operator to the next. We
evaluate the matrix exponentials applied to a vector, exp(−τHloc)|v〉, by iteratively constructing
the Krylov space

Kp(|v〉) = span{|v〉, Hloc|v〉, H2
loc|v〉, . . . , Hp

loc|v〉}
and by approximating the full matrix exponential by the matrix exponential of the Hamiltonian
projected onto Kp(|v〉). The iteration number p is determined by tracking the convergence of
exp(−τHloc)|v〉 and stopping the calculation if the difference between iteration p and p+1 drops
below some cutoff value. The number of iterations depends on the time interval τ , but typically,
convergence occurs for very small iteration numbers p� Ndim, with Ndim the dimension of the
Hilbert space.
In the limit where the dimension of the local Hilbert space Ndim is large, the Krylov approach
is more efficient than an implementation based on a matrix representation of the operators dα,
d†α and an evaluation of the trace of the matrix product. If the Monte Carlo configuration has
n creation and n annihilation operators and we perform the trace over Ntr ≤ Ndim states, the
Krylov calculation of the trace scales as

O
(
NtrNdim2n(1+〈p〉)

)
,

where the first term comes from the application of the creation and annihilation operators and
the second term, proportional to the average dimension 〈p〉 of the Krylov space, from the ap-
plication of the time-evolution operators. If we retain all the states in the trace calculation,
Ntr = Ndim, and the trace calculation scales as N2

dim. If we restrict the trace to a small number
of low-energy states, then Ntr is O(1) and the trace computation becomes linear in Ndim. This
scaling should be compared with a computational effort of O(2nN3

dim) for the evaluation of the
trace based on matrix multiplications (without truncation of the matrix blocks).11

While in theory the Krylov space approach is the method of choice due to its superior Ndim

scaling, in practice the precise numbers of Ntr, 〈p〉, and Ndim determine which one of the two
approaches performs better for a given problem. Experience shows that for five orbital problems
the Krylov approach becomes superior to the matrix method.

5 Scaling of the algorithms

In the weak-coupling and hybridization-expansion algorithms, the average expansion orders
have a simple physical interpretation: In a DMFT calculation, they yield highly accurate mea-
surements for the potential and kinetic energy.
Let us first consider the weak-coupling algorithm, where after the introduction of auxiliary fields
(Eqs. (22) and (23)) and the shifting of the chemical potential one obtains H = H1 +H2, with

11In the truncated trace approach, it is important to measure the various local observables at τ = 1
2β where they

are least affected by the truncation at τ = 0 and τ = β. Also, it is important not to destroy the multiplet structure
when truncating the trace.
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H1 = Hµ +
1
2
U(n↑+n↓) + Hbath and H2 = Un↑n↓ − 1

2
U(n↑+n↓).12 It follows from Eq. (20)

that

〈−H2〉 =
1

β

∫ β

0

dτ
〈
−H2(τ)

〉
=

1

β

1

Z

∞∑
n=0

n+1

(n+1)!

∫ β

0

dτ

∫ β

0

dτ1 · · ·
∫ β

0

dτnTr
(
e−βH1T (−H2(τ))(−H2(τn)) · · · (−H2(τ1))

)
=

1

β

1

Z

∑
C

nCwC =
1

β
〈n〉, (52)

and therefore the average perturbation order 〈n〉 is related to the potential energy by

〈n〉weak-coupling = −βU〈n↑n↓〉+ 1
2
βU〈n↑+n↓〉 = −βEpot +

1
2
βU〈n↑+n↓〉. (53)

We learn from this formula that the average perturbation order is roughly proportional to the
inverse temperature β and the interaction strength U.
In the hybridization-expansion case, the average perturbation order is proportional to the kinetic
energy. In single-site DMFT, we can express the kinetic energy

Ekin =
∑
kσ

εkGkσ(0
−)

in terms of the Green function and hybridization function:13

Ekin =
∑
σ

∫ β

0

dτ Gσ(τ)∆
σ(−τ).

12For simplicity, we have chosen δ = 0.
13The first step in the derivation of this formula is to switch to the Fourier representation:

Ekin =
∑
kσ

εkGkσ(0
−) =

∑
kσ

εk
1

β

∑
n

e−iωn0
−
Gkσ(iωn) =

∑
kσ

εk
1

β

∑
n

eiωn0
+ 1

iωn+µ−εk −Σσ(iωn)
.

Introducing the density of states D(ε), we can then write

Ekin =
∑
σ

1

β

∑
n

eiωn0
+

∫
dε

ε

iωn+µ−ε−Σσ(iωn)
D(ε)

=
∑
σ

1

β

∑
n

eiωn0
+

∫
dε
−
(
iωn+µ−ε−Σσ(iωn)

)
+
(
iωn+µ−Σσ(iωn)

)
iωn+µ−ε−Σσ(iωn)

D(ε)

=
∑
σ

1

β

∑
n

eiωn0
+
(
− 1 +

(
iωn+µ−Σσ(iωn)

)
Gσloc(iωn)

)
,

with Gloc the local lattice Green function, which after convergence of the DMFT calculation is identical to the
impurity Green function G. The latter is related to the hybridization function by G = (iωn+µ − Σ − ∆)−1.
Hence, we obtain

Ekin =
∑
σ

1

β

∑
n

eiωn0
+

Gσ(iωn)∆
σ(iωn) =

∑
σ

∫
dτ Gσ(τ)∆

σ(−τ).
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Figure 8.14 Average perturbation order for the weak-coupling and strong
coupling (hybridization expansion) algorithms. These results correspond
to the DMFT solution of the one-band Hubbard model with semi-circular
density of states of bandwidth 4 and temperature T = 1/30. The bath is
therefore different for each data point. (Figure adapted from (Gull et al.,
2007).)

to 100 sites (Fuchs et al., 2011), at least in parameter regimes where there is

no serious sign problem. The strong-coupling approach, on the other hand, is

useful in particular for the study of (single-site) multi-orbital problems with

complicated local interactions. Such problems typically have to be solved

in single-site DMFT studies of strongly correlated materials, or in realistic

simulations of transition metal impurities (Surer et al., 2012).

Solver Scaling Use

Weak-coupling β3 L3 Impurity clusters with density-
density interaction

Hybridization expansion β3 L Single site multi-orbital models
(segment formalism) with density-density interaction

Hybridization expansion β exp(L) Single site multi-orbital models
(matrix/Krylov formalism) with general Uijkl

Figure 8.15 Scaling of the different impurity solvers with inverse tempera-
ture β and system size L. In the case of the segment algorithm, we assume
that the calculation of the determinant ratios dominates the overlap calcu-
lations. In the matrix or Krylov case, we assume that the trace calculation
dominates the calculation of the determinant ratios.

<latexit sha1_base64="euYjsY1RKFJB1mQdvFzLXAwxH/g=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cWTFtoQ9lsJ+3azSbsboRS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8MBVcG9f9dgpr6xubW8Xt0s7u3v5B+fCoqZNMMfRZIhLVDqlGwSX6hhuB7VQhjUOBrXB0N/NbT6g0T+SDGacYxHQgecQZNVZq+L1yxa26c5BV4uWkAjnqvfJXt5+wLEZpmKBadzw3NcGEKsOZwGmpm2lMKRvRAXYslTRGHUzmh07JmVX6JEqULWnIXP09MaGx1uM4tJ0xNUO97M3E/7xOZqKbYMJlmhmUbLEoygQxCZl9TfpcITNibAllittbCRtSRZmx2ZRsCN7yy6ukeVH1rqpe47JSu83jKMIJnMI5eHANNbiHOvjAAOEZXuHNeXRenHfnY9FacPKZY/gD5/MHsyWM3w==</latexit>

U

<latexit sha1_base64="9+bpVqde+zmug+2eaUZCY9qvZeI=">AAACEnicbVC7SgNBFJ31GeMramkzGARtwq6IWgZtLCOYB2RDmJ3cJENmZ5eZu5Kw5Bts/BUbC0Vsrez8G2eTFJp4YOBwzrncuSeIpTDout/O0vLK6tp6biO/ubW9s1vY26+ZKNEcqjySkW4EzIAUCqooUEIj1sDCQEI9GNxkfv0BtBGRusdRDK2Q9ZToCs7QSu3CqY8wxBSGMVNZiEa6A5qOqS+Z6kmgivp6wtqFoltyJ6CLxJuRIpmh0i58+Z2IJyEo5JIZ0/TcGFsp0yi4hHHeTwzEjA9YD5qWKhaCaaWTk8b02Cod2o20fQrpRP09kbLQmFEY2GTIsG/mvUz8z2sm2L1qpULFCYLi00XdRFKMaNYP7QgNHOXIEsa1sH+lvM8042hbzNsSvPmTF0ntrORdlLy782L5elZHjhySI3JCPHJJyuSWVEiVcPJInskreXOenBfn3fmYRpec2cwB+QPn8weXJp4H</latexit> ex
p
an

si
o
n

or
d
er

hn
i

Fig. 4: Average perturbation order for the weak-coupling and hybridization-expansion algo-
rithms. These results correspond to the DMFT solution of the one-band Hubbard model with
semi-circular density of states of bandwidth 4 and temperature T = 1/30 [15]. The bath is
therefore different for each data point.

Substituting the strong-coupling measurement formula (45) forG into this expression, one finds

Ekin =
∑
σ

∫ β

0

dτ

〈
−
∑
ij

1

β
δ(τ, τi−τ ′j)

(
Mσ

)
ij

〉
MC
∆σ(−τ)

= −
∑
σ

〈
1

β

∑
ij

(
Mσ

)
ij
∆σ(τ ′j−τi)

〉
MC
.

Now we use that
(
Mσ

)
ij

= (−1)i+j detM−1
σ [j, i]/ detM−1

σ , where M−1
σ [j, i] denotes the hy-

bridization matrix with row j and column i removed. Hence, the sum∑
j

(−1)i+j detM−1
σ [j, i]∆σ(τ ′j−τi) = detM−1

σ

appearing in the numerator is nothing but the expansion of the determinant of the hybridization
matrix along column i. The expression for the kinetic energy thus simplifies to

Ekin = −
∑
σ

〈
1

β

∑
i

detM−1
σ

detM−1
σ

〉
MC

= − 1

β

∑
σ

〈nσ〉 , (54)

and the average total perturbation order 〈n〉 of the Monte Carlo configuration is related to the
kinetic energy by

〈n〉hybridization-expansion = −βEkin.

While the average expansion order in both the weak-coupling and hybridization-expansion
methods scales as β, the scaling of the expansion order with the interaction strength is very
different. In the weak-coupling approach it grows roughly proportional to U, while in the
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Solver Scaling Use

Weak-coupling β3 L3 Impurity clusters
with density-density interaction

Hybridization expansion
(segment formalism)

β3 L Single-site multi-orbital models
with density-density interaction

Hybridization expansion
(matrix/Krylov formalism)

β eL Single-site multi-orbital models
with general Uijkl

Table 1: Scaling of the different impurity solvers with inverse temperature β and system size L.
In the case of the segment algorithm, we assume that the calculation of the determinant ratios
dominates the overlap calculations. In the matrix or Krylov case, we assume that the trace
calculation dominates the calculation of the determinant ratios.

hybridization-expansion approach, it decreases with increasing U (Fig. 4). In the case of the
Anderson impurity model, this behavior leads to a significant computational speed-up for the
hybridization-expansion approach in the intermediate- and large-U regime. Since local updates
are O(n2), a full sweep (update of all vertices in a configuration) is order O(n3).
For impurity clusters, or models with complicated interaction terms, which require the matrix
or Krylov formalisms discussed in Section 4.3, the hybridization-expansion method scales ex-
ponentially with system size, and we can only apply it to relatively small systems. Here, the
weak-coupling approach, if applicable, can be the method of choice. Table 1 gives a summary of
the different scalings (assuming a diagonal hybridization) and indicates which solver is appro-
priate for which type of problem. The weak-coupling solvers are mainly used in cluster DMFT
calculations of the Hubbard model, where the polynomial scaling allows to treat clusters of up
to 100 sites [16], at least in parameter regimes where there is no serious sign problem. The
strong-coupling approach, on the other hand, is useful in particular for the study of (single-site)
multi-orbital problems with complicated local interactions. Such problems typically have to be
solved in single-site DMFT studies of strongly correlated materials, or in realistic simulations
of transition metal impurities [17].

6 Electron-boson systems

6.1 Local phonons

In this section, we consider a quantum impurity model in which dispersionless phonons of
frequency ω0 couple to the electron density on the impurity site. The local term of the Anderson-
Holstein impurity Hamiltonian H = Hloc +Hmix +Hbath is

Hloc = −µ(n↑+n↓) + Un↑n↓ + g
(
n↑+n↓−1

)(
b† + b

)
+ ω0 b

†b. (55)

Here, b and b† denote the phonon annihilation and creation operators. An impurity model of
this type has to be solved in single-site DMFT simulations of the Holstein-Hubbard model.
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The bosonic sector of the Hilbert space ofHloc contains an infinite number of states. Hamiltonian-
based impurity solvers truncate the Hilbert space to a finite number of phonon states, but treat-
ing even a truncated space may be computationally expensive. An attractive feature of the
action-based continuous-time Monte Carlo formalism is that the phonons are integrated out,
which both in the weak-coupling and the hybridization-expansion algorithms allows to treat the
bosonic contribution in an elegant and efficient way.
We only discuss here the hybridization-expansion approach [18] which is based on a canonical
transformation [19] called the Lang-Firsov transformation. This transformation decouples the
electrons and phonons in the local Hamiltonian and applies to the physically relevant situation
where the phonons couple to the total charge on the impurity atom. In this particular case, the
electron-phonon coupling can be treated at essentially no additional computation cost.
At expansion order nσ for spin σ, the nσ! diagrams corresponding to a given time sequence
of fermionic creation and annihilation operators can be summed up into a determinant of a
matrix M−1

σ , as discussed in Sec. 4, so that the weight of the Monte Carlo configuration can be
expressed as

w({Oi(τi)}) = Trc
〈
T e−

∫ β
0 Hloc(τ)O2n(τ2n) · · ·O1(τ1)

〉
b
dτ1 · · · dτ2n

∏
σ

(detM−1
σ )sσ, (56)

where the Oi(τi) denote the (time-ordered) creation or annihilation operators and sσ is 1 (−1) if
the spin-σ operator with the lowest time argument is a creation (annihilation) operator. To de-
couple the electrons and phonons by a Lang-Firsov transformation, we rewrite the local Hamil-
tonian (55) as

Hloc = −µ(n↑+n↓) + Un↑n↓ +
√
2g(n↑+n↓−1)X +

ω0

2

(
X2 + P 2

)
. (57)

Here the phonon coordinate X and momentum P , satisfying [P,X] = i, are related to the
phonon creation and annihilation operators by X = (b† + b)/

√
2 and P = i(b† − b)/

√
2. We

decouple the boson and fermion operators in Hloc by shifting X by

X0 = (
√
2g/ω0)(n↑+n↓−1) (58)

using the unitary transformation eiPX0 . The transformed Hamiltonian H̃loc = eiPX0Hloce
−iPX0

becomes
H̃loc = −µ̃(ñ↑+ñ↓) + Ũ ñ↑ñ↓ +

ω0

2

(
X2 + P 2

)
.

The first two terms of H̃loc correspond to the local terms of the Anderson impurity model with
modified chemical potential µ̃ and interaction strength Ũ, where

µ̃ = µ− g2/ω0, (59)

Ũ = U − 2g2/ω0. (60)

The impurity electron creation and annihilation operators are transformed to polaron operators,

d̃†σ = eiPX0d†σe
−iPX0 = e

g
ω0

(b†−b)
d†σ,

d̃σ = eiPX0dσe
−iPX0 = e

− g
ω0

(b†−b)
dσ.
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Fig. 5: Illustration of an order n = 3 hybridization-expansion diagram for the Anderson-
Holstein impurity model. Empty and full circles represent hybridization events. Dashed lines
indicate interactions K(τ) connecting all pairs of hybridization events. We only show the lines
attached to the red operator.

After the transformation, the phonon expectation value 〈· · · 〉b becomes the product of a term
involving electron operators, which is analogous to that computed for the Anderson impurity
model without phonons, and a phonon term which is the expectation value of a product of
exponentials of boson operators. The total weight of a configuration thus has the form

w
(
{Oi(τi)}

)
= wb

(
{Oi(τi)}

)
w̃AIM

(
{Oi(τi)}

)
.

Here, w̃AIM is the weight of a corresponding configuration in the Anderson impurity model with
parameters modified according to Eqs. (59) and (60), while the phonon contribution is

wb
(
{Oi(τi)}

)
=
〈
es2nA(τ2n) es2n−1A(τ2n−1) · · · es1A(τ1)

〉
b

with 0 ≤ τ1 < τ2 < . . . < τ2n < β, and si = 1 or (−1) if the i th operator is a creation
or annihilation operator. The operator in the exponent is A(τ) = g

ω0

(
eω0τb† − e−ω0τb

)
. The

expectation value is to be taken in the thermal state of free bosons, and with the disentangling

of operators eX+Y = eXeY e−
1
2
[X,Y ] one finds esA(τ) = e

− g2

2ω20 e
s g
ω0
eω0τ b†

e
−s g

ω0
e−ω0τ b

, which leads
to the expression

wb
(
{Oi(τi)}

)
= e

−n g
2

ω20 e
−

∑
2n≥i>j≥1

sisjg
2

ω20
e−ω0(τi−τj)

〈
e
∑
j sj

g
ω0
eω0τj b†

e
−

∑
j sj

g
ω0
e−ω0τj b

〉
b
.

Using
〈
eub
†
evb
〉
b
= euv/(e

βω0−1) to evaluate the thermal expectation value, we finally obtain

wb
(
{Oi(τi)}

)
= exp

(
− g2/ω2

0

eβω0−1
(
n
(
eβω0+1

)
+
∑

2n≥i>j≥1

sisj
(
eω0(β−(τi−τj))+eω0(τi−τj)

)))
. (61)

This phonon contribution can be interpreted as originating from an interaction K(τ−τ ′) be-
tween all pairs of operators (see Fig. 5 and Ref. [20]) of the form (0 ≤ τ ≤ β)

K(τ) = − g
2

ω2
0

cosh(ω0(τ−β/2))− cosh(ω0β/2)

sinh(ω0β/2)
, (62)
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ωω00

Ubare

Uscr

Re U(ω)

ωω00

Im U(ω)

FIG. 4: Retarded interaction corresponding to the Holstein-Hubbard model with on-site interac-

tion U = Ubare, bosonic frequency !0 and electron-boson coupling g. The di↵erence between bare

and screened interaction is � = 2g2/!0.

at ! = 0.

While the DMFT approximation simplifies the problem considerably, by mapping the

Holstein-Hubbard lattice model onto an auxiliary single-site impurity model, this e↵ective

model is still a complicated interacting many-body system. The electron-boson coupling

introduces additional energy scales, besides the bandwidth and Kondo scale of the Ander-

son impurity model, namely the boson frequency !0 and the e↵ective coupling strength

� = 2g2/!0. (In the high-frequency limit, the Holstein-Hubbard model simplifies to the

Hubbard model with interaction Uscr = U � �.) Even in the DMFT approximation, and in

the absence of long-range order, the Holstein-Hubbard model features a rich phase diagram

with metallic, Mott insulating and bipolaronic insulating phases (Sec. III B 4) [77–81]. An-

tiferromagnetic, charge-ordered, superconducting and supersolid phases can also be found

[82–84] if symmetry breaking is allowed. In the following, we will discuss e�cient, yet ac-

curate numerical approaches for solving the Holstein-Hubbard impurity problem, and also

show how these techniques can be generalized to models with a coupling to a continuum of

bosonic modes (or arbitrary retarded interactions). In fact, in the context of DMFT based ab

initio simulations of correlated materials, the numerical challenge of treating dynamically

screened interactions has been a major bottleneck which has hampered the implementa-

tion of advanced LDA+DMFT or GW+DMFT schemes for many years. The techniques

21

Fig. 6: Frequency-dependent interaction U(ω) corresponding to the Anderson-Holstein impu-
rity model with interaction U = Ubare, bosonic frequency ω0 and electron-boson coupling g. The
difference between the bare interaction Ubare and the screened interaction Uscr is 2g2/ω0 [21].

keeping the sign factors si associated with creation/annihilation operators. The inclusion of
phonons is thus possible without any truncation and with a negligible extra computational cost,
since the computational bottleneck is the update of the determinants of hybridization functions,
and not the evaluation of the nonlocal interaction between operator pairs. The phonon coupling
has little effect on the average perturbation order, except very close to a bipolaronic phase.

6.2 Frequency-dependent interactions

The Anderson-Holstein impurity model corresponds to the frequency-dependent interaction
U(ω) sketched in Fig. 6. In the high-frequency limit, the real part of this interaction reaches
Ubare = U , while the static value corresponds to the screened interaction Uscr = Ũ defined in
Eq. (60). The imaginary part of this frequency-dependent interaction consists of δ-functions
at ω = ±ω0, with weight ∓g2π [21]. An arbitrary U(ω) can thus be thought of as arising
from a Holstein-type coupling to a continuum of bosonic modes with energies ω and coupling
strengths gω given by g2ω = −ImU(ω)/π. According to Eq. (62), each boson contributes an
effective “interaction” sisjK(τi− τj) = − g2ω

ω2

cosh(ω(β/2−(τi−τj))−cosh(βω/2)
sinh(βω/2)

between impurity cre-
ation or annihilation operators at imaginary times τi and τj . Hence, the hybridization-expansion
Monte Carlo simulation for a model with general U(ω) proceeds exactly as in the case of the
Anderson-Holstein impurity model, but with the K-function (62) replaced by [20]

K(τ) =

∫ ∞
0

dω
ImU(ω)
πω2

cosh
(
ω(β/2−τ)

)
− cosh

(
βω/2

)
sinh

(
βω/2

) (63)

and the shifted interaction and chemical potential (Eqs. (59) and (60)) given by

µ̃ = µ+

∫ ∞
0

dω
ImU(ω)
πω

, (64)

Ũ = U + 2

∫ ∞
0

dω
ImU(ω)
πω

= Uscr. (65)

The last identity follows from the Kramers-Kronig relation and the anti-symmetry of ImU(ω).
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6.3 Boson distribution function

To measure the boson distribution function p(x) =
〈
δ(x−X)

〉
MC, we calculate the expectation

values
〈
cos(αX)

〉
MC for different α. In order to derive the measurement formula, let us first

discuss the measurement of 〈eiαX〉MC. This measurement formula is obtained by inserting the
operator eiαX at τ = 0 into the expression (56), which defines

wX
(
{Oi(τi)}

)
= Trc

〈
Tτe

−
∫ β
0 Hloc(τ)O2n(τ2n) . . . O1(τ1)e

iαX
〉
b
dτ1 . . . dτ2n

∏
σ

(detM−1
σ )sσ.

During the Monte Carlo sampling, we then measure the ratio wX
(
{Oi(τi)}

)
/w
(
{Oi(τi)}

)
.

Since the additional eiαX operator only modifies the bosonic factor, this amounts to measur-
ing the ratio wXb

(
{Oi(τi)}

)
/wb
(
{Oi(τi)}

)
, where wXb

(
{Oi(τi)}

)
is the bosonic weight factor

obtained with the additional operator eiαX at τ = 0. This ratio can be expressed as

wXb
(
{Oi(τi)}

)
wb
(
{Oi(τi)}

) =exp

(
−α

2

4

eβω0+1

eβω0−1

)
× exp

(
−iαX0(τ=0)− i

eβω0−1
∑
j

sj
g

ω0

α√
2

(
eω0(β−τi) − eω0τi

))
. (66)

Note that because of the Lang-Firsov shift, this expression depends on X0(τ =0), with X0

defined in Eq. (58), and hence on the occupation of the impurity at τ = 0 in the measured
configuration. Since the first factor is independent of the Monte Carlo configuration, the mea-
surement formula for

〈
cos(αX)

〉
MC becomes

〈
cos(αX)

〉
MC =exp

(
−α

2

4

eβω0+1

eβω0−1

)
(67)

×
〈
cos
(
α
√
2
g

ω0

(
n↑(τ=0)+n↓(τ=0)−1

)
+

1

eβω0−1
∑
j

sj
g

ω0

α√
2

(
eω0(β−τi) − eω0τi

))〉
MC
.

In the Monte Carlo simulation p̃(α) =
〈
cos(αX)

〉
MC is measured on a fine α-grid, which then

allows to compute the boson distribution function as

p(x) =
1

2π

∫
dα p̃(α) cos(αx). (68)
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